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Preface

The purpose of this thesis was to determine the optimal performance of the moving-
bank multiple model adaptive estimation and control algorithms with a reduced order filter
against a higher order truth model. The moving-bank mulitple model adaptive estimation
and control algorithm is an attempt to reduce the computational loading that would be re-
quired for full-scale implementation of the multiple-model adaptive estimator or controller.
The results of this thesis showed that the performance of the reduced-order model moving-
bank algorithms could be substantially improved over .revious research results with the
appropriate determination of filter model noise statistics and LQG controller weighting
parameters. The determination of the optimal moving-bank logic and controller logic also
demonstrated performance comparable to that of a non-adagtive +enchmark. This thesis
also demonstrated the need for adaptive estimation/control in the case of parameter/filter
location mismatch and also for the case of varying parameters for the two-bay truss struc-

ture.

I would like to extend my sincere gratitude to Dr. Peter Maybeck for his time,
guidance, and encouragement, without which I would not have been able to complete this
research. I would like to share the accomplishment of this research with my wife, Laureli.
Her love and s)upport; while not apparent in the text of this document, was greatly needed

and was siné;rely appreciated throughout the duration of this endeavor.

Robert Brent Moyle
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Abstract

The performance of moving-bank multiple model adaptive estimation (MMAE) and
control (MMAC) algorithmis for large space structure control is analyzed in this thesis.
The performance of a six-state filter model and associated controller arc evaluated on the

basis of estimation/control performance against a 24-state truth model.

A model developed using finite element analysis is used to approximate a large flexible
space structure. The space structure is configured as a two-bay truss which is attached
to a large central hub, where the mass of the hub is considered to be much larger than
the mass of the flexible structure. "I‘he' model is developed in physical coordinates and
then transformed intg r?mdal coordi}latés, where the method of singular perturbations is
used to obtain a reduced order filter model. The actual positions and velocities of various
physical points on the structure are uséd in the evaluation of the moving-bank algorithm

performance.

Results of the research indicate that _appropriate determination of the filter model
noise statistics as well as the LQG controller weighting matrices significantly improve
performance of the bank throughout the lparameter space. The results indicate that the
performance of the moving-bank algorithms is seriously degraded by the inclusion of the
filter-computed residual covariance in the conditional probability density function for com-
putation of the hypothesis conditional p;'obabilities within the multiple model algorithms.
The performance of the moving-bank MMAE/ MMAC algorithms using parameter position
estimate monitoring for parameter ident'iﬁcation, and using a modified MMAC methodol-
ogy for implementing control, provide performance comparable to an artificially informed
non-adaptive controller benchmark. The moving-bank algorithms provide performance
comparable to a benchmark controller'for the cases of slowly varying and jump parame-

ters, as well as for constant parameter values.

xiv
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MOVING-BANK MULTIPLE MODEL
ADAPTIVE ESTIMATION AND CONTROL
APPLIED TO
A LARGE FLEXIBLE SPACE STRUCTURE

I. Introduction

In many estimation and control applications, problems arise when the parameters
which describe the system model are not known with absolute certainty. The uncertainty
in these parameters reduces the degree to which the system model is valid and degrades
the accuracy of the algorithms based on that model. The values of these parameters may
not remain constant. In fact, quite .ften these parameters will vary slowly over time
(such as due to fuel depletion), or caange abruptly (such as due to a structural failure).
One method to provide real-time identification of the parameter values required in these
situations entails the construction of a bank of Kalman filters; one filter is designed for
each possible parameter value. These filters are run in parallel, and their outputs are
combined through an appropriate weighting logic. This technique is referred to as Multiple
Model Adaptive Estimation (MMAE). This method not only provides estimates of the
uncertain parameters, but more importantly, it provides estimates of the system states as
well. The system state estimates provided from the MMAE approach are formulated as

the probabilistically weighted sum of the elemental filter state estimates.

The basic problem with the full-bank MMAE technique described above is that the
number of Kalman filters required to be processed in real time creates an unhearable
computer load. This thesis uses the concept of a “moving-bank” MMAE to alleviate the
computer burden. This method maintains a subset of the full-bank elemental Kalman filters
in a small window in parameter space and dynamically redeclares the filters containnd in
this window such that the current parameter estimate is continuously surrounded. The
states estimated by the moving bank are then provided as inputs to a controller of some

form. Several controller designs are appropriate for implementation with the moving-bank
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estimator. The control methods examined in this thesis will utilize the “assumed certainty
equivalence design” technique, which consists of developing an estimator cascaded with a
deterministic full-state feedback optimal controller [17:17]. The controllers so designed will
be based on a Linear system with a Quadratic cost .ontrol criterion driven by Gaussian

noises, or LQG, control synthesis.

In addition to maintaining fewer of the parallel Kalman filters on line, computational
loading can be further mitigated by reducing the number of system states upon which the
elemental Kalman filters and/or controllers within the moving-bank algorithm arc based.
However, when a reduced order model is used for the basis of synthesizing a filter and/or
controller, the robustness of the adaptation process to the unmodelled effects is a prime

consideration.

This thesis will use the moving-bank estimator and LQG control synthesis described
above to control a large, flexible, space structure. A Monte Carlo study will be performed
to evaluate the performance of a moving-bank algorithm based on steady-state, constant-
gain Kalman filters and controllers. In this thesis effort, the control objective is to quell any
oscillations in the structure and to “point” the structure in a commanded direction. Struc-
tural vibrations can be the result of external disturbances or from commanded maneuvers

like slewing.
1.1 Background

The development discussed in this section will provide a briel overview of the follow-
ing four areas:(1) multiple model adaptive estimation - MMAEL, (2) moving-bank MMAE,
(3) moving-bank MMAE-based controller, and (4) the system model. The discussions con-
tained in the following sections are not intended to be complete. Rather, the information
provided here is intended to allow understanding of the problem statement and approach
at the end of this chapter. Chapter 2 discusses the development of the first three algo-
rithms in more detail, whereas Chapter 3 discusses system model development in more
detail. The notation used in this thesis is intended to be consistent with the convention
found in [15] such that a stochastic pro ss is denoted by x while a deterministic process

is denoted by x.
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1.1.1  Multiple Model Adaptive Estimation - MMAFE. In most control applications,
the normal approach for optimal control system stability and robustness is the use of full-
state feedback. However, this requires perfect access to all states, which is rarely attainable
due to the fact that the states may not be directly measurable. In addition, the states
that are measurable may be influenced by uncertain parameters. In either case, a method

must be implemented to provide the best possible state estimates to the controller.

The approach that MMAE uses to provide state estimates for system control is
to design a Kalman filter for each possible parameter value ag, for &£ = 1,..., K. The
MMAE approach results in a bank of K Kalman filters, where K is the number of possible
parameter values. To enhance the feasibility of the MMAE technique, it is assumed that
the uncertain parameters can realize only discrete values; either this is physically realistic
or discrete values are chosen from the continuous parameter variation range. (Proper
discretization of the parameter space is then an important issue, as will be discussed
later.) This is necessary in order to reduce the resulting number of possible parameter
combinations. For example, if the system of interest had two uncertain parameters that
could each realize two discrete values, the resulting parameter space would be comprised
of four discrete points. On a larger scale, if the parameters could realize 100 values each,
the parameter space would be composed of 10,000 discrete points. Conceptually, a system
model would be associated for each of the 10,000 points in the parameter, each requiring
a Kalman filter. This would create an unbearable computational load for any real-time
control system. Following the development of previous research, this investigation will
use two-parameters, where each parameter is allowed to realize ten discrete values. This
results in a parameter space consisting of 100 points with which to approximate the actual
continuous parameter space, and the MMAE based on all 100 points will be referred to as

the “full-bank” estimator.

Each Kalman filter in the bank helps to produce a hypothesis conditional probability
that its assumed parameter is “correct”. These conditional probabilities are based on the
characteristics of the residuals of the Kalman filters and are used as a weighting factor
for the state estimate produced by each Kalman filter. The Kalman filter based upon

the “true” parameter should have residuals consistently smaller (relativ: to the filter’s
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own computed residual covariance) than the residuals of the other mismatched filters.
Accordingly, the conditional probability associated with the “correct” filter mode] will
increase, causing the others to decrease [16:133]. The probability for each Xalman filter is

a function of the conditional probability densities related by

faazitiy)(%i | 8k Zie1)pr(tiz1)
Cie1 Fagtiylazriy) (i | 85, Zicy)p;(tica)

pk(t;) = (1.1)

The first numerator term represents the probability density of the current measurement
based on the assumed aj parameter and the previous measurenent history through time
ti—1 [16:131). The second numerator term is the previous py value. Equation (1.1), there-

fore, represents an iterative reiation. The probability density function is formed by:

1 "
FaelaZtion) (2 | 8y Zicy) = R TA ™ )
0 = (=5 EAR Gmn) (1.2)

where ri(2;) is the filter residual [z(t,-) —- Hy(t)x(t7 )] in the k** filter, expressed in terms
of the measurement matrix Hy(t;) and the state estimate before the i estimate is incor-
porated, X,(#;). The quantity Ax(t;) is a function of H(¢;), the state estimation error
covariance matrix before measurement update Px(¢7), and the noise covariance matrix
Ri(ti), namely Ag(t;) = [Hk(t,-)Pk(t,-' YBI (%) + Rk(t,-)]. It will be shown in Chapter 2
that the complete evaluation of Equation (1.2) is available from each separate Kalman

filter.

The denominator of Equation (1.1) is the sum of all numerator terms forj = 1,..., K,
so that the sum of all p is unity. This property does not let any one filter control the
estimation process unless one of the estimator’s probability goes to one and all the others
go to zero. Steps must be taken to prevent any probabilities from going to zero, since any
such probability would become permanently locked onto zero by the iteration performed by
Equation (1.1) even if changing conditions were to cause that particular parameter value
to become the best value. One way to prevent the probabilities from going to zero is to

set a lower limit that the p; may assume. Other methods are discussed in Chapter 2. The
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adaptive state estimate of the MMAE is then determined by summing the probabilistically
weighted outputs of each Kalman filter. This technique is referred to as the Bayesian form
of the MMAE estimator and is illustrated in Figure 1.1. A second approach for determining
the overall state estimate would be to take the state estimate of the filter with the highest
conditional probability. This method is referred to as the maximum a posteriori, or MAP,

estimator.

1.1.2 Moving-Bank MMAE. The concept behind the moving-bank MMAIL is that
the state estimate provided by the full-bank MMAE may be approximated by a reduced
number of Kalman filters, say J where J < K. The moving-bank filters are dynamically
redeclared such that the center filter is located as close as possible to the current parameter
estimate. The parameter estimate of the moving-bank MMAE algorithm should be nearly
as good as the full bank estimate, provided that the vast majority of the full-bank MMAE
algorithm parameter probability weight is contained within the moving bank. Figure 1.2
shows how the full-bank MMAE system would look if all 100 filters were used. Each of the
blocks represent a discrete parameter point used as the basis for a Kalman filter., Figure
1.3 shows how a moving 3-by-3 bank might appear surrounding the current parameter
estimate. The moving bank is composed ¢ aine solid blocks. The “discarded filter” points
correspond to a 3-by-3 bank at an earlier time instant when that set of nine points most

closely surrounded the estimated parameter location at that time.

There are five basic techniques for deciding when to move the bank, when to contract
the bank to a finer discretization, and when to expand the bank to encompass a coarser
discretization. “Fine” discretization implies that the filters in the bank are adjacent to one
another, as illustrated in Figure 1.3(a). “Coarse ” discretization implies that the filters in
the bank are not adjacent to one another, which is illustrated in Figure 1.3(b). The five

techniques used for decision making are [19):

¢ Residual monitoring
¢ Parameter position estimate monitoring

¢ Parameter position and “velocity” estimate monitoring
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¢ Probability monitoring

¢ Parameter estimation error covariance monitoring

Residual monitoring is used for movement of the bank as well as for expansion.
Residual monitoring uses a likelihood quotient based on the elemental filters in the bank

and is defined as:

Lj(t:) = T (8)A;(t:) rj(t:) (1.3)

which is the quadratic form within Equation (1.2). If all the L; are above a preset move
threshold, the bank is moved. This condition indicates that all residuals are larger than
anticipated by the associated computed Aj;(t;) value, and thus that none of the current
filters is based upon a particularly good assumed parameter value. In addition, the filter
with the smallest likelihood quotient should be the filter nearest the true parameter value,
thus providing the direction for movement. If the parameter undergoes a jump change or
is changing rapidly, a closely spaced bank may not be able to track the parameter ade-

quately. By comparing the L; to a preset expansion threshold, the bank can be expanded.
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By expanding the filter bank, the parameter value can be reacquired and a decision to
contract the bank around the new parameter location can be made. Residual monitor-
ing is susceptible to single large samples of measurement noise and may give falsc alarms

[19:1876), i.e., the bank may be moved or expanded unneccessarily.

Parameter position estimate monitoring is used for movement of the bank and at-
tempts to keep the bank centered on the current estimate of the true parameter. The

estimated true parameter is given by:

J
a(t) = E{a(t:) | Z(t:)} = ) _ a; - pi(ts) (1.4)

=1

When the “distance” between the center of the bank and the estimated parameter location
becomes larger than a preset move threshold, the filter bank is moved. Since the calculation
depends on the time history of measurements, rather than just a single one, this technique

is less susceptible to false alarms than the residual monitoring method [19:29].

Parameter position und “velocity” estimate monitoring is used for movement of the
bank and is an extension of the previous method. By tracking the “velocity” of a slowly
moving parameter through the most recent parameter position estimates, the next position
of the parameter may be predicted. If the distance between the predicted location and the

current center of the filter bank exceeds a preset move threshold, the bank is moved.

Probability monitoring is used for movement of the bank and uses the computed
probabilities provided in Equation (1.1). The computed probabilities are compared to a
preset move threshold to determine if the bank should be moved in the direction indicated

by the filter producing the highest probability exceeding the threshold.

Parameter estimation error covariance monitoring provides a means for determin-
ing whether the bank should be contracted from a coarse to a finer discretization. The

parameter estimation error covariance is given by:

Pé(ti) = E{[a - ﬁ(t,')] [a - é.(t,')]T l Z(ti) = Zi}
J
= Y la-a()lla-a)" - pik) (1.5)
i=1
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When the norm (or some other suitable measure) of the matrix Py falls below some preset

threshold, the bank may then be contracted around the crrrent parameter estimate.

1.1.3 Moving-Bank MMAE Controller. There are several controller designs ap-
propriate for implementation with the full-bank or moving-bank estimator discussed in
Sections 1.1.1 and 1.1.2. All designs considered here assume that the system model is
Linear, the control cost criterion is Quadratic, and the system and measurement noises
are Gaussian. Using LQG optimal control synthesis for an adaptive control problem is
based upon the use of the “assumed certain equivalence property ” [17:241]. This property
allows the independent development of an estimator cascaded with a deterministic full-
state feedback optimal controller. In addition, this property results in the LQG controller
being equivalent (in the case in which there is no parameter uncertainty) to the optimal
deterministic controller but with the states replaced with the conditional estimates pro-
vided by the estimator. This research will investigate a special form of controller known

as a “regulator” since the objectives are to drive the position and velocity states to zero.

Each controller developed in this research is a linear, quadratic cost, full-state feed-
back optimal deterministic controller based upon a specific assumed parameter valae of a.
The output of the controller is desired to be the optimal control function, u*, such that

the quadratic cost function

N
J = E {2% [XT(ti)X(ti)QS(ti) +uT(:)U(t:)u(t:) + 2§T(ti)S(ti)u(ti)]

i=0

1
+-2-_>£T(tN+1)Xf§(tN+1)} (1.6)
is minimized [17:73]. This can also be written as

T
N
1 (| x(%) X(t:) S(t) || x(t) 1
J=B{Y 3 ' o ' L 3T ) Xex (o) ¢ (17)
i=0 u(t;) S*(t:) Ut) u(t;)
The cross term, S, between x(t;) and u(¢;) within Equation (1.7) results from the desire

to apply control at discrete time intervals to minimize an appropriate continuous-time

quadratic cost. Chapter 2 will provide a more complete discussion of the development.
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The matrices of interest in Equation (1.7) are as follows:

J = cost to be minimized

¢ x(t;) = n-dimensional state vector

o X(t;) = n - by — n-dimensional tate weighting matrix

e X; = n — by — n-dimensional final state weighting matrix
¢ u(t;) = r-dimensional deterministic input vector

e U(t;) = r — by — r-dimensional control weighting matrix
¢ S(t;) = n — by — r-dimensional cross-weighting matrix

o {n41 = final time

e ty = last time a control is applied and held constant over the next sample period

The final term in Equation (1.7) assigns a quadratic cost penalty to the magnitude
of the terminal state deviation from zero. If the cost weighting matrix associated with the
final state, Xy, is diagonal, then these diagonal terms are selected to reflect the relative
importance of maintaining each component of x(¢y4+1) near zero: the more important the
state minimization, the larger the associated X ; term. The same comments can be made for
the X(t;) weighting matrix, which reflects the importance of maintaining individual state
component deviations at small values over each of the (N +1) sample periods. The diagonal
entries in the control weighting matrix, U(t;), determine the measure of individual control
conservation desired over each of the (V + 1) sample periods. The larger the matrix entry,
the higher will be the penalty for expending more enexgy. The X(;) and X matrices are
assumed to be real symmetric, positive semidefinite. This allows zero cost to be assigned to
certain state variables of no significance. The U(?;) matrix is assumed to be real symmetric
and positive definite. This assui.ption preciudes a controller solution which would require
an infinite amount of energy at any time. The cross-weighting matrix, S(;), is chosen
so that the resulting symmetric composite matrix in the summation of Equation (L.7) is
positive semidefinite. This research will investigate-constant weighting matrices, as-will be

discussed in Chapter 2.

If the assumption of a linear system driven by white Gaussian noise is used, with a

quadratic cost function given by Equation (1.7), then the optimal discrete linear feedback
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control law, is given by [17:16]:
wi(t;) = ~GI(t)R(F) (1.8)

where full state access has been replaced via assumed certainty equivalence by the state
estimate provided by the moving-bank MMAE. The controller gain, G}(#;), is found by
solving an n — by — n backward Riccati difference equation from an appropriate terminal

condition. Chapter 2 will address this development in more detail.

A particularly useful implementation of the control law given in Equation (1.8) can
be used for time-invariant systems with stationary noise. If the performance degradation
due to ignoring the terminal transient of the G7(¢;) and the initial transient of the Kalman
filter gain is acceptable, one might seek the steady-staie constant-gain control law to use
during a finite time interval that is long compared to the transient periods. For this case,

the optimal discrete linear feedback control law is given by: [17:243]
(k) = —G&(t) (1.9)

with X(¢7) produced by a constant-gain steady-state Kalman filter. The steady-state gain
control law provided in Equation (1.9) will be the approach taken in this research. (For
the remainder of this discussion, constant-gain algorithms will be assumed and G will
written simply as G%). The formulation of G is provided in Chapter 2. As shown in
Figure 1.4, the LQG algorithm accepts sampled-data measurements from the system as
inputs, and it outputs the optimal control to apply as constant values to the system over

the next sample period, from t; to ;4.

Six MMAE estimator/controller combinations are presented in this section. These

techniques are:

o MMAC control
o Modified MMAC control
o MAP vs. Bayesian MMAC control

e Single fixed-gain controller based on aygm
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Figure 1.4. Diagram of Sampled-Data LQG State Regulator [17:19]
o Single changeable-gain controller based on a(t;)

Modified single changeable-gain controller based on a(%;)

MMAC control consists of an elemental controller for each of the elemental filters of
the bank, and the control outputs are probabilistically weighted and summed similar to that
of the MMAE state estimates. Figure 1.5 illustrates the formation of the control vector
for a full-bank estimator/controller combination. The blocks denoted by —GZ(ay) are
optimal controller gains determined specifically for each discrete parameter value aj. The
only difference between the full-bank MMAC and the moving-bank MMA.C method is that
the smaller number of estimators/controllers required by the moving-bank MMAC reduces
computational loading. The performance of this approach suffers due to the fact that
some magnitude (however small) of inappropriate control can be applied by filters based
on incorrect models, particularly if lower bounds are placed on computed probabilities as

discussed in Section 1.1.1.

Modified MMAC control is similar to the method described above. However, this ap-

proach consists of establishing a conditional probability threshold which must be obtained
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Figure 1.6. Diagram of Single Fixed-Gain Controller [7:41)

before any filter/controller combination of the moving bank can be allowed to apply con-
trol. This will reduce the amount of inappropriate control by requiring the probabilities
associated with each filter to pass a “goodness” test before the controller associated with

that filter can apply control.

MAP vs. Bayesian control is similar to the above approach. However, instead of
establishing a probability threshold, this approach uses only the control from the moving-

bank filter/controller combination with the highest conditional probability.

Single fized-gain control is formulated by providing a state vector estimate to a fixed-
gain controller, which is designed around a nominal value of the uncertain parameter set,
ayom. This method is illustrated in Figure 1.6. This method is reasonable since full-
state feedback controllers are inherently robust [7:40). This controller receives the state

estimates from the moving-bank estimator and generates the control as follows:

u*(ti) = _G: [anom]?:(_(t;'*-) (1.10)
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The controller parameters are selected such that the controller provides adequate regulation
for any true system parameter value [7:40). The selection of a,,, may not be a trivial

task.

Single changeable-gain control is formulated by providing both parameter and state
vector estimates to a single controller with gains that are dependent on the parameter
estimate. Figure 1.7(a) illustrates this approach. In this method, the control becomes as
follows:

u(t;) = -G [a(t) x(¢) (1.11)

For this method, a table of G, [a;]’s, one for each point in the parameter space, is estab-

lished and used for interpolation in order to generate G [a(t;)] [7:38]).

Modified single changeable-gain conirol is similar to the method above. Ilowever,
the parameter estimate, a(¢;), from the MMAE is provided to a single filter/controller
combination tuned specifically for that parameter value, illustrated in Figure 1.7(b). In
this approach, the filter gains, as well as the controller gains, are interpolated from the
parameter estimate. This is advantageous in reducing the possibility of underestimating
the undamped natural frequency within any part of the algorithm that directly generates
control inputs to the system, which has been previously shown to produce instability in

this particular application [24].

Now that a brief overview has been provided on the methods used for estimation and
control, it is appropriate at this time to provide a brief discussion of the structure which

will be investigated in this research.

1.1.4 System Model. The purpose of this section is provide a brief overview of the
system under investigation in this research. While this research does not perform the
development of the system model being investigated, it is important to understand the
concepts that were used in its development. A full description of the physical model and

modal model development, as well as order reduction, will be provided in Chapter 3.

1-16

e B i e e



Disturbance
?\ True x(t)
) System — —
ZOH H
u(ti)

¢ gt;)

R Moving
G lalt;) Bank Q
] - = Estimator
X(t;+) d
(t.)
-
One-sample
memory
(a)
’F\Disturbance True x(t)
O System —
ZOH "
u(t,) _ﬂti) Moving T /
Bank
Estimator
g_ti+) *
| Gc [g_(ti)] Filter . ]
v(ti)
One~-sample
memory

(b)
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The initial feasibility study performed by Ilentz investigated a simple second order

system [7:16]. The control ratio of the system is given as:

Cls) _ w3
R(s) ~ 82 4 2wps + w?

(1.12)

where ¢ is the damping ratio and w is the undamped natural frequency. In state variable

form (standard controllable form) the structure dynamics are described by:

x(1) = 0 ! x(t) + 0 u(t) (1.13)
~w? —2w, w?
e(t) = [ 10 ]x(t) (1.14)

The state vector, x(t), is composed of two components: x;(t), which represents a position

variable, and xz(t), which represents a velocity variable.

The structure investigated by Filios consisted of four cantilevered appendages at-
tached to a central hub [3]. This model was obtained {rom the Draper Laboratory/Rocket
Propulsion Laboratory Configuration space structure [3:38]. Basically, this structure rep-
resented a satellite with four whip antennas. Unfortunately, Filios discovered that this

model did not require on-line adaptation.

Following Filios, Karnick (8] obtained a space structure model that remains as the
system used for investigation today. Karnick obtained a fixed, two-bay truss model which
was originally developed to study the effects of structural optimization [27, 28] and optimal
control design [14]. Karnick incorporated one major modification to the original two-bay
truss he obtained. Basically, the truss was attached to a hub in order to enable investigation
of rigid body motion [8:45). Karnick used a six-state truth model and a six-state filter, both

of which accounted for the rigid body mode and first two hending modes of the structure.

