L .

A

R .
. -

R A “
Kl 1

THESIS

Dauiel R, Zahirniak

, >

sapt L. O
Ne)
QO

7‘-.-

o3

Appm-r‘,a iy uﬂ..u, i’om:.'v.r R C>U
} , .

73]

)

o

i ab LDM)Z..DHX.‘.GE U"E.xg‘lté

RfﬁoRCE“IN

< 2ty eot s e g Mw v

»

. Wright-Patterson Air Forco Base; Chio
L]
. ‘e . n * ’:.ﬂ

i
i
I T 3
Co TingERa W ey
-~

: AL
. ahh o ») ",'; s
IERE SRS T T

AFIT/GE/ENG/90D-69

G

JAN Q7 1991%,; ©

H
Y L
(P

g&mﬁ

S

THESIS

Daniel R. Zahirniak
Capt

AFIT/GE/ENG/90D-69

Approved for public release; distribution unlimited

Characterization of Radar Signals Using Neural Networks

Acceliza (o Y
p—————— -

17 -

NTIs or- g i
DI [

Jronne, o1

Justt snoen

By

Dizt i 1., -
oo ——— . . » eruse M ete s wwe ma o ~ “

AValiubaey Cr g

o .

Dist

ENay oy)
o Adl

M|

L

AFIT/GE/ENG /90D-69

Characterization of Radar Signals Using Neural Networks

THESIS

Presented to the Faculty of the
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science Electrical Engineering

Daniel R. Zahirniak, B.S.E.E

Capt

Dec, 1990

Approved for public release; distribution unlimited

Preface

The purpose of this study was to determine 1f artificial networks could be used to characterize
radar signals from sampled feature data of their electromaguetic signals. Hyperplane Classifiers,
trained via backpropagation to optimize the Mean Square Error, Cross Entropy and Classification
Figure of Merit objective functions, were first analyzed and tested. Kernel Classifiers, using radial
basis functions as the kernel functions, were then analyzed mathematically and tested under var-
ious training algorithms. Finally, the Probability Neural Networks were analyzed and tesved for

comparison with the Hyperplane Classifier and Kernel Classifier networks.

The amount of work accomplished could not have been done wi ..out the aid of my thesis
committee, Dr. M. Kabrisky, Dr. B. Sutter, and Dr. V. Pyatti. I am 2specially indebted to my
thesis advisor Maj S. Rogers for his direction and support during this project. Also. T thank Capt
Eddy and Anthony Schooler for their help with the SUN Workstations and LA’ .>X. Finally, I
would like to thank my wife Annette for the sacrifices she made in order that this mu.estone in our

lives could be completed.

Daniel R. Zahirniak

ohd e g b sLitE

Table of Contents

Page

Preface e e e e e e e it
Tableof Contents e e il
List of Figures o i i e e e e e X
Listof Tables i i i e e e e e e e xii
Abstract e e e e e xiv
L. Problem Description o e 1-1
1.1 Introduction e 1-1

1.2 Background e 1-1

1.3 Problem e 1-2

14 Current Knowledge, 1-2

1D SCope . .o i e e e e e e e e e 1-3

1.6 Standards e 1-4

1.7 Approach e 1-5

1.8 ChapterOutlines 1-5

1.81 Chapter2 i e 1-5

1.82 Chapter3 i 1-5

1.83 Chapterd i-6

1.84 Chapterd i e 1-6

185 Chapter6 1-6

1.9 Summary e e e 1-6

i

1L

I11.

Literature Review e
2.1 Introduction

22 Background e

2.3 Pattern Recognition

2.4 Pattern Recognition Systems

240 Semsing e e

2.5

2.4.2 TFeature Selection
2.4.3 Categorization .

Biological Neural Networks

2.6 Artificial Nlelral Networks
2.7 Ilstorical Review,
2.8 Network Training.
2.8.1 Unsupervised Training

2.8.2 Supervised Training

2.8.3 Combined Training

2.9 Network Categorization
2.9.1 Probabilistic Classifiers

2.9.2 ExemplarClassifiers

2.9.3 Hyperplane Classifiers

2.9.4 XKernel Classifiers

2.10 Summary e e e e e e e e e
Mathematical Analysis
3.1 Introduction
3.2 Hyperplane Classifiers
3.2.1 Decision Functions

3.2.2 Network Implementation

3.2.3 Network Training

iv

2-5

2-6

2-8

2-9

2-11

2-11

2-13

3-1

3-1

3-1

3-2

3-3

3.3 Kernel Classifiers i e
3.3.1 DecisionFunctions o L o L
3.3.2 Network Implementation
3.3.3 Functional Approximation
3.34 Density Estimotion. 0. ..
3.3.5 Network Supervised Training
3.3.6 Network Combined Training

3.4 Summary

IV. Software Description
4.1 Introduction
4.2 Approach
1.3 Networks

4.4 Structure

44.1 NETMENU i
442 NETERROR,
44.3 NETTRAIN,
444 NETINPUT
445 NETINIT e
4.4.6 NETSHOW
447 NETOUT i
448 NETAUX e
449 NETMATH
4.5 Implementation

4.6 Summary

3-18

3-18

3-27

4-1

4-3

4-3

4-3

4-3

4-4

4-4

4-4

4-4

V. Data Analysiso e e e
5.1 Introduction e
5.2 Commmnication Signal Characterization
5.2.1 DataDescription L 0o oL
522 Testing e
5.2.3 Hyperplane Classifiers
524 Kernel Classifiers
525 Summary i e e e e e e e e e
5.3 Radar System Characterization
53.1 Imtroduction
5.3.2 DataDescription
533 DataProcessing
53.4 Network Development
B4 SUMIMALY . .« . ¢ s i et e et e e e e e e e e
VI Conclusions/Recomme‘r_xda‘tions
6.1 Intreduction e
6.2 Conclusions e e e e e
6.2.1 Hyperplane Classifier
6.2.2 Kernel Classifier
6.3 Recommendations
6.4 SUmMmary i e e e e e e e e
Appendix A. Objective Function Analysis
Al Introduction

A2 Mean Square Frror (MSE) Function
A.3 Cross Entropy (CE) Function

A4 Classification Figure of Merit (CFM) Objective Function

vi

5-1

5-2

5-5

5-14

5-15

5-22

Page

Appendix B. Hyperplane Classifier Parameter Update Equations B-1
B.l Introduction e B-1

B2 Identities B-1

B.3 Mean Square Error (MSE) B-7

B4 CrossEntropy (CE) i B-11

B.5 Classification Figure of Merit (CFM) B-17

Appendix C. Parzen Window/Radial Basis Function Relationship C-1
C.1 Introduction C-1

C.1.1 Density Estimation. C-1

C1.2 Conditions C-1

C2 Kernel Selection C-2

C3 Proofs . . . oo C-2

Appendix D. Kernel Classifier Network Training Algorithms D-1
D.1 Imtroduction D-1

D.2 Incremental MSE Minimization D-1

D.3 Incremental Average Update D-6

D.4 Global MSE Mimimization D-7

Appendix E. ‘Tables for Data Analysis E-1
E.1 Introduction E-1

E.2 Communications Signal Characterization E-1

E.2.1 Hyperplane Classifiers E-1

E22 Kernel Classifiers -4

E.3 Radar System Characterization E-10

E3.1 RBFNetwork o i E-10

E.3.2 Arbitrator. o E-11

vil

Page
Appendix F. Software Analysis e e F-1
F.1 Introduction L e F-1
F.2 Object Oriented Structure F-1
F2.1 Weights i e i F-1
F2.2 Sigmas. e e F-1
F23 Conmect e F-1
F.2.4 Transfer Function F-3
F25 Class. . . . o i e e F-4
.3 Software Analysis e e -4
F3.1 NETMENU Cee r-4
F.3.2 NETERROR i F-5
8 . F.3.3 NETTRAIN e F-5
F.3.4 NETINPUT i F-17
F.35 NETINIT e F-18
F.3.6 NETSHOW i F-19
F.3.7 NETOUT e i F-21
F.3.8 NETAUX F-22
F3.9 NETMATH F-23
Appendix G. Software Code G-1
G.1 NETMENUE o e G-1
G.2 NETERROR e e G-17
G.3 NETTRAIN G-19
G4 NETINPUT. e G-42
G.5 NETINIT e G-52
G.6 NETSHOW e e e e G-57
G.7T NETOUT e G-73
G.8 NETAUX e G-79
viii

G.9 NETMATH e e e e e G-106
G.AONETVRBLE G-109
Bibliography e BIB-1
Viba . e e VITA-1

ix

List of Figures

Figure

1.1. Double Hidden Layer Hyperplane Classifier Netwozk

1.2. Single Hidden Layer Kernel Classifier Network

2.1. Block Diagram of a Pattern Recognition System (27:16)
2.2, The Neuron (19:19) oo v i it vt
2.3. Artificin]l Neural Network Node (19:48)
2.4. Mult i, Artificial Neural Network (6:75)
2.5. Disjoint itegions for Similar Classes (6:30)
2.6. Probabilistic Network Decision Regions (11:49)
2.7. Exemplar Network Decision Regions (11:49)
2.8. Hyperplane Network Decision Regions (11:49)

2.9. Kernel Classifier Network Decision Regions (11:49)

3.1. Linear Decision Function(27:40),
3.2. Sigmoidal Transfer Function
3.3. Two Hidden Layer Sigmoidal Network Topology
3.4. Circular Decision Functions
3.5. One Dimensional Radial Basis Function
3.6. Square Wave Reconstructed Via Radial Basis Functions
3.7. RBF Neural Network Topology
3.8. Parzen Window PDF Estimation (8:164)
3.9. Probabilistic Neural Network Topology (24:528)

3.10. Rectangular Grid of Kohonen Nodes (19:65)

4.1. Teed Forward Network (19:56)

4.2. Software Structure Chart e

Pag

1-3

1-4

2-6
2-8
2-10
2-11
2-12

2-12

3-1
3-3
3-5
3-10
3-12
3-13
3-14
3-15
3-17

3-20

Figure
5.1. Performance vs Training Iterations for MSE Algorithm

5.2. Performance vs Training Iterations for CE Algorithm

5.3. Performance vs Training Iterations for CFM Algorithm
5.4. Prrformance vs Nodes for Nodes at Data Points
5.5. Performance vs Nodes for Kohonen Training with Six P Neighbors
5.6. Peiformance vs Nodes for Kohonen Training with Variable P Neighbors

5.7. Performance vs Nodes for K-Means Clustering with Six P-Neighbors
5.8. Performance vs P-Neighbors for K-Means Clustering with Sixty Clusters

5.9. Nodes vs Average Threshold for Center at Class Averages
5.10. Performance vs Average Threshold for Center at Class Averages
5.11. PNN vs RBF Performance for Training Data
5.12. PNN vs RBF Performance for Test Data
5.13.Radar Signal e e e e
5.14. Performance Radial Basis Function Network for Radar Data
5.15. Radar Data Arbitration Network
5.16. Performance of Network A for Group A RadarData
5.17. Performance of Network B for Group B RadarData

5.18. Performance of Arbitrator Network for Group A and B Radar Data

F.1. Node Weight Structure it it it
F.2. Node Sigma Structure
F.3. Node Connection Structure,

F.4. Kohonen Training Eta Adaption,,

xi

Page
5-2

5-3

5-10

5-11

5-16
5-18
5-19
5-20
5-20

5-21

List of Tables

Table Page
5.1. Robustness Measure for MSE Training 5-3
5.2. Robustness Measure for CE Training 5-4
5.3. Robustness Measure for CFM Training 5-5
5.4. Robustness Measure for Nodes At Data Points 5-6
5.5. Robustness Measure for Kohonen Training 5-8
5.6. Robustness Measure for K-Means Clustering 5-10
5.7. Robustness Measure of Center at Class Averages 5-12
5.8. Robustness Measure of PNN Network 5-14
5.9. Robustness Measure of RBF Network 5-14
5.10. Hyperplane Classifier Network Robustness Summary 5-14
5.11. Kernel Classifier Network Robustness Summary 5-15
5.12. Radar Categorization Summary« it 5-22
E.1. MSE Network Performance, E-2
E.2. CE Network Performance, E-2
E.3. CFM Network Performance E-3
E.4. Nodes at Data Points Training Performance vs Nodes E-4
E.5. Nodes at Data Points Test Performance vs Nodes E-4
E.6. Kohonen Training Performance vs Nodes with Six P-Neighbors E-5
E.7. Kohonen Test Performance vs Nodes with Six P-Neighbors E-5
E.8. Kohonen Training Performance vs Nodes with Variable P-Neighbors E-5
E.9. Kohonen Test Performance vs Nodes with Variable P-Neighbors E-6
I5.10.K-Means ‘lraining Performance vs Nodes with Six P-Neighbors E-6
E.11.K-Means Test Performance vs Nodes with Six P-Neighbors E-6
E.12.K-Means Training Performance vs P-Neighbors with 60 Nodes B-7

Xii

Table Page

E.13.K-Means Test Performance vs P-Neighbors with 60 Nodes E-7
E.14.Center at Class Averages Training Performance vs Avg Threshold E-8
E.15.Center at Class Averages vs Avg Threshold E-8
E.16.Nodes Generated for Center at Class Averages vs Avg Threshold E-8
E.17.PNN Training Performance vs Sigma. E-9
E.18.PNN Test Performance vs Sigma L9
E.19.RBT Network Training Performance vs Sigma E-10
E.20.RBF Network Test Performance vs Sigma E-10
E.21.RBF Network Performance E-11
E.22.Network A Performance E-11
E.23.Network B Performance e E-12

AFIT/GED/ENG/90-D

Abstract

Recent work concermng-artificial neural-networks has focused on decreasing network training
times. Kernel Classifier networks, using radial basis functions (RBFs) as the kernel function, can
be trained quickly with little performtnce degradation. Short training times are critical for systems

which must adapt to changing environments.

The function of Kernel Classifier hetworks is based on the principle that multivariate functions
can be approximated via linear-combinations of RBFs. RBFs can also perform probability density

estimations, making classifications ap};roximating a Baye’s optimal descriminant.

Methods used to set the RBF cenfers included matching the training data, Kohonen Training,

A
K-Means. Clustering and placement at averages of data clusters of the same class.
AN

Test results indicate the performance of these networks was equal to that of Hyperplane Clas-
sifier networks trjined, via backpropagation, to optimize the Mean Square Error, Cross Entropy,
and Classification’ Figure of Merit objective functions. However, the RBF networks-trained much
faster. The RBF networks also outperformed the Probability Neural Networks,(PNN) indicating

the weights in the output layer offset the choice of non-optimal spreads.

This ability to train quickly while obtaining high classification accuracies make RBF Ker-

nel Classifier networks an attractive option for systems which must adapt qulckly to changing
environments. i k\p'

%M \idan (/‘fu"’*\«na

xiv

Characterization of Radar Signals Using Neural Networks

I. Problem Description

1.1 Introduction

Due to the increasing proliferation of hostile radar systems, the current radar warning de-
vices installed in many Air Force aircraft may have trouble meeting their real-time data processing
requirements in the near future. Since artificial neural networks are designed to process data in a
distributed manner, they will able to process data much quicker than current computer systems
when the parallel distributed processing hardware becomes available . Thus, artificial neural net-
works may provide the key t~-colving the real-time data processing requirements of future radar
warning devices. This thesis will characterize several types of artificial neural networks and de-
termine if any are suited to accurately characterize radar systems. This problem description will
begih by reviewingthe background of these radar warning devices. The exact problem to be solved
will then be described. This description will be followed by a summary of the knowledge cur-
rently available concerning artificial neural networks and a brief outline of the scepe of the thesis.
The standards and approach taken to solve the problem will then be discussed. This chapter will

conclude with a brief overview of the remaining chapters.

1.2 Background

The main task required of a radar warning system is to analyze the electromagnetic environ-
ment, determine if this environment contains a radar signal, classify the signal as being generated
from either a hostile or friendly radar system, and identify the ekact type of radar system trans-
mitting this signal or classify the signal as being from an unknown emitter. This analysis should be
accomplished even though the radar system has the ability to change the signal’s electromagnetic
characteristics (19:42). Accomplishing this task requires the radar warning system to analyze the
environment quickly and accurately, classifying signal data according to known parameters. Even
with the use of high speed computers, this task is computationally intense and can take several
seconds to properly-classify the radar sighal. As‘the electromagnetic spectrum becomes increasingly
crowded through the proliferation of hostile radar systems, it will take longer for the current radar
warning devices to accomplish their mission. However, aircraft are required to operate in real-time,

responding to changes in this electtomagnetic environment in-a matter of milliseconds. This has

1-1

led to research in the use of artificial neural networks as-a possible method of characterizing a radar

system from its transmitted signal.

1.8 Problem

This thesis will characterize several different types of artificial neural networks and determine
which would be able to classify radar systems from data concerning their electromagnetic signals.
An artificial neural network can be thought of as a massively parallel, interconnected system of
simple computing elements, called nodes, which can accomplish certain pattern classification tasks
quickly, in a way motivated by a biological nervous system. Since neural networks have been shown
to be equivalant to a Bayes’ optimal discriminant (21) and capable of performing arbitrary complex
transformations (5), it seems logical to assume these networks will be able to characterize radar

systems.

1.4 Current Knowledge
<3

/‘/Easically, artificial neural networks may be categorized as either Probabilistic Classifiers,
Exemplar Classifiers, Hyperplane Classifiers, or Kernel Classifiers (11:47-63). A Probabilistic Clas-
sifier neural network seeks to classify patterns by using probability distributions to maximize the
probabilities associated with a classification. As such, these networks require an assumption of the
probability distribution of the input data (9:1-7). An Exemplar Classifier neural network classifies
unknown feature data based on a nearest-neighbor calculation with the training data. That is, the
closer an unknown data point is to a known data point in the feature space, the stronger the prob-
ability-that the two features represent the same object (8:167-170). A Hyperplane Classifier neural
network forms decision regions by using hyperplaues to partition the feature space into regions of
interest. This partitioning allows the network to make classifications of similar data (19:48-63).
A Kernel Classifier neural network uses overlapping kernel function nodes to create complex deci-
sion regions over-the feature space. These decision regions will determine the classification of each

pattern-as similar patterns will be identified within the decision regions (11:49).

Usually, these artificial neural networks are developed using unsupervised training, supervised
training, or a combination of supervised and unsupervised training. In unsupervised training, the
feature-data from the-environment arc-input to the network. Thenodes in the network are then
allowed to arrange their parameters, or cluster, in positions reflecting the distribution of the data
(22:151-193). In supervised training, the feature data, in the form of a pattern vector, is presented

to-the network along with the desired output pattern for that particular input pattern vector. The

1-2

difference, or error, between the network output and the desired output is then calculated and used
to adjust the network parameters in such a way that the error is minimized. A combination of
unsupervised and supervised training can also be used to develop an artificial neural network. In
this type of training, the network is first trained using unsupervised training to allow the network
parameters to be distributed according to the feature data. After stabilization, the network is then.

trained, in a supervised fashion, to produce the correct classification for a given input pattern.

1.5 Scope

The final product of this thesis will be a characterization of the Hyperplane and Kernel
Classifier neural networks and a determination if they can accurately characterize radar signals.
The Probabilistic Classifier will be briefly studied for comparison purposes. The Exemplar Classifier
will not be-studied as the computational time required to make a classification would exceed the
real-time data processing requirements of the aircraft. The Hyperplane Classifier networks will

consist of a_double hidden layer network, as-shown in figure 1.1. This network will be trained,

'? Weights R ¢ /a"
Identity Sigmoidal
Function nction

Figure 1.1. Double Hidden Layer Hyperplane Classifier Network

via backpropagation, to optimize the Mean Squared Error, (MSE), the Cross Entropy (CK) and
the Classification Figure of Merit (CFM) objective functions (28). The transfer function for each
network node will be sigmoidal. The Kernel Classifier will be a single hidden layer network, as

shown in figure 1.2, developed using the combined training method with radial basis functions as

1-3

Input Hidden Quiput
Layer . Layer Layer
_ -Weights

- 7 F-4
Identity Gaussian- Linear

Figure 1.2. Single Hidden- Layer Kernel Classifier Network

kernel functions. The transfer function for each of the kernel nodes in the hidden layer will be

gaussian, The transfer fuunction for the nodes in the output layer will be linear.

Several methods will be used to determine the weights linking the network’s hidden layer
nodes to the input layer nodes. The first method will set the weights at values equal to the features
of the training set patterns. The second method will set the weights via the Kohonen training
algorithm. The third method will set the weights via a K-means clustering algorithm. The fourth
method will set the weights at the average of -clusters within the pattern classes. The weights
linking the kernel nodes in the hidden layer with the nodes in the output layer will be established

by a global minimization of the MSE function.

1.6 Standards

The performance criteria for each network will be the classification accuracy and the amount
of time it takes to train the network. Classification accuracy is the more important of the two
performance criteria since near perfect classification accuracy is a mission requirement. The amount
of time it takes to train the network is important since it is highly likely that the threats in the
environment can change from mission to mission. Short training times can be crucial to building
networks to adapt to this changing environment. The accuracy of each trained network will be

calculated by applying test data to the network, and allowing the network to make a classification.

1-4

An error will result when the network’s classification does not match the known classification. The
accuracy will then be calculated as the ratio of the number of correct classifications to the number

of input patterns.

1.7 Approach

As part of this thesis, a software environment will be developed on the SUN graphic work-
stations. This software will be written in ANSI C and designed according to an object-oriented
approach. The software will allow the user to select the number of layers for the neural network
and to select the training rule for each layer. In this manner, different combinations of training
rules can be combined and their overall performance evaluated. Furthermore, this software will
allow the user to select either the sigmoidal, gaussian or linear transfer functions for each node in
the network. This will allow construction of many different types of networks even though-their
topology may be the same. Since the main task of this thesis is in pattern recognition, this software
will implement only strict feed forward networks. However, the software will be designed to-allow

future expansion to recurrent and lateral inhibition networks.

1.8 Chapter Outlines

The following is a brief discussion of the information..o be found in each of the chapters of
the thesis.

1.8.1 Chapter 2 This chapter will provide a review pattern recognition in general followed
by a brief synopsis of biological and artificial neural networks. This chapter will then conclude with
a history of the development of artificial neural networks, a description of the training methods
used to implement these networks and a discussion of the different classifications of artificial neural

networks.

1.8.2 Chapter 8 This chapter will provide a mathematical analysis of the algorithms to be
used to train the neural networks implemented as part of this thesis. In particular the backprop-
agation learning algorithms for the MSE, CE-and CFM objective functions-will be derived for the
perceptron-based Hyperplane Classifier networks. The algorithms developed for the radial basis
function Kernel Classifier networks will concentrate on first setting the weights of the hidden layer
nodes prior to establishing the weights in the output layer nodes via a global minimization of the

MSE objective function,

1-5

1.8.8 Chapter 4 This chapter will provide a detail. { analysis of the software developed for
this thesis. This will include a discussion of the software structure and a mapping of-the algorithms

developed in Chapter 3.

1.8.4 Chapler 5 This chapter will discuss the testing and results for each of the networks
implemented with the software described in Chapter 4. This will include an overview of the classi-
fication problem, a discussion of the data used to train and test the network and an analysis of the

results,

1.8.5 Chapter 6 This chapter will provide conclusions based on the results detailed in Chap-

ter 5 and include recommendations for areas of future study.

1.9 Summary

This thesis will characterize the performance of several artificial neural networks and deter-
mine if the networks can be trained to accurately classify radar systems from data concerning their
electromagnetic signals. For this thesis, Hyperplane Classifier, Kernel Classifier, and Probabilistic
Classifier networks will be developed and tested to analyze their performance. The results-of this
thesis will provide a determination of the feasibility of using artificial neural networks as the basis

for the Air Force’s next generation of radar warning devices,

1-6

II. Literature Review

2.1 Iniroduction

Current computer systems may not be able to process data fast enough to meet the future
real-time performance requirements of many military weapons systems. Since artificial neural
networks are designed to process data in a distributed manner, they may provide the key to solving
these data processing requirements. This literature review begins with the background associated
with the military’s strict data processing requirements followed by a brief review of the concepts of
pattern recognition. Research showing how the brain may use biological neural networks to process
information is then examined. After describing artificial neural networks in general, this review will
cover some of the important milestones in the development of artificial neural networks. Finally,
this literature review will describe the current methods used to train these networks and discuss
how artificial neural networks are now being categorized according to their methods of classifying
data.

2.2 Background

A task required of many military weapon systems is to analyze the environment and- deter-
mine, in a matter of milliseconds, whether a target of interest is-present. Solving this problem of
pattern recognition usually-requires the weapon system to combine the data from a multitude of
sensors, segment the data into areas of interest, extract the important features, and classify these
features according to known threat patterns (20:1-12). Currently, these pattern recognition tasks
are accomplished using the-traditional Von Neumann computers. These computers consist of a
Central Processing Unit which performs complex sequential computations, one at a time, under
control of a system clock (6:2). Even with the use of high speed computers, this task of pattern
recognition is usually so computationally intense that it may take hours to properly classify the
pattern (26:7). These time frames are unacceptable for weapon-systems operating in real time.
The only object capable of performing this type of analysis in real-time is the human brain. Thus,
a computing architecture, based upon.the way the brain is assumed to function, may be able to
solve these pattern recognition proolems in the time frames required (26:7). These computing
architectures, commonly known as artificial neural networks, perform computations in a manner
significantly different-than-traditional computers, For-instance, an-artificial neural network-process-
ing unit may do only one type of simple calculation, such as producing a single output from a simple
transformation of its inputs. However, since there may be thousands of these simple processing

units, each interconnected to many others, extremely complex computations can be accomplished,

in parallel, via the network as a whole. This parallel processing of data allows the artificial neural
network to process data extremely quickly and may provide the key to rapidly classifying patterns

from their distinct environmental features.

2.3 Patlern Recognilion

Recognition of patterns is a basic characteristic of many living organisms, including human
beings (27:5). The fact that a human being is a very sophisticated information processing system is
primarily due to the fact that human beings possess a superior pattern recognition capability (27:5).
That is, even though our senses are constantly flooded with an overwhelming variety of patterns
from the environment, we still have the ability to determine what information is most important and
react accordingly. It is this characteristic of discriminating unknown patterns between populations

that a pattern recognition system seeks to emulate.

2.4 Pallern Recognition Sysiems

Basically, ail pattern recognition systems seek to categorize the input data into.identifiable
classes via the extraction of significant features from a background of irrelevant detail (27:6). Thus,
the tasks of a pattern recognition system-are to sense the environment, provide data concerning
patterns of possible interest, extract relevant features from this data, and classify the pattern as a
member of one of the groups under consideration. These tasks are shown in the block diagram of

figure 2.1.

2.4.1 Sensing The first task of a pattern recognition system is to represent the pattern
under study as a group, or vector, of measurements. This process, known as-sensing, attempts
to describe the characteristics of the pattern under study and represent the pertinent information
available about the pattern (27:9). For-example, if the task was to recognize, or classify a radar
signal, the measurements of the pulse repetition interval, scan rate and operating frequency might
be taken.

2.4.2 Feature Seleclion The second task of a pattern recognition system is to take the
measuted data obtained under sensing and extract the intraset and interset features, or attributes,
which-will-enable-the system-to-perform- classification. This step is perhaps-the most critical as
good features make for good classification systems (19:47). However, at this time, there is no strict

set of rules-available to determine which features actually characterize a class. ‘oo few or poorly

Contextual
Analysis
Patterns
Classes \
\
Preprocessing Feature "
- And Vectors .
Sensing | Y 5 Categorization e
4 Feature A
' Selection
H Estimation
! ®1 Adaption Je
Measurements Learning

Figure 2.1. Block Diagram of a Pattern Recognition System (27:16)

chosen features will not allow the system to characterize the input patterns sufficiently to allow

categorization (27:7).

2.4.8 Categorization The third task of a pattern recognition system is to classify, or cate-
gorize, the input pattern as belonging to one of a set of possible classes. In this step, the features
extracted from the unknown pattern are analyzed and used to decide from which class the unknown
pattern is mostly likely to be a-member. This categorization is-usually based upon some decision

function such as Bayes’ optimal discriminant.

Currently, most of these pattern recognition tasks are accomplished-via & variety of classical
statistical methods such as template matching, frequency histogram associations, and probability
density estimations. These methods can require much contextual analysis of the data prior to
classification. However, artificial neural networks can be constructed as pattern recognition systems,
-adapting their internal parameters according to a set or predefined rules, without the need for
intensive human analysis of the data. To understand how this process may occur requires an

understanding of biological neural networks.

2.5 Biological Neural Nelworks

Biologically speaking, a neuron, as shown in figure 2.2, is a nerve cell which is used to process,

store, retrieve and manipulate information received from the environment (26:9). This neuron is

-._ .
‘j ~ Dendrites
4

<t ..: Terminal Feet

Figure 2.2. The Neuron (19:19)

a cell that has been modified to become a simple processing element whose primary function is
to receive, process and transmit electrochemical signals across the brain’s neural pathways (29:12)

(19:17). The main modifications are the addition of dendrite and axon appendages to the cell

‘body. The dendrites act as the input-communication channels while the axon acts as the output

channel. Each neuron is connected to the axon of many other neurons via its dendrites. These
dendrite extensions allow a neuron to receive chemical neurotransmissions from other neurons at
junctions called synapses (29:12). When the neuron receives these signals, it will become excited if
the combined input signals exceed a threshold. When excited, the neuron will transmit an electrical
signal-along its axon, sending the signal to each attached neuron. The attached neurons may or
may not-become excited, depending on the strength of the-connection between the neurons. Thus,
it is in the synapse-that the information is stored- in-the form of synaptic weights. Since there are
between 103 - 10!! neurons in the human brain-and an estimated 10! interconnections between

these neurons, a vast amount of information can be stored and quickly processed (29:12).

2-4

2.6 Artificial Neural Networks

As a pattern i‘ecognition device, artificial neural networks attempt to assign an unknown
pattern from the environment into one of a set of selected classes by emulating this structure of
the neurons in the human brain (11:47). These networks can be thought of as massively parallel,
interconnected networks of simple computing elements, called nodes, which seek to interact with
the real world in way similar to a biological nervous system (10:251). As shown in figure 2.3, each
node in the network performs a simple transformation of-inputs from other nodes in the network,

or from the environment, to produce a single output signal. This transformation can be via a

Node Qutputs
P4

X Internode

Weights

o= Tl wivi+o

Figure 2.3. Artificial Neural Network Node (19:48)

linear function or a nonlinear function such as sigmoidal, gaussian, or threshold function. The
signal output from this transformation is then fed to other nodes or interpreted as the-output of

the network.

The connections, or weights between the nodes, function in a manner similar to the axon-
dendrite synaptic connection of biologicalneurons. That is, each weight has a ”strength” associated
with it which serves to either amplify or inhibit the signals transmitted between nodes along these
connections. Typically, an artificial neural network wiil-consist of one-or more layers of nodes as
shown in figure 2.4. The first layer of nodes serve to simply pass the input features, via-weighted
interconnections, to feature detector nodes in the second- layer. These feature detector nodes will

usually respond to certain features of the input data. Their responses are then passed, via another

T

Input ' Feature Classification
Nodes Detectors Nodes

m .
¥~ Weights

Figure 2.4. Multilayer Artificial Neural Network (6:75)

set of weighted interconnections, to the output layer which performs the classification task based on
the outputs of the feature detectors. Through the proper interconnection of nodes and weights, and
through the use of an appropriate transfer-function, artificial neural networks have been developed

which can accurately classify patterns ranging from phonemes to tanks (23:461-466) (20:1-7).

2.7 Historical Review

Biological neural networks have been studied for years. Ever since the 18th century, when

Galvani investigated the connecticn between electricity and the frog’s central nervous system, man-

has been seeking to unlock the secrets of the brain’s computing power (19:5). From Santiago Cajal’s
discovery of the dense interconnection of neurons in the cortex to the first estimation of a neuron’s
transfer function via experiments with the Limulus’ photoreceptors, man has been seeking a method

of modeling the function of the brain in the form of artificial neural networks (19:6-31).

The first major milestone in the development of artificial neural networks came in 1943
from McCulloch and Pitts. They showed how neural-like nétworks, using a simple two state logical
decision element which modeled the first order characteristics of a neuron, could compute a Boolean
function- (19:9). Since Turing later showed-that any computable function could be computed with

Boolean Logic, the basis for the development of computing machines, based on the principle of

using a dense connection of simple neural like elements, was established. However, McCulloch and

Pitts did not show how a network.made of these elements could be made to ”learn” (22:152).

This problem of learning was addressed by Donald Hebb in 1949. Basically, Hebb-proposed
that the strength or weight between two neurons be increased whenever both the presynaptic and
postsynaptic units were active simultaneously. These ideas remained untested due to the lack of

technology capable of implementing these theories. (22:152-153).

M. Minsky and D. Edmonds were the first to actively implement Hebb’s ideas in the-form
of a learning/computational machine developed in 1951. This-machine was composed of tubes,
motors and electrical clutches. The machine’s memory was stored in the positions of control knobs

by which the machine adjusted itself (22:153).

‘This milestone was followed by Rosenblatt’s introduction of the perceptron in 1957. Basically,
the perceptron is a single unit which produces an output.only when the weighted sum of its inputs
exceeds some preset threshold. The function of the perceptron was-modeled - on the first order
characteristics of neurons. Using Hebb’s ideas as a basis for developing his learning algorithms,
Rosenblatt proved that the perceptron could learn anything it could represent (29:29). Rosenblatt
also helped pioneer the simulation of the perceptron using digital computers and developed a
set-of rules that would allow the perceptron to learn (19:13). In reference to pattern recognition,
Rosenblatt showed that a two layer perceptzon could carry out any of the 92" possible classifications

of N binary inputs using 2V perceptrons (22:158).

In 1959, Bernard Widrow invented the adaptive linear neuron (ADALINE) which, in-a manner
similar to Rosenblatt’s perceptron, would output a signal only when the weighted sum of its inputs
exceeded a preset threshold. The weight parameters of the ADALINE were adjusted over time using
equations based on Hebb’s original ideas (6:31). Widrow implemented ADALINE based systems

that could predict the weather and balance a broom on a moving platform (19:12).

These developments led-to an increased level of activity in the field of artificial neural networks
until 1969. Tt was in-this yearthat Minsky and Papert proved that the single layer perceptron could
not classify patterns with features in disjoint regions in-the feature space. An example of such a
pattern is shown in figure 2.5. At this time, no method of updating the weights for any nodes except
those weights attached to the output layer nodes for a multilayer perceptron had been established
(6:29). Thus, all percepiron based networks at this time were limited- to-a single input tayer and-
output layer with only one set of adjustable weights. Minsky’s and Pappert’s proof helped stifle

neural network research until the middle 1970’.

2-7

T e ;
’ Class B
Class A X Pid *
Exemplars L Exemplars
X R * * *)
x /’ * ’/
X g * * PR
* X X ~ g \ *) 7 .’
4
e ‘ id ‘
P Hyperplanes e
/’ ,/
”, P4 ’ , ’, 4
Pl L’ x X
4 * ,
/,’
* * . X X X
Class B * Vel X
Exemplars x L X X Class A
* x - X Exemplars
* . X
* Pid X
’ ’,

Figure 2.5. Disjoint Regions for Similar Classes (6:30)

Interest in artificial neural networks was rekindled in 1974. It was at this time that Paul
Werbos introduced a method of updating the weights in the hidden layers of a multilayer perceptron
network. These equations allow the multilayer perceptron-to overcome the disjoint region problem

suffered by the single layer perceptron network.

However, little work continued to be done in-the field until 1982 when John Hopfield devel-
oped an artificial neural network capable of providing associative memory and solving optimization
problems (6:37). This development led to increased activity in the field of artificial neural networks

and the development of many different types of training rules and architectures.

2.8 Network Training

Artificial neural networks are not programmed, as are traditional computers, and there is
little need for the development of application specific algorithms to perform the classification task.
Artificial neural networks learn by example (6:11). In pattern recognition tasks, artificial neural
networks are usually trained to produce a desired-output whenever-a known input is applied. This
training is accomplished by applying input patterns to the network and allowing the network nodes
to adjust their parameters in a predetermined fashion (29:22). That is, the artificial neural network

is presented with data which characterize such-patterns as images, speech signals and radar signals.

These networks are then allowed to adjust their internal parameters, such as weights, to allow the

network to discover the distinguishing features heeded to perform a classification task (6:13).

Basically, there are-three primary methods of developing or training artificial neural net-
works. These methods consist of unsupervised training, supervised training, or combined training,

a combination of supervised and unsupervised training,.

2.8.1 Unsupervised Training In unsupervised training, the feature data from the environ-
ment ate fed to the network. The interconnection weights between the nodes-in the network are
then arranged, or clustered, into positions reflecting the distribution of the training data (22:151-
193). After training is completed, application of an input from a given class will produce a specific
output. However, there is no way, before training, to predetermine the mapping from input to out-
put. A Kohonen Self-Organizing feature map network, trained in this manner, has proven feasible

for classifying speech patterns (1:1-7).

2.8.2 Supervised Training In supervised training, the feature data is presented to the net-
work, along with the desited output pattern for that particular input pattern. The difference
between the network output and the desired output, or error, is then calculated and used to adjust
the network parameters, such as the weights linking the nodes, so that this error is minimized. This
process is repeated continucusly until the network is able to produce the mapping from the input
pattern to -the desired output pattern. A multi-layer perceptron network, developed with super-
vised training at the Air Force Institute of Technology, has proven capable of classifying tactical

targets such-as trucks, tanks, and jeeps (20).

2.8.8 -Combined Training A combination of unsupervised and supervised training can also
be used to develop an artificial neural network. In this type of network, the first layer is usually
trained through unsupervised-training, allowing the network parameters to be distributed according
to the feature data. After stabilization of the first layer, the remaining nodes are then trained in a
supervised fashion, to produce a desired signal from knowledge of the distribution of the network
parameters in the first layer. A network trained in this manner has been studied by the Royal

Naval Engineering College as a possible method of classifying radar signals (2:1-4).

2.9 Network Catlegorizalion

According to Lippmann, neural networks may be categorized as either a Probabilistic Clas-

sifier, an Exemplar Classifier, a Hyperplane Classifier, or a Kernel Classifier, depending upon the

method the network uses to perform classification (11:47-63).

2.9.1 Probabilistic Classifiers A Probabilistic Classifier neural network seeks to classify pat-
terns by using probability distributions to maximize the probabilities associated with a classification

as shown in figure 2.6. As such, these networks require enough training data to allow an assump-

Class B
Exemplars

Class A
Exemplars

Decision Line

Figure 2.6. Probabilistic Network -Decision Regions (11:49)

tion of the probability distributions of the patterns to be made. Either unsupervised or supervised
training is then used to train the network. These networks perform best when the assumed dis-
tributions are accurate models of the test data. An-example of this type of classifier is the Bayes’
Classifier or the Probabilistic Neural Network (9:1-7):(24).

2.9.2 Ezemplar Classifiers An Exemplar Classifier neural network classifies unknown fea-
ture data based on a nearest-neighbor calculation with-the training data fixed in the feature space
as shown in figure 2.7. These nearest-neighbor calculations allow an estimation of the conditional
probability density functions for each class (8:166-169). That is, the closei ~n unknown pattern is
to a known pattern, the stronger the probability that the two patterns represent the same class
(10:3). An example of this type of network is the K-Nearest-Neighbor classifier. Networks of this
type can be trained rather quickly through either supervised or-unsupervised methods, but can

require Jarge amounts of memory and long computational timesfor classification (11:49).

2-10

x X
. X Class A
* . X X X Exemplars
x X x X x
X
x A
Class B
Exemplars Nearest
Neighbor
Area

Figure 2.7. Exemplar Network Decision Regions (11:49)

2.9.3 Hyperplane Classifiers A Hyperplane Classifier neural network forms decision regions
by using hyperplanes to-partition the feature space into the regions of interest as shown-in figure
2.8. Perhaps one of the more studied networks-of this type is the multilayer perceptron network
(19:44-63). The function of this network is based on the property that any multivariate function
can be approximated by a finite superposition-of sigmoidal functions (5:303-313). This property
can be implemented with a single hidden layer neural network, where each node within the network
uses a sigmoidal function to calculate its output from the sum of the product of its inputs and their
associated weights. This network is usually trained under the supervised training method, using a
‘technique called backprojragation, to minimize the error between a given input and a desired output
(19:104-114). However, the amouny, of time required to train these networks can take hours (23:466)
(14:4). Once trained, these networks usually provide high accuracy for pattern classification while

requiring relatively short computational times (11:49).

2.9.4 Kernel Clgssifiers A Kernel Classifier neural network uses overlapping kernel func-
tions to create complex receptive-field decision regions over the feature space as shown-in figure
2.9. One of the more recent types of Kernel function classifiers is the radial basis function clas-
sifier. The function of this network is based.on the property that any mnultivariate function can
be-reasonably approximated using a linear combination of radial basis functions centered on the

data points, or a subset of the data points (17:143-167) (15:1-20) (16:978-980). This translates

2-11

Class B
Exemplars

Class A
Exemplars

Hyperplanes

Figure 2.8. Hyperplane Net ork Decision Regions (11:49)

Class A
x{ X x| , Exemplars
1. X| X)'d ’}/
x| X x| X x
1 . * * XX
*7 | * * X | x X
* * * * . X
/ | x |x
Classﬁ T > * * *
Exemplars - Receptive
I Tields

Figure 2.9. Kernel Classifier Network Decision Regions (11:49)

2-12

into-the establishment of a single hidden layer network, with the nodes in the hidden layer using
radial basis functions to transferm their inputs to outputs. These networks have been successfully
trained to classify phonieme data for speech processing (23:461-466) (18:437-439).(14:1-14). The
most appealing characteristic of the radial basis function Kernel Classifier networks is the almost
instantaneous training times involved with setting the network parameters (23:461-466) (18:432-
439). These networks can also be made to adapt to new data by adding additional nodes as required
(12:3). Generally, Kernel Classifiers can be trained relatively quickly through either supervised or

unsupervised methods and have intermediate memory and computational requirements (11:49).

2,10 Summary

Artificial neural networks, may provide military weapon systems with the ability to accurately
characterize their operating environment in real time. These networks seek to emulate the function
of the brain; using a dense connection of simple computational elements called nodes to perform
pattern classification. These networks can be trained in either a supervised or unsupervised fashion,

or both, and can‘be categorized by the method used to classify the data.

2-13

III. Mathematical Analysis

~ 8.1 Iniroduction

The main function of a pattern recognition system is to make a decision as to which class an
unknown pattern belongs (27:39). This decision is usually based upon the application of decision
functions which segment the feature space. Hyperplane Classifiers use linear decision functions, in
the form of hyperplanes, to partition the feature space while Kernel Classifiers use higher order de-
cision functions, in the form of hyperspheres or hyperellipsoids, to partition the feature space. This
chapter begins with a discussion of Hyperplane Classifiers, including an analysis of the objective
functions used to implement these classifiers as neural networks and their parameter update equa-

tions. After discussing Kernel Classifiers in general, the relationship between pattern recognition,

functional interpolation and probability estimation are examined. This chapter concludes with the

development of the training algorithms used to implement Kernel Classifiers as neural networks. 3

3.2 Hyperplane Classifiers

3.2.1 Decision Functions Consider the two-dimensional exemplars representing two pattern

classes shown in figure 3.1. As can be seen, the two patterns can be separated by a line drawn in

Tz, Class A

Exemplars
Class B

Exemplars / X X /
X

Linear
* * Descriminating
* Function

\

_ . _ _ _ \ 3:1

Y

Figure 3.1. Linear Decision Function(27:40)

the feature space. The general equation for this line is

3-1

d(&) = wyzy + waza + o (3.1)

Here
d(Z) is the linear decision function
W is a vector containing the weights or scaling coefficients
Z is the pattern vector containing the feature values
o is an offset or threshold

From this figure, d(Z) can be positioned such that any pattern vector, Z, belonging to class A will
yield a positive quantity when the features are substituted into d(Z) while any pattern belonging
to class B will yield a negative quantity (27:39). Thus, d(Z) :an be considered a linear decision
function since, given an unknown pattern %, d(Z) will be positive for class A- and negative for class
B. When-the feature space has X dimensions, the general equation for the linear J:cision function

is of the form

d(Z) = wyzy + waze + ... w2k + 0 (3.2)

The -main problem associated with the linear decision function is-to find a set of weights
associated with the decision function which allows the feature space to be partitioned in a manner

which separates the classes-(27:48).

3.2.2 Nelwork Implementation The characteristics of the linear decision functions can be
modeled as a neural-type element by assigning, to the neural element, the hyper-sigmoidal transfer

function

Y(Z) =[1 4+ e~ ¢®)? (3.3)
where
K
$(2)-= Z Trwi + 0 (3.4)
k=1

This nonlinear function, as shown in figure 3.2, is a nondecreasing function in which the output

for ¢(Z) < 0 is less than 1/2 while for ¢(Z) > 0 the output is greater than 1/2. This model

3-2

f(x)

(1+=’-|xr>(-’t))*"(-1)l —

0 1
—4 -2 0 2 4
X

Figure 3.2. Sigmoidal Transfer Function

is based on the Rosenblatt’s perceptron introduced in 1957. Again, as with the linear decision
funclion described above, the main problem associated with the perceptron-is to set the weights,
Wy, and offset, o, such that the feature space is partitioned to allow proper classification (19:50).
These parameters can be established by performing a gradient descent using a method known as

backpropagation.

3.2.8 Nelwork Training The training method most commonly used with this perceptron-
based Hyperplane Classifier is the method of backpropagation. In this method, the network is
presented- a pattern vector-and allowed to produce its own output. This output is then compared
with the desired output using some predefined objective function. If there-is no major difference,
then no learning takes place. Otherwise the weights and offsets for each node are changed in a man-
ner which optimizes the classification objective function (22:322). This optimization is performed
via an incremental gradient descent on the surface of the weight space whose height at any point is
equal to a-measure of the performance of the classification objective function (22:322). The three
main types of classification objective functions are Mean Square Error (MSE), Cross Entropy (CE)
and Classification Figure of Merit (CFM) (28:217).

8.2.8.1 Mean Square Error (MSE) Objective Function The Mean Square Error-(MSE)
objective function seeks to minimize the mean squared error between the network’s actual output
and the desired output for each classification node in the output layer (28:217). Suppose a particular

pattern recognition problem:-had N classes and the network -was developed such that each node in

3-3

the output layer represented only one of the N classes. Let dp, be the desired output for the nth

node for a given input pattern. The MSE then is defined as

N

MSB= 73 on = o) (35)
Usually during training, d,, is taken to be 1 for the node responsible for a class and the 0 for
the rest of the output nodes. This objective function was the first to be implemented in the
study of artificial neural networks and is the most widely used of the three objective functions.
Any network trained using this objective function will make a classification based on the Bayes’
optimal descriminant (21). However, there are certain properties of this function which don’t
permit accurate classifications in all cases (3). As shown in Appendix A, there are certain areas in
the feature-space in which the mean square error is higher for a correct classification than for an
incorrect classification (28:218). This implies there are certain areas of the feature space in which

backpropagation according to the MSE function may. fail to separate-the classes correctly.

A network implemented using the MSE objective function will-have its parameters set to
minimize the MSE. Thus, the general update equation for the network’s parameters will have the

following form:

w} = uf = (T) (36)

Here, 1 is a constant which controls the update rate. The incremental update equations for each
of the parameters of the network shown in figure 3.3 are derived in Appendix B and summarized

below. The update equation for a weight linking node M in layer 2 to a node N in layer 3, wpsy, is

Wiy = wiyy — Yy — dN)yN (1 — yN)um (3.7)

while the update rule for the offset of the node N, oy, in layer 3 is

of = o — nlyy — dw)yv(1 —yn) (3.8)

The update equation for a-weight linking node L in-layer 1-to-node-M-in layer 2, wyas, is

a8y ~
N

Wiy = Whar =1 Y (¥ — dn)¥n(1 — Yn)warnynr (1 — yn)ur (3.9)

n=1

3-4

-

Ot X --a X
~ t /

Sigmoidal Function

Figure 3.3. Two Hidden Layer Sigmoidal Network Topology

while the update equation for the offset of node M in layer 2, o, is

N
—O‘I, =0y - 772(3/13 - dn)yn(l - yn)anyM(l - yM) (3-10)

n=1

The update equation for a weight linking node K in layer 0 to node L in layer 1, wgy, is

N M
w}L =Wk =N Z(yﬂ — dn)yn(1 - yﬂ)[z WnnYm (1 = Ym)wmyr (1 — yr)yk) (3.11)

n=1 m=1

while the update equation for the offset of node L in layer 1, o1, is

N M
U'-I*,' = G'E -7 Z(yn - dn)yn(l - yn)[z wmnym(l - ym)wLmyL(l - UL)] (3-12)
n=1

m=1

3.2.8.2 Cross Eniropy (CE) Funclion The Cross Entropy (CE) Function considers
the -actual valuc-of an output node as the probability that the ideal binary output state of the
node is a 1. The CE function seeks to minimize the difference between the actual output , y,, and
the ideal output, d,, by minimizing the cross entropy between the actual and desired probability

density-functions driving the output nodes (28:217). That is

3-5

N
CE= --},— S [dn log(yn) + (1 — dn) log(1 — yn)] (3.13)

n=1

Again during training, d,, is usually set-to 1 for the node responsible for the correct class and
to 0 for the rest of the output-nodes. As shown in Appendix A, the CE function is also characterized
by some areas in the feature space in which the CE is greater for an correct classification than for
an incorrect classification (28:218). This implies there are certain areas of the feature space in

which backpropagation according to the CE function may fail to separate the classes-correctly.

A network implemented to use the CE function as the classification objective function will
have its parameters set to minimize the CE. Thus, the general update equation for the network’s

parameters will have the following form:

wf =w] - n(-—J (3.14)

Here, 7 is a constant which controls the learning rate. The incremental update equations for each
of the parameters of the network shown in figure 3.3 are derived in Appendix B and summarized

below. The update equation for a weight linking node M in layer 2 to a node N in layer 3, wan, is

Wiy = Wiy + (AN — yn)ym (3.15)

while the update rule for the offset of-the node N, oy, in layer 3 is

o% =ox+n(dy —yn) (3.16)
The the update equation for a weight linking node L in layer 1 to node M in layer 2, wgpy, is

N
Wiy =Wiar+ 1Y (dn = Yn)0rnlne (1 — Uar)vr (3.17)
n=1
while the update-equation for the offset of node M in layer 2, oy, is

N
of =0 +n Y (dn = Yn)wrraym (1~ ynr) (3.18)

n=1

The update equation for a weight linking node K in layer 0 to node L in layer 1, wgp, is

3-6

N M
w}'}[, = Wgy + ﬂ—Z(dn - yn)[z wmnym(l - ym)wLinyL(l - yL)yK] (3-19)

n=1 m=1

while the update equation for the offset of node L in layer 1, or,, is

N M
O’z = o’z +n Z(dn - y,,)[z ‘wmnym(1 - ym)wLmyL(l - yL)] (3'20)
n=1 m=1

3.2.8.3 Classification Figure of Merit (CFM) Objective Function The Classification
Figure of Merit (CFM) objective function was introduced by Waibel to minimize the classification
errors due to the characteristics of the MSE and CE objective functions (28). This CFM function
does not consider the notion of an ideal output during training. This function is merely concerned
with forcing the correct node to be the maximum output node for the correct input features. The
CFM objective-function first compares the activation level of each of the output nodes to the
output node which should have the highest activation. The CFM then applies a sigmoidal function

to differences between the activation levels for each of the nodes as follows:

N
Y afl4eAnt0]1 (3.21)

n=lppc

1

where 6, = Yo — Un
Y. = response of the correct node
Yn = response of the incorrect node
N = total number of output nodes or classes.
= sigmoid scaling parameter.
B == sigmoid discontinuity parameter.
¢ = sigmoid lateral shift parameter.

The application of the sigmoidal function keeps the network from trying to produce ideal values
as the CFM function yields decreasingly marginal updates for increasingly ideal output patterns.
Also, in order to keep the network from attempting to learn extreme statistical outliers of a class,
the CFM seeks to apply decreasing marginal penalties for increasingly bad misclassifications (28).
As shown in Appendix A, these characteristics may allow the CFM objective function to reduce
the areas within the feature-space in which the CFM is higher for an incorrect response than for a

correct response.

3-7

A network implemented using the CFM objective function will have its parameters set such
that the CFM objective function is maximized. Thus, the general form for the update equation of

any parameter w; of the network will be

- O0CFM
‘U);-*' = wj + 1)(—5;’—) (322)

Again, 7 is a constant which controls the learning rate. The incremental update equations for the
parameters of the network, shown in figure 3.3, are derived in Appendix B and summarized below.

The update equation for a weight linking node M in layer 2 to an incorrect node N in-layer 3, warn,
is
Wity = Wy = 128 (1= 28)yn (L = yn)ym (3.23)

while the update equation for the offset of the incorrect node N, oy, is

o = oy —nzn(1 = 2zn)yn (1 — yn) (3.24)
The update rule for the weight linking node M in layer 2 to the correct node C in layer 3, wyc, is

N
whe=we+n Y, (1l zm)vc(l-yo)ym (3.25)

n=lpge

while the update rule for the offset of the correct node C, o¢, in layer 3 is

N
ot =05+ Z zn(1 = zp)yc(1 = ye) (3.26)

n=lnge

The the update equation for a weight linking node L in layer 1 to node M in layer 2, wray, is

N
why =wiy+n D, (1= 20)we(l — ve)wme — Un(1 = vn)orsnlum (1 —uar)yr ~ (3.27)

n=lngc

while the update equation for the offset of node M in layer 2, opr, is

3-8

N
ojt, =oy+n Z 20(1 = 2)[Ye(1 = Ye)wre = Yn(1 — yn)warnlym (1 — ynr) (3.28)

The update equation for a weight linking node K in layer 0 to node L in layer 1, wgy, is

N M
w}l-(L = Wgp+n Z 2n(1 = 2n)[9e(1 — ¥e) Z Wme
n=lpge m=1
M
- yn(l - yn) Z wmn]ym(l - ym)wLmyL(l - yL)yK (3.29)
m=1

while the update equation for the offset of node L in layer 1, ¢z, is

N M
of = of+7 E zn(1 = 2zn)[ye(1 - ¥e) Z Wme
n=lpgc m=1
M
= Un(1=) D WrnnJtm(1 = Y)Lz (1 —92) (3.30)
m=1

3.3 Kernel Classifiers

3.8.1 Decision Functions Consider the two-dimensional exemplars representing the two
classes of patterns shown in figure 3.4. As can be seen, the two patterns can be separated by
placing variable diameter circles around the data points corresponding to each class. The place-
ment of these circles corresponds to a partitioning of the feature space-into receptive fields with
each circle responding to a pattern only when the features falls within its radius. The general

equation for a decision function-for this type of pattern recognition system is given by

K K
d(z) =Y wijzt =Y wizi + wxp (3.31)
i=1 i=1

for-a K-dimensional feature vector (27:50). Again, the weights, w,,, w;, and wg4) represent the
coefficients of the decision function. This decision function can be written in matrix form as

d(z) = 2AzT —ZB + ¢ (3.32)

3-9-

Class B :Exe‘mplars

Class A Exemplars

Figure 3.4. Circular Decision Functions

Where ZT = the transpose of &, a K-dimensional vector containing the input features.
= [311,102,.-.,2)]{]

Also A is a K by K diagonal matrix containing the coefficients of the squared input features.

w1 0 e 0
0 wyy ... 0
A=
0
0 0 ... wgx

BT is a k-dimensional vector containing the weights or coefficients for linear input feature terms.
BT = [w1,’LU2, .. ‘)wK]
Finally, C is a constant.

The coefficients of the A matrix determine the shape of the-decision boundaries. If A is
the identity matrix, the decision functions become hyperspheres. When A is positive definite, the
decision functions become hypercllipsoids and when A is positive semidefinite the decision-functions
become a hyperellipsoid cylinder (27:52). Again, the main problem associated with these high order
decision functions is to find a set of coefficients, or weights, associated with the decision function

which allows the feature space to be partitioned in a manner which separates the classes (27:48).

3.8.2 Nelwork Implementation The characteristics of the hyperspherical decision functions

can be modeled as a neural type element by assigning, to the neural element, the gaussian transfer

function
y(z) = e~ ¥ (3.33)
where
K
_ (zk — wi)?
#(%) = Mt 72 3.34
Here

z) = k** dimension of the input pattern vector #
wy = k** dimension of the weight vector @
o) = spread or threshold in the k*# direction

The only task left is to determine how to architect the network to partition the feature space with
these neural elements and perform a task of pattern recognition. This architecture can be derived by

applying the theory of approximating multivariate functions using Radial Basis Functions (RBFs).

3.3.8 Functional Approzimation According to Powell (17), the real multivariable interpo-
lation problem is, given P different points (Z,;p = 1,2,..., P) in a K-dimensional space, and P
real numbers (dp;p = 1,2,..., P), determine a function, f(z) from R¥ into R that satisfies-the

interpolation-conditions

f(@p) =dp 13.35)

for (p = 1,2,...,P). This function, f(Z), can be decomposed into a linear combination of radial

basis functions.

P
FE) = 28l 5=y |)) (3.36)
p=1

where

z€ofR¥ andp=1,2,...,P

3-11

P R A

PR s T

exp(\(x-5)**2) —
|]

0 2 4 6 8 10
X

Figure 3.5. One Dimensional Radial Basis Function

Ap = scaling coefficient

The || ... || is usually taken to be the Euclidean Norm while the @, are the centers of the basis
functions (4:2). A radial basis function is a function, such as the gaussian shown in figure 3.5, which
is symmetric in all radial directions and approaches zero as the distance from the center increases.
Figure 3.6 shows the reconstruction of a periodic square wave from a linear combination of these

gaussian radial basis functions.

This functional approximation can be implemented with-a neural network-architecture if one
considers the task of pattern recognition as a functional mapping from the set of data points to the
output of the network. Suppose a set of P exemplars characterize the pattern-recognition problem.
That is, sampling of the environment has led to P data points for which the desired classification

of each data point is known. Further, suppose that each exemplar is a K-dimensional vector.

z= [1,‘1,.'232, .. .,(CK] (337)

Thus the set of P, K-dimensional exemplars characterize the pattern recognition problem. Now,
suppose that this set of exemplars can be classified into M distinct classes. This classification can
be thought of -as a mapping from a K-dimensional feature space, where the exemplars reside, into
an M-dimensional space where the classification takes place. Let-the desired classification vector of
a given exemplar, say Zp, be labeled as d. If the classification problem is considered as a mapping

problem, a function needs to be determined that produces the following result for each of the P

3-12

1.5 T T T T

Training -o—
Test ==+

F({x)

Figure 3.6. Square Wave Reconstructed Via Radiz' Basis Functions

exemplar vectors, Zp:

f(Z) =dn (3:38)

This function, once found, will produce the desired mapping from the exemplar points-to their
classifications. Applying the theory of approximating multivariate functions with a set of radial
basis functions, this function-finding problem can be modeled as a real mvltivariable interpolation:
problem. Using the gaussian function as the radial basis function, the-approximation can then be
written as

P K (#px=wpr)?
D el i
f(@) = EAPC Zrm 5 (3:39)

r=1
This- approximation can be implemented as a neural network architecture 2s shown in-figure 3:7
where the A,’s are implemented as weights, wim, linking the nodes in the hidden layer, layer 1,

to the nodes in the output layer, layer 2. Here, the nodes in the hidden layer have the gaussian

radial basis function as their transfer function. The nodes in the output layer compute an-linear

3-13

Layer 0 Layer 1 Layer 2

Gausstan Function Linear Function

Figure 3.7. RBF Neural Network Topology

combination of outputs from the nodes in the hidden layer. Thus, the overall mapping function,

for a single input pattern,-takes the form of

L
Ym = Z‘w:myl (3.40)
I=1
where

_ K (.rk-w“)2
w=e e 2%] (3.41)

Once this network is established, the outputs can then be considered as a mapping from the input
space to the output space. This mapping can also be considered a probability density estimation,

via the technique of Parzen Windows, of the input pattern given a particular output.

3.3.4 Densily Estimation The task of pattern recognition is often considered as a problem
of assigning an unknown sample, say &, to one of J classes. Bayes’ rule for this classification

problem, called Bayes’ optimal discriminant rule, assigns % to class i if
P(2/G;)P(G;) > P(2/G;)P(G;) (3.42)

3-14

for all i # j In order to implement this rule, the underlying probability density functions (pdf’s)
for P(Z/G;) and P(Gj) for all J classes must be known. One method of-estimating these density
functions is to group the elements of a given class into a histogram. The problem with this method
is, if the rectangular cells, or bins, into'which the data is grouped are too small, the estimate may
not be smooth. If the rectangular cells are too big, the fine details of the distribution may be lost.
These smoothness problems can be overcome by using the method of estimating density functions

through Parzen Windows or kernel estimators (8:162).

As shown in figure 3.8, the Parzen Window estimate of the density function, P(Z/G}), solves

f(x)
A

pdf estimate

data points

Figure 3.8. Parzen Window PDF Estimation (8:164)

this smoothness problem by assuming that each value of the data, occurring in the sample set, also
raises the probability of any value occurring close to that value of the data. By centering a kernel
function at each data point, the final value of the estimate can be obtained by summing together all
the contributions from each value of the sample data (8:162). That is the Parzen Window estimate

has the form

Z-z;

(s 1 ¥
(8/G1) = 5= 2 Lz (=) (343)
j=1

where
K = the number of dimensions

N; = the number of data points in class J

3-15

h = a function of N referred to as the window width.
$(z) = the kernel function.

To implement this estimation, an appropriate kernel function and window width must be selected.

As shown in Appendix C, the gaussian radial basis function of

81 — 2a]]) = (2m0?)~ Fem (T 5L (3.44)

can be used as the kernel function for a Parzen Window estimation. In this case, the equation for

the density becomes

Ny K (zx-xx;)?
- 1 2y= K —[Z =1 _!J_']
P(z/G;) = —N—J-JZ=1(27ro'_,) Ee onm a0] (3.45)
For a two class problem, with the ratio of the number of sample points in each class to the

total number of sample points reflecting the apriori probabilities, the classification rule is to assign

T to group I if

%P(E/G'I) > %’Vip(a/a,) (3.46)

Substituting for the estimated densities provides the classification rule

Ni LK (o mo)? K (=x=~zx;)?
%_N];_Z@ﬂa?)_ée [Ek=l :w,’-é] NJ 1 Z(z 0’1)—?6 [Zk=l 203] (3.47)
i=1
This reduces to
"k-’Fl)a Ny K (fk"'ki)’
2(2172)' == fati l> L(Z*raz)'ze ke 5 : (3.48)

If the spreads, or window widths, are the same for each class, ¢r = o5, then equation 3.48 becomes

a sum of gaussian radial basis functions.

N, Gepmepi)? 2 (=x=2x5)?
Z’:e Zk-lzz:,) Z _Zk 1£‘;&L

i=

(3.49)

3-16

These equations have been implemented by Specht as Probability Neural Networks (PNNs)
with the topology shown in figure 3.9 (24). In this network, the hidden layer weights, or centers

Input Nodes Class A,

\
weights match-exemplars C}l}asg B
odes

Figure 3.9. Probabilistic Neural Network Topology (24:528)

of the gaussian radial basis functions, are set to match the features of each of the training vectors.
The classification nodes-in the output layer are connected only to the nodes in the hidden layer
which belong to their class. These output layer classification nodes implement equation 3.49 by
forming the simple sum of the outputs from the hidden layer nodes in their class. In this type of

network, the o’s are usually chosen on a trial and error basis.

The only difference between the PNN network and the RBF Kernel Classifier network is
that the classification nodes in the output layer of an RBF network are connected, via weighted
interconnections, to all the nodes in the hidden layer. Since it has been shown (21) that any
neural network that has its parameters set to minimize the MSE objective function will operate
as a Baye’s optimum discriminant, if the weights,w, and sigmas ,o’s, for the RBF network are
established via minimization of the MSE objective function, the RBF network should approximate
the Bayes’ optimal discriminant function without the trial and error approach to setting the o’s

-

performance of the RBF network shown in figure 3.7 once an optimal choice of o -is made.

3-17

3.8.5 Nelwork Supervised Training As with the Hyperplane Classifier network, all the pa-
rameters for the Kernel Classifier network can be established by minimizing the MSE objective

function, incrementally, via backpropagation., Again, the MSE is defined as

M
1
MSE = & Y (U — dm)? (3.50)

m=1

The general form of the update equation for a network parameter w; then becomes

(3.51)

Here, n is a constant which controls the learning rate. These update equations for a network with
the topology shown in figure 3.7 are derived in Appendix D. For a weight linking node L in Layer

1 tonode M in the Layer 2 wr s, the update equation-is

wiy = Wiy — 1(ym— da)ye (3.52)

For a weight linking node K in Layer 0 to node L in layer 1, wi, the update equation is

M
- TK — WKL
Wy = Wgp =1 Z(ym - dm)wLmyL(—j;g—-)' (3.53)

m=1
while for the spread of node L in layer 1 in the direction of node K in layer 0, oxr the update

equation is

M
ok =0k =) (Um — dm)Wmyr

=1

— 2
(zx — wxr)® K L) (3.54)
oKL

3.8.6 Network Combined Training In this type of training, the hidden layer, layer 1, weights
(radial basis function centers), the hidden layer, layer 1, spreads (radial basis function sigmas), and
the output layer, layer 2, weights are set- separately. That is, the hidden layer weights can-be set

by any of the following rules:
1. Nodes at the Data Points
2. Kohonen Training
3. K-Means Clustering

4. Center at Class-Cluster Averages

3-18

The hidden layer spreads can be set by any of the following rules
1. Set Sigmas at a constant.
2. Set Sigmas at P-Neighbor Averages
3. Scale Sigmas by Class Interference.

The weights linking the output layer to the hidden layer nodes can be set by one of the following

rules:
1. Incremental MSE Minimization
2. Global MSE Minimization

3. PNN Implementation

3.3.6.1 Nodes at the Data Points In this training algorithm, the hidden layer weights,
or centers, of the radial basis functions are set to match the features of each of the training vectors.
Suppose there are P pattern vectors where each vector is of dimension K. The vector for the p**

pattern vector can be written as

Ip = [xpl) Tp2y.es m,,K] (355)

Setting the weights to match the exemplars will then allow P hidden layer nodes to be created

where the output of the I** node, due to the p** input pattern will be defined from

K (Sgk-"'m)2
ypl =e [Ek=l 2':,] (3.56)

Since the weights match the exemplar features, the weight vector for the I*# radial basis function
will be exactly the same as the feature vector for the I** exemplar, @; = . This allows the output,

due to the p*® input pattern, for the I*» radial basis function to be written as

IS (arek---fkl)7
yl =e [Ek=! ka'] (3.57)

There are several advantages of establishing the weights, or centers, of the radial basis nodes,.in
this manner. First, this allows the direct application of the theory of approximating multivariate
functions with radial basis functions. Second, this method allows a direct implementation of the

Parzen Window probability density estimation for the training data. Third, the computational time

3-19

for setting the layer 1 weights is negligible. Finally, each radial basis function node is guaranteed

to represent a particular class of data at its maximum output.

There are some disadvantages of making the weights, or centers, of the radial basis function
nodes match the exemplar features. First, a large number of nodes could be required to effectively
partition the whole feature space. Second, the computational time to required to establish the
weights in the output layer will increase significantly as the number of nodes increases. Finally, the
weights, of centers of the radial basis functions, could include the noise associated with the input

patterns,

3.8.6.2 Kohonen Training The Kohonen Training Algofithm is a clustering algorithm
which seeks to learn the underlying probability density function of the data (19:64). Using this
algorithm to set the weights, or centers, of the radial basis functions should allow a radial.basis
function node to respond strongly to similar inputs. Basically, Kohonen Training calls for the

establishment of a rectangular grid of nodes as shown in figure 3.10. The weights for these nodes

e v

Figure-3.10. Rectangular Grid of Kohonen Nodes (19:65)

are adapted by applying a training vector to the layer and computing the Euclidean distance

between the weights for each of the nodes and the input vector (19:65-68).

K

d = 2(37})1: - wp)? (3.58)

k=1

3-20

B0 I L M T I SR B U Y

Notice, this distance measurement is the same as that of the numerator of the gaussian transfer
function of each of the nodes in the hidden layer. After this distance calculation is made, the node
whose weights are nearest to the features of the input patterns are updated, along with nodes in

the vicinity, or neighborhood of this nearest node, according to the equation

wh = vy + o(t)(ex — ww) (3.59)

This update equation serves to move the weights of each of the updated nodes toward the input
pattern in a method which represents the vectorial difference between the weight vector and the
input feature vector (19:67). This algorithm of presenting an input patiern, finding the node with
the most similar weights and updating that node and its neighbors, is repeated over a specified
number of iterations. Once the Kohonen layer has been trained, each node will represent clusters,

or pockets, of pattern vectors.

The main advantage of training the weights in this manner is that the number of nodes in the
layer will not depend explicitly on the number of exemplars. ‘That is, there can be far less nodes
than exemplars. Also, each node will represent more than one exemplar as the weights are trained

to represent clusters of data.

The main disadvantage of training the weights in this manner is-the amount of time it takes
to train. At this time, there is no formal criteria for determining when the weights have all been
adapted to represent the underlying distribution of the data. Also, the weights are adapted in a
manner which does-not reflect classification of the data. It is possible for a node in the Kohonen
layer to respond strongly for several different classes. This could serve to hinder the training of the
weights in the output layer. Finally, the number of nodes in the Kohonen layer is arbitrary. At
this time, there is no formal method of predetermining the number of nodes necessary to provide

the optimum performance.

3.8.6.83 K-Means Clustering The K-Means Clustering Algorithm is a method of train-
ing the weights, or-centers, of the radial basis function nodes such-that the distance from all points
in a cluster to the cluster center is minimized (27:94). In this procedure, the number of radial basis
function nodes in the hidden layer is preset to a number K. The weights for each of these nodes are
initialized to match the:-features of the first K pattern vectors. That is @ = z; for all | < K. All
training vectors are then presented to the network. Each vector, Z,, is assigned a cluster, denoted
by S;, by Z, € S; if [jZp — wj|| < ||Zp —w;l| forall i = 1,2,..., K and-i # j. Here, the norm is taken

to be the Euclidean distance. Notice the norm is the same as the numerator in the gaussian transfer

3-21

function for the radial basis function nodes. This means each new pattern vector is associated with
the node whose center is the closest-in a-Euclidean measure. Once all patterns have been assigned
a cluster, the new cluster center weights are computed as the average of the features of the pattern

vectors assigned to the cluster. That is

1
o = A > i, (3.60)

Here, N, is the number of pattern vectors assigned to the cluster and Z,, is a pattern vector
assigned to that cluster. Since this procedure adapts the weights, it must be repeated until the

weights stabilize, or no longer adapt. This occurs when @;(n + 1) = @;(n) for all cluster centers.

The main advantage of training the weights, or centers of the radial basis function in this
manner is that the number of nodes does not depend on the number of exemplars. This means
there can be many-more exemplars than nodes, with each node’s weights centered at the average
of the pattern vector features associated with the cluster. Furthermore, each radial basis function

-node will now be able to represent pattérn-vectors with similar features.

The main disadvantages are that the number of radial basis function nodes, which is deter-
mined by K, the number of clusters, is arbitrary and each node is now allowed t6 respond strongly
to pattern vectors of different classes. Also, the performance of the algorithm-is dependent on the
number of clusters, initial location of the clusters and the properties of the data (27:95). Finally,

there is no guarantee that the algorithm will converge.

3.8.6.4 Center at Class-Cluster Averages In this algorithm the weights, or centers of
the radial basis function nodes are allowed to adapt themselves, in an iterative process, to the
centers of clusters of pattern vectors of the same class. Furthermore, this algorithm is adaptive in
the sense that the number of nodes does not need to be preselected. The distribution of the data will
determine the required number of radial-basis function nodes. In this algorithm a cluster radius, R,
is first preset and the network begins with one node whose weights match the-first pattern vector.
This node is also set to respond to the class of the first pattern vector. A new pattern vector, Zp,
is then applied to the network. The cluster assignment rule is Z € S; if || — @]l < ||Z — wilj < R
and the class of Z-is the same as Sj. If this relation isn’t true then a new node is added such that
the weights and class of the new node match that of the new input pattern. If this relation is true,

then the weights of the cluster center are adapted to the new average by

Eng1 — B();

Bt +1) = B(t) + 37

(3.61)

This process of presenting a new pattern vector to the network, checking to see if this new pattern
vector can be associated with an existing cluster and adjusting the cluster center or adding a new
cluster center will continue until all exemplars are tested. Since it is possible for exemplars to
become "uncovered” during the update of cluster centers, the algorithm is repeated until no new

nodes are added.

The main advantages of this algorithm are that the number of radial basis function nodes

does not need to be selected beforehand and each node will respond strongly to only one class.

The main disadvantage of this algorithm is that the association radius, or vigilance parameter

R, must be selected arbitrarily.

3.8.6.5 Set Sigmas at Constant In this algorithm, the sigma, or spread, for each radial
basis function node is preset to a constant, C. Under this condition, the output for the I*» radial

basis function node due to the p** pattern vector Z, becomes

Yp1 = e_[n_cl:’f 2:{:1(;'*—"'”)2] (3.62)

If the weight vectors had been previously set to match the features of the exemplar vectors, the

network then calculates a Parzen Window estimate of the probability distributions of the data.

The main disadvantage of training the sigmas in this manner is that, since the constant is

preset and not.changed, there is no way of determining if the entire feature space is partitioned.

3.8.6.6 Set- Sigmas at P-Neighbor Averages In this algorithm, the sigmas for each
radial basis function node are allowed to vary according to a distance metric between their weights,
or centers, and the weights or centers of their P nearest neighbors. That is, after the weights, or
centers, of each radial basis function node is set, the Euclidean distance between the center of each
radial basis function node and its neighbors are calculated. For example, the distance between

radial basis function node i and radial basis function-node j is

K
dij =Y (wrj — wii)? (3.63)
k=1

3-23

From these calculations, the P radial basis functions having the-smallest distance, d;p, are then

used to set the sigma, or spread, (o;), for the it? radial basis function by the following equation:

(3.64)

This equation makes ¢; equal to the root mean square of the sum of distances between the center

of itk radial basis function and its P nearest neighbors (13:137).

The main advantages of setting the ¢’s in this manner are that each o can be different for
each node and, since each o is a function of the separation between node centers, the feature space

will usually be completely partitioned.

The main disadvantage of setting the o’s in this manner is that P must be determined
beforehand. If P is too small, the o’s will be small and the feature space will not be covered
adequately. If P is too large, the o’s will-allow too much overlap between patterns of different

classes. This could result in a node responding too strongly to more than one class.

3.8.6.7 Scale Sigmas by Class Interference In this algorithm, the o’s are adjusted,
from a preset constant, to prevent the radial basis function nodes from responding too strongly
from pattern vectors of different classes. In order for this algorithm-to work, each radial basis
function node must be assigned the responsibility for responding to only one class for the training
data. This can be done by setting the weights using the Nodes-at Data Points or Center at Class-
Cluster Averages Algorithms previously discussed. After the weights are set, this algorithm then

presents an exemplar pattern &, and calculates the output for each radial basis function node by

Ypi = e'?l"-' foﬂ(xr*-w“)' (3.65)

If the output for that node is above some preset threshold, T, and the node is not assigned to
respond to the same -class as that of the pattern vector, Z,, then that node’s o is scaled by a

constant until the output is less than T. That is if yp1 > T then

ot =(1-C)oy (3.66)

This process.is then repeated for each pattern vector in the training set.

3-24

The main advantage of setting the ¢’s in this manner is that each node is guaranteed to
respond to one and only one class for the training data within some threshold T. Another advantage

is that each node can now have a separate o.

The main disadvantage of setting the o’s in this manner is that if the pattern vectors are
very close together, via the Euclidean distance measurement, then each node will lose its ability to

generalize.

3.3.6.8 Incremental MSE minimization As shown in appendix D, the update equation

for the weight linking node L in layer 1 to node M in layer 2, wpas is

wiy = wiy — nym — du)ye (3.67)

These parameters can be updated through backpropagation even though the other network param-

eters have been-preset. However, this process can still take many iterations to converge.

3.8.6.9 Global MSE minimization As shown in appendix D, if the weights and sigmas
(spreads) of the first layer have been established, the weights linking nodes layer 1 to nodes in layer
2 can be established by a global minimization of the MSE function over all training patterns (23).
When trained in this manner, the update equation for a weight linking node B in layer 1 to node

D in layer 2-is

W= (MT)YTs (3.68)

Here, W is an L by M matrix containing the weights linking the nodes in the hidden layer to an

nodes in the output layer. That is

wn W2 ... WM
W1 W22 ... WoM
W=] . . . (3.69)

wr1 Wr2 ... WM

where wyy is the weight linking the L*» node in the hidden layer, layer 1, to the M** node in
the output layer, layer 2. The M matrix is an L by L matrix containing the summation, over all
patterns, of the product of each radial basis function output, for a given input pattern and the B*»

radial basis function output for that pattern. That is

3-25

My My ... M
M= | o TR T (3.70)

My Mg, ... My

e

where Mg = Zﬁ:: YpiYpp. Also, Y is a P by L matrix containing the outputs for each of the L

radial basis functions for all P patterns. That is,

yu n2 ... NL
Y21 Y22 ... Y2L
y=| o " (3.71)

yrr YypP2 ... YPL

Finally S is a P by M matrix containing the-desired outputs for each of the M output nodes for all
P patterns. That is,

dy diz ... diy

d d veo dop
S= ?1 ?2 2

(3.72)

dpy dpz ... dpy

This method only works for matrices that do not become singular or near-singular, which can
happen if the exemplar data points used to center the radial basis-functions contain redundant
information. If they do, the Singular Valued Decomposition-of the matrix may be used. Conversely,

the os of the offending nodes may be adjusted to eliminate the redundancy.

8.8.6.10 ProbabilityNeural Network (PNN) As shown in Chapter 3, after establishing
the parameters for the nodes in the hidden layer, layer 1, a PNN can be constructed by connecting
each_output layer node to the hidden layer nodes representing the output layer node’s class. In
this network, the weights connecting the hidden layer nodes in layer 1 to the output layer nodes in

layer 2 are sel to 1.

3-26

8.4 Summary

This chapter discussed the general operation of Hyperplane and Kernel Classifier neural net-
works. The objective functions used to implement the Hyperplane Classifier networks were then
analyzed, followed by the development of the equations necessary to implement these classifiers
as neural networks. The relationship between pattern recognition, functional interpolation and
probability density estimation were then presented as implementable properties of Kernel Classifier
networks. This chapter concluded with the development of equations implementing these classifiers

as neural networks.

3-27

IV, Software Description

4.1 Iniroduction

The software to be described in this chapter was designed according to an object-oriented
approach. This chapter begins with a description of the data structures implemented for the
software and concludes with a brief discussion of the software modules. An in-depth description
of these items, along with the mapping of the training algorithms developed in chapter 3, into

software functions, is given in Appendix F.

4.2 Approach

Artificial neural networks are composed of nodes. Each node has associated with it certain
parameters such as a weight vector, an offset, a transfer function, and a class to which the node
responds. The main difference between different types of networks is the way in which the nodes
are connected to one another and the method of setting the network parameters. Therefore, in
order to maximize the types of networks which could be configured, the only entity implemented

as an object was the node, Each node was then assigned the following attributes:
(a) weights - w;
(b) sigmas - o;
(b) connections
(d) transfer-function
(e) class
The operations that can be performed on each node are the following:
(a) assign transfer function
(b) calculate node output
(¢) initialize node weights and sigmas
(d) assign a node to a class
(e) assign a node to be connected to another node
(f) update (train) weights and sigmas

With these attributes and operations a variety of networks-can by formulated. This thesis

implemented just the feedforward type of network architecture. However, this object oriented

Figure 4.1. Feed Forward Network (19:56)

design approach will allow future enhancements to more complicated networks such as recurrent

networks and higher-order networks.

4.8 Networks

The only type of network implemented at this time is the feed forward network. A feed
forward network, as shown in figure 4.1, is a network in which each node is assigned to a particular
layer and receives inputs only from the nodes in the previous layer. Pattern vectors-are input to
the network via the nodes in layer 0. These nodes have the identity transfer function and serve
to propagate the features from the input pattern, across the internodal weights and thresholds, to
nodes in layer 1. The layer 1 nodes will transform these inputs into internal representations, using
their assigned transfer functions, and transmit these representations, via the internodal weights
and thresholds, to the nodes in layer 2. This process of transforming the data and propagating the
new representation will continue through each layer of the network. The outputs-for the last-layer

in the network will be used to determine the classification of the input pattern.

e P

RITNER SN

NETMENU

NETERROR| NETTRAIN NETINPUT. NETINIT

NETSHOW

y
NETOUT NETAUX NETMATH

Figure 4.2. Software Structure Chart

4.4 Structure

The software implemented in this thesis consists of the-nine modules shown by the structure

chart in figure 4.2.

4.4.1 NETMENU This module is the overall controlling module of the network. It provides

the user interface to the software via the SUN terminal and keyboard and calls the appropriate

modules to execute the users decisions.

4.4.2 NETERROR This module contains the functions necessary to determine the net-

work’s classification of a data vector and the error performance of the network.

4.4.8 NETTRAIN This module contains the functions necessary to establish the network

weights via the following training procedures:
a) Nodes at the Data Points
b) Center at Class-Cluster Averages
¢) K-means Clustering
d) Train via Kohonen

e) Global MSE Minization

4-3

Fry

f) Backpropagation for MSE, CE and CFM algorithms.
g) Probability Neural Networks

Each of these functions accomplishes its training routine by executing the specialized functions
contained in NETAUX, NETTRAIN also contains the functions necessary to establish the o’s for

the network nodes via the following training procedures:
a) Scale Sigma by Class Interference
b) Set Sigma According to P-Neighbor Distance

¢) Set Sigma to a Constant

4.4.4 NETINPUT This module contains the functions necessary to load the training and
test data patterns. This data may be loaded from separate training and test files or from a single
file. This loading of training and test patterns may also be accomplished either in the sequence

listed in the data files or in a random manner.

4.4.5 NETINIT This module contains the functions which allocate- memory for the nodes
and data records, correct node weights and connections, and-initialize the node weights, sigmas,

transfer functions and network connections.

4.4.6 NETSHOW This module contains the output functions necessary to display and file

the performance and parameters of the network.

4.4.7 NETOUT This module contains the functions necessary to compute the outputs for
each node in the network, the outputs for each layer of a feedforward network, and the output for

the entire network due to a given input pattern.

4.4.8 NETAUX This module contains the training subfunctions called by NETTRAIN.

Appendix F contains a detailed description of each function in this module.

4.4.9 NETMATH This module contains the mathematical functions used by the various
training algorithms within the module NETTRAIN.

4.5 Implementation

The software code developed for this thesis and implemented under these modules is listed in

Appendix G.

4.6 Summary

This chapter provided a brief overview of the software developed for this thesis. After devel-
oping the data structures implemented in the softwared, the sectioning of the software into modules

was outlined.

4-5

V. Data Analysis

5.1 Introduction

Using the softwate developed in Chapter 4, two pattern classification problems will be ana-
lyzed. The first problem deals with the classification of coded digital communication signals while
the second problem deals with classification of radar plaiforms. This chapter begins by discussing
the data used to train and test the neurai netwotks developed to classify coded digital communica-
tion signals. After detailing the methods used to triin various networks to solve this classification
problem, the results of the training and testing are then presented. This chapter concludes with-a
discussion of the data used to train and test the neural:networks developed to classify radar systems

and an analysis of training and test results.

5.2 Commaunicalion Signal Characterization

5.2.1 Data Descriplion In this two-class problem, an acousto-optic correlation system was
used to capture correlation signatures of spread spectrum signals for both a direct sequence and
a linear-stepped frequency hopped signal. Over 200.pattern vectors were first formed by sampling
known waveforms at 1000 data points. After averaging consecutive data point pairs, thereby
reducing the number of data points to 500, the peak of the signals were identified and 25 points
on each side of the peak were extracted. These 50 data points, now representing a 50 dimensional
feature vector, were normalized to values between -1 and 1 by dividing each dimension by the
magnitude of the largest component. One hundred feature vectors for each class now represented
the signature for the direct sequence and the linear stepped frequency hopped -encoding schemes.
Feature vectors representing the direct sequence signatures were then assigned to class 1 and feature
vectors representing the linear stepped frequency-hopped signatures were assigned to class 2. The
final data set contained 101 pattern vectors for each class; with each pattern vector having 50

dimensions.

5.2.2 Tesling This data was processed using both Hyperplane Classifiers and Kernel Clas-
sifier networks. The parameters for each of these networks were set using the algorithms developed’
in Chapter 3. The training data for each of the classes was randomly selected for each network
run. For eachlest, 51 feature vectors from each class were used-to train the network and a different
50 feature vectors from each class were used to test the network. For each network, there were
50 nodes in layer 0, one node for each of the dimensions of the-input dats. The number of nodes

in the final, or output, layer of the network was set at two with each node assigned to represent

one of the two classes. The number of hidden layers and the number of nodes in the hidden layers
were allowed to vary according to the parameters of the network. For this classification problem,
the network was allowed to make a classification based on which node in the output layer had the

higher output.

5.2.8 Hyperplane Classifiers The Hyperplane Classifier networks developed for this classi-
fication problem were based- on the topology shown in figure 3.3 with each network consisting of
two hidden layers. The 50 nodes in the input layer, layer 0, had the identity transfer function. The
number of nodes in the first hidden layer, layer 1, was set at 18, the number of nodes in the second
hidden layer, layer 2, was set at ten, and the number of nodes in the output layer, layer 3, was
set at two. The nodes in each of these layers were assigned the sigmoidal transfer function. The
parameters for each of the-nodes were trained via backpropagation according to either the MSE,

CE or CFM objective functions discussed in Chapter 3.

5.2.8.1 MSE -Objective Function To characterize the performance of Hyperplane Clas-
sifiers trained using this-algorithm, ten different sets of training data were-applied to the network
and the performance of the network was measured for each set as shown Table E.1. Here, a correct
response for the training data-is defined to occur when the output for the correct classification
node was greater than .9-and the output for the incorrect classification-node was less than .1. As

shown in figure 5.1,-the average performance of the network converged-rapidly until about 15000 -

100 T
80 |-
»
©
g .
i 60 I
S .
-”»
40 p
>
<
20 | Training -¢— -
07 1 - 1 1] ',]
0- 5000 10000 15000 20000 25000 30000
Iterations

Figure 5.1. Performance vs Training Iterations for MSE Algorithm

20000 iterations. At this point, the cat;egorization’performance of-the network reached 90 percent.

From 20000 - 30000 iterations,the categorization performance slowly increased to the final average

5-2

of 97.16 percent. The robustness of the network, for both the training and the test data, was

calculated as shown in Table 5.1.

Table 5.1. Robustness- Measure for MSE Training
% Correcl

Training | Test
Avg 97.16 79.7
Std 4.51 5.92

5.2.8.2 CE Objective Function To characterize the performance of Hyperplane Classi-
fiers trained using this algorithm, ten different sets of training data were applied to the network and
the performance of the network was measured for each set as shown in Table E.2. Here, a correct
response for the training data is defined-to occur-when the output for the correct classification node
was greater than .9 and the output for the incorrect classification node was less than .1. As shown

in figure 5.2, the average performance of the network converged rapidly until about 5000 - 10000

100 - 4R A e e gn e am o et o S S S S

80 -
P 4
3]
&
5 60 | L
»)
»
o 40 | -
3

20 Training -e— -

0] — | 5 —] - 1 1
0 50090 10000 15000 20000 25000 30000
Iterations -

Figure 5.2. Performance vs Training Iterations for CE Algorithm

iterations. At this point, the performance of the network remained relatively stable. From 10000
- 15000 iterations, the categorization performance slowly increased to the final average of 100.00

percent. The robusiness of the network was calculated as shown in Table 5.2.

As compared to the networks trained to minimize the MSE objective function, the networks
trained to minimize the CE objective function performed at about the same level of categorization

accuracy but converged in about half the iterations as the MSE objective function. This is due to

5-3

Table 5.2. Robustness Measure for CE Training
% Correct

Training | Test
Avg | 1000 | 81.2
Std 0.0 4.62

the lack of the term yn(1 — yn) in the CE update equations. Since the maximum value for this
term is 1/4, the parameters for the MSE network are adapted much more slowly than that of the
CE network.

5.2.8.8 CFM Objeclive Function To characterize the performance of Hyperplane Clas-
sifiers trained using this algorithm,,ten different sets of training data were applied to the network
and the petformance of the network measured for each set as shown in Table E.3. As_shown in

figure 5.3, the average performance of the network converged rapidly until about 30000 - 35000

100 T T T T T T — T T
80 |
Y]
8 -
= 60 -
[o]
Q
-
40 |-
2
<
20 | Training -e— L
’5 1 2 1 1 I -t 1 1 E
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Iterations

Figure 5.3. Performance vs Training Iterations for CFM Algorithm

iterations. At this point, the performance of the network remained relatively stable. From 35000
- 50000 iterations, the categorization performance slowly increased to the final average of 88.83
%. The robustness of the network was._calculated as shown in Table 5.3. As expectéd; the catego-
rization performance-for-the training data was less than that for either the MSE-or CE-objective
functions. However, the performance for the test data proved lower than that of either the MSE and
CE objective functions for this data. If the two tests having the lowest categorization performance

on-the test data are removed, the categorization performance of the CFM for the test-data rises to

5-4

Table 5.3. Robustness Measure for CFM Training
% Correct

Training | Test
Avg | 88.83 | 73.20
Std 5.37 7.93

76.63 % which nearly matches that of the MSE. This seems to indicate the pattern space does not
contain pockets of data which would cause-the MSE and CE algorithms to have larger classification

errors for a correct response than for an incorrect response.

5.2.4 Kernel Classifiers The networks developed to categorize this data are based on the
topology shown in figure 3.7. The 50 nodes in the input layer, layer 0, had the identity transfer
function and two nodes in the output layer, layer 2, had the linear transfer function. The number
of nodes in the hidden layer, layer 1, was-a function of the algorithm used to train-the layer 1

weights. These nodes were assigned the gaussian transfer function.

5.2.4.1 Nodes at the Dala Poinis In this test, the performance of the Kernel Classifier
network, using the interpolation theory of applying the nodes at the data points, was measured.
The weights, or centérs, for the nodes in layer 1 were set using the Nodes at Data Points algorithm
and the sigmas were set using the Scale Sigmas by Class Interference algorithm. The-weights linking
the nodes in the output layer to the nodes in the first layer were trained via global minimization
of the MSE objective function. The performance of the network was then analyzed as the number
of nodes in the hidden layer was allowed to vary from 10 to 50: The complete data are shown in
Tables E.4 and E.5. A plot of this performance is shown in figure 5.4. As expected, as the number
of RBF nodes in the hidden layer, layer 1, increased, the classification performance of the network
increased for both the training and the test data. The maximum performance occurred when the

number of nodes matched the number of exemplars at 102,

The overall performance, or robustness, of the network when layer 1 contained 102 nodes
was found to be as-shown in Table 5.4. As shown by this table, setting the weights of the layer
1 nodes at the training data points allows the network to memorize’ the training data while still
performing relatively well on._the test data. However, this.performance is at the_expense of many

layer 1 nodes.

5-5

100
95
90
85
80
75

70

Avg & Correct

65
60
55
50

-~ T T +
s J—
T

i RS o
I]
. ’,» .

’/
L > i
/
/
. / R
/
B R Training —— -
Vi Test —+-
L /7 o
/
/
/
1 1 717 1 == 1
0 20 40 60 80 100
Nodes

Figure 5.4. Performance vs Nodes for Nodes at Data Points

Table 5.4. Robustness Measure for Nodes At Data Points
% Correct
Training | Test
Avg | 100.00 | 84.90
Std 0.00 3.94

5-6

5.2.4.2 Kohonen Training In this test, the ability of a fixed number of Kohonen layer
nodes to distribute themselves to cover the pattern space was measured. The weights, or centers,
for the nodes in the hidden layer, layer 1, were trained using the Kohonen Training algorithm and
the sigmas set using the Set Sigmas at P-Neighbor Averages algorithm. The weights linking the
nodes in the output layer to the nodes in the first layer were trained via global minimization of the
MSE.

With P arbitrarily held at six, the performance of the network was analyzed as the number of
nodes in the Kohonen layer was increased from 16 to 100. The complete data are shown in Tables

E.6 and E.7. As-shown in figure 5.5 as the number of nodes increased, the ability of the network to

100

95

90

85 | E

-
_ e
L - —————
- ———

15 *\ -4

% Correct

70 | : N .
65 I S

60 b Training —e—
Test ~+=-

50—] 1 1 1 1 1 1
30 40 50 60 70 80 90 100
Nodes

Figure 5.5. Performance vs Nodes for Kohonen Training with Six P Neighbors

categorize the training data increased. However, the ability of the network to categorize the test
data decreased. This is due to the fact that as the number of nodes is increases, the distance to the
six nearest neighbors decreases. Thus, the network loses its ability to generalize. The decrease in
the training performance for 100 nodes was due to two of the networks converging to a performance
of less than 85%. If these two tests are removed from the performance calculations, the average

performance rises to 97.06%.

The performance of the network was-then- analyzed by allowing P to be equalto the square
root of the number of nodes in the Kohonen layer. The complete data are shown in Tables E.8
and E.9. As-shown in figure 5.6 allowing P to increase as the number of nodes increased had little

effect on the performance of the network. Again, the decrease in the training performance for 100

5-7

100

.95

90

85+ 1

80 - —+— r

75t N .
70 | N .
65 | S
60 - Training -— ~7

Test —+—
55 b

50 1 1 i 1 1 1]
30 40 50 60 70 80 90 100
Nodes

Figure:5.6. Performance vs Nodes for Kohonen Training with Variable P Neighbors

nodes was due to two of the networks converging-to a performance of less than 85%. If these two

tests are removed from the performance calculations, the average-performance rises to 96.79%.

The maximum robustness of the network occurred when the number of Kohonen nodes was
64 and the number of P-Neighbors used to determine the RBF -spreads was eight. This data is

shown in Table 5.5. Comparing these results to that of the networks trained via the Nodes at Data

Table 5.5. Robustness Measure for Kohonen Training
% Correct

Training | Test
Avg 97.94 80.20
Std 1.42 3.84

Points algorithm shows that the maximum accuracy for the test-data was about 5% less for the
Kohonen Training algorithm. Also, when 100 nodes were used to train the network, the training
performance became unpredictable. This is probably due to the fact that the Kohonen Training
algorithm adapts the layer 1 weights to the data-independent of the class of the data. Thus, it is

‘highly likely that certain layer 1 nodes actually represent more-than one class of the data.

5.2.4.8 K-Means Cluster In this test, the ability of the network to distribute a set

number of nodes to cover the pattern space, using the K-Means algorithm, was studied. The

5-8

number of nodes in the hidden layer, layer 1, was set to K, the number of clusters. The weights,
or centers, for the nodes in layer 1 were trained using the K-Means Clustering algorithm-and the
sigmas set using the Set Sizma at P Neighbor Averages algorithm. The weights linking the nodes
in the output layer to the nodes in the first layer were trained via global minimization of the MSE.
The performance of the network was first analyzed by setting the P-Neighbors-to 6 and letting
the number of nodes in the hidden layer vary. The complete data are shown in Tables E.10 and

E:11. As shown in figure 5.7 the performance of the network increased until as the number of nodes

100

95

90

85

% Correct

80 9

Training -+— e
Test =t—-

70] 1 1] 1 1 - 1 1

20 20 30 40 50 60 70 80 90 100
Clusters

Figure 5.7. Performance vs Nodes for K-Means Clustering-with Six P-Neighbors

in the hidden layer increased. When number of nodes reached the range of 60 to 70 nodes, the
performance of the network, over the test data, leveled out; indicating:the pattern space was fully

covered.

The performance of the network was then analyzed by setting the number of nodes in the
hidden layer, layer 1, to 60 and varying the number of P-Neighbors from 1 to 30. The complete
da.a are shown in Tables E.12 and E.13. As shown in figure 5.8 the catégorization performance
of the network was relatively constant until the number of P-Neighbors was eight. At that point,
the performance of the network, over the test data, decreased slightly as P was increased. The

robustness of the network with 60 nodes and P set at 6 is shown in Table 5:6.

Comparing the performance of this training algorithm to the Kohonen Training algorithm

shows the performance of two algorithms was roughly equivalent. However, the amount of time

5-9

100

e > * * e >—s * ~—1
95 fa—e—t—t— - -
» o]
g 90
[
M
N
[o]
v
- 85 e

! b]
St et R
80 | + ~~pJrajoing o= e

Test —t+=*

75 Lo 1 1 -1 1 1
5 10 20 25 30

15
p-Nelghbors

Figure 5.8. Performance vs P-Neighbors for K-Means Clustering with Sixty Clusters

Table-5.6. Robustness Measure for K-Means Clustering
% Correct
Training | Test
Avg 95.59 80.90 -
Std 1.71 3.36

5-10

required to train via the K-Means Clustering algorithm was less than 30 minutes while the amount

of time required to train via the Kohonen Training algorithm exceeded 120 minutes.

5.2.4.4 Cenier at Class-Clusler Averages In this test, the ability of the network to
add the required number of nodes to cover the input data space, using the Center at Class-Cluster
Averages algorithm, was measured. The weights, or centers, for the nodes in the first layer were
trained using the Center at Class-Cluster Averages algorithm and the sigmas set using the-Scale
Sigmas by Class Interference algorithm. The weights linking the nodes in the output layer to
the nodes in the first layer were trained via global minimization of the MSE. The performance
of the network was analyzed by varying the average threshold (vigilance) of the nodes in the

hidden layer. The complete data are shown in Tables E.14 and E.15. As shown in figure 5.9,

100 T T T 7 T B T
Training —
80 o
60 | o
7]
o
3
z .
40 | o
20 | R
0 1 1 1 1 - L 1 1 _
0.5 1 1.5 2 2.5 3 3.5 4
Average Threshold

Figure 5.9. Nodes vs Average Threshold for Center at Class Averages

as the average threshold increased, the number of nodes required to cover the pattern space of
the training data decreased. However, as shown in figure 5.10, as the number-of nodes decreased,
the categorization performance of the network decreased. By comparing both figures, it can be
seen that the categorization performance of Jhe -network remains fairly constant until the average
threshold increased to a value of 1.5. At this point, 55 to £9-nodes adequately cover the pattern
space. As the average threshold increased belween 1.5 and 2.5, the number of nodes continued
to decrease dramatically while the classification performance decreased slowly. As the average
threshold increased past 2.5, the performance of the network deteriorates rapidly. The robustness

of networks, trained in this manner with an average threshold of 2.0, is shown-in Table 5.7.

5-11

100) 4 - + ¢ -7 T T T
Training -4—
%I Test =+ -

90
85 ":"'""'-—--{—....._.'....._.Q.-----—’-~~
80 |-

5k

% Correct

70 |

65 |

55 p

50 i 1 1 1 L] 1
0.5 1 1.5 2 2.5 3 3.5 4
Average Threshold

Figure 5.10. Performance vs Average Threshold for Center at Class Averages

Table 5.7. Robustness Measure of Center at Class Averages
% Correct

Training | Test
Avg 95.39 80.40
Std 1.96 | 3.17

It is interesting to compare the results of this training algorithm to the results obtained from
the K-Means algorithm. Both algorithms are clustering algorithms which set ths weights of their
clusters-equal to the averages of the features of pockets of data. It can be seen that the robustness
measure for the Center at Class-Cluster Averages algorithm, which used an average of 24 nodes-in
the hidden layer, layer 1, was roughly equivalent to that of the K-Means algorithm which used. 60
nodes. This shows that centering the nodes at pockets of patterns according to class may be better

than-centering the nodes at pockets of data without regard to class.

5.2.4.5 PNN Training In this test, the performance of the Probabilistic Neural Net-
work (PNN), developed by Specht, versus the RBF Kernel Classifier was analyzed. The number
of nodes.in the.hidden:layer was_set equal to the number of training points, 102. The weights for
the layer 1 nodes were set using the Nodes at Data Points algorithm. For the PNN, the output
layer, layer 2, nodes were only connected to the hidden layer nodes representing their class. The

weights connecting these hidden layer nodes to the respective output layer nodes were set to one.

5-12

For the Radial Basis Function (RBF) network, the weights linking the nodes in the output layer to
the nodes in the first layer were trained via global minimization of the MSE. The sigmas for each
network were then allowed to vary from .5 to 3.0. The categorization performance of the network
for both the training and test data were then documented as shown in Tables E.17, E.18, E.19, and
E.20 and plotted as shown in figures 5.11 and 5.12.

100

PNN ~¢—
RBF ~=- -

95
90
85}
80 |

75 F

t Correct

70 b
65
60

55.-p

50

0.5 1 1.5 2 2.5 3
Sigma

Figure 5.11. PNN vs RBF Performance for Training Data

100 T T T T T

PNN ~—
95 p RBF =4+

90 - .

% Correct

0.5 1 1.5 2 2.5 3
Sigma

Figure 5.12. PNN vs RBF Performance for Test Data

5-13

As the sigmas, or RBF spreads, for both networks were increased to .5, the performances were
relatively the same. However, as the sigma increased from .5 to 1.5, the performance of the PNN
decreased while the RBF Network remained relatively constant. This indicates the weights in the
RBF Network are serving to offset the choice of a bad sigma for the PNN. As sigma increased from
1.75 to 3.0, the performance of the RBF network began to deteriorate rapidly. At a sigma of 3.0,
the both networks performed at the same level. The best performance for the PNN Network, as

shown in Table 5.8, occurred when sigma was set to .5. On the other hand, the best performance

Table 5.8. Robustness Measure of PNN Network
% Correcl

Training | Test
Avg | 100.00 | 82.50
Std 0.00 81.20

for the RBF Network, as shown in Table 5.9, occurred when sigma was set to .75. This shows

Table 5.9. Robustness Measure of RBF Network
% Correct
Training | Test
Avg | 99.61 | 83.30°
Std 0.78 5.40

the increase in the sigma, or receptive field spread, allowed the RBF Network to generalize a little
better than the PNN Network.

5.2.5 Summary A comparison of the performance of the Hyperplane and Kernel Classifier

networks is shown-in Tables 5.10 and 5.31.

These tables show both types.of networks performed equally well. The Hyperplane Classifier

networks used less nodes then the Keynel Classifiers but took longer to train. Similar observations

Table 5.10. Hypérplane Classifier Network Robustness Summary

Output Layer Convergence Avg % Correct
Objective Function | Iterations | Training | Test | Total
MSE) 30,000 97.16 | 79.70 | 88.52
CE. 28,000- 100.00- | 81.20 | 90.69
CEM 50,000 88.83 | 73.20 | 81.09

5-14

Table 5.11. Kernel Classifier Network Robustness Summary

Layer 1 Avg % Correct

" Training Method | Number of Nodes | Training | Test | Total
Node at Data Points 102 100.00 | 84.90 | 93.45
Kohonen Training 64 97.94 | 80.20 | 90.05
K-Means Clustering 60 95.59 | 80.90 | 89.20
Center at Class Avgs 24 95.39 | 80.40 | 88.85
PNN- Network 102 100.00 | 81.20 | 90.69
RBF Network 102 99.61 83.30 | 91.54

have been made by Moody (13). The performance of the different Kernel Classifier networks
depended on the number of RBF nodes allocated to layer 1. The best performance occurred when
an RBF node was placed at each of the 102 training vectors. However, only slightly degraded
performance occurred when a lesser number of nodes was allowed to adapt, via the Kohonen
Training, K-Means Clustering, and Center at Class-Cluster Averages algorithms, to reflect the
data. Finally, the performance of the PNN was inferior to that of the RBF based Kernel Classifier
network. This shows the weights linking the layer 1 nodes to the layer 2 nodes in the Kernel

Classifier may serve to correct for non-optimal choices of the spreads of the RBFs.

5.8 Radar System Characierizaiion

5.8.1 Introduction This section addresses the development and testing-of a neural-network

capable of categorizing a radar platform from the characteristics of its electromagnetic signal.

5.8.2 Data Descriplion The data deemed necessary to perform classification of radar plat-
forms are the radio frequency of the electromagnetic signal, the pulse repetition interval of the
pulsed waveform, the stagger level of the pulse repetition interval, the width of the transmitted

pulse, the scan type used by the radar, and the circular period of the scan.

5.3.2.1 Radio Frequency The Radio Frequency (RF), as shown in figure 5.13, of a
radar platform’s transmitted signal represents the frequency, in hertz, at which the carrier waveform-
is transmitted. This feature is not limited to a specific frequency for each platform but can vary
within a given a range, or band, of frequencies over which the carrier is transmitted. Also, many
radar platforms transmit their carrier in several different RF bands, depending on the mode in

which the platform is operating.

5-15

Multiple Pulse
Repitition Intervals
A B
o —— S e o e e e o >
] L]
Radio Frequency Pulse Width

Figure 5.13. Radar Signal

5.3.2.2 Pulse Repetition Interval The Pulse Repetition Interval (PRI), as shown in
figure 5.13, of a radar platform’s transmitted signal is the interval of time, in microseconds, between
consecutive-transmitted pulses. This feature is not limited to a specific time for each platform-but
can-vary within a.given range of time. Also, many radar platforms-change their PRI operating

‘bands-depending on the mode in which the platform is operating.

5.8.2.8 Slagger Level The use of more than one pulse repetition frequency, as shown
in figure 5.13, by a radar platformis known as its Stagger Level. This change in repetition frequency
of the transmitted pulses allows the radar to overcome the blind speeds inherent in the detection

of moving targets.

5.3.2.4 Pulse Width The Pulse Width (PW), as shown in figure 5.13, of a radar
platform’s transmitted signal is the time duration, in microseconds,-of the transmitted pulses. This
characteristic determines the radar’s ability-to resolve closely spaced-targets within ils range. This
feature:is not limited to a specific unit-of time for each platform but-can vary within a given range
of tiznes. Furthermore, many radzr platforms can change the range of the PW of their transmitted

signals. -

5.8.2.5 Scan Type The Scan Type is the method the radar platform uses, such as a
conical-scan, io direct its antenna beam at a target. This study concentrated o circular scan

platforms with different types of scans.

5-16

5.8.2.6 Circular Scan Period The Circular Scan Period is the length of time, in mil-
liseconds, the radar platform takes to repeat one frame of its search. This feature is not limited to
a specific unit of time for each platform but can vary within a given range of times. Also, many
radar ‘platforms can change the length of their Circular Scan Period depending on the mode in

which the platform is operating.
5.8.8 Dala Processing

5.8.8.1 Data Normalizalion The data used to develop the network does not represent
actual radar platform features but sets the ranges allocated to each platform in the form of a
range vector. Because the comparative ranges for each of the patterns were unequal, the data
was normalized by dividing each feature of the data by one-half the maximum value allowed for
that feature. This limits the range for each of the feature components to a number between 0 and
2. Also, in this problem, several of the ten radar platforms had features-which overlapped in the

feature-space.

5.8.8.2 Data Generation For each platform the training and-test vectors were gener-
ated randomly. ‘This was accomplished by taking each range vector within a class and generating a
set number of random pattern vectors, according to-a uniform distribution, -using the range vector
as-a template. For the RF, PRI, PW and Scan Period features, the random number generated was
forced to reside inside the ranges allocated to each platform. For the Scan Type and the Stagger

Level, the features were the same as the template vector.

5.8.4 Network Development For this problem, Kernel Classifier networks were developed to
categorize ten radar platforms. Since the networks-developed using the Center at Class-Cluster
Averages algorithm performed comparatively well, for a smaller number of nodes, for the commu-
ni.ations signal categorization problem, these Kernel Classifier networks were also developed using
this algorithm. For these networks, a correct classification resulted when the output of the correct

classification node exceeded a classification threshold.

5.8.4.1 RBF Network This network was-constructed according to the topology shown
in figure 3.7. The input layer, layer 0, contained six nodes while the nodes in-the output layer, layer
2,-contained-ten nodes,-ore node representing-cach-class. The network used-the-Center-at-Class-
Cluster Averages algorithmto determine the number-of nodes in the hidden layer, layer 1, and their
corresponding weights. These nodes were assigned -the gaussian transfer function while the nodes

in the output layer were assigned the linear transfer function. The sigmas-for the hidden layer

5-17

nodes were established using the Scale Sigmas by Class Interference algorithm while the weights
linking the output layer nodes with the hidden layer nodes set via global minimization of the MSE.
Three hunidred pattern vectors, 30 from each platform, were then used to train the network while
1990 pattern vectors, about 200 from each platform, were used to test the network. Measurements
were then taken of the performance of the network as the classification threshold varied. This

data is shown in Table E.21. and plotted in figure 5.14. From this figure, it can be seen that

100 T T T T T T T
Training «—
Test ~—-
95 | R R b
90 b \\-'
85 .
§ § S, Fomm - ——— -~
¥ Sea
‘6 80 - \\\\N e B
[¥] hab N
- \\\\
i 5 F Seaa -
\\\\
70 | J
65 -
60] 1 - | 1 _ - 1 4 1 .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold

Figure 5.14. Performance Radial Basis Function Network for Radar Data

the categorization performance of the network decreased as the class threshold increased until a
classification threshold of .4 was reached. At this point the categorization performance leveled out
at 93.67 % for the training-data and 82.88 % for the test data. This-indicates that if the output
of a node was greater than .4, there is an 82.88% chance that a correct classification was made. If
the output-of a node was greater than .8,-there is a 72.29% chance that a correct classification was
made. The inability of the network to train at 100 % was due to the overlap of the parameters in

the feature space from different platforms.

5.8.4.2 Arbitrator Network This network was constructed according to the topology
shown_in -figure 5.15. In this.system, Network A was trained to categorized platforms 1-5 while
Network B was trained to categorized platforms 6-10. Network C was trained to categorize all ten

platforms by arbitrating between Network A and Network B.

For Networks A and B, the input layer, layer 0, contained six nodes while the nodes in

5-18

Network A
Network C
— ' l =
B B R e
; o o -
RBFs Outputs :
—2t \\ \“ .
JES———— \ —
‘ o
> - | > L
Radar A
Features 1
RBF's Outputs
Network B

Figure 5.15. Radar Data Arbitration Network

their output layer, layer 2, contained five nodes, one node representing each class. These networks
used the Center at Class-Cluster Avérages algorithm to-determine the number of nodes in -the
hidden layer, layer 1, and their corresponding weights. These nodes were assigned the gaussian
transfer function while the nodes in the output layer were assigned the linear transfer function. For
Network A, the sigmas for the hidden layer nodes were éstablished using the Scale Sigmas by Class
Interference algorithm while, for Network B, the sigmas were set using the P-Neighbors algorithm.
For both networks, the weights linking the output layer nodes with the hidden layer nodes were
set via global minimization of the MSE. Three hundred pattern vectors, 60 from each platform,
were then uscd-to train each network independently. Network A was then tested with 1000 pattern
vectors from classes one through five, group A, while Network B was tested with 990 pattern vectors
from classes six through ten, group B. Measurements were-taken of the performance each retwork
for as the classification threshold varied. This data is shown in Tables E.22 and E.23 and plottéd
in figures 5.16 and 5.17.

After the parameters for Network A and B were set, Network C was established to arbitrate
the outputs between Networks A and B. This network had ten nodes in its input layer, one-for
each of the ten outputs from the Networks A and B, and ten nodes in its output layer; one-for

each radar platform. The Center as Class-Cluster Averages algorithm was used to determine the

5-19

100 T T T T T T T
Training -e—
Test ==
95 + + . o
-]
90 frrmmmr e ——————— ——— R
——
pil
g e
" ~
M 85 b SN -
Q S
v N
- S
80 b -
75 F R
70 i 1 L 1 1 L i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold
Figure 5.16. Performance of Network A for Group A Radar Data
100] :] ~ :] ¥ -
M Training -e—
Test =t—-
95 |-
------------- o ————————h
\\\
~.
90
9
[N
~
g 85 AN -1
~
3] N
- \\\
80 |- S
\I
75 ¢ -
70 1 1 L 1] - -] 1 -
[} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Threshold

Figure 5.17. Performance of Network B for Group B Radar Data

5-20

number of nodes in its hidden layer, layer 1, and their corresponding weights. These nodes were
assigned the gaussian transfer function while the nodes in the output layer were assigned the linear
transfer funciion. The sigmas-for-the hidden layer nodes were established using the Scale Sigmas
by Class Interference algorithm while the weights linking the output layer nodes with the hidden
layer nodes set via global minimization of the MSE. Three hundred pattern vectors, 30 from each
platform, were then used to train the network while 1990 pattern vectors, about 200 from each
platform, were used to test the network. Measurements were then taken of the performance-of the
network as the classification threshold varied. This data is shown in Table E.24 and plotted in
figure 5.18.

100 1 é)] o] ¥] —
N
t -
95 b
920 | -1
o 1)
) +
i esfp 0" AN .
8 \\\N\
- \\\\\
80 \\\ R
\\\
\\
\\
75 | <
70 I;V 1 i 1 1] 1 —
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
- Threshold -

Figure 5.18. Performance of Arbitrator Network for Group A and B-Radar Data

From these figures, it can be seen that the categorization performance of the network increased
as the class threshold decreased until the class threshold reached .4 . At this point the classification
accuracy of the total network was 99.33% for the training data 86.35% for the test data. This
indicates that if the output of a node was greater than .2, there is an 86.35% chance_that a correct
classification was made. If the output of a node was greater than .8, there is a 73.90%. chance that
a correct classification was made. The inability of the network to train at 100 % was due to the

overlap of the parameters inthe feature space from different platforms.

5.8.4.8 Summary A summary of the performance of the networks trained to classify
the radar data is shown in Table'5.12. A-comparison of the performance of the RBF network and

the Arbitrator network shows the Arbitrator network’s performance was about 2% better than that

5-21

Table 5.12. Radar Categorization Summary

Classification | RBF Network % Correct | Arbitrator Network % Correct
Threshold | Training Test Training - Test i
.8 87.00 72.29 95.00 - 73.90
.6 89.67 77.91 98.33 81.43
4 93.67 82.88 99.33 85.79
2 93.67 82.88 99.33 86.35
.0 93.67 82.88 99.33 86.35

of the RBF network. This is probably due to the ability to the use of more training vectors to train

networks A and B in the Arbitrator scheme.

5.4 Summary

This-chapter began by discussing the data used to train-and test neural networks to classify
coded digital communication signals. After describing the methods used to train various networks
to solve this classification problem, the results of the training and testing were then presented. This
chapter concluded with a discussion of the data used to train-and test neural networks to classify

radar systems and-an analysis of these training and test results.

5-22

VI. Conclusions/Recommendations

6.1 Introduction

The purpose of this thesis was to characterize the Hyperplane and Kernel Classifier types of
neural networks and determine either type could be used to accurately characterize radar signal.
After drawing some conclusions on the performance of each type of network, based the test results

discussed in Chapter 5, this chapter will recommend areas of future study. ¢

6.2 Conclustons

6.2.1 Hyperplane Classifier In this thesis, Hyperplane Classifier networks were constructed
using the MSE, CE and CFM objective functions. For the communications problem, each network
contained 18 nodes in the first hidden layer, ten nodes in the second hidden layer and two nodes
in the output layer. -Under these conditions, the network trained by minimizing the CE performed
slightly better, in the area of classification, than the networks trained via MSE and CFM objective
functions. The average CE performance on-the training data was 100% while on the test data the
performance diopped to 81.2%. This compares favorably with-the MSE performances of 97.16% and
79.7% and the CFM performances of 88.83% and 73.20% for.the training and test data respectively.
Furthermore, the CE algorithm converged about twice as fast as the MSE algorithm and seven times
as fast as the CFM algorithm. As shown in figures 5.1, 5:2, and 5.3, the CE algorithm reached a
90% accuracy in about 7000 iterations while the MSE and-CFM algorithms reached this level in
about 19000 and 50000 iterations respectively. This decrease in convergence time is due to the lack

of a Ya(1 — yn) term in the CE update equations.

6.2.2 Kernel Classifier For this thesis, several different Kernel Classifier networks were
developed to solve the communrications signal categorization problem discussed in Chapter 5. Based
on the performance results detailed in Chapter 5, two Kernel-Classifier types of networks were then

constructed to categorize radar systems.

6.2.2.1 Commaunications Date The-performance of networks trained usiug the Nodes
at Data Points was found to be a critical function of the number-of nodes used in the hidden layer.
As the number of nodes increased from 0 to 102, the classification performance of the network
increased-accordingly; peaking-at 100% for the-training.data and 84,90% for the test data for 102

nodes. However, for less than 60 nodes, the performance-of the network deteriorated rapidly.

The performance of the networks trained using the Kohonen. Training algorithm were found

to be a function of the both the number of nodes-allocated to the hidden layer and the number of

6-1

P nearest neighbors used in the calculation of the spreads of the RBFs, As the number of nodes
increased from 0 to 81 the classification performance of the network increaséd, peaking at 100% for
the training data but only around 76% for the test data. This is due to the fact that the Kohonen
Training algorithm allocates more nodes to areas in the feature space where there are pockets-of
data. Increasing the total nnmber of nodes in the hidden layer increases the amount of nodes
which can be allocated to each pocket. However, this increase in the number of nodes within these
pockets serves to decrease the distance to the P nearest neighbors. Thus, the spreads for the RBFs
become small and the network loses its ability to generalize past the training data. As shown in
figure 5.6,-this problem can be overcome by using less nodes in the Kohonen layer. For this data,
the optimum number of nodes was 64. Though the performance over the training data was only

97.94%, the performance over the test data improved to 80.20%.

The performance of the networks trained using the K-means algorithm were also found to be
a function of the number of nodes allocated to the hidden layer. As the number of nodes increased
from 0 to 100, the classification performance of the network generally increased; peaking at 100%
for the training data and 83.90% for the test data. The performance remained above 80% for both
the test and training data until less than 60 nodes were allocated to layer 1. At this point the
classification performance of the network decreased rapidly. This is probably due to the grouping
of dissimilar classes into the same clusters. The performance of networks trained using the K-means
algorithm were found.-to be somewhat invariant to the number of P nearest neighbors, used in the

calculation of the sprzads of the RBFs,

The performance. of networks trained using the Center at Class-Cluster Averages algorithm
was also found to be a function of the-number of nodes rsed in théidden ‘ayer. As‘the number of
nodes increased from 0 to 100, the classification performance of the natwork increased accordingly,
peaking-at 100% for the training data-and 84% for the test data. This indicates there wos redunzjant
lata in the training set. Also, networks trained.in this manner performed at a perarmance level
of abov,, 80%, for bot..-the trening and test data, as long a¢ ths number of nodes remained above

20. This indicates the data in this problem may be grouped, by class, int small pockets of data.

The performance of the networks tzained usingihe PNN algorithm were found to'be a function
of the spreads assigned to the REF nodes. Asthe sl;rerads decreased, fiom 3-t0 .25, the classification
performancze of the network increased; peaking at 100% fcr (hie trairing data-and-81.29% for the
test data. Ik performance-of an RBF network, with the weights for the hidden layer nodes trained
in'the same manner-at-those-for the PNN, was {found to beless of a function of the spread assigned
to the RBF nodes. As shown in figures 5.11 and 5.1%; ever as the spreads increased to 1.5, the

performance of the RR¥ network remained relativcly: constant for both the training and test data.

This is due to the weights in the output layer compensating for the poor choice of the spread in
the hidden-layer. However, as the spread of the RBFs increased past 1.5, the performance of the
RBF network deteriorated to that of the PNN.

6.2.2.2 Radar Data For this problem, ten different radar platforms had to be catego-

rized from data concerning their electromagnetic signals.

The performance of the standard RBF network developed to solve this problem was a function
of the classification threshold required to assign a correct decision for the network. For a classi-
fication threshold of .8, indicating the output for the correct node was above .8, the performance
of the network was 87% for the training data and 72.29% for the test data. As the classification
threshold was decreased to .4, the performance of the network increased to 93.67 % and 82.88 % for
the training and test data respectively. This performance then remained constant as the threshold
decreased. The inability of the network to train at the 100% level indicated the overlap in the
feature space between patterns of different classes. The 10% difference between-the performance of
the network for training and test data followed the general performance degradation found in the

communications problem.

The performance of the Arbitrator network developed to solve this problem was also a function
of the classification threshold required to-assign a correct decision for the network. For a classi-
fication threshold of .8, indicating the output-for the correct node was above .8, the performance
of the network was 95% for the training data and 73.90% for the test data. As the classification
threshold was decreased to .2, the performance of the network increased to 99.33 %-and 86.35 % for
the training and test data respectively. This performance then remained constant asthe threshold
decreased. Again, the failure of the network to train a 100 % indicates the overlap in the features

space between patterns of different classes.

In general, the perfermance of the Arbitrator network was between 1.6% to 3.5% better
than that of the standard RBF network. This is due to the establishment of the two subnetworks
to distinguish. between smaller groups of platforms, the use df more training data to train these
networks, and the of ability of the Arbitrator network to separate the overlap between the groups.
However, this-increase in performance for the Arbitrator network required almost three times as
many nodes as that of the standard RBF network. Furthermore, since the two subnetworks were
trained separately, vhe total training time for.the Arbitrator network was-almost-three times that

of standard RBF network of 45 minutes.

6-3

6.8 Recommendations

From the results found in this thesis, better algorithms need to be developed to set the
spreads of the radial basis function nodes for the Kernel Classifier RBF networks. In order to
optimize the performance of the networks, a trail and error basis was used to select the algorithm,
and algorithm parameters, to set the spreads. A single, adaptive, algorithm to accomplish this
same task could improve the performance of these networks. Also, it may be beneficial to study
accuracies of Kernel Classifier networks developed using the backpropagation algorithms to set the
weights connecting nodes in layer 1 to nodes in layer 2. In this this thesis, these weights were set via
a global minimization of the MSE using a matrix inversion algorithm. Since this algorithm used
Gaussian Elimination of the rows to obtain the inverse, it is possible that small roundoff errors
could have accumulated in such a manner as to prevent a true global MSE minimization from
being obtained. Another area of research, which-may hold promise, is the use of the RBF networks
to reconstruct functions from past samples. These networks could be useful in signal processing

applications in which a-reconstruction of an unknown signal-is needed in a-timely manner.

6.4 Summary

This chapter presented some conclusions, based on the test results discussed in Chapter 5, on
the performance of the Hyperplane and Kernel Classifier neural networks. For the data processed
in this cheses, it was found that the Kernel Classifier networks-could perform at the same level
as that of the Hyperplane Classifiers and be developed in a much shorter time period. However,
these Kernel Classifier networks-usually required more nodes. Some areas-of future research may
include the development of algorithms to automatically establish the spreads of the RBFs in the
Kernel Classifiers and the application of Kernel Classifer networks to the problem of function

reconstruction based-on sampled-values.

6-4

Appendix A. Objective Function Analysis

A.l1 Intreduction

In this appendix, the classification properties of the Mean Square Error, Cross Entropy and

Classification Figure of Merit objective functions will be analyzed.

A.2 Mean Square Error (MSE) Function

This section will show how the mean square error for proper network classification can be

greater than the mean square error for-an improper classification.

Suppose the network was required to make a classification of an unknown pattern into cne of
N classes. That is, the reural network was developed such that each output node represents only
one of the N classes. Let dj, be the desired output for the n*» node for a given input pattern. The

MSE, for a given input pattern, is then defined as

N
1
MSE =33 (Un = dn)? (A1)
n=1
Usually during training, d,, is taken to-be 1 for the node responsible for a class and 0 for the rest of
the output nodes. Specifically, assume that, after training, a test pattern is applied and the correct

node on-the output layer has the highest activation. In this case the maximum MSE is

MSEp, n Y1

= (A.2)

This occurs when the desired node produces a 1 and all of the other nodes produce activation values

very close to.1. That is

N N-1
_ 1 2_ 1 2) 2 .
MSEmar = ﬁr‘;(y,, ~dn) = 510 - 1)+ ;1(1 -0y} (A.3)
This reduces to
1 N-1
— 2 LA
AlSEma:: -_ YV‘ Z(l) (A.’l)
n=1
Simplifying,
A-1

[RRTECTNECERACEX AT Fy YL T PR

N-1

MSEma: = T (A.s)

Next, assume that, after training, a test pattern is applied and an incorrect classification is
made. That is, a node representing an incorrect classification in the output layer has the highest

activation. In this case the minimum MSE is

1
MSEmin = 55 (A:6)

This occurs when the output for the correct node is approximauely .5 and the output for a single

incorrect node is approximately .5. The outputs for the rest of the nodes are zero. That is

N
1 2
MSEnin = "N‘ Z(yn ""d'n>- (A'7)

n=i

Substituting the output values gives

MSEmin = %,—{(1« B)2 4 () - .5V (A.8)
which simplifies to
MSEmin = = (A9)
min ~— 2N .

Thus, under certain conditions, the MSE for 2 correct response, in which-the-correct output
node. js_the highest, can be greater than the MSE for an incorrect response As the number of
clagses-becomes very large, then M SEn, . for a correct: reapunse approaches 1 while MSEy,;, for

an incorzect response appro.ches . Therefore, the fatio of M3.Ty.z lo MS Ly, is

M SEpae

i
MSE... —0- % (A.10)

limpresco

A.8 Cross Enicupy (GE) Function

This section-witl show how che.cross entropy for proper network classification.can be greater

‘then-thy.cross.entropy dor-an-inupreper«lassification.