Iigure 1.8 illustrates the physical description of the structure under investigation.
This structure could represent an appendage of a larger space structure. The 13 aluminum
reds that make up the structure are assumed to be of a certain cross-sectional area and

elasticity. The additional non-structural masses attached to the structure act to lower the
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structural frequencies, which makes this two-bay truss model representative of large space
structures. The mass and stiffness matrices that describe the structure were obtained from
a finite element analysis [28]. For the purposes of this research, the parameters which
will be varied are the mass and stiffness matrices. It will be shown in Chapter 3 through
modal analysis that the mass and stiffness matrix variations will affect the damping ratio
and natural frequency of the structure. From the development of the mass and stiffness
matrices, the truth model describing the structure contains twelve modes, the rigid body
mode and eleven bending modes. Since each mode is represented by two states, one
corresponding to position and one to velocity, the truth model for this structure contains

24 states.

In addition to the 13 rods and non-structural masses, the structure uses three sets of
sensors (two on the truss and one on the hub) to obtain position and velocity measurements.
The sensors on the truss consist of accelerometers and are located at the midpoint and
at the end of the structure. Thrusters are co-located with each of the accelerometers to
provide control inputs. Two gyroscopes are co-located at the hub; one provides angular
displacement and the other provides angular velocity of the rigid structure. Finally, an

inertia wheel is co-located at the hub to provide rigid body control inputs.

The work performed by Lashlee [11], Van Der Werken [26], and Schore [22] all con-
tinued the use of this model. Like Karnick, Lashlee’s research implemented a six-state
truth model and a six-state filter model. Van Der Werken, however, was concerned with
the effects of unmodelled states. Therefore, the research he conducted implemented the
24-state truth model and a six-state filter model. Schore’s research continued the work
of Van Der Werken and therefore implemented the previous truth and filter models. As
stated previously, the results obtained by Schore indicated that the six-state filter per-
formed adequately when affected by the unmodelled states. Therefore, this research shall

continue to use the same truth and filter models as employed by Schore.

Before the objectives of this research are stated, however, it is appropriate to provide
a brief overview of the major accomplishments of past research. The next section provides
a synopsis of the work that has been accomplished in this area by Hentz (7], Filios (3],

Karnick (8], Lashlee [11], Van Der Werken [26], and Schore [22].
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1.2 Past Research

In the past six years, research has been conducted in the area of moving-bank MMAL
algorithms to reduce the computational loading needed to perform both system state and
uncertain parameter estimation associated with the system model. Maybeck and 1lentz
conducted the initial feasibility study in 1984 [7] and showed, for a simple but physically
motivated two state system, the moving-bank MMAE algorithms performed as well as the
full-bank MMAE algorithm. In addition, this performance was obtained with an order of
magnitude less computational loading. Hentz’s study included a performance evaluation
of the primary bank movement, expansion and contraction algorithms used by the moving
bank as well as appropriate thresholds. Ientz also investigated several of the control
techniques described previously. These investigations were conducted for slowly varying

parameters and jump changes as well as constant parameters.

Follow-on research conducted by Filios [3] demonstrated that using ambiguity func-
tion analysis provides a useful method for evaluating the parameter estimation perfor-
mance. In addition to formulating a useful estimator evaluation method, Filios also pro-
vided much insight into the establishment of movement and contraction thresholds. Unfor-
tunately, the results obtained by Filios indicated that the more complex system he chose

to use did not require adaptive control [3:93].

Following Filios, Karnick [8] applied the moving-bank algorithm to a 13-member,
two-bay truss. However, the results that Karnick obtained indicated that the moving-
bank MMAE was never able to identify the truth model parameters, even though it could
sometimes provide accurate state estimates [8:93). Karnick found that the moving-bank
wandered nonsystematically throughout the parameter space and could not converge to
a consistent parameter value. The final performance results showed that a coarsely dis-
cretized full-bank MMAE could perform as well as a finely discretized moving-bank MMAE
[8:92). The fundamental problem Karnick encouniered was that measurement noise was

severe enough to hamper the moving-bank adaptation process.

Lashlee [11], following on to Karnick’s research, investigated the difficulties experi-

enced by Karnick. Lashlee’s research consisted of several studies including investigation of
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the dynamics noise strength and measurement noise covariance, state and control weighting
matrices, and parameter space discretization. The results of these studies indicated that
a. clear distinction between good and bad models must be maintained within the moving-
bank algorithms. Once the appropriate noise values and parameter space discretization
had been found, Lashlee showed that the moving-bank MMAE was able to estimate the pa-
rameters accurately and demonstrated greater performance potential than the fixed-bank

MMAC he investigated [11:199].

Van Der Werken [26], continuing with the same structure as Karnick and Lashlee,
investigated the effects of the order mismatch between a higher order truth model and
a reduced order filter model. Whereas Karnick and Lashlee both utilized a filter model
and truth model of the same dimensions (both consisted of six states), Van Der Werken
conducted research to investigate the effect of the order mismatch between the original 24-
state truth model and the reduced order six-state filter model [26:15]. The results obtained
by Van Der Werken indicated thai the moving-bank algorithin was able to produce neither
accurate parameter nor state estimates when the bank was inicially centered on a false
parameter [26:183]). Van Der Werken concluded that the unmodelled states had a d sect,

negative impact on the ability of the MMAE algorithm to provide accurate estimates.

The most recent research on the moving-bank MMAE algorithms was conducted
last year by Schore [22]. Schore’s objective was to continue Van Der Werken’s research
to determine if the algorithm was truely confounded by the unmodelled states and, if so,
determine the minimum states required in the reduced order model for adequate estimation.
In order to accomplish this, Schore corrected some flaws in Van Der Werken’s simulations
and developed a more physically motivated approach to evaluate the performance of the
reduced order filter model. Schore’s research investigated how well the redv~ed order
filter estimated the true total shape of the truss, as opposed to just the truth model
states associated only with the first three modes [22:Chapter 1 pg 22]. The performance
of thc moving-bank algorithm was evaluated as the affects of the higher order states were
gradually allowed to influence the system. In addition, Schore investigated the disturbance
rejection performance of the algorithms. Schore’s results indicated that, even though the

estimation process of the algorithm was “sensitive” to the reduced order mismatch, the
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degradation in performance wa. not sufficient to warrant increasing the six-state filter

model dimension [22:Chapter 6 pg 1].

1.3 Problem Statement

The basic problem with the full-bank MMAE/MMAC approach is that the number
of Kalman filters (and controllers) required creates an unbearable computational load. The
moving-bank MMAE/MMAC approach is an alternative to the full-bank MMAE/MMAC
and has previously been shown to be successful for controlling a structure in the face of un-
modelled effects [22:Chapter 6 pg 1]. The performance of the moving-bank demonstrated
in this research, however, was less than optimal. The tuning of the Kalman filter dynamics
noise strength, Q(t), and the measurement noise covariance, R(t), the discretization strat-
egy used to generate the parameter points, as well as tuning of tie other parameters in
the filter algorithm, affect the system substantially. This research will continue the work
started by Van Der Werken and Schore by providing insight into performance optimization

of the six-state filter evaluated against the 24-state truth model.

1.4 Scope

The research performed investigates problems associated with large space structures.
The model space structure selected for this research is represented by a two-bay truss
developed by Karnick [8]. The two-bay truss is 100 inches long and 18 inches high. The
truss is attached to a hub and is allowed to move only in the x-y plane. Four non-structural
masses attached to the truss provide time varying mass problems. The addition of these
masses, provided that they are large relative to the structural mass, also produce the
low frequency structural model associated with large space structures. The structure is
described by mass and stiffness matrices obtained from a finite element analysis performed

previously by Karnick [8].

The uncertain parameters of interest for this rescarch are the non structural masses
and the structural stiffness 8, 27). These parameters were chosen because they physically

appear in the system dynamic equations.
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1.5 Approach

The moving-bank algorithm performance evaluation will be accomplished by mea-
suring how closely the filter estimates of positions and velocities at physical points on the
truss match the true values, and then how well the associated controller regulates those
states. Research efforts prior to Schore investigated the performance of the moving-bank
algorithms based on how well the elemental filters estimated the truth model states asso-
ciated with only the first three modes [22:Chapter 1 pg 22]. In these investigations, the
elemental filters and truth models both were six-state models. Schore’s research, however,
evaJuated the performance of the elemental filters in a more physically motivated manner
by investigating how well reduced order filters could estimate (and the regulators could
control) the true total shape of the truss, i.e., the shape due to all the modes’ effects.
For his performance evaluation, Schore defined a new error term as the difference between
true and estimated positions and velocities at three locations on the truss. These three
locations consist of the accelerometer and thruster positions at the midpoint and at the
end of the truss and at the gyroscope and inertia wheel position at the hub (See Figure
1.8). This research will adopt the technique discussed above in evaluating the optimal

performance of the moving bank.

Optimal estimation performance of the moving-bank algorithm will be achieved by

evaluating the estimation process sensitivities during the following studies:

Kalman filter dynamics noise strength, Q(t), and measurement noise covariance,

R.(t;), value determination

Residual, parameter position estimate, and probability monitoring performance

Density function “bias” determination

Parameter space discretization

Performance evaluation with varying parameters

Optimal control performance of the moving-bank algorithm will be achieved by eval-

uating the control process sensitivities during the following studies:
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State and control weighting value determination

Optimal control vector formulation

Parameter space discretization

Performance evaluation with varying parameters

For each of the studies, the state estimation and control performance of the moving
bank is compared to the performance bound of a single Kalman filter/controller that has
artificial knowledge of the true parameter. The primary figure of merit for the estimation
process is the state estimation error and the parameter estimation error. The primary figure
of inerit for the controller process is how well the moving-bank controller regulates the state
statistics to zero as compared to the benchmark. The state statistics will be generated
by performing a Monte Carlo study. The number of error process samples obtained by
simulation will be adequate such that the true process statistics are approximated well by

the Monte Carlo study.

Previous research efforts have shown that system complexity [11] and unmodelled
effects [22] do not markedly degrade the performance of the algorithm as long as the
elemental filters in the bank are readily distinguishable from one another. Previous research
has shown that the major areas of concern for p.eserving this “distinguishability” are the
evaluation of the Kalman filter Q(t) and R(t) values and determination of the proper
discretization of the parameter space. For this research, the parameter space discretization
will be investigated as part of both the estimator study and the LQG controller study.
Since past research has demonstrated that control performance is significantly affected
by the parameter estimation [11], [24], parameter space discretization will be investigated

primarily as a means to enhance the performance of the LQG controllers.

Kalman Filter Q(t) and R(t) value determination is of prime importance for the
overall performance of the moving bank. (The form of Q(t) and R(t) are constant and
therefore the time argument will be omitted.) It is important not to mask good versus bad
filter models with too much dynamics psuedonoise in an attempt to keep each elemental
filter within the MMAE structure from diverging. Each filter must be tuned for best

performance when the true value is identical to the assumed value [11]. Previous research
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limited the form of the Q and R to diagonal matrices. Based upon the use of the same
sensor for position and velocity measurements, a measurement noise covariance matrix
with non-zero off-diagonal elements might be more appropriate [22:Chapter 3 pg 4]. In
addition, previous efforts at determining the appropriate values were conducted by cquating
Q; to Q; and Ry to Ry [11] (where ¢ denotes truth model and f denotes filter model);
this is reasonable if the filter-assumed model and truth model are the same, i.e., no order
reduction between the truth model and filter design model (as was the case for Lashlee’s
research). Van Der Werken'’s research attempted to evaluate the effects of filter mismatch in
computing Ry, where there is an even stronger desire to use a non-diagonal R;. However,
Van Der Werken still used a diagonal matrix to represent Ry and a single matrix for Q.
Schore experienced numerical difficulty with the large values of Q used by Lashlee and
ended up reducing these values by an order of magnitude [22:Chapter 4 pg 10]. Research
in this area will begin with the determination of the appropriate values for Q; and R. This
research shall then incorporate the minimum variance reduced order (MVRO) estimator
method [16:25] as used previously by Van Der Werken [26]). This method will help in
the determination of values for Ry and Qy after appropriate values for Q; and R; have
been determined. This method will account for the unmodeled 18 states and produce

non-diagonal matrices.

Residual, parameter position estimate, and probability monitoring will be conducted,
as alternatives to monitoring for the bank-moving logic, in order to investigate the perfor-
mance of the algorithms as suggested by Schore. This research will evaluate the perfor-
mance of the bank using parameter position estimate monitoring, which Hentz’s research
determined to provide the best overall performance (along with probability monitoring)

[7:87].

Density function “bias” determination will investigate any biasing effect due to the
nature of the computation of px(#;). This is motivated by several sources. Iirst, recent
research conducted by Stevens {21] indicaled thai the determination of the p(t;) , given
in BEquation (1.1) was artificially biased by the leading coeflicient on the Gaussian den-
sity numerator term in the conditional density function computation, given in Equation

(1.2). This coefficient contains the term | Ax(t;) [*/2 in its denominator. If all elemental
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filters’ residuals look “equally good” relative to their anticipated covariance, so that all of
the exponential terms of Equation (1.2) were essentially the same value, then the pr(t;)
computations most heavily weight the filter associated with the smallest | Ax(t;) |. Since
| Ax(t;) | is precomputable and has nothing to do with online adequacy of models, this
is an inappropriate bias. Second, previous thesis work by Filios [3:64], Karnick {8:36],
and Lashlee [11:43] removed the scale factor associated with the | Ap(¢;) | term from the
conditional density computation. This was performed to reduce numerical difficulties they
were experiencing in determinant evaluations during ambiguity function analysis. How-
ever, by so doing, the resulting expression is no longer a true density function since the
scale factor is not correct. However, because of the denominator term in Equation (1.1),
the probability weightings are still correct since they sum to one [3:65). Research in this
area will entail removing the scale factor term from the pg(¢;) computations and comparing

the performance to a “biased” estimator.
I

Parameter space discretization is the second area of prime importance for preserving
the distinguishability between the elemental filters. The parameters must not be spaced so
closely that the elemental filter models cannot be distinguished from one another, however
not so far apart that the elemental filters (and associated controllers) must be too robust.
Recent research [24] has shown that incorrect parameter estimation has a significant impact
on LQG controller performance. Underestimation of the higher modal frequencies resulted
in poor controller performance [24]. Hentz’s earlier research into this area resulted in a
linear parameter space discretization for ¢ and a logarithmic discretization for w, [7:20].
Following Hentz, a linear space discretization based on the mass and stiffness matrices
was developed. Lashlee’s research, while investigating the problems Karnick experienced,
developed a non-linear discretization [11]. This discretization provided.an rms error growth
of 20 to 30 percent between each step in the parameter space. Theses three previous space
discretizations are provided in Table 1.1. "This research shall begin by using the parameter
space discretization determined by TLashlee for for performing tuning of the bank filters.
Then, the insights gained from the work of Sheldon [24] shall be incorporated to attempt to
enhance the discretization and, hence, the performance of the estimator (and controller).

The performance enhancement of the controller due to parameter discretization will be
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Table 1.1. Discretized Parameter Space for Previous Research

aj Hentz [7] Linear [11] Lashlee [11]
L[} ¢ w (rad/sec) Mass Stiffness Mass Stifness
1 0.0000 6.28 0.50 0.80 0.50 0.50
2 0.1111 8.12 0.60 0.84 0.55 0.60
3 0.2222 10.48 0.70 0.88 0.60 0.70
4 0.3333 13.54 0.80 0.92 0.70 0.80
5 | 04444 17.48 0.90 0.96 0.80 0.90
6 0.5556 22.58 1.00 1.00 0.90 1.00
7 0.6667 29.16 1.10 1.04 1.10 1.16
8 0.7778 37.67 1.20 1.08 1.20 1.26
9 0.8889 48.65 1.30 1.12 1.30 1.40
10 1.0000 62.83 1.40 1.16 1.40 1.50

investigated in the simulations performed for the LQG controller study.

Performance evaluation with varying parameters will investigate the performance
of the moving bank estimator when subjected to changing parameters. The majority of
past efforts investigated only constant parameters. Hentz and Filios did limited work
with evaluating the performance of the moving bank to slowly and smoothly changing
parameters and to minor jump changes. This research shall conduct a study to determine
the performance due to slowly varying and jump changes throughout the entire parameter
space. The slowly varying parameter study will be conducted by providing a time history
for the parameters. The jump changes will consist of jumping the value of the parameter
more than one discretized value away. Research will determine if it is better to expand
the bank size to re-acquire or let the bank follow on its own without altering its size. This
research will entail re-evaluation of the thresholds for contraction and expansion. As for the
space discretization study, the performance of the LQG controllers for varying parameters

will be investigated during the LQG controllers studies.

State and control weighting value determination will investigate the LQG controller
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performance sensitivity to altered (but constant) cost function definition, as given by Equa-
tion (1.6). In previous research [11:87], the state weighting matrix, X, values were deter-
mined by holding the control weighting matrix, U, constant and increasing the X values
one at a time until the rms values for the true states stoppeda decreasing drastically. After
the X values were determined, the U values were found by holding the X values constant
and decreasing the U values until the rms values for the true stales stopped decrcasing
drastically. This method was applied to parameter location (7,6), i.e., the mass value at its
seventh discrete value and the stiffness parameter at its sixth discrete value. This location
accounts for only one of the possible 100 points in the parameter space. These values for
X and U were then used for the other points in the parameter space. The cross weighting
matrix, S, values for the generalized quadratic cost in the LQG synthesis were also inves-
tigated by Lashlee and found to be negligible. Therefore, the values for S will be kept at
zero for this study. This research, as suggested by Lashlee and Schore, will determine the
state and control weighting matrices in a manner similar to that described above. This

will be accomplished for each parameter in the parameter space.

Control vector formulation will investigate alternate methods for forming the control
vector. All of the previous research efforts since Hentz have investigated forming the control
vector by weighted-averaging of the control for all of the filter/controller combinations in
the bank using the computed hypothesis conditional probabilities as weighting cocflicients
(MMAC). This resulted in some magnitude, however small, of inappropriate control being
applied, particularly when the computed probabilities were artificially bounded from below
to prevent elemental filter lockout. This research shall continue to investigate MMAC in
addition to three alternate methods. These methods include the the modified MMAC
approach, the MAP vs Bayesian MMAC approach, and the modified single changeable-
gain controller approach, which were discussed previously. This study will evaluate an
appropriate threshold for the modified MMAC approach as well as to evaluate performance

of all four approaches.

Parameter space discretization will be investigated to determine the impact on ap-
propriate adaptations and bank motion and on robustness of the elemental controllers.

As stated previously, Sheldon’s research (23] has shown that underestimation of the higher
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modal frequencies resulted in poor (unstable) controller performance. Using the parameter
space discretization previously devised for the parameter estimation studies, the perfor-
mance of the LQG controllers will be evaluated. For this study, the straightforward MMAC
approach will be used to determine the effects of the modified parameter space on the con-

trol of the structure.

Performance evaluation with varying parameters will investigate the performance of
the moving bank controller when subjected to changing parameters. This research shall
conduct a study to determine the controller performance due to slowly varying and jump
changes throughout the entire parameter space. The varying parameter study for the
controller will be the same as for the estimator study, which will allow using the same

expansion and contraction thresholds.

1.6 Summary

The purpose of this chapter was twofold. First, it provided the background necessary
to facilitate a basic understanding of the objectives which this research intends to accom-
plish. Second, this chapter presented the approach which will be adopted to achieve the
stated objectives. The background presented concepts of the moving-bank multiple-model
adaptive estimation and controller as well as the large space structure which will be used to
investigate these concepts. The background also provided a brief synopsis of past research
in this area to illustrate the evolution of this research. The remaining chapters of this
thesis cover the following areas. Chapter 2 develops the algorithms used in the MMAE
and LQG controller portions of this research, including Kalman filter theory and decision
logic for moving and expanding/contracting the bank of filters/controllers. The modelling
of the large space structure, the two bay truss structure, is developed in Chapter 3. The
simulations performed by this thesis will be explained in Chapter 4. Chapter 5 presents the
results of this research, with corresponding conclusions and recommendations presented in

Chapter 6.
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II. Algorithm Development

2.1 Introduction

The background discussion provided in Chapter 1 was intended to provide basic un-
derstanding of the problem statement and research approach. However, the purpose of the
development provided here is twofold. First, the discussion of Chapter 1 will be embellished
to address the general theoretical development relevant to this research. Second, discussion
contained here will highlight simplifying assumptions and insights gained from previous
research which are pertinent to the accomplishment of the objectives specific to this re-
search. Algorithm development will encompass (1) Kalman filter development, (2) multiple
model adaptive estimation development, (3) moving-bank MMAE development, and (4)
LQG controller development. While the discussion contained here will add more insight
to the discussions of Chapter 1, for an exhaustive development see references [15, 16, 17].
As stated previously, the notation used is intended to be consistent with the convention
found in [15] such that a stochastic process is denoted by x while a deterministic process
is denoted by x. The cornerstone of the MMAE concept is the Kalman filter. Therefore,
it is suitable at this point, before discussing any of the algorithms specific to MMAE, to
provide a brief discussion of what has been described simply as “...an optimal, recursive,

data processing algorithm [15:4]”.

2.2 Kalman Filter Development

It is assumed, for the purposes of this rescarch, that the system under investigation

is adequately described by the continuous, linear, stochastic system model given by:
x(t) = F(1)x(¢) + B(t)u(t) + G(t)w(z) (2.1)

driven by deterministic controls-and zero-mean white Gaussian noise of strength Q(t), or
more properly,

dx(1) = F(1)x(t)dt + B(t)u(t)dt + G(L)dB(L) (2.2)




driven by Brownian motion B(t) of diffusion Q(t). In the above equations, x(:) represents
an n-state vector process, u(+) is an r-vector deterministic control input, F(-) is an n-by-
n system dynamics matrix, B(:) is an n-by-r deterministic input matrix, and G(-) is an
n-by-s noise input matrix. The model described by Equation (2.1) will be used for the

remai_der of this discussion. The statistics of w(-) are given by:
E{w(t)} =0 (23)

Blw(®w()T} = Q)i - ) (2.4)
where Q(t) is an s-by-s matrix that is symmetric and positive semidefinite and () is the
Dirac delta function.

The state differential equation given by Equation (2.1) is propagated forward from
some initial condition, x(%o). Since the initial condition is not generally known precisely a

priori, it will be modelled as a random vector with mean %o and covariance Py given by:
E{K(to)} = f(o (2.5)

B {[x(to) ~ o] [x(to) — %0]" } = Po (26)

where Py is an n-by-n matrix that is symmetric and positive semidefinite. Allowing Py
to be positive semidefinite provides for the case of perfectly knowing some of the initial

states or combinations thereof.

Measurements are available from the system at discrete time points (sampled-data

measurements) and are modeled by the relation given by:
z(t:) = Ht:)x(t) + ¥(t:) (2.7)

where z(+) is an m-vector discrete-time measurement process, which provides a. particular
measurement time history for each sample. Measurement noise, v(¢;), accounts for the

uncertainty with which the measurements are obtained. The measurement noise is an

2-2




m-vector discrete-time, white Gaussian process with statistics given by:
Bix(t)} =0 (2.8)

E{v(t:)v(;)T} = R(:)6i; (2.9)

where R(#;) is an m-by-m, symmetric, positive definite matrix and &; is the Kronecker
delta function. Requiring R(¢;) to be positive definite implies that all components of the
measurement vector are noise corrupted. The measurement model in Equation (2.7) also
assumes that the system dynamics noise w(t), the measurement noise v(¢;), and x(to) are
independent of each other. Since all of these quantities are assumed to be Gaussian, this

is essentially the same as stating that they are uncorrelated with each other [15:205].

Using the system model given in Equation (2.1), the measurement model from Equa-
tion (2.7), and the statistical descriptions of the uncertainties, a Bayesian point of view
can be adopted to develop the form of Kalman filter model [15:205). Since the algorithms
developed here will be eventually implemented on a digital computer, it is desirable to
formulate discrete-time algorithms. Two methods are available for designing the discrete-
time Kalman filter algorithms. First, the designer could tzke the continuous-time system
model Equation (2.1), design the continuous filter, and then discretize the result. Second,
the designer could determine an equivalent discrete-time model and generate the discrete-
time filter from it. The preferable design approach is to discretize the model first and then
generate the filter [15:261]. The equivalent, stochastic difference equation describing the

system model in general is given by:
x(t:) = ®(ti, tie1)x(ti-1) + Ba(ti—1)u(ti=1) + Galti-1)wy(ti-1) (2.10)

where the matrices ®(2;,ti-1), Ba(ti-1), G4(ti-1), and the covariance Qq(t;-1) of the noise
wy(ti-1) are derived from the F(:), B(:), G(:) and Q(-) matrices provided in Equations

(2.1) and (2.4). The following discussion provides general formulation of these matrices.