Suppose the network was required to make a classification of an unknown pattern into one of
N classes. That is, the neural network was developed such that each output node represents only
one of the N classes. Let d,, be the desired output for the n** node for a given input pattern. The
CE is then defined as

N
CE= ~% > [dnlog(yn) + (1 — dn) log(1 — yn)] (A.11)

n=1

Here during training, dy is usually set to 1 for the node responsible for-a class and ‘to 0 for the.rest
of the output nodes. Now, assume that, after training, a test paitern is-applied and the correct

node on the output layer has the highest activation. In this case-the maxsmum CE:is

Clmaz & 00 (A12)

This occurs when the correct classification node produces a 1 and at lezst one ofthe other-nodes

produces an activation value very close.to.1. ‘That is

N
CE = "le S ldn I0g(n) + (1 ~ dn) log(4 = ym)] (A.13)

n=1
Substituting the valuesfor the outputs
1 .
CEmaz-= —(Llog(1)+ (1) logll - 1)} - (A.14)

or

CEpaz = 00 (A15)

Next, assume that, after training, a test pattern is applied and an incorrect node on the

output layer has the highest activation. In this case the winimum.CE is

2log(2)

CEmt'n = N

This occurs when the output-for the correct node is approximately .5 and the output for-a-single

_incorrect node is-approximately .5. The outputs for the rest of the nodes are zero. That-is

(A.16)

N
Z [dnlog(yn) + (1 — dn)log(1 — ya)) (A.17)

Substituting the assumed values for the outputs

CEin = _%[1 log(.5) + (1 = 0) log(1 ~ .5)] (A.18)
which simplifies to
CEpmin = 21"15(2) (A.19)

Thus, under certain conditions, the CE for a correct response, in which the correct output
node is the highest, can be_greater than the CE for 2n incorrect response. The ratio of CEyy,,, for

a correct response to CEyy for an tncorrect response is

. CEma:: —_—
limp o CE... = 0 (A.20)

A.4 Classification Figure-of Merit (CFMA) Funclion

This section will_.show how the CFM objective function seeks to alleviate the classification

error associated with the MSE and CE objective functions.

Suppose the network was required to make a classification of an unknown pattern into one of
N classes. That is, the neural network was developed such that each output node represents only

one of the N classes. The CFM objective function is then defined as follows:

1 o
= Y (a.21)

n—ln #e
where 6, =y, —
ye = response of the correct node

_response of-the.incorrect node

Un
N = total number of output nodes or classes.
o = sigmoid scaling parameter.

B = sigmoid discontinuity parameter.

A-4

¢ = sigmoid lateral shift parameter.

Specifically, assume that, after tfaining, a test pattern is applied to the network and the

correct node on the output layer has the highest activation. In this case the minimum CFM is

CF Mmin & CFMy(0) (A.22)

where

44

CFMn(8) = om0

(A.23)

This occurs when the correct output node produces a 1 and all of the other output nodes produce

activation values very close to 1. That is

N
1 o)
n=1ngc
but here 6, = y. — yn & 0 and therefore, CF M,;,, simplifies to
1 & « 1 X
CFMunin = 7‘7—:7"—21:, 15 PO~ N1 n;* CFM(0) (4.25)
which can-be written as
CFMomin ~ ﬁ(N ~ 1)CFM(0) (A.26)
This simplifies to
CFMupmin = CFM(0) (A.27)

Next, assume that, after training, a test pattern is applied and an incorrect node on the

output layer -has the highest activation. In this case the maximum CFM is

CFMpmaz = ——=[(N = 2)CFMy(1) + CFM,(0)] (A.28)

_1
N -

This occurs when the output for the correct node is approximately 1 and the output for one of the
remaining nodes is approximately 1 while the rest are zero. For the nodes which have output very

near zero

1 1

CFM (&) = T et = T oFt0

= CFM(1) (A.29)

The equation for the CFM can now be written as

N-1
1 o o } -
CPM = 5= 1[,,}1: T3 o0 T T ompoe) (A.30)
Slnge
This can be written as
=t
CFMmaz = ——[> CFM(1)+CFM(0)] (A.31)
N-1 n=lnpc
Expanding via the-summation
CFMpas = N—I_I[(N — 9)CFM(1)+ CFM(0)] (A.32)
Now, taking the limit as N approaches infinity
CF Mimaz % CFM,(1) (A.33)

For large B, then CF M, & 1. Thus, the ratio of CF My, for a correct response to CFMpnin

for an incorrect response, when ¢ = 0 is

CFMmas _
=2 (A.34)

Comparing this to the CE and MSE functions, we find that the CFM function has less region

in the feature space where an incorrect classification will be made.

A-6

Appendix B. Hyperplane Classifier Parameter Update Equations

B.1 Introduction

In this appendix, the update equations for each of the objective functions will be derived.

These equations will be based on a network with the topology defined in figure 3.3.

B:2 Identities

In this section, the identities needed to establish the update algorithms will be derived. Con-

sider a feedforword artificial neural network as shown in figure 2 with the following paramenters:
Layer 0, input layer, has K possible nodes
Layer 1, first hidden layer, has L possible nodes
Layer 2, the second hidden layer has M possible nodes.
Layer 3,the output layer, has N possible nodes.
Let the weights between layers be defined as follows:
wy = weight linking node k in layer 0 to node | in layer 1.
Wiy, = weight linking node 1 in layer 1 to node m in layer 2.
Wmp = weight linking node m in layer 2 to node n-in layer 3.
Let the offsets for the nodes in each layer be defined as follows:
a1 = offset for node | in layer 1.
om = offset for node m in layer 2,
o, = offset for node n in layer 3.
Let the transfer function for the nodes in each layer be as follows:
Layer 0 - y = z; Oufputs are same as input features.
Layer 1-y =[1+ e"(z:;tw"'”"'*'”')]“l
Layer 2 - ym =1 + e Cim wimyttom))-1
Layer.3.- y, =.[1 + o~ O Wmaym+on)]-1

Now, looking at the node outputs for each of the layers, the following identities need to-be
established:

Oyn Oyn Oyn Bym. Bym. _Byr_
Swmn? Qwpm’ Bwke® dwim? Qwyy’ dwke

B-1

Starting with yy, the output for a node in layer 3

Oyn _ 9

- o= (M wmnymton))-1
Bons = Do [l+e 1] (B.1)

which expands to

oyn _ (M wanymton))-2 9 (Y wmnymton)
3wMN - [1 + 2 m=1] 8wMN [e m=1] (B.Z)

which simplifies to

3yN — —(M mNYm+o)—2 —(M mNYm+) a - l
Bun L Te Ly WY A O 2= (L, WY ”"]awMN(Zmeym+aN) (B.3)

m=1

This equation can be written as

ayN — -(EM_ meym'I'aN) -1 -(EM_ meym“l‘UN) -1 _(ZM meym'*'UN)
AU 1o~ e e S o (B4)

which finally simplifies to

oyn
Bonn yn (1 —yn)ym (B.5)

Similarly, using the same arguments as above

a?g{ = ym(1 - yar)uL (B.6)
and
é%yﬁ; = yo(1 - yr)yx (B.7)
Now let’s find 5%.
0 (14 etmmy-t (B.8)

dwrym Owry

B-2

where

M
$mN = Y, WnNUm +ON
m=1
therefore
ayN — a ""¢mN -1
dwrym ~ Odwpm (L+e)
which expands to
8y~ — _¢mN -2 a —¢mN
dwrp (1 e7o) dwrm (e7)
this, in turn, simplifies to
3yN -_— —¢mN -2 —¢mN a
awLM "(1+e) (e)awLM(¢mN)
which can be written as
dyn <l
Bugs ynv(1—yn) Sonn (h2=1 WinNYm + ON)
which simplifies to
oyn _ ym
Swin = Z‘IN(1 yN)wMNm

Substituting equation B.6 for a_?u% gives

oyn
v ynv(1 = yn)wsmrnym (1 — ym)yL
Similarly
dum__ ym (= yar)wemyr (1 — yo)yx
Owkr
Finally, let’s find ;2L
Syn a

= ——]- —PNmy—-1
Owgr 3wKL(1+e)

B-3

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

where

M
$Nm = E WnNYm + ON (B-18)
m=1
therefore
3yN - 2 —¢mny-1
P = {1+ e7) (B.19)

which expands to

Oyn

— ~$mn)-2 —¢mN
SuRL (1+e) Surs (e) (B.20)
which further expands to
OUN_ (14 ¢y 2o). 0 (i W Ym + ON) (B.21)
dwgr, Owkr "=
this simplifies to
dyn M OYm
= 1-—- W, B.22
Soxs yn(1 = yn) 2;1 N s (B.22)
Now substituting from equation B.16for -8%)% provides
OyN ¥
By - yn(1 = yn) Z WiaNYm (1 = Ym)wrmyr (1 — yo)vk (B.23)
m=1

Finally, let’s find g%ﬁ- , g—g—% and —g%%. Starting with-yx, the output for a node in layer 3

] 0 -5
which expands to
Oyn _ 1+ e~ wmnym+a~)]—'2_‘9_e-(2f=, WmNYm+IN) (B.25)

don don

which simplifies to

B-4

ayN "'(M m m+ -2 - M m, mt a 4
m=-[l+e Dmms UmymtoN)=2(_g=(3 o Wiy °")]m(z WmNYm + ON)

ms=1

This equation can be written as

gyN =[l+e —(Zm_l meym-i-ON)] Nete (z:m=l wmnym+0N)] l[e_(Em—x meym+0N)]
ON

which simplifies to

YN _

80’N yn (1~ yw)

Similarly, using the same arguments as above

ym

Boar =ym(l—ym)

and

yr _
Pop vr(1=yz)

Now let’s find 3-55-

—_—— e ——— —¢mN -
dopm Ooum (1+e)
where
M
PN = Z WmNYm +oN
m=1
therefore

M - _¢mN -
dom aaM s L te)

which expands to

B-5

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

R T T

RIS

oyn
—_— = =1 —¢mNY)-2 $mn
L (14 embm) 2o ()

this, in turn, simplifies to

8
dorr (¢mN)

M — =PmNY~2(p=PmN
30’M - (1 +e) (e)

which can be written as

8
agN un(l=un)5— (Z Wi Ym + ON)
m=1

which simplifies to

dyn

_ Oym
Boa = yn(1 - yn)wmn Boss

Substituting from equation B.29 for g%)hw’- provides

b)
2 = un(= yx)wsnun (- yu)

dopm

Similarly

oym _
Py = ym(1 = ym)wrmyr (1 —yr)

Finally, lets find 5%%

6yN — 3 —¢Nm) -1
dor, ~ (1+e)

where

M
dNm = Z Wi NYm + ON

-m=1

therefore

ayN -¢mN -
30[, 30’1, 30 te)

B-6

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)

(B.41)

(B.42)

which expands to

ayN — —dmNY=2 a —-¢mN
oy (1+4e) 30L(c)

which further expands to

= e—¢m~)-2<e-¢m~)£;<né wnivan + o)
this simplifies to
g—% =yn(l - yzv)(mf)‘::1 meg—Zf
and thus, substituting equation B.39 for %%4;- provides
dyn <
os =ynv(l - yn) ,Z—.-; WnNYm(1 = Ym)wrmyr (1~ yr)

(B.43)

(B.44)

(B.45)

(B.46)

With these identities, the incremental update equations for networks implemented using the

MSE, CE and CFM objective functions can be found.

B.3 Mean Square Error (MSE)

The inc:emental update rules for the network parameters can be found by minimizing the

MSE function with respect to the network parameters for an instantaneous pattern. The MSE

function is defined as

N
1
MSE = =3 (4 - d)’

n=1

'The update equations for the parameters will be

OMSE

4 - -
YMN = YmnN TG

and

B-7

(B.47)

(B.48)

- OMSE
WEn = Wy = Mg (B-49)

and

_ _OMSE
Wk = WgL — Mg (B.50)
and
_ _OMSE
oN = O = 1 (B51)
and
_ _OMSE
ol =0~ N (B.52)
and
_ _OMSE
of = 0% ~ 15~ (B.53)

Here 7 is constant which determines how much each parameter is updated for a given iteration.

Taking the derivative with respect to the output layer weights

OMSE & 1 & R
ekl DRCRLY (B.54)
This simplifies to
OMSE _ 2 Syn
Swpmn - N(yN dN)awMN (B'55)
Substituting B.5 for 3,%%% provides
AMSE 2 ,
v ~ O ~ dw)yn (L = yn)ym (B.56)

Now let’s find %fu%’-.

OMSE _ @
dwry — Owrm

LSS - d) (B.57
[Nz:x(yn"‘ n)] | (3.)

n=

Simplifying

N

= B.58)
Swram N = Swrm (’
Substituting equation B.15 for W%.’E provides
OMSE
Jogs = N ;l(yn = dn)yn(1 = yn)warnyar (1 — yar)ye (B.59)
Finally, let’s find §YSE,
OMSE 8 [if:(—d) B.60)
dwgyr ~ Owky Nn__=l Yn = Cn (B.
This simplifies to
IMSE 2 & Oyn
dwgr N g(y" - d")awm, (B.61)
Substituting B.23 for -(%,—'('T provides
OMSE _ 2 M
BURL N Z - dn)yn(l - yn)[mz_:l Wmn (ym(l - ym)wLm?/L(l - yL)yK] (B-62)
Nouw lets find the 8;{,‘:,’3 .
OMSE - 9
S = ol Z(yn - do)] (8.63)
This can be written as
OMSE 2 3yN
(90‘N N(IN — N) (B.64)

B-9

Substituting B.28 for:

& .
-5%5- provides

OMSE 2

ooy = (o~ = dv)yn (1= yn) (B.65)
Now lets find the 2M3E,
M
OMSE _
e = ol gyn ~)P (8.66)
This can be written as
OMSE 2 & N
oy =N g(w —dn)g (B.67)
Substituting B.38 for gﬁ'—% provides
OMSE 2
= Z(yn = dn)ya(1 = vn)wrnym (1 — yn) (B.68)
oM n—l
Now lets find the ag{’ia .
OMSE _ 9
oy 3” Z(yn = dy)] (B.69)
This can be written as
OMSE _ 2 Oy,
— 70
30’[1 N n=l(yn dﬂ) 30'L (B 7)
Substituting for B.46 for %5% provides
OMSE 2 & M
o1 = N z:l(yn ~ dy)ya (1~ yn)[z:\l WmnYm(l = Ym)Wrmyr (1 — yr)] (B'71)
n= m=

Therefore, substituting the appropriate derivatives into the-update equations_ for each parameter

provides the learning rules for a network implemented using the MSE objective function. By

B-10

defining n = 2C/N, where C is a constant, the update equations for the parameters will be as

follows:
Wirn = Wy = (YN — ANy (1= ynv)ym (B.72)
and
N
Wi = wia — 19U = dn)¥a(1 = vn)wrnyar (1 — yar)yL (B.73)
n=1
and

N M
why = wgy =1 (Un = dn)n(l =) D Wmn¥m(d = ¥m)WImyr(1 - yr)ux] (B.74)

n=1 m=1
and
o = oy —n(yny — dn)yn(1 — yn) (B.75)
and
N
0';1 =0y -1 E(yn —dp)yn(1- Yn)wrnym (1 —Um) (B.76)
=1
and
N M
of =07 =0 (¥ — dn)vn(1 = 90)[Y, Wnn¥m (1 = Y)wLmyr(l — yz)] (B.77)
n=1 m=1

B.} Cross Entropy (CE)

The incremental update rules for the network parameters can be found by minimizing the

CE function with respect to the network parameters. The CE function-is defined as

N
CE= —% Y [dnlog(ya) + (1 = dn)log(1 = ya)] (B.78)

n=1

B-11

Letting 1 be a constant which controls the learning rate, the update equations for the parameters

will be as follows:

and

and

and

and

and

:) 8CE
First_let’s find Barg

9CE 1

O0CE
dwmN

e
WyN = Wyn =T

OCE
dwry

G -
Wiy = Wiy — 7

+ - OCE
Wgr = Wy — anKL
+ - oCE
UN = O'N -_— 17507\]—
+ - 6CE
M =0pM— ’lm
ot = o= — OCE
L L 30‘[,
;]

Swpn = —-I_V;’awMN

The derivative of the log function is

N
Z[dn log(ya) + (1 - dy) log(1 — yu))

n=1

D. flog,(s)] = u—,lﬁu

(B.79)

(B.80)

(B.81)

(B.82)

(B.83)

(B.84)

(B.85)

(B.86)

CE
Swy N

d

1]
= =gldn 5——log(yn) + (1 —dN)awMN

Swprn

log(1 ~ yn)) (B.&7)

Taking the derivative provides

9CE 1, dy Oyn (1-dy) 9(1—-yn)

O B.88
Swyn N[yN In(10) dwmy ~ (1-y~n)In(10) Swmn] ()
This can be written as
oCE 1 dv (1—dy), Oy~
=— —_—— — B.89
Swpn N In(10) [yN (1- yN)] SwmnN ()
This simplifies to
ock 1 [(dN —yndy —yn + yNdN)] dyn (B.90)
Swmn N1n(10) yn(1-yn) SwmN)
Which in turn simplifies to
0k ___1 (dv —yn) . Oyn (B.91)
Swymn NIn(10) 'yv(1 — yn) Bwmn ’
Substituting equation B.5 for a—ﬁ;% gives
oCE 1 A(dv—yn)
= - - 1- B.92
awMN Nln(lO)[er(l "‘yN)]yN(yN)yM ()
This in turn simplifies to
8CE _ (dv—yn)ym
dwyy NIn(10) (B.93)
Similarly
CE _ 1 (dv—yn),0un
don Nln(—lO)—[yN(l - yN)]ao'N (B-94)
Substituting equation B:28 for -gg—% provides
8CE 1 (dy —yn)
=- - 1- B.95
don Nln(lO) [yN(] _yN)][yN(yN)] ()

B-13

which simplifies to

8CE _ _(dy —un)
doy =~ NIn(10)

‘e fing OCE
Now let’s find By

CE 1
dwia Naw Z[d"1°g(yn)+(1- n) log(1 = yu)]

Thus

OCE 3
o =W Z[d,, Fpyy 8Wn) + (1 = dn) 5o log(1 = yn)]

Taking the derivative provides

8CE _ (1—dn) 3(1-yn)
8wLM "N Z[Jn In(10) 6wLM (1 = ya)In(10) Owrm]

This can be written as

8CE L[dn dn) _Oyn
8wLM N ln(lO) Yn (1 y,,) SwLp

This simplifies to

9CE _ 1 i[(dn-—yndn—ynw,.dn)] 9y
dwry N1n(10) Yn(—yn) Swrm

Which in turn simplifies to

JCE 2[(dn yn) OYn
3wLM Nln (10) Yu(l - y,,) Swrm

n=1

Substituting equation B.15 for 5%”55 provides

OCFE
8wLM

N 1n(10) Z[y(,:ln)][yn 1= yn)wmnys (1~ yar)yL)

B-14

(B.96)

(B.97)

(B.98)

(B.99)

(B.100)

(B.101)

(B.102)

(B.103)

This can be written as

6CE 1
dwrm Nn(10) n;(d" = Yn)Jwnnyn (1 — va)ys

Similarly

oCE _ (dn yn) Ayn

dop Nln(10) Z[y,,(l yn) 3o m

Substituting equation B.38 for 2¥~ ar Provides

oCFE (dn yn)

This simplifies to

aCE _
dom Nln(lO) :Z;l(d = Y)wmnym (1 — ym)

Now let’s find 8853

9CE _
dwgr ~ N 3wa

n=1

Thus

Swkr

Taking the derivative provides

dom =T Nln(lO) Z[yn(l Un)][yn(l - yn)anyM(]_ - ym))

L[dn log(yn)-+ (1 — dn) log(1 — yn)]

908 __ NZ[d,, o 10g(un) + (1 = dn) g log(1~ 1)

8CE 1i[dn Oya _ (1=dn) 3(1—)
N £ynIn(10) Owkr ~ (1= ya)In(10) Owgy

dwgr

This can be written as

9CE _ 1 ﬁ’:[c_zﬁ_ (L=dn)y O3,
dwgr ~ NIn(10) &f'yn (1-yn) Quxkr

B-15

(B.104)

(B.105)

(B.106)

(B.107)

(B.108)

(B.109)

(B.110)

(B.111)

This simplifies to

8CE 1 X (dn = Yndn = Yn + Yndn), n
=) B.112
dwir N In(10) [Yn(1—yn)]3wa ()

Which in turn simplifies to

OCE (dn yn) OYn

B.113
311)}{[, Nln(lO) Z[y,,(l y,,) Swkr, ()
Substituting B.23 for zt- 8w o gives
a2 5 o =00) (1 S (1 = (L vr)u] (B
awKL Nln(lO) Pt yn(l Un) —Yn o mnYm Ym)WLmYL YL)YK .
This in turn simplifies to
N M
oCE 1 . .
WKL = N ln(lO) ,,2=:1(dh - yn,iy%l wmnym(l - ym)wLmyL(l - yL)yK] (B.115)
Similarly
OCE _ (dn = yn) Oyn }
dor, Nln(lO) Z 1 Yn(1—n) 801, (B-116)
Substituting equation B.46 for = provides
L Z ool o S i1~ tmozmp(—2e)] (BT
B0 = N 10) 1yn yn Yn m=1’wmnym Ym)JWLm YLl — YL .
which simplifies to
8CE 1 & o
S0 = —N ln(10) ”2=:1(dn - yn)[mz=1 wmnym(l"‘ ym)wLmyL(l - yL)] (B.118)

B-16

Letting n = G/[NIn(10)] where C is a constant, the L late equations for the network parameters
will be

Wity = Wiy + 1l(dy — yv)yn) (B.119)
and
N
Wiy = Whp + 1 Y [(dn — vn)wrrnyar (1 — yar)y) (B.120)
n=1
and
N M
w}L =Wy + nZ(dﬂ - yﬂ)[z wmnym(l - ym)wLmyL(l - yL)yK] (B.121)
n=1 m=1
and
of = of + 1(dn — yn) (B.122)
and
N
o‘;! =0yt Z(dﬂ — Yn)wmnym (1 — ym) (B.123)
n=1
and
N M
o'f =07 + nZ(dn - yn)iz wmn(ym(l - ym)wLmyL(l - yL)] (B-124)
n=1 mz=1

B.5 Classification Figure of Meril (CFM)

The update rules for the network parameters can be found by maximizing the CFM function

with respect to the network parameters. The classification CFM objective function is defined as

1 N

_— g =Byct+Pyn+¢y1-1
CFM = 5 > af(i+e) (B.125)

n=lpge

yn = output of an incorrect classification node

y. = output of the correct classification node

a = a sigmoid scaling parameter

B = a sigmoid discontinuity parameter

¢ = a sigmoid lateral shift parameter

Furthermore, let

1
= T ePvetByatt)

Zn

(B.126)

Here z, is a function of both the correct and incorrect node outputs. Therefore, the CFM objective

function can be-written as

CPM =5z D ozn(n:¥)

1 N

n=lpgc

(B.127)

Letting n be a constant which controls the learning rate, the incremental update equations for the

parameters can-be found from the following equations:

and

and

and

and

OCFM

4 -
Wyn =Wyyt "—awMN

OCFM
dwrm

+ -
Wrp = Wrp + 1

. _ _ _OCFM
Wgp = Wi+ nm

8CFM
don

a,'*(,:a}}+n

B-18

(B.128)

(B.129)

(B.130)

(B.131)

- OCFM
0‘3‘, =0y + n—a;M—'

and

OCFM
dor

o'}"=02+n

Now, taking the following derivatives

8z, 8
= —1 (-pyc+pyn+() -1
Oyn Oyn [te]
Simplifying
% = _[1 + e(—ﬁyc+ﬁyn+()]—2_a_[é(-ﬂyc+l3yn+C)]
Oyn Oyn
This can be written as
9z = —Pe(=PyetPunti)[] 4 o= (Byethynt()]~2
OYn
which simplifies to
Ozy
—=—Fz(l -2z
ayn ﬁ ﬂ(n)
Similarly
Ozy I¢]
—= 1 (-pyc'*'pyn'"() -1
0y 0ye [te]
Simplifying
% — _[1 + e(—ﬁyc+ﬁyn+()]-2__6_[6(-ﬁyc+ﬁyn+0]
0y 0Ye
This can be written as
gﬁ = Bel=BeHByn+O[] 4 o(~PuetByn+0)]-2
Ye

Simplifying again

B-19

(B.132)

(B.133)

(B.134)

(B.135)

(B.136)

(B.137)

(B.138)

(B.139)

(B.140)

a’“ = Bzn(l = 2,) (B.141)

First, let’s find the update rules for a weight linking node M in layer 2 to an incorrect classification

node N:in layer 3, wan.

OCFM _ o i 0z,

= B.142
Swyn N-1 o Toge Swyn ()
But 2y = f(ye, yn) therefore,
OCFM _ «a Ozy Oyn
dwyn ~ N —1byy dwmy (B.143)
Substituting equation B.5-for =42 W and equation B.137 for g”- provides
OCFM _ , of
oy (F=7)ow (= zw)yv (1 - yn)yse (B.144)
Similarly
OCFM _ « Jzy Oyn (B.145)

doy ~ N —10yy don

Substituting equations B.28 for —!ﬁ'- and equation B.137 for Qﬂ- provides, for an incorrect classi-

fication node,

OCFM
don

= —(Naf)2 (L = 2v)yn (1 - yn) (B.146)

For the correct classification node, the %ﬁi 1‘: needs to be found to maximize the CFM objective

function, where

dCFM
Swpyre N 1 n; ach (B.147)
This can be simplified to
N
8CFM 8z, 8yc
= —_— B.148
Swpc -1 n; 8yc Bwpce ()

B-20

Substituting equation B.5 for —-"-— and equation B.141 for -8—‘-1 provides

8CFM of &

B-21

(B.149)

Bupe N-1 n;* zn(1 = za)yc (L = yo)un
Similarly
CFM o L 8z, dyc
Soe = Wo1 g* Tye Foq (B.150)
Substituting equation B.28 for -g;V;g- and equation B.141 for g—;-;— provides
3CFM aﬁ
Soe T 2 21:* 2n(1 = zn)yc (1 — yc) (B.151)
Now let’s find the %—i—‘%’-.
N
8CFM o 8z,
dwry N-1 Z Swim (B.152)
n=lpzc
This can be written as
N
OCFM o 0z, Oyn 8z, Oy
= _— B.153
dwrm (N - 1),,__;#(3.% dwry Oy 3WLM) ()
Substituting equation B.15 for J—— and E—UVJ,- and equations B.137 and B.141 for 8—"& and 95-“
gives
OCFM _ of &
dwin = N _ﬁl 21: Zn(l - zn)[yc(l - yc)ch - yn(l - yn)an]yM(l - yM)yL (B-154)
N=lnge
Similarly
BCFM « 82,, OYn 8z,, Ay,)
dopm - 1 8y o ayc 30’M) (B.155)
‘Substituting B.38 for g}f’- and 2 and equations B.137 and B.141 for -8—’4 and Qﬂ- gives

8CFM il
dom Naf 1 Y #n(l=z0)lye(l = ve)wnte = yn(l — yn)waralups (1 - ypr) (B.156)

n=lpge

Now let’s find the %?f M
KL

P N
ICFM _ « Z Oz (B.157)

Swgr N-1 Nl Odwgr,

‘This can be written as

OCFM a z Oz ay,. az,. dy.
= (5

= B.158
dwgr, N- 3yn 3wKL dy. 3wa) ()

n=lap

Substituting equation B.23 for z=t~— 0w — and az and equations B.137 and B.141 for -8—’1 and & 8‘

gives
0CFM «
SR = ﬁ Z Zn(l zn)[yc(l - yc) E WUme
n—l,.*c m=1
M
— (1~) Y, Wmnltm(d ~ Ym)wLmyr (1 — yr)yk (B.159)
m=1
Similarly
8CFM o < 0zp Oyn . Oz, Oy
— — TP L B .160
dor N-=-1 n___zl:# dy, 801, = By, Do, (B.160)
Substituting B.46 for —L and —l¢- and equations B.137 and B.141 for —l > and 93'* gives
8CFM -
dor Z (1 = zn)[ye(1 — ve) Z Wme
n Inge m=1
M
— (1=) Y, Wnn)ym(= ¥m)wrmyr (L - yr) (B.161)
m=1

Thus, if n = Caf/(N — 1) where C is a-constant, the update equation for a weight linking node M

to an incorrect classification node N, wpy is

B-22

Wiy = wyy —mev(L-an)yn(L—on)une (B.162)

and the update equation for the offset of an incorrect classification node N, oy, is

of = o5 —nzn(1 = zn)yn (1 - y) (B.163)
The update rule for the weight linking node M in layer 2 to the correct node C in layer 3 is

N
Whe=wie+n Y, zn(l—z0)ve(l - yo)ym (B.164)

n=lnge

The update rule for the offset of the correct node C in layer 3 is

N
ot =05+ Z zn(1 = 20)yc(1 - yc) (B.165)

n-—-ln#c

The update equation for a weight linking node L in layer 1 to node M in layer 2, wras as

N
wiy =i+ Y, (1= z)We(l = ve)wpre = Yn(l = vn)ornlym(l —ypr)yr (B.166)

n=lnppe

while the update equation for the offset of node-M in layer 2, ops is

N
UI{ =op+n Z zn(1- zn)[yc(l = Ye)wpe — yYn(1 - Z/n)an]yM(l - yM) (B.167)
n=lnge

The update equation for a weight linking node K in layer 0 to node L in layer 1, wgy is

N M
w}t[, = w}_{[, +7 Z ?n(l - zn)[yc(l - yc) Z Wme
n=lngc m=1
M
= ¥n(1 ~ ¥n) L Wnn]Ym (1 = Y)wLmyr (1 — yL)yx (B.168)
m=1

B-23

while the update equation for the offset of node L in layer 1, o1, as

N 7 M
o"I*: = op+n Z z'n(1 - z,,)[yc(l - yc) Z Wme
n=1“*c m=1

M
- yn(l - yn) Z wmn]ym(1 - ym)wLmyL(l - yL)

m=1

B-24

(B.169)

Appendix C. Parzen Window/Radial Basis Function Relationship

C.1 Introduction

This appendix will discuss the relationship between the Radial Basis Function and Parzen
Window approach to the estimation of a probability density function from analysis of a set of data

points.

C.1.1 Density Estimation The Parzen Window estimate of a conditional probability density
function, P(Z/G;), provides a smooth estimate of the density function from a set of sample data
points by assuming that each value of the data occurring in the sample set also raises the probability
of any value occurring close to that value of the data. By centering a kernel function at each of
the data points, the final value of the estimate can be obtained by summing together all the
contributions from each value of the sample data.(8:162) That is the Parzen Window estimate has

the form

: 13 1 5—F
P(2/Gr)= 3~ ; WMWJ; (C.1)
where
K = the number of dimensions
N; = the number of data pointsin class J
h(Ny) = a function of Ny commonly referred to as the window width.
#(Z) = the kernel estimate function.

Thus, to form a Parzen Window estimate of the density function from a set of known points, a
kernel function and a window width have to be chosen. While the window width can be somewhat

arbitrary, the kernel function must fulfill several conditions.

C.1.2 Conditions For the Parzen window estimate to work, the following conditions must
hold true (7:174):

/_ : o(u)du = 1 €2
/ : 16(w)ldu < oo (©3)

Sup|é(u)| < o0 (C4)

Jim fug(u)| =0 (C.5)
Jim RE(N)=0 (C.6)
Jim_ NRE(N) =0 (C.7)
Jim NhE(N)? = 0 (C.8)

If all these conditions are met, the Parzen estimate is asymptotically unbiased and consistent at all

the continuous points:-of P(Z/Gr) (7:173-175).

G.2 Kernel Seleclion

One type of kernel function which satisfies these conditions is the gaussian radial basis function

815 - 54ll) = (2ro?h(W)]- F e~ Enms H5E) (©9)

where
o = Constant-defining the window width
h(N) = N=#* = a function of N
N = Number of data points

K = Nuamber-of dimensions.

C.8 Proofs

The proofs that the gaussian radial basis function meets the requirements for the Parzen
Window are shown below. In these proofs, the following substitutions have been made to simplify

‘the algebra. Let

" 20%h(N)

and

u = (Fg = Exn)? = (Fpn — 21)°

and thus

K
81z = 2all) = (C) F ez o)

The first condition the kernel function must meet is that

[st =

substituting the equation for the kernel provides

{oe] o0 oo o0
/ . / $(u)duy ...dug = (-7[)"15'/ / PR ol ly, ... dug
00 ~c0 a -0 —-co

which can be written as

/ / ¢(u)duy ...dug =(£)"‘§'[2/ e"“(“’)zdul]...[Z/ e~ 00x) dy)
-0 ~00 a 0 0

now from (25:640)

/oo e_a(u)zdu - :_l.\/-i
0 2 a

substituting into equation C.15 provides

(O E Gy D¥ =1

Therefore the equation C.2 is satisfied. The second equation that must be met is that

C-3

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(c.17)

/ : l6()|du < 00 (C.18)

substituting the equation for the kernel function provides

00 o0
(E)"%L/ / [e'lzfm “(“")zlldul dug < 0o (C.19)
a -0 -

Since equation C.2 is satisfied, then so is equation C.3. Equation C.4 describes the third condition

that must be met. For this condition, the supremum, or least upper bound must exist. That is

Supld(u)] < o0 (C.20)

Substituting for |#(u)|reveals

Supld(u)] = Supl(Z)~¥ e (L) (C.21)

The maximum value for |¢(u)| is unity. Therefore

Sup|é(u) =1 < 00 (C.22)

Thus, equation C.4 is satisfied. Equation C.5 describes the fourth condition that must be met. For

this condition
ull.rgo lug(u)|=0 (C.23)

Substituting the equation for the kernel, and suppressing the constant, (/a)~¥/2, provides, for

the K** dimension

. g —a(ux)?
ul_ljrgo [urd(ur)] —ulingo Juge | (C.24)
now
. - (2 Ug
ullj'nw |uke alux) I = u;{lﬂ]oo Iea(Uk)’ ' (0'25)

using L’Hopital’s rule

C-4

1
im ———
ux—00 Qauied(ux)?

=0 (C.26)

m
ux—o0 ed(ux)?

Thus, this condition is satisfied. Equation C.6 describes the fifth condition that must be met. Here,

. K —-
Jim BX(N)=0 (C.27)

must be satisfied. Substituting the equation for h(N) provides

. K _ . =.01 K
Nh_r}goh (V) _1\}1_1.20[NT] (C.28)
Simplifying the equation shows
lim hX(N)= Jim N~% =0 (C.29)
N—oo N—oo

Thus, this condition is satisfied. Equation C.7 describes the sixth condition that must be met. For

this condition,

. K —
A}x_r.rgo Nh*(N) =00 (C.30)

must be met. Substituting the equation for h(N) provides

Jim NRE(N) = Jim N(NTF)K (C.31)
This can be written as
lim NR¥(N)= lim N'% =co (C.32)
Ne=oo N—co

Thus, this condition is met. Equation C.8 describes the seventh condition that must be met. For

this condition,

. 2 _
Jim Nh(N)? = oo (C.33)

Substituting the equation for h(N) shows

Jim NA(NY?= lim N[(NF)¥ (C.34)

This can be written as

. 2_ -.02 _
A}l_!}éo Nh(N)* = IJx_{réc N(N~%) (C.35)
which can be simplified to
lim Nh(N)?= lim N =00 (C.36)
N=oo N—oo

Thus, this condition is fulfilled.

By meeting these conditions, the guassian radial basis function can be used to estimate a

conditional probability distribution from a set of sampled points. In this estimate,

Ns K (ox—zxp)?
- 1 1 _E e Fma] :
P(z/Gj) = TV—;.ZI[W][MQ%(N)] Ee Liver 3 I (C.37)
)=
now, since h(N) = N = 2 1 even for large values of N, the equation becomes
1 N, K _[EK (2 =x)’]
P(2/Gj) = N—;E(%o{‘})" om0 (C.38)
i=1

C-6

Appendix D. Kernel Classifier Network Training Algorithms

D.1 Iniroduction
In this section, the training algorithms for a radial basis function network will be derived.

Consider the feedforward artificial neural network as shown in figure 3.7 with the following

parameters:.
Layer 0 - input layer with K possible nodes
Layer 1 - hidden layer with_L possible nodes
Layer 2 - output layer with M possible nodes
Let the weights between layers be defined as follows:
wy -weight linking node % in layer 0 to node [in layer 1.
wim -weight linking node ! in layer 1 to node m in layer 2.
Let the transfer function for the nodes in each layer be as follows:
Layer 0 - y, = 3 = identity function
Layer 1-y = e"[Zfﬂ (_SL;-—:’*“)_Q] = gaussian radial basis-function
Layer 2 - yp, = E{;l Wiy = linear function

Thus the parameters of weights wz, and s, and the-spreads o will characterize the network.

D.2 Incremental MSE Minimizalion

One method of determining these network parameters-is to use the method of incremental

backpropagation according to the MSE objective-function defined here as

13)
MSE= =23 (ym = dm) (D.1)

m=1

A network developed using the MSE objective function seeks to have a minimum error over
all patterns with respect to the network parameters. The incremental update equations for the

network parameters are defined as

OMSE
Owrm

+ -
Wy = Wpp — N

and

D-1

and

OMSE
dwgy

-
Wgr =Wk —"

OMSE
dokr,

+ —_ -
OkrL =O0kr 1"

(D.3)

(D4)

Here n is a constant which controls the rate of update. Let’s first minimize the error with

respect to a specific weight, say wraz, linking node L in the hidden layer to node M in the output

layer.

or

therefore

but

thus

therefore

If n = 2C//M where C is a constant, the training rule for this weight is

OMSE a

dwry ~ dwpym oy’

OMSE 1%’:)

aw[,M = Hm:l awLM'(

OMSE _ 2 N
Bupar =~ MM dM)awLM

L

UM = EwIMyI
1=1

oym
dwrpy —

OMSE_ 2.
'awLM—MyM ML

D-2

1 M
[’A_,I E(ym = dm)2]

Ym — dm)2

(D.5)

(D.6)

(D.7)

(D.8)

(D.9)

(D.10)

wiy = wip — 1(ym — dar)ye

(D.11)

Now, let’s minimize the error with respect to the weight, or center, of radial basis function L in

layer 1 providing the link to node K in layer 0, wgp.

or

thus

but

therefore

or

but

OMSE 8 1 ¥ R
Fons —'awKL['M-';(ym — dm)’]

K (xp—wpp)?
_e_lzmx zu‘:ﬁ)

YL

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

_[E'\-l sy =wy1)?] [(SA—"KL)’]

yL k=t3ely kL (D.19)
therefore
Ch =W _pleg -)2
yL = [Eka.l Lka;au‘)_] a [LK;#—] (D.20)
duwkr, dwkL®
Simplifying
oy _ '[Zu 12“;—.5“‘4‘1 4 .[_(zx—wa)2] (D.21)
Swky, dwyr 20’?{[’)
or
oyr T — WKL
Swgr, =y1,(ok,) (D.22)
Combining equations D.14, D.17, and D.22igives
OMSE 2 (ex —wkL)
o Ym — A)WLmyL ~————= D.23)
oL M:;_l(,. o S (

If n = 2C/M where C is a constant, the update equation for the centers of the radial basis functions,
or weights linking the input layer, layer 0, nodes to-the hidden layer, layer 1, nodes, can be written

as

M
w}-'éL =Wgp =N Z (Ym — dm)wLmyr

m=1

(zx — UJKL) (D.24)

Now let’s minimize the error with respect to the spread of the L*» radial basis function in the

direction of the J*# node in the input layer, layer 0, oxz.

oM SE
OokL 301{1,

[— Z(ym —dw)] (D.25)

m=1

704[‘

(¥m = dm)2 (D.26).

or

M
IMSE _ 2 8ym
Song = M rr%:l(ym)G (D.27)
but
L
Ym =) Wil (D.28)
=1
therefore
OYm oy
— = D.29
Gokr 17 Yok (D-29)
This expands to
OYm dyL -
but
_ K (:k—u“)°
yp=e [E"':‘ 2L ! (D.31)
or
_ K~3 (:k—wkl)a g —w)2
yL=e¢e s ks, le [_b;{'?'—] (D.32)
therefore
- Ke=1 (2} =-wpp)? _glzg=wy)2
Oy _ s S50 - (D.33)
doxr Jdogr
‘Simplifying
g _ -, SR 9 (o —wkr)?
doxr ¢ e Sokl 2‘7?(11] (D-34)
or

D-5

dyr _ (zx —wkr)?
doxr * oy (D-35)
Combining D.27, D.30, and D.35 gives
OMSE _ 2. (zx = wm)2

Letting n = 2C/M where C is a constant, the incremental training rule can now be defined as

M 2
- T —-W
U}L SOgL—" Z(.‘/m - dm)wLmyL‘(—!—{';gK—;—m")— (D.37)

m=]

D.8 Incremenial Average Update

In this section, the-update rule for keeping the centers, or weights, of the radial basis functions
at the average of the patterns within their assigned class will be derived. Let w;(t) be the previous

average of the N pattern vectors in the cluster at time ¢. Then

N
1
Tt =+) En (D.38)
n=1
Similarly
N1
Tt +)= 5 + T Z Zn (D.39)
This can be written as
L
‘lf)}(t + 1) = ——(T, + 5N+1) (D.40)
N + 1 n=1
Which in turn can be written as
1 NYN oz,
Wt +1) = 7 +7_(z}'v,f’ + En41) (D.41)
This reduces to
D-6

s e

T

S AAmY Sl !

Wt +1)= T[N OI(t) + Znv41)

N + 1
‘Further simplifying

)w‘(t) 4 oA xN-I-l

ot +1)=(1-)

N+1

This reduces to

N1 — Bkt

Bt +1) = dt) +

D.4 -Global MSE Minimizalion

(D.42)

(D.43)

(D.44)

TIn this section, the technique of globally minimizing the MSE objective function throuy™ the

use of a matrix inversion will be established (23). Define the total error due to all input training

patterns, P, as

1 P M
MSE:-Z-ZZ Ypm = dpm)?
p=1m=1

(D.45)

where dpy, is the desired value for the m*® output node due to the pt* pattern and y,n, is the actual
p p

value for the m** output node due to the p** pattern. This error must be minimized with respect

to the-weights connecting a particular node, say node B,.in the hidden layer, to a particular node,

say-node D, in the output layer. That is, the error can be minimized by setting

OMSE _
dwpp
but
OMSE
Swpp 3wBD[PZI mz_:l(ypm - dpm)]
or

dwpp

P
OMSE _ > Bypp
- p=1 D~ dpb)aw BD

D-7

(D.46)

(D.47)

(D.48)

but

L
Ypp = Z WD Ypl (D.49)
=1
therefore
8be -
3U)BD 3w3D (Z wIDypI) (D.50)
or
3be _
dwpp PP (D.51)
thus
OMSE
-d D.52
dwap Z (YD — dpD)ypB (D.52)
Now, substituting for y,p, provides
OMSE u &
dwsp }2(; wipYpl — dpD)YpB (D.53)
or
IMSE P
Sw = Z Z WD YptYpB — E dyDYpB (D.54)
BD p=1I=1 p=1

Setting the equation to zero to minimize the crror gives

P L
Z Z WIDYplYpB = Z dppYpB (D.55)

p=11=1

Now, let’s-define a new variable

Mm’:“z Yo1YpB (D.56)
p=1
A

D-8

Here, ypi is the output-of the I'* radial basis function node, where 1 <1 < L, due to the p® pattern
and ypp is-the output of the B** radial basis function due to the p** pattern. This allows the

following equation to be written:

L P
Y wipMip = dppypn (D.57)
=1 =1

Now, the MSE can be minimized by ensuring the M SE /8wy, = 0 for all weights. Define a weight

matrix W as an L by M matrix as

w1 W2 ... WM
W1 W22 ... Wapm
W=) }) i (D.58)

WLy WLz ... WM

Minimizing the MSE is the same as making IM SE/3W = 0 for all weights. That is, the error is
minimized by setting the M SE /8wy, = 0 for each weight in the weight matrix. But, from above,
for a given-weight wpp, the DM SE/dwpp = 0 when

L P
Y wipMip =Y dppypp (D.59)
1= p=1

This equation states that the derivative of the error with respect to a weight linking the B*» node
radial basis function in the hidden layer to the D** node in the output layer is minimized when the
sum of all the-weights in the hidden layer, multiplied by the summation of the product of the radial
basis function outputs and the B*» radial basis function output, summed over all patterns, is equal
summation of the product of the desired-output of the D*» output node and the B** radial basis
function summed over all patterns. For example, when B = 1,D = 1, M SE/0w;; = 0 implies
that

L P
eruMu = Z dp1Yp (D.60)
=1 p=1
which-expands to
wnMuy + wa Moy + ...+ wpiMpy = dyyn +daya + ...+ dpiyer (D.61)

D-9

Also, when B = 1, D-= 2, then 8M SE/dwy» = 0 implies that

L P .
D wpMi = dpyp (D.62)
1=1 r=1
which expands to
wigMuy + woe Moy ...+ wraMpy = dygy + dosyor + ...+ dp2ypy (D.63)

Finally, when B = 1,D = 2, then M SE/8w,; = 0 implies that

L P
Y wnMn = dpype (D.64)
=1 p=1
which expands to
win Mg+ way Moz + ...+ wpiMpo = dyyyio + dayyea + ...+ dpryp2 (D.65)

and so forth- for each of the weights connection nodes in the hidden layer to nodes in the output

layer. This gives a set of L*M equations with L*M unknown weights which can be written as

MTW =Y7Ts (D.686)

Here M is an-L by L matrix containing the summation, over all patterns, of the product of each
radial basis function output, for a given input pattern and the-B** radial basis function output for
that pattern. That is

My Mg ... My
| Mo Mo Mo (D.67)
My Mp ... Mpp

~P
where Mip = 3,1 Ypi¥pB

Also, W is an L by M matrix containing the weights linking.the nodes in the hidden layer to an
nodes in the output layer. That is

D-10

W W2 ... UM

Wy W22 ... WM
w=| (D.68)
wrr w2 ... WLM

where wpp is the weight linking the B** node in the hidden layer to the D'* node in the output
layer. Here, Y is a P by L matrix containing the outputs for each of the L radial basis functions
for all P patterns. That is

yii Y2 ... YL
Y21 Y22 ... Yor

Y=]] . i (D.69)
ypr YP2 ... YPL

Finally S is a P by M matrix containing the desired outputs for each of the M output nodes for all
P patterns. That is

dyy diz ... dipr -
{ dax de2 ... d
s=1| =+ 2 (D.70)
dpy dp2 ... dpm
Thus, the weights which minimize the MSE can be found by using the following equation:
W= (MT)"yTs (D.71)

Now, the optimized weight wpp can-be found as:

(D.72)

wpp = N(YTS)BD

Now
P P P
2p=1Yp1dp1 2;;:1 Yprdp2 ... Zp:l Yp1dpM
P P P
vTs = 2,;:1 Ypadpt Yooy Up2dp2 .. 2,,=1 Yp2dpM
P P P
2p=1 YpLdp1 Zp=1 Yprdpz ... Zp:l YpLdpM
therefore:
L P
whp = Y () vpidpp) N1
=1 p=1

(D.73)

(D.74)

(D.75)

This method only works for matrices that do not become singular or near-singular, which can

happen if ‘the exemplar data points used to center the radial basis functions contain redundant

information. If they do, the Singular Valued Decomposition of the matrix may be used. Conversely,

the os of the offending nodes may be adjusted to eliminate the redundancy.

D-12

Appendix E. Tables for Data Analysis

E.1 Introduction

This appendix contains the data obtained from the neural network testing, discussed in Chap-
ter 4, for the communications data and the radar signal data. This appendix begins with the com-
pilation of the data for the Kernel Classifier and Hyperplane Classifier networks implemented to
categorize the communications data. This is followed by a compilation of the data for the Kernel

Classifiers used to categorize the radar data.

E.2 Communicalions Signal Characterization

This data consisted of 202, 50-dimensional pattern vectors. These pattern vectors represented
either a direct sequence or a linear-stepped frequency-hopped digital communications signal. Both

Hyperplane and Kernel Classifier networks were developed to categorize this data.

E.2.1 Hyperplane Classifiers The topology for the sigmoidal-based Hyperplane Classifier
networks implemented for this problem is shown in figure 3.3. The network parameters, being the

weights and the offsets, were set using the backpropagation algorithms developed in Chapter 3.

E.2.1.1 MSE Algorithm Table E.1 shows-the categorization performance for ten Hy-
perplane Classifier networks whose parameters were trained using the incremental backpropagation
algorithm according to the MSE objective function. The data seed matched the run number and
51 training vectors were loaded for each class. The weight seed and sigma seed were both zero and
the record seed was one. The network had 50 nodes in layer 0, 18 nodes in layer 1, ten nodes in

layer 2 and two nodes in layer 3. Each of the nodes was assigned the sigmoidal transfer function.

E.2.1.2 CE Algorithm Table E.2 shows the categorization performance for ten net-
works whose parameters were trained using the incremental backpropagation algorithm according
to the CE objective function. The data seed matched the run number and 51 training vectors were
loaded for each class. The weight seed and sigma seed were both zero and the record seed was one.
The network had 50 nodes-in layer 0, 18 nodes in layer 1, ten nodes in layer 2 and two nodes in

the layer 3. Each node was assigned the sigmoidal transfer function.

E.2.1.3 CFM Algorithm Table E.3 shows the categorization performance for ten Hy-
perplane Classifier networks whose parameters were trained using the incremental backpropagation

algorithm according to the CFM objective function. The data seed matched the run number and

E-1

Table B.1, MSE Network Performance
Iterations Run 1 Run 2 Run 3 Run 4 Run s Run'@ Run T [-Runs Run 9 Run 10 Avg Std
Fecret FKeret Yocrect Ycret Kerct HReret Reret Yecrct Reret Reret Reeet Fecret
1000 0.00 0.00 3.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 1.18
2000 4.90 0.00 3.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08 217
3000 2.94 1.96 T.84 0.00 0.98 0.00 2.90 0.00 0.00 2.90 1.93 2.32
4000 T.84 0.00 7.84 0.00 S.88 1.96 4.90 2.90 0.00 2.00 3.33 2.98
5000 9.80 4.90 7.84 .88 3.92 0.00 8.90 1.00 2.00 0.00 4.12 3.18
€000 8.42 18.63 9.80 23.83 5.88 15.67 6.90 4.90 23.50 0.00 11.7¢ 7.7
7000 12.78 39.22 19.61 43.14 .84 23.83 19.60 6.90 44.10 7.80 22.435 14.00
8000 19.61 50.98 35.30 66.67 24.51 50.98 30.40 10.80 49.00 44,10 38.24 16.2%
9000 37.28 63,73 82,94 72.35 33.30 58.80 47.10 28.40 62.70 $3.00 30.98 13.64
10000 55.88 6.7 58.82 $2.37 60.78 16.47 57.40 435.00 75.50 63.70 63.91- 10435
11000 60.78 €6.67 73.53 8401 €4.71 71,87 69.60 55.90 84.30 T2.50 70.39 8.67
12000 70.5% 80.39 T8.43 84.31 75.49 40.39 80.40 71.60 88.20 80.40 719.02 3.09
13000 £3.33 83.33 TT.48 73.83 81.37 90.30 47,30 75.50 85.20 82.40 81.96 4.94
14000 $5.29 1743 76.47 $35.29 93.14 90.20 82.40 95.10 86.30 85.40 .82
13000 84.31 84,31 86.27 80.39 100.00 92.23 86.20 94.10 $3.30 87.74 5.61
16000 83.3 89.22 88.24 73.83 100.00 94.10 91.20 94.10 89.20 49.22 6.7t
17000 86,27 86,27 87.28 $3.33 100.00 96.10 92.20 93.10 93.10 90.19 $.23
18000 89.22 88.24 89.22 83.33 100.00 99.00 93.10 95.10 83.30 91,27 38.21
19000 90.20 90.20 84.31 87.25 100.00 97.10 96.10 98.00 94.10 93.04 4.78
20000 91.18 94,12 90.20 47.28 100.00 99.00 95.10 96.10 98.00 9441 3.87
21000 88,29 97.06 78.43 $5.29 100.00 97.10 97.10 97.10 100.00 923.74 T.38
22000 93.14 96.08 91.18 90.20 100.00 99.00 25.10 94.10 100.00 95.88 3.38
23000 100.00 97.06 87.28 80,39 100.00 99.00 98.00 #3.10 100.00 95.48 6.36
24000 100.00 99.02 88.23 48,27 100.00 99.00 $7.10 $9.00 100.00 96,86 4.90
25000 100,00 99.02 81.37 82,35 100.00 100.00 97,10 90.20 100.00 98.00- 117
26000 100.00 99.02 91.18 82,33 100.00 100.00 -| 98.00 97.10 100.00 96.77 5.46
27000 100.00 99.02 97.06 78.43 100.00 100.09 -| 96.10 93.00 100.00 96.80 6.29
28000 100.00 97.06 97.06 82,33 100.00 100.00 | 96.20 926.10 100.00 96.88 811
29000 100.00 99.02 94.12 86.30 100.00 100.00 98.00 92.20 100.00 96.96 4.43
30000 100.00 100.00 94.12 - 100.00 88.30 100.00 100.00 99.00 92.20 100.00 97.16 . 4.81
‘Test)
R cret- 86.00 76.00 66.00 _86.00 79.00 78.00 $8.00 77.00 79.00 84.00 79.70 5.92
- Table E.2. CE Network Performance
Iteration Run 1 Run 2 Run 3 Run 4 Run § Run ¢ Run 7 Run 8 Run 9 Run 10 Average Std
Yecret Focret Ycret Yocret Heret Recrect Ycrct Keret Ycret Feret Fecret Yecret
1000 0.00 6.86 0.00 2.94 0.00 0.00 5.38 8.82 0.00 0.00 2.45 3.29
2000 19.61 25.49 31.37 20.59 18.63 16.67 27.45 _ 11,76 40.20 9.80 22.1¢ 8.73
3000 52,94 54.90 €3.73 4412 7647 39.22 54.90 5294 47,06 85.88 54.22 9,85
4000 95.10 73.83 46.08 83.33 90.20 40.20 78.43 - 74,81 €0.78 69.61 71.18 16.89
5000 95.10 91.18 57.84 96.08 91.18 87.84 89.22 80.39 75.49 81.37 81.57 13.42
6000 95.10 84.31 91.18 90.20 97.06 67.638 90.20 79.41 89.22 95.10 87.94 8.40
7000 99.02 $8.24 91.18 92.16 96.08 79.41 92.1¢ 100.00 84.31 100.00 92.25 6.82
8000 99.02 97.08 $7.06 89.22 | 93.14 79.42 99.02 100.00 23.14 100.00 94.72 6.11
9000 98.04 96.08 100.00 97.06 100.00 94.12 100.00 100.00 96.08 100.00 08.14 2.08
10000 99.02 99.02 100.00 96.08 100.00 $9.02 100.00 100.00 83.33 100.00 97.65 4.91
11000 100.00 100.00 100.00 98.04 100.00 100.00 100.00 100.00 96.08 100.00 99.41 1.26
12000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 T78.41 100.00 97.84 6.48
13C00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 92.16 100.00 99.22 2.38
14000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 91.18 100.00 99.12 2.65
18000 100.00 100.00 100.00 100.00 100.00 |- 100.00 100.00 100.00 98,04 100.00 99.80 0.59
16000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95,10 100.00 99.51 1.47
17000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 92.16 100.00 99.22 2.35
18000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.10 100.00 99.51 1.47
19000 100.00 100.00 100,00 100.00 100.00 100.00 100.00 100.00 98.04 100.00 99.80 0.59
20000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.06 100.00 99.71 0.88
21000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.02 100.00 99.90 0.29
22000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 94.12 100.00 99.41 1.76
23000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 94.12 100.00 99.41 1.76
24000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 |.100.00 97.06 100.00 99.7% 0.88
25000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.02 100.00 99.90 0.29
26000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.02 100.00 99.90 0.29
27000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.02 100.00 99.90 0.29
28000 100.00 100,00 | -100.00 “100.00 100.00 100 00 10000 - 30000 100 00 100.00 100.00 o000
29000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0,00
30000 100.00 100.00 100 00 100.00 100 00 100 00 100 00 100.00 100 00 100.00 100 00 0.00
Test
% Cret 77 00 71.00 35.00 80 00 83.00 88 00 83,00 78.00 85.00 82.00 81.20 4 64

E-2

L

S s

Table E.3. CFM Network Performance

iterations Ran 1 Run 2 Run 3 Run 4 Run 3 Run 6 Run 7 Run's Run 9 Run 10 Avg Sta

Keret Reret Rerct %cret %erct %erct Rerel Keret Fcret Keret Yecret | %Reret

1000 0.00 0.00 0.00 0.00 Q.00 0.00 0.00 0.00 .00 0.00 0.00

2000 6.88 37.28 38.24 33.33 0.00 12.78 15.69 0.00 0.00 14.41 18.30

3000 b S 45,10 44.12 43.14 0.00 40.20 16.67 1.96 16.67 24.22 16.59

4000 11.7¢ 49.02 49.02 47.08 21.87 37,28 34.31 17.65 6.86 29.22 18.24

3000 31.37 80.98 82,94 48.04 41.18 36.27 36.27 31.37 28.43 39.02 8.3¢

6000 84.90 50.98 53.92 49.02 48.04 442 37.28 37.28 37.23 45.59 .48

7000 61.76 48.04 50.00 51.96 49.02 39.22 39.22 49.02 38.24 46.98 6.88

8000 68.83 46.08 36.27 82.94 50.98 44.12 48,04 62.78 46.08 80.49 8.8

2000 T4.52 29.41 46.08 44,12 $0.00 54.91 66.67 46.08 51.86 12.3

10000 78,43 36.27 41.18 84.90 53.92 53.88 T4.51 30.00 86.76 13.26

11000 79.41 82,94 82.94 30.82 55.88 52.94 TT.48 56.86 62.94 13.09

13000 $1.31 59.80 82,94 38.82 54.90 53.92 76.43 58.82 64.31 10.86

13000 43.33 62.78 54.90 €3.72 58.88 62,75 81.37 57.84 66.96 10.04

14000 83,33 63.73 30.00 €5.69 55.88 70.59 82,335 34.90 68.14 |- 11.67

15000 43.29 64.71 $0.98 64.71 56.86 76,47 87.23 60.78 71.08 12,56

- 16000 43.33 71.87 38.82 67.65 $C.88 79.41 $5.29 64.71 73.24 | 105
17000 84,31 70.59 81.76 €9.61 87.84 $3.33 8725 | 6471 74.90 10.78

18000 83.29 T6.47 €3.69 67.638 57.84 83.33 87.28 63.69 75.88 | 10.36

19000 $5.29 90.20 72.88 71.87 $6.86 83.38 88.24 63.73 78.73 1122

20000 86.27 79.41 7451 .87 57.84 ., 83.33 88.24 7647 | 719.61 9.48

21000 $7.23 81.37 75.49 72,88 58.82 87.28 86.27 89.22 77.43 80.69 9.39

22000 87.28 83.33 79.41 72.88 58.82 88.24 $9.22 $9.22 80.39 81.96 9.43

" 23000 87.28 4.0 81.37 T4.81 58.82 88.24 90.20 89.22 85.29 82.92 9.23
24000 87.28 86.37 47.2% 73.53 49.02 88.24 91,18 89.32 83.37 82.45 12.21-

- 25000 4128 45.29 90.20 73.53 $3.92 88.24 91.18 89.22 85.29 83.53 11.01
26000 87.28 83.29 -l 89.22 74,81 $2.94 88.24 ?1.18 89.22 90.20 83.92 11.32

27000 87,28 86.27 89.22 74.51 $4.90 88.24 921.18 89.22 90.30 | 84,22 | 10.80

- 28000 $7.25 43.33 91.18 74.82 31.96 88.24 91.18 89.22 91.17 | 84.51 12.23
29000 87.28 $3.33 29.22 74.51 52,94 88.24 91.18 49.22 90.20 83.73 11.32

30000 81.25 4627 92.16 74,51 55.88 88.24 91.18 49.223 93.14 84.90 |- 10.89

31000 87.2% 86.27 92.1¢ 74.51 64.713 88.24 91.18 $9.22 93.14 $5.79 8.63

32000 47,25 87.28 93.14 74.51 68.63 88.24 91.18 $9.22 93.14 $6.37 7.79

33000 §7.28 87.28 92.1¢ 74.51 72.85 88.24 91.18 | 89.22 92.16 86.57 .77

_ 34000 87.3% 87.28 92.1¢ 74.51 73.53 88.24 91.18 49.22 93.14 86.77 6.65
35000 87.28 89,22 94.12 74.51 78.43 $8.24 91,18 89.23 92,18 86.57 6.77

36000 87.2% 90.20 91.18 92.1¢ 74.51 81.37 88.24 91.18 89,22 93.14 87.85 5.48

37000 87.25 89.22 91.18 93.14 74.51 82,35 88.24 91.18 89.22 93.14 87.94 8.39

38000 87.25 90.20 91.18 2334 74.51 83.33 88.24 91.18 89.22 93.14 88.14 5.33

39000 87.28 90.20 89.22 94.12 74.51 83.33 88.24 91.18 89.22 93.14 88.04 8.38

40000 87.28 91.18 50.20 94.12 T74.51 79.41 88.24 91.18 89.22 93.14 87.85 .89

41000 87.2% 90.20 91.18 94.12 74,51 85.29 88.24 91.18 89.22 93.14 88.43 5.28-

42000 87.28 91.18 91.18 94.12 74.52 85.29 88.24 91.18 89.22 93.14 88.53 8,32

~ 43000 87.28 90.20 91.18 94.12 74.3% 88.29 88.24 91.18 89.22 93.14 88.43 $.28
44000 87.25 91.18 91.18 94.12 T4.81 86.37 88.24 91.18 89.23 93.14 88.63 8.37-

415000 87.28 92.16 91.18 94.12 74.51 46.37 88.24 91.18 89.22 93.14 _ 8873 | s5.32

- 46000 87,28 92.16 91.18 94.12 74.52 86.27 88.24 91.18 89.22 93.14 88.73 5.32
47000 87.28 92.36 92.16 94.12 74.31 86.27 88.24 91.18 89.22 93.14 88.83 5.37

48000 87.28 93.16 92.16 94.12 74.51 86.27 88.24 91.18 89.22 923.14 88.83 5.37

49000 87.25 92.16 92.18 94.12 74,51 86.27 88.24 91.18 89.22 93.14 38.83 8.37

50000 87,28 92.16 92,16 94.12 74.81 86.27 88 24 91.18 89.22 |- 93.14 $8.83 . 8.37

Test
- % cret 37.00 74 00 77.00 74 00 62.00 72 00 71.00 82 00 80 00 83 00 73 20 7.93

E-3

51 training vectors were loaded for each class. The weight seed and sigma seed were both zero and
the record seed was one. The network had 50 nodes in layer 0, 18 nodes in layer 1, ten nodes in

layer 2 and-two-nodes in layer 3. Each node-was assigned the sigmoidal transfer-function.

E.2.2 Kernel Classifiers The topology for the radial basis function Kernel Classifier net-
works implemented for this problem is shown in figure 3.7 The network parameters, being the

weights and the spreads, were set using the algorithms developed in Chapter 3.

E.2.2.1 Nodes at Data Points Tables E.4 and E.5 show the training and test catego-
rization performance for a Kernel Classifier network-with a variable number of hidden layer, layer

1, nodes. The weights for these nodes were established using the Nodes at Data Points algorithm.

Table E.4. Nodes at Data Points Training Performance vs Nodes

Nodes Run 0 Run 1 Run 2 Run 3 Run 4 Run & Run 6 Run 7 Run's Run 9 Avg Std
- Pecret Fecrct Yecret Yecrct Keret Yecret 1- Yecret Reret Reret Fcret Fcret Ycret
102 100.00 100.00 100.00 100,00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
90 100.00 99.02 99.02 99.02 99.02 100.00 100.00 100.00 98.04 98.04 99.22 | 0.3
80 99.02 99.02 97.06 97.06 $9.02 99.02 99.02 100.00 98.04 98.04 98.53 0.90
70 94.12 97.06 96.08 96.08 95.10 98.04- 97.06 100.00 97.06 97.06 26.77 1.52
60 95.10 97.06 97.06 98.10 93.14 94.12 $1.17 99.02 96.08 96.08 95.39 211
50 93.14 97.06 935.10 935.10 93.14 92.16 $9.22 97.06 96.08 90.20 93.83 | 2.89
40 87.25 97.06 91.18 $8.24 88.24 89.22 | 83.33 82.16 21.18 90.20 $8.81 .98
30 T 84,31 94.12 91.18 $4.31 89.22 85.29 15.49 92.1¢6 8. 24 3.3 | 8677 5.14
20 79.41 $9.22 88.29 73.83 84,31 74.51 T1.46 88.24 $3.33 79.41 80.87 5.90
10 65.59 T3.53 63.73 68.63 75.49 60.78 | 62.18 76.43 72.85 58.82 68.03- 6.3¢
0 50.00 $0.00 $0.00 30.00 30.00 30.00 ‘| &0.00 $0.00 $0.00 3$0.00 30.00 - 0.00

Table E.5. Nodes at Data Points Test Performance vs Nodes
Nodes Runo Run 1 Run 2 Run 3 Run 4 | RunS Run 6 Run 7 Run & Run 9 Avg - Std

_Yecret Yecret Scret Focrct Yecret, i~ Ficret Fcret Frerct Fctct Yocrct Yecrct | Ferct
102 85,00 81.00 77.00 87.00 83.00- 92,00 49,00 85.00 86.00 84.00 84.90 3.94
90 84.00 82.00 77.00 78.00 84.00 92.00 | $5.00 435.00 84.00 83.00 83.40 3.90
80 83.00 76.00 74.00 80.00 82,40 92.00 84,00 85.00 $4.00 86.00 82.60 4.84
70 82.00 75.00 77.00 82.00 79.00 86.00 83.00 84.00 45.00 79.00 81.20 3.40
60 84.00 | 73.00 75.00 76.00 78.00 87.00 78.00 83.00 $0.00 81.00 19.40 4.22
30 87,00 71.00 75.00 79.00 79.00 85.00 75.00 80.00 79.00 75.00 78.80 4.39
40 78.00 75.00 73.00 81.00 75.00 87.00 76.00 76.00 83.00 76.00 78.00 4.12
30 78.00 71.00 69.00 73.00 71.00 90.00 63.00 79.00 43.00 74,00 75.30 7.52
20 75.00 71.00 68.00 66.00 65.00 74.00 60.00 74.00 80.00 72.00 70.50 8.82
10 €0.00 62,00 $9.00 38.00 60.00 64.00 51,00 59.00 59.00 64.00 59.60 3.50
0 80 00 80 00 $0 00 $0.00 50.00 50.00 §0.00 30.00 §0.00 30.00 50.00 0.00

For the software parameters, the output threshold was set to one, the sigma threshold was
set to four. The training rule for the sigma was the Scale Sigma According to Class Interference
with interference threshold of .4. The data seed was zero and 51 training vectors weré loaded for
each class. The number of nodes in layer 0 was 50, while the number of nodes in layer 1 is shown
in the table and the number of nodes in layer 2 was-two. The transfer function for the nodes in
layer 1 was gaussian while the transfer function for the nodes in layer 2 was linear. The weights

linking layer 1 nodes to layer 2 were set via global 1ninimization of the MSE.

E-4

E.2.2.2 Kohonen Training Tables E.6 and E.7 show the training and test categoriza-
tion performance of Kernel Classifier networks with the layer 1 weights trained using the Kohonen
Training algorithm with the RBF spreads set using the P-Nearest Neighbor algorithm and P held

constant at six.

Table E.6. Kohonen Training Performance vs Nodes with Six P-Neighbors

[Nodes | P | Runo0 | Runt | Runa | Rund | Run4 | Runs | Runé | Rua7 | Run & | Run® AVE Sid
Keret Yectet Focret Feret |- Yecret Ycret Fcret Reret Keret Foczet | Reret | %eret
100 6 | 100.00 62,35 100.00 | 100.00 96,08 79.41 96,08 91,18 100,00 93.14 93.82 7.14
&1 ¢ $9.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.04 99.71 0.63
[.1] [96.08 99.02 96.08 97.06 99.02 98.04 $9.02 99.02 100.00 95.10 97.84 .57
49 [3 95.10 94.12 94.20 95.10 96,08 96.08 93.14 94.12 96.08 95.10 94.91 0.95
36 ¢ o1.18 94.12 88.24 92.20 47,38 94.12 ?3.14 91.18 89.22 92.18 91.28 2.26
2s [} 88,24 84.31 90,20 88.24 89.22 88.24 86.29 87.25 48,24 88.24 87.83 1.53
18 8 77.48 88.24 835.30 82.35 | 84.31 83.33 80.39 83.33 86.27 88.27 83.73 2.98
. . .
Table E.7. Kohonen Test Performance vs Nodes with Six P-Neighbors
Nodes P Ruan 0 Run 1 Run 2 [-Run3 Run ¢ Run § Run6 | Run? Run s Run'9 Avg td
Ycret | %crct Yecret Fecrct Reret Yocret %cret Reret Fcrct Peret | Reret | Keret
100 6 63.00 39.00 36,00 75,00 62.00 54.00 64.00 64.00 73,00 $1.00 63,00 713
81 [74.00 65.00 76.00 79.00 82.00 $5.00 66.00 79.00 80.00 74,00 76.00 8.16
64 6 75.00 7100 | 79.00 75.00 80.00 77.00 69.00 86.00 $0.00 81.00 71.90 4.28
49 L) 80.00 71.00 76.00 79.00 73.00 86.00 77.00 76.00 82,00 74.00 77.80 4.09
s [76.00 74.00 $1,00 75.00 15.00 82.00 $3.00 $0.00 80.00 40,00 78.60 3.10
23 [80.00 69.00 £2.00 78.00 78.00 77.00 81.00 73.00 40.00 76.00 77.00 -] 3.92
16 (] 79.00 71.00 76 00 71.00- 76.00 77.00 79.00 69.00 78.00 71.00 74.70 3.61

For the software parameters, the data seed matched the run number and 51 training vectors
were loaded from each class. The number-of nodes in layer 0 was 50, while the number of nodes-in
layer 1 is shown in the table and the number of nodes in layer 2 was two. The transfer function
for the nodes in layer 1 was-gaussian while the transfer function for the nodes in layer 2 was linear.
The weights linking layer 1 nodes to the layer 2-nodes were set using the global MSE minimization

algorithm,

Tables E.8 and E.9 show the categorization performance of Kernel Classifier networks with-
the layer 1 weights trained using the Kohonen Training algorithm. Here the spreads of the RBFs
were set using the P-Nearest Neighbors algorithm with P allowed to vary as the square root of the

number of Kohonen nodes.

Table E.8. Kohonen Training-Performance vs Nodes with Variable P-Neighbors

[Nodes Run O Run1 Run 2 Run 3 Run 4 Run 8 Rux 6 Run 7 Run 8 Run 9 Avg Std
Focret Yecret Scret Pocret Yecset Yecret Yecret Yecrct Secret Yeczct Yoecret Yecrect
100 10 100.00 99.02 61.76 © 97.06 -| 94.12 100.00 100.00 83.33 94.12 90.02 9194 11.27
81 9 99.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.90 0.29
(4] e 2¢.08 22,02 2¢.08 o8.0¢ 29.02 27.0C 20,04 29.02 *200.00 2¢.08 27.04 ;42
419 7 95.10 95.10 93.14 95.10 96.08 97.06 91.18 94132 96.08 25,10 94.81 1.58
36 6 91.18 24.12 -88.24 92.16 87.25 94.12 $3.14 91.18 89.22 92.16 91.28 2.26
25 S 88.24 83.33 89.22 86.27 £89.22 88.24 86.29 88.24 88.24 88.24 87.5% 1.70
36 4 77 48 87 25 84 31 81 37 84 31 81 37 80 39 83 33 88 24 87 28 83 53 328 -

E-5

Table E.9. Kohonen Test Performance vs Nodes with Variable P-Neighbors

Nodes P Run O Run-1 Run 2 Run 3 Rus 4 Run s Run ¢ Run 7 Fun 8 Run 9 Avg Std

Retct Herct Rerey Reret Heret Rerct Ferer Rerct Rerct Reret Feret | Reret
2100 10 75.00 66.00 60.00 36.00 56.00 61.00 58.00 $6.00 46.00 83.00 58.70 7.36
L33 ° 40.00 65.00 73.00 78.00 77.00 73.00 $4.00 77.00 82.00 77.00 76.50 S.16
64 [3 79.00 76.00 1700 71.00 79.00 79.00 $3.00 90.00 41.00 81,00 $0.20 3.84
49 T 40.00 | 72.00 79.00 $0.00 74.00 47.00 79.00 11.00 $2.00 77.00 T8.70 3.95
38 [746.00 74.00 $1.00 75.00 75.00 83.00 $3.00 | 80.00 40,00 80.00 | 78.60 3.10
23 L] 40.00 66.00 80.00 |- 78.00 78.00 77.00 81.00 t2.00 $1.00 76.00 78,80 4.02
16 4 78.00 71,00 17.00 72.00 76.00 78.00 79.00 €9.00 76.00 73.00 74.90 3.24

For the software parameters, the data seed matched the run number and 51 training vectors
were loaded from each class. The number of nodes in layer 0 was 50, while the number of nodes in
layer 1 is shown in the table and the number of nodes in layer 2 was two. The transfer function
for the nodes in layer 1 was gaussian while the transfer function for the nodes in layer 2 was linear.
The weights linking layer 1 nodes to the layer 2 nodes were set using the global MSE-minimization

algorithm.

AR}

E.2.2.3 K-Means Clustering Tables E.10 and- E.11 show the categorization perfor-
mance of a Kernel Classifier with the hidden layer, layer 1, weights trained via the K-Means

Clustering Algorithm as-the number of nodes increased.

Table B.10. K-Means Training Performance vs Nodes with Six P-Neighbors

Nodes Run 0 Run 1 Run 2 Run 3 Run 4 Run's Rua 6 Run 7 Run s Run 9 Avg Sid
Yeret Socset Secret Yhcret Yecret Yecret KReret Hczet Yocret Yecret Reret | Keret
100 100.00 100.00 100.00 100.00 99,02 100.00 100.00 100.00 100.00 100.00 99.90 0.29
90 100.00 99.02 100.C0 100.00 98.04 98.04 100.00 100.00 99.02 100.00 99.41 0.78
80 97.06 99.02 95.10 98,04 27.06 98.04 100.00 100.00 97,06 $9.02 98.33 1.82
70 94.12 99.02 92.16 96.08 25.10 98.04 100.00 100.00 96.08 98.04 97.16 2.30
60 92.16 98.04 92.16 95.10 95,10 | 97.06 96.08 97.06 97.06 94.12 95.59 1.7t
80 94.12 $8.04 94.18 95.30 94.13 94.12 93.14 95.10 94.22 91.18 94.13 1.15
40 91.18 96.08 88.24 93.14 94.12 94.13 94,12 93.14 93.14 90.30 93.04 - 2.12
30 87,25 92.16 87.28 89.22 92.16 90.20 49,22 91.20 88.24 89.22 90.01 1.57
20 86,27 84.31 84.31 86.27 88.24 84.31 T6.47 88.24 84,21 83.33 84.70 3.23
10 70.59 77.43 77.45 84.31 80.39 79.41 77.45 84.31 72.85 82.35 30.19 3.96

Table E.11. K-Means Test Performance vs Nodes with Six P-Neighbors

Nodes Run 0 Run 1 Run 2 Run 3 Run 4 Run § Hun 6 Run 7 Run 8 Run 9 Avg Std

Yocret |- Heret Yoctel Yocrct Yeczet Yecrct Ycrct Yocret Yecrct Yecret Yecrct Yecrct
100 82,00 79.00 74,00 91.00 84.00 86.00 91.00 87.00 78.00 87.00 83.90 5.34
90 86.00 79.00 73.00 $9.00 82.00 85.00 90.00 85.00 78.00 84.00 82.70 4.86
80 8050 76.00 72.00 86.00 81.00 84.00 87.00 83.00 81.00 86.00 82.20 4.64
70 78.00 80,00 79.00 83.00 78.00 86.00 85.00 85.00 84.0n 84.00 82.40 273
60 15,00 $3.00 75.00 83.60 78.00 £0.00 85.00 83.00 84.00 78.00 80.90 3.36
50 79.00 |- 79.00 73.00 82.00 78.00 £80.00 80.00 80.00 87.00 76.00 79.00 an
40 79.00 74.00 70.00 80.00 79.00 $2.00 82.00 80.00 86.00 74.00 78.60 4.48
30 $3.00 71.00 72.00 79.00 79.00 81.00 84.00 77.00 78.00 72.00 74.20 7.82
20 79.00 | 70.00 71.00 17.00 72.00 80.00 78.00 73.00 76.00 75.00 75.50 3.93
10 77.00 _10.00 ‘78.00 72.00 73.00 74.00 79.00 75.00 80.00 73.00 75.30 3.29

For the software parameters, the RBF sigmas were set via the P-Nearest Neighbor algorithm
with P held at six. The data seed matched the run number and the data was loaded -by classes.

"The number of nodes in layer 0 was 50, while the number of nodes in layer 1 is shown in the table

Ta.ble E.9. Kohonen Test Performance vs Nodes with Variable P-Neighbors

Nodes Rua 0 Run-1 Run 2 Run 3 Run ¢ Rua s Rua ¢ Rua 7
Reret Keret Heret Herct Reret Reret Reret Kerel

100 10 73,00 66.00 60.00 36.00 36.00 61.00 $8.00 86,00
[33 ° 40.00 63.00 73.00 74,00 77.00 72.00 44.00 77.00
64 [3 79.00 76.00 77.00 77.00 79.00 7900 | $3.00 $0.00
49 T $0.00 72.00 -| 79.00 40.00 74,00 47.00 79.00 77.00
3 [} 76.00 74.00 41.00 75.00 75.00 42.00 43.00 40.00
FL s 80,00 48.00 40.00 78.00 78.00 77.00 $1.00 72.00
16 4 78.00 71.00 77.00 72.00 76.00 78.00 - 79.00 69.00

Fun 8 Run ® Avg Swd
Rerct Reret Rerct RKeret
46.00 43,00 58,70 T.36
42.00 71.00 76.50 S.16
41.00 41.00 $0.20 3.84
$2.00 77.00 78.70 3.9%
80.00 40.00 T8.60 3.10
$1.00 76.00 18.40 4.02
76.00 73.00 74.90 3.24

For the software parameters, the data seed matched the run number and 51 training vectors
were loaded from each class. The number of nodes in layer 0 was 50, while the number of nodes in
layer 1 is shown in the table and the number of nodes in layer 2 was two. The transfer function
for the nodes in layer 1 was gaussian while the transfer function for the nodes in-layer 2 was linear.

The weights linking layer 1 nodes to the layer 2 nodes were set using the global MSE minimization

algorithm,

E.2.2.8 K-Means Clusiering Tables E.10. and E.11 show the categorization perfor-

mance of a Kernel Classifier with the hidden layer, layer 1, weights trained via the K-Means

Clustering Algorithm as the number of nodes increased.

s ’ . .
Table ¥.10. K-Means Training Performance vs Nodes with Six P-Neighbors
Nodes Run 0 Run ! Run 2 Run 3 Run 4 Rua s Rua ¢ Run 7 Rua's Run 9- Avg Std
Yecret %cret Yecret Sheret Socret Yocrct Rerct Heret Yocret Reret FKeret | Kerct
100 100,00 | 100.00 | 100.00 | 100,00 99.02 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | ©9.90 0.39
90 100,00 99.02 100.CO 100.00 98.04 98.04 100.00 100.00 99.02 100.00 99.41 0.78
80 97.06 99.02 95.10 98.04 $7.06 98.04 100.00 100.00 97.06 99.02 98,33 1.2
70 94.12 99.02 92.16 96.08 95.10 98.04 100.00 100.00 96.08 98.04 97.16 2.30
€0 922,16 98,04 92.16 95.10 95.10 97.06 96.08 97.08 27.06 94.12 95.39 1.7
30 94.12 98.04 94.18 | 935.10 94.12 924.12 93.14 95.10 94.12 91.18 94.13 1.78
40 91.18 96.08 88.24 93.14 94.12 94.12 94,12 93.14 93.14 90.20 93.04 2.12
30 87.25 92.16 37,28 49,22 932.16 90.20 49.22 91.20 $8.24 89.22- | -90.01 1,57
20 36.27 84.31 84.31 86.27 $8.24 84.31 | T6.47 88.24 84,31 83.33 $4.70 3.23
10 70.89 17,45 TT.45 84.31 80.39 79.41 77.45 84.31 72.55 82.35 80.19 3.96
Table E.11. K-Means Test Performance vs Nodes with Six P-Neighbors
Nodes Run 0 Hun 1 Run-2 Run 3 Run 4 Run 5 Run 6 Run'7 Run 8 Run 9 Avg Std
Yicrct Yecset Yecret Yectet Fcret Yocret | Yecrct Yecret Feret Yecret -1 Feret | Yecret
100 83.00 79.00 74,00 91,00 84.00 86.00 91.00 67.00 76.00 87.00 83.90 5.34
90 36.00 79.00 13.00 $9.00 82.00 85.00 90.00 85.00 78.00 84.00 82.70 4.8¢
80 80.%20 76.00 72.00 86.00 81.00 84.00 87.00 83.00 81.00 86.00 82.20 4.64
70 76.00 80.00 79.00 83.00 78.00 86.00 | 85.00 85.00 84.00 84,00 82.40 2.73
60 75.00 83.00 75.00 83.00 78.00 £0.00 85.00 85.00 84.00 78.00 80.90 3.36
50 79.00 79.00 73.00 82.00 78.00 £€0.00 $0.00 80.00 87.00 76.00 79.00 3.7
40 79.00 74.00 70.00 80.00 79.00 $2.00 82.00 $0.00 86.00 74.00 78.60 445
30 83.00 71.00 72.00 79.00 79.00 81.00 54.00 77.00 78.00 72,00 -{ 74.20 7.52
20 79.00 70.00 71.00 77.00 732.00 80.00 78.00 73.00 76.00 78.00 | 75.80 3.93
10 77.00 70 00 78.00 72.00 73.00 ~4.00 79.00 75.00 30 00 73 00 75.30 3.29

For the software parameters, the RBF sigmas were set via the P-Nearest Neighbor algorithm
with P held at six. The data-seed matched the run number and the data was loaded by classes.

The number of nodes in layer 0-was 50, while the number of nodes in layer 1 is-shown in the table

E-6

E.2.2.4 Center at Class-Cluster Averages Tables E.14 and E.15 show the categoriza-
tion performance for a Kernel Classifier network whose hidden layer weights viere trained using the
Center at Class-Cluster Averages algorithm. Table E.16 shows the number of layer 1 nodes created

to cover the input data space for each run.

Table E.14. Center at Class Averages Training Performance vs Avg Threshold

Avg Run 0 Run 1 Run 2 Run 3 Run 4 Run s Rua ¢ Rua 7 | Runs Run'9 Avg 314
Thshld Reret Reret Reret Reret Reret Kcret Ycret Ferct Reret Keret Reret Reret
['%-1% 100.00 100.00 100.00 100,00 100.00 100.00 100.00 100.00 100,00 100.00 100.00 0.00
0,50 100,00 100,00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
0.78 100,00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0,00
1.00 100,00 100.00 100.00 100.00 3100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
1.2% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
1.50 99.02 99.02 98.04 98.04 98.04 100.00 $9.02 100.00 100.00 100.00 99.12 0.81
1.78 98.04 96.08 96.08 96.08 97.08 96.08 97.08 98.04 99.02 100.00 97,33 1.32
2.00 96.08 95.10 94.12 94.12 93.14 98.10 93.14 96.08 97.08 100.00 95.39 1.9¢
2.28 91.18 91.18 49.22 $9.22 94.18 92.16 93.14 93.10 96.08 90.20 9217 2.28
2.30 90.02 92.16 24.30 84.30 81.2% 23.14 94.12 $1.20 90.20 89.22 49.49 3.a1
2.78 92.16 91.18 T6.47 T6.47 47.38 92.16 84,31 42,38 84.31 88.24 86.48 6.09
3.00 868.27 87.28 74,51 T4.51 84.31 47,28 83.3) 77,48 85.29 $3.33 82,435 4.77

- 3.28 87.2% 81.28 62,78 62.78 40.39 75.50 89.61 66.67 T7.43 81.37 76.47 8.91
3.30 86,27 70.38 60.78 60.78 7849 « 43 69.81 56.86 50,98 62.78 63,78 9.56
3.78 $6.27 65.63 58.82 58.82 6176 36,36 39.80 36.86 51.96 62.75 63.23 9.22
4.00 55.88 61.7¢ $0.00 $0.00 $5.88 38.86 $0.00 56.88 51,96 58.82 34.80 3.91

‘Table E.15. Center-at-Class Averages vs Avg Threshold

Avg Run 0 | -Rus} Run 3 Run 3 | Run+4 Rua's Run ¢ Run 7 Run s Run 9 Avg Std
Thishld Reret | Feret Rerct PRerct Yeczet Fcret Pcret Reret Kcret %crct Yecret- | Reret
0,25 83.00 81.00 17.00 $7.00 $2.00 87.00 $8.00 25.00 85.00 $5.00 84.00 3.16
0.50 $3.00 82.00 71.00 81,00 £2.00 87.00 49.00 45.00 85.00 44.00 84.10 3.2
0.78 81.00 81.00 71.00 83,00 85.00 246.00 $9.00 88.00 $2.00 84.00 83.50 3.17
1.00 82.00 81.00 77.00 84.00 $3.00 46.00 88.00 84.00 83,00 84.00 33.40 2.84
.38 82,00 80.00 17.00 85.00 84.00 86.00 86,00 85.00 83.00 86.00 43.40 2.84
1.80 83,00 $1.00 78.00 86.00 £5.00 90.00 85.00 84,00 83,00 84.00 33.99 2.98
.78 $3.00 79.00 $0.00 80.00 82.00 90.00 $4.00 85.00 82.00 $2.00 83.70 3.00
2.00 84.00 -78.00 83.00 77.00 75.00 $1.00 25.00 43.00 78.00 $0.00 80.40 317
2.23 83.00 74.00 79.00 79.00 80.00 $6.00 48.00 82.00 79.00 80.00 80.70 3.29
2.80 $2.00 76.00 80.00 74.00 78.00 86.00 $5.00 78.00 76.00 78.00 79.60 4.27
2.78 80.00 71.00 78.00 76.00 77.00 82.00 85.00 71.00 68.00 78.00 76.60 5.02
3.00 78.00 72.00 78.00 68.00 |- 83.00 78.00 82.00 69.00 $1.00 72.00 76,40 8.87
3.25 77.00 72,00 87.00 37.00 73.00 74.00 71.00 64.00 65.00 70.00 72.10 3.35
3.50 78.00 73.00 $2.00 69.00 $9.00 71.00 71.00 $7.00 87.00 84.00 66.80 8.91
3.78 75.00 69.00 60.00 69.00 54.00 60.00 59.00 85.00 51.00 84.00 61.80 8.08
4.00 $7.00 58.00 59.00 50.00 52.00 59.00 50.00 $5.00 51.00 56.00 54.70 3.47

Table E.16. Nodes Generated for Center at Class Averages vs Avg Threshold

Average Run 0 Run 1 Run 3 Run 3 Run 4 Run 3 Run 6 Run 7 Run s Run 9 Avg Std
‘Threshold Nodes Nodes_ | Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes
0.35 102.00 |- 100.00 101.00 102,00 -] 99.00 100.00 99,00 100,00 100.00 100,00 100.30 1.00
0.50 95.00 49,00 93.00 96.00 92.00 95.00 90.00 91.00 921.00 89.00 92.10 2.43
0.78 $6.00 77.00 86.00 86.00 84.00 85.00 83.00 81.00 81.00 81.00 83.00 2.83
1.00 11.00 72.00 78.00 75.00 76.00 78.00 75.00 69.00 71,00 75.00 74.60 2.87
1,23 65.00 64.00 68.00 €¢,00 62.00 €8.00 €6.00 61.00 87,00 €6.00 64,30 3.26
1.50 54,00 45.00 54,00 $0.00 $0.00 $3.00 54.00 51.00 32.00 85.00 51.80 2,82
1.78 42.00 38.00 41.00 40.00 41.00 41,00 39.00 37.00 40.00 43.00 40.00 2,05
2.00 32.00 28.00 32.00 26.00 28.00 32.00 32.00 30.00 29.00 35.00 30.60 2.24
2,28 24.00 21,00 24.00 20.00 24.00 23.00 27.00 24.00 22.00 23.00 23.70 3.07
2.50 19.00 19.00 15.00 15.00 18.00 16.00 20,00 12.00 14.00 16.00 17.80 3.36
2.7% 14.00 15.00 14.00 11.00 14.00 13.00 15.00 12.00 11,00 13.00 13.70 2.48
3.00 12.00 12.00 12.00 8.00 13.00 13.00 12.00 10.00 10.00 11.00 11.60 1.8
3.28 11.00 12.00 10.00 5.00 12.00 9.00 8.00 8.00 8.00 8.00 9.50 2.20
3.50 9.00 9.00 9.00 5.00 7.00 7.00 8.00 4.00 4.00 6.00 6.80 1.89
3.78 8.00 8.00 7.00 3.00 4.00 5.00 6.00 3.00 3.00 6.00 5.50 2.06
4 00 360 560 8660 2060 3°60 L] 3 63 3 GO S 8S % C8 78 132

For the software parameters, the average threshold was allowed to vary, the data seed matched

the run number, the sigma threshold was set at four and the training rule for the- RBF sigma was

E-8

the Scale Sigma According to Class Interference with interference threshold of .4. The data seed
matched the run number while 51 training vectors were loaded for each class. The number of nodes
in layer 0 was 50, while the number of nodes in layer 1 is shown in the table and the number of
nodes in layer 2 was two. The transfer function for the nodes in layer 1 was gaussian while the
transfer function for the nodes in layer 2 was linear. The weights linking layer 1 nodes to layer 2

nodes were set using the global MSE minimization algorithm.

E.2.2.5 PNN/RBF Comparison Tables E.17 and E.18 show the categorization per-
formance of a PNN as the sigma varied. The weights in the hidden layer were trained using the

Nodes at Data Points algorithm.

Table E.17. PNN Training Performance vs Sigma

Sigme Run 1 Run 2 Run 3 Run 4 Run 8 Run 6 Rua 7 Run 8 Run 9 Run 10 Avg Sia
Reret Keret Kecret Reret Fecret HReret Reret Reret Yecret Yecrct Fcret Pcret

0.2% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00, 0.00
0.80 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
0.75 94.12 97.08 97.08 96.08 96.08 93.10 97.08 94.12 93.10 96.08 95.79 1.08
1.00 88.24 85.29 90.20 921.18 89.22 21.18 87.23 87,25 86.27 $3.33 87.94 2.43
1,28 20.39 76.47 73.49 7745 78,43 79.42 1743 72.58 11,48 72.58 76.77 2.48
1.50 67,65 62.73 68.63 632.75 69.61 60.78 €0.78 60.78 70.59 61.76 64.61 3.8
.78 56.86 35.88 57.89 58.82 60.78 3491 81.96 83.92 39.80 37.44 56.87 2.59
2.00 30.98 |- $0.00 83.92 51.96 56.8¢ 82,94 50.98 50.00 84.10 53.92 82.57 2.08
2.25 80.98 $0.00 50.98 50.98 54.91 50.00 $0.00 30,00 51.96 §0.00 50,98 1.46
2.80 $0.00 30.00 50.00 50.98 82,94 80.00 50,00 $0.00 $0.00 50.00 $0.39 0.90
2.18 $0.00 -| 50.00 50.00 $0.00 852.94 80.00 30.00 50.00 $0.00 50.00 $0.29 0.88
3.00 50.00 $0.00 30.00 $0.00 350.98 30.00 $0.00 30.00 $0.00 $0.00 50.10 0.29

Table E.18. PNN Test Performance vs Sigma

Sigma Run 1 Run 2 Run 3 Run 4 Run s Run & Run 7 Run 8 Run 9 Run 10 Avg Std
- Yecret Yecret Fecrct Peret Yecret Ycret Reret Fcrct Yocrel Yecret Yecret Yecret
0.25 74.00 78.00 82.00 77.00 78.00 $4.00 82.00 84,00 86.00 86.00 $1.10 N

0.30 73,00 73.00 81.00 75.00 80,00 80.00 87.00 46.00 88,00 89.00 81.20 5.83
0.7% 70.00 68.00 80.00 72.00 74.00 $0.00 83.00 46,00 84.00 89.00 78,60 6.83
1,00 66.00 €9.00 12.00 64.00 67.00 76.00 73.00 76.00 76,00 78.00 71.70 4.67
1.25 59.00 €3.00 62.00 $9.00 €4.00 68.00 67.00 69.00 €3.00 66.00 64.20 3.31
1.50 56.00 56.00 56.00 54.00 58.00 59.00 36.00 58.00 $9.00 57.00 86.90 1.51
1.75 51.00 52,00 53.00 51.00 $4.00 54.00 51,00 52,00 54.00 51.00 $2.30 1.37
2.00 $0.00 50,00 53.00 30.00 83.00 $0.00 50,00 51.00 53.00 51.00 31,00 1,18
2,28 80.00 $0.00 $2.00 50.00 51.00 §0.00 50.00 80.00 81.00 33.00 $0.30 0.67

2.50 $§0.00 $§0.00 50.00 $0.00 $0.90 80.00 50.00 50.00 81,00 50.00 50.10 0.30
2,78 $0.00 $0.00 $0.00 $0.00 50.00 $0.00 $0.00 $0.00 80.00 $0.00 50.00 0.00
3.00 $0.00 50.00 £0.00 50.00 50.00 50.00 50.00 50.00 $0.00 $0.00 50.00 0.00

For the software parameters, the output threshold was set to one. The training vectors were
loaded by class with 51 vectors from each class and a data seed of six. The number of nodes in
layer 0 was 50, while the number of nodes in layer 1 was 102 and the number of nodes in layer 2
was two. The transfer function for the nodes in layer 1 was gaussian while the transfer function
for the nedes in layer 2 was linear. The-weights linking layer 1 nodes to the layer 2 nodes were set
using the PNN algorithm.

Tables E.19 and E.20 show the categorization performance of an RBF Kernel Classifier net-

work as the sigma, or spread, varied. The weights in the hidden layer were trained using the Nodes

E-9

at Data Points algorithm.

“Table E.19. RBF Network Training Performance vs Sigma.

[Sigms | Run1 Run2 | Run3 | Run4 | Run3d Run 6 Ren 7 Run 8 Run 9 | Run 10 AvVE Std

KRerct Keret Keret Yecret Hcret Fcret Yecret Fcret Ficret Keret Yecrct Kcret
0.28 100.00 100.00 100.00 100.00 100.00 100.00 100,00 100.00 100,00 100,00 100.00 0.00
0.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
0.78 100.00 100.00 100.00 100.00 $8.04 100.00 100.00 100.00 100,00 98.04 99.61 0.78
1.00 100.00 91.18 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.12 2.65
128 100.00 100.00 100.00 100.00 96.08 100.00 100.00 100.00 100.00 100.00 99.61 1.18
1.50 100.00 100.00 100.00 100.00 87.28 100.00 100.00 100.00 100.00 94.12 98.14 4.03
175 100.00 60.78 100.00 91.18 100.00 83.33 56.8¢ 100.00 98.04 100.00 86.37 18.67
2.00 82,38 100.00 100.00 57.04 48,09 15,49 87,25 82.94 50.98 81.37 74.81 19.30
2,28 £0.C0 $0.00 97.06 61.76 $0.00 $0.00 60.78 87.84 82,94 100.00 64.12 17.78
2,50 53.92 50.00 50,00 50.98 30,00 30.00 30.00 $0.98 54.90 50.00 51.08 172
2,18 50,00 58700 50,00 | 30.98 80.00 50.00 $0.00 $0.00 51.96 30.00 50.29 0.63
3.00 $0.00 33.42 50.00 $0.00 30.00 $0.98 50.00 80,98 70,59 50,98 52.65 6.09

Table E.20. RBF Network Test Performance vs Sigma

STgma Run 1 Run 2 Run 3 Run 4 Run § Run's Run 7 Run ¢ Run 9 Run 10 Ave Std
ecret Feret Fecret Yectet Yocret Ycret Fcret Yectct ecrct Yecret Fecret | Kerct
0.25 74.00 73.00 32,00 77.00 79.00 84.00 84,00 85.00 86.00 86,00 80,90 4.85

0.50 78.00 73.00 82.00 79.00 80.00 84.00 88.00 88,00 88.00 88.00 82,50 | 4.78
0.75 82.00 13.00 45,00 79.00 76,00 87.00 88.00 86.00 86.00 91.00 83.30 5.40
1.00 83.00 70.00 49.00 80.00 80,00 49.00 81.00 82.00 83.00 89.00 83.40 .61
1.25 82.00 74.00 90.00 80.00 77.00 87.00 848.00 81.00 84,00 87.00 £.00 4.88
1.80 82.00 74.00 90.00 79.00 69.00 87.00 90.00 81.00 85.00 84.00 82.20 6.39
.78 79.00 47.00 89.00 67.00 80.00 €9.00 53.00 83.00 82.00 87.00 73.60 13.57
2.00 70.00 71.00 $9.00 -] 351.00 49,00 €9.00 79.00 50.00 |- 50.00 87.00 63.30 13.39
2.28 5§0.00 80.00 89.00 61.00 50.00 30.00 §8.00 44.00 $2.00 86.00 89.00 14.94
2,50 50.00 45.00 $0.00 52.00 30,00 50.00 48.00 53.00 57.00 5$9.00 81.40-71 3.90
2.18 $0.00 49.00 50.00 $0.00 80.00 50.00 -] $0.00 80.00 50.00 50.00 49.90 0.30
3.00 50.00 83.00 $0.00 30.00 $0.00 57.00 47.00 $2.00 64.00 45.00 51.80 5.10

For the software parameters, the output threshold was set at one. The training vectors were
loaded by class with 51 vectors from each class and a data seed of six. The number of nodes in
layer 0 was 50, while the number of nodes in layer 1 was 102 and the number of-nodes in layer 2
was two. The transfer function for the nodes in layer 1 was gaussian while the transfer function
for the nodes in layer 2 was linear. The weights linking layer 1 nodes to the layer 2 nodes were set

using the global MSE minimization algorithm.

E.8 Radar System Characlerization

This data consisted of 300 training and 1990, 6 dimension pattern vectors. These pattern
vectors represented one of ten radar platforms. Only Kernel Classifier networks were developed
to categorize this data. The networks consisted of a standard RBF network and an RBF-based

arbitrator network.

E.8.1 RBF Network Thetopology for this network is shown in figure 3.7. Table E.21 shows
the categorization performance of the RBF network trained to categorize the ten radar platforms.
This network consisted of 6 nodes in layer 0, and 155 nodes in layer 1, and 10 nodes in layer 2.

For the software parameters, the transfer function for each node inlayer 0 was the identity transfer

E-10

Table E.21. RBF Network Performance
Classification % Correct

Threshold. | Training | Test

8 87.00 72.29

.6 89.67 77.91

4 93.67 82.88

2 93.67 82.88

i 0 93.67 | 82:88

able £.22. .Network A Performanc

Classification % Correct
Threshold | Training | Test
8 93.33 81.40
.6 94.67 88.50
4 95.00 90.05
2 95.00 90.05
.0 95.00 90.05

function, while the transfer function for-each node in layer 1 was gaussian and layer 2 was linear.
The weights for the layer 1 nodes were set via the Center at Class-Cluster Averages algorithm with
the average threshold set at .03. The spreads were set using the Scale Sigmas According to Class
Interference algorithm with the interference threshold set at .5. The weights linking the layer 1

nodes to the layer 2 nodes were set via global minization of the MSE.

E.8.2 Arbitrator The topology for this network is shown in figure 5.15. Table E.22 shows
the performance of Network A trained to categorize five radar platforms. This network consisted
of 6 nodes in layer 0, and 175 nodes in layer 1, and 6 nodes in layer 2. For the software parameters,
the transfer function for each node in layer 0-was the identity transfer function, while the transfer
function for each node in layer 1 was gaussian and layer 2 was linear. The weights for the layer 1
nodes were set via the Center at Class-Cluster Averages algorithm with the average threshold set
at .03. Thespreads were set using the Scale Sigmas According to Class Interference algorithm with
the interference threshold set at .5. The-weights linking the layer | nodes to the layer 2 nodes were

set via global minization of the MSE.

Table-E.23-shows the performance of Network D trained to categorize five radar platforms.
This network consisted of 6 nodes ifi layer 0, and 173 nodes in layer 1, and 5 nodes in layer 2. For
the software parameters, the transfer function for each node in layer 0-was the identity transfer

function, while the transfer function for each node in layer 1 was gaussian and layer 2 was linear.

E-11

Table E.23. Network B Performance
Classification % Correct

Threshold | Training | Test

8 87.00 | 78.33
.6 95.67 | 88:31
4 98.67 | 92.64
2 98.67 | 92.64
.0 98.67 | 92.64

The weights for the layer 1 nodes were set-via the Center at Class-Cluster Averages algorithm with
the average threshold set at .01. The spreads were set using the P-Neighbors algorithm with the
number of neighbors set at .5. The weights linking the layer 1 nodes to the layer 2 nodes were set

via global minization of the MSE.

Table E.24 shows the performance of the total Arbitrator network trained to categorize the

ten radar platforms. This network consisted of 6 nodes in layer 0 feeding networks A and B. The

Table E.24. Arbitration Network Performance
Classification % Correct
Threshold | Training | Test
8 95.00 73.90
6 98.33 81.43
4 99.33 85.79
2 99.33 | 86.35
.0 99.33 86.35

outputs of these networks were passed into Network C which consisted of 10.nodes in its input
layer, 75 RBF nodes and 10 output nodes. For the software parameters, the transfer function for
-each RBF node was gaussian and each output node was linear. The weights for the RBF nodes
were set via the Center at Class-Cluster Averages algorithm with the average threshold set at .03.
The spreads were set using the Scale Sigmas According to Class Interference algorithm with the
interference threshold set at .5. The weights linking the RBF nodes to the output nodes were set
via global minization of the MSE.

E-12

Appendix F. Software Analysis

F.1 Iniroduction

The software to be described in this chapter was designed according to the object-oriented
approach presented in Chapter 4. This chapter begins with a description of the data structures
implemented for the software and concludes with a discussion of the software modules and the

mapping of the training algorithms, developed in chapter 3, into software functions.

F.2 Object Oriented Structure

The structure of the software centered on the attributes of the nodes’ weights, sigmas, con-

nections, transfer function and class listed in Chapter 4.

F.2.1 Weights A given node’s weights are defined as the factor by which an output signal
from another node is multiplied before being processed by that node. For example, as shown in
figure F.1, node[2]-weight[1] would be the weight which multiplies-the output of node 1 prior to
entering node 2 for processing. Conversely, node[1]-weight[2] would be the weight which multiplies
the output of node 2 prior to entering node 1 for processing. Finally, node[1]-weight[1] would be
the amplification factor for the output of a node[1] feeding back into node[1].

F.2.2 Sigmas A given node’s sigmas are defined as the offset factor for a node with a
sigmoidal transfer function or, conversely, the spread factor, in a particular direction, for the
gaussian transfer function. This factor thus controls a node’s response to a given input. For
example, as shown in figure F.2, node[2]-sigma[1] would be the sigma factor for a signal -passing
from the output of node 1 to the input of node 2. Conversely, node[1]-sigma{2] would be the sigma
factor for a signal passing from the output of node 2 to the input of node 1. Finally, node-record[1]-

sigma([1] would be internal sigma for node 1.

F.2.3 Connect A node’s connections to other nodes in the network are defined as the con-
nection by which an output signal from another node is allowed to pass to that node. For example,
as shown in figure F.3, node[2]-connect[1] would be set to a 1 if node 2 received output from node
1. Conversely, if node 2 did not receive node 1’s output, node[2}-connect[1] would be set to a 0.
Similarly, node[1]-connect{2] would be 1 if node 1 received node 2’s output and 0 if node 1 did not

receive node 2’s output. Finally, node[1]-connect[1] will be set to a 1 if node 1 to received input

from itself.

node 2

node 1
output wght 2
w1
\ k!
: node 2 wght 1
node 1 wg$1t,2
O t
node 1 node 2
wght 1 output
Figure F.1. Node Weight Structure
node 1 node2

node 2 sigma 1

node 1 sig;na 2

node.1
sigma 1

node 2
output

Figure F.2. Node Sigma Structure

node 1 node 2
output connect 2

node 2 connect 1

node 1 connect 2

node 1 node 2
connect 1 output

Figure F.3. Node Connection Structure

F.2.4 Transfer Function A given nodes output will be a function of the inputs, weights,
and sigmas connecting the node to the other nodes. Letting %, be the input vector for a given
node, @ the weight vector, and & be the offset vector then the possible transfer functions-will be

the linear transfer function of the form:

f(&)=zw (F.1)

or a sigmoidal function of the form:
f(3) = [1 + e~ Eorei)-1 (F.2)

or a gaussian function of the form:
2—wll3

f@=e T (F.3)

or the identity function of the form:
f(z) = 2 (F.4)

However, any other applicable transfer function could also be assigned.

F.2.5 Class A given node can be assigned a class to which the node is responsible for
responding. This is applicable {0 nodes whose transfer function is the gaussian function as well as

to output nodes.

F.8 Software Analysis

The software modules implemented in this theses are described in detail in the following

sections. The code for these modules is found in Appendix G.

F.3.1 NETMENU This module is the overall controlling module of the network. It provides
the user interface to the software via the SUN terminal and keyboard and calls the appropriate
modules to execute the network decision. NETMENU allows the selection of the type of network
to be configured, the number of layers and nodes in the network, and the training rule of for
the weights of each node. Currently, the allowed training rules for the weights in layer 1 are to
train the weights to match the features, center the weights at class averages, establish the weights
via the K-means algorithm, establish the weights via Kohonen training, or train the weights via
backpropagation using the MSE, CE and CFE algorithms. Allowed training rules for the weights
in layer 2 are matrix inversion and backpropagation using the MSE, CE and CFE algorithms and
the PNN Implementation. Allowed training rules for the weights in layer 3 are backpropagation
using the MSE, CE and CFE algorithms.

Once the training rules are established, NETMENU will allow the transfer function, for the
nodes in each layer, to be selected. At this time, the only valid transfer functions are the identity,
the gaussian, the sigmoidal, and the linear transfer functions. Also, each node in the same layer

will be assigned the same transfer function.

If any of the layers are assigned the gaussian transfer function, NETMENU allows the selection
of a training rule for the thresholds or sigmas. At this time, the thresholds may be trained by setting
them to a constant, scaling the sigmas based on class interference, and setting the sigmas equal to

the P-Neighbor average distances.

Once these parameters have been established, NETMENU will then preset the weights, sig-
mas, or outputs for the network, if desired, or randomly initialize the weights and sigmas. Any
preset, data will-be-read. from input.data files specifving the_appropriate reference number for.the

node and the preset value.

After reading in both the training and test data files, NETMENU will then configure the

network by establishing the appropriate nodal connections-and assigning the nodes their appropriate

F-4

transfer function.

From the selected training rule, NETMENU will then call the appropriate training function,
in NETTRAIN, to train the weights in each of the layers.-Once the network has been fully trained,
NETMENU then establishes the accuracy of the network by calling NETERROR to apply both
the test and training data to the network, calculate the network output, and perform a percentage
calculation. This percentage calculation is made for the training data, test data and total data. A
correct response occurs when the appropriate node produces an output, above some user predefined

threshold, which is greater than all the other output nodes.

F.8.2 NETERROR This module contains the functions necessary to determine the networks

classification of a data vector and the error performance of the network.

F.8.2.1 Test The Network This function takes an unknown data vector-from the call-
ing module, applies the data vector to the network and calculates the network output. If their
largest output for any node is below a predefined threshold, the unknown pattern will be assigned
a class of zero to indicate an-unclassified pattern. If the largest output is above the-threshold,
the unknown pattern will be assigned the same classification as that of the winning node. For
classifications in which the network class does not match the input data class, an error count is

updated.

F.8.2.2 Delermine Class as Largest ‘This function classifies the input data vector as
belonging to one of the possible-output classes providing the highest output is above some user
selected threshold. This allows the user to determine the point at which the network is allowed to

consider-an input data pattern is classified.

F.3.2.8 Updale Errors This function increments an error count for each time the net-

work:classification does not match the proper classification of the data.

F.3.3 NETTRAIN NETTRAIN contains the submodules necessary to establish the network

weights via the following training procedures:
a) Global MSE Minimization
b) Make Nodes at Data Points
¢) Center Weights at Class Averages

d) K-means Cluster

e) Train via Kohonen

f) MSE Remaining Layers

g)'CE Remaining Layers

h) CFM Remaining Layers

i) PNN Last Layer

j) Scale Sigma by Class Interference
k)-Set Sigmas to Constant

1) Set Sigma at P Neighbor Avg

Bach of these submodules accomplishes its training routine by executing the specialized functions
contained in NETAUX,

F.8.8.1 Global MSE Minimization Global MSE Minimization performs the optimiza-
tion of the weights linking the radial basis function nodes in the hidden layer to the nodes in the
output layer using the equations established in section 3.5. This submodule first callsthe function
»Determine Y Matrix”. This function applies each data record in-the training set and calculates
the output for cach of the L nodes in layer 1. That is, the output for each of the nodes due to the
p*? pattern will be

Yout = [ypl) Yp2, Yp3y+ -+ pr] (F.5)

This process is accomplished for each of the P-patterns in the training set to produce the matrix:

m vz ... YL
Y21 Y22 ... Y2L

Y=| i i) (F.6)
yper YpP2 ... YPL

Global MSE Minimization then computes the S matrix by calling the function” Determine S Matrix”
to determine the required outputs for each of the M nodes in the output layer due to an input
pattern. This function tests the classification assigned to a data-record. If the class of the data
record p is N, then the output of the (N — 1)”‘ node in the output layer is assigned a value of 1

while all other nodes are assigned a value of zero:

sp = [dp1ydp2, ..., dpN—1,dpN, dpN 41, - -+, dp] . (F.7)

which translates to

s, =[0,0,...,1,0,0,...,0] (F.8)

This process is accomplished for each of the P records in the training set until a P by M matrix
is established where each p** row contains the desired output for the last layer nodes due to p**

input pattern.

diy diz ... diy

T R (F9)

dpy dpa ... dpp

”Global MSE-Minimization” then calls the function *Determine M Matrix” to compute the sum-
mation of the product of the B*» output of a node in the first layer with the I*» output of a node

in the first layer over all P patterns. That is

Mp = Z;’:l Yp1Ypp as defined in equation C.61. Assuming there are L nodes in the layer,

the M matrix then becomes:

My Mg ... M
M= M.” M.” o M_”‘ (F.10)
My, Mp ... My

After executing the function ”Make Identity Matrix” to form an L by L identity matrix as:

10 0
01 ...0

N= oL (F.ll)
00 1

"Global MSE Minimization” then calls the function ”Determine Matrix Transpose” which takes
the M matrix and returns its transpose back as a new M matrix. *Global MSE Minimization”
then uses the function *Invert a matrix” to invert the transpose of M. This inverted matrix is
returned to as the N matrix. ”Global MSE Minimization” then computes the optimal value for
each weight by calling the function ”Caiculate Weight Matrix”. This function uses the values in
the Y, S and inverted M matrix to perform the optimal weight linking node B in layer 1 to node

D in layer 2, wpp, as:

L P
wpp =y (D, ypidpn)Npy (F.12)

1=1 p=1

This calculation is made for each weight linking a node in layer 1 to a node in layer 2.

F.3.8.2 Make Nodes at Data Poinls This module sets the weights of the nodes in the
first layer equal to the features of the input patterns. This module begins by applying a data record
to the network. ”Nodes at Data Points” then- calls the function ”Calculate Layer 1 Output” to
determine the output for each node in layer 1. *Make Nodes at Data Points” then compares the
output of each node in layer 1 to the predefined threshold T, and the class of each node in layer
1 with the class of the input pattern. If the output for a node is greater than Tpq, and-the class
for that node is the same as that of the input pattern, nonew node is added. If not, a new node
is added whose weights match the input pattern features. This process continues for each training

vector.

F.8.8.8 Center Weights at Class Averages This module incrementally adapts the weights
of the-nodes in layer 1 to the running average of the data records lying within a threshold Tp,qz
of the current center. This module begins by applying a training vector to the network. ”Cen-
ter Weights at Class Averages” then calculates-the distance from all the nodes in layer 1 to that

training vector by the equation:

(F.13)

1f-this-distance for a.node less than the T, ” Center Weights at Class Averages” calls the function

»Update Average” to-update the current weights of that node by the equation:

g — Wy,
N +1

wih = wiy + (F.14)

F-8

VIR TR I A Y

If the distance between a training vector and all the nodes in layer 1 is greater than Tz, ” Center
Weights as Class Averages” will create a new nede and assign the weights of the new node the
features of the training vector. This process-will continue until all records in the training set have
been processed. "Center Weights at Class Averages” will repeat this process of cycling through the
training data and updating and creating new nodes until no new nodes are created. At this point,

the entire feature space is now covered by the nodes in layer 1.

F.8.3.4 K-Means Cluster This module adapts the weights of the K nodes in layer
1 to be the centers of K clusters. K-Means Cluster begins by the setting the weights of the K
cluster nodes in layer 1 equal to the features of the first K vectors. ”K-means cluster” then applies
a training vector to the network and calls the function ”Find Nearest Neighbor”. This function

computes-the distance from each input record to each of the K nodes in layer 1 by the equation

K

di-= Z(xk - wkg)z (F.15)

k=1

This function returns the reference number of the node in layer 1 with-the closest distance to the
input vector. *K-Means Cluster” then assigns the input vector to the cluster of the closest node
in layer 1. This process of inputting a training vector, finding the node whose weights are the
closest to that particular training vector, and assigning this training vector to the cluster whose
node has-the closest weights is repeated until all training records have been processed. For each
cluster node in layer 1, ”K-means cluster” then takes the training vectors assigned to that node’s
cluster and repeatedly calls the function ”Update Average”. This function updates each weight to

a new average by the equation

(F.16)

After all training patterns assigned to the cluster of a node have been processed, each of the node’s
weights will contain the average of the features of the pattern vectors assigned to that cluster. After
this adjustment, ”K- means cluster” tests the difference between each of the cluster’s old weights

and new weights via the equation

=) g - w| (F.17)

If the difference is not less than some small value ¢, for all nodes’ weights, the clustering algorithm

U}
A
LA
.05
025
10125
0 5 10 15 20
(x 1000) iterations

Figure F.4. Kohonen Training Eta Adaption

has not converged and-this process of applying a training vector, finding the closest cluster node,
and updating the weights of the cluster nodes to be the average of the input pattern vectors assigned

to the cluster will then-be repeated. If the difference is less than ¢, the algorithm has converged.

F.3.8.5 Train Via Kohonen This module adapts the weights in the first layer by using
the Kohonen algorithm defined in section 3.5. *Train Via Kohonen” first calls the function ”Get
Random Class Record” to return a training vector from the training set with an equa' probability
according to a uniform probability distribution. ”Train Via Kohonen” then applies the data record
to the network and calls the function ” Calculate Distance From Outputs To Next Layer”. Assuming

there are K nodes in layer 0 and J nodes in layer 1, this function performs the calculation

K
dj = (or — wis)’ (F.18)
k=1

These distance values are stored and returned to ” Train Via Kohonen” which then calls the function
?Find-Nearest Element” to return the number of the node which-had its weights ”closest” to-the
features of the input pattern. The module ”Train Via Kohonen” then calls the function ” Get Linear

Training Eta” to return the learning factor based on the saw tooth function as.shown in figure F.4.

F-10

Nmaxzx

= (2 = 10) + Mmaz (F.19)
Here

7 = the learning constant.

Nmaz = the maximum 7 which occurs at the beginning of the interval.

ip = the iteration number at the beginning of the interval.

imar = the iteration number at the end of the interval.

1 = the current iteration number.

Once the 7 is returned ”Train Via Kohonen” then executes the function ”Get Kohonen Neighbor-
hood”. This function returns the neighborhood number of the nodes which are in the neighborhcod

of the winning node. The neighborhood is determined by thé iteration number as follows:
neighborhood = 7 for 0 < iterations < 5000
neighborhood = 5 for 5000 < iterations < 10000
neighborhood = 3 for 10000 < iterations < 15000
-neighborhood = 1 for 15000 < iterations < 20000

»Train Via Kohonen” then calls function ”Find Kohonen Boundaries” to check the kohonen layer
boundaries to ensure that the length of the neighborhood does not exceeded the boundaries. ”Train
Via Kohonen” will determine which nodes will be updated by invoking the function ” Determine
Neighborhood Elements” and update each of these node weights by executing the function ”Train
Kohonen Weights”. This function updates each of the required nodes by the equation

wf = wi +n{z; — wy) (F.20)

»Train Via Kohonen” repeats this functional execution for the selected number of iterations.

F.3.3.6 MSE Remaining Layers This module performs the backpropagation of the
error to adjust the network parameters for the weights and sigmas for each node in the network.
»MSE Remaining Layers” first calls the function ”Get Random Class Record” to obtain a random
training pattern from one of the.classes according to uniform probability distribution. ”MSE Re-

maining Layers” then invokes ”Feed Forward Network Output” to calculate the network output.

F-11

After the network output is culculated, ”MSE Remaining Layers” determines the difference be-
tween the desired network-output and the actual network output, or error, by calling the-function
?Calculate Errors In-Output”. This function compares the output of each node in the output layer

to their desired output-for that pattern. This comparison is done-by the following equation:

I Ym — dm > tmaz (F.21)

Here tmq, is the maximum threshold, currently set to .9, ¥, is the output for node min the output
layer and d,, is the desired output for node m in the output layer. If all the output nodes meet
this criteria no weights are updated and this process is repeated for another random record. If
any of the output nodes don’t meet this criteria, "MSE Remaining Layers” will then update the
remaining network layers parameters via backpropagation according to the MSE algorithm. If the
transfer function for the last layer nodes are sigmoidal, their weights and-sigma will be updated by

the equation

Witn = Wiy + }%(dN = yn)yn (1 = yn)(ym) (F:22)

and

oﬁ =0yt -]7-3,-((11\('— yn)yv (1 = yn) (F.23)

If the transfer function is the linear transfer function, the node weights and threshold in-the last
layer will be updated via the equations

Witn = Wiy + ;%(dN —yx)(yra) (F.24)

»MSE Remaining Layers” will then call the-function ”MSE Mid Layer” to update the weights and

sigmas for the nodes in the next to the last layer of the network via the equations

N
ung =wpp + 71\’,' Z(dn ~ Yn)¥n (1 = Yn)wrmnym (1 — yM)yL (F.25)

oy e
n=a

N
ot = o5 + 3 D (dn = 0a)un(1 = Yn)wrtnvne (1 = yn1) (F.26)
n=1

After the weights for the next to last layer have been updated, ”MSE Remaining Layer” will then
call function *MSE 1st Layer”, if required, to update the weights-of the first layer. Currently, for
a three layer network, all nodes must have the sigmoidal transfer function. Therefore "MSE 1st

Layer” will update the node weights and thresholds via the equations

N M
w}*éL = wj_{L +- % Z(dn - yn)yn(l - y")[z 'wnmym(1 - '!/m)wLmyL(1 - yL)yK] (F-27)
n=1 m=1
and
7 N M
0‘}; = O’Z + F Z(dn - yn)yn (1 = yn)[z wmnym(l - ym)wLmyL(l - yL)] (F.28)
n=1 mz=1

After the first layer parameters have been updated ”MSE Remaining Layers” will continue this

‘backpropagation until the required number of iterations are achieved.

F.3.3.7 -CE Remaining Layers This module performs the backpropagation of the error
according to the CE algorithm to adjust the network parameters for the weights and sigmas for each
node in the network. ” CE Remaining Layers” first calls the function ” Get Random Class Record”
to obtain a random training pattern from one of the classes according to a uniform probability
distribution. ” CE Remaining Layers” then invokes ”Feed Forward Network Output” to calculate
the network output. After the network output is calculated, ” CE Remaining Layers” determines
the difference between the desired network output and the actual network output, or error, by
calling the function ”Calculate Errors In Output”. This function compares the output of each
node in the output layer to their desired output for that pattern. This comparison is done by the

following equation.

| 4m = dm |> tmaz (F.29)

Here tmaz is the maximum threshold, currently set to .9, ym is the output for node m in the output

rayer and dy, is the desired output for node m in the output layer. If all the output nodes meet this

F-13

criteria no weights are updated and this process is repeated for another random record. If any of
the output nodes don’t meet this criteria, * CE Remaining Layers” will then update the remaining
network layers parameters via backpropagation according to the CE algorithm. ”CE Last Layer”

is called first to update the nodes in the last layer by the equation

Wit = Wi + 557 (dy — un) (o) (F.30)

and

o =0y + -Z.%V-(dn ~yN) (F.31)

The factor of 1/2.3 is due to the multiplicative factor 1/In(10) from the derivative of the CFE
objective function. ” CE Remaining Layers” will then call the-function ” CE Mid Layer” to update
the weights and sigmas for the nodes in the next to the last layer of the network. ” CE Mid Layer”

will update-the weights via the equation

Wiy = Wiy + 5o 33 N Z(dn Yn)wMaym (1 — ym)yL (F.32)
n=1
and
UIT! = O'M ey 2. 3N E(dﬂ yn)anyM(l - '!/M) (F.33)
n=1

After the weights for the next to last layer have been updated, ” CE Remaining Layers” will then
call function ”CE Last Layer”, if required, to update the weights of the first layer. This function

updates the via the equations

Wi = Wip + 5o 7. 3N Z(dn Yn [Z WinnYm (1 = Ym)wLmyr (1 — yr)yk) (F.34)
m=1
and
n & M
of=0r+53% Z (dn = 9)[Y_, Wan¥m (1 = Ym)wLmyr (1 - yr)) (F.35)
n=1 m=1

F-14

After the first layer parameters have been updated ”CE Remaining Layers” will continue this

backpropagation until the required number of iterations are achieved.

F.8.8.8 CFM Remaining Layers This module performs backpropagation according to
the CFM algorithm to adjust the network parameters for the weights and sigmas for each node
in-the network. ”CFM Remaining Layers” first calls the function ”Get Random Class Record”
to.obtain a random training pattern from one of the classes according to a uniform probability
distribution. ”CFM Remaining Layers” then invokes ” Feed Forward Network Output” to calculate
the network output. After the network output is calculated, ”CFM Remaining Layers” determines
the node in the output layer with the largest output by calling the function ” Determine Network
Class”. This function assigns the network’s classification as-the largest value of the nodes in-the

output layer by the equation

class=y,... (F.36)

vihere t,42 = the output threshold. If the network’s class is not the class of the training vector or if
the difference between the correct node’s output-and the next highest node’s output is less than the
user predefined difference, the network nodes are updated according to the CFM algorithm. ”» CFM
Remaining Layers” will then update the remaining network layers parameters via backpropagation
according to the CFM algorithm. ” CFM Last Layer” is called first to update incorrect node in-the
last layer by-the equatio:

Wity = Wiy — Nﬁ 2N (1= zn)yn (1 — yn) (ym) (F.37)
and
of =0y - Jgﬂ_al zn(1 = zn)yn(1 - yn) (F.38)

while the correct node’s weights and threshold are updated. according to the equation

wie = Wi + n(1 = 2n)yo (1 = yo)(yar) (F.39)

uMz

I-15

of = wg + r)ﬂa Z z,,(l - zn)yc(1 — ye) (F.40)

n=1

» CFM Remaining Layers” will then call the function ”CFM Mid Layer” to update the weights and
sigmas for the nodes in the next to the last layer of the network. ”CFM Mid Layer” will update

the weights and threshold via the equations

N
wa =wpy+ % Z z,,(l - z,,)[yc(l - yC)wMC - yn(l - yn)‘an]yM(l - yM)yL (F'41)

n=1
and
ol =0y + I:;ﬁa Z za(1 = zn)lye(l — yo)wme = ya(l — vn)wmnlym (1 —ym) (F.42)
n=1

After the weights for the next to last layer have been updated, ”CFM Remaining Layers” will then
call function ” CFM First Layer”, if required, to update the weights of the first layer. This function

updates the weights and thresholds via the equations

N M
- o
wl, = wgp+ Nlﬂ——l E zn(1 = zp)[yc (1 — ye) Z Wing
n=1

m=1
M
= ¥n(1 =) Y, Umn)ym (1~ ¥m)yr (1 — yr)vk (F.43)
m=1

and

a'z = of+ jgﬂ Zz,,(l zn)lve(1 = ye) Z Wme

n=1 m=1
M
= ¥n(1=Un) Y Wnnlm (i = ym)yr(l —) (F.44)
m=1

After the first layer parameters have been updated ”CFM Remaining Layers” will continue this

‘backpropagation until-the required number of iterations are achieved.