The state transition matrix, ®(1;,t-1), is derived using the system dynamics matrix,

F(-). It is assumed in this research that the F(-) matrix is constant; therefore, the inverse
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LaPlace transform of the resolvent matrix can be used as:
B(ti,tim1) = Bt — tim) = L7 {[ST- FI ™ o) (2.11)

Assuming the control u is held constant over a sample period, the deterministic input

matrix, Bg(t;—1), is the discrete-time, deterministic input matrix given by:
ot
By(ti1) = | ®(ti,)B(r)dr (2.12)
f=1

The discrete-time, zero-mean, white Gaussian system dynamics noise vector, wy(li-1),
has a strength that is a function of the state transition matrix, the noise input matrix, and

the strength of the continuous-time w(t). These statistics are given by:
B{wy(ti-1)} =0 (2.13)

E{wy(ti-1)wa(t;)} = Qu(ti)8-1); (2.14)

where Gy is assumed to be the identity matrix and §(;.1); is the Kronecker delta function.

Qu(ti=1) is given by:

Qulti-)= [ &(5,m)G(QNGT (1) (s )ir (2.15)

Now that the structure of the system model, as well as the uncertainties, have been
specified for all times of interest, a Kalman filter can now be completely specified. The
Kalman filter algorithms for the conditional mean state estimate and covariance time

propagation relations can be written as [15:220]:
x(t7) = @(ti,t;_l)f((t?'_l) + Ba(ti-1)u(ti-1) (2.16)
P(t7) = ®(ti, i1)P(tL,) @7 (4, 1) + Galtio1)Qu(ti-1)GY (tim1) (2.17)

These equations provide the propagation relationship between two consecutive state
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estimates and covariances from time ¢} ; to time ;. The“+” and “” superscripts indicate
that the variable of interest is evaluated just after or just before a measurement is incorpo-
rated, respectively. In order to incorporate the discrete-time system measurements, given

by Equation (2.7), the following update equations are used:

K () = P )HT () [H ()P )HT (1) + R(t,-)]_1 (2.18)
K(tF) = %(57) + K () [2(t:) - H(t)%(t7)) (2.19)
P(tf) = P(t7) - K(t)H(%:)P() (2.20)

In the above equations, there are two quantities of particular interest which need to
be highlighted. The first quantity of interest, which is of prime importance in determining
the performance of the Kalman filter, is contained in the brackets of Equation (2.19).
This bracketed term is called the filter residual (or innovations) [15:228) and is denoted
by r(t;). The residual indicates how much correction is required by the filter, since it
is the difference between the most recent measurement and the best prediction of that
measurement based on prior measurements. The residual is weighted by K(;) and added
to the previous estimate of the state to arrive at the new estimate of the state. The
term K(t;)r(t;) in Equation (2.19) is referred to as the new information. It can be shown
[15:229] that the filter residual sequence is a zero-mean, white Gaussian sequence with
known covariance of [H(t,-)P(t;' YHT (1) + R(t,-)], which is the second quantity of interest.
As can be seen from the bracketed term in Equation (2.18), the “expected” covariance
of residuals is provided by the filter algorithms. This is the residual covariance Ax(t;)
term associated with each Kalman filter in the bank. This term is used in calculating
the probability density function shown in Equation (1.2). These residual properties can
be exploited for checking the reasonableness of measurement data and other forms of
adaptation. Explicitly in connection with this research, the residuals, in conjunction with
the Ax(;) term discussed above, are of prime importance for moving-bank MMAI residual

monitoring mentioned in Section 1.1.2 and described by Equation (1.3).

The previous discussion provided a short and straightforward development of the

2-5




Kalman filter. However, “... a substantial amount of engineering insight and experience
is required to develop an effective, operational filter algorithm [15:289]”. The following
discussion provides the engineering insight used to develop an effective algorithm for this

research,

Choosing values for %o, Pg, Qq(t:), and R(¢;), often referred to as “tuning” the
Kalman filter, requires judicious selection. For example, increasing Qq(#;) would indicate
either stronger noises driving the dynamics or increased uncertainty in the adequacy of the
model itself to depict the true dynamics accurately [15:224]. This dictates that the filter
should put less confidence in its own dynamics model. Increasing R(¢;) would indicate that
the measurements are subject to a stronger corruptive noise, and so should be weighted
less by the filter [15:224]. In this research, conservative approaches which may be possible
in other applications cannot be applied. Such practices as adding dynamics pseudonoise to
guard against elemental filter divergence will not be possible. It has been shown previously
[11:198] that selection of such values will degrade MMAE performance if they are chosen
so large as to mask the difference between the discretized parameters. In addition, it has
been shown [18:7] that each filter should be tuned for best performance when the “true”
values of the parameters are identical to its assumed value for theses parameters. Because
of this concern, the technique known as loop transmission recovery (LTR) [14:7] will not
be used in this research to determine the appropriate noise values. Chapter 4 will discuss

evaluation of the appropriate noise strength values.

Filter performance for systems which are time-invariant with stationary noises can be
described by an initial transient in P(#;) and K(¢;) followed by an essentially steady state
filter operation [15:224]. In many applications, the transient is short compared to the total
time of interest. This suggests a possible approximation of using the steady-state filter for
all time if the resulting performance degradation in not excessive. In addition, as can be
seen from the P(¢;) in Equation (2.17), P(¢}) in Equation (2.20), and K(¢;) in Equation
(2.18), these quantities can be precomputed and stored for later nse, thus vedncing the
real-time computational loading. Finally, a time-invariant system with stationary noises
and a fixed sampling rate allows the one-time computation of the By(t;—1) and Qqu(t;i-1)

matrices in Equations (2.12) and (2.15). For this research, the R(¢;) matrix will also be




considered constant. Chapter 3 will provide a detailed description of the system and filter

matrix development specific to this research.

2.3 Bayesian MMAE Development

The basic concept of the MMAE algorithm was presented in Chapter 1. While the
following material is presented for completeness, a thorough development is presented by
Maybeck [16:129-136]. The purpose of the Bayesian estimator is to compute the conditional

density function:

Fxy @iz (& e | Zi) = fxuiya,z) (€ | @ Zi) fayz ey (e | i) (2.21)

Equation (2.21) is the conditional density of x and a given the measurement history
through the current time, where Z; is composed of partitions equal to the realizations
of z(t1),2(t2),. . .,2(t;). Let a be the vector of uncertain parameters for the model under
study which can effect any or all of ®(t;,1;-1), Ba(ti-1), Ga(ti-1), H(t:), Qu(t:), or R(1;).
The parameter vector a can assume values in the continuous range A C RP, where R? is
real Euclidean p-dimensional space. The parameter vector may be “uncertain but con-
stant, it may be slowly varying, or it may undergo jump changes” [11:21]. The nature of
a being continuous would cause a problem computationally since the calculations to solve
for the conditional density would require an infinite number of separate Kalman filters
and integrations that would make online usage of the Bayesian estimator prohibitive. To
allow online computation, the parameter space is discretized. The parameter vector might
be defined by selecting a finite set of discrete values, {a;,az,...,a5}, that are dispersed
throughout the region of reasonable parameter values. Each discrete value ax has an indi-
vidual system model associated with it, requiring computation of the matrices describing
Equations (2.7) and (2.10) for each value of ag. For this research, 100 discrete parameter
values are possible which requires 100 different ®(2;,%;—1), Ba(ti=1), Ga(ti-1), and H(%;)

syslem mafrices to be calculated and stored.

The conditional density function provided Equation (2.21) can be described by dis-

cussing the two terms on the right hand side of the equation. The first density on the
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right hand side is produced by each elemental Kalman filter based on the assumption that
a = c. The second density on the right hand side is given as K., pr(t;)6(e — ag). The

state estimate produced by the adaptive filter is given by [16:131):

X(tF) = E{x(t) | Z(t) = Z:}

K

/ ZE [E Fxnaze) (€ | ax, Zi)pi(ti)| d€

- k=1

K
Z ﬁk(t;-") -1)k(t,') (2.22)
k=1

where %5 (tF) is the state estimate produced by a Kalman filter based on the assumption
that the parameter equals a;. The state estimate is the sum of all the probabilistically
weighted estimates generated by the K Kalman filters, where the hypothesis conditional
probabilities pi(;) are the weighting factors. The generation of pi(t;) was provided in

Section 1.1.1, Equation (1.1).

The form of the conditional covariance of the state is similar to that of Equation

(2.22) and is given by [16:131]:

P(tf)

2 { [t - %) fste) - 26| 1 2000 = 2}

K T
> pr(t) {Pk(tz‘)+ [t - ()] [feF) - %) } (2:23)
k=1

The conditional covariance Pi(t}") is the “state error covariance” associated with the
Kalman filter based on the parameter ar. The conditional covariance is dependent on
Pr(ti), %k (1), and X(¢}) as shown in Equation (2.23), and therefore is not precomputable.

However, it is not necessary to compute it for online filter implementation.

The other estimate that may be desired or required is that of the parameter vector,

a(l;). The conditional mean of the parameter vector at time #; is given by [16:132):




a(t;y) = E{a(t)|Z(t:) =2Z;}
- /_oo a fayzt) (e | Zi)der

K
> ak - pi(t) (2.24)
k=1

The covariance of the estimated parameter vector gives an indication of the precision

of the estimate, and it can be estimated via [16:133]:

P4 E{[a at)lla - &))" | Z(4) = Z3)

Z[ak - a(t))lax - AT - pa(t:) (2.25)

As with the calculation of the state error covariance, Equation (2.23) , the calculations of
the parameter estimate, Equation (2.24), and the covariance of the parameter estimate,

Equation (2.25), are not required for the calculation of the state estimate [16:133).

The maltiple model adaptive estimation algorithm developed above is an adaptive
filter structure and was shown in Figure 1.1. Discussion of the performance of the MMAE
will follow two general topics: first, fundainental performance of the algorithm based on
elemental filter residual generation, and second, discussion of performance to varying pa-

rameters.

As discussed in Section 1.1.1, the characteristic of the Kalman filter residual is the
key to MMAE performance. If a particular filter is nearest to the true parameter location,
the residual from that filter would be expected to be smallest in magnitude (relative to
the filter-computed covariance Ax(;)) of the active bank of filters. Equation (1.2) would
then provide the largest conditional density value foi this filter and when applied to Equa-
tion (1.1), would ultimately yield the highest probability to the “best” filter. However. if
residuals were of the same “goodness”, i.e. if the quadratic forms within the exponential
of Equation (1.2) were all of the same magnitude, the value of | Ax(t;) | would begin to

dominate. Under this condition, the pr(t;)’s are dominated by the filter with the lowest
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| Ax(2:) | due to the leading coefficient in Equation (1.2). However, the | Ax(t;) | values
are independent of not only the residuals, but also of the relative correctness of the K mod-
els being used. Therefore, the resulting px(t;) values would be totally erroneous [16:133].
Previous work by Filios [3:64], Karnick [8:36], and Lashlee [11:43] investigated removing
this term in performing ambiguity function analysis. More recently, Stevens [21:12] inves-
tigated the “bias” caused by this term in the pr computations. As mentioned previously,

this research will investigate this issur

Another form of conditional density function computation, which may be used if no
confidence can be given to the precomputed residual covariance, entails the removal of the
A term from the exponential, as well as from the coefficient of Equation (1.2). If it is as-
sumed that the filter residuals are Gaussian with a covariance equal to the identity matrix,
it is assumed tha +he residuals follow a “maximally non-committed residual distribution”

[23:32). In this case, the conditional density function computation can be given as:

1,
futlaz-)(2i | 2k Zic) = exp {=3ri(L)Iru(k)}  (2.26)

1
(2m)% |12
Equation (2.26) is termed a Maximum Entropy with Identity Covariance (ME/I) den-
sity computation {23, 24]. The ME/I density computation results in the filter with the
lowest residual autocorrelation (i.e., absolute magnitudes, not magnitudes scaled by filter-
computed standard deviations) being given the highest pr(t;) value. During investigations
of the Ay term, the ME/I density function may be investigated if it is determined that

less than full confidence can be given to Ay.

Based on the previous discussion, it is essential to ensure that the residuals of “good”
versus “bad” filters have very distinguishing characteristics. The “distinguishability” of
the elemental filters will be accomplished first by the means of tuning each elemental filter

and second, by the manner of discretizing the parameter space.

Tuning of the elemental Kalman filters was discussed in Section 2.2. In addition to
the methods related to Kalman filter tuning in general, a simplifying approach will be taken
to tune the dynamics driving noise strength for the filters used in the MMAE algorithm.

For this research, a single, non-adaptive, artificially informed filter will be tuned based on




the correct parameter and the values selected for this case will be considered representative

of all the filters in the entire parameter space.

Description of an appropriate parameter space has been investigated previously by
Hentz [7:20] and Lashlee [11:81]. More recently, Sheldon and Maybeck [24] have proposed
an optimizing design strategy for parameter space discretization. This strategy chooses
the parameter set by minimizing a cost functional representing the average state prediction
error autocorrelation for estimator design, and mean square regulation error for controller
design. The average state estimation or regulation error autocorrelation is taken as the
true parameter range over the admissible parameter set [24:1]. As stated previously, this

methodology will be investigated by this research.

The second area of discussion for MMAE performance is performance of the algorithm
to varying parameters. A problem which can result from varying parameters has been
investigated in previous thesis efforts and has been described as filter “lock out”. “Lock
out” occurs when the MMAE algorithm gives any one elemental Kalman filter a probability,
pr(t;) of Equation (1.1), of zero. As seen by the iterative nature of the cquation, the pr(1;)
for this filter cannot take on a value other than zero once the pr(t;) equals zero. This
means that, even if parameter began to vary and the filter thereby became based on the
correct parameter, the MMAE algorithm would continue to ignore the estimates from the
elemental filter. Filter “lock out” causes the moving-bank MMAE to lose its ability to

produce adaptive state estimates effectively [11:28].

Unfortunately, there are no complete theoretical results available for varying param-
eters [1, 6, 11]. Ilowever, there are two methods available for avoiding “lock out”. One
method is to add dynamics pseudonoise to the assumed model for each elemental filter
[16:25]). However, as discussed previously, pseudonoise would tend to mask the difference
between “good” and “bad” models. The second method to prevent filter “lock out” is
to establish a lower threshold, ppis, on the pg(t;). This has been the approach in past
research efforts (7, 8, 11, 22, 26). The hypothesis conditional probabilities are monijtored
and when one or more probabilities fall below the threshold, they are set to the minimum

and the entire bank rescaled to maintain the unity sum of the probabilities.
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2.4 Moving-Bank Algorithm Development

The MMAE filter algorithm presented in the previous section presents an immense
computational burden if implemented in a full bank form, i.e., a filter for every discrete
point in the parameter space. As discussed previously, this research will investigate the
technique of a moving bank of filters to lessen the computational loading. In general, this
moving bank will contain J filters, where J < K. Specifically, the moving bank investigated
in this research will consist of nine elemental filters (J=9) where the parameter space
will consist of 100 filters (K=100). The moving-bank MMAE technique was originally
investigated by Maybeck and Hentz [19]. Their research provided the basic techniques for
moving this smaller bank. This section discusses the technique for (1) moving the bank,

(2) expanding the bank, (3) contracting the bank, and (4) initializing new filters.

2.4.1 Moving the Bank. The moving-bank MMAE is a subset of the full-bank
MMAE. Conceptually, the bank is centered around the best estimate of the parameter.
The knowledge of the parameter may be uncertain a priori or the parameter location may
change. Two courses of action are available when it is detected that the true parameter
position is outside the region of the moving bank. The bank can either be moved in the
direction of the true parameter point so as to encompass it, or the bank can be expanded
so as to encompass it. This section discusses the four basic decision logics used to move
the bank: (1) residual monitoring, (2) parameter position monitoring, (3) parameter posi-
tion and “velocity” monitoring, and (4) probability monitoring. The threshold values used
for these techniques must be determined through performance evaluation. This section
provides a description of the logic as well as some insight into previous work performed in

establishing appropriate thresholds for these methods.

2.4.1.1 Residual Monitoring. The effect of the residuals on the calculation of
the probability density function was discussed in Section 1.1.1 and shown in the exponential
term of Equation (1.2). In Section 1.1.2, this exponential term was defined as the likelihood
quotient, L;(%;), based on the active elemental filters in the bank. This was discussed in
relation to Equation (1.3). Considered in the scalar case, the likelihood quotient is the ratio

of the residual squared divided by the filter-computed variance for the residual. Consider
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the effect of the parameter being outside the area of the filter. The resicdual values would

.ecome large and drive all the J likelihood quotients high. A preset threshold could be
determined through performance evaluations such that when the smallest L; exceeds some
threshold an appropriate filter movement action could be determined. In other words, a

possible detection scheme would be to move the bank when
min(.[/l, LZ, sany Lj) Z Tresid (2.27)

Additionally, the filter closest to the true parameter should have the smallest likelihood
quotient and thus provide an indication of where to move the bank. In determining Z}esid,
Ilentz noted, as expected, that when the threshold was set too high the moving-bank took
longer to identify the parameters {7:61]. When the threshold was set too low, the moving
bank failed to maintain estimation of the true parameters. The use of residual monitoring
should be limited, however, to situations where the system is not subject to “single large
samples of measurement noise” [19:1876). Examination of Equation (1.3) shows that the
values of L;(t;) would all rise appreciably in the face of a sudden high value of ¥(¢;) which
affects the residual directly through the realized measurement value. This would result in

an erroneous decision to move the bank.

2.4.1.2 Parameter Position Estimate Monitoring. Equation (2.24) gave an
expression for the estimated parameter location based on the K discretized parameter
locations (now based on the J discrete moving-bank filter locations) and hypothesis con-
ditional probabilities. The estimated parameter location is used in this technique for
determining where the center of the moving bank should be. If the parameter location
begins to move to the edge of the current bank or to move to some predetermined distance
from the current center, then the decision to move the bank could be made. Note that
the bank cannot always be centered over the estimated parameter position, as when the
estimated position is near the outer edges of the overall parameter space. Centering the
bank in this case would require that some elemental filters lie outside the overall parameter
space. Reviewing Equation (2.24) shows that the benefit of this technique is that it relies

on a history of measurements rather than just on the single current measurement. Thus it
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is not prone to the single-large-sample measurement noise problem of residual monitoring.

2.4.1.3 Parameter Position and “Velocity” Estimate Moniloring. This tech-
nique is an extension of the previous parameter position monitoring technique. If the
parameter is varying slowly, the position and “velocity” can both be monitored. The pa-
rameter velocity is the change in parameter location between sample periods or over an
extended period of time. The velocity vector could be used to estimate where the parame-
ter will be at the next sample period. If the predicted location is outside the current bank
of filters or beyond a certain threshold distance, Tyredicted position, from the current center,
then a move of the bank is indicated in the direction of the velocity vector. Evaluation of
Tpredictedposition by Hentz indicated that this method showed no real enhancement in speed

to acquire, and important destabilization of the bank’s position in parameter space [7:62).

2.4.1.4 Probability Monitoring. Monitoring the hypothesis conditional prob-
abilities generated by Equation (1.1) provides insight into which filter is located ncarest
the true parameter location. Using a preset threshold, Tjyop, the bank can be moved in
the direction of the filter providing the most correct parameter estimate, i.e., the one with
the highest p;(t;) value which is also above Tyrop. The bank seeks to center itself on the
filter which is based on the most correct assumed parameter value. As with parameter po-
sition monitoring, probability monitoring uses a time history of measurements and is less
susceptible to radical changes due to individual large realizations of measurement noise.
entz found that the performance of the bank improved as T},yop Was decreased from high
values to low [7:62]. Essentially, with a low Tpyp, the bank moved anytime the probability
weightings on the perimeter elemental filters exceeded the weighting on the center filter.
Hentz found this method and the parameter estimate monitoring method to provide the
best performance. However, probability monitoring has the additional benefit of a slightly

less costly computational loading than position monitoring [7:87).

2.4.2 Ezpanding the Bank. The size of the bank need not be fixed and the bank
filters need not be at adjacent finely discretized points in the parameter space. If the active

filters are not associated with adjacent discrete parameter values, the bank behaves as a
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coarsely discretized moving bank. A coarsely discretized bank was illustrated in Figure
1.3(b). The estimates provided by such a bank may not provide as accurate estimates as
a bank where the active filters occupy adjacent discrete parameter locations. Ilowever, it
does offer a higher probability that the true parameter location will be within the bank.
This is a good attribute for two specific cases. First, the bank may require expansion to a.
coarser discretization for the case of a jump change of the true parameter location. Second,
a coarse discretization may be desired for initialization of the moving bank. Expansion of
the bank due to a jump parameter change is discussed first while the initial acquisition

cycle is discussed in the next section.

Using residual monitoring, a jump change in the parameter can be detected and the
bank expanded. After a parameter jump, the likelihood ratios of the implemented filters
are expected to be large, exceeding some threshold , Teypand. Residual monitoring is used
because the needed information (that none of the current filters in the bank correspond to
a “good” assumed parameter value) is not available from either the covariance of a;, or aj
itself [7:68]. When the bank expands, it is set to an initial coarse discretization with its
center at (5,5). Essentially, the moving bank starts the initial acquisition cycle over when
an expand decision is made. Evaluation of Teypand by Hentz determined that, if it was
set too high, the bank waited too long after the parameter jump before expanding. When
Tezpana was set too low, the bank expanded inappropriately during the runs [7:69]. Using
residual monitoring for bank expansion has the same problem as that for bank movement;
in the face of a sudden high value of ¥(¢;) , the values of L;(¢;) would all rise appreciably,

which would result in an erroneous decision to expand.

2.4.8 Contracting the Bank. As discussed previously, a coarsely discretized bank
could result from the decision to expand the bank due to a jump parameter change, or
during the initial acquisition cycle, where convergence has a higher probability of occur-
ring. Maybeck and Hentz found that using an initial coarse discretization of the bank
improved parameter acquisition [19]. As stated previously, the estimates provided by such
a bank may not be as accurate as those provided by a bank where the active filters occupy

adjacent discrete parameter locations. Therefore, once the parameter estimate is made, it
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is desirable to contract the bank to a finer discretization as soon as possible. The following
discussion will highlight the acquisition cycle and the determination of the contraction

threshold.

In the initial acquisition cycle, the discrete parameter value spacing is set such that
the moving bank covers nearly the entire parameter space. In this way, the true parameter
will always be within the region spanned by the large moving bank. The covariance of the
parameter estimate is then used to contract the bank as appropriate. The formulation of
P4 was given in Equation (2.25). One scheme to contract this coarsely discretized bank is
to contract the spacing in two steps (see [7:64] and [3:79]), as opposed to the alternative
of being contracted to finest discretization in one step. The bank initially has a spacing of
four between the elemental filters. When the covariance of the parameter estimate drops
below a specified threshold, Teontract1, the bank contracts to an intermediate spacing of two.
Finally, when the covariance of the parameter estimate drops below a second threshold,
Teontract2, the bank contracts to its finest discretization, a spacing of one. Each time the
bank contracts, it contracts such that its center is the discretized parameter point nearest
to ag. This has the disadvantage of all the nine filters generally going through an initial
transient. Another option would be to contract the bank to the quadrant of the parameter
space before contraction that contained the estimated parameter point position. This
ensures that four filters of the bank before contraction remain in the bank after contraction.
This is desirable in order to minimize the impact of initial transients in the state estimates
[3:80]. For this research, the bank will be contracted in one step and will be centered on

the discretized parameter point nearest to ay.