F-16

F.3.8.9 Scale Sigmas by Class Interference This module scales the sigmas, for nodes
in layer 1 containing radial basis functions, if required, by a constant. This module begins by
applying the training vectors to the network and calling the function ” Calculate Layer 1 Output”
to calculate the outputs from the nodes in layer 1. ”Scale Sigmas by Class Interference” then
compares the output of each node-in layer 1 with the threshold Tp,... If the output for a node is
greater than Tj,4; and that node is not assigned the same class as that of the input pattern, that

nodes sigma is scaled by the equation:

ot = ¢~ (1 - Constant) (F.45)

¥Scale Sigmas by Class Interference” will continue to reduce the o for that node until the output

is less then Tinaz. This process is repeated for all the training vectors in the training set.

F.3.8.10 Set Sigma at P Neighbor Avg- This module sets the sigma for each node in
the first layer equal to the root mean:square of the distance between that node and its P nearest
neighbors. This module begins by calling the function ”Find Distance Between Nodes”. This

function calculates the distance between the nodes in layer 1 by the equation:

|1 K
d;j =, I Z(wk; - wk1)2 (F.46)'
k=1

After the distances between all the nodes have been calculated, ”Set Sigma at P Neighbor Average”
will then call the function ”Sort 2 Dimensional Array” to find the P shortest distances for-each

node. ”Set Sigma at P Neighbor Avg” will then calculate the sigma for each node by the equation:

P
l 1
o= F;d?p (F.47)

F.8.8.11 Set Sigmas to-Constant This module sets the sigma for each node in layer 1

to a predefined constant C by the following equation:

o1 = Constant (F.48)

F.3.4 NETINPUT This module contains the functions necessary to load the training and

test data files. This data may be loaded from a separate training and test file or a single file. This

method of loading the data is controlled-by the function *load input patterns”.

F-17

PUOTEENRI

F.8.4.1 Load Inpul Patierns This function allows the user to control how the test and
training data is to be loaded. Currently, the function ”Load Separate Files” allows the user to
load the training and test data from separate files either in sequence or randomly. The function
”Load From Single File” allows the user to load the training and test data from a single file either
in sequence of randomly. The function ”Load By Classes” allows the user to control the number of
training vectors assigned to each class. This is important if the number of training vectors must
reflect the a priori probability of the input data. These data vectors will be randomly selected from

a single file of input data.

F.3.4.2 Get Data This function loads the input data into the training and test data
structures. The training and test data structures contain an array of the features of the input

patterns, the class of the pattern, and the sequence number in the input file.

F.8.4.8 Normalize Data This function allows the user to normalize the input data via

the equation:

z;
T = o0 (F.49)
N E
F.8.4.4 -Get Weights, Sigmas, Classes, and Outputs These functions load initial weights,
sigmas, classes and outputs from an input file. This is important for applications in which the initial

conditions of the network are known a priori.

F.8.5 NETINIT This module contains the functions which allocate memory for the nodes
and data records, correct node weights and connections, and initialize the node weights, sigmas,

transfer-functions and network connections.

F.8.5.1 Intlialize Node Weights This function initializes the node weights between
each connected node in the network to a value between 0 and 1. For nodes not connected, the

weights are set to 0.

F.8.5.2 Inilialize Node Connections This function connects the nodes in-the network
as defined by the network type. Currently, the only network type allowed is the feedforward
network. For this network, the nodes in layer 0 will receive inputs from no other nodes and there
connections to all other nodes will be assigned 0. The nodes in layer 1 will only be connected to

and receive inputs from the nodes in layer 0. The nodes in layer 2 will only be connected ‘to and

F-18

receive inputs from the nodes in layer 1. The nodes in layer 3 will only be connected to and receive

inputs from the nodes in layer 2.

F.8.5.8 Initialize Node Sigmas This function initializes the sigma between each node

in the network to a value between 0 and 1;

F.8.5.4 Initialize Node Oulputs This function initializes the outputs for each node in

the network to a value of 0.

F.8.5.5 Initialize Node Transfer Functions This function initializes the transfer func-

tions, as defined by the user, for each node in the network.

F.8.5.6 Creale Node This function allocates enough memory to hold the ” Node Data”

data structures for each node in the network.

F.8.5.7 Creale Data Record This function allocates enough memory to hold the ” Data”

data structures for each training and test input data vector.

F.8.5.8 Disconnect Node This function will disconnect any nodes in the network from
all other nodes if the node is not being used. This is important for applications in which the number

of nodes in-the network is not known apriori and pruned as a result of network learning.

F.8.5.9 Correct Node Weights This function limits the range of a node’s weights to
a value between -100 and 100. This is important to prevent backpropagation training algorithms

from saturating the transfer functions during training.

F.8.6 NETSHOW This module contains the output functions necessary to display and file

the performance-and parameters of the network.

F.3.6.1 Print/File Nelwork Output These functions show the current output for the

final layer of -nodes in the network.

F.8.6.2 Print/File Data Parameters These functions show the name of the training

and lest dala-files, the number of data vectors in each file, and the dimension of the data vectors.

F.3.6.3 Print/File Randomization Rule These functions show the randomization rule
selected to load the input data. If the randomization rule is to ”Load By Class”, this function will

also display the number of training patterns selected from each class.

F.8.6.4 Print/File Seeds These functions show the initial weight, sigma, data, and
record seeds used to set the randomization rules for the network parameters. The weight and
sigma seeds control the initialization of the network weights-and thresholds. The data seed controls
the randomization of the input data vectors while the record seed controls the presentation of the

data vectors for the backpropagation algorithms.

F.8.6.5 Prini/File Net Topology These functions show the current topology of the
network, including the type of network, the number of layers in the network, and the number of
nodes in each layer. This is important in the monitoring of the network topology for networks in

which the number of nodes-is adapted according to the data parameters.

F.8.6.6 Prini/File Transfer Funclions These functions show the transfer functions for

each layer of nodes in the network.

F.8.6.7 Print/File Node at Data Poinls Data These functions show the number of
nodes, output threshold, and the initial sigmas for the nodes in layer 1 when trained using this

training rule.

F.3.6.8 Print/File Center at Class-Cluster Averages Data These functions show the
initial parameters of the maximum number of initial nodes, the average threshold and sigma thresh-

old used to train the nodes in layer 1 using this training rule.

F.3.6.9 Print/File K Means Data These functions show the number of clusters used
to establish the node 1 weights when the K-Means algorithm is used to train the weights for the

layer 1 nodes.

F.3.6.10 Print/File Kohenen Data These functions show the parameters for the num-
ber of nodes in x and y direction, the number of training iterations, the neighborhoods, and scaling

factors used- to train a layér of nodes using-the Kohonen algorithm.

F.3.6.11 Prini/File MSE Data These functions show the parameters for the number

of iterations, the learning factor, and the momentum factor used to train a layer of nodes using the

F-20

backpropagation algorithm according to the MSE objective function.

F.3.6.12 Print/File CFM Data These functions show .the parameters for the number
of iterations, the learning factor, the momentum factor, the amplification factor, the offset factor
and the lateral shift factor used to train a layer of nodes using the backpropagation algorithm

according to the CFM objective funciion.

F.3.6.13 Print/File CE Dala These functions show the parameters for the number of
iterations, the learning factor, and the momentum factor used to train a layer of nodes using the

backpropagation algorithm according to the CFM objective function.

F.8.6.14 Print/File Sigma Data These functions show the training rules and param-
eters of the sigma threshold, sigma constant, and number of nearest neighbors used to train the

spreads of thresholds of nodes having the gaussian transfer function.

F.3.7 NETOUT This module contains the functions necessary to compute the outputs for
each node-in the network, the outputs for each layer of a feedforward network, and the output for

the entire network due to a given input pattern.

F.3.7.1 Calculale Feedforward Network Ouiput This function calculates the network

output due to a given input vector by calling the applicable output functions for each layer of the

network.

F.8.7.2 Calculate Layer 0 Oulput This function establishes the range of nodes in layer
0 and calls ” Calculate Node Output” to calculate the output for each node in layer 0. This output

will depend on the transfer function assigned to each node in layer 0.

F.8.7.8 Calculate Layer 1 Output This function establishes the range of nodes in layer
1 and calls ”Calculate Node Output” to calculate the output for each node.in layer 1. This output

will depend on the transfer function assigned to each node in layer 1.

F.8.7.4 Calculate Layer 2 Output This function establishes the range of nodes in layer
2 and calls ” Calculate Node Output” to calculate ' . output for each node in layer 2. This output

will depend on the transfer function assigned to each nc-e in layer 2.

F-21

F.8.7.5 Calculate Layer 3 Oulput This function establishes the range of nodes in layer
3 and calls ” Calculate Node Output” to calculate the output for each node in layer 3. This output

will depend on the transfer function assigned to each node in layer 3.

F.8.7.6 Calculate Node Output This module computes the output for each node in the
network as determined by the transfer function and the other nodes from which the node receives

input. Currently, a node’s transfer function can either be the sigmoidal transfer function of

Yout = [1 -+ e ZII;I wly'("")"'a]-l (F.so)

or the-gaussian radial basis function of

Yout = e Z::x[!ll("")"""l]2 (F.51)
or the linear transfer function of
L
Yout = »_,wiyi(in) (F.52)
=1

or the identity transfer function in which

Yout = Yin (F.53)
F.3.8 NETAUX This module contains the functions called by NETTRAIN to-set the net-
work parameters. Below is the list of functions maintained in this module.
1) Determine Y Matrix
2) Determine S Matrix
3) Determine M Matrix
4) Calculate Weight Matrix
5) MSE Last Layer
6) MSE Last Layer Linear
7) MSE Last Layer Sigmoid

8) MSE Mid Layer

9) MSE 1st Layer

10) Calculate Errors in Output
11) Get Linear Training Eta

12) Get Kohonen Neighborhood
13) Calc Dist Outputs to Nxt Lyr
14) Find Nearest Element

15) Find Kohonen Weights

16) Determine Neighborhood Elements
17) Train Kohonen Weights

18) Find Distance Between Nodes
19) Sort 2 Dim Array

20) CE Last Layer

21) CE Mid Layer

22) CE First Layer

23) Calculate Zn

24) CFM Last Layer

25) CFM Mid Layer

26) Find Second Highest Node
27) CFM First Layer

28) Find Nearest Neighbor

For-a detailed discussion of these functions, see NETTRAIN or Appendix G.

F.8.9 NETMATH 'This module contains the mathematical functions used by the various
training algorithms within the module NETTRAIN.

F.8.9.1 Make Identily Matriz This function returns a square identity matrix to-the
calling routine. The number of rows and columns in the matrix and the address of the matrix must

be passed to this function for proper execution.

F-23

F.8.9.2 Determine Malriz Transpose This function returns the transpose of a matrix.
The calling function must provide the addresses of the matrix to be transposed and the matrix

transpose, along with the number of rows and columns of the matrix.

F.8.9.3 Inverl A Mairiz This function returns the inverse of a square matrix. The
calling function must provide the addresses of the matrix to be inverted and the final inverted
matrix along with the number of rows in the matrix. The matrix inversion is completed via

gaussian elimination.

F.3.9.4 Updale Average This function computes the running average of a series of
data points. The calling function must provide the current average, the next data point to be
incorporated into the average and the number of data points within the average. The update

equation is as follows:

-, 1 -
o =37 + (@ - %) (F.54)

F.3.9.5 Update Sigma This function computes the running standard deviation of a
series of data points. The calling function-must provide the current average, the next data point
to be incorporated into the standard deviation, the current standard deviation and the number of

data points in the calculation. The update equation is as follows:

oy = \/02_ + 71,—((1 - -1%,-)(1:, - a)2 —02) (F.55)

F.8.9.6 Calculate Percentage This function computes the percentage a ratio of num-

bers. The calling function must provide the numerator and the denominator of the numbers.

F.3.9.7 Get Random Class Record This function randomly selects, according to a
uniform-probability distribution, one of the possible classes and randomly returns a data vector

from the selected class.

F.3.9.6 Ge¢} Bandom Record This function randomly-selects, according to a uniform

probability distribution, a gata vector from the set of training data.

F-24

/e
I+
/*
/*
/*
IS
/*
/[
/s

{

Appendix G. Software Code

G.1 NETMENUE

of the software. It provides the user intexface
to the software via a SUN workstation terminal
and keyboard. This module calls the appropriate
modules to execute user desisions,

Modules Called: NETERROR, NETTRAIN, NETINPUT, NETINIT, NETSHOW
Functions Contained: None

Date: 11 Nov 90 Revision: 1.0
/".‘#"tl‘t‘#t‘““.t#‘tt‘“““‘.“#‘t‘l‘“tttt“‘tt#‘t.“““““t/

#include "netvrdle.h"
ginclude "netfnctn.h"

main()

FILE #fptr, strain_ptr, stest_ptr, *user_ptr;

FILE sMSE_ptr, *CE_ptr, *CFM_ptr;

struct data *training.data[TRAIN_SET];

struct data *test_data[TEST_SET];

struct Node_data sNode_record [TOTAL_NODES];

float output.threshold = 1;

float average.threshold = 2;

float sigma_threshold = 4;

float sigma_factor = .5;

float interfexence_threshold = .8;

float MSE_error_delta = ,2;

float class_threshold =0;

float per_cent_correct = 0;

float sigma_constant = 2;

float MSE_eta = .3;

float CFM_alpha = 1;

float CFM_beta = 4;

float CFM_eta = 3;

float CFM_zeta = 0;

float CFM_momentum = .1;

float CFM_delta = .4;

float CE_epsilon = .1i;

float CE_iterations = 20000;

float CE_momentum = ,1;

float CE_eta = 2.76;

float MSE_momentum = .1;

static int neighborhoods[6] = {7,5,3,1};

static int train_width[6] = {0, 5000, 10000, 15000, 20000} ;
static float train_scale[6] = {.1, .05, .025, .0125};

int misclassified[200];

int train_exror = 0;
int test_error = 0;
int total_error = O;
int correct.class =
int network_class =
int yidth _ne = §5;
int nodes_x = 10;
int nodes_y = 0;

int p_neighbors = 0;
int train_set = TRAIN_SET;
int test_set = TEST_SET;
int classes = CLASSES;

0;
0;

[0 50 8RN RRARRRRERRRRURERRAARRRRRS SAELASENERRRRRR SRS 008]
Module Name: NETMENUE Number:1
Description: This module is the overall controlling module of

74
*/
+/
+/
+/
+/
*/
+/
+/

int dimension = DIMENSION;
int node;

int record, row, x, y, layer, starting_node.in_ layer{4];
int number_of_layers;

int nodes_in_layer[4], training_rulef4], transfer_tunction[4];
int network_type = 0;

int total_nodes = 0;

int preset = 0;

int sigma_rule = 0;

int int_buffer = 0;

int total_iterations = 0;
int current_node = 0;

int MSE_iterations = 0;

int kohonen_iterations = 0}
int nodes_i_max = 0O;

int nodes_2_max = 0;

int nodes_3_max = 0;

int error = 0;

int CFM_successes = 100;
int CFM_iterations = 20000;
int CE_successes = 100;

int randomization_rule = 0;
int training_pattexns_in_class[CLASSES];
int MSE_successes = 100;
int class = 0;

int find_the_distance = 0;
int normalize_the_data = 0;
unsigned data_seed = 0;
unsigned sigma_seed = 0;
unsigned wght_seed = 0;
unsigned recoxrd.seed = 0;

JresssannensrsasaaTEST STUFF aassshassssns e kRrheststbten/

static char train_file[] = *class2.in";

static char test_file[] = "class2.in%;

static char output_file[) = "nodes_test.out";
static char selection_file[] = "nodes_test.sel";
static char MSE_file[] = "MSE_data.out";

stafic char CFK_file[] = "betaddata";

static char CE_file{] = "CE._data_final®; .
normalize_the ax.a = 0; /* 1 = yes »/
find.the_distance = 0; /* 1 = yes »/

dimension = 60; _

train_set = 102;

test_set = 100;

classes = 2; /* Randomization Rule */
randomization_rule = 3; /* 1 - load separate files #*/
/* 2 - load from single file */
. /% 3 - load by class */
training_pa.tterns_in‘_class[1]
“training_patterns_in_class([2]
training.patterns_in_slass[3]
training.patterns.in_class[4]-
~training.patterns, inzclasu(S$] =
training.patterns_ in: class[G]
4training_patterns_in.c)aes[7] =
training_pattexrns_in_class[8)
training_patterns_in_class[9] =
training_patterns_in_class{10] =

nou] II
e e T Wl et
s ».. -

OOOOOO«OO‘IU’!

m w n Il n

l

wght_seed = 0; sigma_seed = 0; -data.seced = 1; record_seed = 1;

G-2

network._type = 1; number_of_layers = 2;

nodes_in_layer[0]=dimension;
nodes_in_layer[1]=60;
nodes_in_layer[2]=2;
nodes_in_layer{3]=0;

training.rule[0]=0;

training_rulef1]=1;
/* 1-nodes at data points 2-center class average 3- K-means */
/* sig-thres, out-thres avg-thresh sigthresh sig rule 3ox4 #*/

/* 4-kohonen 5-MSE backprop 6~CFX backprop 7-CE backprop */
/* nodes.x MSE stuff CFX stuff CE stuff »/

.caining_rule[2] = 1;

/* 1 - matrix invert 2 - MSE backprop 3-CFM backprop 4-CE backprop */
/* 5 - Parzen window MSE stuff CFM stuff CE stuff »/

training.xule(3] = 0;

/* 1 - MSE backprop 2 -CFM backprop 3-CE backprp 4-Parzen window */
/* MSE stuff CFM stuff CE stuff »/

sigma_threshold = 4;
output_threshold = 1;
average_threshold = 2;

_kohonen_iterations = 20000;
nodes_x = 7;

MSE_iterations = 30000; CFM_alpha = 1.0;
n3E_error_delta = .1; CFM_bata = 4.0;
MSE_momentum = ,1; CFM_eta = .14; CE_momentum = ,05;
-MSE.eta = .32; CFM_zeta =.0; CE_eta = 1.75;
MSE_successes = 100; CFM_successes = 100; CE_successes = 15000;

CF¥_iterations = 150000;

CFM_momentum = .1;

CFM_delta = 1.0;

CE.epsilon'= .05;

CE.itexations = 30000;

transfer_ function[0] = 0; /* 1- sigmoidal */
transfer_function[1] = 2; /* 2 -rbf +/
transfer_function[2] = 3; /* 3- linear */
transfer_function[3] = 0;

sigma_rule = 1;

/* Sigma rules 1 - scale by constant

/* interference_threshold = .8;
/* sigma_factor = .5;
interference_threshold = .4;
sigma_factor = .1; /* 2 = half nearest neighbor
sigma_constant = .5;
p.neighbors = 6; /* 3 - constant
/* sigma_constant = 2;

/* 4 ~ p neighbr average
/% p.neighbors = 4;

/.#“i!t"t#tt‘tt"t.tt.ttt‘#t‘ﬁ.‘#“#‘t###t‘tt"ttt‘ttttt‘ttt#t!t‘#“‘t‘/

for (x = 0; x < train_set; x++)
{
create.data_record(training_data,
x,)
kerror);

if(error != 0)

*/
*/
*/

*/

*/
*/

*/
74

{

printf£("\ns*»#+ out of memory for training_data #xssss#\n");

exit();
}
}

for (x = 0; x < test_set; x++)

{

i

{

}

create_data_record(test_data,
X,
Rerror);
if(exror != 0)
{
printf£("\ns+#+ out of memory for test data #+s#a\n");
exit();
}

}

train_ptr = fopen(train_ file,"r");
test_ptr = fopen(test. file,"r");

load_input_patterns (training_data,
test_ data,
train_set,
test_set,
dimension,
classes,
training_patterns_in_class,
randomization_rule,

data_seed,

train_ptr,

test_ptr);
fclose(train_ptr);
fclose(test ptr);
f(noxmalize_the_data == 1)

normalize_data(training _data,
train_set,
dimension);

normalize_ data(test_data,
test_set,
dimension) ;

if(find_the_distance == 1)

{

fptr = fopen("nimtrain.dat","s");

fprintf (£ptr,'"\n normalized Distances for Training data");

calculate_euclidean.distance.between_inputs(training_data,
train_set,
dimension,
fptr);

fclose(fptr);

fptr = fopen("nrmtest.dat”,"s");

fprint£f(£ptr,"\n normalized Distances for Test data");

calculate_euclidean_distance_between_inputs(test_data,
test_set,
dimension,
fptr) ;

G-4

fclose(fptr);
}

user_ptxr = fopen(selection file,"s");

nodes_i_max = nodes_in_layer[i];
nodes.2_max = nodes.in_layex[2];
nodes,3_max = nodes.in_ layer[3];

total_nodes = -nodes.in.layer[0];
starting_node_in_layer[0] = 0;

for (layer = 1; layer < number_of_layers +1; layer++)
{
starting_node.in_ layer[layer] = starting_node_in_layer[layer-1]
+ nodes_in_layer[layer-i];
total_nodes = total_nodes + nodes_in_layer[layer];

}

exror = 0;
for (node = 0; node < total_nodes; node++)
{
create_node (Node_recoxd,
node,
&errox);

if (exrror != 0)

{
printf("\nout of memoxy");
exit();

}

initialize_nods_connections(¥ode_record,
number_of_layers,
nodes_in_layer,
starting._node_.in_layer,
network_type,
total_nodes);

initialize_node.weights(Node_record,
total_nodes,
wght_seed) ;

initialize_node_sigmas(dode_record,
) total_nodes,
sigma_seed) ;

initialize_node_outputs(Node.record,
total_nodes);

initialize. node_transfer_function(Node_record,
number_of_layers,
nodes_in_layer,
starting.node.in_layer,
transfer_function);

file_data_parameters(train_file,
test_file,
train_set,
test.set,
dimension,
classes,

G-5

user_ptr);

file _randomization_rule(randomization_rule,
training_patterns_in.class,
classes,
user_ptr) ;

file_seeds(wght_seed,
sigma_seed,
data_seed,
record_seed,
user_ptr);

fprintf(user_ptr,"\nstarting network topology");
file_net_topology(network.type,
number_of_layers,
nodes_in_layer,
user_ptr);

file_transfer.functions(network.type,
number_of_layers,
starting_node_in_layer,
-Node_xecoxrd,
user.ptx);

for (layer = 1; layer < number_of_ layers +1; layer++)
{
if(layer == 1)
{
switch (training_rule[layer])
{
case 1:
make_nodes_at_data_points (training_data,
Hode_record,
train_set,
nodes_in_layer,
sigma_threshold,
output.threshold,
starting_node_in_layer,
total_nodes,
nodes_1_max);

file_nodes.at_data_points,inro(layer,
output_chreshold,

sigma_threshold,
user_ptr);
break;
case 2:
center_weights_at_class_averages(training_data,
Node_recoxd,
train_set,
nodes_in_ layer,

average.threshold,

P b o] &L—nnkold-,

sigma_thresh
starting_node_in_layer,
totel_nodes,

layer,

nodes_1.max);

file.center_at_class_avgs_data(layer,

G-6

average_threshold,
sigma_threshold,
user_ptr);

break;

case 3:

k.means_cluster(training data,
Rode_recorxd,
train_set,
nodes_in_layer[i],
nodes_.in_layer,
starting_node_.in_layer,
layer);

file _k.means_data(layer,
nodes_in_layexr[1],
user_ptr);

break;

case 4:
nodes_y = nodes_in_layer[1]/nodes_x;

train_via:kohonen(training_data,
-Bode_record,
nodes.in_layer,
starting_node.in_layer,
neighborhoods,
train_width,
train_scale,
width_no,
nodes_x,
nodes.y,
layer,
train_set,
kohonen_iterations,
recoxd_seed);

file_kohonen_data(layer,
nodes_x,
nodes_y,
user_ptr);

break;

case 5:
MSE_ptr = fopen(MSE_file,"s");

MSE_remaining_layers(NKode.recoxd,
training_data,
test_data,
transfer_function,
nodes.in. layer,
starting.node_in_layer,
number_of.layexs,
Javer,
train_set,
test_set,

MSE_eta,
total_nodes,
MSE_successes,
MSE_error_delta,

G-7

PRSI

YOI

o

bl s

S 1 e bl A Nl b A

SAL R Tl

w2 AL

MSE_iterations,
MSE_momentum,
classés,
recoxd_seed,
MSE_ptx);

fclose (MSE_ptr);

file_MSE_data(layer,
MSE_iterations,
MSE_error_delta,
MSE_momentum,
MSE_successes,
MSE_eta,
user.ptx);

layex = number_of_layers;
break;
case 6:

CFM_ptr = fopen(CFM_file,"u");
CFM_remaining_layers(Node_recoxd,

training.data,
test_data,
nodes_in_layer,
starting_node.in_layer,
number_of_layers,
layer,
train_set,
test_set,
CFM_eta,
total_nodes,
CFM_successes,
CFM_iterations,
CFM_alpha,
CFM_beta,
CFM_zeta,
CFM_momentumn,
CFM_delta,
classes,
record_seed,
CFM_ptx);
fclose(CFM_ptr);
file_CFM_data(layer,

CFM_alpha,

CFM_beta,

CFM_eta,

CFM_zeta,

CFM_successes,

CFM_iterations,

CFM_momentum,

CFM_dclta,

user_ptr);

layer = number.of_layers;
break;

case 7:
CE_ptr = fopen(CE_file,"w");

CE_remaining_layexs (Node.record,

G-8

training.data,

_ test_data,
nodes_in_layer,
starting_node_in_layer,
number_of_layers,
layex,
train_set,
test_set,
CE_eta,
total_nodes,
CE_successes,
CE_epsilon,
CE_iterations,
CE_momentun,
classges,
recoxd_seed,
CE_ptr);

fclose(CE_ptr);

file_CE_data(layer,
CE_epcilon,
CE.iterations,
CE.momentum,
CE_eta,
CE_successes,
user.ptr);

layer = number_of_layers;
break;

default:
break;

}
if (nodes._in_layer[1] < nodes.1.max)
i
int_buffer = nodes_1i_max - nodes_in_layer[layer];
for (x =-0; x < int_buffer; x++)
{
current_node = starting_node_in_layer[layer]
+ nodes_in.layer[layer] + x;
disconnect _node(Node_xecord,
current.node,
total_nodes);

}

if(Node.recoxd[starting_node_in_layer[1]]->transfer function == 2)
{
file_sigma_data(layer,

sigma_xule,

interference_threshold,

sigma_factor,

sigma_constant,

p-neighbors,

usex_ptr);

if (sigma_rule == 1)
{

scale_sigmas_by_class_interference(training_data,
Node_recoxd,
train_set,
nodes_in_layer,

starting.node.in_layer,

total_nodes,
layer,
interference_threshold,
’ -sigma_factor);
}
else if(sigma_rule == 2)
{
printf("\n error in sigma rule selection");
exit();
}
else if(sigma_rule == 3)
L
set_sigmas_to_constant(Node_record,
nodes_in_layer,
starting._node_in_layer,
layer,
sigma_constant);
}
else if(sigma_rule ==4)
{
set_sigma_at_P.neighbor.avg(Node recoxd,
nodes_in_layer,
starting_node_in_layer,
layer,
total_nodes,
p.neighboxs);
3

3

})
else if (layer == 2)
{

switch (training_rule[layer])
{
cago 1:
global MSE_minimization{training_data,

Node_record,
¢rain_set,
nodes_in_layer,
starting_node_in_layer,
total-iodes,
layer);

file_matrix.data(layer,
user_ptx) ;

break;
case 2:
iE_ptxr = fopen(KSE_file,"s"):
MSE.remaining.layere(W de_rec(xd,

- training_data,
test_data,
transfer_tunction,

) nodes_in_layer,
Stucting tede_ln, layer,
uanber_of_layern,
layar,
train_set,
test_%et,

MSE_ata,
total, .iodes,

G-19

MSE_successes,
HSE_error.delta,
MSE_iterations,
MSE_momentum,
classes,
recoxd_seed,
MSE_ptx);

fclose(MSE_ptr);

file _MSE_data(layer,

MSE_iterations,
MSE_error._delta,
MSE_momentum,
MSE_successes,
MSE_eta,
user_ptr);

layer = number_of_layers;

break;

case 3:

CFM_ptr = fopen(CFM_file,"w");

CFM_xemaining_layers(Node_recoxd,

training_data,
test_data,
nodes_in_layer,
starting_node_in_layer,
number_of_layers,

layer,
train_set,
test_set,
CFM_eta,
total_nodes,
CFM_successes,
CFM_iterations,
CFM_alpha,
CFM_beta,
CFM_zeta,
CFM_momentum,
CFM_delta,
classes,
record_seed,
CFM_ptx);
fclose(CFM. pt1);
file..CFM_data(layer,

CFM_alpha,

CFM¥_beta,

CFM_eta,

CFM_zeta,

CFM_successes,

CFM_iterations,

CFM_momentum,

CFM.dselta,

layex
break;

case 4:
CE_ptx-

user_ptr);

numbex_of_layers;

fopen(CE. file,"w");

G-11

CE_remaining.layers (Node_record,
training_data,
test_data,
nodes_in_layer,
starting.node_in_layer,
number_of layers,
layer,
train_set,
test _seot,

CE_eta,
total_nodes,
CE_successes,
CE_epsilon,
CE_iterations,
CE_momentum,
classes,
record_seed,
CE_ptr);

fclose(CE ptx),;

2i1o_CE_data(layer,
CE_epsilon,
CE_iterations,
CE_momentum,
CE_eta,
CE_successes,
user_ptr);

layer = number.of_layers;

brezk;
case 5:
PYR_last_layer(Node_record,
-nodes_in_layer,
starting.node_in_layer,
layex);
file_parzen_window_data (Node_record,
nodes_in_layer,
starting_node_.in_ layer,
layer,
user.ptx);
break;
default:
break;
}
¥
else if(layer == 3)
{
switch (training.rule[layer])
{
case 1:

MSE_ptr = fopen(¥SE_file,"s");

MSE_remaining.layers(Node_record,
training_data,
test_data,
transfer_function,
nodes_in_layer,

G-12

starting node_in_layer,
number_of_layers,
layer,

train_set,
test_set,
MSE_eta,
total_nodes,
MSE_successes,
MSE_.erxor_delta,
MSE_iterations,
MSE_momentum,
classes,

record _seed,
MSE_ptx);

fclose(MSE_ptr);

file _MSE_data(layer,
MSE_iterations,
MSE_error_delta,
MSE_momentum,
MSE_successes,
NSE_eta,
user_ptr);

layer = number_of_layers;
break;

case 2:
CFM_ptr = fopen(CFM_file,"s");

CFM_remaining_layers(Node_record,
training.data,
tost_data,
nodes_in_layer,
stazting._node_in_layer,
number.of_layers,
layer,
train_.set,
test_set,
CFM_ota,
total_nodes,
CF¥_successes,
CFM_iterations,
CFM_alpha,
CFM_beta,
CFM_zeta,
CFM_momentum,
CFM_delta,
classes,
recoxd_seed,
CFM_ptx);

fclose(CFM_ptr) ;

file_CFM_data(layer,
CFM_alpha,
CFM_beta,
CFM_eta,
CFH_zeta,
CFM_successes,
CFM_iterations,
CFM_momentum,
CFM_delta,
user.ptx);

G-13

layer = numbor.of_ layers;
break;

case 3:
CE_ptr = fopen(CE_file,"uw");

CE_remaining_layers (Xode.record,
training.data,
test_data,
nodes_in_layer,
starting.node_in_layer,
number_of_layers,
layer,
train_set,
test_set,

CE_eta,
total_nodes,
CE_successes,
CE_epsilon,
CE_iterations,
CE._.momentum,
classes,
record_seed,
CE_ptr);

fclose(CE_ptr);

file_CE_data(layer,
CE_epsilon,
CE_iterations,
CE_momentunm,
CE_eta,
CE_successes,
user.ptr);

layer = number_of_layers;

break;
case 4:
PNN_last_layer(¥ode.record,
nodes_.in_ layer,
star«ing.node_iu_ layer,
layvex);

file_prrzen_vindow_data (Node_record,
nodes_in_lazey,
starting.node.in_layer,

layer,
user_ptr);
break;
Aefauly:
break;

t
H

-
5

fprintf{user _prr,"\n Fitral topology");

Tile not_ropology(netrock typa,
numbey, of _Lavers,
rodeg _in.layjur,
tier_ptrd;

G-11

fptr = fopen(output_file,"s");

file_network._parametexrs(Node_record,
network_type,
number,of layers,
nodes_in.layer,
training.rule,
transfer_function,
sigma.rule,
total.nodes,
fptx);

for (node = 0; node < total_nodes; nodet++)
file_node _data(Node_recoxd,
node,
total_nodes,
£ptr);

for (x = 0; x < classes+l; x++)
training_patterns_in_class[x] = 0;

train_erxoxr = 0;
for (x = 0; x < truin.set; x++)
{
class = training_data[x]->class;
training_patterns_in_class[class] +=1;
test_the_network(training data,
Node_recoxd,
aodes_in_layer,
starting.node_in_layer,
number.of. layers,
X,
total.nodes,
class_threshold,
misclassified,
train_errox);

file_last.layer_output(training_data,
Y¥ode_recoxd,
X,
nodes_in_layer,
starting_node_in_layer,
number_of_layers,
£ptx);

}

cosrect_class = train_set - train_error;

calculate_percentage((float)coxrect_class,
(float)train_sat,
dper_cent_correct);

fprintf(user.ptr,"\ntraining data");

file_exrox.data(train_error,
per.cent_correct,
misclassified,
user_ptr);

file_class_count(training_patterns_in_class,
classes,
user_ptr);

T E LRI AT

PN

fopnds e L

e

LIAVETI L0

L PPN

B St

IRy T T IO PR B S S PR P DRI, IR RIS

for (x = 0; x < classes+l; x++)
training_patterns_in_class[x] = 0;

test_erxor = 0;

{

for (x = 0; x < test_set; x++)

class = test_data[x]->class;

training_patterns_in_class[class] += 1;

test_the_network(test_data,
Node_record,
nodes_in_layer,

starting_node_in_layer,

number_of_layers,

X,

total.nodes,
class_threshold,
misclasgsified,
Ltest_erxox);

file_last_layer_output(test_data,

'number_of_layers,

}

correct_class = test_set

calculate_pexcentage((float)correct_class,

¥ode_record,
X,
nodes_in_layer,

starting.node_in_layer,

fptx);

= test_error;

(float)test _set,
foer.cent coxrect);

fprintf(user.ptr,"\ntest

data");

file_error.data(test_error,
per.cent_correct,
misclassified,
user.ptr);

file_class_count (training_patterns.in_class,

classes,
user_ptr);

total_error = train_error + test_error;

correct_class = train_set + test_set — total_error;

calculate_pexcentage((float)correct_class,

(float) (test_set+train_set),

kper_cent_corxrect);

fprintf(£ptr,"\ntotal per cent correct = %f",per..cent._correct);
fprintf(user_ptr,"\n total per cent correct = 4f",per_cent_correct);

fclose(fptr);

for (node = 0; node < total_nodes; nodet++)
free(sNode_record[node]);
fclose(user_ptx);

}

G-16

e

PR T, Rty

1% g nE

ML

et

Kt

G.

2 NETERROR

/#t*t&#t‘t#ttttt###ttt‘.‘t‘ttt“‘#“‘ti#tt##t##tt*f*‘ttt##t#lt‘#‘*‘*/

/%
/*
/*
/*
/=
/*
I/*
/*
/*

Module Name: KETERROR.C Bumber: 2.0
Description: This module contains the functions which provide
error accounting of the network perfoxrmance.
Modules Called: NETOUT
Functions Contained: 2.1 test_the_network
2.2 determine_class_as_largest
2.3 update_exrors
Date: 11 Nov 90 Revision: 1.0

*/
*/
*/
*/
*/
*/
*/
%/
*/

/*###*#t‘####‘t#‘#*t#t#t##t##‘tt#‘#‘t###ttt#ttt*tttt#ttt#t‘ttntt#tt#/

#include "netvrble.h"
#include "netfnctn.h"

/###***t*‘#tt*##‘t‘*‘#t#.####t#‘t*tttt#‘t#i#tt##*tt*ttt#*#‘tt.*#t#t#/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Function Name: test_the_network Humbex: 2.1
Description: This function calculates the errors from a
feed forward network due to an input record

Functions. Called: 7.1 calculate.feed_forware_network_output
2.2 determine_class_as_largest
2.3 update_errors

-‘Variables Passed In: training or test_data - Structure array
N¥ode.record - Structure array
nodes_in_layer - Integer array
starting_node_in_layer - Integer
number_of_layers = Integer
total_nodes - Integer
class_threshold - Float

misclassified ~ Integer array
*error - Integer pointer
Voriables Returned: *error - Integer pointer
misclassifier - Integer array
Date: 11 Nov 90 Revision: 1.0

*/
*/
*/
*/
»/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/#t#ﬁt‘#“#‘#####*‘###t*t#####*tt“#tt#‘tt#ttittt#t#*t#t*###tt#t*##*[

void test_the_network (struct data *data_record[],

struct Node_data snode_record[],
int nodes_in_layer(],
int-starting_node.in_layer([],
int number_of_layers,

int record,

int total_nodes,

float class_threshold,

int misclassified(],

int *error)

int network_class = 0;
int error_buffer;
error_buffer = serror;

calculate_feed_forrard_network_output(data_recoxrd,
node_record,
number_of_layers,
nodes.in.layer,
starting_node_in_ layer,
record,

total_nodes);

determine_class_as_largest(node_.recoxd,
nodes_in_layer,
starting_node_in_layer,
¥network_class,
number_of_layers,
class_threshold);

update.exroxrs(data_xecord,

recoxd,

network_class,

misclassified,

%erroxr_buffex);

*exrror = erxor_bunffer;

}
[rrernn * FERRRRFRRRERRR RN whakak/
/* Function Name: determine.class_as. largest Eumber: 2.2 */
/* Description: This function determines the class as the largest =/
/* output node if the output is above some level */
/e */
/# Functions Called: None */
/# Variables Passed In: Node_recoxd - Structure array */
/» nodes_in_layer - Integer array */
/* starting_node_in_layer - Integer array */
/* *network_class - Integer pointer */
/* last_layer - Integer */
/* class_threshold --Float */
/% */
/#* Variables Returned: *network.class ~ Integer pointer */
/% Date: 11 ¥ov 90 Revision: 1.0 */
L T T LT I LT PR T T R P > * *x/

void determine.class.as.largest(struct Node_data *node._record[],
int nodes_in_layer[],
int starting.node.in_layer[],
int »network._class,
int last_layer,
float class, _threshold)

{
int x, last.layer_node;
float largest = 0;
for (x = 0; x < nodes_in_layer[last_layex]; x++)

{
last_layer_node = starting_node_in_layer[last_layer] + x;
if ((node_record[last_layer_node]~>output > largest)
&k (node_record[last_layer.node]l->output > class.threshold))
{
largest = node_record[last_layexr_node]->output;
smetwork. class = x + 1;
}
}
}
JER AR RRRAR SRR RS ARRRRNE T T T T T T TP P e e Ty)
/* Function Name: update_erroxs Numberx: 2.3 */
/* Description: This function compares the actual class of the */
/* data xecord with the network class. If the two */
/* are not the same an error ig recorded and the »/
/% record number of the data record is stored. */
/% */
/* Functions Called: None */

G-18

| /* Variables Passed In: training or test_data - Structure array */
/* record = Integer */
/* network..class - Integer */
/* misclassified - Integer array */
| /* *class_error - Integer pointer */
/* »/
/* Variables Returned: #*class_error - Integer pointer */
/% misclassifier - Integer array */
/*» Date: 11 Nov 90 Revision: 1.0 */

/#*"*t“*t#*‘lt#t‘t##‘tttt“t#tt#t‘i.tl“‘###‘##‘#*“##t###‘tttt#tt/

void update_errors(struct data *data_recoxd(],
int record,
int network_class,
int misclassified[],
int *class_exxox)
{
int x;
X = *class_error;
if(data_record[record]->class != network_class)
{
misclassified[x] = data_recoxd[record]->number;
#class_error = *class_erxor + 1;
}
}

G.8 NETTRAIN

/tttttt#tt#ttttttttttt#ttttt#ttvttttttttttit#tttt###tttttttttttttttt/

/* Module Name:NETTRAIN Rumber:3.0 */
/% Description: This module contains the functions necessary to */
/* establish the network parameters. */
/* Modules Called: NETOUT, NETAUX, NETMATH, NETSHOW */
/* Functions Contained: 3.1 global MSE_minimization */
/% 3.2 make_nodes_at.data_points */
/* 3.3 center_weights_at_class_averages */
/* 3.4 k_means_cluster */
I+ 3.5 train_via_kohonen */
/* 3.6 MSE.remaining_layexs */
/» 3.7 CE_remaining layers */
/* 3.8 CFM_remaining_layers */
/% 3.9 PNE_last_layer */
/* 3.10 scale_sigmas_by_class_interference */
/% 3.11 set_sigmas_.to_constant */
/* 3.12 set_sigma_at_P_neighbor.avg */
/* */
/* Date:10 Xov 90 Revision: 1.0 */

/‘ﬁ‘###t#t*t##ttt#‘t‘t##‘#‘*t#“‘#4#‘t“t‘#*#####t#t##t‘ttttt*!t####/

#include "netvrble.h"
#include -"netfnctn.h"

FILE #sfileptr;

/t‘tﬁ#t#“‘#‘##tﬁ##tt##‘t#t‘t#t#tttt#ttt‘tttttttt‘

/‘#.ﬁt###“‘ﬁ*t#t#tti#ttt‘#‘#‘.tttt‘t#tt‘##ttltl‘##‘ﬁﬁﬁ#t#‘tt##t#t*‘/

G-19

/*
/*
/*
/*
/*
/*
/*
/*
/+
/*
/*
[+
/*
/=
/=
/%
/*
/*
/*
/*
/*
/*

Function Name: global_MSE_minimization Number: 3.1 x/
Description: This function performs a global minimization of */
the MSE to find network weights. The equation is =*/

¥ = [M(transpose)](inverse)*Y(transpose)*S */

. o

Functions Called: 8.1 determine_ Y_matrix */
8.2 determine_S_matrix */

9.1 make_identity_matrix */

8.3 determine M.matrix */

9.2 determine_matrix_transpose */

9.3 invert_a_matrix */

8.4 calculate_weight_matrix =/

*/

Variables Passed In: Training Data ~ Structure */
Node Record - Structure */

nodes in layer - integer array «/

starting node in layex - integer array */

total nodes ~ integer */

current layer ~ integer */

74

Variables Retuxned: Node Record - Structure */
Date: 10 Xov 90 Revision: 1.0 */

/#“‘t‘l###‘.‘tt‘#ttttt#'t#‘.‘t#‘tttt‘ttt*t“t*‘t#‘t#t.tt‘#t‘t‘tl#tt/

void global MSE_minimization (struct data *training_datal[],

struct Node_.data *Node_record[],
int train_set,

int nodes_.in_layex(],

int starting_node.in_ layer[],
int total_nodes,

int current_layer)

int row, nodes;

float MT[TRAIN_SET][TRAIM_SET], NLTRAIN_SET][TRAIN_SET],
Y[TRAIN_SET] [TRAXN_SET}, MITRAIN_SET} [TRAIN_SET],
weight [TRAXB_SET] [CLASSES], S{TRAIN_SET] [CLASSES];

float *MTptr[TRAIN_SEI], +Nptr[TRAIN_SET],
*Yptr{TRAIN_SET], sMptr[TRAIN_SET],
*weightptr [TRATN_SET], »Sptr [TRAIN_SET];

for (xrow = 0; row < train_set; row++)

{
Fptr[row]-= &¥[row]([0];
MTptr[row] = &MT[row] [0];
Yptr[row] = &Y[row][0];
Mptr[rowl = 2K[row][0];
Sptr[row] = &S[row]{0];
veightptr[row] = kweight[row][0];
} .
determine_Y_matxix(Node_record,
training.data,
train_set,

nodes_in_layer,
starting_node_in_ layer,
total_nodes,

Yptr,

current_layer);

nodes = nodes_in_layer[current_layer-1];

G-20

determine_S_matrix(training_data,
train_set,
nodee_in_layer,
Sptr,
current_layer);

nodes = nodes.in.lsyer[current_layer];
nodes = nodes_in_layer[current_layer-1];

make_identity matrix (Nptx,
nodes) ;

determine_M_matrix(Yptr,
Mptrx,
nodes,.in_layer,
train_set,
current_layer) ;

determine_matrix_transpose (MTptr,
Mptr,
nodes) ;

invert_a_matrix- (Mptr,
Nptr,
nodes);

calculate_weight. matrix(Node_record,

weightptr,

¥ptr,

Yptrx,

Sptr,
nodes.in_ iayer,
starting_node_in layer,
train_set,

curxent_layer);
}

[arrkxnenssrerersssassr End Global_MSE_Minimization sesssssssesx/

/*‘?t*ttt##‘“tt“*#ltt.tt‘tt#‘t‘*.t“#‘**#tttt##‘t#‘tttt‘tt#‘tﬁ#‘tﬁ/

/*-Function Name: Make-nodes.at_data.points Number:3,2 */
/* Doscription: This module sets the weights equal to the exemplax */
/* values. The equation is w(1) = x(1) */
/* */
/* Functions Called: 7.2 calculate.layer_O_output */
/* 7.3 calculate_layer._1_output */
f* 2/
. /* VYariables Passed In: Training Data - Structure x/
: /* Node Data - Structure s/
/* Train_set = Integer */
/* Nodes_in_layer - Integer array s/
: /* Sigma _MHax - float */
N /* Output_HMax - float */
/* Starting_Bode.in_layer - Integer array +/
. /* Total_Nodes - Integer %/
. /* Bodes_1 - Integer */
X /= */
: /* Variables Returned: Node.recoxd - Structure */
/* +/
/+ Date:10 Nov 90 Revision:1.0 */

/t‘tt##t‘tt#l’l‘tttt#tt#ttt‘t!.t#ttlt#!t‘*‘#t!l’!‘#“!tt“.t'#*#“‘#/

G-21

void make._nodes_at_data_points(struct data *data_record(],

strucy Node_data *n_xecord[],
int record_no,
int nodes_in_layer[],

. float sigma_max,
float output_max,
int starting_node_in_layer([],
int total_nodes,
int nodes_1)

int recoxd, y, nodel, covered, current_node, new._node_number, xfer_function;
record = 0;

nodes_in_layer['] = 0;

for (record = 0; record < record_no; record++)

{
if(nodes_in_layer[1] < nodes.1)
{
covered = O;
calculate_layer_O_output (data_recoxd,
n_record,
nodes_in_layer,
record) ;
calculate_layer_1_output (data_record, ’
n.record, K
nodes.in_layer,
starting.node_in_layer, :
total_nodes); #
for (nodel = 0; nodel < nodes_in_layer[1]; nodel++) R
{ t
current_node = starting.node_in_layer[1] + nodel; :
if ((n_.recoxd[current_node]->output > output_max)
£ 1]
(n_recoxd[current_nodel->class == data_record[record]~>class))
covered = covered +1;
}
if (covered == 0)
{
nev_node_number = starting_node_in_layer[1] + nodes_in.layer[1];
for (y = 0; y < nodes_in_layer[0]; y++)
{
n.record[new. node_number]->weight[y] = data_recoxd[recoxd]l->vector[yl;
n_record[new_node.number]->sigmaly] = sigma_max;
} \
n_record[new_node_number]~>class = data_record[record]->class; 4
nodes_in.layer{1] = nodes.in_layexr[1] +1i; :
}
}
}
}

[/ereesxsacensssrr End Make Hodes at Data Pointsssssses/

/##‘t#t‘t#tl“‘#t#‘t‘tt#t#l‘tt#t##t‘#ttltltt###t‘*ttt*.**t*#‘t#lﬂt‘#“‘/

/* Function Hame: Center_Weights_at.Class.fverages Fumber:3.3 #/ -
/% Description: This function sets the node weights equal to the */
/* averages of clusters of the same class */
/* w(+) = 9(~) + [x-w(-)]/(E+1) */
/* */
/#* Functions Called: 9.4 update.average */
/* */

/* Variables Passed In: Training data - Structure */
/* Node_record ~ Structure */
/* record._no - integer */
/e nodes.in_layer - integer array */
I average.threshold - float */
/* sigma_threshold - float »/
/% starting_node_in_layer - integer array «/
/» total_nodes - integer */
/* current_layer - integer */
/* nodes.1_maximum - integer «/
/* */
/% Variables Returned: Node_record - structure x/
/* */
/* Date:10 Nov 90 Revision: 1.0 */

/#“t‘t"‘##“#‘#“#‘##“#‘t'tt#“#t#“‘#tt*“t‘.ttﬁtl‘t##t“t.i“tt/

void center_weights_at_class_averages(struct data *data_record(],
struct Node_data *node_record[],
int xecoxd_no,
int nodes_in_layar[],
float threshold,
float sigma_max,
int starting_node_in_ laycr(],
int tetal_nodes,
int curzens_ layer,
int nodes_nax)
{
int nearest_node = 0;
int iteration;
double min_distance = 1000;
double distance, buffer;
double exponent_1 = 2;
double exponent_2 = .5;
int new_node = 0;
float new.average;
int record, y, x, covered, elements[TRAIN_SET+TEST.SET], current_node, previous_layer_node, new_node_numbex;
nodes_in_layex{current_layer] = 0;
record = 0;

for (x=0; x < TRAIN_SET + TEST_SET; x++)
elements[x]=0;
do
{
new_node = 0;
for (record = 0; record < record_no; record++)-
{
if (nodes_in_layer[current_layer] < nodes_max)
{
min_distance = 1000;
covered = Q;
calculate.layer_O_output(data_record,
node_recoxd,
nodes_in_layer,
recoxd);

for (x = 0; x < nodes_in_layer[current_layer]; x++)
{
current_node = starting.node_in_layer[current_layexr] + x;
if (node_record[current_node]l->class ==-data_record[record]->class)
{
buffer = 0;
for (y = 0; y < nodes_in_layer[current. layex-1]; y++)
{

previous_layer._node = starting.node_in.layex[current_layer-1]+y;

G-23

Ll fy ks

ae

distance = node_record[current_node]->weight[previous_layer_node]
-node_record[previous_layer_node]->output;
distance = pow(distance, exponent_1);
buffer = buffer + distance;
}
distance = pow(buffer,exponent.2);
if (distance < min_distance)
{
current.node;
distance;

nearest_node =

min_distance =
}

}

}

if (min_distance < threshold)
{
x = nearest-node-starting_node_in_layer[current_layer];
elements[x] = elements{x]+1;
for (¥y = 0; y < nodes_in_layer[current_ layer-i]; y++)
{
previous_layer_node = starting_node.in_layer[current_layer-1] +y;
update_average(node_record[nearest_node]->weight[previous_layer_unode],
olements[x],
node.recoxrd[previous_layer_node]->output,
&new_average);

node_racord[nearest.node]->weight [previous_layer_node] = new_average;
}

x = nodes_in_layer[current_layer];

covered = covered +1;

}

else
{
new_node_number = starting.node_in_layer[current_layer] + x;
fox {y = 0; y < nodes_in_layer[current_layer-1]; y++)
{
previous_layer_node = starting.node.in_layer[current.layer-1] + y;
node_record[new node_number]->veight [previous_layer_node] = node.record[previous_layer_nodel->output;
node_record[nevw_node_number]->sigmafprevious.layer_node] = sigma_max;
¥
node_record[new_node_number]->class = data_record[record]=->class;
elementsx] = 1;
nodes_in_layer[current_layer] = nodes_in_layer[curxent.layer]+1;
/* printf("\ncreated node %d",new.node_number); */
new_node = 1;
}
3
3}
}

while (new_node == 1);

}

[*xsxannsprxnenrbnd Center Weights at Class Centers ss#sssx/

/‘#‘tt't‘#tt‘#‘t#t###'t#ttl‘tt#t‘t#tt‘l#t#“‘#‘#tt#tt#.#l)t‘t“#‘t"’/

/* Function Name:K-Means Cluster Number:3.4 =/
/* Description: This function implements the K-Means Clustering */
/* algorithm to set the weights. */
/* w(+) = (1/¥)sum [x(n)] »/
/* */
/* Functions Called: 7.2 calculate_layer_O_output */

/* 8.28 find_nearest_neighbor */

/* 9.4 update_average */

/% */
/* Variables Passed In: Training Data - Structure */
/% Node_record - Structure »/
/* Train_set - Structure */
/* Yodes_1_Maximum Integer */
/* Nodes_in_Layer - Integer array */
/* Starting_Node.in_layer - Integer array */
/x Curxent_Layer -~ Integer */
/* x/
/* Variables Returned: Xode_record - Structure »/
/* Date: 10 Nov 90 Revision:1.0 »/

/tttttt.“t.‘ttt‘0““'.l#‘##lt‘t“*“‘.“tttt#i‘t#.‘#t.lll.##tl#tt#/

void k.means_cluster(struct data sdata_record[],
struct Node_data snode_record[],
int record_no,
int number_of_clusters,
int nodes_in_layer[],
int starting_node_in_layer[],
int current_layer)

int record, x, y, z, current_node, nearest_node, previovus_layer_node, update;
int total_elements, current_record, elements;
float new_average, current.avg[TEST_SET];
int element [TEST_SET] [TEST_SET], elements_in_cluster[TEST_SET];
double distance, nearest_distance, buffer, difference;
new_average = 0;
for (record = 0; record < number_of_clusters; record++)
{
calculate_layer_O_output(data_record,
node_recoxd,
nodes_ in_layer,
record);

current_node = starting_node_in_layer[current_layer] + record;

for (y = 0; y < nodes_in_layer[current_ layer-1];y++)

{
previous_layer.node = starting_node_in_layer[current_layer-1]+y;
node_record[current_node]~>weight [previous_layer_node] = node_record{previous_layer_nodel->output;

for (x = 0; x < number_of_clusters; x++)
elements_in_cluster[x] = 0;

update = 0;
for (record = 0; xrecord < record_no; record++)
{
find_nearest_neighbor(data_record,
node_record,
record,

nodes_in_layer,

starting.node_in_layer,

current layer,

&nearest._node);
nearest._node = nearest_node - starting_node.in.layer[current_layer];
current_recoxd = elements_in_clusterlnearsst_nede];
element [nearest_node] [current_record] = record;
elements_in_cluster[necarest_node] = elements_in_.cluster[nearest.nodel+1;

}

for (x = 0; x < nodes.in.layer[current_layer]; x++)

{

G-25

current_node = starting.node.in_layex[cnrrent_layer] + x;

for (y = 0; y < nodes_in_layer[current_layer-1]; y++)
current_avgly] = 0;

total_elements = elements_in_cluster[x];

for (z = 0; z < total_elements; z++)

{

record = element(x][z];

elements = z + 1;

calculate_layer_O_output(data_record,

node_recoxd,
nodes_in_layer,
record);

for (y = 0; y < nodes_in_layer[current_layer-1]; y++)

{

previous_layer_node = starting.node_in_layer[current_layer-1] + y;

update_average(current_avglyl,

current .avg [yl
}
}

elements,
node_record[previous_layer.node]->output,
&new_average);

= new_average,;

for (y = 0; y < nedes_in_layer[current_layex-1]; y++)

previous_layer.node = starting.node_in_.layor[current_layer-{] + y;
difference = node_recoxd[current_node]->weight {previous_layer_node]~-current_avgly];

if (fabs(difference) > .00001)

update = 1;

node_record{current_node]->weight [previous_layer_node] = current.avg[yl;

}
}
while(update != 0);
}

/ttatttntttttttttt End X-Means Cluster ttttt:tvtttttttttlno/

/#.ttt‘t‘.tt“"t#“t##“‘tt".‘t‘t#"t#‘#““#."““Q“.t‘tt‘#“‘./

/% Function Name: Kohonen Training Number:3.5 74
/* Description: This function updates the veights via the kohonen »/
I+ training algorithm »/
I w(+) = w(=) + alx-w(-)] */
/% ~/
/* Functions Called: 4.9 get_random_record 74
/% 7.2 calculate_layer_O_output */
/* 8.13 calc_dist_ontput_to_nxt_1yr */
/* 8.14 find_nearest_element ./
/I 8.11 get_linear_training.eta %/
/% 8.12 get_kohonen_neighborhood */
/* 8.15 find_kohonen_boundaries «/
I+ 8.16 determine_neighborhood_elements */
/* 8.17 train_kohonen_veights »/
/* 74
/* Variables Passed In: Training_Data - Structure */
/* Node_Record - Structure */
/* Yodes_in_layer - integer array */
/* Starting_Node_in, layer ~ integer array %/
/* Neighborhoods = integer array */
I+ Train Width - integer array s/
/* Train Scale - float array */
/* Vidth_number - integer «/
/* Nodes.x - integer */
/* Nodes.y - integer »/

G-26

(S TS e L Y

il

L

Sl

gl

e B e W el

Yol

AN

RTINS SRR

FRTONORER AP

N

/= Current.layer - integer */

/* Train_set -~ integer Y
/* */
/+ Variables Returned: Node_record - Structure */
/* Date: 10 Nov 90 Revision: 1.0 v/

/"“‘“‘#‘."‘tt“tttt‘t#‘ttt‘“t‘tt"‘ttt"‘tﬁ‘ttt‘*#*m‘t‘*“t“t‘/

void train_via_kohonen(struct data *data_recur2{],

struct Node_data *node_recoxd[],

int nodes_in_layer[],

int starting_node_in_layex[],

int neighborhoods(],

int train_width[],

float train_scale(],

int width_no,

int nodesg._x,

int nodes.y,

int current_layer,

int train_cet,
int kohonen_iterations,
unsigned seed)

int x, y, current_node, iterations, record; 5
int winner_node;

int neighbors, left, right, up, down, nodes.to_npdate;
int update_node[109];

float eta;

float distance[100];

ke

record = 03
iterations = 0;
syand(seed);
do 3
{ 4
get_random_record(train_set,
krecord);

TR IO

calculate_layer_O_output(data_recoxd,
node_record,
nodes_in_layer,
record);

et e D

L

calc.dist. outputs_to_nxt_lyr(node.recoxd,
nodes_in_layer,
starting.node_in_layer,
current_layer,
distanca);

i ¥ Al

S

find_nearest_element{distance,
nodes..in_layer[i],
winner. node);

L

winner_node = starting_node_in.layor[current_layer]
+ winner.nodo;

T

L

get_linear_training_eta(train_width,
train_.scale,
iterations,
keta,
width_no);

P

get_kohonen_neighborhood(train_width,
iterations,

G-27

RRPIWIWIFL P NEPAICEY) DY PRI E X E T & /7 E I\ TN SIS o)

neighborhoods,
width_no,
tneighbors);

find_kohonen_boundaries(winner_node,
starting_node_in_layer,
current_layer,
nodes_x,
nodes_y,
neighbors,
2left,
tright,
dup,
&down);

determine_neighborhood_elements(left,
right,
up,
doun,
knodes_to.update,
update_node,
starting_node_in_ layer,
nodes_x,
current_layer);

train_kohonen_weights(node_record,
nodes_in_layer,
starting_nrode_in_layer,
current. layer,
nodes_to_update,
update_node,
eta);

iterations = iterations + 1;

}

while (iterations < kohonen_iterations);
}

[exxxxuensx End train via kohonen s#sssssxsssssdsssnssss/

/tttt"#‘ttltt#'ll‘t“tttt‘tltt*‘t#*“".‘#‘#‘.**lt‘t‘f&tt‘tttt#tt‘tl/

/+ Function Name: MSE Remaining Layers Number:3.6 */
/* Description: The function performs backpropagation to optimize #/
/* the MSE objective function. */
/* »/
/% Functions Called: 4.8 get_random_class_record */
/* 7.1 calculate_feedforward_network_output */
/* 8.10 calculate_errors_in_output */
/* 8.5 MSE_last_layer */
/* 8.8 MSE_mid_layer */
/% 8.9 MSE_1st_layer */
/* 5.9 correct_node_veights */
/* 2.1 test_the_network */
/* 9.6 calculate_percentage »/
/* */
/* Variables Passed In: Node_Record - Structure */
/* Training_Data - Structure */
/x Test_Data - Structure »/
/* Transfer_ Function - Integer array */
/* Nodes_in_Layer ~ Integer array */
/* Starting_Node_in_Layer - Integer array */
/* Number_of_Layers ~ Integer */
/¥ Current.Layer - Integer */
/* Train_Set - Integer */
/* Test_Set - Integer */

G-28

/* MSE_Eta - Float «/

/> Total_Nodes - Integex »/
/* MSE_Successes - Integer */
/* MSE_Epsilon - float *x/
/% MSE_Iterations - Integer */
/% MSE_momentum - float */
/* Classes - integer */
/x Record.Seed - unsigned =/
/* File_Ptr - File pointer */
/* */
/% Variables Returned: Node_Recoxd - Structure x/
/* Date: 10 Nov 90 Revision: 1.0 */

/“l““t‘t‘tb't‘“tt‘t#‘#t#t#ttt"“‘#tt*t“#t‘####‘t*tt*“#*#t#t‘t/

void MSE_remaining_layers(struct Node_data #node_record[],
struct data *data_xecord[],
struct data *test_recoxrd{],
int transfer_function(],
int nodes_in_layer(],
int starting_node_in_layex[],
int number.of_layers,
int current_layer,
int train_set,
int test_set,
float eta,
int total_nodes,
int MSE_successes,
float epsilon,
int backprop_iterations,
float alpha,
int classes,
unsigned-seed,
FILE *file_ptr)

float desired_output[CLASSES];

int x, y, error, record, layer, node;
int success = 0;

int iteration = 0;

int error_interval_count = 0;

int erxor._covnt = 0;

int misclassified [TRAIN_SET];

int correct._class = 0;

float class_threshold = 0;

float per_cent_coxrect = 0.0;

float old.wght [TOTAL_NODES][TOTAL.NODES];
float #*wght.ptr[TOTAL_FODES];

class_threshold = 1-epsilon;

for (x = 0; x < total_nodes; x++)
{
for (y = 0; y < total_nodes; y++)
old_wght[x][y] = 0;
wght_ptr{x] = &old_wght[x][0];

srand(seed);

do

{

error = 0;

get.random_class_record(data_record,
train_set,
classes,
grecoxd);

G-29

for (x = 0; x < nodes_in_layer[number_of_layers]; x++)
{
if (x == data_record[record]->class -1)
desired.output[x] = 1.00;
else
desired_ output[x] = 0.00;
}

calculate_feed_ forward_network_output(data_record,
node_record,
number_of_layers,
nodes_in_layer,
starting_node_in_layer,
record,
total_nodes);

calculate_errors_in_output(node_record,
desired_output,
nodes_in_layer,
starting_node_in_layer,
number_of_layers,
&kerror,
epsilon);

if (error != 0)
{
success = 0;
for (layer = number_of_layers; layer > current.layer -1; layer--)
{
if (layer == number_of.layers)
MSE_last_layer(node_recoxd,
desired_output,
nodes_in,layer,
starting_node_in_layer,
layer,
eta,
epsilon,
wght_ptr,
alpha);

else if (layer == number.of_layers-1)
MSE_mid_layer(node.xecoxd,

desired_output,
nodes_in_layer,
starting.node_in_layer,
layer,
eta,
wght_ptr,
alpha);

else if (layer == number_of.layers-2)
MSE_1st_layer(node_recoxd,
desired_output,
nodes_in_layer,
starting_node_in_layer,

layer,
eta,
wght_ptr,
alpha);
}
}
else

success = success + 1;
= iteration +1;

iteration

G-30

correct.node_weights(node_record,
total_nodes);

error_interval_count = error_interval_count + 1;
if (error_interval_count == 1000)
{
error.count = 0;
for (x = 0; x < train_set; x++)
tost.the_network(data_recoxd,
node_record,
nodes_in_layer,
starting.node_in_layer,
number_of_layers,
X,
total_nodes,
class_threshold,
misclassified,
Rerror_count);

correct.class = train_set -~ error_count;
calculate_percentage((float)correct_class,
(float) train_set,
tper_cent_correct);
fprintf(file_ptr,"\niteration = %d training correct = if",
itexation, per.cent.coxrrect);

error._count = 0;
for (x = 0; x < test_set; x++)
test_the_network(test. record,

node_record,
nodes_in_layer,
starting_node_in_ layer,
number_of_layers,
X,
total.nodes,
class_threshold,
misclassified,
Rerror_count);

correct_class = test.set = error_count;
calculate_percentage((float)correct_class,
(float)test_set,
&per_cent_correct);
fprintf(file_ptr,” test percent = Yf",per_cent_coxrect);
erxror_interval_count = 0;
}
}
shile((iteration < backprop_iterations) & (success < MSE_successes));

}

[assssrssesnensrsassssrs End MSE Remaining Layers ssssrssssss/

/‘.#‘tl‘.ttlltllt‘tt‘t#t‘ttt#“t‘#t##‘“ﬁ‘l##tﬁ##t#“t*#tt##“.tt#tt#t/

/% Function Name: CE_Remaining_Layers Number:3.7 */
/* Description: The function sets parameters by backpropagation */
/* according to the CE objective function */
/% */
/* Functions Called: 4.8 get_random_class_xecord »/
/* 7.1 calculate.feedforward_network_output */
/* 8.10 calculate_errors_in_output */
/* 8.20 CE_last_layer x/
/* 8.21 CE_mid_layer */
I+ 8.22 CE.first.layer */
/* 5.9 correct_node_weights */

G-31

R TR

I+ 2.1 test_the_Netwoxk */

/* 9.6 calculate_percentage . «/
/* »/
/#* Variables Passed In: Node_Record ~ Structure */
/* Training._Data - Structure */
/* Test_Data - Structure */
/* Nodes_in_Layer - Integer array */
/* Number,.of. Layers - Integex */
/* Starting_Node_in_Layer - Integer 74
/% Current.Layer - Integer */
/* Train_Set - Integer «/
/* Test_Set - Integex +/
/* CE_eta - Float »/
/* Total_Nodes - Integer */
/* CE_Successes - Integer «/
/* CE_Epsilon - Float 7
/* CE_Iterations - Integer */
/% CE_Momentum - Float s/
/* Classes - Integer */
/* Record.Seed - Unsigned */
/* File.Ptr - File pointer */
/* */
/* Variables Returned: Node.Recoxd - Structure =/
/* Date:10 ¥ov 90 Revision: 1.0 */

/‘t#“#tt.“"“##“O“.t#“‘t“t““‘.tl‘“t‘#tt‘#‘t'tl.tl"ttti‘.t/

void CE.remaining_layers(struct Node_data *node_record{],
struct data *data_record[],
struct data *test_recoxd[],
int nodes_in_layer(],
int starting_node.in_layer([],
int number_of_ layers,
int current_layex,
int train_set,
int test_set,
float eta,
int total_nodes,
int CE_successes,
floxt epsilon,
int CE_iterations,
float momentum,
int c¢lasses,
unsigned seed,
FILE #*£ile_ptr)

float desired_output [CLASSES];

int x, y, error, record, layer, node;
int success = 0;

int iteration = 0;

int error_interval_count = 0;

int error_count = 0;

int misclassified [TRAIN_SET];

int correct.class = 0;

float per.cent_correct = 0.0;

float old.wght [TOTAL_X¥ODES] [TOTAL_NODES];
float #*wght_ptr [TOTAL_NODES];

float class_threshold = 1-epsilon;
float new_eta = eta/(nodes._in.layer[number_of_layers]+2.3);

for (x = 0; x < total_nodes; x++)

{

for (y = 0; y < total_nodes; y++)
old.wght[x]{y] = 0;

G-32

wght_ptr[x] = &old.wght[x1[0];

srand(seed);
do
{
exxor = 0;
get.random_class.recoxd(data_record,
train_set,
classes,
trecord);

for (x = 0; x < nodes.in.layer[number_of.layers]; x++)

{
if (x == data_record[record]->class-1)
desired_output[x] = 1.00;
else
desired_output[x] = 0.00;
. }
calculate_feed.forward.network_output (data_record,
node_xecord,
number_of_layers,

nodes_in_layer,
starting_node_in_layer,
record,

total_nodes);

calculate_errors_in_output(node_record,
desired_output,
nodes_in_layer,
starting_node_in_layer,
numbex.of_layers,
&erroxr,
epsilon);

if (error != 0)
{
success = 0;
for (layer = number_of_layers; layer > current_layer -1; layer--)
{
if (layer == number_of.layers)
CE_last_layer(node_xecoxd,
nodes_in_layer,
starting_node.in layer,
layer,
wght_ptr,
new_eta,
momentum,
desired_output) ;

else if (layer == number_of_layers -1)
CE_mid_layex(node.recoxd,
nodes_in_layer,
starting._node.in_layer,
layer,
wght_ptr,
nev_.eta,

momentum,

desired_output);

else if (layer == number_of_layers-2)
CE_first_layer(node_record,
nodes.in.layer,
starting_node_in_layer,

G-33

layer,

wght_ptr,
nev_eta,
momentum,
) desired.output,
total_nodes);
}
}
else

success = success + 1;
iteration = iteration + 1;
correct.node_veights(node_xecord,

total_nodes);

error_interval_count = error_interval_count + 1;
if (error_interval_count == 1000)
{
error.count = 0;
for (x = 0; x < train_set; x++)
test_the_network(data_record,
node_recoxd,
nodes_in_layer,
starting. node_in_ layer,
number_of_layers,
X,
total_nodes,
class_threshold,
misclassified,
ferror_count) ;

correct_class = train_set - error_count;
calculate_percentagg((float)correct_ciass,
(float)train_set,
-gper._cent_correct);
fprintf(file_ptr," niteration = %d training correct =-%f",
iteration, per.cent_correct);

error_count = O;
for (x = 0; x < test_set; x++)
test_the_network(test_record,

node_recoxrd,
nodes_in_layer,
starting_node.in_layer,
number_of_layers,
X,
total_nodes,
class_threshold,
misclassified,
terror_ count);

coxrrect_class = test_set - erxror_count;
calculate_pexcentage((float)correct_class,
(float)test_set,
tper_cent_correct);
fprintf(file_ptr," test correct = Jf",per.cent_correct);

erroxr.intexrval_count = 0;
}
}
while((iteration < CE_iterations) &k (success < CE_successes));

}

JRERAREERESAAERARERAARREE RS RRREERAE R ERRENRR AR AR AR AN]
/* End CE Remaining Layers */
/‘.“‘**“‘1‘.‘“‘“‘.‘““““‘.".t.““#ﬁ““ﬁ““‘#“‘./

G-34

[0 s st e s aa A0 R ERRARERREREERRRAR T JRRRERRESEEERAERRREARRRRRRRNRS [
/* Function Name: CFM_Remaining_ Layers Number:3.8

/* Description: The function sets parameters by backpropagation

/*
/*
/*
/*
/*
/*
/*
/=
/*
/*
/>
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/x
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*

according to the CE objective :function
Functions Called: 4.8 get_random_class_record
7.1 calculate_feedforward_network_output

W NGO MmOOmON

determine_class_as_largest
£ind_second_highest_node
calculate_zn
CFM_last_laver
CFM_mid_layer
CFM_first_layer
coxrect_node_weights
test_the_netwoxk
calculate_percentage

o wWwo

DR ONVNRODODDOODN
N

Variables Passed In: Node_Record - Structure

Training_Data - Stxucture
Test_Data - Stxucture
Modes_in_Layer - Integer array
Starting.Node_in_layer - Integer array
Bumber_of_Layers - Integer
Current_Layer - Integer
Train_Set - Integer

Test_Set - Integer

CE_eta - Float

Total_Nodes - Integer
CFM_Successes - Integer
CFM_Iterations - Integer
CFM_alpha - Float

CFN_beta ~ Float

CFm_zeta - Float

CE_Momentum ~ Float

CE_delat - Float

Classes - Integer

Record_Seed - Unsigned
File_Ptr -~ File pointer

/* Variables Returned: Node_Record - Structure

/*

Date:10 ¥ov 90

Revision: 1.0

*+/
+/
+/
+/
*/
*+/
+/
*/
*+/
*/
*/
*/
*/
s/
+/
*+/
+/
+/
+/
+/
s/
*/
*/
*/
*/
*/
+/
*/
*/
*/
+/
+/
*/
*/
+/
*/
*/
*+/
*/

/##‘tt“tt#ttt‘it##‘#t‘.‘i!“‘t#.l##“#‘t‘#‘#‘ttt##lttt#ﬁ‘*‘.#‘##“t/

/‘tlt‘tt*‘#*“‘ttt##‘l‘ttt!t‘tt‘tttt‘*"##t.t!tltt‘#"tt‘*‘/

/*

CFX Remaining Lyrs

=/

/t#“###tt‘tﬁt#ttt##t#‘#"#“tt"#“!t‘t#*lt‘!#“"‘##ttt*#/

void CFM_remaining.layers(struct ¥ode_data *node_recoxrd{],

struct data *data_recoxd[],
struct data *test_record[],
int nodes_in_layer[],

int starting.node_in_layer[],
int number_of_layers,

int current_layer,

int train_set,

int test_set,

float eta,

int total_nodes,

int CFM_successes,

int CFM_iterations,

float alpha,

G-35

float beta,
float zeta,
float momentum,
float delta,
int classes,
unsigned seed,
FILE #file_ptx)

int x, y, record, layer, correct_node, winnexr_node;
int network_class = 0;

int success = 03

int iteration = 0;

int error.interval_count = 0;

int errxor_count = 0;

int misclassified[TRAIN_SET];

int correct_class = 0;

£loat per_cent_correct = 0;

int next_highest_node;

{loat class_threshold = 0;

float new_eta = 0;

float zn[CLASSES];

float old_wght [TOTAL_NODES]{TOTAL_NODES];
float *ught_ptx[TOTAL_NODES];

float epsilon = .9;

for (x =-0; x < total.nodes; x++)
{
for (y = 0; y < total_nodes; y++)
old_wght[x][y] = 0;
wght_ptr(x] = &old_wght[x][0];
}

new_eta = exa * beta * alpha/(nodes.in_layer[number_of_layers]-1);
srand(seed);

do
{

iteration = iteration + 1;

get.random_class_record(data_record,
train_set,
classes,
krecord) ;

calculate_feed_forward_natwork_output(data_record,
node_xecord,
number_of_layers,
nodes_in_ layer,
starting_node_in_layer,
record,
total_nodes);

correct_node = starting_node_in_layer [number_of_layers]
+ data_record[record]->class ~ 1;

determine_class_as_largest(node_recoxd,
nodes_in_layer,
starting.node_in_layer,
&network_class,
number_of_layers,
class_threshold);

winner_node = starting._node.in layer[number_of.layers]

G-36

+ network.class * 1;

if (winner.node == correct.node)
find_second_highest_node (node_recoxd,
nodes_in_layer,
starting._node_in_layer,
number_of_layers,
winner_node,
tnext_highest_node) ;

if ((winner_node != correct.node)
Il (node_record[correct_node]->output
- node.record{next_highest_node]~>output < delta))

success = 0;

calculate_zn (node_recoxd,
nodes_in_layer,
starting.node_in_layer,
number_of_layers,
correct_node,
zn,
beta,
zeta);

for (layer = number.of_layers; layer > current.layer-1; layer--)
{
if (layer == number_of.layers)
CFM_last_layer(node_recoxd,
nodes_in_layer,
starting.node_in_layer,
layer,
zn,
correct_node,
new_eta,
sght_ptr,
momentum) ;

else if (layer == number_of_layers-1)
CFM.mid_layer(unode.record,

nodes_.in_layer,
starting.node_in_layer,
layer,
zn,
correct_node,
nev_eta,
wght_ptr,
momentum) ;

else if (layer == number.of_layers-2)

CFM._first_layer(node_record,
nodes..in_layer,
starting.node_in_layer,
layer,
zn,
correct_node,
new_eta,
wght_ptr,
momentum,
total_nodes);

}

else
success = success + 1;

G-37

error_interval_count = error_interval_count + 1;
if (error_interval_count == 1000)
{
error.count = 0;
for (x = 0; x < train_set; x++)
test_the_netwvork(data_recoxd,
node_xecord,
nodes_in_layer,
starting_node_in_layer,
number_of_layers,
X,
total_nodes,
epsilon,
misclassified,
kerror_count);

correct_class = tvain_set - error.count;
calculate_percentage((float)correct_class,
(float)train_set,
tpex_cent _correct);

fprintf(file_ptr,"\niterations = %d training correct = %f",
iteration, per_cent.correct);

error_count = 0;
for (x = 0; x < test_set; x++)
test_the_network(test_record,

node_recoxd,
nodes_in_layer,
starting_node_in_layer,
number_of_layers,
x,
total_nodes,
epsilon,
misclassified,
Rerror_count);

correct_class = test_set - error.count;

calculate_percentage((float)correct_class,
(float)test_set,
tper_cent_correct) ;

fprintf(file ptr," test correct = %f",per_cent.correct);
error_interval_count = 0;
}
}
while(success < CFM_successes &k iteration < CFM_iterations);

/###“l##‘ti‘t‘ttt‘tt.‘t*“‘t‘t"‘““““#‘**‘*#tt“#t*t#/
/* End CFM Remaining Lyrs */

/####t‘##‘***tt#ﬁlt#‘tl‘t‘#t#“‘tt't‘##t‘tt“tt#tttttt‘!tt/

/#“t#t#\ #l“t*t‘##!#t#*t#*ﬁ‘##tt#tt#t#‘t#t.#t!*t#t‘t*ttt‘###t*‘t‘/

/* Function Name:P¥N_last_layer Kumber:3.9 x/
/* Description: This function sets the network weights in the */
/* output layer equal to 1 and connects the output 74
/* layer nodes only to the nodes of the same class */
/* in the hidden layer */
/% */
/* Functions Called: None */
/* Variables Passed In: Kode_Record = Structure */
/4 Hodes_in_Layer - Integer array */
/* Starting_Node_in_Layer - Integer array */
/% Current_Layer - Integer */

G-38

/= +/
/* Variables Returned: Node_Record - Structure */
/% Date:10 Nov 90 Revision:1.0 »/
P T T Y T P Y TR Y

void PNN_last_layer(struct Node_data #node_record[’ .
int nodes_in_layer(],
int starting_node_in_layer([],
int current_layer)

int x, y, current_node, previous_lyr_node;
float nodes_of_class;

for (x = 0; x < nodes_in_layer[current_layer]; x++)

{
current_node = starting_node_in_layer[current_layexr]+x;
node_record[current_node]->class = x + 1;
nodes_of_class = 0;
for (y = 0; y < nodes_in_layer[current_layer-1]; y++)

previous_lyr_node = starting.node_in_layer[current_layer-1]+y;
if (node.record[current_node]l->class ==
node_xrecord[previous_lyr_node]->class)
{
nodes_of_class += {1;
node_record[current_nodel->connect[previous_lyr_node] = 1;
}
else
{
node.record[current_node]->connect [previous_lyx.nodel = 0;
node_record{current_node]l->weight[previous_lyr_node] = 0;
}
}

for (y = 0; y < nodes_in_layexr[current_layer-1]; y++)

previous_lyr.node = starting.node.in_layex[current_layer-1] + y;
node_recoxd[current. nodel->veight [previous. lyr_node] = 1;

}

}

/‘#‘*“tli.‘#‘##t*tt‘##.t!tt‘#t.tt‘#ttt#ttt‘t#t#tl“tt.#tt/

/* End Connect Hodes to Class Nodes +/
JEARRRRREI0ARBREARERRSARRRERERARRREERERARREAIRRERRARR RN NS/

/“‘.“‘.“““‘#‘##'- shkkkkRkE ."t‘.“..“““.“"t‘#t/
/#* Function Name: Scale_Sigmas_by.Class_Interference Number:3.10 =/
/* Description: This function scales the size of the RBF sigmas by */

/* by a constant if a data point causes more than 1 */
/* RBF node to be excited past some threshold and the */
/x RBF nodes are not detecting the same classes. »/
/* */
/#* Functions Called: 7.2 calculate.layer.O_output */
/* 7.3 calculate_layer_1_output */
/» s/
/* Variables Passed In: Training.Data - Structure */
/* Node_Record - Structure */
/% Train_Set - Integer x/
/* Nodes_in_Layer - Integer array */
/* Starting.Node_in_Layer - Integexr array +/
/* Total _Nodes - Integer */
/* Current_Layer - Integexr */
G-39

/* Output_Threshold - Float »/

/e Scale_Factor - Float */
I+ */
/+ Variables Returned: Node_Record - Structure */
/* Date: 10 Nov 90 Revision: 1.0 */

/l..“‘#".“O‘O“O.“‘"“““‘0.“‘“iti‘00".Oi‘.i“‘.“#““tt“/

void scale_sigmas_by_class_interference(struct data »Jata_recori’],
struct Node_data ¢J_record(],
int recoxrd_no,
int nodes_in_layer[],
int starting.node_in layer[],
int total_nodes,
int current_layer,
float out _max,
float scale_factor)

int record_ptr[TOTAL_NODES];

int x, y, node, record, z, current_node;

for (record = 0; record < record_no; record++)

{

calculate_layer_O.output(data_record,

N.record,
nodes_in_layer,
recoxrd);

calculate.layer.1_output(data_recoxd,
¥_record,
nodes_in_layer,
starting.node_in_layer,
total_nodes);

x = 0;
for (node = 0; node < nodes_in_layer[current_.layer]; node++)
{
current_node = starting.node.in.layer[current_layer] + node;
if ((¥_record[current_node)->output > out_max) &&
(¥_record[current_node}~>class != data_xecord[record]->class))
{
record_ptr[x] = current_node;
x = x+1;
}
}
if (x > 0)
{
for (y = 0; y < x; y++)
{
current_node = recoxrd_ptriyl;
do
{
for (z=0; z < total_nodes; z++)
K_record[current_nodel~>sigmal[z]=¥ record[current_nodel->sigmalz]
~scale_factor * (N_record[current_node]->sigma(z]);
calculate_node_output(data_record,
-H_record,
current_node,
total_nodes);
}

- nhile(¥_recordlcurrent _nodel->output > out_max);

3
}

Jrsasenrisnancanssens End Nptimize Sigmas EXRRRERRARRNNRER]

G-40

/O.‘i't“‘tt#.l“‘#"*t.‘#!tl‘l.‘t‘.“!“t#“tt‘t‘t““‘..‘tt“ttt‘t/

/* Function Name: Set_Sigma_to_Constant Fumber: 3.11 */
/+ Descxiption: This function sets the RBF sigmas to a constant »/
/* Functions Called: None */
/¢ Variables Passed In: Xode_.Record - Structure */
/e Nodes_in_Layer - Integer array x/
/* Starting.Node_in_Layer - Integer array */
/+ Curcent_Layer - Integer */
/% Sigma_Constant - Float »/
/* */
/+* Vaxriables Roturned: Node_Recoxrd ~ Structure */
/* Date: 10 Nov 90 Revision:1.0 »/

/..“‘..##‘t“‘i"0.0“..‘.!##!"l“t.t##0t‘t#‘#‘t"tt‘tt#tl#tt“#‘t/

void set_sigmas_to_constant(struct ¥ode.data *node_record[],
int nodes.in.layex(],
int starting.node_in_ layer(l,
int current.layer,
float sigma_constant)

{
int x, y, current_node, previous.layer.node;
for (x= 0; x < nodes_in_layer([current.layex]; x++)
{
current_node = starting.node_.in_layer[current_layer]+x;
for (y = 0; y < nodes_in_layer[current_layer-1]; y++)
{
previous_layer.node = starting._node_in_ layer[current_layer-1l+y;
node_record[current_node]->sigmalprevious. layer_node] = sigma_constant;
}
}
}

/‘ttttttttttttttt“End Set Sigmas to a Constantttttt#ttt‘tt/

/“‘.“““..““t.““t““‘.‘.“‘l#tl.ttl‘t#‘#..‘.t.‘t‘t‘tttt‘t#“/

/* Function Name:Set_Sigmas_at_P_Neighbors_Avg Bumber:3.12 */
/* Description: This function sets the sigmas of the RBFs equal to */
/* the root mean square distances of the closest P */
/* Neighbors */
/* sigma = sqrt[(1/P)sum(dp)] =/
/* */
/* Functions Called: 8.18 find_distance_between_nodes */
/* 8.19 sort_2.dim_array */
I+ */
/* Variables Passed In: Node_Record ~ Structure =/
/* Bodes_in_Layer - Integer array v/
/* Starting_Node_.in_Layer - Integer array */
I* Current_Layer - Integer */
/* Total _Nodes - Integer */
/* P_Neighbors ~ Integer x/
/* */-
/* Variables Returned: Bode_Record -~ Structure */
/+ Date: 10 Nov 90 Revision: 1.0 »/
JHEERRERERERRERRRREERRARRRARE AEERRRAS AREEBRREERE AR R ann [

void set_sigma_at_P.neighbor_avg(struct Node. data *node.record[],
int nodes.in_layer[],
int starting.node_in_layer[],
int current_layer,
int total_nodes,
int p_neighbors

int x, y, z, current.node, next_node, previous_layer_node;
float distance_between[TRAXN_SET] [TRAIN_SET];
float *distance_ptx[TRAIN_SET];

G-41

double avg, distance, buffer;
double exponent_1 = 2;
double exponent_2 = .5;
for (x = 0; x < nodes.in_layer[current_layex]; x++)
distance_ptr[x] = &distance_between[x][0];
for (x= 0; x < nodes.in_layer[cuxxent_ layer]; x++)
{
current_node = starting_node_in layer[current_layer] + x;
for (y = 0; y < nodes_in_layer[current_layer]; y++)

next.node = starting.node_in_layer[current.layer] + y;
find_distance_between_nodes(node_record,
nodes_in_layer,
starting_node_in_layer,
current_node,
next.node,
current_layer,
distance_ptr);

sort.2.dim_array(distance_ptr,
nodes_in_layer[current_layer],
x);
distance-= 0;
for (y = 0; y < p.neighbors +1; y++)
{
buffer = distance_between[x][y];
distance = distance + pow(buffer,exponent_1);
}
avg = distance/p_neighbors;
for (z = 0; z < total.nodes; z++)
node_xecord[current.node]->sigma[z] = pow(avg,exponent_2);

¥

[*t‘tttt#t##‘#‘t‘###t##*#**##“‘#**#t*t*t‘###t#ittt#tt“tt/

/* End Set Sigma at P neighbor average */
J Y T T e e ey

G.4 NETINPUT

/‘t#t‘#‘#t#t##"###t###'t#tt#tt#tt‘t‘t“#‘t#t#ttttt#t#t#‘#ttttt####‘/

/* Module Name: NETINPUT.C Number:4.0 */
/* Descxiption: This module provides the functions necessary to */
/* randomly load the input data and to preset the */
/* network parameters */
/* x/
/* Modules Called:-NETINIT.C %/
/* Functions Contained: 4.1 load_input_pattemms */
/* 4.2 load_separate_files */
/* 4.3 load_from_single_file */
/* 4.4 load_ by._classes «/
/* 4.5 get.data «/
/* 4.6 normalize data «/
/* 4,7 randomize_records */
/* 4.8 get_random_class_record */
/* 4.9 get_random_record */
/* 4.10 calulate_euclidean_distance_between #/
/* _inputs «/
/* 4.11 get_veights */

G-42

/* 4.12 get_sigmas

/* 4.13 get_outputs
/% :
/* Date: 11 Nov 90 Revision: 1.0

*/
*/
*/
*/

’ /“‘#tt‘#t.#t‘##t“t#"t‘t#‘.‘#“‘l““#!i#ttttt.ﬁ#..#tttl“t##t##‘t/

#include "netvrble.h"
#include "netfnctn.h"
#include <time.h>
#include <stdlib.h>

/‘tt.#*t"t#“tt#tlt‘tt‘tt.#‘t‘t‘#““##“tt‘*tt“‘#l#ltt#‘!t#‘#‘#t#/

/* Function Name: load_input_pztterns Number: 4.1 */
/* Description: This function determines wether the data should */
/* be loaded randomly from separate files, from a x/
I* single file for by class */
I */
/* Functions Called: 4.2 load._separate_files */
/* 4.3 load_from.single_file */
/* 4.4 load_by_classes */
/x */
/* Variables Passed In: training_data - Structure array */
/* test.data - Structure array */
/* train.set - Integer */
/* test_set ~ Integer */
I+ dimension - Integer */
/* classes - Integer »/
/* training_patterns_in_class - Integer array */
/* randomization.rule - Integer */
/* data_seed - Unsigned */
/* strain_ptr - FILE pointer */
/* stest_ptr - FILE pointer */
/x x/
/* Variables Returned: *train.ptr - FILE pointer */
/* *test_ptr - FILE pointer */
/* Date: 11 Nov 90 Revision: 1.0 */

/#“##*#‘#‘#‘#*t#"t#l‘t"*t"t#tt##*#t#t‘#t#t#t‘##t##iti#ttttt##‘#‘/

void load_input_patterns(struct data *training_datal],
struct data *test_dataf[],
int train_set,
int test_set,
int dimension,
int classes,
int training_patterns_in.class[],
int randomization_rule,
unsigned data_seed,
FILE strain_ptr,
FILE stest_ptr)

{
int random_recoxrd[TRAIN_SET+TEST_SET];

if (random‘zation_rule == 1)
{
load._separate_files (training_data,

test_data,
train_set,
test_set,
dimension,
random_record,
data_seed,
train_ptr,
test_ptr);

G-43

}

else if (randomization_.rule == 2)

{

load_from_single_file (training.data,

test_data,
train_set,
test_set,
dimension,
random_record,
data_seed,
train_ptr);

}
else if (randomization_rule == 3)
{
load_by.classes (training_data,
test_data,
training.patterns_in.class,
random.recoxrd,
train_set,
test_set,
dimension,
classes,
data_seed,
train_ptr);
}
else
{

printf("\nerror in randomization rule");

}

JRerenensssesases - - s/
/* End Load Input patterns */
P T Y TP T P TP P PP P e ety

L L e T T Ty
/* Functions called by Load Input patterns */
D T T TP P T TS PP T P e Ty}

T T T Py Y LT sesksnnns/

/* Function Rame: load.separate_files Number: 4.2

/* Description: This function loads the input data from a separate

/* test and training file randomly.

/*

/* Functions Called: 4.5 get_.data

/* 4.7 randomize_recoxrds

/*

/* Variables Passed In: training._data - Structure array
/* test_data ~ Structure array

/* train_set - Integer

/* test_set - Integer

/* dimension - Integer

/* random_record - Integer array
/* data.seed - Unsigned

/* strain_ptr - FILE pointer

/* *test_ptr - FILE pointer

/*

/* Variables Returned: training_data - Structure array
/* test.data - Structure array

/* Date: 11 Fov 90 Revision: 1.0

*/
*/
*/
*/
*/
*/
*/
+/
*/
+/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*+/

/#‘tt*t*#t#t#‘1‘#‘#tt‘1‘i###ll".tt‘1.1‘#i#‘l‘0l‘i*t#t##tlt‘tt#tt!#t‘ttt/

SRS T P

[

P O L W T

{

void load_separate_files (struct data *training.data[],
struct data *test_data[],
int train_set,
int test_set,
int dimension,
int random_recoxd[],
unsigned seed,
FILE strain_ptr,
FILE #test_ptr)

{
randomize_records(train_set,
random_record,
seed);
get.data(training_data,
train_set,
dimension,
train_ptr,
random_xecoxd) ;
randomize_records(test_set,
random_record,
seed);
get.data(test _data,
test_set,
dimension,
test_ptr,
random_recoxd) ;
}
/ AEEEEAK e P P T e P T T e T g
/* Function Name: load.from_.single.file Number:4.3 */
/* Description: This function loads the training and test data */
/* randomly from a single file */
/* */
/* Functions Called: 5.7 create_data_record */
/* 4.5 get_data */
/* 4.7 randomize.records /
/% */
/*» Variables Passed In: training_data - Structure array */
/* test_data - Structure array */
/* train_set - Integer */
/% test_set ~ Integer */
/% dimension - Integer */
/* random _xecord ~ Integer array s/
/* data_seed - Unsigned */
/* *train_ptr - FILE pointer */
/% *test_ptr - FILE pointer */
/* */
/* Variables Returned: training.data - Structure array */
/* test_data - Structure array */
/* */
/* Date: 11 Nov 90 Revision: 1.0 */

/##t“t#‘.#ttt#t*"tt*‘*ttttt#t##tt#““#*il##t*##‘t**t##t##t*“###i/

void load_from_single_file (struct data straining_data(J],
struct data »test_datal],
int train_set,
int test_set,
int dimension,
int random_record(],

G-45

unsigned seed,
FILE strain_ptr)

{
int x, y;
int exxor = 0;
stxuct data stemp.data[TEST.SET+TRAIN.SET];
for (x = 0; x < train_set+test_set; x++)
{
create_data_record(temp_data,
X,
Lexxror);
if (error != 0)
{
printf("\n *+ Out of memoxry for temp data ** \n");
}
randomize_records(train_set + test_set,
random_record,
seed);
get.data (temp_.data,
test_set + train_set,
dimension,
train_ptr,
random_record);
for (x = 0; x < train_set; x++)
training_datalx] = temp_data[x];
for (x = 0; x < test_set; x++)
{
y = train_set + x;
test_datalx] = temp_dataly];
}
}
JE S P Ty
/* Function Name: load_by_classes Yumber: 4.4 */
/* Description: This function loads a user selected number of */
/* training patterns for each class randomly from a */
/* single file. The remaining patterns are loaded */
/* as test patterns «/
/% */
/* Functions Called: 5.7 create_data_record */
/% 4.5 get.data %/
/* 4.7 randomize_records «/
/* 4.9 get_random_record */
/* »/
/#* Variables Passed In: training_data - Structure array »/
/* test_data - Structure array «/
/* training.patterns_in.class ~ Integer array */
/* random.record ~ Integer array s/
/* train_set - Integer */
/* test_set - Integer */
/* dinmension - Integer */
/* classes - Integer */
/* data_seed - Unsigned */
/* strain_ptr - FILE pointer */
/* */
/* Variables Returned: training_data - Structure array */
/* test_data - Structure array «/

/* */

/* Date: 11 Nov 90 Revision: 1.0 */
L T T T T T TP LY T T YT Ty

void load_by._classes(struct data straining_dataf],
struct data *test_dataf],
int training_patterns.in_class{],
int random_recoxd(],
int train_set,
int test_set,
int dimension,
int classes,
unsigned seed,
FILE #fptr)

struct data stemp_data[TRAIN_SET+TEST_SET];
int number_in_class[CLASSES];

int x, y, record;

int error = 0;

int class = 0;

srxand(seed) ;
for (x = 0; x < classes+l; x++)
number_in_class{x] = 0;

for (x = 0; x < train_set + test_set; x++)

{
create_data_recoxd(temp.data,
X,
kexrox);
if (error != 0)
{
printf("\n #+ Out of memoxy for temp data #+ \n");
}
randomize_records(train_set+test_set,
random_record,
seed) ;
get.data(temp_data,
train.set+test_set,
dimension,
fptr,
random_recoxd) ;
x = 0;
do
{

get_random_record{classes,
kclass);

class = class + 1;
number..in_class[class] = number_in_class[class]+1;
if (training.patterns_in_class[class]+1 > number_in_class{class])
{

do

get_random_record(train.setttest _set,
trecoxd);
vhile(temp_datafrecord]->class i= class);

training._datalx] = temp_datalrecordl;
temp_datalrecord] = temp_dataltrain_set + test_set -1];
train_set = train_set -1;
x=x+1;
}
else
number._in.class{class] = training.patterns_in_class[class];

G-47

}
while (train_set > 0);

for (x = 0; x < test_set; x+t)
test_data{x] = temp_datalx];
}

L T T TP TR P Y YT Py
/* End Functions Called by Load Input Patterns */

/t!ttttttt".t#t.‘t#tttt"tl‘".‘tt.‘t.tttttt“lt“l*i0‘#“/

/#!.##"t"“‘.“‘t#“.tt###i‘4"#“#“#‘tt‘t‘ttttt#ﬁ‘tt.“.tt“#‘t#/

/# Function Name: get.data Number: 4.5 */
/* Description: This function loads the data into an arxay given */
/» by the user. */
I* +/
/* Functions Called: None */
/+ Variables Passed In: training.data, test_data - Structure array =/
/* train_set or test_set - Integer 4
/* dimension - Integer */
/* *train_ptr or stest_ptr - FILE pointer */
/* random_record - Integer array */
/* +/
/* Variables Returned: training_data, test.data - Structure axray */
/# Date: 11 Nov 90 Revision: 1.0 #/

/tt'#tt““ttttt‘ttt“t#‘tttttl‘ttt“‘..tt..ltt"tt‘t"t#‘t‘#‘ﬁ#tt##/

void get_data (struct data *data_record(],
int record_no,
int dimension,
FILE fptr,
int random_record[])

{
int x, y, record;
float vector_data;
int known_class;
for (x = 0; x < record_no; x++)
{
record = random_record[x];
for (y = 0; y < dimension; y++)
{
fscanf (fptr, "%f", &vector.data);
data_record[recoxd]l->vector[y] = vector_data;
}
fscanf(fptr, “%d",&known_class);
data_record[record]l~>class = known_class;
data_record[record]~>number = x;
}
}
I T
/* Function ¥ame: normalize_data Number: 4.6 %/
/* Description: This function energy normalizes each component of */
/* the input data by */
/* x(k) = sqre{[x(x)~21/[Ix]1~2} */
/* Functions Called: None */
/* */
/* Variables Passed In: training_data, test.data - Structure array */
/* train_set or test_set - Integer */
/* dimension - Integer =/
/* */
/* Variadbles Returned: training_data, test_data ~ Structure array #/
/* Date: 11 Nov 90 Revision: 1.0 */

/tttt‘t.#‘#‘t#*!““.l‘!t‘tt“.t'ttt‘##“"‘#“t#“tt‘t##.t‘ttt'!#“/

G-48

void normalize_datz (struct data *data_recoxd(],
int recoxd_no,
int dimension)

{
double buffer;
float distance;
double exponent.2 = 2;
double exponent.l = .5;
int x, y;
for (x = 0; x < record_no; x++)
{
buffer = 0;
for (y = 0; y < dimension; y++)
buffer = buffer + pow((double) (data_.record[x]->vector[yl),exponent.2);
distance = pow(buffer, exponent_1);
for (y = 0; y < dimension; y++)
data_recoxd[x]->vector[y] = data_record[x]->vectorfy]/distance;
buffer = 0;
for (y = 0; y < dimension; y++)
buffer = buffexr + pow((double) (data_record[x]->vector[y]),exponent.2);
distance = pow(buffer,exponent_1);
}
}
J T T T TP P e T P P T ey P YT Ty
/* Function Name: randcmize_records Bumber: 4.7 =/
/* Description: This function returns an array containing random #/
/* from O to the number of input patterns numbers =/
/* */
/* Functions Culled: 4.9 get_random_recoxd */
/% */
/* Variables Passed In: train_set or test_set - Integer */
/* random_recoxd - Integer array */
/* data_seed - Unsigned */
/* »/
/* Variables Returned: random_recoxd - Integex arxay */
/* Date: 11 Nov 90 Revision: 1.0 x/

/ttttttt#tttlttt#tttt##t#t#t#‘ttttttttt##t‘#ttttt‘#tttttttttttttvttt/

void randomize_records(int max_no,
int random_record[],
unsigned seed)

int x, recoxd, temp[TRAXN_SET+TEST_SET];
for (x = 0; x < max_no; x++)
{
random_record{x] = x;
temp[x] = x;
}

x =0;
if (seed i= 0)
{

srand(seed) ;

do

{

get_random_recoxd(max_no,
drecord);

random_record[x] = -temp[record];
temp[record] = temp[max.n(-i];

G-49

max_no = max_no-1;

x=x+1;
}
while(max_no > 0);
}

}
F T T Py 4
/+ Function Name: get_random_class_record Number: 4.8 */
/+ Description: This function returns the random class and record #/
/* number for a pattern with that class s/
/* */
/% Functions Called: 4.9 get_random.record x/
/* Variables Passed In: training or test_data - Structure array */
/* train_set or test_set - Integer */
/% classes - Integer »/
/* trecoxd - Integer pointer */
/* */
/* Variables Returned: *record - Integer pointer »/
/#* Date: 11 Nov 90 Revision: 1.0 */

/#“‘!t###‘#t#‘t‘t‘.t.‘.0#‘t#tt‘t‘.i‘tt‘t#‘#‘t#t#“‘ttt"tt“‘#t#‘t‘/

void get.random_class_record(struct data *data_recoxd[],
int max_record,
int max_classes,
int #record)

{

int class;

int record_number;
get.random_recoxrd(max_classes,

fclass);
class = class + 1;
do
get.random_record(max_ record,
2record_number);

while(data_record[record_number]->class != class);
*record = record.number;

}

/!t##tl““#‘t#t“###‘#t‘##‘tt#bt‘t'tttt‘tt#t#‘tl‘t.##‘l."“t‘.#t‘t/
/* Function Name: get_random_.record Number: 4.9 */
/* Description: This function returns a random number between 0 */
/* and maximum number -1 */
/* */
/% Fructions Called: Nene */
/+ Variables Passed In: max_number - Integer »/
/* *record - Integer pointer */
/x */
/* Variables Returned: *record - Integer pointer */
/* Date: 11 Nov 90 Revision: 1.0 */

/ttt#t’###‘#*#*##‘#"‘t‘#"#*tt#tt##tttl"##t#t#“‘t‘ttt#’tt#‘*‘##tt/

void get_random_record(int max_number,
int #*record)

float x;

int buffer;

x = ((float)rand())/(32767* 65534);

buffer = (x * max_number + .5);

if (buffer > max_number -.5)
*xacord = 0;

else if (buffer < 0)
*recoxrd = 0;

G-50

else
*recoxd = buffer;

}

P T T T T P Y TR P Y
/* Function ¥ame: calculate_euclidean_distance_between Numbex:4.10¢/

/% ~inputs */
/* Description: This function calculates the distance between */
/* each of the input data records by */
/* d(ij) = sqrt{samfx(i)- x(j)]"2} »/
/* */
/* Functions Called: None »/
/% Variables Passed In: training or test_data - Structure array »/
/* train_set or test_set - Integer */
/* dimension ~ Integer */
/* */
/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

/‘Q“#‘"‘#‘.‘tt.#t#t““#“t#"###ﬁ#“#t!#.‘.tl‘.‘.t#tt*“‘ttt"tlt/

void calculate_euclidean_distance_between_inputs(struct data sdata_record(],
int record.no,
int dimension,
FILE *fptr)

{
float distance;
double buffer = 0;
double exponent.1 = .5;
double exponent_ 2 = 2;
int x, y, z;
for (x = 0; x < recoxd_no; x++)
for (y = 0; y < record_no; y++)
{
buffer = 0;
for (z = 0; z < dimension; z+#)
buffer = buffer + pow((double)(data_record[x]->vector[z] ~
data_recoxd[yl->vectnr[z]),exponent.2);
distance = pow(buffer,exponent._1);
fprintf(fptr, "\n %d %4 distance = %f clacses = %d %d ,
x,y,distance,data_record[x]->class,
data_record[yl->c¢lass);
}
}
R SR T T P TP T LR T e e PRI TR T PY TP STy
/* Function Name: get_veights Number: 4.11 */
/* Description: This function reads the initial network weights */
/* from a file */
/* */
/* Functions Called:None */
/* Variables Passed In:Node_record - Structure array */
/* +fptr ~ FILE pointer */
/* */
/* Variables Returned: Node.record - Structure array %/
/* Date: 11 Nov 90 Revision: 1.0 */

/tlttt‘#ttt‘t‘tt"t##t#t#"t!#tt‘t#‘#tlt‘t##‘tt##“tlt'tt#‘t".t#tt‘/

void get_weights (struct Node_data *node_recordf[],
FILE *fptr)

int x, y;

float weight;

while(fscanf(fptr,"id %d %£", &x, &y, &weight) != EOF)
node._record[x]->weight[y] = weight;

3

/‘.‘..O“O...‘tttt‘tt.#‘t‘.t..“.t#t“"#..““..‘!tt#‘tt‘tltltt.“‘/

/* Function Name: get_sigmas Number: 4.12 s/
/+ Description: This function reads the initial network sigmas */
/* from a file */
/* */
/* Functions Called:Xone »/
/* Variables Passed In:Node,recoxd - Structure array */
/* +fptr - FILE pointer .74
/* */
/* Variables Returned: Node_record - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 ./

/.".t.t“‘l#‘#.‘tttt‘t““‘&ttti‘l"t‘#“‘t“'.“.#“#0.""0“‘0‘./

void get_sigmas(struct Node_data snode_record[],
FILE *fptr)

{

int x, y;

float sigma;

while(fscanf(fptr, "%d %f", &x, &y, tsigma) != EOF)

node_record [x]->sigmaly] = sigma;

}
L T T P Ty T T T PP P P P
/% Function Name: get_outputs Number: 4.13 */
/* Description: This function reads the initial network outputs v/
/* from a fils */
/* =/
/# Functions Called:None */
/* Variables Passed In:Node_record - Structur~ array */
/* sfptr - FILE pointer »/
/* */
/* Variables Returned: Node_recoxd - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 */

/.#t..t‘#"‘#‘ttt###.t#‘t#“t‘*“.t‘#t*tt‘.#“#‘.“"“‘t##t‘#“‘ﬂt#/

void get_outputs(struct Node.data snode_record[],
FILE #fptr)

{
int x;
float output;
while(fscanf(fptr, "%d %f",&x, koutput) != EOF)
node_recoxd[x]->output = output;
}

G.5 NETINIT

/‘Ott“#ll#ttttt#t‘#.#t‘tttt‘t#.tt##“#‘#“‘#.##“‘“‘#ﬁ#‘ttt.“‘t“/

/* Module Name: NETINIT.C Number:5.0 +/
/* Description: This module provides the initialization routines »/
/* for the nodes of a neural network */
/* Modules Called: None x/
/* «/
/* Functions Contained: 5.1 ’initialize_node_veights */
/* 5.2 initialize_node_connections */
/* 5.3 initialize_node_sigmas */
/* 5.4 initialize_node_outputs */

G-52

A §.5 initialize_noa_transfer_function */
/% 5.6 create_node */
/* 5.7 create_data_record */
/* 5.8 disconnect_node */
/* 5.9 correct_node_weights ./
/* */
/* Date: 10 Nov 90 Revision: 1.0 */

/““‘.““.t““..t.‘“ttt“."l‘tt‘.‘“l.t‘l‘t‘.t‘t..tt“‘##tt‘t“/

#include "netvrble.h"
#include "netfnctn.h"

/.““."ltt.‘##l'.‘l‘.“"t“"“0““‘“‘..“0‘0““00#““0“0.‘#/

/* Function Name: initialize_node_weights Xumber: 5.1 74
/+ Description: This function initializes the weights between */
/* connected nodes to the range -1 to 1. For un- */
/* connected nodes, the weights are set to O +/
/%)
/+ Functions Called: None */
/* Variables Passed In: Node_recoxrd - Structure array */
/* total_nodes - Integer */
/* weight_seed - Unsigned «/
/e */
/+ Variables Returned: Node_record - Structure array +/
/* Date: 11 Xov 90 Revision: 1.0 ./

/.l“.l“.l“"t“#.“"‘tttt“t0“‘#‘..“‘.‘.’.t.‘.“‘t‘t“.‘*‘ttt‘/

void initialize_node_weights (struct Node.data #node.record[],
int total_rodes,
unsigned seed)

int x, y;

float fanout = 0;
doudble z = ~1,0;
doudble w = 1.,0;

srand(seed);
for (x = 0; x < total_nodes; x++)
{
fanout = 0;
for (y = 0; y < total_nodes; y++)
if (node_record[x]->connect[y] == 1)
fanout = fanout + 1;
for (y = 0; y < total_nodes; y++)
if (node.recoxd[x]->connectfy] == 1)
{
w = (doudble)rand();
node_record[x]->weight[y] = (pow(z,w)*((float)rand())/(65534¢32767));

}
else
node_recoxd[x]->weight[y] = 0;
}

}
AL PPy
/* Function Name: initialize_node_connections Rumber: 5.2 */
/* Description: This function initalizes the comnnections between %/
/% nodes which should be connected to 1. The nodes #/
/* vhich shouldn’t be connected are set to 0. These =*/
/* connections are dependent on network topology */
/% »/
/* Functions Called: None */
/% Variables Passed In: Node.record - Structure array x/
/* number_of_layers - Integer */

G-53

/> nodes_in_layer - Integer array */

/* starting_node_in_layer - Integer array */
I network_type - Integer */
/* total_nodes ~ Integer ./
I* */
/+ Variables Returned: Node_record - Structure array 174
/= Date: 11 Nov 90 Revision: 1.0 +/

/t‘.‘..“‘.‘.t.‘0"‘.!‘.“0.0.“..‘#‘.#.“.0“‘.““.‘.““‘.“.““/

void initialize_node_connections(struct Node_data #node_record(l,
int number_of_ layers,
int nodes_in_layer(d,
int starting_node_layer[],
int network.type,
int total_nodes)

int layer.no, x, y, layer;

switch (network.type)

{
case 1:
for (x = 0; x < total_nodes; x++)
for (y = 0; y < total_nodes; y++)
node_recoxd[x]->connect[y] = 0;
for (layer_.no = 1; layer.no < number_of_layers +1; layer_no++)
for (x = starting.node_layer[layer_nol; x < starting_node_layer[layer_no]+nodes_in_layer[layer_no]; x++)
for (layer = 0; layer < number_of_layers + 1; layer ++)
for (y = starting_node.layer[layer]; y < starting_node_layer[layer]+nodes_in_layer[layex]; y++)
if (layer == layer_no -1)
node_record[x]->connect[y]l = 1;
else
node.recoxrd{x]->connecty] = 0;
break;
default:
printf("\n Error in network selection");
break;
}
}
/.'tt."".".#“".“t‘.‘."““"““."“‘“#““.“‘.t“.‘.."lt/
/* Function ¥ame: initialize_node_sigmas Yumber: 5.3 */
/* Description: This function initializes the node sigmas to a */
/* random value between 0 and 1 */
/% »/
/* Functions Called: None */
/* Variables Passed In: Node_record - Structure array */
/* total_nodes - Integer */
/* sigma_seed - Unsigned */
/% */
/* Variables Returned: Node_recoxd - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 */

/#‘#*‘*“t#t.".O...‘t‘“#‘#ﬁ‘tt#t.““#‘t#““t#t“‘t.tt‘ttttttﬁlﬁll

void initialize_node.sigmas(struct Node_data *node_record([],
int total_nodes,
unsigned seed)

int x, y;

srand(seed);

for (x = 0; x < total_nodes; x++)
for (y = 0; y < total_nodes; y++)

G-54

node_record[x]->sigmaly) = (((float)xrand())/(32767+65534));

}

[0 0000000400000 00040 0000REE00ARRRRIERERIRIESROIREIERRNRERRIERENS/
/% Function Name: initialize_node_outputs Number: 5.4 ./
/* Description: This function initjalizes the outputs for all the */
/e nodes to O, »/
/* ./
/* Functions Called: None */
/#* Variables Passed In: Node_record - Structure array »/
/* total_nodes ~ Integer */
/* */
/* Variables Returned: Node.record - Structure array «/
/* Date: 11 Nov 90 Revision: 1.0 ./

/“O.#‘Q.'.“‘“.“.‘.t.t“‘.““‘.‘tt"t‘#“‘t“t““.“#‘t‘t“lﬂ“/

void initialize_node.outputs(struct Node.data *node_record(],
int total.nodes)

{
int node;
for (node = 0; node < total_nodes; node++)
node_xrecord[node]->output = 0;
}

/‘l“#.““‘“‘l“““““.‘O.tt...“‘t‘“‘t.t““““t““‘#t“‘#“/
/* Function Name: initialize_node_transfer_function Number: 5.5 #/
/#* Descxription: This function initializes the transfer function */

/% for each node in the network. These transfer */
/#* functions are depenedent on the layer the node »/
/+ is assigned. */
/* */
/* Functions Called: None */
/# Variables Passed In: Hode_record = Structure array */
/* numbexr_of_layers - Integer */
/* nodes_in_layer - Integer array «/
/* starting._node.in_layer -~ Integer array */
/* transfer_function ~ Integer array */
/* */
/#* Variables Returned: Node._record - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 */

/#.#‘#‘t#‘##t‘t#tt‘.‘tttt‘“tﬁ"#"#‘#t#“t‘.#tttt“t‘tt'#‘t“t‘#“'/

void initialize_node_.transfer_function(struct Node_data *node_record[],
int numbex_of_layers,
int nodes.in.layer(],
int starting.node_.layer(],
int transfer_function[]})

{
int layer, node;
for (layer = 0; layer < number_of_layers +1; layex++)

for (node = starting_node_layer[layer]; node < starting_node_layer[layer]+nodes.in_layer{layer]; node++)

node_record[node]l->transfer.function = transfer_ function[layex];

}

/‘t#‘t‘###t#t‘“‘"t“#t##‘*.“####t.##"#‘#‘ttt‘tt“ttttt‘tt#“##ti/
-/* Fonction Wame: create_node Number: 5.6 */
/* Description: This function creates a data structure for each */
/* node in the network */
/t */
/» Functions Called: None */
/* Variables Passed In: Node_record - Structure array */
/% new_node - Integer */
/* serror - Integer pointer */

G-55

/* */
/* Yariables Returned: *error - Integer pointer */
/* Date: 11 Nov 90 Revision: 1.0 */
T P T P T P PP T YTy Yy
void create_node(struct Node_data *node_record[],

int new_node,

int sexrox)

{
if((node_record{new_node] = (struct Fode._data #)malloc(sizeof(struct Node_data))) == NULL)
*erroxr = 1;

}

[RERRL - ERREBRRRRRERRERERERERE AR RAKER s a */
/* Function Name: create_data_record Number: 5.7 %/
/* Description: This function creates a data structure for each */
/* training and test pattern used in the network */
/% */
/* Functions Called: None */
/* Variables Passed In: Node_record - Structure array x/
/* new_record - Integer */
/* *orror ~ Integexr pointer x/
/* */
/* Variables Returned: *error - Integer pointer */
/* Date: 11 Nov 90 Revision: 1.0 x/

/t##“.‘#‘.‘.##'#“‘.t*‘ttt‘##‘tt#‘#‘#tt#“‘ttlt‘#ttt‘#i##t#‘it#t###/

void create_data_record(struct data *data_record[],
int new_recoxd,
int verrox)

{
if((data_record[new_xecordl= (struct data *)malloc(sizeof(struct data)))
==JULL)
sexroxr = 1;

}

JERRERERARARRERERR AT RRR R RS RS RR RO RRE SRS R R RR R AR R]
/* Function Name: disconnect_node Bumber: 5.8 */
/* Description: This function disconnects any nodes which are */
/* no longer required by the network */
/* */
/* Functions Called: None */
/* Variables Passed In: Node_record -~ Structure array */
/* current_node - Integer */
/* total_nodes - Integer */
I+ «/
/* Variables Returned: Node.record - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 */

/#*#t*ttttt’ttt‘*"##i#“##ttttttt###tt##tt##“#“ttt*t#tlt#t.#t“#t/

void disconnect_node(struct Node_data #*node_record[],
int current_node,
int total_nodes)

{
int x;
for (x = 0; x < total_nodes; x++)
{
node_record{x]->connect [current_node] = 0;
node_recoxd[current_nodel~>connect[x] = 0;
}
}

A T PP e ey
/* Function Wame: correct_node_veights Number: 5.9 */

G-56

e

TP AR

RN

R

il

”

L IS

\

ahlied o a7

ChEdas

LTS

ek

et ol e AT L

[P

AR LED,

[N

/* Description: This function ensures the weights always range */
/* between -100 and 100 */
/* »/
/* Functions Called: None +/
/* Variables Passed In: Node_record = Structure array */
/* total.nodes - Integer */
/* */
/* Variables Returned: Node.recoxd - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 »/

/#t#l‘t‘tt‘#“‘##“t#‘tt‘#tt“tttﬁ““##‘0#ttttt#l#“t‘t###ttt‘t#t#‘/

void correct.node.weights(struct Node.data *node.record(],
int total_nodes)
{
int x, y;
for (x = 0; x < total_nodes; x++)
for (y = 0; y < total_nodes; y++)
if(node.record[x]->weighty] > 0)
{
if(node_recoxrd[x]->weight [yl > 100)
node_recoxd[x]->weight[y] = 100;
else if (node_record[x]->weight[y] < .0001)
node.record[x]->weight[y] = .0001;
}
else
{
if(node_record[x]~>weight[y] < -100)
node_record [x]->weight [y] = -100;
else if (node_record[x]->weightly] > -.0001)
node_record[x]->weiglit [y] = -.0001;

G.6 NETSHOW

/*t#tt#t*###*‘#ti‘#‘ﬁ"#####lt##‘###t##tt##t‘t#t#*#tt##tt##tt‘#ttt*tt/

/* Module Name: NETSHOW.C Number: 6.0 */
/* Description: This module contains the functions which display x/
/* or file network data. */
/* */
/* Modules Called: None */
/+ Functions Contained: */
/* 6.1 file_data 6.2 file_randomization_rule */
/* 6.3 file_seeds 6.4 file_net_topology */
/* 6.5 file.transfer_functions 6.6 file_nodes_at_data_points_info*/
/* 6.7 f£ile_center_at_avgs_data 6.8 file_k_means_data */
/* 6.9 file_kohonen_data 6.10 £ile MSE_data */
/* 6.11 file_CFM_data 6.12 file_CE_data ./
/* 6,13 file_matrix_data 6.14 file_parzen_window_data */
/* 6.15 file_sigma_data 6.16 print_last.layer_output */
/* 6.17 file last_layer.output 6.18 print_data */
/* 6.19 file_data 6.20 print_node_data */
/* 6.21 £ile_node_data §.22 print._node_weights =/
/* 6.23 file_node_weights 6.24 print_node_sigma */
/* 6.25 print_node_output 6.26 print_node.transfer_function */
/* 6.27 file.netvork_parameters 6.28 file_error_data */
/* 6.29 file_class_count */
I+ */
/+ Date: 11 Nov 90 Revision: 1.0 */

G-57

/#“#“‘##'#ti#‘#ttttt#‘##‘t‘#‘ttttttt#‘#t**‘ttt“‘t#“tt###‘#‘#“#**/

#include “netvrble.h"
#include "netfnctn.h"

/"t‘##t#*‘t“‘tt#‘#‘#t##tt#tl“#*‘t#‘#t#t‘tt#‘tttt#‘t!tt#tttt‘tt‘#./

/* Function Name: file_data_parameters Number: 6.1 */
/* Description: This function files the data parameters such as */
/» name of data files, length, dimension and classes, */
/* */
/* Functions Called: ¥one */
/* Variables Passed In: train_.file - Character array */
/* test_file - Character arxay */
/% train_set - Integer */
I* test_set - Integer */
/* dimension = Integer */
/* classes - Integer */
/% *fptr - File pointer */
/* Variables Returned: */
/* Date: 11 Yov 90 Revision: 1.0 */

/‘#“#“‘*t#“*#‘#l‘t‘#‘###‘tl#!‘##t##‘t“itt*##‘t##'.#l#*‘!#ttltttt/

void file_data_parametexs(char train_file[],
char test_file(],
int train_set,
int test_set,
int dimension,
int classes,
FILE +fptr)

{

fprintf(fptr,"\n Training file = ¥s",train_file);

fprintf(fptr," Test file = %s", test_file);

fprintf(fptr,”\n with %d training vectors and %d test vectors",

train_set,test_set);
fprintf(fptxr,”\n dimension = %d classes = %d",
dimension, classes);

fprintf(fptr,"\n");
}
F R T T e P T e T P e PP TP P P I e e T Y
/* Function Name: file_randomization_rule ¥umber: 6.2 */
/* Description: This function files the method by which the data #/
/* was loaded. */
/* */
/* Functions Called: None x/
/#* Variables Passed In: randomization.rule - Integer */
/* training_patterns_in.class ~ Integer array */
/* classes - Integer */
/* #fptr - File pointer */
/* */
/* Variables Returned: Kone «/
/* Date: 11 Nov 90 Revision: 1.0 */

/###t##‘tlttt*t##t‘tttttttttt##ttt#tt*t#“t‘ttt*‘#tt“#ﬁ#ﬁ‘t##“t#‘#/

void file.randomization_rule{int randomization_rule,
int training_patterns.in_class([],
int classes,
FILE *fptx)

{

int x;
switch(randomization_xrule)

{

fprintf(fptr,"\nrandomization rule is “);

G-58

case 1:
fprintf(£fptr," load from separate files");
break;

case 2t
fprintf(fptx," load from single files");
break;

case 3:
fprintf(fptr,"load by class ");
for (x = 1; x < classes + 1; x++)
fprintf(fptr,"\n training patterns in class %d = %da",
x, training_patterns_in_class[x]);

}

fprintf (£fptx,"\n");
}
J A T T P PP e P T TP e T T ey
/* Function Name: file_seeds Fumber: 6.3 x/
/*% Description: This function files the seeds used to randomly set */
/* network parameters and load the data. */
/e */
/* Functions Called: Kone «/
/+ Variables Passed In: wght_seed - Unsigned */
/* sigma.seed ~ Unsigned */
/* data_seed - Unsigned +/
/* record_seed - Unsigned */
/* *fptr - File pointer */
/* */
/% Variables Returned: None */
/#* Date: 11 Xov 90 Revision: 1.0 */

/#t‘tI#t*t#ttt#tttitt“#t#‘tt‘#t#t#*Qt##tt‘#‘#t#‘t*##tt#tt#ittt#ttt#/

void file_seeds(unsigned wght.seed,
unsigned sigma_seed,
unsigned data_seed,
unsigned record_seed,
FILE #fptr)

{
fprintf (fptr,"\nveight seed = Ju sigma seed = fu data seed = %u
vwght_seed, sigma_seed, data.seed, record_seed);
fprintf (fpte,*\n");

}

/"‘l‘t‘#tttt#tt#““#i.##“t#‘*‘*#*#tt#*##*#“##*‘#‘#*“4.“‘#‘#‘&*/
/* Function Name: file_net_topology Number: 6.4 x/
/* Description: This function files the topology of the network */
/* such as feedforward with number of layers */
/% */
/* Functions Calles: None */
/* Variables Passed In: network_type ~ Integer */
/* number_of_nodes - Integer */
/* nodes_in_layer - Integer array */
/* +fptr - File pointer */
/* =/
/* Variadbles Returned: None ')
/* Date: 11 Nov 90 Revision: 1.0 */

/#t#ttt!tit‘ttttttl#t*‘###ﬁ‘t!##‘t‘##ﬂtt‘ttt‘"“‘tﬁ“‘t###ttt#tt#t#/

void file_net_topology(int network_type,
int number_of_layers,
int nodes_in_layer[],
FILE #fptr)

G-59

record seed = %u",

{

int x;

if(network.type == 1) .

fprint#(fptr,"\n network type = feedforwvard with number of layers = j%d",
. number..of layers);
for (x = 0; x < number_of.layers+i; x++)
fprintf(£fptr,"\n nodes in layer %d = %d",x, nodes.in.layex([x]);

fprintf(fptr,"\n");
}
J 2y Y T T T P T PP ST PR e T TPy]
/* Function Name: file_tranfer_functions Number: 6.5 «/
/* Description: This function files the transfer function for -each */
/* node in the network. */
/* */
/* Functions Called: None */
/* Variables Passed In: netwoxk.type - Integer x/
/* numbex_of.layers - Integex */
/* starting_node_in_ layer - Integer array */
/* ¥ode_record - Structure array */
/* #fptr - File pointer */
/* */
/* Variables Returned: None =/
/+ Date: 11 Nov 90 Revision: 1.0 */

/tt*t#“#t!ttt#‘t‘.tt‘t‘tttttt#t.‘.i‘###‘#‘!#l‘###tt‘#“‘#‘#t#“‘#"/

void file_transfer_functions(int network.type,
int number.of_layers,
int starting_node_in_layer[],
struct Node_data *node_.recoxrd[],
FILE #fptr)

int x;
if (network_type == 1)
{
for (x = 0; x < number_of_layers+i; x++)
switch(node.record[starting.node_in_layer[x]]->transfer_function)
{
case 1:
fprintf(fptr,"\n layer 4d transfer function = sigmoid",x);
break;

case 2:
fprintf(fptr,"\n layer %d transfer function = rbf",x);
break;

case 3:
fprintf(£fptr,"\n layer Yd transfer function = linear",x);
break;

default:
break;
}

bh

printf{£ptr,"\n");

/"#‘##‘t#tt#tt#t"tt‘#i“t#‘““*t*#*tt#t###‘ttltt####lt.‘#t#t#tt##/

/* Functior: Name: file_nodes_at.data_points_info Number: 6.6 #*/
/* Description: This function files the parameters used to train »/
/* a layer of nodes using the nodes.at_data_points ./

G-60

/* algorithm «/

/* */
/* Functions Called: None x/
/+ Variables Passed In: current_layer - Integen */
/* output_threshold - Float */
I+ sigma_threshold - Float */
i *fptr - File pointer */
I */
/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

/l‘tttt‘0“#“‘.‘3““‘#‘t#t‘##l‘ttt##t‘#.‘tt“‘#.t"t‘t#‘t‘t‘#‘##t#/

void file._nodes_at.data_points_info(int layer,
float output_.threshold,
float sigma_threshold,
FILE *fptr)