It is important to note that the covariance of the parameter estimate in this research
is a two-by-two matrix. In order to compare this matrix to the threshold level, a. scalar
value associated with this matrix is needed. Ilentz used the larger of the two diagonal
elements, after performing an inverse mapping on the w estimated variance to give both
elements the same relative magritude [7:64]. (Recall that Hentz’s parameter discretization
for the w parameter was logarithmic.) In determining the values for these thresholds, Hentz
found that if the thresholds were set too high, the bank contracted before a good parameter

estimate could be obtained. If the thresholds were set too low, the bank did not contract
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soon enough, degrading performance while it is in the coarse mode. Filios [3] found that
requiring both variances to be below the thresholds gave a more accurate determination of
when to contract. However, this required tradeoffs in the determination of the threshold,
since the same threshold was not necessarily the most appropriate for both variances. Filios
found that the threshold he used proved to be sensitive to the probability weight lower
bound, ppin, used to keep the bank from “locking out” any elemental filters. A potentially
better idea, and the method which will be incorporated into this research, is to contract

in separate directions using separate diagonal terms, which allows for rectangular banks.
Karnick proposed an alternative method in which the probability of a side of the

bank was monitored such that

Yside fa(t)la,Z(t:i_,) (% | 355 Ziz1)
24 sides fz(ti)laZ(t-1) (Zi | 25, Ziz1)

Pside(ti) = (2.28)

is the probability associated with each side [8:27-29]. If the side probability falls below some
threshold, then the side is contracted. “Conversely, if the probability associated with a side
rises above some threshold, the remaining three sides are ‘moved in’ ” [8:29]. The third
possibility involves evaluating all four sides, and when the sum of the sides’ probabilities
fall below an appropriately determined threshold, the bank is contracted. This method is

totally ad hoc.

2.4.4 Initialization of New Elemental Filters. When the bank is moved, expanded,
or contracted, three processes must occur. First, the matrices ®, By, Gy, H, Ag, D (which
will be discussed Section 3.4 of Chapter 3), K, P(¢), and P(¢}) for each elemental filter
(and G} for each elemental controller) are changed to correspond to the new parameter
points. Second, the changed filters must be initialized with new values for %;(¢;). And

third, the changed filters must be initialized with new values for p;(¢;).

The first process is achieved by simply retrieving the matrices which have been
previously calculated and stored. The second prowess can be achieved by selecting %;(t;)
for the changed filters as the current moving-bank estimate of the system state, X(t}). For

the third process, several options have been investigated [8:29-32].
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The first option for initialization of p;(t;) is to set all of the p;(¢;)’s (for both changed
and unchanged elemental filters) to %. This option has been shown to result in sluggish
convergence to a parameter estimate. A second option is to redistribute the sum of the
discarded filter probabilities equally among the new filters. A third method, proposed
by Hentz, is to re-assign the total discarded filter probability based on the “correctness”
of the new filters [7:29]. A new filter’s “correctness” is based on the computation of ils
probability density function value for the current measurement relative to the sum of the

changed filters probability density functions’ values. Hentz’s algorithm is given as:

fz(t~)|a Z(t _,)(zi | aj,2;-1) [ ]
L (1) = 2tz 1- 3 pilts 2.29
chh( ) Zch fz(t;)l-a_,Z(t;_l)(zi | aj,Zi'—l) 1.7( ) ( )

unch

where ch=changed and unch=unchanged elemental filters. Hiowever, this method requires
additional computation and has demonstrated no significant performance improvement
over equal re-distribution of the discarded probabilities [3:76). The special case of bank
expansion results in the resetting of all the filters in the bank. Dividing the probability
among all the filters is appropriate since the old probability weightings may no longer be
valid. In all of the methods described above, the sum of the probabilities of the bank after

the reset must equal one (as mentioned in Section 1.1.1); this may require a rescaling step.

Finally, in addition to investigating how to initialize new filters, Ilentz investigated
the need for “warming up” the new filters before they were actually brought on line. This
warmup would allow initial transients in state estimates and conditional pfoba.bilitics to die
out. Ilentz’s results indicated that there was no detectable improvement in performance
when filter warm up was used [7:100). This research will use equal redistribution of the

discarded filters and no filter warmup.

2.5 Stochastic Controller Development

As stated in Section 1.1.3, the moving-bank and fixed-bank MMAE algorithms can be
used with several stochastic controller designs. The controller implementations investigated
in this research will be the MMAC, the modified MMAC, the MAP vs Bayesian MMAC,

and the modified single changeable-gain controller. The “assumed certainty equivalence
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design” methodology presented by Maybeck [17:241-245] will be used. Each controller
developed is a linear, quadratic cost, full-state feedback optimal deterministic controller
based upon a specific assumed parameter value of a;. As discussed previously, the out-
put of the controller is desired to be the optimal control function, such that a quadratic
cost function is minimized, in order to cause the closed loop system to behave properly,
quickly quelling out any bending vibrations. The following discussion provides the basic
development of the general quadratic cost function in order to highlight aspects which are

of concern to this research.

As developed in Maybeck [17:73], consider a continuous-time system such as that
provided in Equation (2.1) to which it is desired to apply sampled-data control of the
form u(t) = u(t;) for all t. What we are really concerned with is the behavior of the
continuous-time system for all ¢ € [to,tn+1] and not just at the sample times ¢;. Assume
that. the control objective will be realized when the following continuous-time quadratic

cost function is minimized:

J = E{ /t:N“%[57‘(t)‘.’Vm(t)§(t)+uT(t)Ww(t)u(t)-{-2;7'(t)Wx,,(t)u(t)]

+ %LT(tNH)XfE(tNH)} (2.30)

where the W (?) is positive semidefinite and W, (t) is positive definite for all t. Following
the development in [17], the cost can be equivalently expressed in discrete time by dividing

the desired time interval into (N + 1) control intervals which yields the following:

N
J = E {5_%% [ ()X (2)x(8) + w7 (8) Ut u(ts) + 257 (6)S(ts) (k) + Li(4:)]

+ 567 (s X sl | (2.31)

where

X()= [ 8T Woaf) 87 (1) (2.32)
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) = /:m [BY (t, t) Wea(0)B(t, ) + Wal®)

BTt ) Wa(t) + WEOB( )] (2:33)
S(t:) = /t _t"“ [27(t, ) Waa (0B (1,5) + 87 (2, ) Waa (1)) d (2.34)

and
B(t, ;) = /tt &(t,7)B(7)dr (2.35)

The residual cost, L,(¢;), in Equation (2.31) ha no bearing on the evaluation of the optimal
control function and is therefore not evaluated here [17:76). Examination of Equation (2.34)
reveals that there are two instances where the cross terms in the general cost need to be
evaluated. First, if the continuous-time cost matrix W, (¢) is non-zero, then non-zero
S(t;) will also exist. Second, due to the desire to apply control to the state over the entire
sample period (not just at the sample times), S(¢;) will still exist even if W, (1) = 0: sce
the first of two terms in the integral of Equation (2.34).

If the assumption of a linear system driven by white Gaussian noise is used, with a
quadratic cost function given by Equation (2.31), then the optimal discrete linear feedback
control law was shown to be of the form given in Equation (1.8), where the gain is given

by [17:73]:
-1 _m -
G3(t) = [U(t:) + B (t)Kc(tis1)Ba(t)] [BIt)Ko(tig1) @ (tigr, 1) + ST (1)]  (2:36)
which is also part of the solution of the backward Riccati equation solving for X(t;) [17:73}:

Ke(ti) = X(t:)+ @7t t)Ke(tis1) B(tig1, 1)
- [BI)K ltisa)®(ti41,4) + 87 ()] G3(t:) (237)

as solved backward from the terminal condition:

Ke(tvi) = Xy (2.38)
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If the assumption of a time-invariant linear system driven by white Gaussian noise
is used, with a quadratic cost function given by Equation (2.31) with constant weighting
matrices, then the optimal constant-gain discrete linear feedback control law was shown to

be of the form given in Equation (1.9), where the gain is given by [17:242]:
G, =[U+BIK.By [BIK.2+57] (2.39)
where K, is the solution to the steady state Ricatti equation:

K.=X+8"K.% - [B]K.2+57|" [U+BIK.B) [BIR.2+57  (240)

By assuming the use of constant weighting matrices and assuming steady-state op-

eration, the quadratic cost of Equation (2.31) becomes:

J=E {i % [;(t,-)Tx;(t;) +ul(t:)Uu(t;) + 25T(t,-)s_q(t,-)] } (2.41)
i=0
As stated previously, the selection of the weighting matrices found in Equation (2.41) is
important in determining the performance of the controller. Tuning of the control and
state weighting matrices “is usually required, in analogy to tuning ol Qg and R....” in the
Kalman filter [17:10-11]. This research will investigate the performance enhancement by
determining the state weighting matrices, X, for all the discrete parameter points, ap. As
stated previously, the cross weighting, S, will be kept at zero based on previous research

which indicated a minimal relative magnitude [11].

2.6 Summary

This chapter highlighted the concepts which are instrumental in this research. First,
it discussed general Kalman filter algorithms as well as practical insights which will specif-
ically affect this research. Next, Bayesian MMATE development was discussed as the basis
for describing the moving-bank MMAE concept, which includes logic for moving and ex-
panding/contracting the bank of filters/controllers. Finally, LQG controller development

was presented. Most{ important to the discussions of the results in the chapters that follow
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is the rational and appropriateness for the simplifying assumptions which will be adopted
in this research. Basically, the system under investigation can be adequately represented by
time invariant noises and adequate performance is obtained by using steady-state Kalman
filters, steady-state optimal LQG controller gains, and constant state and control weighting
matrices. Chapter 3 provides the development of the large space structure which is under

investigation.
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III. Rotating Two-Bay Truss Model Development

3.1 Introduction

The system model discussion provided in Chapter 1 was intended to provide a basic
understanding of the system under investigation. The purpose of the current develop-
ment (like that found in Chapter 2) is twofold. First, the system model description of
Section 1.1.4 will be enriched to address the general theoretical development relevant to
this research. Second, discussion contained here will highlight simplifying assumptions and
insights gained from previous research which are pertinent to the accomplishment of the ob-
jectives specific to this research. Rotating two-bay truss model development will encompass
(1) a description of the two-bay truss, (2) system model development, (3) reduced-order
model development, and (4) truth model/filter model design. For a complete development,

see Karnick 8] and Lynch [14].

3.2 Two-Bay Truss Description

The two-bay truss has been discussed in general terms to this point. This section (1)
gives a physical description of the model used , (2) describes the sensors and their locations,
and (3) relates the physical system parameter uncertainty to the MMAE development

discussed previously.

3.2.1 Physical Construction. In 1986, Karnick [8:45) provided the space striicture
model that has been used since that time and is shown in Figure 1.8. For his research,
Karnick obtained a fixed two-bay truss which was originally developed to study the effects
of structural optimization on optimal control design [27]. A similar model was used to
research active control laws for vibration damping [14]. In order to study the effects of
rigid body motion, Karnick modified the fixed two-bay truss by adding a hub of relatively
large mass. Rigid body motion is established by holding the hub center fixed while the
truss is free to rotate about this point in the x-y plane. Thus, the rotating lwo-bay
truss approximates a space structure that has a hub with appendages extending from
the structure, where the hub can be rotated to point the appendage in the commanded

direction.
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Table 3.1. Structural Member’s Cross-Sectional Areas

Member | Area (in®) || Member | Area (in%)
a 0.00321 h 0.00328
b 0.00100 i 0.00439
c 0.00321 J 0.00439
d 0.01049 k 0.20000
e 0.00100 1 0.20000
f 0.01049 m 0.20000
g 0.00328 i

The thirteen rods that make up the truss structure are listed in Table 3.1 with
their cross-sectional areas. The members are made of aluminum which has a modulus of
elasticity of 107 psi and weight density of 0.1 pounds per cubic inch. The rods connecting
the truss to the hub are much larger in diameter than the truss members, causing this
link to be very stiff compared to the truss rigidity. The addition of this physical link does
introduce high frequency modes into the system but maintains the low frequency modes

of the original fixed structure [11:57).

Non-structural masses with a mass of 1.294 lb-sec?/in are located at nodes 1 through
4 asindicated in Figure 1.8. This mass is very large compared to the member masses, which
achieves the low frequencies associated with large space structures [14:14]. The actual mass
values were selected based on an optimizing technique that maintains the lowest undamped
natural frequency (associated with the lowest mode) of 0.5 Ilz [14]. The mass and stiffness
matrices, which describe the system model, were obtained using finite element analysis

[28]. The mass and stiffness matrices for the nominal structure are listed in Appendix A.

3.2.2 Sensors and Actuators. A combination of gyros and accelerometers is used to
provide motion information to the control system. Accelerometers are located at nodes 1
and 2 as shown in Figure 1.8. These sensors measure physical displacements in the y-axis
direction. The accelerometers are not located at the node of the bending modes heing
detected since the “displacement of the truss caused by the bending modes can not be
detected” [11:59] under those conditions. The outputs of the accelerometers are integrated

once to obtain velocity data and once again to obtain position data. This would argue
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for a non-diagonal R; matrix. However, for this research, the simplifying assumption
will be made that the R; matrix can be adequately modelled with a diagonal matrix.
Gyros are placed at the hub (node 7) to provide angular displacement and angular velocity
information. Actuators are co-located with the accelerometers n' nodes 1 and 2. The
actuators act along the y-axis only. The co-location is done to simplify the system model,
specifically the measurement matrix H. The actuators at nodes 1 and 2 are assumed to
be thrusters. The hub also contains an inertia wheel to act as an additional actuator.

Dynamics noise, w, is assumed to enter the system at the actuators.

3.2.8 Physical System Parameter Uncertainty. The purpose of this thesis is to test
the moving-bank MMAE and control algorithms. Therefore, the model must have param-
eter uncertainty which requires adaptive estimation to be applied. As discussed previously,
the parameter space investigated in this research is composed of 100 discrete comhir~tions
of the parameters of interest, where the parameters of interest are the non-structural
mass and the stiffness matrix. The non-structural mass changes are representative of the
depletion of fuel tanks on the structure, refueling of the fuel tanks (where weight is being
added), or weight being shifted from one part of the truss to another. The variations in
stiffness of the truss members might be caused by structural fatigue in a rod or rods or,
in the more extreme case, actual failure of one of the members. Not only does this choice
of parameter variations make sense physically, but as will be seen in the next section, the
choice of mass and stiffness as parameters is motivated mathematically due to their explicit

appearance in describing the dynamics equation of the structure.

3.3 System Model Development

A mathematical model is required to dei 2rmine the feasibility of the MMAE esti-
mation and contr~! techniques for the large spa. e structure described in Section 3.2. This
section will (1) ¢* 5 the development of the general system model in state space form

and (2) motivate the need for and describe the development of modal decomposition.

3.3.1 Physi al Coordinate Form. “The standard second order matrix differential

equation, developed through finite element methods, which governs the flexural vibrations

3-3




of a structure” is given by [14:3], [8:39] :
Mr(t) + Ci‘(t) + Kl‘(t) = F(t) = Fl(u, i) + Fg(t) (3.1)

where

r(t) = n-dimensional vector representing the structure’s physical position

F1(u,t) = r~dimensional deterministic control inputs

F,(t) = r~dimensional disturbances and unmodeled control inputs

e M = n — by — n constant mass matrix

C = n - by — n constant damping matrix

K = n — by — n constant stiffness matrix

If the external disturbances are assumed to be white Gaussian noises, then Equation

(3.1) becomes [14:4], [8:40]):
Mi(t) + Ci(t) + Kr(t) = —bu(t) — gw(?) (3.2)

where {11:48]

¢ u(t) = r-dimensional vector actuator inputs

¢ b = n — by — r control input matrix identifying position and relationships between
actuators and controlled variables

¢ w(t) = s-dimensional vector representing the dynamics driving noise, where s is the
number of noise inputs

® g = n— by~ s noise input matrix identifying position and relationships between the
dynamics driving noise and controlled variables

If the states of the system are taken to be composed of the position and velocity

variables, then Equation (3.2) may be written in state space form as [14:4], [S8:40}:

Xx(t) = Fx(t) + Bu(t) + Gw(?) (3.3)
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where the states are stochastic processes since they are driven by noise as well as a deter-

ministic input. The state vector is given by [14:4], [8:41]:

xt) = | (34)

£(2)

2nx1

The state vector described in Equations (3.3) and (3.4) are position and velocity contri-
butions of the various rigid body and bending modes to physical position and velocity
variables at selected points on the structure which are measurable by accelerometers. The
uncertain parameters enter the mathematical model via the constant matrices in Equation
(3.3). Relating this to the discussion of Section 2.3, Equation (3.3) represents the same

system as described by Equation (2.1). The constant system matrices are given by [8:41]):

0 I
F= nxn nxn (35)
v —M_lKnxn "M_lCnxn
Jd2nx2n
0
B = nxr (3.6)
*hd—lbnxr
2nXr
0
G= "1’“ (3.7)
-M Enxs 2nXs

One of the assumptions taken in this thesis is that the system dynamics driving
noise enters the system at the same location as the actuators (thrusters). This assumption

causes the g and b matrices to be equal, and therefore G = B.

The model of the discrete-time mcasurement of the states is given by [8:42]:

H 0
z(t) = P

x(t) p + v(%) (3.8)

mx2n

v




where:

¢ m = number of measurements

¢ v(t;) = m-dimensional uncertain measurement disturbance modeled as a zero-mean
white Gaussian noise of covariance R(t;)

e Hp, = (m/2) — by — n position measurement matrix in physical coordinates

e Hy = (m/2) - by — n velocity measurement matrix in physical coordinates

Relating this to the discussion of Section 2.2, Equation (3.8) represents the same
measurement model as described by Equation (2.7). For this research, since the position

and velocity measurements are co-located, Hp = Hy.

The equations developed here are highly coupled, that is, the equations are not
independent. This situation is not desirable, therefore modal decomposition is used to

transform the sets of equations into independent modal equations.

3.8.2 Modal Coordinate Form. The equations just developed are transformed into
a system of equations that are decoupled. “The general response of a complicated system
can be broken down into the sum of n simple responses” [2:260]. The assumption that the
matrices are constant allows the modal decomposition to be useful. If the matrices were

variable, then the advantage of using modal decomposition would be lost [2:262].

Following the research performed by Lynch and Banda, the damping matrix is as-

sumed to be a linear combination of the mass and stiffness matrix [14:4):
C=aM+ (K (3.9)

Due to the transformation from physical to modal coordinates, the actual determination
of a and B are not required. If the modal coordinates are denoted by ¥, the relationship

between the modal and physical coordinates is given by {14:5):

r=TF (3.10)




where 7 is the n— by —n transformation matrix composed of eigenvectors determined from
the solution of [14:5]):
w*MT = KT (3.11)

Note that Equation (3.11) relates the modal frequency, w, the mass matrix, and the stiffness
matrix. The damping matrix is not involved in the solution of the eigenvectors, therefore,
the solution of & and 8 in Equation (3.9) are not explicitly found since they are not required
for the modal decomposition. The values of w that satisfy Equation (3.11) are called the

natural or modal frequencies.

Substituting Equation (3.10) into Equation (3.3) yields the transformed state space
equation to [14:5]:
x(t) = Fx(t) + Bu(t) + Gw(t) (3.12)

where (7) represents the modal coordinate frame and the state vector is now defined as

[14:5]:

i(t)
(1)

x(t) = (3.13)

2nx1

The matrices describing Equation (3.3) are also transformed and calculated as [14:5]:

. 0 I
F= (3.14)
-T-M-1KT -7T-'M-'CT
2nX2n
. 0 ~
B= =G (3.15)
-7T-1M~1b
2nXr
Orthogonality of the modal vectors and the following definition
[—T“M"CT = —2(w; (3.16)
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allows the open loop plant matrix to be written in terms of the undamped natural fre-

quencies and the damping ratio of the 7-th mode. Therefore, F* becomes:

0 I
[-w?] [-2Gwi]

ki
]

(3.17)

2nx2n
where each of the four entries in ¥ are n X n and are diagonal. Finally, the equation

describing the measurement process may be rewritten as [8:44):

H,7 0
H,T

z(t) = X(t:) + v(t:) (3.18)

mx2n
The measurement matrix in Equation (3.18) shows the general form and will be referred
to as H. The actual implementation of H is different from that shown in Equation (3.18)
due to the method used to incorporate rigid body position and velocity measurements into
the matrix; it corresponds to a reordering of the components of z(2;). The form of H used

for this research is provided in Appendix A.

The use of modal coordinates allows the following assumptions to be made [14:14).
The structural damping is assumed to be uniform throughout the structure. The damping
coefficient selection does not play a role in the undamped natural frequencies and therefore
may be selected based upon design requirements. The previous theses used a value of
¢ = 0.005 based on work performed by Lynch and Banda [14] and as representative of

many space structures.

The mathematical structure of the system model has been developed in both physical
and modal coordinates. The parameters used in the equations of this section were derived
from finite element analysis of the structure. However, large order systems present a
problem computationally. As a result, low-order models are desired. The next section
provides a detailed explanation of the method used in this research to arrive at a low-order

design model.
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3.4 Reduced-Order Model Development

The state reduction performed on the system of equations developed follows the work
of Kokotovic, et.al. [10:123-124]. The need to reduce the state dimension is due to the
large computational load that a 24-state system would place on the MMAE algorithm.
The reduced order model is developed in this section from the basis of the system model

developed in the previous section.

3.4.1 Order Reduction Development. The continuous, linear, stochastic system model

given in Equation (3.3) is reformulated as {10:123], [8:52]:
X, (t Fu F x, (¢ B 1 G
x() = _.1( V|2 | Fo B w0 B u@)+ | | w(t) (3.19)
X5(¢) Fo1 Fop | | Xo(2) B, G
where the system is driven by deterministic controls and zero-mean, white Gaussian noise
of strength Q(t). The state vector partition x;(t) corresponds to “slower” modes to be
maintained in the design model and x,(t) corresponds to “faster” modes to be ignored.
The sampled-data measurement model provided in Equation (3.3) is reformulated as:

z(t) = [H1 Hg] x(1) +v(t) (3.20)

Xa(ti)
where the measurement noise is a zero-mean, discrete-time, white Gaussian process with
covariance R(t;).

If steady state is assumed to be reached instantaneously by the “fast” modes, the
Xo(t) modes are removed while maintaining the low frequency modes in x4(¢). Fy; and ~
Fy; are square matrices and x,(t) can be expressed in terms of x,() assuming that F5,

exists. Then the higher order modes may be expressed by [10:123], [8:52):
Xo(t) = Fa1x1(2) 4+ Fa2x,(1) + Bau(t) + Gow(t) =0 (3.21)

%(t) = ~Fg; [F21,(2) + Bau(t) + Gow(t)] (3.22)




Substituting these equations into Equations (3.19) and (3.20) yields [10:123], [3:52] :

() = [Fn - F12F{21F21] x,(¢) + [B1 - F12F§21B2] u(t)
+ [G1 - FroP3 Go| w(t) (3.23)

2(t) = [Hi-HoF3Fa|x(t) - HoFy [Bou(ti) + Gox(s)]
+v(t;) (3.24)

The second term in Equation (3.24) is a direct feedforward term created by the order

reduction [10:123], [8:52).

Applying the above order reduction technique to the original system model in modal
coordinates (provided in Equations (3.12) through (3.18)) yields a new system dynamics
matrix given by [10:123], [8:53] :

0 I E 0 0
[-wf] [-2Gwi] 0 0
F=1 0 o i e (3.25)
0 0 0 I
| 0 0 P [~wd] [-2Gw) |

The matrix given by Equation (3.25) has obvious partitions. The upper left partition
contains the low frequency modes (denoted with subscript 1) to be retained while the lower
right partition (denoted with subscript 2) contains the high frequency modes assumed
to reach steady state instantaneously. The partitions correspond to the Fj; and Foy
partitions observed in Equation (3.19). Each of the subpartitions in Equation (3.25) are
diagonal n'atrices, but the entries in any one subpartition are all different. Additionally,
the submatrices X', " "9 are zero. Substituting this information into Equations (3.23)

and (3.24) yields [10:125  v53):

X1 (1) = Fu () + Byu(t) + Giw, (1) = F,&(t) + Bru() + G, (1) (3.26)
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z(t;) = Hix () — HoFo) Bou(t) — HoF'5} Gow(t:) + v, (t:)
H,%,(t:) + Duu(t;) + Duw (i) + v.(t:) (3.27)

il

where the subscript r denotes “reduced-order.” The only terms associated with the high
frequency modes are the direct feedthrough terms in Equation (3.27), D, and D,,. These
direct feedthrough terms allow direct measurement of the conirol inputs u(t;) as well as
the system dynamics driving noise w(t). The noise vectors, w,.(¢) in Equation (3.26) and
v,.(¢) in Equation (3.27), represent noise vectors which account for the truncation of the

high frequency modes from the system model.