{
fprintf(£fptr,"\nlayer ¥%d nodes at the data points",layer);
fprintf(fptr,"\n output threshold = %f sigma threshold = ¥f",
output_threshold, sigma.thxeshold);
} /

/“#tttttttttt#"#‘#!“#‘t##“t#‘t##“‘##‘#tt#i.t.#““#‘t"‘tt““#/

/% Function Name: file_center_at_class_avgs_data Number: 6.7 */
/* Description: This function files the parameters used to train =*/
/+ a layer of nodes using the center_at_class_avgs */
/* algorithm */
/* */
/* Functions Called: None */
/% Variables Passed In: current._.layer - Integer */
/* average_threshold - Float «/
/* sigma_threshold - Float x/
/* *£ptr - File pointexr */
/* */
/+ Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

/###t#t#“###*#‘#‘t#ﬁ‘l‘*‘###‘tt'l##t#t##ttt#t‘ttt#Q‘*#l.t##.t#**#lt/

void file_center_at_class_avgs_data(int layer,
float average.threshold,
float sigma_threshold,
FILE sfptr)

{

fprintf(fptr,"\n layexr %d center at class avgs",layer);

fprintf(fptr,"\n average threshold = %f sigma threshold = %f",

average_threshold, sigma_threshold);

}
/#‘t#‘t‘#‘1#‘##‘**‘#ttt!*t!t#‘*#‘t"tl‘##*‘#‘“'#‘#t#*t#*“t*#“**‘ﬂ/
/* Function Name: file_k.means_data Fumber: 6.8 #/
/* Description: This function files the parameters used to train =*/
/% a layer of nodes using the k_means_clustexr «/
/* algorithm */
/* =/
/* Functions Called: None */
/* Variables Passed In: current.layer - Integer «/
/* clusters - Integer */
/* »fptr - File pointer «/
/* */
/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

/#ttttt“*‘##“ttt#t#‘#“"#t‘tt#t###tt##ttt#t‘t#tt‘t‘t#tt##t###*#tt/

void file_k.means_data(int layer,

G-61

int clusters,
FILE =fptr)

I

fprintf(£fptr,"\n layer %d K means cluster",layer);

fprintf(£fptr,“\n number of clusters = %d*, clusters);
}
F T T T T T T T T Y YT PP Ay
/* Function ¥ame: file_kohonen_.data Number: 6.9 »/
/* Description: This function files the parameters used to train »/
/* a layer of nodes uszing the train_via_kohonen */
/* algorithm »/
/+ */
/* Functions Called: Xone «/
/* Variables Passed In: current.layer - Integer */
/* nodes.x ~ Integer */
/* nodes.y - Integer */
/* +fptr - File pointer */
r* »/
/* Variables Returned: None */
/% Date: 11 Xov 90 Revision: 1.0 */

/‘.‘t###t#.#“#“tt!.#‘!tlt‘tt#ttt“lt““#‘#t‘t#t“‘t"t‘tt.##‘##t‘/

void file_kohonen_data(int layer,
int nodes.x,
int nodes.y,
FILE *fptr)

{

fprintf(fptr,"\nlayer-%d Kohonen Training",layer);

fprintf(£fptr,”\n nodes in x direction = %d",nodes_x);

fprintf(fptr,”\n nodes in y direction-= %d", nodes_y);
}
T T T PP P PP P PP P TP Ty
/+ Function Name: file MSE_data Bumber: 6.10 s/
/* Description: This function files the parameters used to train */
/* a the remaining layers of nodes using the */
/* MSE_xremaining_layers algorithm */
/* */
/* Functions Called: None */
/% Variables Passed In: current_layer - Integer */
/* MSE_iterations - Integer */
/* MSE_error_delta - Float */
I+ MSE_momentum - Float */
/* MSE_successes - Integer s/
/* MSE_eta ~ Float */
/* »fptr - File pointer */
/% */
/* Variables Returned: None */
/* Date: 11 ¥ov 90 Revision: 1.0 */

/"*t#‘l‘tt*lt#'tltttttttt##‘t‘“t“t#“‘##‘t#.‘t‘t#“tt#*.t#“#‘##t/

void file_MSE_data(int layer,
int MSE_iterations,
float MSE_erroxr_delta,
float MSE_momentum,
int MSE_successes,
{loat H5E_eta,

FILE *fptr)

fprintf(fptr,"\nMSE layer %d and all others",layer);
fprintf(fptr,”\n iterations = }d error delta = %f momemtum = %f",

MSE_iterations, MSE_exror_delta, MSE_momentum);
fprintf(£fptr,"’\nsuccess = %d eta = %f" ,MSE_successes,MSE_eta);
fprintf(fptr,”\n");

G-62

3

/#‘.t't#‘t#t#t‘#“‘l##t‘t#‘t‘#."t“‘ﬁ‘##t‘t###‘#tttttttt##.tt‘t#t‘#/

/* Function Name: file_CFM.data Fumber: 6.11 */
/* Description: This function files the parameters used to train #/
/* a the remaining layers of nodes using the */
/* CFM_remaining layers algorithm */
/* 7)
/* Functions Called: None */
/* Variables Passed In: current.layer - Integex */
/* CFM_alpha - Float */
/* CFM_beta ~ Float */
/* CFM_eta - Float */
/* CFM_zeta - Float */
/* CFM_successes - Integer &/
/* CFM_iterations - Integer */
/* CFM_momentum - Float «/
/% CFM_delta - Float */
I+ +fptr - File pointer */
/* »/
/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

/‘..t“‘t‘ttttt‘t..‘#““‘.‘t““tt#tttttt“"‘tt‘i‘t“tt‘ttl“t.t“/

void file_ CFM_data(int layer,
float CFM_alpha,
float CFM_beta,
float CFM_eta,
float CFM_zeta,
int CFM_successes,
int CFM_iterations,
float CFM_momentum,
float CFM_delta,
FILE #fptr)

{

fprintf (fptx,"\nCFM layer %d and all others",layer);

fprintf(fptx, "\nalpha = %f beta = Y%f eta = Yf zeta = Yf",

CFM_alpha, CFM_beta, CFM_eta, CFM_zeta);
fprintf (fptr,"\nsuccesses = %d iterations = %d momentum = %£f delta = Yf",
CFM_.successes, CFM_iterations, CFM_momentum, CFM_delta);

fprintf (fptr,"\n");
}
JARRERRERRRRRRRRRERE AR AR AR KRR RS R RS seasensnn/
/* Function Name: file.CE_data Rumber: 6.12 */
/* Description: This function files the parameters used to train */
/* a the remaining layers of nodes using the */
/* CE.remaining._layers algorithm */
/* */
/% Functions Called: None */
/* Variables Passed In: current.layer - Integer */
I CE.epsilon - Float */
/* MSE_iterations - Integer x/
/* MSE_momentum - Float */
/% MSE_eta - Float */
/* MSE_successes - Integer */
/* *fptr - File pointer */
/* */
/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

T TV e T TP R R e T P T P T T T T Iy
void file_CE_data(int layer,

float CE_epsilon,
int CE_iterations,

G-63

float CE_momentum,
float CE_eta,

int CE_successes,
FILE »fptr)

{

fprintf(fptr,"\nCE layer %d and all othexrs",layer);

fprintf(fptr, "\neplison = #f iterations = %d momentum = %f",

CE.epsilon, CE.iterations, CE.momentum);
fprintf(fptr,"\neta = %f exxors = %d",
CE.eta, CE_successes);

fprintf (fptr,"\n");
}
L L T T T T P T P T e P T T P PP P PP P P P P T e P e e ey
/* Function Name: file matrix_data ¥umber: 6.13 */
/* Description: This function files the parameters used to train */
/* a the remaining layers of nodes using the */
/* global MSE_algorithm x/
/* «/
/* Functions Called: None */
/* Variables Passed In: current_layer - Integer */
/* *»fptr - File pointer */
/% »/
/+ Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

1*‘*tt"t‘.t‘##“#““#‘."ttt#ltttl‘t‘ttt#tt‘tt!t‘t‘tl##‘t‘##t'##t‘/

void file_matrix_data(int layer,
FILE sfptr)

{
fprintf(fptr,"\nLayer %d Linear by Matrix Inversion",layer);

3

T e T T T P e P T T PP R T T TP L ey e e s v Pty
/* Function Name: file_parzen_window_data Number: 6.14 x/
/* Description: This function files the parameters used to train +/
/* a the remaining layers of nodes using the */
/* PXX_implementation algorithm */
/* */
/* Functions Called: None %/
/* Variables Passed In: Wode_record - Structure array */
/* nodes_in_layer - Integer array */
/* starting_node_in_layer - Integer array */
/* current_layer - Integer */
/* *fptr - File pointer */
/* */
/* Variables Returned: Hone */
/* Date: 11 Nov S0 Revision: 1.0 7

/#tttt#ttttltt‘tttt"t#‘#####t't‘#t‘#“#*1#"tt#."‘ttltttt#t‘ttlt‘t/

void file_parzen_window_data(struct Node_data *node_record[],
int nodes_in_layer(],
int starting.node.in_layer[],
int layer,
FILE *fptr)

int x, y, current_node, previous_layer.node;

int total_nodes = O;

fprintf(fptr,"\nParzen vindow for layer %d",layer);

for (x = 0; x < nodes_in_layer[layex]; x++)

{
current_node = starting_node_in_layer[layer]+x;
fprintf(fptr,"\nnode %d with class %d connected to: \n",

current_node, node.record[current_node]->class);

G-64

total_nodes = 0;
for (y = 0; y < nodes_in_layer{layer=-1]; y++)
{
previous_layer.node = starting.node_in_layer([layex-1]+y;
if(node_record[current_nodel~>connect [previous_layer.node] ==1)
{
fprintf(fptr,"¥d ",previous_layer_node);
total_nodes = totul_nodes+i;
}

}
fprintf(£ptr,”\n total nodes for this node is %d ",total.nodes);
}
}

/".##‘t.““'.#‘t.“.t‘t“t“#.‘Ot".‘t#"!t‘t““..#“.“'t‘#tl‘t‘/

/+ Function Name: file_sigma_data Number: 6.15 #*/
/* Description: This function files the parameters used to train */
/% a the sigmas of an RBF notwork by any of the +/
/* following algorithme +/
/* a) scale_according_to.interference */
/» b) set_sigmas_to.constant «/
I ¢) set_sigma_at_P_neighbor.avg */
/% */
/+ Functions Called: None */
/* Variables Passed In: current_layer - Integer */
/* sigma_rule -~ Integer »/
/* interference_threshold - Float */
/* : sigma_factor - Float ./
/* sigma_constant - Float */
/» p.neighbors - Integer */
/% *fptr -~ File pointer */
/* =/
/+ Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 »/

void file_sigma_data(int layer,

int sigma_rule,

float interference_threshold,
float sigma.factor,

float sigma_constant,

int p_neighbors,

FILE *fptr)

fprintf(fptr,"\nsigmas in layer %d",layex);
switch(sigma.rule)
{
case 1:
forintf(fptr,'"\nsigmas scaled by constant");
fprintf (fptr,''intexference threshold = %f sigma fact
interference.threshold, sigma_factor);
break;
case 2:
fprintf(fptr,"\nerror, no training rule");
break;

[
|
/#t#tttt#t‘t‘###"#‘t##'t"#‘#"'#““t.‘.###“tt#t“it‘t‘t‘t#“‘#t*/

case 3:
fprintf(fptr,"\nsigmas set to a constant");
fprintf(fptr," sigma constant = %f",sigma_constant);
break;

case 4:
fprintf(£fptr,"\n P neighboxrs");
fprintf(fptr," p_neighors = %d",p.neighbors);
break;

G-65

or = Jf",

default:

break;
}
fprintf(fptr,"\n");

}

/.0““‘.“‘.#‘.(t"‘tt.".t‘“.t‘ttt‘tt‘0.ttt.".‘.“0.0‘t““‘t‘l‘/
/* Function ¥ame: print_last_layer_output Number: 6.16 «/
/% Description: This function prints the outputs of the last */
/* layer of the network, giving the node number ./
/* node ontput. ./
/e */
/* Functions Called: None +/
/* Variables Passed In: Node_record - Structure array ./
/* nodes_in_layer - Integer array /
/* starting_node_in_layer - Integer array ./
/* last_layer - Integer ./
/s */
/* Vaxiables Returned: None «/
/* Date: 11 ¥ov 90 Revision: 1.0 */

/‘#ttl‘.‘t.t“.‘t.l“‘t..‘.##t!‘t.OO‘.tt“..‘.t#.‘tt“#tt‘tt.t“t‘.#/

void print_last_layer_output(struct Node_data *node.racord(],
int nodes_in_layex(],
int starting.node_in.layer[],
int last_layer)

{

int x, last_layer_node;

for (x = 0; x < nodes_in_layer[last_layer]; x++)

{

last_layer_node = starting.node_.in_layer([last_layer] + x;
print£("\n node %d output = %£",last_layer.node
ynode_record[last_layer_node]->output);

}
}
P T T T T T T P P P Y e ey ey
/% Function ¥ame: file_last_layer_output Number: 6.17 */
/* Description: This function files the outputs of the last */
/* layer of tho network, giving the node numbex */
/% node output, data record number and class. */
/* */
/* Functions Called: None */
/% Variables Passed In: training or test_data - Structure array */
/* ¥ode_record - Structure array x/
/* record - Integer */
/* nodes_in_layer - Intege.. array */
/* starting_node_in_layer - Integer array */
/* last_layer - Integer */
/* *fptx - File pointer */
/* */
/*% Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

/t#ttt‘tttt#"‘t##‘.tt#*‘i‘##“t.tt##ttt“t‘ltt#tttt‘tttttt#““t###/

void file_last_layer_output(struct data =data_recordf],
struct Nods_data #node_record[],
int record,
int nodes_in_layer[],
int starting_node_in_layer(],
int last_layer,
FILE *£ptr)

int x, last_layer_node;

G-66

}

/n
/*
/*
/*
/*
/*
/*
/*
/e
/*
/»

}

/e
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

fprintf(fptr,"\n\n element %d “,record);
fprintf(fptr,"’is data record %d with class ’%d",data.record[record]->number
,data_recoxd{record}->class);
for (x = 0; x < nodes_in_layexr{last_layex]; x++)
{
last_layer_node = starting_node_in_layexr[lasi_layer] + x;
fprintf(£fptr,"\n node %d output = %f",last_layer_node
,hode_record[last_layer_node]->output);

/.““.“‘.‘O".tt.t#t..“O.*t‘t“‘t.#“‘.““l#O..‘t.“““.“t‘.t#/

Function Name: print_data Number: 6.18 */
Description: This function prints the data of the input «/
files as read by the software ./

*/

Functions Called: None */
Variables Passed In: training or test_data - Structure array */
train_set or test_set - Integer */

dimension - Integex */

x/

Variables Returned: None */
Date: 11 ¥ov 90 Revision: 1.0 */

/.““"#"t‘t‘tt‘tttt“tt‘t‘#t“tl‘#tt‘tt.t‘“‘.“#“l““‘.‘.‘..t‘/

void print_data(struct data *data_record(],

int record.no,
int dimension)

int x, y;
for (x =0; x < record._no; x++)
{

for (y = 0; y < dimension; y++)

printf(" %1£",data_record[x]->vector[yl);
printf("\n %d \n\n ", data_record[x]~>class);
}

/‘.tt"l#t““t‘t‘###‘#‘t.t"t#‘#‘*"#‘.“tt#tt.tt‘#t..t‘tt‘#ltttt‘l/

Function Name: file_data Number: 6.19 */
Description: This function files the data of the input */
files as read by the software */

7

Functions Called: None */
Variables Passed In: training or test_data - Structure array «/
train_set or test_set - Integer */

dimension -~ Integer */

+fptr - File pointer s/

*/

*/

Variables Returned: None =/
Date: 11 Nov 90 Revisisn: 1.0 »/

/“ﬁ“i‘#‘t‘###tt.#tt‘#t*#‘#t 7##‘.it#t‘#ttttt#t‘#tttt“ttt‘tlt#."*/

void file_data(struct data *data_record[],

int recoxd._no,
int dimension,
FILE »fptr)

int x, y;
for (x = 0; x < record.no; x++)
{

for (y = 0; y < dimension; y++)

G-67

fprintf(fptr," %f",data_record[x]->vector[y]);
fprint£(fptr,"\n %d \n \n *, da.a_record[x)->class);

}

}
/‘t..‘."t““‘.‘.“..#ii.‘tt.l‘.“.‘0‘“‘.‘..‘.“‘.t“‘t‘t.“‘.‘.../
/+ Function Name: print._node._data Bumber: 6.20 »/
/* Description: This function prints the data structure of each */
/* node in the network including the weights, */
I+ sigmas, and the transfer functions */
/* »/
/* Functions Called: None */
/* Variables Passed In: Node.recoxd - Structure array */
/* current_node ~ Integer */
/* total_nodes - Integer +/
/* of
/* Variables Returned: None »/
/* Date: 11 XNov 90 Revision: 1.0 */

/0“‘##‘t#"‘.““l‘ttt“#“#.“.‘t.“##'#3..t‘t‘.t“t‘tt#‘*.#.“t.‘/

void print_node_data(strict XK»le_data snode_record{],
int current_node,
int total_nodes)

int x;
printf("\ndata for node ¥d",current.node);
for (x = 0; x < total_nodes; x++)
if (node_record[current_node]->connect[x] == 1)
printf("\nweight %d = ¥f",x,node_record[current.node]->weight(x]);

if (node_recordfcurrent_node]->transfer_function ==2)
for (x = 0; x < total_nodes; x++)
{
if (node_record[current_node]->connect[x] == 1)
printf("\nsigma = %f",node_xecord{current_node]l->sigmalx]);
}

else
printf("\n sigma %d = %£",current_node
;node_record[current_node])->sigmalcurrent_node]) ;
printf("\ntransfer function = %d",node_record[current_node]->transfer_function);

/t“‘“‘tttt“t#ﬁtt#ttt‘t#‘tt.tt.‘#‘**t*“‘ttt#t#“‘ttt‘tﬁ‘tt*t#““/

/* Function Xame: file_node_data Numbex: 6.21 #/
/* Description: This function files the data structure of each */
/* node in tke network including the weights, */
/* sigmas, and the transfer functions »/
/* s/
/* Functions Called: None */
/* Variables Passed In: Node_.record - Structure array */
/* current_node - Integer */
I+ total_nodes - Integer */
/* *fptr - File pointer */
/* */
/* Variables Returned: None */
/* Date: 11 ¥ov 90 Revision: 1.0 */

/tt‘t‘tl.tt##t.t*#*t‘t‘l‘#tt#ttttt.t##tttt#t#tttt‘tt#ttt##‘tt‘#t#‘lﬁ/

void file_node_data(struct Node_data *node_record{],
int current_node,

int total.nodes,

FILE #fptx)

G-68

fprintf(£fptr,”\ndata for node %d",current_node);
for (x = 0; x < total_nodes; x++)
{
if (node_recoxrd[current_node}->connect(x] == 1)
{
fprintf(fptr,"\n ught %d = %f ",x,node_record[current_nodel->veight(x]);
if (node_recoxd[current_node]=>transfer_function == 2)
fprintf(fptr," sigma %d = %f “,x,node.record[current_node)->sigma[x]);
}

}
if (node_record[current_node]->transfer_function == 1)
fprintf(fptx,"\nsigna §d = ¥f",current.node
,node_record[current_node}->sigmafcurrent_node]);

fprintf(fptr,"\ntransfer function = %d",node_record[current_nodej->transfer_function);

}

2 T I T T T Y P P T 1Y)
/* Function Name: print_node_veights Numbex: 6.22 */
/* Description: This function prints the weights for each */
/= node in the network. */
/* 7
/* Functions Called: None +/
/+ Variables Passed In: Node_record - Structure array */
/» current_node-- Integer */
/= total_nodes - Integer «/
/* */
/* Variables Returned: Xone */
/% Date: 11 Nov 90 Revision: 1.0 */

/‘.ttlttttt“tt!“t‘###“l‘#t‘.‘t‘#l“‘tOt‘!‘.“‘##““t“.#lt“‘.‘l/

void print_node_weights(struct Node_data #node.record[],
int current_node,
int total_nodes)

int x;
printf("\n¥ode %a",current_node);
for (x = 0; x < total_nodes; x++)
if (node_record[current_nodel->comnect[x] == 1)
printf("\nweight %@ = %f",x,node_record{current_nodel->weight[x]’;

}

/‘..“‘l‘.t‘##‘“."““"“"."l“"..““"‘t“.““‘.“ﬂ.“““./
/#* Function Name: file.node_weights b Number: 6.23 */
/#* Description: This function files the weights for each */
/* node in the network. */
/* */
/* Functions Called: None */
/* Variables Passed In: Node_record - Structure array */
/* current_node - Integer */
/* total_nodes - Integer */
/* sfptr - File pointer */
/* */
/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

/*t“tt“ttt‘tttt‘tttt#t#*4‘#“#ﬁ#“tt‘tt#‘t‘tt#‘##t#t#tt#‘#*##t‘t#‘/

void file_node_weights(struct Node_data #node_record[],
int current_node,
int total.nodes,
FILE +fptr)

{

int x;

fprintf(fptr," \n¥ode ¥d",current_node);

for (x = 0; x < total_nodes; x++)

G-69

if (node_record[current_node]->connect[x] == 1)
fprintf(fptr,"\nveight %d = %f",x,node_record[current_nodel->weight[x]);

}

JERRRRRRRRRARER A RRE AR xne AEREE R R sRsnsny/
/% Function Name: print_node.sigma Bumbex: 6.24 #*/
/* Description: This function prints the sigmas for each */
/% node in the network. x/
/* */
/* Functions Called: None */
/* Variables Passed In: Kode_record - Structure array x/
/% current_node - Integer */
/* total_nodes - Integer */
/* */
/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */
Jarersnrenns e T AREEERRRERR ek

void print_node_sigma(struct-¥ode.data *node_record{],
int current._node,
int total.nodes)

int x;
print£("\nNode %d",current_node);
if (node_record[current_node]->transfer_function == 2)
for (x = 0; x < total._nodes; x++)
{
if (node_record[current_node]->connect[x] == 1)
printf("\n signa %d = %£",x, node_record[current_nodel->sigmalx]);

else
printf(*\n sigma %d = %£",current_node,
node_recoxd[current_node]}->sigmafcuxrrent.node]);

}

L T e P PP T T PP PP e e v e Y Ty
/* Function Name: print_node_output Number: 6.25 =*/
/% Description: This function prints the output for a given */
/* node in the network. */
/* */
/% Functions Called: None */
/* Variables Passed In: Node.record - Structure array */
/* current_node - Integexr */
/* »/
/* Varlables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

/#t#t‘*!t#*‘#tt#t#i#t#'#*tt###*t#tﬁt"!#t*#*l##t#t#tt#t‘##‘#t#t‘#ﬁtt/

void print_node_output(struct Node.data *node_record[],
int current_node)

{
print£("\n Node !d output = %f",current_node, node.record{current_node]->output);

}

/"t‘ttitittt.tt.ﬁ ko *tﬂ‘*li‘ﬁ*“‘*‘ii\i“*tttl‘tt!*‘**‘/
/* Function Name: print.node_transfer_function Numbex: 6.26 */
/* Description: This function prints the transier function for a */
/* given node in the network. */
/* */
/* Functions Called: None */
/* Variables Passed In: Node.record - Stxucture array */
/* current.node ~ Integer */

G-70

/* total_nodes - Integer »/

/% */
/% Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 */

/Q#t.tt#“““‘*.#‘#t####“‘#tl#"#"#t‘ttttl#t‘tt#""'ttt'tttt###t/

void print.node.transfer_function(struct Node_data *node_record(],
int current_node)

{

printf("\n No? ¥ { transfer function = 4%d",current_node,node_record[current_node]->transfer_function);

/tttt#t#l.!#ttttttt!‘t##‘#‘##“‘###t###‘t‘t‘t*‘#*tt#t##t#t##‘#t##“*/

/* Function Name: file_network_parameters Number: 6.27 */
/* Description: This function files the network parameters, */
/* network type, number of layers, nodes in each */
/* layer, node transfer functions, training rules */
/% and the interconnection topology for the network */
/* nodes */
/x «/
/* Functions Called: None */
/* Varii »'es Passed In: Node_record - Structure array */
/* network.type - Integer x/
/* number_of_ layer - Integer »/
/* nodes_in_layer - Integer array */
/* training_rule - Integer array x/
/% transfer_function - Integexr array */
/* sigma.rule - Integer */
/* total_nodes - Integer */
/* *+fptr - File pointer */
/* */
/* Variables Returned: None */
/+ Date: 11 Nov 90 Revision: 1.0 */

/t#tt‘#*t#i‘*#‘#‘#“‘tt*‘*tl#ttt##t"#t‘t‘ttt#‘##tt#tt#iti‘####tt##t/

void file_network_parameters(struct Node.data *node_recoxd[],
int network_type,
int number_of_layers,
int nodes_in_layer(],
int training.rulel],
int transfer_function[],
int sigma_rule,
int total_nodes,
FILE sfptr)

int x, y;

fprintf(fptr,"\n¥etwork Parameters");
fprintf(fptr,"\nNetwork type = {d",network.type);
fprintf(fptr,"\nNumber of layer = %d",number_of.layers);
for (x = 0; x < number_of_layexs + 1; x++)

{
fprint£(£fptr,"\n nodes in layer %d = %d",x,nodes_in_layer[x]);
fprintf (fptr,” transfexr function = %d",transfer_function{x]);
fprintf(fptr,” training rule = }d",training_xrulelx]);

}

fprintf(fptr,"\n sigma rule = %d",sigma_rule);
for (x = 0; x < total_nodes; x++)
{

fprintf(£ptr,"\n\n node %d receives input from the following nodes\n",x);

for (y = 0; y < total_nodes; y++)

{

if (node.record[x]->connect[y] == 1)
fprintf(£fptr,"id ",y);

G-71

}

J T P T e T Ty Py T O T TP eI Ty
/* Function Name: file_error_data Number: 6.28 =/
/* Description: This function files the total number ofch =/
/* errrors, the percentage correct, and the record */
/* misclassified */
/* */
/* Functions Called: None =/
/* Variables Passed In: class_exrror - Integer */
/* per.cent_correct - Float */
/* misclassifier -~ Integer Array */
/* +fptr ~ File pointer */
/* */
/* Variables Returned: None */
/* Date: 11 Nov 90 Revision: 1.0 »/

/ttt#t#.t.l#ttt‘.##t‘t‘**"#‘#t“##t#*ttit#.t###ttl###tt‘#‘#“#"‘l*/

void file_error_data(int class_error,
float per_cent_correct,
int misclassified[],
FILE *fptr)

int x;
fprintf(fptr,"\n total erroxrs = %d",class_error);
fprintf(£ptr,"\n per cent correct = ¥f",per_cent.correct);
for (x = 0; x < class_exxor; x++)
fprintf(fptr,"\n record %d misclassified ",misclassified[x]);

}

T e P T PP e P PP P PP T e P e e T Y Y
/* Function Name: file_class_count Number: 6.28 */
/* Description: This function files the number of training */
/* patterns from each class x/
/* =/
/* Functions Called: None */
/* Variables Passed In: training_patternms.in_class - Integer array #*/
/* classes - Integer */
/* *»fptr - File pointer */
/* x/
/* Variables Returned: Hone */
/* Date: 11 Kov 90 Revision: 1.0 */

/#ttttt##tt‘tt3‘#t*##ttt"t##l#i‘t“**‘#t#t#“t‘##tt#‘tt##t#tt“t#tt/

void file_class_count (int training._patterns_in_class{],
int classes,
FILE #fptr)

int x;
for (x = 1; x < classes +1; x++)
fprintf(fptr,"\n records in class %d = %d",x, training_patterns_in_class[x]);

G.7 NETOUT

/‘t.‘t.‘##t‘#‘#tt#tt“tt#“it‘t"t‘l‘tt#t'#!t.###“#“#“t“t.t‘tt't/

/* Module Name: WETOUT.C Numbex: 7.0 =»/
/#* Description: This module contains the functions which «/
/* calculate the output for each node in the network #/
/* due to a given input pattern */
/* */
/* Modules Called: None */
/* Functions Contained: 7.1 calculate_feed_forward.network_output =/
/* 7.2 calculate_layer.O_output */
/* 7.3 calculate_layer_i_output */
/* 7.4 calculate_layer_2_output */
/* 7.5 calculata.layer._3.output */
/* 7.6 calculate.node.output */
/* 7.7 calculate_output.as._input */
/* 7.8 calculate_linear_output */
/* 7.9 calculate_rbf_output */
/* 7.10 calculate_sigmoid_output */
/* »/
/* Date: 11 Nov 90 Revision: 1.0 +/

/“#t#ttt#tttt#‘.#“'.#.t#li‘"‘#‘t‘t#t‘ttt#t##tt“t#‘#ttt##t#.t#“i/

#include"netvrble.h"
#include"netfnctn.h"

AL T T T e T T T e e ey ey
/* Function Name: calculate.feed_forward_network_output Number:7.1i*/

/* Description: This function calculates the output of a feed x/
/* foxward network due to an input pattern */
/* */
/* Functions Called: 7.2 calculate.layer.O.output */
/* 7.3 calculate_layer_1i_output */
/* 7.4 calculate_layer.2_output */
/* 7.5 calculate_layer.3_output */
/* */
/#* Variables Fassed In: training or test_data - Structure axray »/
/* Node_record - Structure array */
/* number_of_layers - Integer */
- /* nodes_in_layer - Integer array */
/* */
/* Variables Returned: Node_record - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 */

/“‘##ﬁ’t“‘ﬁ#“‘t#t##t#ttt‘t#ttt.####“’#‘ttt“‘t#*t“‘t#t##ttt#ttt/

void calculate_feed_forward_network_output (struct data sdata_record[],
struct Node_data *node_record[],
int number_of_layers,
int nodes.in_layer[],
int starting_node_in_layer[],
int recoxd,
int total_nodes)

int layer;
for (layer = 0; layer < number_of_layers + 1; layex++)

switch (layex)
{

case O:

calculate. iayer_O_output(data_record,
node.record,
nodes.in_layer,

record);

break;
case 1:
calculate.layer_1_output(data_record,
node_record,
nodes_in_layer,
starting_node.in_layer,
total_nodes);
break;
case 2:
calculate_layer_2_output(data_record,
node_record,
nodes_in_layer,
starting_node_in_ layer,
total_nodes);
break;
case 3:
calculate_layer_3_output(data_record,
node_recoxd,
nodes_in_layer,
starting_node_in_layer,
total_nodes);
break;
default:
printf("\nerxror");
3
}
}
F A T YT T e ey
/% Function Name: calculate_layer.O.output Number: 7.2 x/
/* Description: This function calculates the output for each node #*/
/* in layer O of a feed forward network */
/* »/
/* Functions Called: 7.6 calculate_node_output */
/* Variables Passed In: training or test._data - Structure array «/
/* lode_record - Structure array «f
/* nodes_in_layer - Integer array */
VA record - Integer ~/
/% */
/+ Variables Returned: Node.recoxd - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 */

/#t*#t##**tt#*‘#t##tt##t.*##tt##ttttttl‘t‘#t##‘#‘####t“t#‘&‘t#.**##/

void calculate_layer_O_output (struct data *data.record[],
struct Node_data *node_recoxd[],
int nodes_in_layer{],
int record)

{
int nodeO;
for (noded = 0; node0 < nodes.in_layerf{0]; node0++}
calculate_node_output (data_recoxd,
node_xecoxd,
node0,
record);
}

/t‘#‘*‘t#‘t“tt‘#*‘t##“##‘l‘*'*ﬁ‘##l##tttttt#tttttt#t‘#tt#‘tttt‘t#‘/

G-74

/* Function Name: calculate_layer_1_output Xumber: 7.3 7
/* Description: This function calculates the output for each node #/
/= in layer 1 of a feed forward network x/
/» */
/* Functions Called: 7.6 calculate_nede_output */
/% Variables Passed In: training or test.data - Structure array 74
/* Node_recoxrd - Structuxe array */
/* nodes_in_layer - Integer array */
/* starting_node_in_layer - Integer array ./
/* total_nodes - Integer */
/* */
/* Variables Returned: Node_record - Structure array +/
/* Date: 11 Nov 90 Revision: 1.0 +/
[HEERBRRERAERRRRRRARRERRRRRER ERERSEARERER sanennn/

void calculate_layer_i_output (struct data *data_recoxd[],
struct Node.data *node_record[],
int nodes_in_layer([],
int starting_node_ layer([],
int total_nodes)

int nodel,current_node;
for (nodei = 0; nodel < nodes_in_layer(1]; nodel++)
{
current_node = starting.node.layer1] + nodei;
calculate_node_output (data_recoxd,
node_xecord,
current_node,
total_nodes);

}

/#l#‘4#“"t‘t*tt#‘#ﬁ“““t#.‘ltt###t"t#tt‘#ttt.ttt#t#tt#lt‘tttlt#/

/* Function Name: calculate_layer_2_output Number: 7.4

/* Description: This function calculates the output for each node
/* in layer 2 of a feed forwaxd network

/»

/% Functions Called: 7.6 calculate_node_output

/* Variables Passed In: training or test.data - Structure array
/* Node_record ~ Structure array

/* nodes_in_layer - Integer array

/* starting_node_in_layer - Integer array
/* total_nodes - Integer

/=

/* Variables Returned: Node_record - Structure array

/* Date: 11 Nov 90 Revision: 1.0

*/
*/
*/
+/
*/
*/
+/
=/
*/
*/
*/
*/
x/

/##‘#t#t##‘l"‘t*&“t‘“l‘#‘*#t“t#“‘t‘ttttt‘tttt#tt‘ttt#ttt##tt#t#/

void calculate_layer.2_output (struct data #data_record[],
struct Node_data #*node_record[]l,
int nodes.in_layer[],
int starting_node_layer[],
int total_nodes)

int node2, current_node;
for (node2 = 0; node2 < nodes_in_layer[2]; node2++)
1
current.node = starting_node_laycer[2] + node2;
calculate_node_output (data_record,
node_record,
current_node,
total_nodes);

G-75

}

/""‘#..‘.t“‘ttt‘#t“““tt#tltc"““‘t‘t".#““‘t‘#‘#t“tt“lt‘/

/* Function Name: calculate.layer.3_output Number: 7.5 */
/* Description: This function calculates the output for each node #/
I+ in layer 3 of a feed forward network ./
/* */
/* Functions Called: 7.6 calculate_node_output */
/* Variables Passed In: training or test_data - Structure array */
/* Node_recoxrd - Structure array */
/* nodes_in_layer - Integer array */
/* starting.node_in_layexr - Integer array */
/% total.nodes - Integer »/
/* i
/# Variables Returned: Node_record - Structure array */
/* Date: 11 Nov 90 Revision: 1.0 */

/““"“‘..“#“tt#‘t.tt‘.ttt###“t#‘tt“‘“tt‘tlt“‘####“t““t“/

void calculate_layer_3_output (struct data sdata_record[],
struct Node_data #node_recoxd[],
int nodes_in_layex(],
int starting_node_layer(],
int total_nodes)

int node3, current_node;
for (node3 = 0; node3 < nodes_in_layer[3]; node3++)
{
current_node = starting_node_ layer[3] + node3;
calculate_node_output (data_record,
node_record,
current_node,

total_nodes);
}

}

JERRnsnsnsresen - B T P P R T T P e e P Y
/* Function Name: calculate_node_output Number: 7.6. */
/* Description: This function calculates the output for a single #/
/* node in a network by testing the transfer »/
/* function and sending control to the appropriate »/
/* function */
/* */
/* Functions Called: 7.7 calculate_.output_as_input */
/* 7.8 calculate_linear_output */
/* 7.9 calculate_rbf_output */
/* 7.10 calculate_sigmoid._output */
/* »/
/* Variables Passed In: training or test_data - Structure array */
/* Node_record - Structure array */
/* current_node - Integer array */
/> total_nodes - Integer «/
/* */
/* Variables Returned: Node_record - Strxucture array */
/* Date: 11 Nov 90 Revision: 1.0 */

/‘t#.#“tt‘#‘t“tt‘ttt##tt‘#"t#'#‘tﬁ““tt‘t#‘#“tlttitt#ttt‘t‘t#‘#/

void calculate_node.output(struct data *data_record[],
struct Node_data *node_record[],
int current_node,
int total_nodes)

G-76

suitch (node_record[current_node]->transfer_function)

{

case 0:
calculate_output_as_input (data.recoxd,
node_recoxd,
current_node,
total_nodes);
break;
case 1 :
calculate_sigmoid.output(node_.record,
curxrent_node,
total_nodes);
break;
case 2 :

calculate_rbf_output(node_record,
current_node,
total_nodes);

break;

case 3 :
calculate.linear_output(node_recoxd,
current_node,
total.nodes);

break;
default:
break;
}
}
T O R e T T e T e e T T Y
/% Function Name: calculate_output_as_input Number: 7.7 */
/* Description: This function calculates the output for node */
/* with the identity transfer function as */
/* y(out) = x(in) */
/* */
/* Functions Called: None */
/* Variables Passed In: training or test.data - Structure array #*/
/* Node_record ~ Structure array */
/s current_node - Integex */
/* record - Integer */
/* */
/+ Variables Returned: Node_record - Structure array */
/+ Date: 11 Nov 90 Revision: 1.0 */

/‘tt‘*ltt‘t‘t‘t!t‘t‘#tttt‘t“‘#ttt‘t“t#1#‘“t.t##“‘t“‘##“#t#t##t/

void calculate_output_as.input(struct data *data_record[],
struct Node_data *n_recoxd(],
int node,
int record)

{
n_record{node]~>output = data_record[record]->vector[node];
n_record[node]~>class = data_record[record]->class;
}
/tt*"t.t.‘##t“tt“‘t‘*l#*"#‘t##ttl##t“t‘#“##‘#‘t##‘tﬁ#“#tt.‘##/
/* Function Name: calculate.linear_output Bumbex: 7.8 */
/#* Description: This function calculates the output for node */
/* with the linear transfexr fuaction as */

I ¥(1) = sunlw(x1)x(X)] *+/

“

/e »/
/* Functions Called: ¥one «/
/= Variables Passed In: Node_record - Structure array */
/* current_node - Integer ./
/* total.nodes - Integer */
/» +/
/* Variables Returned: Node_record - Structure array */
/+* Date: 11 Nov 90 Revision: 1.0 «/

/tltlt#".‘...‘0‘..#‘l“..t‘l‘t"tt'#.t“‘#‘t““‘.“‘t.#lt“““t“/

void calculate_linear_ output(struct Node.data *node.xecoxd(],
int current_node,
int total_nodes)

int node;
node_record[current_node]->output = 0;
for(node = 0; node < total_nodes; node++)

{
node_record{current_node]->output = node_record[current_node]->output
+ node.recoxd[current_node]~>weight[node)
* node.record[node]~>output
* node_record[current_node] ->connect [node] ;
}
}

JHEERRRCRRREERERRREAARRRERARRRRRE A RE SRR RN NS ey

/* Function Name: calculate_rbf_output ¥umber: 7.9 7

/* Description: This function calculates the output for node */

/* with the linear transfer function as */

/* y(1) = exp(~[1/2]sun{[x(k)~u(Xx1)]~2/€"2] */

I+ */

/#* Functions Called: Yone */

/* Variables Passed In: Node_.record - Structure array */

/* current_node - Integer x/

/* total_nodes - Integer */

/* */

/* Variables Returned: Node_record - Structure array */

/* Date: 11 Nov 90 Revision: 1.0 */

/#*t#l‘##.###‘t"‘tﬁ‘l't.tt###"“‘t‘#‘ttt#‘ﬁ‘#t.t##“#‘t‘#t#*#t*‘t#/

void calculate_rbf_output(struct Node_data *node_record[],
int current_node,
int total_nodes)

{
double buffer =0;
double weight_offset = 0;
double x = 2.0;
int node;
for (node = 0; node < total_nodes; node++)
{
if(node_record[current_nodel->connectnode] != 0)
{
weight_offset = (node.record[current_node}->weightnodel-
node_record[node]->output);
buffer = buffer
+ pow((weight_offset/node_record[current.node]->sigmalnodel),x);
}
}
node_record[current_node]->output = exp(~(double)(buffer/2));
}

/t"##t#‘tt‘###‘#‘#‘*l"‘t““#t#ttt.tt#‘#‘#tl#t#“t‘t"t‘t*‘#tttttt/

G-78

b

e

PPN

[v S St B8 oS a0 N G 2 Nng BV Cedb TLANDY

/* Function Name: calculate_sigmoid_output Number: 7.10 «/

/* Description: This function calculates the output for node */
/* with the sigmoidal transfer function as */
/* y(1) = 1/{1+exp[-sun[w(k1)x(k)]+e]} »/
/* */
/# Functions Called: None */
/* Variables Passed In: Node_record - Structure array */
/* current_node - Integer »/
/* total_nodes - Integer 7
/* */
/* Variables Returned: Yode.record - Structure array x/
/* Date: 11 ¥ov 90 Revision: 1.0 */

/.t‘#lt.tttt‘lt““..“0‘#‘.‘t.t‘.lt““‘#“‘t#tt‘t‘tt‘#‘.“"#tt‘tt/

void calculate_sigmoid_output(struct Node.data *node_recordd,
int current_node,
int total_nodes)

{
doudble buffer = 0;
int node;
for (node = 0; node < total_nodes; nodet++)
{
if (node_record[current_nodel->connect[node} != 0)
buffer = buffer + node.record[current_nodel->weight [node]
+ node_recoxd[node]l->output;
}
buffer = buffer + node.record[current_nodel->sigmalcurrent_nodel;
node_recoxrd[current_node)->output = 1/(1 + exp(-buffer));
}
G.8 NETAUX

i‘#"##t“‘#“*t"tt“‘“‘“#.“#‘t"‘#4“"tt#tt#*#t‘#t##t‘##ttt#‘#/

/% Module Name: NETAUX Number: 8.0 =/
/* Description: This module contains the training furctions called »/
/* by BETTRAIN »/
/* */
/* Modules Called: None */
/* Functions Contained: 8.1 determine Y matrix */
/* 8.2 determine S matrix «/
/* 8.3 determine M matrix */
/* 8.4 calculate weight matrix */
/* 8.5 MSE_last_layer */
/* 8.6 MSE_last_layer_linear */
/* 8.7 MSE_last_layer_sigmoid */
/* 8.8 MSE_mid_layer */
/* 8.9 MSE_1st_layer */
/* 8.10 calculate_errors.in_output =/
/* 8.11 get_linear_training.eta */
/* 8.12 get_kohonen_neighborhood »/
/* 8.13 calc.dist_outputs_to_nxt_lyr */
/* 8.14 find_nearest_element +/
/* 8.15 find_kohonen_boundaries */
/* 8.16 determine_neighborhood_elements +/
/% 8.17 train_kohonen_veights */
/* 8.18 find_distance_between_nodes »/
/* 8.19 sort.2.dim_array «/
/* 8.20 CE_last_layer Y
/* 8.21 CE_mid layer */
/* 8.22 CE first_ layer */

G-79

/* 8.23 calculate_zn

/* 8.24 CFM_last_layer

/* 8.25 CFM_mid_layer

/* 8.26 find_second_highest_node
/* 8.27 CFM_first_.layer

/* 8.28 find_nearest.neighbor

/*

/% Date: 10 Nov 90 Pevislon: 1.0

+/
*/
*/
»/
*/
*/
*/
*/

/‘.t‘tt#‘l‘l‘#.l‘t‘l““ttt“.t#t‘tt".'#.‘t‘“t““‘.“..“““‘tl'/

#include "netvrble.h"
#include "netfnctn.h"

/“t““t“‘tt‘“'t“.#.ttt‘tt‘t“‘#‘“t.tt“t‘ttl‘*‘t‘t‘.t""‘#‘tt/
/+ Functiox Name: determine_Y_matrix Xumber:8.1
/+ Description: This function calculates the outputs for each

/* node in a given layer and stores these outputs in
/% a matrix. Each row will represent the outputs for
/e that layer due to an input pattern

/* Functions Called: calculate_layer_O.output

/* calculate_layer_1i_output

I+ calculate_layer..2_output

/* calculate.layer_3_output

/e

/* Variables Passed In: Node_record - Structure array

/* training.data - Structure array

/% train.set - integer

/* nodes_in_layer - integer array

/* starting_node_in_layer - integer array
/* total_nodes - integer

/% sY - float array pointer

/* current_layer - integer

/*

/* Variables Returned: *Y - float array pointer
/* Date: 10 Nov 90 Revision:1.0

*/
*/
*/
*/
»/
*/
»/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/“#‘###“#‘ttt#.#‘t#t‘#tt#t.#‘#t#t#“‘#tt#tt‘tti‘!‘#.‘t#it‘#‘t#“tt/

void determine_Y_matrix(struct Node_data *N_record[],
struct data *data.record[],
int record.no,
int nodes_in_layexr([],
int starting_node_in_layer(],
int total_nodes,
float *Y[],
int current_.layer)

{
int row, column, current_node;
for (row = 0; row < record_no; rowt+)

{
switch(current_layer)
{
case 1:
calculate_layer.0_output(data_record,
N_record,
nodes_in_layer,
Tow);
break;
case 2:
calculate_layer_O_output(data.record,
N_record,
nodes_in_layer,
row);

G-80

calculate_layer.i_output(data_record,
¥_recoxd,
nodes_in_layer,
starting.node_in_layer,
total_nodes);

break;

case 3:
calculate. layer_O.output(data_record,
¥_recoxd,
nodes_in_layer,
row);

calculate_layer_1i_output(data_record,
N_record,
nodes_in_layer,
starting_node_in_layer,
total_nodes);

calculate_layer_2_output{data_record,
N_recoxd,
nodes_in_layer,
starting_node_in_layer,
total_nodes);

default:
break;

for (column = 0; colwmn < nodes.in_layer[current_layer-1]; column++)
{
current_node = starting.node_in_layer[current.layer -~ 1] + column;
*((Y[xov])+column) = ¥_recoxrd[current_node]->output;

}
}

}

T T T T P P P T T T Y T IT T I I T4
/% Function Name: determine.S_matrix Fumber: 8.2 */
/* Description: This function sets the desired outputs for the */
/* last layer to a 1 for the node responsible for the */
/* class and O for the remaining nodes x/
/* */
/* Functions Called: ¥one */
/* Variables Passed In: training.data - Structure array s/
/* train_set - Integer */
/* nodes_in_layer - Integer array «/
/* %S - Float array pointer »/
/* current_layer - integer */
/* */
/* Variables Returned: *S array */
/* Date: 10 Fov 90 Revision: 1.0 */

/#tttt##t‘v#ttt.ttttt#t##t#l‘tt#ttlttt##‘tttt#ttt#ttttttt#ttttttttt#/

void determine.S.matrix(struct data *data.record[],
int record. no,
int nodes_in_layer[],
floatr *S[],
int current_layexr)

int row, column;
for (row = 0; row < record_no; row ++)

G-81

for (column = 0; column < nodes_in_layer[curxent_layer]; columnt+)
«((S{row])+column) = 0;
for (row = 0; xow < recoxrd_no; xow ++)
{
column = data_record{row]->class;
*((S[row])+column-1) = 1;

)}
}
Y T T T L T T T YT T TPy ey
/* Function Name: determine_M_matrix Yumber: 8.3 /
/* Description: This function determines the cross products of the =/
I outputs from all the nodes in a given layer with a */
/* specific node in that layer 74
/* K(1B) = sum[y(pl)y(pB)]) */
/* Functions Called: None ./
/* Variables Passed In: *Y - Float array pointer */
/* #M - Float array pointer »/
/* nodes_in_layer - Integer array */
/* train_set - Integer */
/* current_layer - Integer «/
/* «/
/* Variables Returned: #X - Float array pointer «/
/* Date: 10 Xov 90 Revision: 1.0 ./

/“‘..00“‘.‘..“1‘.“““““““‘.t‘?t‘tt‘.‘."t...“‘t.&‘t#t't‘t‘/

void determine_N_matrix(float =Y[],
float »N(],
int nodes_in_layer[],
int patterns,
int current_layer)
{
int xow, column, p;
for (row = 0; row < nodes.in_layer[current_layer-1]; row++)
for (column = 0; column < nodes_in layer[current_layer-1]; columnt++)
{
*((M{row])+column) = 0;
for (p = 0; p < patterns; p++)
*((M[rovw])+column) = *((Y[p])+row) *+ «((Y{p]l)+column) + *((M[row])+column);

}

}

T T T T Y T T I Y4
/* Function Name: calculate_veight matrix Number: 8.4 */
/+ Description: This function calculates the output layer weights #/
/e by w(BD) = sum{sum[y(pl)d(pD)JN(BL)} »/
/* Functions Called: None */
/+ Variables Passed In: Node_record ~ Structure array */
/* #¥ - float array pointer =/
/* *¥ - float array pointer */
/* sY ~ float array pointer */
/* *S ~ float array pointer s/
/* nodes_in_layer ~ Integer array */
/* starting._node_in_layer - Integer array */
/* train_set - Integer */
/* current_layer - Integer */
I+ o/
/+ Variabies Returned: #% - fioal array pointer 1y
/* Date: 10 ¥ov 90 Revision: 1.0 */

/’tt.‘ilt‘tt“.‘tt“tt#‘tt‘.tt"*“#“““““‘t"t“‘tttttlttt“t‘#/

void calculate_weight_matrix(struct Node_data #¥_record(],
float *¥W[],
float *¥[],
float »Y[],

G-82

}

float *S[],

int nodes_in_layer([],

int starting.node_in_layer(],
int patterns,

int current.layer)

float sum = 0;

int row, column,P, L, current.node, previous_layer_node;

for (row = 0; row < nodes_in_layer[current_layex-1]; rou++)

{
previous_layer.node = starting_node_in_layer[current_layer-1] + row;
for (column = 0; column < nodes.in_layer([current.layer]; column++)

«((¥[xow])+column) = 0;
for (L = 0; L < nodes_.in_layex[current_layer-1}; L++)
{
sum = 0;
for (P = 0; P < patterns; P++)
sum = sum + «((Y[P])+L) * *((S[P])+column);
#((W[row])+column) = #*((W[row])+column) + *((K[row))+L) * sum;
}
current_node = starting_node_in_layer[current_layer] + column;
X_record[current_node]->weight [previous.layer.node] = #((W[row])+column);
}
}

F L T T T T T LRI Y YY1 Y)
/** End Functions Called by OUptimize Weights by Matrix w»#s/
A T e Y P R e P PP e e e T Ty

/#‘##t‘#tt‘.‘##"#"‘i“".tl“##“##t‘tt#“##.‘#“"t#tt“"‘ttt“‘/

/*
/*
/»
/*
/>
/*
/*
/*
/*
/*
/>
/*
/*
/*
/*
/*
/*
/*
/*
/*

Function Name: MSE_last_layer Number: 8.5 */
Description: The function determines wethexr to backpropate the =»/
parameter by the sigmoidal or linear update s/

equations */

x/

Functions Called: 8.6 MSE_last_layer_linear */
8.7 MSE.last_layer_sigmoid x/

x/

Variables Passed In: Node_record - Structure array */
desired_output ~ Float array »/

nodes_in_.layer - Integer array */
starting_node_in_layer - Integer array */

last_layer - Integer */

MSE_eta - Float */

MSE_epsilon - Float */

*ught - Float array pointex */

MSE_momentem - Float */

x/

Variables Returned: Node_record ~ Structure array »/
Date: 10 Nov 90 Revision: 1,0 s/

/t““##t“##t#.tt‘l.t“‘#“‘“"“#t‘##‘ttt“ttt‘"tl*ttt*tt#ttt¢**/

void MSE_last_layer(struct Node._data *node_record[],

float desired_output[],

int nodes_in_layer{],

int starting.node.in.layer[],
int last_layer,

float eta,

float epsilon,

float *wght[],

float alpha)

int x, y, last_layer.node, previous_layer_node;

G-83

for (x = 0; x < nodes.in_layer[last_layer]; x++)
{
last. layer.node = starting.node.in,layer[last_ layer]+x;
switch (node.record[last_layer_nodel->transfer_function)
{
case 1:

MSE_last_layer_sigmoid(node_recoxd,
desired_output,
nodes_.in.layer,

starting.node_in_ layer,
last layer,
last.layexr.node,
eta,
wght,
alpha);
break;
case 2:
/* resexrved for rbf */
printf£("\n error, improper transfer function");

break;
case 3:

MSE_last_layer_linear(node.recoxrd,
desired_output,
nodes_in_layer,
starting_node_in_layer,
last_layer,
last.layer_node,
eta,
wght,
alpha);

break;

default:
break;
}
}

}
/t####t'tt###tttt#tt‘tt#t*t“*““‘t#“*t#‘tt##‘ttttt#tttl#'#t#“t‘t't/
/% Function Name: MSE.last_layer_linear Number: 8.6 */
/* Description: This function implements the following update rule */
/* for a node foxming a linear combination of the */
/* outputs from the previous layer: »/
/* W= g~ + etas (d~z) * y */
/* Q+ = @- + eta * (d-z) .74
/*+ vwhere w+ - next weight */
/* eta - training factor (.01 - .99) */
/* d - desired output */
/* z = actual output of the last layer node */
/* y - actual output of the node in the previous layer */
/* Q@ - the sigma (theta) for that node »/
/* */
/x Functions Called: None «/
/+* Variables Passed In: Node_record - Structure Array «/
/* desired_output - Float array »/
/* nodes_in_layer - Integer array */
/* starting_node_in_layer - Integer array */
/* numbex,_of_layers - Integer */
/* total_nodes - Integer */
/* MSE_eta ~ Float */
/* #ught - Float array pointer */
/* MSE_momentum - Float */
/* */
/* Variables Heturned: Node_record - Structure Array */
/* Date: 10 ¥ov 90 Revision: 1.0 »/

/tttt##t#‘t‘t‘tt#t“‘#‘t#tﬁ###l“tt‘l#tt“t.tt‘#i‘#‘ﬁ##t#‘#t#‘#.#!‘#ttl

G-84

void MSE_last_layer_ linear(struct Node_data *node_recoxd[],

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/=
/*
/*
/*
/*
/*
I/*

float desired_output[],
int nodes_in_.layer([],
int starting.node_in.layer[],
int last.layer,
int last_layer_node,
£loat eta,
float *wght(],
float alpha)

float delta_i, old_wght;
int y, previous_layer_node;
int x = 0;

x = last_layer.node - starting_node_in_layer[last_layex];
delta_1 = desired_output[x] - node.record[last.layer.node]->output;
for (y = 0; y < nodes.in_layer[last_layer-1]; y++)
{
previous. layer_node = starting_node_in_layer[last_layvex-1]+y;
old_wght = #((aght[last_layer_nodel)+previous_layexr.node);
*((vght[last_layer_node])+previous_layer_node) =
node_record[last_ layer_node]->weight [previous_layer_nodel;

node_record[last_layer_nodel->weight[previous. layer_node} =
node_record{last_layer_node]->weight [previous_.layer_node]
+ eta * delta.l * node_xecord[previous_layer. node]->output
+ alpha * (node_.record[last_.layer_nodel->weight[previous_layer_node]
- old_wght);

}
old_wght = »((wght[last_layer_node])+last_layer_node);
*{(wght [last_layer_.node})+last_layer_node) =
node_record[last.layer.node]->sigma[last_layer_node];
node_record [last_layer_node]->sigma[last_layer.node] =
node_record[last_layer.node]l->sigmallast_layer_node] +
eta * delta_.l
+ alpha * (node.record[last.layer_node]->sigma[last_layer_.node]
- old_wght);

/####t#itt*t###ttt*t‘t‘ittt.‘t‘#.tt‘t‘#t‘*###'#####*#ttttttt“““‘#/

Function Name: MSE_last_layer_sigmoid Number: 8.7 »/
Description: This function implements the update rule for a */
sigmoidal transfer function in the last layer: */
wr=u-+eta*(d=-2) % (1~2) *zx%xy +/
@+ =@+ eta» (d - 2) * (1-2) * = +/
whare »/

% - weight between node in last layer and previous layer */
@ - sigma oxr theta of last layexr node */
eta = training coefficient */

d - desired output for the last layer node */

z = actual output for the last layer node */
y - actual output for the previous layer node */
*/

Functions Called: None */
Variables Passed In: Node_record - Structure Array */
desired_output - Float array */

nodes.in_layer - Integer array +f
starting_node.in.layer - Integer array */

current_layer - Integer */

current_node ~ Integer */

MSE_eta - Float */

*yght - Float array pointer */

MSE_momentum ~ Float */

RPY ST AT LR 15N T S,

il

/> */
/* Variables Returned: Node.recoxd - Structure Array .74
/* Date: 10 Nov 90 Revision: 1.0 - */
L T e e e

void-MSE_last_layer_sigmoid(struct Node.data *node_recoxrd[],
float desired_output[],
int nodes_in_layer[],
int starting._node_in_layex[],
int curxrent_layer,
int current_node,
float eta,
float *wght[],
float alpha)

float delta_.l, delta.2, old_wght;
int y, previous.layex_node, x;

x = current_node - starting_node_in_layer([current.layer];
delta_1 = desired_output [x]-node_record[current_node]->outpni;
delta_2 = (1-node_recoxd[current_nodel->output)
* node_record[current_node]l->output;
for (y = 0; y < nodes_in_layer[current_layer-1]; y++)
{
previous_layer.node = starting_node_in_ lzyer[current_layex-1] + y;
old_wght = *((wght [current_node])+previous_layer_node);
*((wght [current_node])+previous_layer_.node) =

node_reccrd[current_node]->weight [previous_layer_nodel;

node..record[current_nodel->weight [previous_layer_node] =
node.xecord[crcrent_node]->veight [previous_layer_node]

+ eta * delta_l * delta_2 * node_record[previous_layer_node]~>output

+ alpha * (node_recoxd[current_node]->weight [previous_layer_node]
- old.wght);

}
old_wght = *((wght[current_node])+current._node);
*((wght [current._.node])+current_node) =
node_record[current_node]->sigmalcurrent_node]);
node_record[current_node)->sigmafcurreut_node] =
node_recoxd[current_node]->sigmalcurrent_node] +
eta * delta_l * delta.2
+ alpha * (node_record[current_node]l->sigmalcurrent_nodel

- old_wght);

}

P L T e T L i Ly
/* Function Name: MSE_mid_layer Number: 8.8 */
/* Description: This function implements update rule for sigmoidal #*/
/* transfer function in the middle layer and last layer: »/
/* wt=gi-+etarsun(d -z)*¥ W o+ (1-2) * 2+ y s (1-y) x x #/
/¥ @+ =@Q-+ gta * sum(d - z) *# v’ * (1-z) * z * y * (1-y) */
/* wherxe */
/* w - weight betveen node in last layer and previous layer «/
/* @ - sigma or theta of last layer node */
/* w’- weight linking node in layer 3 to node in layer 2 */
/* w’? - vaight linking node in layer 2 to node in layer 1 »/
/* eta - training coefficient »/
/* 4 =~ desired output fox the last layer node */
/* z - actual output for the last layer node */
/* y - actual output for the layer 2 node */
/* x - actual output for the layer 1 node */
/* */
/* Functions Called: None */

G-86

/* Variables Passed Into: Node_record - Structure Array */

/* desired_output - Float array */
/* nodes_in.layer - Integer array */
/* starting._node_in_layer - Integer array */
/* current_layexr ~ Integer */
/* MSE_eta - Float »/
/* *nght - Float array pointer */
/* MSE_momentum - Float */
/% */
/* Variables Returned: Node_record - Structure Array »/
/* Date: 10 Nov 90 Revision: 1.0 */

/‘t#ttttt#“lt‘t#.“‘#“‘#t##*t‘t‘#tt#‘##t.’.‘t“t‘lﬁ‘ttttttitt‘i#‘t““#t/

void MSE_mid_layex(struct Node_data *node_recoxd(],
float desired(],
int nodes_in_ layer[],
int starting.nrode_in_layerl[],
int current_layer,
float eta,
float swght{],
float alpha)

int z, last_layer.node, y, previous_layer.node, current_node;
int x;

float sum, delta_i, delta_ 2, old.wght;

sum = 0}

for (x = 0; x < nodes_in_layer{current_layer]; x++)
{
sum = 0;
current_node = starting_node_in.layer[current_layex] +x;
for (z = 0; z < nodes_in_layer[current_layer+1]; z++)
{
last_layer_node = starting_node_in_layexr[current_layer+1] + z;
delta_1l = desired[z) - node_xecord[last_.layer_node]->output;
delta_2 = (1 - node_record{last_layexr_node]->output)
* node_record[last_layer.node]->output
* node_xecord[last_layer_.node]->weight [current. node];
sun = sum + delta_l * delta_2;
}
delta_1 = (1 - node_record[current_node]->output)
* node.record[current_node]->output;

for (y = 0; y < nodes_in.layer[current. layer-1]; y++)
{
previous_layer_node = starting.node_in_layer[current_layer-1] + y;
old_wght = #((wght[current_node])+previous_layer_.node);
*((ught [current_node])+previous_layer_node) =
node_record{current. node]->weight [previous_layer_node];

node_record[current_node]->veight[previous layer.nodel =
node_record[current_node]->weight [previous. layer_node]
+ eta * delta_l * sum * node_record[previous_layer_node]->output
+ alpha * (node_record[current.nodel->weight[previous_layer_node]
- 0ld.vght);
3
old_wght = #((wght[current_node])+curxent_node);
*((ught [current_node])+current_node) =
node_record[current_node]->sigmafcurrent_nodel;
node_recoxd [current_node]->sigmalcurrent_node] =
node_record[current_node]~>sigma[current_node] +
eta * delta_l * sum

G-87

+ alpha * (rode_record[current_node]->sigma{current_node]
- old_wght);

}

}
/##.#‘“‘“#.‘.#t‘.““t"#i"".“"ﬁ“‘#““ﬁ“‘..“““‘#“"‘#.“l./
/#* Function Name: MSE_ist_layer Numberx: 8.9 */
/* Description: This function implements update rule for sigmoidal #*/
/+* transfer function in the first, middle layer and last layer: */

/¢ w22 = w2 + etassum(d-z)«(1-z)*zesum(nsys(1-y) 4w’ 2)exs(1-x)*a »/
/* €+ =€~ + eta * sum(d - z)*(1~z)sz*sum(wey*(1-y) *u?) #x+(1-x) »/

/% where */
/* w - weight between node in last layer and previous layer s/
/+ € - sigma or theta of last layer node »/
/* w’- weight linking node in layer 3 to node in layer 2 */
/* w?) - weight linking node in layer 2 to node in layer 1 */
/* w»?? - weight linking node in layer 1 to node in layer 0 */
/* eta - training coefficient »/
/* 4 - desired output for the last layer node */
/* z - actual output for the last layer node */
/* y - actual output foxr the layer 2 node »/
/* x - actual output for the layer 1 node */
/* a - actual output for the layer O node */
/* */
/* Variables Passed into: Node.record -~ Structure Array =/
/* desired_output - Float array */
/* nodes_in_layer - Integer array */
/* starting_node_in_layer - Integer array */
/* current.layer - Integer */
/*> MSE_eta ~ Float »/
/* saght - Float array pointer »/
/* MSE_momentum - Float */
/* */
/* Variables Returned: Node_record - Structure Array */
/* Date: 10 Nov 90 Revision: 1.0 */
2 T T T T P T T A TP T e aderanren/

void MSE_1st_ layer(struct Node_data #*node_recoxd(],
float desired_output[],
int nodes_in layer(],
int starting_node_in_layer[],
int current_layer,
float eta,
float sught([],
float alpha)

int next_layer_node, last_layer_node, y, z, previous_layer.node;
int current_node, x;

float sum_1, sum_ 2, delta_l, delta_2, delta_3, delta_4;

float old_wght;

sum,1 = 0;

for (x = 0; x < nodes_in_layer[current_layer]; x++)
{
sum_1 = 0;
current_node = starting_node_in_layer[current_layer] + x;
for (z = 0; z < nodes_in_layer[current_layer+2]; z++)
{
last_layer_node = starting.node.in_layer[current_layer+2] + z;
delta_l = desired_output[z]-node.record[last_layer_node]->output;
delta.2 = (1-node_record[last_layer_node]->output)
* node_record[last_layer._node]~->output;
sum_2 = 0;
for (y = 0; y < nodes_in_layer[current_layer + 1]; y++)

{

G-88

next_layer_node = starting_node_in_layer(current_layer + 1] + y;
delta.3 = (1-node_record[next.layer.node]~>output)
* node.xecoxd[next_layer_.node]->output;
delta_4 = node.xecord[last_layer_node]->weight[next_layer_node]
* node_record[next_layer_node]->weight [current_node];
sum.2 = sum_2 + delta_3 = delta_4;
}
sum_1 = sum_1 + delta_1l * delta_.2 * sum_2;
}
delta_1 = (1 - node_record[current_node]~>output)
* node_record[current_nodel->output;
for (y = 0; y < nodes_in_layer[current_layer-1]; y++)
{
previous_layer_node = starting.node_in_layer[current.layer-1] + y;
old_wght = *((wght[current_node])+previous_layer.node);
*((vght [current.node])+previous_layer_node) =
node_.record[current.node]->weight [previous_layex nodel;
node,.record[current_node]~>weight [previous_layer_node] =
node_record[current_nodel->weight{previous_layer_nodel
+ eta x delta_l * sum_1 # node_recoxrd[previous_layer_node]->output
+ alpha * (node_record[current_node]->weight[previous_ layer_node]
- old_wght);
}

old_wght = »((wght [current_node])+current_node);
*((ught [current_nodel)+current_node) =
node_record [current_node]->sigmalcurrent_nodel;

node_record[current_nodej->sigma[current_node] =
node.record[current_nodel->sigmalcurrent_node] +
eta * delta_l * sum_1
+ alpha * (node_record[current.node]->sigma[current_node)
~ old_wght);

}

}
e P R T e P TP e P e T P e T Y
/* Function Mame:calculate_errors_in_output Humber: 8.10 %/
/* Description: This function compares the output of each node in */
/* in the output layer with the desired output. */
/* If the difference between the desired and the »/
/% actual is greater than some delta, an error */
/* is returned */
/* Functions Called: None */
/* Variables Passed In: Node.record - Structure Array */
/e desired_output ~ Float array «/
/* nodes_in_layer - Integer array */
/* starting_node_in_layer - Integer array */
/* number.of_layers - Integex */
/* *error -~ Integer pointer */
/* epsilon ~ Float */
/* */
/* Variables Returned: #*error - Integer pointer */
/* Date: 10 Nov 90 Revision: 1.0 */

/**‘t‘*‘“ﬁ*#ttt#*#tt##*‘#ttt!#‘tt#*‘#‘##t##t##*##tﬁt‘*‘#‘t#‘#‘tt###/

void calculate_errors_in_output(struct Node_data *node_record[],
float desired_output(],
int nodes_in_layer[],
int starting_node_in_layer[],
int number.of_layers,
int #error,
float epsilon)
{
int x, last_layer.node;
for (x = 0; x < nodes_in._layer[numbex of.layers]; x++)

G-89

last_layer_node = starting_node.in_layer[number_of_ layersl+x;
if (fabs(desired_output[x]-node.record[last_layer.node]l->output) > epsilon)
{
*error = *error + 1;
x = nodes_in_layer[number_of_layers];
}
}
}

/‘“#'#“t#‘ttt#tttl‘#‘!tt‘#t#.#‘t##t#t#l"ﬁ"##t“#“#“‘#‘/

/#++2+ End functions called by backprp remaining lyrs s+#ss/
/“t##‘#.*“‘##“t‘ttttt‘t‘t‘#tttt#t‘ttttttt‘t#‘.‘t“#‘t“t/

/#“““##.#‘tt"#‘ttt##“#t‘#‘“t#‘*‘#“#.‘tl#‘#t‘#““#'t/

/* The following functions called by train via Xohonen x/
A L T e T R L T ey

/"‘ﬁ#.‘i‘.’..‘ttt‘ttttttt‘““.‘t‘#ttl"t““‘“.#“'tttlttt“#‘t#‘/

/#* Function Name: get.linear_training_eta Numbexr: 8.11 */
/* Description: This function determinse the training eta by «/
/* n = {n(max)/[i(0o)~i(max)]}[i-1i(0)]+n(max) »/
/* Functions Called: None */
/* Variables Passed In: train_width - Integer array */
/* train_scale - Float array =/
/I iterations - Integer */
/* *eta - Float pointer */
/* width_no - Integer «/
/* */
/* Variables Returned: seta - Float pointer */
/* Date: 10 Nov 90 Revision: 1.0 */

/#'i#i#“#t‘t#t#“‘t#‘1‘##“#‘#“‘tt#t.‘t“tlt#tt#ttt#t*ttt#ttt‘#tt‘##/

void get_linear_training.eta (int train.width([],
float train_scale[],
int iterations,
float ®*eta,
int width_no)

{

int n, x;

n=0;

for (x = 1; x < width_no; x++)

if (iterations > train_width[x])
n = x;
*eta = (train_scale[n]/(train_width[n] - train_width[n+1]))
* (iterations - train_width[n]) + train_scale[n];

}
/“#‘i“‘*‘f*‘t"‘.‘*#‘t#“*‘#‘#‘t‘.t.“#“‘“#t“‘.‘““.““tt“#t/
/* Function Name: get_kohonen_neighborhood Humber: 8.12 #*/
/#* Description: This function provide the neighborhood used in */
/* the update of the nodes */
/* */
/* Functions Called: None */
/* Variables Passed In: train_width - Integer array */
/* iterations ~ Integer */
/* neighborhoods - Integer array */
/* width_no - Integer */
/* *neighbor - Integer pointer */
/* */

G-90

|
T T T T N N L N R R L T S TN ¥ O R T LN (LTI T ICRE SO E KT PR TPIC I e RO ST R IV S U R T LRV 2 W L POy TV AP e e L T B JJ

i R S e A s N e Yty

/* Variables Returned: *neighboxr - Integer pointer 7
/#* Date: 10 Nov 90 Revision: 1.0 74
A T P T e P T T P TPy

voicd get_kohonen_neighborhood (int train_width[],
int iterations,
int neighborhoods(],
int width_no,
int #neighbor)

int n, x;
n = 0;
for (x = 1; x < width_no; x++)
if (iterations > train_width[x])
n = x;
*neighbor = neighborhoods[n];

/tt“‘ttﬁ#t#t@t#‘##‘tt.tt“t##t.tt‘t‘t#t‘#t#.‘t#“#“#ti.tt‘tlttt‘t#/

/% Function Xame: calc.dist_outputs_to._nxt_lyr Number:8.13 */
/* Description: This function finds the euclidean distance between */
/* the outputs of one layer and the weights of the */
/* next layer «/
/* d(ij) = sqrt{sumly(i)-w(j)]1~2} */
/* Functions Called: None */
/* Variables Passed In: Node_record - Structure array */
/* nodes_in_layer - Integer array s/
/* starting_node_in_layer - Integer array */
/% current_layer - Integer »/
/* distance ~ Float array 74
/* »/
/* Variables Returned: distance - Float array */
/* Date: 10 Nov 90 Revision: 1.0 */

/t‘##tt*tt#t“"it#‘t#t*‘t#“#tttt#“‘#“##t“t#‘#‘t#“t‘*#‘t*ttt###/

void calc_dist_outputs_to_nxt_lyr(struct Node_data *node.recoxd[],
int nodes_in_layer(],
int starting_node.in_layexr[],
int current_layer,
float distance[])

int x, y, current_node, previous_layer.node;
double buffer;

double exponent.l = 2;

for (x = 0; x < nodes_in_layer[current_layer]; x++)

{
current_node = starting.node.in.layer[current_layer] + x;
buffer = 0;
distance[x] = 0;
for (y = 0; y < nodes_in_layer{current.layer-1}; y++)
{
previous_layer.node = starting_node_in_layer[current_layer-1] + y;
buffer = node_record[current_node]->weight [previous_layer_node]
- node_record[previous.layexr.node]->output;
distance[x] = distance[x] + pow(buffer,exponent.1);
}
}
}
/‘t“t‘#"#‘t#t“##‘#‘""‘###‘t-"“‘#“t#"t‘it.“‘#t“““t*‘ll“‘/
/+ Function Name: find_nearest_element Number: 8.14 */
/* Description: This function finds the node in the kohonen layer #/
/* nearest to the input pattern */
/* Functions Called: None */

G-91

/* Variables Passed In: min - Float array */

/* array.max - Integer «/
/* snearest_element - Integer pointer */
[* */
/* Variables Returned: *nearest_element - Integer pointer */
/* 17)
/* Date: 10 Nov 90 Revision: 1.0 */

/.‘t"t‘tt‘#t‘t‘##tttl‘l““t‘t#..“‘t#t##“t‘#t#‘l‘#“‘.“‘t“tt‘tt/

void find_nearest_element(float min[],
int array.max,
int *nearest_element)

{
int x;
float temp = 1000;
s#nearest_element = 0;
for {x = 0; x < array_max; x++)
if (temp > min[x])
{
temp = min[x];
snearest_element = x;
}
}
T T T P e et Y4
/* Function Name: find_kononen_boundaries Number: 8.15 #/
/# Description: This function finds the valid boundaries of the s/
/* rectangular kohonen layer. Theses boundaries are #/
/* centered at the winning node in the network */
/= */
/* Functions Called: None »/
/* Variables Passed In: winner_node - Integer =/
/* starting_node_in_layer - Integer array */
/* current.layer - Integer »/
/* nodes_x ~ Integer */
/* nodes.y ~ Integer */
/+ neighbors - Integer */
/* sboundary_left - Integer pointer »/
/* sboundary_right - Integer pointer */
/* *boundary_up - Integer pointer */
/* sboundary_down ~ Integer pointer */
/* */
/* Variables Returned: #boundary.left - Integer pointer */
/* sboundary_right - Integer pointer */
/* s*boundary_up - Integer pointer */
/* sboundary_down - Integer pointer */
/* */
/* Date: 10 Nov 90 Revision: 1.0 */

/#t##‘#‘t‘tt#.“l#ttt‘t‘#“‘tt‘tttt#tttt‘t‘tttl##“‘ltt*ttt‘t‘ttt#tt/

void find_kohonen_boundaries (int winner_node,
int starting.node_in_layer{],
int current_layer,
int nodes_x,
int nodes.y,
int neighbors,
int *boundary.left,
int sboundary.right,
int sboundary.up,
int sboundary_down)

int neighbors_x, neighbors_y, winner_node_y, winner_node_x;

neighbors_x = neighbors - 1;
neighbors_y = neighbors - 1;

G-92

winner_node.y = (winner_node-starting_node.in.layer[current_layex])
/nodes_x;
winner.node_x = (winner_node-starting.node_in.layer[current_layex])
= winner_node.y * nodes_x;

*boundary_left » winner_node_x - neighbors_x/2;
*boundary_right = winner_node_x + neighbors_x/2;
sboundary.up = winnex_node.y + neighboxs_y/2;

*boundary_down = winner_node.y - neighbors_y/2;

if (s*boundary.left < 0)
sboundary_left = O;

if (*boundary.right > nodes.x - 1)
*boundary.right = nodes.x ~ 1;

if (*boundary_up > nodes.y - 1)
s*boundary._up = nodes_y - %i;

if (#boundary_down < 0)
*boundiry_down = 0;

3

A T L P T PR PO P T PP Y Y'Y
/* Function Name: determine._neighborhood.elements Numbexr: 8.16 */
/* Description: This function returns the node numbers of the */
/* nodes whose weights will be updated x/
/* */
/* Functions Called: None */
/* Variables Passed In: boundary_left - Integer */
/* boundary_right - Integer */
/* boundary_up ~ Integer x/
/% boundary.down - Integer */
/* *nodes_to.update - Integer pointer »/
/* update_node - Integer array */
/* starting_node_in_layer - Integer array */
/* nodes_x = Integer */
/* current.layex - Integer */
/* */
/% Variables Returned: snodes_to_update - Integer pointer »/
/* update_node - Integer array */
/* Date: 10 Nov 90 Revision: 1.0 =/

/““t#‘##t‘“#t#‘#t.i4.#“#‘.#‘####“##“‘#‘t#tt##ttlt#t#.#t###t#t#/

void determine_neighborhood.elements (int boundary_left,
int boundary_right,
int boundary.up,
int boundary_down,
int #*nodes_to_update,
int update_node[],
int starting.node_in_.layer[],
int nodes_x,
int current_layer)

{
int x, y, 2;
z = 0;
for (y = boundary.down; y < bovodary_up + 1; y++)
for (x = boundary.left; x < ..dary.right + 1; x++)
{
update_node[z] = x + nodes_x * y +
starting_node_in_layer[current_layer];
z=2z+1;

}

*nodes_to_update = z;

G-93

Lo 1 R

g szt

Sk

L

*/
*/
+/
*/

}

L T R P PP L 1)
/* Function Name: train_kohonen_vweights Yumber: 8.17

/* Description: This function updates the winning node and the

/* neighborhood nodes by the equation

/* w(+) = w(=) -+ nlx-w(-)]

[+

/* Functions Called: None

/* Variables Passed In: Node_record - Structure array

/* nodes_in_layer - Integer array

/* starting_node_in_layer ~ Integer array
/* current_layer - Integer array

/* nodes_to_update - Integer

/s update_node ~ Integexr array

/* eta - Float

/*

/* Variables Returned: Node_recoxrd - Structure array

/» Date: 10 Nov 90 Revision: 1.0

»/
*/
74
*/
*/
*/
»/
./
»/
*/
*/
*/

/‘#‘#t.tt'ttt‘ltt‘#t‘ttttttt‘#..t't“tt#t.t“‘t'tt‘l“‘t#‘###.‘###t'/

void train_kohonen_veights(struct Node.data *node_record[],
int nodes._in_layer(],
int starting_node_in_ layerf],
int current_layer,
int nodes_to_update,
int update_nodel],
float eta)

int x, y, current.node, previous_layer.node;
float buffer;
for (x = 0; x < nodes_to.update; x++)
{
current_node = update_node[x];
for (y = 0; y < nodes_in_layer[curxent_ layor-1]; y++)

{

previous_layer_node = starting_node_in_layer[current_layer~1] + y;

buffer = node_record[previous_layer_node]->output -

node_record[current_nodel->weight [previous_layer_node];

node_record[current_node]->weight[previous_layer_node] =

node_record[current_node]~>weight [previous_layer_node]

+ eta * buffer;

/tttt#‘t“‘#t"##t#".t‘tt#ttt!‘“‘.t#'##.‘#t#‘.tt“‘t‘##/
/+ End functions called by train vi kohonen x/

/‘t‘t*tttﬁ#*#*#‘#t##‘tt“ttt‘#‘#.tttttt‘*‘#tt#‘#‘tt#t#t“/

FA T P P e e ey
/* The following functions are called by set sigma at */
/* P neighbors avg. */
/ttt‘.tt##ttt‘ttt‘tttt#ttt‘lttt##ttt#tl&#t##*#ttt#tt“#*t#t./

/#l"‘tt#t#llIt#‘itllt#!#t#ﬁ#tttt#tt‘ltt‘t‘#“tt"‘#‘#t.#tt‘t‘t#“ﬁ‘#“‘t/

/* Function Name: find_distance_between_nodes Fumber:8.18
/#* Description: This function finds the euclidean distance between
/% nodes in the same layer

/* d(ij) = sqrt{sum{w(i)-w(3§>]1"2}

/*% Functions Called: None

/* Variables Passed In: Node_record ~ Structure array

/* nodec_in_layer ~ Integer array

/* starting.node.in_ layer - Integer array
/* current_node ~ Integer

G-94

*/
*/
*/
*/
*/
*/
*/
*/
*/

{mu.{rw_ahw X g el a0 R S L A Al Bt A bt S 0 B S a0 e e B b i ittt il

/% next_node - Integer +/

/s current_layer - Integer »/
/» *distance.between - Float array pointer s/
/* */
/* Variables Returned: *distance_between - pointer s/
/* Date: 10 Nov 90 Revision: 1.0 */

/#tt‘#“i“#.‘#‘#‘t".‘ttt“##‘#t‘t‘#“‘itt#‘t#“t"t‘t#tt#ttttttt“/

void f£ind_distance_between_nodes(struct Node_data #node_recoxd(],
int nodes_in_layer[],
int starting_node,_in_layer([],
int current_node,
int next_node,
int current.layer,
float *distance_between[])

{
int x, y, z, previous_layer_node;
double distance, buffer;
double exponent_1 = 2;
double exponent_2 = .5;
x = current_node - starting_node_in_layer[current.layex];
y = nsxt_node - starting_node_in_layer[current_layer];
buffer = 0;
for (z = 0; z < nodes.in_layer[current_layer-1]; z++)
{
previous_layer_node = starting_node_in_layer[current_layer-1] + z;
distance = node_record[current_node]->weight [previous_layexr_node]
- node.record[next_node]->weight [previous_layer_node];
distance = pow(distance,exponent.1);
buffer = buffer + distance;
}
*((distance_betveen[x})+y) = pow(buffer,exponent.2);
}
/‘0“"##“l““.‘“'#“#“‘#““t.‘##‘.“-t‘""t.tt‘##““#t‘#t#‘l/
/* Function Name: sort_2_dim_array Bumber: 8.19 */
/* Description: This function returns an array sorted in */
/* descending order */
/* */
/#* Functions Called: Xone +/
/* Variables Passed In: *M ~ Float array pointer */
/* array_max - Integer x/
/* row - Integer */
/* x/
/* Variables Returned: *¥ - Float array pointer */
/* Date: 10 Nov 90 Revision: 1.0 */

/‘ttt##*tt‘“"*““#‘t#‘t‘#"*‘“ﬁ"#t‘!t##'t#‘t.t’tt‘t#.‘t““####/

void sort_2_dim_array(float *M[],
int array._max,
int row)

int y, z;
float temp;
foxr (y = 0; y < array.max; y++)
for (z = y; z < array.max; z++)
if (#((Ulvon])+z) < *((Mlrowl)+y))
{
temp = *((M[xowl)+y);
*((Mlrovl)+y) = «((Mlrowl)+z);
*((M[xow])+z) = temp;

G-95

/.“l‘.“.‘“‘0.‘0‘t.‘..0..t#‘.‘ltt#.tltt““‘.'.“‘l#'.“/

/* End functions called by set sigma at P neighbor avg ¢+/
T T T T T P P TP I YT Ty

4 T T T T T P TP AT P YRy Yy |
/* Functions Called by CE Remaining Layexs »/
4 Y T TP P PR T PPy |

JH 00 0NR0EREERBREEERRREEERECRAREREERRERRARD PP PP P PRy Yy
/* Function Name: CE_last_layer Number:8.20 #*/
/* Description: This function updates the last layer weights of */
/* and offsets of a sigmoidal network by ./
/* #(mn)+ = w(mn)- + n/(2.30) [d(n)~y(n)]y(m) */
/s e(n) = e(n) - n/(2.3M) [A(n)~y(n)] */
/I »/
/* Functions Called: None */
/* Variables Passed In: Node_record - Structure array ./
/* nodes_in layer - Integer array ./
/* starting_node_in_layer - Integer array */
/% current_layex - Integer */
/* swght - Float array */
/* CE_eta - Float */
/* CE_momentum - Float */
/* desired - Float array 74
/* */
/* Variables Returned: Node.record - Structure array */
/* Date: 10 Yov 90 Revision: 1.0 */

/.‘ttt#t#“tttt..t#“.#t.#..‘#t#‘tt.'t‘t‘.‘t‘#.t‘i“‘l.‘x#‘tt.‘l“t‘/

void CE_last_layer(struct Node_data #node_record(],

int nodes_in layer([],

int starting.node_in_layer[],
int current.layer,

float *wght[],

float eta,

float alpha,

float desired[])

int x, y, last. lyr_node, mid_lyr_node;
float old_wght, buffer_i;

for (x = 0; x < nodes_in_layer[current_layex]; x++)

{

last_.lyr_node * starting.node_in_layericurrent_layer]+x;
buffer.1 v dosired[x] - node_record[last_lyr_node}->output;

{

fox (y = 0; y < nodes.in_layer[current_layer-1]; y++)

L

3

mid_lyr_node = starting_node.in.layer[current_layer-1] + y;
old_wght = *((wght[last_lyr.node])+mid.lyr.node);
«((ught{last_lyr.node])+mid_lyr_node) =
node_record[last_lyr_node]->weight[mid_lyr_node];
nody_record[last. lyr.node]->weight [mid_lyr._node] +=
eta * buffer_.1l * node.record[mid._lyr_node]->output
+ alpha
* (node_record{last_lyr.node]->weight[mid.lyr_node]
- old_wght);

old.ught = *((wght[last 1yr_node])+last_lyr.node);
¢Z{ught[last_lyr.node])+last_lyr_node) =

node_record[last.lyr.node]->sigmallast. lyr.nodel;

G-96

node_record[last_lyr_node]l->sigma[last.lyr_node] +=
eta * buffer_1
+ alpha
* (node_record[last_lyr.node]~>sigma[last.lyr_nodel
- old.wght);

}
}

}

T T P T T T I e I eIy
/* Function Name: CE_mid_layer Number: 8.21 x/
/#* Description: This function updates the weights in the middle 74
/* layer of a sigmoidal network by */
/+ w(LM)+ = w(l¥)~- + n/(2.30) sumfd(n)~y(n)Ju(Mn)y (M) [1-y(M)1y(L) =/
/+* e(LM)+ = @(LM)= + n/(2.3K)sum[d(n)-y(n)Iw(¥n)y (M) [1-y(M)] */
/* */
/* Functions Called: Hone */
/% Voriables Passed In: Kode.record - Structure array */
/* nodes_in.layer - Integer array »/
/* starting._node_in_layer - Integer array */
/* current_layer - Integer */
/* swght - Float array */
/* CE.eta -~ Float %/
/* CE_momentun - Float */
i* desired - Float array */
/* »/
/* Variables Returned: None v/
/* Date: 10 Nov 90 Revision: 1.0 */

/t‘l#*t#‘#t‘t‘ttt#t“t#‘*"#t#‘tt‘.tl#l‘#i‘#tttt#tt#t*ltlt.tt#ttt.tt/

void CE.mid_layer(struct Node_data #node.record[],
int nodes_in_layer{],
int starting_node_in_layer(],
int current.layer,
float *wght[],
float eta,
float alpha,
float desired[])

int x, y, z, mid_lyr_node, first_lyr_ncde, last_lyr_node;
float buffer_1, buffer.2, old_wght;
for (x = 0; x < nodes_in.layer[current_layex]; x++)
{
mid.lyr.node = starting_node_in_layer[current_layexr]+x;
buffer.l = (1-node.record{mid_lyr_node]~>output)
* node_record[mid_lyr_node}->output;

buffer_2 = 0;
for (y = 0; y < nodes_in_layex[current_layer+1]; y++)
{

last.lyr.node = starting_node_in_layer[current_layer+i] + y;
buffer.2 += (desired[yl}-node_record[last.lyr_node]->output)
* node.recoxd[last_lyr_node]->weight [mid.lyr_node];

}
for (z = 0; z < nodes_in_layer[current_layer-1]; z++)
{
first_lyr.node = starting_node_in_layexr[current_layer-1] + z;
old_wght = #((wght[mid_lyr_nodel)+first_lyr_node);
((ughtDmid_lyr_node])+first lyr_nede) =
node_record[mid_lyr_node)->weight [first_lyr_node];
node_record[mid_lyr_node]->weight [first_lyr_node} #=
eta * buffer.2 * buffer_1 * node.record[first.lyr_node]l->output
+ alpha
* (node_record[mid _lyr.node]->weight [first_lyr_node]~ old.wght);
}

G-97

old_wght = *((wght[mid_lyr_node])+mid_lyr.node);
*((wght (mid_lyr_node])+mid_lyr_node) =
node_record[mid. lyr_node]->sigmalmid_lyr_nodel;
node_recordlmid_1yr_node]->sigmalmid_lyr_node]+=
eta * buffex_2 * buffer_1
+ alpha
* (node_record[mid_lyr_node]l->sigma[mid.lyr.node] - old_wght);

}

}

Janx e Ty
/* Function Name: CE_first_layer Number: 8.22 */
/* Description: This function updates the weights in the first «/
/* layer of a three layer sigmoidal network by */
/% w(KL)+ = w(KL)+n/(2.3¥)sum[d(n)-y(n)}{sumlw (mn)y (m) (1-y(m)) */
/* w(Lm)y (L) (1-y(L)y(X)] «/
/% w(KL)+ = w(KL)+n/{2.3") sun[d(n)-y(n)]1{sumfw (mn) y (m) (1-y(m)) */
/* w(Lm)y (L) (1-y(L)y(X)] 74
/* »/
/* Functions Called: None */
/* Variables Passed In: Node_record - Structure array x/
/* nodes_in_layer ~ Integer array x/
/* starting_node_in_layer - Integer array »/
/* current_layer - Integer */
/* *ught - Float array »/
/* CE.eta - Float */
/* CE_momentum - Float */
/% desired - Float array */
/* */
/* Variables Returned: Node_record - Structure array */
/* Date: 10 Fov 90 Revision: 1.0 */
JEREEERERRERRERRRIRE AR R A AR Ty

void CE_first_layex(struct Node.data *node_record(],
int nodes_in_layer[],
int starting._node._in_layer[],
int current_layer,
float *wght(],
float eta,
float alpha,
float desired(],
int total_nodes)

float old_wght, buffer_1, buffex_2, output [TOTAL_NODES];
int x, y, z, last_lyr_node, mid_lyr_node, first_lyr_node, input_lyr_node;

for (i = 0; x < total_nodes; x++)
output[x] = (1-node.record[x]->output)
* node.xrecord{x]->output;

for (x = 0; x < nodes_in_layer[current_layer]; x++)
{
firat, lyr_node = starcing_node_in_layer [current_layer] + x;
butfes .l = 0;
Tor (y = 0; y < nodes.in_lays , ‘¢ ‘rent_layer+2]; y++)
{
last_lyr.node = starting.node_jin_layer[current_layex+2] + y;
buffer.2 = 0;
for (z = 0; z < nodes_in_layer[current_layer+1); z++)
{
wid_lyr.node = starting_node_in.layerfcurrent_lar .+1l4z;
buffer.2 += node.record[last_lyr_node)~>ueight [mid_lyx_node]
* output [mid_lyr_node]
* node_record[mid_lyr.node]->weight [first_lyr_node];

G-98

}

buffer.1i += buffer_2 * (desired[yl-node.record[last_lyr_nodel->output);

¥

for (y = 0; y < nodes.in_layer[current_ layexr-1]; y++)

{

input_lyr_node = starting_node.in.layer[current_layer-1]+y;

old.wght = *((wght [first_lyr_node])+input_lyr_node);
*((wght[first_lyr.node])+input_lyr._node) =

node_record [first_lyr_node]->weight[input_lyr_nodel;
node_recoxd[first_lyr.node]->weight [input_lyr.node] +=
eta * buffer.l * output[first_lyr_node])

* node_record[input.lyr_node]->output
+ alpha

* (node_record[first.lyr_nodel->weight [input_lyr_node]

~ 0ld_wght);

}
old. wght = »((wght[first_lyr_node])+first_lyr_node);
*((ught [first_lyr_node])+first_.lyr.node) =

node.recoxrd[first_lyr_nodel->sigma[first_lyr_nodel;

node_record [first_lyr.nodel~>sigmalfirst_lyr_node] +=
eta * buffer_1 » output[first.lyr_node]

+ alpha * (node_record[first_lyr.node]->sigmalfirst_lyr.node]

- old_ught);
3}
}

/#t‘t‘tt#ttt‘tt‘t##t#t#‘#‘tt‘“*“‘tt‘t#’ttt##*#‘tttttt.#t/
/* End Functions Called by CE Remaining Lyrs x/
JAL T FEERRERES T e T Ty

/*t‘ttttt‘###t#‘t##t##*‘*#tttttttt#tt'#‘tt‘#‘#t*#ttttttttt/

/% Functions called by CFM Remaining Lyrs «/
A P Ty

/#tttltt#t##t##tttt##t#‘!ttttt#“‘#‘ﬁ““‘#““‘#“####Ottt#t##t#t‘t/

/* Function Name: calculate_zn Number: 8.23

/* Description: This function calculates the CFM sigmoid output

/* for each of the incorrect nodes by

/* z(n) = 1/[1+exp(-By(c)+By(n)+zeta)]
/*

/* Functions Called: Hone

/# Variables Passed In: Ncde_record - Structure array

/* nodes_in_layer - Integer array

/* starting_node,_in_layexr -~ Integer array
/* current_layer - Integer

/s correct_node ~ Integer

/% zn - Float array

/* CF¥_beta - Float

/* CFM_zeta - Float

/*

/> Variables Returned: zn -~ Float array

/+ Date: 10 Fov 90 Revision: 1.0

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
»/
*/
*/
*/
*/
*/

/#t‘lltllttttt‘ti####‘t‘ti*ttt‘#lt##tt#tt*ttt*tttt“*'tt‘t#it#ttt*ttttl

void calculate_zn (struct Node_data *node_recoxd(],
int nodes.in_layer(],
int starting.nrode.in_layer(],
int current_layer,
int correct_node,
float zn[],
flcat beta,

G-99

e e

Do

[

o e

float zeta)

int x,” current.node;
double buffer = 0;
for (x = 0; x < nodes_in_layer[current.layer]; x++)
{
current_node = starting_node_in_layer[current_layexr]+x;
buffer = zeta -~ beta
*(node_record{correct_node]->output
- node_record{current_node]->output);
zn[x] = 1/(1+exp(buffer));

}

}

[annne T T e P e P P PP T e TP PP AT Iee ey
/* Function Name: CFM_last_layer Humber: 8.24 «/
/* Description: This function updates the weights of the last */
/* layer of a sigmoidal network by */
/* w(¥B)+ = w(¥N)~anB/(8-1)z(N) [1-z(®)]y (¥) [1-y (¥) Iy (M) */
/* e(N)+ = e(¥)~anB/(N~1)z(¥) [1~z(H)]y (¥) [1-y(N)] «/
/* w(MC)+ = w(MC)-anB/(¥~1)sum{z(B) [1~z(M)]}y(CI[1-y(C)Iy (M) */
/* €(C)+ = @(C)-anB/ (F-1)sun{z(¥) [1-z(¥)]}y(C) [1-y(C)] */
/* */
/* Functions Called: None */
/* Variables Passed In: Node_record - Str»cture array ./
/* nodes_in_layer - Integer array */
/* starting_node_in_layer - Integer array */
/* last_layer - Integer s/
/* zn - Float array s/
/* correct_node - Integer */
/* CFM_eta ~ Float */
/* *ught - Float array */
/* CFM_monmentum - Float x/
/* */
/* Variables Returned: Node.record - Structure Array */
/* Date: 10 Nov 90 Revision: 1.0 */

/“‘##tt‘#‘t‘#*‘*##tt#titttt#tttt#"t‘t###*t##tt"‘#‘t##‘#t‘#lttt#“/

void CFM_last.layer(struct Node.data *node_record[],
int nodes_in_layer[],
int starting_node_in layer(],
int last_layer,
float zn[],
int correct_node,
float eta,
float +wght[],
float alpha)

float buffer_2, buffer_1, sum_zn, old_wght;
int x, y, n, current_node, previous_layer._node;
for (x = 0; » < nodes.in.layer[last_layer]; x++)
{
current_node = starting.node.in.layer[last_layer]+x;
buffer_1 = (1-node_recoxd[current_node]->output)
* node_record[current.nodel->output;
if (current_node != correct_node)

{

for (y = V; y < nodes_in_layer[last_layer-1]; y++)

{

previous.layer.node = starting_node_in_layer[last_layer-1] + y;

buffer_2 = node_record[previous_layer_node]->output;

old.wght = node_recoxd[current_node)->weight [previous_layer.node];

node_.record[current_node)->weight [previous_layer_node] +=
-eta*(1-zn[x])*zn[x]

G-100

» buffer_.2 * buffer. 1

+ alpha

* (node.record[current_node]->weight [previous_layer.node]
- #((ught [current_node])+previous_layex_node));

*((wght [curzent_node])+previous_layer.node) = old.wght;
}
old_wught = node_record[current_node]->sigmalcurrent_nodel;
node_record[current_ncde]->sigmalcurrent_node] +=
~eta*(1-zn{x])*zn[x]* buffer_i
+ alpha * (node_record[current_node]l~>sigmalcurrent_node]
- #((ught[current_node])+current_node));
*((wght [current_node])+current.node) = old_wght;

else
{
sum_zn = 0;
for (n = 0; n < nodes_in_layer[last.layer]; nt+)

if (n != correct.node-starting_node.in_ layer[last_layer])
sum_zn = sum_zn + zn[nl* (1-znlnl);

for (y = 0; y < nodes_in_layer[last_layer-1]; y++)
{
previous_layer_node = starting.node_in_layer[last_layer-1]+y;
buffer_2 = node_record[previous_layer.node]->output;
old_wght = node_record[current_node]l->weight [previous.layer.nodel;
node_record[curxent_nodel->weight [previous.layex.node] +=
aeta * buffer_1 * buffer.2 * sum_zn
+ alpha
* (node.record[current_node)->weight [previous_layer_node)
- *((wght[current_node])+previous_layer_node));
*((wght [current_node])+previous_layer.node) = old._wght;

old_wght = node_record[current_node]->sigmafcurrent_node];
node_record[current_node)->sigmalcurrent_node] +=
eta * buffer_.1 * sum_ zn
+ alpha
* (node_record[current_node}->sigmalcurrent.nodel
~ *((wght[current_node])+current_node));
*((wght [current_node])+current.node) = old_wght;

}
}

}

T T e e e T P T Py
/* Function Name: CFM_mid_layer Number: 8.25 »/
/* Description: This function ipdates the second hidden layer »/
/* parameter of a sigmoidal network by */
/% w(LM)+ = w(LM)-anB/ (¥-1)sun{z(n) [1-z(n)3}y(c) [1-y(c)Iw(Mc) */
/% = y(n) [1-y(m)Ju(Mn)y(K) [1-y(H)Iy(L) =/
/% @)+ = @(M)~anB/(N-1) sum{z(n) [1-z(n) 1}y (c) [1~y(c)Iw(Mc) */
/* - y(n) [1-y(n)]v(Mn)y (M) [1-y (M)] */
/* */
/* Functions Called: None */
/* Variables Passed In: Bode.recoxd - Structure array */
/* nodes_in_layer - Integer array */
/* starting_node_in_layer ~ Intergzer array */
/* current_layer - Integer */
/* zn = Float array */
/* correct.node - Integer x/
/* CFM_eta - Float */
/* *ught - Float array */
/* CFM_momentum - Float */
/* */
/* Variables Returned: Node.xecord - Structure Array »/

G-101

/* Date: 10 Nov 90 Revision: 1.0 »/
,"'".'“t“#‘l""“"".““#ﬁ‘*“.*““"““‘.““-ﬁ“‘.‘..‘*“'/

void CFM_mid_layer(struct Node_data #node._recoxd[],
int nodes_in_layer(d,
int starting_node.in_layer(],
int current.layer,
float zn[],
int correct_node,
float eta,
float *wght[],
float alpha)

int x, y, z, n;
int current_node, previous.layer.node, last _layer_node;
float buffer. 1, buffer_ 2, buffer_3, buffer. 4, old_wght;
for (x = 0; x < nodes_in_layer[current.layer]; x++)
{
current_node = starting node.in_layer[current_layer]+x;
buffer_i = node_record[current_node]~>output
* (1-node_record[current_node]->output);
buffer.3 = 0;
for (z = 0; z < nodes_in_layer[current_layer+i]; z++)
{
last_layer.node = starting_node.in_layer[current_layer+1] + z;
if (last_layer_node != coxrect_node)
buffer_3 += zn[z]*(1~2n[z])
*(i-node_xecoxd[last_layer_node]->output)
» node_record[last_layer_node]->output
* node_record[last_layer.node}->weight[current_node];
else
{
buffer_4 = 0;
for (n = 0; n < nodes.in.layer[current_layer+i]; nt++)
if (n != correct_node-starting_node_.in_layer[current_layer+1])
buffer_4 = buffer_4 + zn[n]*(1-zn[nl);
buffer.4 = buffer_4 * node_record[correct_node]l->output
* (1 -node_record[correct.node]->output)
* (node_record[correct. node]->weightcurrent_nodel);
}
}
for (y = 0; y < nodes_in.layex[current_layer-1]; y++)
{
previous_layer_node = starting_node.in.layer[current_layer-1]+y;
buffer.2 = node_record[previous_layer.node]->output;
old_wght = node_record{current_node]->weight[previous_layer_node];
node_record[current_node]->weight [previous.layer_node] +=
eta » (buffer_4-buffer_3)
* buffer.1 » buffer_2
+ alpha
* (node.record[current_node]->wcight [previous._layer.node]
- *((wght[current_node])+previous_layer_rode));
*((wght [current_node])4+previous_layer.node) = old.wght;

old_wght = node_record[current_node]->sigma[current_node];
node_recoxd[current_node]->sigmalcurrent.node] +=

eta * (buffer_4-buffer_3)

* buffer_1

+ alpha

* (node._record[current_node}->sigmalcurrent_node)

- #((wght[current_node])+curxent_node));

*((wght [current_node))+current_node) = ¢ld_vght;

G-102

}

/t‘#t#tt#ltt‘t#t#t“#‘!t##‘t##‘#1#“#“‘*#‘##f“’##it#t#“t##t#‘#“#/

/* Function Name: find_second_highest_node Number: 8.26 */
/* Description: This function returns the incorrect node with the */
/* highest output value */
/% Functions Called:None */
/* Variables Passed In: Node.record - Structure array */
/* nodes_in_layer - Integer array */
/* starting_node_in _layer ~ Integer array «/
/* last_layer - Integer */
/% winner.node - Integer «/
/* snext_highest_node - Integer pointer */
/* */
/* Variables Returned: *next_highest_node - Integer pointer »/
/* Date: 10 Nov 90 Revision: 1.0 */

/tt#t‘###‘#ttt#‘*##.‘ttt##*t#‘t#*t*#t‘t‘.#“tt##‘#“‘ti##ttti‘#tttlt/

void find_second_highest.node (struct Node.data *node_record[],
int nodes_in_layer[],
int starting_node_.in_layer(],
int last_layer,
int winnex_node,
int #next_highest_node)

int x, current_node;

float outmax = 0;

for (x = 0; x < nodes_in_layer[last.layer]; x++)

{
current_node = starting.node.in_layer[last_layer]+x;
if (current_node != winner_node)

{
if (node.record[current_nodel->output > outmax)
{
outmax = node_recoxd[current_node]->output;
*next_highest_node = current_node;
}
}
}

}
e T e YT I T T e Y I e I Y4
/* Function Name: CFM_first_layer Number: 8.27 */
/* Description: This function updates the first hidden layer of a */
/* three layer sigmoidal network by */
/* w(RL)+ = w(KL)-anB/(¥~-1)sum{z(n) [1-z(n)]1}y(c) [1~y(c))sum{u(mc} */
/= ~y(n) [1-y(n))sun{w(mn) y(m) [1-y (m) I (Lm) y(L) [1-y (L) y(K) */
/* @(KL)+ = @(KL)~-anB/(¥-1)sum{z(n) [1~2(n)]1}y(c) [1-y(c)Isum{w(mc} =/
/* ~y(n) [1~y(n))sum{w(mn)y(m) [1~y (m)Jw (Lm) y(L) [1-y(L) */
/= */
/* Functions Called: None */
/* Variables Passed In: Node_record - Structure array */
/* nodes_in_layer - Integer array x/
/* starting_node.in.layer ~ Integer array x/
/* current_layer - Integexr */
/* zn -~ Float array */
/* correct_node - Integer */
/* CFM_eta ~ Float */
/* *ught - Float array */
/% CFM_momentum ~ Float */
I total_nodes - Integer */
/* */
/* Variables Returned: Node.record - Structure Array */
/* Date: 10 Nov 90 Revision: 1.0 x/

G-103

/ttl#ttt't.t.tt#l‘.‘t.‘#.t.‘l‘.t‘t‘ttlt‘##l“ttt.tttt‘.t“#t““.*‘t/

void CFM_first_layer (stxuct Node.data *node.recoxd(],

int nodes_in_.layer[],

int starting_node.in_layerl(],
int current.layer,

float zn[],

int correct_node,

float eta,

float swght[],

float alpha,

int total_nodes)

int x, y, z;

float buffer_1, buffer_2, old_wght;

int first_lyr_node, last_lyr_node, mid_lyr.node, input_lyr_node;
float output[TOTAL_NODES];

for (x = 0; x < total_nodes; x++)

output[x] = (1-node.recordx}->output)+node_record{x]->output;

for (x = 0; x < nodes_in_layex[current_layer]; x++)

{

buffer_2 = 0;
first_lyr_node = starting._node.in_layexr[current layer] + x;
for (y = 0; y < nodes.in_layer{current_layer+2]; y++)
{
last_lyr.node = starting.node.in_layer[current_layex+2] + y;
if (last.lyr.node != correct_node)
{
buffer_1 = 0;
for (z = 0; z < nodes_in_layer[current_layer+i]; z++)
{
mid, lyr.node = starting_node.in_layer[current.layer+1l+z;
buffer.1 = buffer_1
+ (output[correct.node]*node_record[correct_node]->weight [mid_lyr_node)
- output[last_lyr_nodel*node_record[last_lyr_node]->weight[mid.lyr.nodel)
* output[mid_lyr_node]*node.record[mid_lyr.node]l->weight[first_lyr_node];
}
buffer_2 = buffer_2 + zn{yl*(1-zn[y]l)* buffer. 1;
}
}

for (z = 0; z < nodes_in_layer[current_layer-1]; z++)
{
input_lyr_.node = starting_node_in_layer[current_layer-i] + z;
old_wght = *((wght[first_lyr_node])+input_lyr.node);
*((ught [first_lyr_node])+input_lyr.node) =
node_record[first_lyr.node]~>weight [input_lyr_node];

node_record[first_lyr_node)->weight [input_lyr_node] 4=
eta * buffer.2 * output[first_lyr_node]
s node_xecord[input.lyr_node]->output
+ alpha
* (node_record[first. lyr_node]->weight[input_lyr_node]
- old_wght);

-

¥
old_wght = & ((ught[first.lyr_node})+first_lyr_node);
*((ught [first_lyr_node])+first_lyx_node) =
node_record[first_lyr.node]->sigmalfirst_lyr_node];
node_recoxd[first_lyr_nodel->sigmalfirst_lyr_node] +=
eta * buffer_2 * output[first_lyr_node]
+ alpha

G-104

}

}

* (node_record[first_lyr_nodel->sigma[first_lyx.nodel
- old.wght);

/tt*t#*###tt##t'tt**###t!t#t#ttttt##t*tt'###t‘#tt*###/

/* End Functions Called by CFM Remaining Lyrs */
JRERERREREEARERAREERABRRSERRESRRETERRRRRRRARRARRR RN NN [

A T T P P P PP T P e T oY
/* Function Name: find_nearest_neighbor Number:8.28 */
/* Description: This function finds the euclidean distance between */

/* nodes in the same layer */
/* a(ij) = sqrt{sun[w(i)-w(j)1"2} */
/* Functions Called: None */
/* Variables Passed In: Node.record - Structure array «/
/* nodes_.in_layexr - Integer array «/
/* starting._node_in_layer - Integer array */
/* current_node - Integer */
/* next.node - Integer */
/* current_layer ~ Integer */
/* sdistance_between - Float array pointer */
/% »/
/* Variables Returned: *distance.between - pointer */
/+ Date: 10 Nov 90 Revision: 1.0 */
/“*‘*‘##‘!“‘ bk “*“‘*"‘##i*#i###'#‘#“*#t#‘##““*‘*/

void find_nearest_neighbox(struct data *data_record[],

struct Node._.data #node_record[],
int recoxd,

int nodes.in_layer[],

int starting_node_in layer([],

int current_layer,

int *nearest_node)

int x, y, current_node, previous_layer_node;
float buffer, distance, nearest_distance;
double exponent = 2;
calculate_layer_0.output{(data_recoxd,

node_record,
nodes_in_layer,
record);

nearest._distance = 1009;
for (x = 0; x < nodes_.in_ layer[current_layer]; x++)

{

current_node = starting_node._in_layer[current_layer] + x;
distance = 0;
for (y = 0; y < nodes_in_layer[current_layer-1}; y++)
{
previous_layer_node = starting_node.in_layer[current_layer-1]+y;
buffer = node_record[current_node]->weight [previous_layer_node)
- -tode_record[previous_.layer_node]->output;
distance = distance + pow(buffer,exponent);
}
if (distance < nearest.distance)
{
nearest_distance = distance;
*nearest_node = current_node;

}

G-105

G.9 NETMATH

/t#t"t#‘t*‘““#tt‘#‘ttt#tt#‘###.k‘t###‘tt‘ttt#t‘#t#‘#l##t‘t##*.t#t,

/* Module Name: XETMATH.C Jumber: 9.0 174
/* Description: This module contains the basic mathematical */
/* used 1o trzin the netwvorks */
/% */
/* Modules Called: None */
/* Functions Contained: */
/+ 9.1 make_identity_matxix 9.2 determine_matrix_transpose */
/* 9.3 invert_a_matrix 9.4 update_average =/
/* 9.5 update_sigma 9.6 culculate_pexcentage x/
/* */
/* Date: 11 Nov 90 Revision: 1.0 */

/‘*“#t‘ttttt‘#tt#‘tt*#t##*t‘#tttttt#‘ttttt.t‘tttttt#‘#t#“‘l““‘##/

#include "netvrble.h"
#include "netfnctn.h"

i L T T e e PP bRk * axernn/
/* Function Name: make_identity.matrix Number: 9.1 */
/* Description: This function returns a matrix whose elements are =*/
/* are 1 on the diagonal and O elsewhere */
/* »/
/* Functions Called: None %/
/* Variables Passed In:*¥ ~ Float array pointer */
/* nodes_2 - Integer */
/* */
/* Variables Returned: *¥ - Float array pointer */
/* Date: 11 Yoy 90 Rewision: 1.0 */

/tt“##‘t###t‘“t*#ttt#ttt#t‘##*‘tﬁ“‘.##t#tt‘&\#tlt##ittt#ttttttt‘t/

void maho_ldentity_matrir (float *N[],
int nodes_2)

{
int row, column;
for (xow = 0; xrow < nodes_2; wowtt)
for (column = ¢, column < nodes_2; column++)

if (row == column)

*((N{row])+column) = 1;

else

*((§[row])+column) = 0;
}
/“*"*#t‘lt*t“"#t‘##“**“‘*t“*#ﬁ.lt#t#‘l#‘#ﬁ‘b"##t##‘**““‘ﬁ*/
/* Function ¥abe: determif 2_matrix._transpose Fumber: 9.2 »/
/* Description: This .unctjon retulns Lhe tra'zpor of a square */
/* umatrix by */
/* Xrixliyl = Mlylx] */
/* »/
J* Functions Called: Fone +/
/% Variables Passeu ‘n: *MT - Float wrray pointer */
/* *M - Float array pointer */
/* 1otal_xbfs »/
/* */
/* Variables Returned: »MT - Float array pointer */
/+ Dato: 11 Yov 90 Rovision: 1.0 */

G-106

/‘t‘..l#“tt‘tt‘t“ttt‘““l..‘t!“‘.ltl#.‘#.t‘tt‘."t‘#.““#“##.l/

void detexmine_matrix_transpose(float *MT[],

{

float *M[],
int total_rbfs)

int row, column;

for (xow = 0; row < total_rbfs; xrow ++)
for (column = 0; column < total_rbfs; column++)

*((MT[xow])+column) = *((M[column])+row);

for (row = 0; row < totzl_rbfs; rowt+)
for (column = 0; column < total_rbfs; column++)

}

*((M[row])+column) = »((MT[xow])+column);

/#“##“t‘#“ttt#t."t‘“##"#‘.‘."t‘##l“‘t‘#t“t“‘t#lt“““‘l#‘/

/*
/x
/*
/*
/*
/*
/*
/*
/*
/*
/*

Function Mame: invert_a_matrix
Description: This function returns inverts a
via Gaussian elmination

Functions Called: ¥one

Number: 9.3
square matrix

Variables Passed In: #M[] - Float array pointer
*N[] - Float array pointer

nodes_2 - Integer

Variables Returned: #*K[] - Float array pointer

Date: 11 Nov 90 Revision: 1.0

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/“t‘#*#tt.#‘#‘##t#tt##t‘t‘ttttttt‘!.‘#‘“t#“#tt““tt“‘ttttt“#‘t/

void invert_a_matrix (float *M[],

}

float *X[],
int nodes_2)

float beta = 0;
float alpha = 0;
int xx, yy, row, column;
for (row = 0; row < nodes_2; rowtt)
{
beta = *((M[row]})+row);

foxr (column = 0; column < nodes_2; column++)

{
*((M[xrow])+column)
*((¥[xrow])+column)
}

foxr (xx = 0; xx < nodes_2; xx++)
if (xx != row)

{
alpha = *((M[xx])+row);
for (yy = 0; yy < nodes.2; yy++)
{
«((M[xx])+yy) =
«((N[xx])+yy) =
}
}

3

= »((M{row])+column) /beta;
= #((N[row])+column)/beta;

-alpha * *((K[rowl)+yy) + *((M[xx])+yy);
-alpha * *((H[zou])+yy) + »((B{xx])+yy);

/ttt"“!ttttt‘vt‘t‘#!*tt‘t#t##t‘ti"t““*#*‘#‘#‘ttt#.tt#‘*.‘#‘#‘*'/

/*
/*
/*
[*
/*
/*
/*

Function Name: update_average

Bumber: 9.4

Descryption: This function maintains a running average
avg(+) = avg(-)+[x-avg(-)]/[8(-)+1]

Functions Called: None
Variables Passed In: current_average -~ Float
elements -~ Integex

G-107

*/
*/
=/
*/
»/
*/
*/

/* x - Float */

/* snext_average - Float pointer o/
/* /.
/* Variables Returned: *next_av~cage - Float pointer »f
/+ Date: 11 Nov 90 Revision: 1.0 ./

/‘t#‘tiit‘#.tt“t‘#ttt#00#‘tt““tt#t‘t##.l"‘.‘#‘#t#t#.ttt#.#‘*‘t‘#/

void update_average (float current_average,
int elements,
float x,
float *next.average)

{

float y;

next.average = current.average + (1/(float)elements)(x~-current_average);
}
e T T PP PP LYY
/* Function Name: update_sigma Number:9.5 »/
/* Description: This function maintains a running sigma by */
/* sigma(+) = sqrt{sigma(-)~2+(1/0) [1-(1/0)] [x-avg(-)]~2-sigma(-)"2} »/
/* */
/% Functions Called: None */
/* Variables Passed In: current.sigma - Float »/
/* elements - Integer */
/* x ~ Integer */
/* current.average - Float «/
/* snext.sigma - Float pointer »/
/* »/
/* Variables Returned: *next_sigma - Float pointer »/
/* Date: 11 Nov 90 Revision: 1.0 */

/t##t##“t‘#'#“"t"#*.““t“#t#t.“““t“‘t#."t#““t#“‘tt“'#t“/

void update.sigma (float current.sigma,
int elements,
float x,
float current_average,
float *next.sigma)

{

snext.sigma = pow((double) (current.sigma),2)+(1/(£float)elements)

» ((1~1/(float)elements) * pow((double)(x-current_.average),2)
- pow((double) (current_sigma),2));

*next_sigma = pow((double) (+next_sigma),.5);
}
T P T T T e P P T v Yy
/* Function Kame: calculate_percentage Number: 9.6 */
/* Descriptior: This function returns the percentage value */
/ »/
/* Functions Called: None */
/* Vaxriables Passed In: numerator - Floati */
/% denominator - Float */
/* tper_cent - Float pointer */
/* */
/* Variables Returned: #per_cent - Float pointer */
/* Date: 11 Nov 90 Revision: 1.0 */

/“‘##t#t*t#‘#t#‘t#‘#t“t‘##t#ttt##tt#t#t‘t##t‘t#t#ttt#tt‘t#t!tttttt/

void calculate_percentage(float numerator,
float densuinator,
float *pex.cent)

{

sper_cent = 100 * numeratox/denominator;

G-108

G.10 NETVRBLE

#include <stdio.h>
#include <math.h>

/t‘it“lt.“.‘t.‘t#t#‘*‘t‘tﬁ‘*‘#“““‘#t“#““.‘#.‘t“tt‘t./

/*

Name: NETVRBLE

Number: 10,0

/* Description: This module contains the data structures

/*
/*
/*
/*

foxr the nodes and the data along with

the maximum values for the global

variables

Modules Called: None
Functions Contained: None
Variables Passed In: None
Variables Returned: None
Date: 10 Nov 90

Revision: 1.0

o/
o/
o/
o/
o/
*/
o/
9
o/
o/
o/

/t‘t‘.ttttﬁt‘tlt“ttt#tlttt#“‘#‘t".t.‘t“““##““t‘t#ﬂt.‘/

#define DIMENSION 100
#define TRAIN_SET 200
#define TEST.SET 200
#define CLASSES 20
#define TOTAL_NODES 250

struct data

{

float vector [DIMENSICN];
int class;

int number;

struct Node_data

{

*loat weight[TOTAL_NODES];
float sigma[TOTAL.BODES];
int class;

int transfer_function;
float output;

int connect[TOTAL_EODES];

/s
/*

Length of Feature Vector

*/

Nunber of Training Patterns #/

Number of Test Patterns
Bumber of Classes

Number of Nodes

G-109

*/
*/
*/

o
ey

14,

10.

11.

12.

13.

Bibliography

. Barmore, Gary D. Speech Recognition Using Neural Nels and Dynamic Time Warping. MS

thesis, AFIT/GEO/GENG/88D-1, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1988.

. Beastall, W.D. “Recognition of Radar Signals by Neural Networks.” In First IEE International

Conference on Artificial Neural Networks, pages 139-142, London, UK: IEEE Press, 1989.

. Brady, M. and others. Gradient Descent Fails 1o Separale. Technical Report 0-9740/B202,

Palo Alto CA: Lockheed R and DD, July 1988.

. Broomhead, D.S. and David Lowe. Radial Basis Functions, Mulli-Variable Funclional Inter-

polation and Adaptive Networks. Memorandum 4148, London, UK: Royal Signals and Radar
Establishment, March 1988.

. Cybenko, G. “Approximation of Superpositions of a Sigmoidal Function,” Mathematics of

Control, Signals and Systems, 2:303-314 (March 1989).

. Dayhoff, Judith E. Neural Neiwerk Archilectures. New York: Van Nostrand Reinhold, 1990.

. Fukunaga, Keinosuke. Iniroduction to Statistical Patlern Recognilion. New York: Academic

Press, 1972.

. James, Mike. Classification Algorithms. New York: John Wiley and Sons, Inc., 1985.

9. Kohonen, Teuvo. Self-Organizing Maps. Tusorial 122, Laboratory of Computer and Informa-

tion Science: Helsink: University of Technology, January 1982.

Kohonen, Teuvo. Self-Orga~izaiion and Associgiive Memory. New York: Soringer-Verlag
Berlin Heidelberg, 1989.

Lippman, Richaxd P. “Pattern Classification Using Neural Networks,” IEEE Communicalions
Magazine, 2:47-63 (November 1990).

Marchette, D.J. ana 2.E. Pricbe. The Adeplive Kernel Neural Network. Technical Document
1676, San Diego CA: Naval Ocean Systeras Center, October 1989 (A-217-230).

Moody, John «ud Christtan Dasken. “Learnin, with Localized Receptive Fields.” In Proceed-
ings of the 1988 Connectionist Models Sum:ner School, pages 133-143, New Haven CT: Yale
Computer Science, 1988

Nowlan, Steven J. Max [ikehuood Competitioa in RBF Networks. Technical Report CRG-
T§t-90-2, Toronto Canada. Depariment of Corpu.er Science, University of Toronto, February
1929,

, Poggio, Thomaso and F. Girosi. A Theory of Networks for Approzimation and Learning. AL

Memo 1140, Cemmbridgs MA: MIT and Center for Biological Information Processing, July 1989.

. Poggio, Thomaso and F. Girosi. “Reguiarization Algorithms for Learning Equivalent to Mul-

tilayer Networks,” Science, 2/7:978-982 (February 1990).
Powell, M.J.D. and others. Algorithms for Approzimatien. Oxford: Clarendon, 1987.

. Renzle, 8. “Radial Basic Function Network for Speech Pattern Classification,” Flec/~onic

Letters, 25:437--43% {March 1990).

. Rogers, Sieven K. and others. An Introduction to Biological and Artificial Neural Nelworks.

wpafb. afit, 1990.

BIB-i

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

Ruck, D and others. “Classification of Tactical Targets with Neural Netowrks.” In Biologicial
and Artificial Neural Networks for Pattern Recognilion, pages 268-290, 'wpafb: afit, 1990.

Ruck, D and others. “The Multilayer Perceptron as an Approximation to a Bayes Optimal
Discriminant Function.” In International Joint Conference on Neural Networks, pages 863~
873, Ann Arbor, MI: IEEE Press, 1990.

Rummelhart, David E. and others. Parallel Distributed Processing. Cambridge MA: The MIT
Press, 1986.

S., Renals and Richard Rohwer. “Phoneme Classification Experiments Using Radial Basis
Functions.” In Proceedings of the International Joint Conference on Neural Nelworks, pages
461-467, 1989,

Specht, Donald F. “Probabalistic Neural Networks for Classification, Mapping, or Associative-
Memory.” In IEEE International Conference on Neural Networks, pages 525-532, San Diego,
CA: IEEE Press, 1988.

Stremler, Ferrel G. Introduction to Commaunication Systems. Philippines: Addison-Wesley
Publishing Company, 1982.

Tarr, Gregory L. Dynamic Analysis of Feedforward Neural Networks Using Simulaled and
Measured Data. MS thesis, AFIT/GE/GENG/88D-54, School of Engineering, Air Force In-
stitute of Technology (AU), Wright-Patterson AFB OH, December 1988.

Tou, Julius T. and Rafael C. Gonzalez. Pailern Recognition Principles. Reading MA: Addison-
Wesley Publishing Co., 1974.

Waibel, Alexander H. and John B. Hampshire. “A Novel Objective Function for Improved
Phoneme Recognition,” IEEE Transactions On Neural Networks, 1:216-227 (June 1990).

Wasserman, Philip D. Neural Computing, Theory and Practice. New York: Van Nostrand
Reinhold, 1989.

BIB-2

e S,

Adoandt ELG

e L Al

QR R R WRER S DY)

Form Approved

REPORT DOCUMENTATION PAGE Fo e e8

Public reporting burden for this colfection of information 1s estimated to average 1 hour per response, inctuding the time (or reviewing instructions, searching existing aata sources,
gathenng and maintaining the data needed, and completing and reviewing the ccliection of information Send comments reqarding this burden estimate of any Gthef aspect of thiy
collectian of infarmation, including suggestions for reducing this burden 1o Washington Headquarters Services, Directorate for information Operations and Report, 1215 Jelferson
Davis Highway, Suite 1204, Adington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704.0188), Washington, 0C 20503,

CHARACTERIZATION OF RADAR SIGNALS USING NEURAL NETWORKS

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1990 Master's Thesis
4, TITLE AND SUBTITLE) 5. FUNDING NUMBERS

6. AUTHOR(S)
Daniel R, Zahirniak, Capt

v

7. PERFORMING’ORGANIZ;\TION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology, WPAFB OH 45433-6583

REPORT NUMBER
AFIT/GE/ENG/90D-69

Electronic Warfare Division

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

AGEMNCY REPORT NUMBER

WRDC/AAWP-1
WPAFB OH 45433-6543

11, SUPPLEMENTARY-NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

Recent work concerning artificial neural networks has focused on decreasing network training times. Kernel Classificr
networks, using-radial basis- functions (RBFs) as the kernél function, can be trained quickly-with little performance
degradation. Short training times are critical for sysiems which must adapt to changing environments. The function of |
Kernel Classifier networks is based on the principle that multivariate functions can be approximated via linear combinations
of RBFs, RBFs can ulso perform probability density estimations, making classifications approximating a Baye'’s optimal
descriminant. Methods used to set the RBF centers included matching the training data, Kohonen Training, K-Mcans
Clustering and placement at averages of dala clusters of the same class, Test results indicate the performance of these
networks was equal to that of Hyperplane Classifier networks trained, via backpropagation, to optimize the Mcan Squarc
Error, Cross Entropy, and Classification Figure of Merit objective functions, However, the RBF nctworks trained much
faster. The RBF networks also outperformed the Probability Neural Networks,(PNN) indicating the weights in the output
layer offset the choice of non-optimal spreads. This ability. to train quickly while obtaining high classification accuracies
make RBF Kernel Classifier networks an attractive option for systems which must adapt quickly to changing environments.

14, SUBJECT TERMS i 15. NUMBER OF PAGES

289

Neural Networks, Artificial Intelligence, Signal Classification, Pattern Recognition, Back-

O) . ; 16. PRICE CODE
ward Error Propagation, Radial Basis Function

i7.

SECURITY CLASSIFICATION 118, SECURITY CLASSIFICATION J19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified - Unglflssiﬁed UL

2SS 754095 280-55010 i Stersiard Form 298 (Rev 2 89)