The direct feedthrough terms, D, and D,, in Equation (3.27) are the most com-
plicated since the other terms are readily available. (The other matrices are found by
truncating the states associated with x,(¢) from the full state model.) As previously dis-
cussed in Section 3.3.1, the G and B matrices are equal and therefore, D, =D, =D. The
terms seen in D show that it is dependent on the state terms that are assumed to reach
steady state immediately. The development of D is provided in Appendix A. Research
performed by Karnick and Lashlee did not incorporate the D terms since the truth model
and the filter models they used were of the same dimension. Van Der Werken and Schore
both provided development of such matrices for their unmodelled effects investigations,
however it is doubtful that their simulations actually incorporated these terms. This will

be discussed in more detail in Chapter 4.

3.4.2 Order Reduction Selection. For each location in the discretized parameter
space, eigenvalues and eigenvectors of the unreduced system may be calculated from the
system dynamics matrix F given in Equation (3.17). Table 3.2 shows the natural frequen-
cies and damping factors associated with the nominal mass and stiffness matrices, i.e., no
scaling. The damping factors are all close to the 0.005 value used as an approximation in
previous theses. The eigenvalues fall into closely spaced groups. For example, one group
of three modes is seen in modes 4-through 6. Research performed by Van Der Werken [26]

and Schore [22] were the only previous works to use a 24-state truth model; both Van Der

Werken and Schore elected to use the first three modes in the filter model corresponding




Table 3.2. Natural Frequencies and Damping Factors for Nominal Structure

Mode Eigenvalue Natural Frequency (Hz) | Damping Factor

1 0.2934 4 j 0.0000 0.0000 0.000

2 -0.0449 4 j 8.8982 1.4152 5.04591-3
3 -0.1127 4 j 22.5490 3.5888 4.9980L-3
4 -0.1477 4 j 29.5444 4,7021 4.9993L-3
5 -0.1558 + j 31.1511 4.9579 5.00141-3
6 -0.1640 + j 32.7999 5.2203 5.0002E-3
7 -0.2719 4 j 54.3886 8.6562 4.9992L-3
8 -0.2908 4 j 58.1586 9.2562 5.0001E-3
9 -4.9296 + j 985.904 156.91 5.0000L-3
10 -45.0945 4 j 9018.79 1435.4 5.000015-3
11 -57.5800 4 j 11515.9 1832.8 5.000015-3
12 -99.7825 4 j 19956.3 3176.2 5.000015-3

to a G-state filter model as done previously by Karnick [8] and Lashlee [11]. As stated
previously, this research will continue with the same truth model and filter model as that
used by Van Der Werken and Schore. The next section discusses the specific development

of the truth model and filter model which will be used.

3.5 Truth Model/Filter Model Design

The previous sections provided a general background for developing a system model
for the two-bay truss as well as a method for selecting a suitable reduced order model for
basing the Kamman filter and stochastic controller. This section provides specific details
for the truth model and Kalman filter model used in this research. This section discusses
(1) the form of the truth model and filter state vectors, and (2) determination of the

appropriate sampling frequency for the discrete formulation.

Equations (3.14), (3.15), and (3.18) show the form of the matrices needed to describe
the system and measurement models. These matrices are functions of the true parameter
vector a;, a two-dimensional vector with scalar components that dictate the value of M
and K, respectively, where M and K are the mass and stiffness matrices described earlier.
For this research, the truth model vector is assumed to be composed of the rigid body and

first eleven bending mode position states, followed by the corresponding twelve velocity
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states:

[ X1 1 [ Rigid body mode position ]
X2 First bending mode position
2 Eleventh bending mode position

%, = 2] g p (3.28)

213 Rigid body mode velocity
T4 First bending mode velocity

| %o | | Eleventh bending mode velocity |

Matrices developed to describe the truth model and measurement model corresponding to

the X, vector will be denoted by subscript ¢.

The filter-model states used in this research and previous research efforts are defined

by:

@y [ Rigid body mode position

29 First bending mode position

x Second bending mode position

=] 0= g model (3.29)

Z4 Rigid body mode velocity

@5 First bending mode velocity

| %6 | | Second bending mode velocity |

Matrices developed to describe the filter model and measurement model corresponding to

the X, vector will be denoted by subscript f.

In order to evaluate the error between the 24-state truth model and the six-state
filter model, Van Der Werken transformed the the truth model so that the first six states
correspond to the states of the filter [26:233]. Ilowever, for this research, his transformation
is not needed. Formation.of the error vector for this research will be discussed in Chaptoer

4. Appendix A provides a listing of the truth model and filter model matrices used in this

research.




As discussed in Section 2.2, the algorithms which will be implemented need to be in
discrete form. Therefore, selection of a sampling period is required for evaluation of the
truth model matrices ®;, By,, and Qg, and the filter model matrices ® ¢, By,, and Qq, as
developed in Equations (2.10) and (2.15). Based upon the frequencies shown for the states
to be retained in the filter model, a sampling period of 0.05 seconds (20 IIz sampling rate)

is appropriate.

3.6  Summary

This chapter provided the framework for developing a practical mathematical model
for basing a “truth” model and a Kalman filter design model for investigating the multiple-
mode] adaptive estimation and control algorithms. Use of modal decomposition is instru-
mental in estublishing the mathematical model. For this method to be useful, this research
assumes that the matrices describing the second order differential equation of the struc-
ture are constant. Using the method of singular perturbations, appropriate sclection of
reduced-order states can be accomplished for basing the Kalman filter model. The de-
velopment and form of the 24-state truth model and six-state Kalman filter matrices are
provided in Appendix A. Chapter 4 discusses the simulations which will be performed in

this research.
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IV. Simulation

4.1 Introduction

The space structure discussed in Chapter 3 is simulated in order to study the estima-
tion and control capabilities of the MMAE and controller techniques discussed in Chapter
2. To determine the statistical properties of the estimation/control process, Monte Carle
analysis is performed. This chapter provides (1) a discussion of the Monte Catlo analysis,
(2) a description of the software, (3) a discussion of the modifications to existing sofltware,

and (4) the simulation plan for this research.

4.2 Monte Carlo Analysis

The Monte Carlo analysis performed by the simulation software provides the sta-
tistical information about the performance of the MMAE and the controller algorithms
described in the previous chapters. If the system under investigation were fully linear,
then covariance analysis could be used [15:329]. However, the adaptive nature of the
MMAE technique used to control the large space structure requires the employment of
Monte ‘Carlo analysis to obtain many samples of the process and evaluate the statistics
of the process. As with the work performed by Van Der Werken [26] and Schorc {22],
the sirnlaticn invelves two models: a 24-state “truth model” for accurate simulation and
performance evaluati-n and a six-state filter and controller lesign model based on the
development of Chapter 3. The design model is the same one used by Karnick [8], Lashlee
[11), Van Der Werken [26], and Schore [22]. The 24-state truth model was developed by
Van Der Werken [26] and used by Schore [22]. This section will discuss (1) the error vector

formulation and (2) the error vector statistics.

4.2.1  Error Vector Formulation. Whil previous thesis efforts (8, 11, 26] viewed
the estimatioly and control of the modal state: &5 the primary objective, the goal of tuis
research is to view physically meaningful quantities. The first simulation is concerned
with the estimation of the structure positions and velocities at nodes 1, 2, and 7 (i.e., at
the midpoiat and end of the two bay truss, and at the % », A _ »eral vector of error

’
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signals (which consists of three physical positions and three velocities) is determined by
subtracting the filter estimates of these quantities from the true positions and velocities.
The error term formulation used in this research is modified from that presented by Schore

[22:Chapter 1 pg 22]. The error-term is computed as:

9
ex(ti) = Bk, (t) — 3 Hykp (8) - pi(ti) (4.1)
J=1
where H, is a modified version of the general truth model measurement matrix, in modal
coordinates, and relates the three physical positions and velocities to the truth model states
(assumed to be 12 modal positions and velocities, in that order, described by Equation

(3.28)). The form of H, is given by [22:Chapter 4 pg §):

I‘ilt - Hflsxa XHtPGXQ 0 0 (4.2)

0 9 Hy2;s  AHtusp 6x24

where I:It,, corresponds 1o the effect of the upper nine modal position states, and Hy,
to the effect of the upper nine modal velocity states. Schore implemented a modified
version of this error form to investigate the effecis of the higher order bending modes of
the structure on the ability ¢ the estimation t:chnique to provide accurate position and
velocity estimates. The effects of the I:Itp and Hy, partitions of the ¥, matrix can be
varied by the scalar variable, A, between 0 and 1. (A = 0 allows no higher order modes
whereas A = 1 allows the full effect of the higher order modes.) For this research, the full
effects of the higher order modes will be investigated, therefore requiring A equal to one in

Equation (4.2) unless otherwise specified.

The filter measurement matrix, H 7, relates the three physical positions and three
velocities, in that order, to the filter assumed states (three modal positions ar  aree

velocities, in that order). The general form of Hj is given by:

. H, 0
Hj = flaxs i (4.3)
0 Hyoype 646




Figure 4.1(a) shows a block diagram of the Monte Carlo analysis simulation which
is similar to that used by Schore [22:Chapter 4 pg 3]. To review, the variables of interest

are [22):
o X,(t;): the truth model states; 24-dimensional and in modal coordinates, representing

the rigid body mode and eleven bending modes

* X (%;): estimates of the system states; 6-dimensional and in modal coordinates, rep-

resenting the rigid body and the first two bending modes
o a;(t;): the vector representing the true structure mass and stiffness parameters
o A(t;): estimates of the uncertain parameter vector
* e,(%;): the error in the parameter estimate defined as e,(¢;) = as(t;) — a(t:)

o e,(t;): the error in the system estimate defined by Equation (4.1). The form is due

to the development of the H, and H s matrices and is given as follows:

[ €z, 1 [ Node1 position error ]
€z, Node 1 velocity error
e (t) = € | _ Node 2 position error (4.4)
ez, Node 2 velocity error
€z, Node 7 position error
| exs | | Node 7 velocity error |

The second simulation performed implements a controller for closed-loop estimation
and control. The control simulation is depicted in Figure 4.1(b). The regulation error
signals are generated and evaluated statistically as for the estimation study. Ilere, the
signals of most interest are the true stiucture positions and velocities at the threc points of
interest (described pre+iously). Basically thisis the-quantity HI;x,. Thisis siy.ificant since
the goal of the controller is to quell the oscillations of the structure that may be induced
by moving the structure, changes in structural characteristics, or changes in non-structural

masses on the structure. Also of interest is u since the amount of control available from
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the actuators is realistically limited. The dither block shown in Figure 4.1(a) and (b) will
be described in Section 4.4.1.

4.2.2  Error Vector Statistics. The statistics of primary concern for the estimation
error (and control) processes may be defined as the sample mean and covariance of the

processes. The mean is determined by [26:67], [11:74):

L
E{e (1)} & M., () = %;gzk(t;) (4.5)

where L is the number of Monte Cailo analysis runs made and eg, () is the value of the
error signal during the k** simulation run at run time ;. The covariance may be calculated

as [15:130]:

Pe.(t:) = E{les(t:) - Ble.(t)}les(t:) - E{e,(t)})")

L S e (06T () - ML ()ME (1) (4.6)
L_1k=1 Q‘Jﬁk(ig:z:;,- l) I -1 2x z) e\l .

Q

The statistics of the parameter estimation errors, ,(%;), or true structure positions, HyX,(1:),
may also be obtained similarly wiin appropriate substitutions into Equations (4.5) and
(4.6). This research will use sample statistics computed on the basis of ten Monte Carlo

runs to approximate the true statistics. Each run will be ten seconds in duration.

4.8 Software Description

4:3.1 Introduction. The software used in this research was started by Hentz [7] and
then modified and used by Filios [3], Karnick [8], Lashlee [11], Van Der Werken [26] and
Schore {22). The work performed through Lashlee was performed on a CDC Cyber com-
puter (a non-AFIT resource). Van Der Werken [26:69-70] moved the FORTRAN programs
to an Elxsi 6400 superminicomputer (in-house). During Schore’s research, the programs
were moved once again. The programs now reside on two separate computer systems within
AFIT: an ELXSI 6400 superminicomputer and a DEC VAX-11/785 superminicomputer.

This section will discuss the (1) preprocessor, (2) the processor, and (3) the postprocessor.
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4.8.2 The Preprocessor: SETUPS.F. The preprocessor resides on the DEC VAX-
11/785 computer. This is due to the availability of the IMSL [4] library routines on this
machine. In addition, this program is linked to a software library named LQGLIB [13].
The preprocessor generates the matrices used to describe the structure over a range of
mass and stiffness parameter points. The parameter space is determined by multiplying
both the mass and stiffness matrices by ten different scalar values, thus generating the
100-point space. The matrices generated are ®, By, H, and Qg for the system model, and
®;, ]~3d!, and H ¢ Tor the filter models, as well as the direct feedthrough matrix D, the
Kalman filter gains K, the filter computed residual covariance Ay, and the LQ controller
gains G} for the 100-point parameter space. An input file is used to input the state (X)
and control (U) weighting matrices, the measurement noise covariance matrix (R), the
dynamics driving noise strength matrix (Q), and the time variables (start time, stop time,
and time increment). A second input file provides the mass and stiffness matrices that
describe the structure. This program is linked to the LQGLIB [13] and IMSL [4] libraries.
The truth models and the reduced-state filter models are stored in two output files to be

used by the processor.

4.8.8 The Processor: MOVBNK.F. The primary processor uses the information
generated by the preprocessor to perform the moving-bank simulation via Monte Carlo
analysis. As Figures 4.1(a) and 4.1(b) indicatc, the processor propagates the true system,
which is a full 24-state model of the structure, and uses measurements of this system to
update the estimator (and controller). At the measurement input to the estimator, noise
is introduced in the form of a white Gaussian noise vector. The software has the capability
to perform bank expansions, contractions, and movements according to the logic described
in Section 2.4.1. These functions are used once the states of the filter bank have been
updated and various internal parameters are compared to preset thresholds. This program
is linked to the LQGLIB [13] library. At the end of each time increment, pertinent data is

written to output files to be postprocessed.

4.3.4 The Postprocessor: RESULT.F. Once the simulation is completed, the data

must be reduced using the methods described by Equations (4.5) and (4.6), and put into
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a presentable format, i.e., graphs of the mean X one standard deviation of quantities of
interest . The most important values observed in this thesis effort are the errors in position
and velocity estimation and the corresponding true positions and velocities for control
cvaluation. This program provides data in the form compatible with the GNUPLOT

plotting routine [5).

4.4 Special Simulation Processes

This section discusses two processes depicted in Figure 4.1(a) and (b) which are
required for the estimation and control simulations. First, the generation of a dither signal
is discussed, and second, generation of appropriate system dynamics and measurcment

noise is presented.

4.4.1 Dither Signal. To view the effects of the different modes of the large space
structure adequately, a dither signal is applied at the beginning of cach ten second Monte
Carlo analysis run. The dither signal excites the system model and enhances parameter
identification [11:74]. (Schore corrected the dither signal used in previous research and this
corrected version is used for this research [22:Chapter 4 pg 7]). The sample period used in

this and previous thesis research is 0.05 seconds which corresponds to a sample frequency

of:

1 1 rad
= — = —— = Hz ~ 63— 4.7
f =5 = gxo0s = WHz~ 63 (4.7)

From Table 3.2, the first eight average frequencies are all below this 10 Hz frequency and
should be adequately excited by the dither signal used for this research. The square wave
used does contain harmonics of the fundamental frequency with sufficient energy to excite
the higher order modes of the structure. The effect of the higher modes of the structure
may well be negligible, but major software modifications would be required to change this
limitation. The dither signal magnitude of 10 1bs was determined by trial and error to
provide adequate excitation a.n‘d is applied for 0.5 seconds-through the-control actuators at
node 2 and node 7. For the estimation simulations, after 0.5 seconds the dither is turned
off and the actuator outputs are zeroed for the remainder of the simulation time. For the

control simulations, after 0.5 seconds the dithur is turned off and closed-loop control is
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allowed to be applied, as shown in Figure 4.1(b).

4.4.2  Dynamics and Measurement Noise. The driving noise w,(?;) and the mea-
surement noise v(#;) are provided by the simulation. A zero-mean Gaussian random vari-

able with a variance of one can be approximated by [7:45], [3:58]:

12

r(t) = sz -6 (4.8)

j=1

where Y; is a random variable that is evenly distributed uniformly between zero and
one (available through a random number generator). In order to simulate a a zero-mean
Gaussian random vector with covariance Qg, the following operation is performed [7:45),
[3:58]:

wy(t:) = A - x(t:) (4.9)

where the elements of r(t;) are computed by Equation (4.8) and A = +/Qq, i.e.,, Q¢ =
A - AT, A Cholesky square root is used to generate the transformation matrix A. Anal-
ogously, A = v/R is used to simulate v(t;). Appendix B provides more detail as to the
approximations used to compute the A matrix when the Gy matrix is not the identity ma-
trix, as is the case for this research. The random number generator used in this rescarch
is startd with the same seed for every ten-run Monte Carlo set to ensure the same noise

samples are used for each study.

4.5  Software Modifications

Several problems with the existing software were countered during this research.
The simulations performed to study the effects of the -ultware modifications hecame an
important early objective of this research. This section briefly discusses the major modifi-
cations which were investigated and corrected before the major objectives of this research

were initiated. These modifications are discussed according to which of the programs were

affected.




4.5.1 The Preprocessor: SETUPS.F. During review of the pre-processor program,

three problems were investigated.

First, the feedthrough term, D, of Equation (3.27) was calculated as a two-by-two
matrix instead of a six-by-three matrix. This matrix results from the truth model order
reduction and should improve performance of the filters by providing information of the

states not incorporated into the filter model.

Second, the development of the reduced order control input matrix, B,., of Equation
(3.26) did not incorporate the rigid body angular velocity input. Correct development of
this matrix will allow optimal control gains computed for the rigid body velocity to be

transferred through the actuator at the hub.

Third, the calculation of A implemented the truth model measurement noise co-
variance matrix instead of the filter model measvrement noise covariance. Incorporating
the filter measurement noise covariance matrix will alter the computation of Ay, described
in Equation (2.18), and therefore the likelihood quotient for residual monitoring shown
in Equation (1.3) as well as the density function computation of Equation (1.2) will be

affected.

4.5.2 The Processor: MOVBNK.F. During review of the processor program, sev-
eral discrepancies were corrected. First, a major modification which affected the estimation
and control simulations rectified the fact that the error vector was incorrectly computed
as the center measurement matrix multiplied by the first filter state estimate. A better
approach 15 to use a Bayesian approach and form a sum of probabilistically weighted filter
estimate errors, as seen in Equation (4.1). This will be discussed in more detail in the

duplication of past research.

Second, the direct feedthrough term, D, calculated from the preprocessor program
was not incorporated into the filter measurement model. As stated previously, incorpora-
tion of this term in the filter measurement model should improve performance of the filters

by providing information of the controls not incorporated previously into the filter model.

Third, the probability density computation of Equation (1.2) was affected by initial-

ization of the py’s for new filters not being correctly implemented as an equal redistribution
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of the discarded filter px’s. Since the density computation relies on the previous probability
calculation, this correction is important (especially for probability monitoring). Also, a
software coding error was corrected in the exponential term of the density computation.

Fourth, the residual likelihood quotient used for bank movement was implemented

as r{

; r; instead of as shown in Equation (1.3). Correctly implementing this logic, in addi-

tion to the correct use of the filter measurement noise covariance in the Ay computation,
warrants re-evaluation of the bank move threshold. Also, the move logic incorrectly com-
pared the computed minimum likelihood quotient by testing if it was less than the move
threshold instead of larger, as discussed in Equation (2.27). This is important in correctly

re-evaluating the threshold value.

Fifth, the sum of the probabilistically weighted control inputs for the MMAC im-
plementation was incorrectly initialized. Also, new values of G for each of the elemental
controllers were not correctly implemented in the moving bank after a movement occurred.
These two corrections are important for the comparisons which will be made for alternate

control vector formulation, which will be investigated in this research.

- 4.5.3 The Postprocessor: RESULT.F. The post-processor was modified to be com-
patible with the GNUPLOT plotting program [5).

4.6 Simaulation Plan

The main objective of this thesis effort is to determine the performance of MMAL
and controller algorithms. A means to observe the capability of the MMAE and controller
algorithms to provide useful estimates (in the case of the filter) and/or control (in the case
of the controller) is to monitor the position and velocity estimation errors and true position
and velocities of the structure. The purpose of this section is to describe the simulations
performed which deal with the performance of the estimation of the structuie shape and
rigid body orientation, and the performance of the control algorithm, in the presence of a »
higher order truth model. This research entails five studies for evaluating the estimation

performance and two studies for evaluating control performance. These seven studies were
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previously outlined in Chapter 1. Before these simulations are presented, a brief discussion

describing duplication of past work as well as modification investigations is presented.

4.6.1 Duplication of Past Research. Prior to initiating the moving-bank simulations
described in the following sections, an effort was made to duplicate the results produced by
Schore [22] . Duplication of past research is valuable in two respects. Tirst, duplication of
previous research results is desirable to ensure that the software is operating in the manner
as for previously obtained results and to gain familiarity with operating the software.
Ideally, in order to satisfy this requirement, duplication of previous research should use
the exact software and input parameters. However, for this research, the exact software
and input parameters could not be discerned. Therefore, the duplication of past research
performed in this research will be considered successful if the results demonstrate the major
characteristics of past research. Second, duplication provides a benchmmark to evaluate the
affects of software modifications. Duplication cases for both estimation and control will
be investigated. Once duplications have been performed, investigation of the software

modifications will be performed to determine affects on both estimation and control.

4.6.2 Dynamics Noise Strength and Measurement Noise Covariance Determination.
The first study conducted to investigate the performance of the estimator is the determi-
nation of the dynamics noise strength, Qq, and measurement noise covariance, R. Values
for Qq,, Qq ;s Ry and Ry will need to be determined. Determination of Qq, and R, will
be accomplished first, followed by the values of Ry and Qq y

The values of Qg, must be large enough to excite the system reasonably over a single
propagation cycle, but not too large as to mask the difference between the models. The
dynamics noise is evaluated as it affects the physical positions at nodes 1, 2, and 7. In order
to determine the values for Qq, the initial form is an identity matrix. The corresponding
Qu, is computed as in Equation (2.15). The physical positicns and velocities are observed

open loop to determine when adequate excitation has been achieved.

The utilization of the same sensors to provide position and velocity measurements

on the truss and hub imply a highly correlated noise measurement covariance matrix with
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corresponding non-zero off-diagonal elements. The form of R, will initially be diagonal
with later investigations using a non-diagonal matrix. The evaluation of R, is determined

physically to represent actual sensor precision.

Once the values for Qq, and R; are determined, the values for Ry are determined
using the MVRO approach as used by Van Der Werken [26). The form of Ry is determined
by increasing R; by an amount equal to the difference between the 24-state matrix product
H,P,(t;)HT and the six-state matrix product H P ;(t7 YH? [26:78]. This difference should

be symmetric, positive definite, and provides off-diagonal terms.

Once appropriate values for Qq,, R¢, and Ry are found, values for Qu, can be
determined. The values for this matrix represent the effect of omitting the higher order
states from the filter model. A conservative approach must be taken so as not to mask the
performance of the elemental filters. As with evaluation of the Qq, matrix, the values for
this matrix are computed after first selecting the entries of the diagonal continuous-time

form, Qy.

4.6.3 Moving-Bank Logic Study. Once the filters have been properly tuned, the
bank will be initialized away from the true parameter and the bank will be free to move.
For this study, the bank will be initialized in the middle of the parameter space and the
true parameter will be initialized several parameter points away. A finely discretized bank
will be employed and expansion and contraction will be disabled. Residual monitoring
will be the move logic evaluated first and will establish the performance baseline for the
moving bank. This benchmark will be used to evaluate both parameter position estimate
and probability monitoring. For each of the studies, an appropriate move threshold will
be established to obtain the best possible parameter identification, and therefore, the best

possible estimation performance.

4.6.4 Density Function “Bias” Study. Following the move logic investigation, a
study to determine the effects of the coefficient term on the probability density function
will be performed. This will entail removing the constant coefficient from the conditional

density computation in Equation (1.2). Therefore, the new probability density function
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will be computed as follows:
1 -
fa(t)laZ(tio) (i | @k, Zim1) = exp {_Er{(ti)Akl(ti)rk(ti)} (4.10)

While the the resulting expression is no longer a true conditional density function since
the scale factor is not correct and the resulting area under the curve is no longer one, the
probability weightings are still correct since they sum to one because of the denominator
term in Equation (1.1). This study will be accomplished by determining the effects of the
modification on movement of the bank nusing residual, parameter position estimate, and
probability monitoring. If the results of the study indicate that the A;? term in Equation
(4.10) affects the performance adversely, then further investigations will be performed to
investigate removal of the A;l term in the exponential, basically investigating the ME/I

ferm discussed in Section 2.3 and described by Equation (2.26).

4.6.5 Estimator Parameter Space Discretization Study. Following the density func-
tion study, an improved parameter space discretization will be determined using insights
gained from Sheldon’s research [24]. Since his research determined that underestimating
the modal frequencies had a major destabilizing impact on closed-loop controller perfor-
mance, a modified parameter space will be determined such that the region of the space
which corresponds to the higher modal frequencies in the siructure will be more densely
discretized. Recalling the development of the system model in modal coordinates in Bqua-
tion (3.11), the region of the space which corresponds to higher modal frequencies will be
the region of lower M and higher K scaling values. For this study, the current boundaries
for each of the scaling parameters will be maintained and a logarithmic scale will be imple-
mented to yield nonlinear discretization values. Using the best moving-bank logic method
found in the previous investigations, the performance of the moving-bank estimator with
the new parameter space discretization will be determined. The performance of the associ-
ated controllers with the new parameter space will also be investigated in the simulations

performed for the controller study.
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4.6.6 Estimator Varying Parameter Study. The goal of this study will be to eval-
uate the optimal estimation algorithms previously found, for the case of varying the true
parametors. Following the parameter space discretization study, the true parameters will
be allowed to vary slowly throughout the space. For this research, a “slow” true parameter
variation will be implemented by changing the true parameter value by one discrete point
at the midpoint of the simulation. For this research, true parameter “jumps” will also be
investigated. For this research, a “jump” in the true parameter will be implemented as a
change in the value of the true parameter by four discrete values. In addition to maintain-
ing a finely discretized bank during the “slow” and “jump” changes, bank expansions and
contractions will be allowed. Therefore, the appropriate thresholds for contraction and
expansion will be determined. As for the space discretization study, the performance of

the controllers for varying parameters will also be investigated later.

4.6.7 State and Control Weighting Matriz Determination. This study will deter-
mine if the moving-bank controller performance could be enhanced by evaluating appro-
priate values for the X and U weighting matrices. The state weighting matrix, X, and
control weighting matrix, U, evaluated by Lashlee [11] will be the starting point for this
investigation. The goal of this study will be to maintain relatively small values for U
while increasing the values of X until the rins values for the true states stop decreasing
drastically. This will be accomplished for each parameter in the parameter space so that

each controller will be tuned for a specific parameter value.

4.6.8 Optimal Control Vector Formulation Study. The goal of the control vector
study is to compare the performance of a moving-bank controller using several proposed
m.thodologies. The goal is to optimize the controller performance by investigating the
MMAC, modified MMAC, MAP vs Bayesian, and the modified single changeable-gain
controller approaches (recall Section 1.1.3). Using the optimal moving-bank parameter
estimation logic ¢»termined previously, the MMAC approach will be accomplished first
and will be considered the benchmark for performance. The modified MMAC, MAP
vs Bayesian, and the modilied single changeable-gain controller will be compared to the

MMAC approach.
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4.6.9 Controller Parameter Space Discretization Study. Following the control vee-
tor study, the effect of improved parameter space discretization on controller performance
will be determined using insights gained from Sheldon’s research [24]. A parameter space
such that the region of the space which corresponds to the higher modal frequencies in the
structure are more densely discretized will be investigated to enhance performance. Tor
this study, the parameter space determined for the previous estimator space discretization
study will be used. The MMAC approach will be used to investigate the effects of the new

parameter space on control of the structure.

4.6.10 Controller Varying Parameter Study. The goal of this study will be to eval-
uate the optimal control algorithms for the case varying parameters. Following the space
discretization study, the true parameters will be allowed to vary slowly throughout the
space. True parameter jumps will also be investigated. In addition to maintaining a finely
discretized bank and allowing the bank to move, expanding and contracting the bank
will be investigated. This study will use the appropriate thresholds for contraction and

expansion previously found in the estimation study.

4.7 Summary

This chapter provided a wide variety of information relating to the simulations per-
formed in this thesis. Section 4.2 explained the need for and use of Monte Carlo analysis
as it pertains to this thesis. Sections 4.3 through 4.5 describe the software used to im-
plement the simulations and some of the problems encountered with the implementation.
Finally, Section 4.6 presented the simulation plan which will be followed to accomplish the

objectives of this research. Chapter 5 describes the results derived from this simulation.
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V. Results

5.1 Introduction

The purpose of this thesis is to determine the optimal performance which can be
expected from the moving-bank estimation and control algorithms when a six-state Kalman
filter and/or associated LQG controller is evaluated against a 24-state truth model. This
evaluation is conducted in a physically motivated manner by observing physical positions
and velocities of the space structure at various selected locations. This chapter provides the
results of the Monte Carlo simulations in two major sections: Section 5.2 provides results
from the MMAE investigations, beginning with the simulations that duplicate previous
results and continuing through the study plan of the previous chapter, and Section 5.3
provides results from the LQG controller investigations, also beginning with the duplication

simulations.

5.2~ Multiple Model Adaptive Estimation Study

This section discusses results from the studies which investigated estimation perfor-
mance of the moving-bank MMAE algorithms. These studies are as follows: 1) duplication
of past MMAE research; 2) modifications to software; 3) Kalman filter dynamics noise
strength and measurement noise covariance determination; 4) residual, parameter posi-
tion estimate,-and probability monitoring performance determination; 5) density function
“bias” investigation; 6) parameter space discretization; and 7) varying-parameter estima-

tior. performance. The plots discussed in this section are provided after Section 5.2.6.2.

5.2.1 Duplication of Past MMAE Research. Duplication of past MMAL research
entails two studies. The first ..udy is the duplication of Schore’s MMAE benchmark
simulation [22]. The estimation benchmark consists of setting A equal to one (yielding
the full effects of the 24-statc truth model) and placing the filter bank and parameter
loeatio - -at™(7,6);.i:¢€., the mass parameter is located at its seventh discrete value out of
teﬁ:and’:thestiﬁriess*matrix is at its sixth discrete location out of ten. Additionally, the

probability of filter five in the bauk (the center of the finely discretized bank) is set to one,
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and the bank move threshold is set extremely high so as not {o allow the bank to 1. ve.
In essence, this is the case of an artificially informed (with correct parameter values), nou-
adaptive, single filter. Figures 5.1 through 5.3 provide the results for this duplication. The
apparent divergence after 5 seconds demonstrated in the position errors for nodes 1 and
2 duplicate the estimation errors of Schore’s research very well. This apparent divergence
will be addressed later in Section 5.2.2 also. A second form of non-adaptive benchmark
which could have been performed for the duplication study is a single-filter worst-case
analysis. For this case, the single filter is sct to the (5,5) parameter position and is made
to be non-adap. ve. The true parameter is located at (7,6). This duplication simulation
was not performed since it was felt that the non-adaptive, best-case single filter and the
moving-bank simulation, described next, provided an adequate demonstration of MMAE

performance duplication.

The second study for the MMAE duplication determines the ability of the bank to
move within the filter space when the initial parameter estimate and filter location differ
from the true parameter location. The duplication consists of setting the bank center filter
to the (5,5) parameter position. The true parameter is located at (7,6). The probabilities
of all the filters in the bank are initialized to ;15 and the lower limit of the probabilitics,
Pmins is set to 0.05. Residual monitoring is used for the movement logic and the move
threshold set to 0.25. These threshold values were determined previously by Schore [22] to
provide the best performance for his software configuration. The estimation error results
of this duplication are shown in Figures 5.4 through 5.6. Figure 5.7 provides the mean
bank center location and the mean parameter estimate in the parameter space. Note that
the value of ) is set equal to 0.5 for the bank movement duplication since Schore [22] does

not provide figures for A equal to one.

5.2.2 MMAE Modification Study. Due to the fact that several software issues needed
to be investigated, this became a substantial part of initial research efforts in order to de-
termine the affects of the modifications. Individual studies were performed for each error
in order to determine the performance impact to physical position and velocity estimation

error and parameter estimation. This section provides a discussion of the major impacts.
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This section concludes by providing simulation results from the cumulative modifications

made to the software.

The first major modification that significantly impacts the estimation errors for all of
the simulations performed in this research is the computation of the error vector described
in Equation (4.1). Instead of using the Bayesian approach demonstrated in Equation (4.1),
the previously developed software used a somewhat modified MAP approach. Specifically,
the estimated physical positions and velocities were implemented as the bank center filter
measurement matrix, H fs» multiplied by single-filter state estimates from the first filter in
the bank, X 1,(t:). For the non-adaptive, single-filter brnchmark case, this had the effect
of providing position and velocity estimates from a siagle filter that was offset by one
discrete step in each direction of parameter space from the ~nk center filter location.
Modification of the error vector computation to that shown in Eqy wion (4.1) removes the
divergent estimation errors in the node 1 and 2 position estimation errors for the MMAL,
non-adaptive benchmark (Figures 5.1 and 5.2). The effect of this modification is apparent
in Figures 5.8 and 5.9. Any effect on the node 7 position error, shown in Figure 5.10,
is unobservable, Note also the effect of dither that is obvious in Figure 5.9; this will be
discussed with respect to the third modification. Figures 5.8 through 5.10 incorporate all

modifications investigated.

The second major modification incorporates the rigid body angular velocity actuator
into the development of the B, matrix described in Equation (3.26) and developed in
Appendix A. Modification of this matrix allows the inertia wheel located at the hub to
apply control to the rigid body mode. In the previous software, this control capability was
inadvertantly removed. The effects of this are more apparent in the MMAC duplication
and will be discussed in Section 5.3.2. However, the estimation process benefits from this

modification because the dither signal can adequately excite the modes as intended.

The third major modification incorporates the direct feedthrough term, D, as de-
scribed in Equation (3.27). Since this study incorporates the full 24-state truth model
and a six-state filter model, the correct computation of D was implemented and incorpo-
rated into generation of the residuals, as described in Equation (2.19). This modification

is apparent in the dither signal direct feedthrough in node 2 position and velocity error
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illustrated in Figure 5.9. There were several other software modifications made which were

minor compared to the three described above and were discussed in Section 4.5.

The results obtained with the modified software establish a baseline which will be
used for comparing the results of varying Q and R values and other variations to be con-
sidered in the following sections. Simulations to investigate the modification impacts for
the moving-bank MMAE algorithms were not performed since the moving-bank logic was
itself to be changed as part of this research eff~~t; also this would have required determi-
nation of appropriate move thresholds. These studies are more appropriately investigated

as part of the MMAE moving-bank logic study presented in Section 5.2.4.

5.2.3 Dynamics Noise Strength and Measurement Noise Covariance Determination.
The goal of this study was to determine appropriate values for the 24-state truth model
dynamics noise strength inatrix, Qg,, and measurement noise covariance matrix, R;. In
addition, the six-state filter model dynamics noise strength matrix, Qg ,» and measurement
noise covariance matrix, Ry were determined. As a starting point, previous values for
these matrices were used. (The values of Q and R used to investigate duplications and
modifications are provided in Appendix B.) For these studies, the bank was configured to
represent an open-loop, non-adaptive single filter with knowledge of the true parameter
location, which was selected as (7,6). This represents the nominal parameter values and
is assumed to be representative of the rest of the parameter space. For this study, the full
impact of the unmodelled effects is incorporated into the analysis, i.e., A is set equal to one.
A primary consideration, in addition to minimizing the rms estimation errors, is the ability
of the tuned filters to perform distinguishably different when the assumed true parameter
is correct versus when it is wrong. The initial values of Qg, (the values which had been
used by Schore [22]) were-varied by orders of magnitude to investigate the sensitivity of the
truth model and filter. However, small values of Qq, (reduced by an order of magnitude)
result in a large mean error in the position estimates. This “ringing” effect is the result
of low energy values being transferred to the structure by means of the wideband (white)
noise process, thus allowing the initial dither signal to remain in the slightly damped

structure. Since the higher values of Qq, better represent the magnitude of noise which a
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space structure may experience, and in order to maintain a baseline consistent with past

research, the larger values are used for the remainder of this research.

Next, the values for R; were investigated. The R; matrix used in previous researcn
provided values characteristic of the physical capabilities of curreny sensors. Ilowever, it
was noted that the rigid body angular position measurement noise variance was several
orders of magnitude larger than the rest of the diagonal elements. In effect, this was
“telling” the filter that the measurements from this sensor were extremely poor and should
be weighted less. Since there was no reasonable explanation for this situation, the value
was decreaszd so that the ratio of rigid body angular position to rigid body angular velocity
was approximately the same as the node 1 and 2 position-to-velocity ratios. The remainder

of the matrix was left unchanged.

With the values of Qq, and R, determined as above, the values for Ry and Qq , were
determined. The values for these matrices were determined by adding appropriate amounts,
Rega and Qggq, to Ry and Qq, , respectively, to account for the fewer states used in the
filter model. Using the MVRO approach [16:25), an approximation to Ryq¢ was determined
from the difference between the 24-state matrix product, H,;P,(t; )H7, and the six-state
matrix product, HyP ¢(¢7 )H}‘ For this determination, Py(t;") was computed as an average
value from the last five seconds of the simulation; this was in order to avoid the transient
period of the simulation. With this initial value of Ry available, and using the initial
value of Q; as used by Schore, an iterative approach was used to obtain minimum rms
estimation errors. The R; matrix which resulted indicated very weak coupling between the
hub angular position and velocity measurements and highly correlated position and velocity
measurements for both node 1 and node 2. The measurements at the hub are dominated by
the rigid body mode, whereas the rigid body and bending modes all contribute importantly
to measurements at nodes 1 and 2. For the final Q and R values, the quality of the
final filter tuning was investigated by determining the covariance of the true position and
velocity estimation errors {rom the Monte Carlo simulation. These values are compared
to the steady-state, pre-computed, filter indicated performance H P ((t7)HY. (P/(tf)
was used becauce the estimation errors for the Monte Carlo simulation are computed after

measurement update.) This comparison is provided in Figures 5.11 through 5.13 and shows
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that the filter is well tuned for the nominal case, i.e., parameter location (7,6). These values

of Q and R are used for all of the filters in the parameter space.

5.2.8.1 Non-Adaptive Single-Filter Best-Case Analysis. The simulations per-
formed for the Q and R determination study for parameter location (7,6) also represent
the performance for the best-case, non-adaptive, single filter with artificial knowledge of
the true parameter. Comparing the results shown in Figures 5.11 through 5.13 with that
for the untuned filter of Section 5.2.2, it is apparent from Figures 5.11 and 5.12 that the
velocity errors for nodes 1 and 2 have been reduced by an order of magnitude. Also, the
large mean error which exhibits some phase information has been removed for these two
velocities. More importantly, Figure 5.13 shows that the node 7 position error has heen
reduced by an order of magnitude. The oscillatory mean error previously exhibited also
has been removed. Thus, estimation accuracy for the rigid body position of the structure

has been improved.

5.2.8.2 Non-Adaptive Single-Filter Worst-Case Analysis. In addition to the
best-case benchmark, a worst-case, non-adaptive case was investigated. Previous efforts
[11, 22] considered a non-adaptive filter located at parameter location (5,5) with the true
parameter located at (7,6) to be the worst case. However, for this configuratioy, the
performance of the filter for this case does not differ significantly from that of the best-
case benchmark. Therefore, a non-adaptive single ﬁl’ter was located at (5,5) with the true
parameter set to (2,9). This was selected so that the estimator performance could be
established for the case of under-estimation of bending mode natural frequencies through
assumed parameter values, which will be of major concern for the following controller
studies. The results are shown in Figures 5.14 through 5.16. The figures indicate that
the node 1 and 2 position error magnitudes are about twice as large as the best-case

benchmark.

5.2.8.3 Open-Loop Structure Positions. Parameters which will be highlighted
in the following controller performance evaluations are the true positions at selected points

on the structure. As described previously, these are found via H;x,. The open-loop struc-

5-6




ture positions are shown in Figure 5.17 for the nominal parameter value (7,6). Recalling
the eigenvalues from Table 3.2, the structure is stable. The error variances shown for node
1 and node 2 have not reached steady state values. Based on the damping coefficient for
the highest mode, the settling time is approximately 0.04 seconds. IIowever, the lowest
order bending mode has a settling time of approximately 88.91 seconds. The true position
for node 7, which represents the rigid body position of the structure, is not damped and
can be interpreted as a rigid body rotation in either direction in the x-y plane. These plots

provide a baseline of comparison for exhibiting the effectiveness of MMAC control later.

5.2.4 MMAE Moving-Bank Logic Study. The goal of this study was to investigate
the best move logic of those discussed previously. The best logic is determined not only
by how well the bank identifies the true parameter, but also by how well the states, or
in this case structure positions and velocities, arc esuiinated. Although the purpose is
not to design a parameter identifier, the state estimation errors are expected to be less
for the logic which provides the algorithms with the best parameter identification. This
section discusses results from evaluation of the best threshold for each logic, the effects of
the density function “bias” on each logic, as well as removing the Ay matrix of Equation
(1.2) entirely from the density function, i.e., using the ME/I approach. The simulation
performed for the following studies consisted of centering the bank at parameter location
(5,5) and positioning the true parameter at location (7,6). (This simulation will be referred
to as case 1). The probabilities of the nine filters were initially set to § and the bank was
allowed to move. The results for these studies are presented first for residual monitoring,

then for probability monitoring, and finally for parameter position estimate monitoring.

5.2.4.1 Residual Monitoring Analysis. The first step taken to investigate this
method for bank movement was to establish performance for the bank with the full condi-
tional density function as in Equation (1.2) for probability px computation and a likelihood
quotient of rj (t;)A; rx(t;) for bank-moving decisions. Performance evuluation is deter-
mined by observing the mean parameter estimate and mean center filter location for the
Monte Carlo study as well as the physical structure state estimation errors. The significant

result from this study is that the incorporation of the A5 matrix in the likelihood quotient
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causes the bank to move in an incorrect direction. The movement of the bank is charac-
terized by a dramatic move toward the lowest mass parameter value and a moderate move
toward a higher stiffness parameter, as shown in Figure 5.18. It was determined that the
scaling of the likelihood quotient quadratic form by the A7 might cause such undesirable
behavior, and therefore an alternate likelihood computation should be investigated. This
alternate form was to omit the A;! matrix from the likelihood quotient, which resulted in
r} (t;)ri(t;) as the scalar quantity upon which to base bank-moving decisions. With this
alternate form incorporated, the simulation was repeated. Initially, the bank movement is
as before, however, the parameter identification improves after the first half of the run and
the estimated parameter moves toward the correct parameter. Extending the simulation

time from 10 seconds to 15 sezonds does not improve the final parameter estimation.

It was thought that the “biased” results obtained from the bank movement could be
due to the leading coefficient of the probability density function computations of Equation
(1.2). Therefore, as earlier proposed, the coefficient was removed from the density com-
putations and the benchmark simulation performed. The alternate form for the residual
likelihood quotient was maintained. The resulting parameter estimation still exhibits a
strong bias tendency toward a low mass parameter and a higher s*"fness parameter. Fi-
nally, the ME/I approach was used to compute the probability density function, which is
equivalent to replacing A by I throughout the entire density of Equation (1.2), and in
the likelihood quotient as well. For this move logic, a threshold of 0.09 was established
as providing the best results. The results of the associated parameter identification are

shown in Figure 5.19.

5.2.4.2 Probability Monitoring Analysis. This study began by incorporating
the entire probability density function, as provided in Equation (1.2), into the algorithms.
However, with this configuration, the mass parameter estimate (and resulting bank move-
ment) exhibits the same biased movement as for the residual logic study. Therefore, the
leading coeflicient was removed from the density function. The resulting performance of
the bank is not significantly affected by the modified algorithm. Therefore, total removal of

the A,:l matrix from the density computation, or ME/I density function computation, was




used. This modification improves the mass parameter estimate, although it still exhibits
an initial bias tendency. The best performance for this method is obtained for a move
threshold of 0.13. The parameter identification results for this configuration are shown in

Figure 5.20.

5.2.4.8 Parameter Position Estimate Monitoring Analysis. As for the pre-
vious two move logic studies, the initial form for the moving-bank algorithms used the
complete form for the probability density function of Equation (1.2). Ilowever, as might
be anticipated based on the results from the previous two studies, the performance of the
bank to this algorithm indicate an obvious bias toward a lower mass and higher stiffness
parameter values. Removing the leading coefficient coefficient from the density function
computation does not significantly correct the biased movement. Finally, the MI/I form
alleviates the severity of the parameter estimation bias. The best results are obtained for

a move threshold of 0.01. These results are shown in Figure 5.21.

5.2.4.4 MMAE Moving-Bank Logic Summary. The results obtained for the
parameter position estimate logic study represent the best moving-bank logic results for the
benchmark case investigated here. While these results indicate slightly better performance
for the ME/I density function form, in order to investigate and compare the capabilitics
of the ME/I and proper density forms fully, both methodologies are investigated for the
MMAE moving-bank analysis which follows.

5.2.4.5 MMAE Moving-Bank Analysis. In order to evaluate the performance
of the moving-bank algorithms throughout the parameter space, two simulations were
performed in addition to the simulation conducted for the moving-bank logic analysis

described in Section 5.2.4. These two additional simulations were as follows:

1. Case 2: True parameter at location (2,9) with bank initially at location (5,5)

2. Case 3: True parameter at location (9,2) with bank initially at Iocation (5,5)

For both of the cases listed above, the probabilities of the bank filters are initially set

to -19- and the threshold for parameter position estimate monitoring is set to 0.01. Ior
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these simulations, both the ME/I and proper density function computations ar~ used.
Case 2 represents the performance of the bank to initial underestimation of the natural
frequencies for the bending modes. Case 3 represents the periormance of the bank to initial

overestimation of the natural frequencies.

For the case 2 study, Figures 5.22 through 5.24 show the state estimation performance
using ME/I computations. The position estimation errors for nodes 1 and 2 indicate
increasing uncertainty, similar to that secen earlier in the duplication studies in Section
5.2.1. The parameter estimation performance is stown in Figure 5 25. The performance
obtained for the proper density computation provides final parameter estimation slightly
worse (mass parameter estimate of 3.5 and stiffness estimate of 8.1). The etimation errors
also exhibit the increasing uncertainty trends for the node 1 and 2 position errors as for

the ME/I computation.

For the case 3 study, the performance using ME/I provides rathes poor parameter
estimation, with a final mass estimate of 6.7 and stiffness estimate of 4.5. The truss
position estimates indicate the same trends of increasing uncertainty. Agaiu, the results
for incorporating the proper density are only slightly worse, with a final mass estimate of

6.2 and stiffness estimate of 5.1.

A summary of the results for the three test cases using ME/I co.aputa‘ions is pro-
vided in the upper half of Tables 5.1 and 5.2. For all three test cases exam:ned, the two
cases investigated here and the first case investigated in Section 5.2.4, the moving-bank
state estimation errors show increasing uncertainty, which is worse than the non-adaptive
benchmark investigated in Section 5.2.3.1. The parameter estimation results presented in-
dicate the performance at the end of the simulation, i.e., at ¢ = 10 seconds. This is selected
as a representative performance indicator since the parameter estimation throughout the
duration of the simulation run is relatively steady, as shown in Figures 5.19 through 5.21.
The results indicate that the ME/I computation performs slightly better than the proper
density function and is the only form of density computation investigated for the remainder

of the moving-bank MMAE studies.
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Table 5.1. MMAE Parameter Space Discretization Position Estimation Errors

Old Parameter Space Discretization

Simulation Node 1 Error(®) Node 2 Error{!)

8 Mean lo Mean ! lo
Case 1 0.0003 0.1585 0.0003 0.0901
Case 2 0.0047 0.1042 0.0027 0.0587
Case 3 -.0139 0.1503 -.0078 0.0849

New Parameter Space Discretization

Case 1 -.0167 0.1445 -.0095 0.0827
Case 2 0.0006 0.0807 0.0004 0.0463
Case 3 0.0009 0.1442 0.0006 0.0828

Note (1): Average values for 10 seconds (inches)

Table 5.2. MMAE Parameter Space Discretization Position Estimation Errors and Para-
meter Estimates

Old Parameter Space Discretization

Simulation Node 7 Error() a®
[} Mean lo M S
Case 1 0.0005 0.2611 6.5 6.9
Case 2 0.0078 0.1734 3.2 8.9
Case 3 -.0228 0.2473 6.7 4.5

New Parameter Space Discretization

Case 1 -.0274 0.2784 3.6 8.5
Case 2 0.0011 0.1332 2.1 6.9

Case 3 0.0016 |} 0.2381 6.1 4.5

[Note (1): Average values for 10 seconds (radians)

Note (2): Mass (M) and Stiffness (S) estimates at ¢ = 10 seconds
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5.2.5 Estimator Parameter Space Discretization Study. Motivated by the controller
study which follows, the region of the parameter space for higher values of modal frequen-
cies was more densely packed than the region for lower frequencies. This was an attempt
to reduce the possibility of applying potentially destabilizing control to th. structure from
controllers based on incorrect models that underestimated true modal frequencies. The
boundaries for the mass and stiffness scaling factors remained the same and a logarithmic
scaling was performed for each of the 10 mass and stiffness parameters. The new parameter
space, determined in this ad hoc fashion, is provided in Table 5.3. For this study, the three
test cases described in Section 5.2.4.5 were performed using parameter position logic and
ME/I computations. The results for the three test cases are provided in the bottom half of
Tables 5.1 and 5.2. The structure estimation errors and the parameter estimation obtained
for this new space do not significantly differ from that of the original space discretization.
These results are not unexpected since it wasn’t anticipated that the new parameter space
discretization would make a significant difference for the estimation process. Therefore,

for the remaining varying parameter simulations, the original space is used.

Table 5.3. New Discretized Parameter Space

ay Lashlee [11] New Space

J Mass Stiffness Mass Stiffness
1 0.50 0.50 0.500 0.500
2 0.55 0.60 0.541 0.801
3 0.60 0.70 0.587 0.977
4 0.70 0.80 0.639 1.102
5 0.80 0.90 0.700 1.199
6 0.90 1.00 0.771 1.278
7 1.00 1.16 0.858 1.345
8 1.20 1.26 0.971 1.403
9 1.30 1.40 1.129 1.454
10 1.40 1.50 1.400 1.500
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5.2.6 FEstimator Varying Parameter Study. The goal of this study was to investigate
the performance of the estimator algorthms to two types of parameter changes: first, slowly
moving parameters, where the true parameter does not vary by more than one discrete
vaiue at a time, and second, a jump change where the true parameter changes by several
discrete values. In order to investigate the performance of the algorithms to slowly varying
aud jump parameters properly, benchmarks for establishing best-case performance must
be performed. The benchmarks for these simulations are similar to the non-adaptive, best-
case single-filter study performed in Section 5.2.3.1. However, for these benchmarks, the
bank is allowed to move and it is artificially informed of the true parameter change during
the simulation. A benchmark for each parameter variation study must be performed in

order to analyze the results correctly.

5.2.6.1 Slowly Varying Parameter Analysis. For the slowly varying parame-

ter study, two cases were investigated:

1. Case 1: True parameter and bank initially at parameter location (5,5) with true

parameter change to (4,6)

2. Case 7: True parameter and bank initially at parameter location (5,5) with true

parameter change to (6,4)

The first test case represents a change toward higher naturai frequencies of the bending
modes, whereas the second test case represents a change toward lower natural frequencies.
For each test case, the true parameter variation was a discrete change implemented at
t=5.0 seconds into each 10-second Monte Carlo run. A better approach to simulating
slowly varying parameters would consist of interpolating the truth model madtrices, i.e.
®, Hy, and By,, between the discret~ parameter points. Therefore, the only difference
between the slowly varying parameter study and the jump parameter study conducted in
this research is the number of discrete points that the true parameter is changed. (Since
the jump parameter study is only a more severe case of the slowly varying parameter
study, the simulation results will unly provide plots for the jump parameter study, while

summarizing both sets of results in table form). The move logic consisted of parameter




position estimation with ME/I computations. The results of these simulations, as well as
the corresponding benchmark results, are provided in Tables 5.4 and 5.5. For both of the
test cases, the parameter estimation is very poor. For both case 1 and case 2, the truss
position estimation error results are similar to that obtained for the constant parameter
moving-bank analysis of Section 5.2.4.5. Basically, the node 1 and node 2 position errors

exhibit increasing uncertainty and are much worse than the benchmarks.

5.2.6.2 Jump Parameter Analysis. For the jump parameter study, two meth-
ods were investigated for allowing the bank to adapt to the parameter change. The first
method maintains a fine discretization and allows the bank only to move to the new pa-
rameter. The second method not only allows the ban% to move but also to expand to
acquire the new parameter and then contract around it. For this case, appropriate thresh-
olds were determined and are provided in the following discussion. For cach of the two

bank adaptation methods, two parameter jump cases were investigated:

1. Case 1: True parameter and bank initially at parameter location (5,5) with true

parameter change to (2,9)

2. Case 2: True parameter and bank initially at parameter location (5,5) with true

parameter change to (9,2)

The first test case represents a change toward higher natural frequencies, whereas the sec-
ond test case represents a change toward lower natural frequencies. For the first method,
tne move logic consisted of parameter position estimate monitoring and ME/I computa-
tions. The artificially informed single-filter benchmark performance for the case 1 study is
provided in Figures 5.26 through 5.29. Figures 5.30 through 5.33 show the state estimation
errors and the parameter estimation for the fine-bank move for case 1. (Results for this
simulation, as well as the case 2 study, are provided in Tables 5.6 and 5.7). The state
estimation errors indicate an increasing uncertainty and do much worse than the bench-
mark. The stiffness estimate in Figure 5.33 looks as though no jump occurred. However,
Figure 5.34 shows that the bank properly reacts when the jump change is in the opposite
direction, as is the situation for case 2. For case 2, the estimation performance is similar

to that for case 1 in that the node 1 and 2 position errors demonstrate a divergent trend.
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Table 5.4. MMAE Varyiag Parameter Position Estimation Errors

Simulation Node 1 Error()) Node 2 Error()
ik Mean lo Mean lo
Benchmarks
Bench 1 0.0001 0.6024 0.0000 0.0015
Bench 2 0.0011 0.0037 0.0002 0.0008

Fine-Bank Movement
Case 1 -.0095 0.2865 -.0056 0.1623
Case 2 -.0171 0.2494 -.0101 0.1471

Note (1): Average values for ¢ > 5.0 seconds (inches)

Table 5.5. MMAE Varying Parameter Position Estimation Errors and Parameter

Estimates
Simulation Node 7 Error(!) a®
2 Mean lo M S
Benchmarks
Bench 1 0.0000 0.0322 N/A N/A
Bench 2 0.0001 | 0.0027 | N/A N/A
Fine-Bank Movement

Case 1 -.0157 0.4722 4.2 8.0

Case 2 -.0286 0.4157 6.4 5.3
Note (L): Average values for t > 5.0 seconds (radians)
Note (2): Mass (M) and Stiffness (S) estimates at ¢ = 10 seconds
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The second method for acquiring the parameter after a jump change allows expansion
of the bank. After establishing an appropriate expansion threshold of 0.5 using r¥'(¢;)r(t;)
as the scalar quantity to monitor for expansion decisions, the simulations were performed
with the bank allowed to expand. Two contraction thresholds were investigated: the first
threshold contracts from coarse discretization (four parameter locations between filters in
the bank) to medium discretization (two parameter locations between filters in the bank)
and was established at 10.00; the second threshold contracts from medium discretization

- fine discretization (filters in the bank are at adjacent parameter locations) and was
established at 5.00. The mass and stiffness estimates were compared separately to the
thresholds, which allowed for rectangular banks. The results for both case 1 and case 2,
as shown in Tables 5.6 and 5.7, demonstrate that parameter estimation is worse and the

resulting structure estimation errors are slightly worse than for the method of only allowing

the finely-discretized bank to move.
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Table 5.7.

Table 5.6. MMAE Jump Parameter Position Estimation Errors

Simulation Node 1 Error(!) Node 2 Error(!)
(X Mean lo Mean lo
Benchmarks
Bench 1 0.0000 0.0023 0.0000 0.0006
Bench 2 0.0000 0.0035 0.0001 0.0010

Fine-Bank Movement
Case 1 -.0146 0.2063 -.0081 0.1158
Case 2 0.0027 0.2434 0.0018 0.1378

Expansion/Contraction
Case 1 -.0429 0.2178 -.0114 0.1654
Case 2 0.0058 0.3561 0.0076 0.1723

Note (1): Average values for t > 5.0 seconds (inches)

MMAE Jump Parameter Position Estimation Errors and Parameter Estimates

Simulation Node 7 Error() a®
J Mean lo M S
Benchmarks
Bench 1 0.0000 0.0007 N/A N/A
Bench 2 0.0003 | 0.0013 | N/A N/A
Fine-Bank Movement
Case 1 -.0239 0.3391 3.5 8.7
Case 2 0.0046 0.4008 7.5 4.2

Expansion/Contraction

Case 1 -.0346 0.3924 4.3 6.1

Case 2 0.0051 0.5195 7.3 5.1

Note (1): Average values for ¢ > *.0 seconds (radians)

Note (2): Mass (M) and Stiffness (35) estimates at ¢ = 10 seconds
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True Parameter and Filter at (7,6). (a) Position and (b) Velocity Istimation
Errors.
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5.3 Multiple Model Adaptive Controller Study

This section discusses results from the studies which investigated control performance
of the moving-bank MMAC algorithms. These studies are as follows: 1) duplication of past
research; 2) modifications to software; 3)-state and control weighting matrix determination;
4) optimal control vector formulation; 5) parameter space discretization; and 6) varying
parameter controller performance. The plots discussed in this section are provided after

Section 5.4.

5.3.1 Duplication of Past Controller Research. Duplication methodology for the
the LQG controller algorithms is similar to the duplications previously performed for the
MMAE studies. All duplications use Q and R matrices for filter tuning, as well as X
and U matrices for LQG controller cost definition, used by Schore [22]. Appendix B
provides the values for Q and R whereas Appendix C provides the values for X and U
used in the duplication. The duplication simulations consist of the MMAC benchmark and
the moving-bank MMAC. The MMAC benchmark is equivalent to a non-adaptive, single
LQG controller with artificial knowledge of the true parameter. For this study, the center
filter/controller and true parameter location are set to parameter (7,6). The probability
of the center filter/controller is set equal to one and the bank is not allowed to move. The
estimation error results of the duplication for A equal to one are shown in Figures 5.35
through 5.37. The mean true positions for the structure are provided in Figure 5.33. The
control inputs applied to the system are also of interest and are presented in Figure 5.39.
"The results provided here correspond very well with the estimation errors, true positions,

and actuator responses obtained by Schore [22].

As with the MMAE duplication, the second duplication analysis of the MMAC al-
gorithm determines the ability of the bank to move within the filver space when the initial
parameter estimate and filter location differ from the true parameter location. The dupli-
cation js generated by setting the center filter/controller of the bank to the (5,5) parameter
location while the true parameter is located at parameter (7,6). The probabilities of all the
filter/controllers in the bank are initialized to %) and the lower limit of the probabilities,

Pmin, is set to 0.05. Residual monitoring is used for the movement logic and the move




threshold set to 0.25 [22). The results of this duplication for the estimation errors, true
positions, and actuator responses are shown in Figures 5.40 through 5.42, Figure 5.43,
and Figure 5.44, respectively. As with the single filter/controller duplication previously

performed, these results compare very well with the results obtained by Schore [22].

There are several items to note from these duplication results. The first item to note
from these results is the form of the dither signal applied to the structure. The dither signal
is apparent from the control input shown for nodes 2 and 7 in Figure 5.39. Also, since the
control input matrix was not correctly formed for the unmodified software, actuator 3 does
not apply control to the structure after the dither signal is turned off. The actuators at
nodes 1 and 2, therefore, expend considerable amounts of control energy, approximately 66
Ibs of thrust for actuator 1 and approximately 33 lbs of thrust for actuator 2, to quell the
oscillations of the structure as quickly as possible. Comparing the true structure positions
shown in Figure 5.38 to the uncontrolled structure positions discussed carlier in Section
5.2.3.3 and provided in Figure 5.17, the control algorithm provides stable control of the
structure. However, the large control outputs impact the estimation errors for node 1 and
2 velocities by creating large transient effects, as shown in Figures 5.35 and 5.36(note the
effect of dither for the first half second in Figure 5.36(b) followed by the onset of large
magnitude control with a tapering transient; this is highly correlated with Figure 5.39(b)).
It will be shown that, with the correct form of the control input matrix, the actuator 1 and
2 outputs will be substantially reduced with corresponding improved performance in the
estimation errors. Note that the rigid body position in Figure 5.38 is adequately controlled

without the use of actuator 3.

5.3.2  Controller Modification Study. Section 5.2.2 described the results of the ma-
jor modifications for the MMAE simulations. This section describes the affects of the
modifications on the MMAC simulations. The major investigation is the modification of
the control input matrix, B,, to allow control from the hub to affect the structure. The
B, modification, combined with the modifications discussed previously, caused numerical
instability problems such that the simulation could not be performed before the appropri-

ate values of Q and R were determined. After determination of these values, as described
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in Section 5.2.3 and provided in Appendix B, simulations to investigate the modifications
for the non-adaptive, artificially informed single LQG controller were performed. For this
case, the bank and true parameter are set to parameter (7,6) and the bank is not al-
lowed to move. Figures 5.45 through 5.47 provide the estimation error results. The steady
state estimation errors for velocities at nodes 1 and 2 seem to be reduced by an order of
magnitude compared to Figures 5.35 and 5.36. Figure 5.48 shows that the true positions
are basically unchanged compared to Figure 5.38. However, note the control inputs from
all three actuators are significantly affected, as shown in Figure 5.49, which are directly
comparable to Figures 5.39. The initial control energy expended by the actuators located
on the truss has been dramatically reduced; actuator 1 now expends approximately 12.5
1bs of thrust whereas actuator 2 expends approximately 9.5 lbs of thrust. Actuator 3
is now operating effectively after the dither is removed. The control modifications have
resulted in less control being required from each of the truss actuators while providing
the same control authority over the structure. This could have significant implications
for determining the capabilities required of the actuators. While the increased actuator
outputs from actuators 1 and 2 demonstrated in the duplication analysis do not indicate
excessive actuator thrusting, the corrected simulations indicate thrusters with much less
capability can be used. As for the MMAE modification study, no modification analysis
was performed for the moving-bank MMAC algorithm. The study performed in Section
5.3.3.3 will investigate the performance of the moving-bank MMAC using the move logic

established for the estimation studies.

-

5.3.3 State ar [ Control Weighting Determination. Determination of the appropri-
ate state and control weighting matrices for the LQG controllers is similar to the deter-
mination of the dynamics noise strength and measurement noise covarince matrices for
the Kalman filters. For this study, the values of X and U were iteratively increased until
the rms errors of the corresponding states or controls stopped decreasing substantially.
This method was performed for the (7,6) parameter and is the method used to determine
appropriate tuning for the remainder of the controllers. Appendix C provides the X and

U matrices which were found previously for the (7,6) parameter location [11].
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This study began with re-evaluation of the single controller performance for pa-
rameter location (7,6). Performance of this controller is unaffected by alterations to the
weighting matrices as large as one order of magnitude, which is also true for the region of
the discretized parameter space for the lower natural frequencies, i.e., values for M (mass)
parameters greater than the seventh discrete location and values for the S (stiffness) pa-
rameter less than the sixth discrete location. An indication of how well the controller is
tuned for the (7,6) parameter is provi: :d by the small true position magnitudes, which
are on the same order of magnitude as the estimation errors. Following re-evaluation of
the controller based on the (7,6) location, the controllers for the parameters in the high
natural frequency range were investigated, i.e., values for M parameters less than the sev-
enth discretized location and values for S parameters greater than the sixth discretized
location. It was d¢ ‘rmined that the controller performance in this region, which had pre-
viously used the X and U matrices determined for the (7,6) location, could be improved
substantially. Several parameter points were selected in this region for direct investigation
while the remaining points were interpolated from the results. For example, Figures 5.50
through 5.52 show the state estimation performance for the parameter location (1,9) using
the X and U values for location (7,6), i.e., the “untuned” performance for this controller.
The estimation errors for the positions and velocities demonstrate large mean errors. Fig-
ure 5.53 show the true positions of the structure are oscillating due to the effect of the
relatively high natural frequencies. Figure 5.54 shows the associated actuator outputs. In
order totune this controller, the values of U were held-constant while the values of X were
increased. Then the values of X were held constant while the values of U were increased.
(The values of U were increased to avoid excessive control magnitudes). The appropri-
ate weighting matrices were determined by scaling the values for Lashlee’s matrices. The
tuned controller for parameter location (1,9) is provided in Figures 5.55 through 5.59.
These figures show that the oscillations previously characteristic of the estimation position
errors are quelled to steady-state levels in approximately 2.0 seconds. More importantly,
the true positions of the structure are effectively regulated to zero in the same time period
without the expenditure of excessive control power. Especially note the improved control

of the structure for node 2 position shown for the tuned controller in Figure 5.58 compared
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to the untuned controller performance shown in Figure 5.53. Appendix C provides the
parameter locations and the associated state and control weighting matrix scaling factors

for the controllers tuned in this section.

5.3.3.1 Non-Adaptive Single-Controller Best-Case Analysis. The simulations
performed for the controller modification study for parameter location (7,6) in Section 5.3.2
also represent the non-adaptive, single controller best-case benchmark. This is selected as
the benchmark because it represents the nominal case and is in the center of the space.
‘The controller for this location, as discussed in the previous section, did not require any
additional tuning from that obtained from using the weighting matrices from previous
research. The results are presented in Figures 5.45 through 5.49 and were discussed in

Section 5.3.2.

5.3.3.2 Non-Adaptive Single-Controller Worst-Case Analysis. In order to es-
tablish a worst-case benchmark, a non-adaptive, single LQG controller with the incorrect
parameter was investigated. For this study, the true paramater was located at (2,9) and
the bank was fixed at several locations throughout the space. Results show that the fixed
elemental filter/controller performs well within a boundary region close to the truc param-
eter location. For non-adaptive controllers within the “boundary” locations, performance
is adequate for stable control although only slightly degraded from the best-case bench-
mark. Once the single filter/controllers are fixed outside of this “boundary”, instability
problems prevent completion of the simulations. A worst-case “boundary” was determined
such that a non-adaptive, single filter/controller outside of this “boundary ” could not be
evaluated. The boundary parameter points consist of the following: (4,1), (5,3), (6,6),
(7,8), and (8,10).

5.3.3.3 MMAC Moving-Bank Analysis. As for the MMAE moving-bank anal-
ysis, three simulations were performed to investigate the performance of the tuned con-

troller algorithms throughout the parameter space:

1. Case 1: True parameter at location (7,6) with bank initially at location (5,5)

2. Case 2: True parameter at location (2,9) with bank initially at location (5,5)
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3. Case 3: True parameter at location (9,2) with bank initially at location (5,5)

All three cases above used parameter position estimate monitoring with a threshold of 0.01.
Both the ME/T and complete density function algorithms were investigated. The results
for the case 1 study using ME/I computations demonstrate that the algorithm provides
stable control, i.e., the true positions are quelled to approximately zero in less than 2.0
seconds. The results for the proper density computations provide similar control of the
structure, also quelling the true positions of the structure to zero within the same amount

of time.

The results for case 2 using ME/I are shown in Figures 5.60 through 5.65. Note
that the bank moves rather quickly to the correct region of the parameter space. In this
case, parameter identification is enhanced since the bending modes are greatly excited by
the (inappropriate) control based on incorrectly assumed parameter values. For this sim-
ulation, the actuators provide an initial transient after which the steady state estimation
errors and true structure positions perform as well as the non-adaptive best-case bench-
mark. Comparing these results to the MMAE simulations (Figures 5.22 through 5.24),
the estimation errors are quickly brought to steady state values. For case 2, the MMAC

simulation using the proper density function could not be completed due to instability.

For the case 3 study using ME/I computations, the MMAC algorithm provides ad-
equate control even though the bank parameter estimate (and resulting bank location) is
not in close proximity to the true parameter (final parameter estimate (6.5,4.5)). Stable
control is possible in this situation due tothe fact that the bank estimation and movement
maintained control based on controllers which overestimated the natural frequencies of the
bending modes. The case 3 performance using the proper density function provides pa-
rameter estimation slightly worse than for the ME/I, however, the control of the structure
is not degraded due to the overestimation of the bending mode frequencies. The top half
of Tables 5.8 and 5.9 provides a summary of the MMAC performance for the three test
cases using ME/I computations. Comparing these results to the corresponding MMAL
simulation results shown in Tables 5.1 and 5.2 show that the position estimation errors arc

reduced by two orders of magnitude.
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Table 5.8. MMAC Parameter Space Discretization Position Estimation JErrors

Old Parameter Space Discretization

Simulation Node 1 Error(!) Node 2 Error()

(3 Mean 1o Mean lo
Case 1 0.0000 0.0014 0.0000 0.0009
Case 2 0.0000 0.0025 0.0000 0.0011
Case 3 0.0001 0.0014 0.0000 0.0009

New Parameter Space Discretization

Case 1 -.0002 0.0031 0.0001 0.0011
Case 2 -.0001 0.0024 0.0000 0.0009
Case 3 -.0001 0.0014 0.0000 0.0010

Note (1): Avérage values for ¢ > 5.0 seconds (inches)

Table 5.9. MMAC Parameter Space Discretization True Positions

Old Parameter Space Discretization

Simulation Node 1 True(!) Node 2 True(

A2 Mean lo Mean 1o
Case 1 0.0001 0.0012 -.0004 0.0014
Case 2 0.0019 0.0028 -.0003 0.0013
Case 3 -.0007 0.0016 -.0002 0.0011

New Parameter Space Discretization

Case 1 0.0007 0.0015 0.0002 0.0012
Case2 | 0.0009 0.0028 -.0001 0.0013
Case 3 -.0004 0.0013 -.0003 0.0011

Note (1): Average values for ¢ > 5.0 seconds (inches)
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Finally, an additional simulation was performed to investigate the performance of the
MMAC moving-bank algorithm when the bank is initially located beyond the boundary
of stable control as discussed in Section 5.3.3.2. From the results presented in Section
5.3.3.2, it was determined that a non-adaptive filter/controller at location (7,6) with the
true parameter at location (2,9) was beyond the bounds of stable controller algorithm
performance. However, when the bank is allowed to move from this location, very good
estimation error performance using ME/I computation results with very rapid acquisition
of the true parameter location. These results are characteristic of the performance obtained

for the case 2 study.

5.3.4 Optimal Control Vector Formulation Study. The goal of this study was to
determine if moving-bank modified MMAC, MAP vs. Bayesian, or modified single-fixed
gain control formulation could provide better control than the conventional moving-bank
MMAC method. The primary basis for comparison are the true positions, H;x,((,), since
this determines how effective the controller is in quelling the bending modes and pointing
of the structure. Estimation errors and control input magnitudes also provide a basis
for performance comparison. For each of the control options investigated, the estimator
uses parameter position estimate monitoring and a threshold of 0.01. All three test cases
described in Section 5.3.3.3 are investigated. In addition, both the ME/I and the proper

density function are considered.

5.3.4.1 Modified MMAC Analysis. Tor this study, a lower bound to be sur-
passed in order for control to be included in the modified MMAC computations was de-
termined t0 be Pymqec=0.10. Recall the lower probability bound, py,i,, was set to 0.05.
For the case 1 study using ME/I computations, no significant difference is obtained from
the standard MMAC method in the previous section. The structure positions for nodes
1 and 2 are quelled to zero in approximately the same time. The proper density function

provides similar stable control results.

Figures 5.66 through 5.71 show the performance for the case 2 study using ME/!
computations. The settling time of the true positions for nodes 1 and 2 in Figure 5.69

are improved when compared to the standard MMAC results, shown in Figure 5.63. The
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settling of the true position for nodes 1 and 2 is reduced from 2.0 scconds to less than
1.0 second. This indicates that the controllers with a substantial probability (versus any
nonzero probability; recall that lower bounding is used) provide appropriate control. This
more appropriate control also affects computation of the residuals and allows better pa-
rameter estimation for both ME/I and the proper density function computations. Figure
5.71 shows quicker good stiffness parameter estimation when compared to the conventional
parameter estimation performance shown in Figure 5.65. The case 2 study using the proper
density function provided a similar improvement from the standard MMAC using ME/]
(whereas the proper density computations for the standard MMAC for case 2 results in

instability).

The results for case 3 are not much different from those for the MMAC analysis;
stable control is obtained within 2.0 seconds. Using the proper density function, stable

control is-optained similar to that for the standard MMAC.

An additional simulation was performed to determine if the parameter estimation
(and thereiore structure control) could be further improved if the same probability thresh-
old, Pmmac, is used for computing &;. This investigation was performed for case 2 using
ME/I computations. The resulting parameter estimation performance is severely degraded.
The final parameter estimation is (1.6,1.4). The resulting structure control is degraded by
an increased settling time (approximately 3.6 seconds) and increased actuator outputs for

this implementation.

5.3.4.2 MAP vs Bayesian Analysis. This approach uses the moving-bank el-
emental filter/controller associated with highest computed conditional probability rather
than generating a probability-weighted average. For all three test cases, the performance of
the controller in quelling the truss positions is similar to that obtained for the correspond-
ing standard MMAC results. The use of the proper density function also provides siinilar

results (the case 2 study results in instability, as is the case for the standard MMAC).

5.3.4.3 Modified Single Fized-Gain Analysis. This method was described in

Section 1.1.3 and illustrated in Figure 1.7. Using ME/I computations, the control results
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for the three test cases are not significantly different from the standard MMAC method
(the structure node 1 and 2 positions are quelled to zero in about 2.0 seconds). Ilowever,
for the proper density computations, test case 1 and 2 both result in instability. These
results indicate that the method is extremely sensitive to-underestimation of the bending
mode frequencies. Case 3 results (where the controller overestimated the bending mode

frequencies) provide stable control, similar to the standard MMAC.

5.3.4.4 Optimal Control Vector Summary. The results indicated here show
that the moving-bank modified MMAC provides noticeable performance improvement over
the MMAC method and performance comparable to that of the artificiaily informed non-
adaptive benchmark. The use of ME/I computations provides slightly better performance
than use of the proper density function. In addition, instability problems resuit with the
proper density function implementation for case 2 in every study conducted (except for
the modified MMAC method). Therefore, the remainder of the controller simulations use
the ME/I method.

5.8.56 Control Parameter Space Discretization Study. Tor this study, the region of
the parameter space for high values of modal frequencies was “densely packed” in order tec
reduce the destabilizing affects of understimating the modal frequencies during the con-
troller synthesis. The boundaries for the mass and stiffness scaling factors remained the
same as before, while the space was discretized using a logarithmic scaling. The new pa-
rameter space, determined in an ad hoc fashion, is provided in Table 5.3. For this study,
the three test cases described in Section 5.3.3.3 were investigated using parameter position
estimate monitoring with a threshold of 0.01 and ME/I computations. The controller logic
implemented the conventional MMAC algorithm instead of the modified MMAC logic to
determine the impact of the new space without omitting any controllers in the bank. The
results for all three cases indicate no significant difference in controller performance when
compared to the moving-bank MMAC simulation performed for the original space dis-
cretization. These results are provided in the bottom half of of Tables 5.8 and 5.9. This is
understandable since there are two major differences between Sheldon’s work [23] and the

application investigated here. First, the discretized parameter space investigated by Shel-




don had only three coarsely discretized points. Underestimation of the natural frequency
modes for the structure with such a coarse space results in significantly inappropriate con-
trol. Second, the moving-bank algorithm quickly moves the controllers to the appropriate
region of parameter space (unlike a non-moving-bank MMAC with lower bounding on com-
puted pi’s, which ensures that some nonzero control contribution is generated on the basis
of very incorrect parameter assumptions), thereby reducing the magnitude of inappropri-
ate control. Based on these results, the remaining parameter variations investigations use

the original parameter space discretization.

5.3.6 Controller Varying Parameter Study. The goal of this study was to investi-
gate the performance of the moving-bank controller algorithms to two types of parameter
changes. The test cases investigated here are the same as those used previously for the
estimator studies in Section 5.2.6. In order to investigate the performance of the con-
troller algorithms to slowly varying paramters and jump parameters properly, benchmarks
for best-case performance must be established. The benchmarks for these simulations
are similar to the non-adaptive, artificially informed best-case single-controller study per-
formed in Section 5.3.3.1. However, for these benchmarks, the bank is allowed to move and
it is artificially informed of the true parameter change during the simulation. A bench-
mark for each parameter variation study must be performed in order to-analyze the results

correctly.

5.3.6.1 Slowly Varying Parameter Analysis. The first test case,.as described
previously in Section 5.2.6.1, represents a change toward higher natural frequencies of the
bending modes, whereas the second test case represents a change toward lower natural
frequencies. For each test case, the true parameter variation was a discrete change imple-
mented at t=>5.0 seconds into each 10-second Monte Carlo run. The move logic consisted
of parameter position estimation with ME/I calculations. The controller logic used modi-
fied MMAC with a threshold of 0.10. Results of the controller performance in controlling
the structure for case 1 indicate performance comparable to the benchmark. Tables 5.10
and 5.11 provide a summaxry of these results. Comparing the results to the MMAE slowly

varying parameter study, provided in Tables 5.4 and 5.5, the control is very good.
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Table 5.10. Modified MMAC Varying Parameter Position Estimation Errors

Simulation Node 1 Error(t) Node 2 Error(t)
J Mean lo Mean lo
Benchmarks
Bench 1 0.0002 0.0011 0.0000 0.0001
Bench 2 0.0000 0.0012 0.0000 0.0003

Iine-Bank Movement Simulations

Case 1 -.0001 0.0014 0.0000 0.0001

Case 2 0.0000 0.0014 0.0000 0.0010

Note (1): Average values for ¢ > 5.0 seconds (inches)

Table 5.11. Modified MMAC Varying Parameter True Positions

Simulation Node 1 True () Node 2 True (1)
J Mean lo Mean lo
Benchmarks
Bench 1 0.0001 0.0012 -.0002 0.0001
Bench 2 -.0001 0.0013 -.0003 0.0003

Fine-Bank Movement Simulations

Case 1 -.0001 0.0015 -.0004 0.0009
Case 2 0.0001 0.0015 -.0001 0.0012

{Note (1): Average values for ¢ > 5.0 seconds (inches)
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For the case 2 study, the bank performed as well, as demonstrated by the small 1 o

estimation errors and true position values provided in Tables 5.10 and 5.11.

5.8.6.2 Jump Parameter Analysis. In order to evaluate the controller perfor-
mance for jump parameters, as for the estimation studies of Section 5.2.6.2, two methods
were investigated for allowing the bank to adapt. The first method disables the expan-
sion/contraction capability to investigate the performance of the finely discretized bank to
move to the correct location. Figures 5.72 thrm'xgh 5.76 show the single-controller bench-
mark for jump parameter case 1. Figures 5.77j through 5.82 show the estimation ecrrors
and the controller performance for the fine-bank move for the case 1 jump using parameter
position estimate monitoring, the ME/I density, and modified MMAC. Tables 5.12 and
5.13-provide a summary of these results. The resulting truss control compares favorably to
the artificially informed benchmark. Comparing these results to the corresponding MMAE
studies for the jump parameter (provided in Tables 5.6 and 5.7 in Section 5.2.6.2), this
method provides very good control over the truss positions. The results for the case 2
study also indicate that the fine-bank movement provides very tight control over the truss

positions.

The second method for acquiring the parameter after a jump change allows expansion
and contraction of the bank. Using an expansion threshold of 0.5, the bank was allowed
to expand after 1.0 seconds into the run to -avoid erroneous expansion due to the large
initial control output from the-actuators. The first contraction threshold was set to 10.00.
The second contraction threshold was 5.00. As for the first method, parameter position
estimate monitoring, the ME/I density, and modified MMAC are implemented. The results
provide slightly worse control performance compared to the fine-bank move results. The
results for the case 2 jump also provide performance slightly worse than for the fine-bank
movement, as seen in Tables 5.12 and 5.13. Therefore, the results of this study indicate
estimation errors and controller performance are better for bank movement alone than

allowing expansion and contraction.
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Table 5.12. Modified MMAC Jump Parameter Position Estimation Errors

Simulation Node 1 Error() Node 2 Error?)
I Mean lo Mean lo
Benchmarks
Bench 1 0.0000 0.0019 0.0000 0.0001
Bench 2 0.0000 | 0.0012 0.0000 ‘0.0000

Fine-Bank Movement
Case 1 -.0001 0.0019 0.0000 0.0010
Case 2 0.0000 0.0014 0.0000 0.0011

Expansion/Contraction

Casel | 0.0000 | 0.0029 0.0001 | 0.0011

Case 2 7 0.0001 0.0017 0.0001 0.0012

Note (1): AQerage values for ¢t > 5.0 seconds (inches)

Table 5.13. Modified MMAC Jump Parameter True Positions

Simulation Node 1 True( Node 2 True()
N3 Mean lo Mean lo
Benchmarks 7 7
Bench1 | 0.0012 | 0.0022 | -0002 | o0.0012
Bench 2 0.0000 | 0.0008 | 0.0001 | 0.0007

Fine-Bank Movement
Case1 | 00007 | 0.0022 | -.0004 | o0.000
Case 2 -0001 | 0.0013 | 0.0000 | 0.0001

Expansion/Contraction

Casel | 0.0001 | 0.00238 | -o0001 | o0.0011
Case 2 0.0003 | 0.0016 | 0.0005 | 0.0004

Note-(1): Average values for ¢ > 5.0 seconds (inches)
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5.4 Summary

The results presented in this chapter covered the performance of the moving-bank
MMAE and MMAC algorithms. The modification studies, which became a substantial part
of this study, demonstrated significant improvement in the performance of the algorithms
and established baseline performance resu'*~ difficult to improve upon. The use of the
filter-computed residual covariance, Ay, was found to provide biased results in the py
computation and was therefore not used in conjunction with parameter position estimate
monitoring, which was determined to provide the best moving-bank estimation results.
After appropriate determination of the filter Q and R matrices and the LQG controller
state and control weighting matrices for the high bending-mode natural frequency region of
the space, a modified MMAC methodology provided results comparable to that obtained
from a non-adaptive artificially informed benchmark. The evaluation of a parameter space
discretization densely packed in the high natural frequency region provided results not
significantly different from the original discretization. Finally, the moving-bank algorithm
performance to slowly varyirg and jump parameters indicate that the best estimation
and control results were obtained by a fine-bank move without the use of expansion and
contraction logic. Chapter 6 provides a detailed discussion of these results and provides

recommendations for future research.
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Figure 5.55. Tuned Single Controller Estimation Errors (Mean * One Standard Devia-
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Figure 5.76.

Single-Controller Benchmark Control Inputs (Sample Mean) - True Param-
eter and Bank Initially at (5,5) with True Parameter Jump to (2,9). (a)
Node 1 (b) Node 2 and {c) Node 7 Actuators.
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Figure 5.80. Moving-Bank Modified MMAC Structure Positions (Mean = One Standard
Deviation) - True Parameter and Bank Initially at (5,5) with True Parameter
Jump to-(2,9). (a) Node 1 (b) Node 2 and (c) Node 7 Positions.
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VI. Conclusions and Recommendations

6.1 Introduction

The purpose of this research was to determine the full capabilities of moving-bank
adaptive estimation and control algorithms using a six-state filter model against a 24-state
filter model. The measure of performance was the estimation and control of a two-bay truss
at various physical locations on the structure. This chapter preserts conclusions based on

the results presented in Chapter 5 and recommendations for future research.

6.2 Conclusions

The modification studies, which became a substantial part of this study, refined the
implementation software and demonstrated significant improvement in the performance of
both the estimation and control algorithms. The modification results established a baseline
for performance significantly different from past research using the same filter/controller
and truth models. For the non-adaptive artificially informed single-filter studies, the esti-
mation errors no longer showed trends of increasing parameter uncertainty. For the non-
adaptive single-controller studies, the modified control input matrix allowed the output

from the actuator at the hub to relieve the load requirements on the truss actuators.

Proper tuning of the Kalman filters and the LQG controllers provided significant
performance improvement. For the estimator study, proper determination of the filter
noise statistics, dynamics noise strength Q and measurement noise covariance R, improved
performance by an order of magnitude for the truss velocities as well as for the rigid body
position. This performance was obtained without conservative tuning approaches, and
thus while successfully avoiding “masking” the differences between the multiple models.
For the LQG study, controllers based on higher natural frequencies for the bending modes
performed significantly better after the appropriate determination of the state, X, and
control, U, weighting matrices for the quadratic cost function. Investigation of a worst-
case non-adaptive benchmark for the controllers resulted in stability problems. Therefore,
for the non-adaptive single controller benchmark, a region of the parameter space was

determined about a nominal parameter value beyond which the control algorithms caused
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stability problems. Underestimating the true natural frequencies of the bending modes

was found to be critical in inducing instabilities.

The moving-bank logic study indicated that using the filter-computed residual co-
variance matrix, Ag, in the probability density computation required in calculating the
hypothesis conditional probabilities (px’s) resulted in poor performance of the bank. Poor
performance was also demonstrated when this matrix was incorporated into the residual
likelihood quotient for residual-monitoring move logic as well as for bank expansion. Us-
ing the best methodology investigated in this research, maximum entropy with identity
assumed covariance (ME/I) computations and parameter position estimate monitoring,
the moving-bank estimator compared poorly to non-adaptive artificially informed bench-
marks. The incorporation of the residual covariance in the probability density computa-
tion resulted in numerical precision problems for the moving-bank controller performance.
However, using ME/I computations and parameter position estimate monitoring and a
modified MMAC approach, the moving-bank controller provided performance ncarly as

good as a non-adaptive artificially informed benchmark.

The space discretization study, with densely discretized parameters in the high nal-
ural frequency region of the s; e, did not provide any improvement for the moving-bank
estimation or control simulations. These results are primarily due to the relatively fine
discretization of the parameter space and the ability of the moving-bank algorithms to

place the bank within adequate proximity of the true parameter.

For the case of varying parameters, the controller results show that the algorithms
provide control nearly comparable to an artificially informed benchinark. The results for
the jump parameter showed that the performance was better when the finely discretized
bank was only allowed to move rather than expand and contract for parameter acquisi-
tion. For the problem investigated here, with only 100 discretized values closely spaced,
the acquisition time with a fine-bank move was acceptable. (The additional computation
associated with the expansion and contraction logic was not warranted). However, for
applications where the number of discrete parameters is substantially more or the dis-
cretization is finer, the performance of the expansion and contraction algorithims may be

substantially better than those that do not allow alteration of bank size.
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The moving-bank MMAE/MMAC algorithms provide stabilizing control over the
two-bay truss structure investigated in this research. However, there remain several topics
of research that should be investigated to determine the full capabilities of the algorithms.

The next section outlines recommendations that should be performed in future research.

6.8 Recommendations

The scope of this and past research performed was sufficient to cover all areas of in-
terest for the present structure, filter/controller models, and truth models. Future rescarch
should be continued to address the full capabilities of the algorithms on a more ¢complex

space structure. The following recommendations are made for future rescarch:

1. Modify the current two-bay structure by adding at least a third bay, or adopt a model
representative of an entire flexible space structure. This would entail development
of an appropriate truth model using finite element analysis with possible addition of
sensors and actuators. Special attention should be paid to the development of the

measurement and control input matrices in physical coordinates.

2. Perform an analysis for determining the lowest order filter/controller capable of ade-
quately controlling the structure. Investigate performance of moving-bank MMAE/
MMAC algorithms in this new application, considering the same issues as explored

in this research. Continue with a physical interpretation of the structure positions

for determining the algorithm performance.




Appendix A. Rotating Two-Bay Truss Truth and Filter Medel Matrices

This appendix lists (1) the nominal mass, M, and stiffness matrices, K, (2) the 24-
state truth model matrices, (3) the reduced order six-state filter and controller design model
matrices, and (4) the implemented error vector formulation. The matrices developed lere
are_ for the nominal structure, i.e., no scaling of the mass and stiffness matrices. (Recall
that the two parameters are scalar multipliers on these matrices.) In addition, the truth

model matrices are associated with the truth model vector described by Iiquation (3.28).

Mass and Stiffness Matrices

The development of the truth model was provided in Sections 3.3.1 and 3.3.2. The
mass and stiffness matrices, which describe the system model, were obtained using finite
element analysis [28]. Finite elemeni analysis models a structure as consisting of a finite
number of nodes connected by elements. The finite element program produces mass and
stiffness matrices with dimension equal to the number of degrees of freedom (DOTF’s) as-
sociated with the model. Each row of the mass and stiffness matrices is associated with a
specific node and DOF. For the rotating two-bay truss in Figure 1.8, row 1 of each mass
and stiffness matrix is associated with the x-axis DOF of node 1. Each node has three
translational DOF’s, Only planar motion is being considered; therefore, the nodes are
modeled with ouly two DOF’s. For this research, node 7 is fixed. Therefore, all three
DOI’s associated with this mode are eliminated, thereby reducing the dimensionality of
the mass and stiffness matrices to 12 states. Accounting for both position and velocity
of each of the 12 states yields a 24-state truth model. These are the nominal mairices
from which parameter variations are considered for this research. Parameter variations are
obtained by scaling these nominal matrices. The 12 — by — 12 mass and stiffness matrices
for the specifications previously defined are provided on the following pages [8:99-105],

[11:205- 210}, [26:215-223).
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Mass Matriz

Row1l .118E+44
-.546E+3
Row 2 J196E+3
-.196E+3
Row 3 0.0
-.642E+3
Row 4 0.0
0.0
Row 5  -.642E+3
0.0
Row 6 0.0
0.0
Row 7 -.546E+3
401E4+4
Row 8 -.196E+43
-.669E+2
Row 9 0.0
-.732E43
Row 10 0.0
263543
Row 11 0.0
-.209E+44
Row 12 0.0
0.0

Note that the first eight elements of the mass matrix are essentially the values of the non-

structural mass because the non structural mass is large compared to the structire mass.

196E+-3
-.196E+3
.626E+3
-.707E4-2
0.0
0.0
-.555 643
0.0
0.0
0.0
0.0
-.555543
-.196E+3
-.669E+2
- 707642
7212E4-3
0.0
263543
0.0
-.9485+2
0.0
0.0
0.0
0.0.

0.0
0.0
0.0
0.0
J18E44
0.0
- 196543
0.0
-.546E+4-3
-.209E4-4
1961543
0.0
-.642E+43
- 732543
0.0
263543
0.0
861E+5
0.0
478145
0.0
0.0
0.0
0.0

0.0
0.0
-.555E4-3
0.0
-.1965+3
0.0

6261543
0.0

J196E4-3
0.0

- 707E+2
0.0
0.0

.263154-03

0.0
-.948E4-2
0.0

4AT8E4+5
0.0
139E+46
0.0
0.0
0.0
-111E+6

The units mass matrix elements used here are b - sec?/in.

-.642E+3
0.0
0.0
0.0

-.5465+3
0.0

J9615+43
0.0
A01E--4
- 732843
669542

-.2635+3

0.0

-.209L54-04

0.0

0.0
-.209E4-4

0.0

0.0

0.0
- 732543
861B5+5
-.2635E+43
- 478145

0.0
0.0
0.0
0.0
1961543
0.0
- 707542
0.0
669542
-.263154-3
211543
- 94871542
0.0
0.0
-.5555+43
0.0
0.0
0.0
0.0
- 1111546
- 2631543
- 4781545
-. 94842
0.139154-6



Stiffness Matriz

Row 1 .129E+1

.665E-5
Row 2 -.239E-5
239E-5
Row 3 0.0
.692E-5
Row 4 0.0
0.0
Row 5  .692E-5
0.0
Row 6 0.0
0.0
Row 7  .665E-5
JA29E+1
Row 8  .239E-5
815E-6
Row 9 0.0
891E-5
Row 10 0.0
-.321E-5
Row 11 0.0
226E-4
Row 12 0.0
0.0

-.239E-5
239E-5
J29E+1
862E-6
0.0
0.0
T761-6
0.0
0.0
0.0
0.0
T76E-6
239E-5
815E-6
.862E-6
J29E+41
0.0
-.321E-5
0.0
J115E-5
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
J29E+1
0.0
239E-5
0.0
.665L-5
2261-4
-.239E-5
0.0
.692E-5
.891L-5
0.0
-.321E-5
0.0
881KE-3
0.0
-.640E-4
0.0
0.0
0.0
0.0

0.0
0.0
T76E-6
0.0
.239E-5
0.0
J29E4+1
0.0
-.239E-5
0.0
.862L-6
0.0
0.0
-.321E-5
0.0
J15E-5
0.0
-.640E-4
0.0
.834E-3
0.0
0.0
0.0
155E-3

.69215-5
0.0
0.0
0.0

.665L-5
0.0

-.239-5
0.0
J29- L
891L-5
-.815E-6
321E-5
0.0

.2261-4
0.0
0.0

226154
0.0
0.0
0.0

891155

881E-3

321155

.640L-4

0.0
0.0
0.0
0.0
-.239E-5
0.0
S621:-6
0.0
-.81515-6
321E-5
J291541
J11515-5
0.0
0.0
T761-6
0.0
0.0
0.0
0.0
15515-3
32115-5
64015-4
J11515-5
8341-3

Note that both the mass and stiffness matrices are symmetric due to the way the finite

element analysis generated the data. The units of stiffness matrix elements used here are

lb/in.

Truth Model Matrices
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¥, Matriz

0
1.0

0

Row 1

Row 2

1.0

0

Row 3

0

Row 4

0

Row 5

0

Row 6

0

Row 7

0

Row 8

0

Row 9

0

0

Row 10

0

0

Row 11

1.0

0

0

Row 12

4
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Row 13 0.000E+0 0 0 0 0 0
0 0 0 0 0 0
0.000E+4-0 0 0 0 0 0
0 0 0 0 0 0
Row 14 0 -7.917E+1 0 0 0 0
0 0 0 0 0 0
0 -8.898E-2 0 0 0 0
0 0 0 0 0 0
Row 15 0 0 -5.084E+-2 0 0 0
0 0 0 0 0 0
0 0 -2.254E-1 0 0 0
0 0 0 0 0 0
Row 16 0 0 0 -8.728L+42 0 0
0 0 0 0 0 0
0 0 0 -2.954E-1 0 0
0 0 0 0 0 0
Row 17 0 0 0 0 -9.7041542 0
0 0 0 0 0 0
0 0 0 0 -3.115E-1 0
0 0 0 0 0 0
Row 18 0 0 0 0 0 -1.076154-3
0 0 0 0 0 0
0 ¢ 0 0 0 -3.280E-1
0 0 0 0 0 0




Row 19 0 0 0 0 0 0
-2.958E+3 0 0 0 0 0
0 0 0 0 0 0
-5.438E-1 0 0 0 0 0
Row 20 0 0 0 0 0 0
0 -3.382E+3 0 0 0 0
0 0 0 0 0 0
0 -5.815E-1 0 0 0 0
Row 21 0 0 0 0 0 0
0 0 -9.72054-5 0 0 0
0 0 0 0 0 0
0 0 -9.85954-0 0 0 0
Row 22 0 0 0 0 0 0
0 0 0 -8.134E+4-7 0 0
0 0 0 0 0 0
0 0 0 -9.018E+1 0 0
Row 23 0 0 0 0 0 0
0 0 0 0 -1.326E+8 0
0 0 0 0 0 0
0 0 0 0 -1.15155+2 0
Row 24 0 0 0 0 0 0
0 0 0 0 0 -3.9821+8
0 0 0 0 0 0
0 0 0 0 0 -1.995154-2
Note that frequency of the the rigid body mode, or the F', matrix elements corresponding
to that mode, is set to zero in the 24 — by — 24 matrix and therefore is unaffected by the
parameter variations [8:89].
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B, = G, Matriz

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
s 0 0
0 0 0
0 0 0
0 0 0
0 0 0

-4.762F8 -1 -2.747TE-1 1.0
25848 -1 -4.742FP -1
9.694E -2 1.578E -1

-4.848E -1 25190 -1

-8.862F -2 9.464F -2
22958 -1 4.591FE-1
2931E-2 2683 -2
4325 -2 3.949F -3

-4.322L -5 1.182L -1
43545 -8 4.148L -3
6.177TE -7 2348F -3

-4.2106 -9 -2.567F -4

o O O O © o o o o o o

The first column of the 24 — by — 3 B; matrix represent actuator inputs located at node 1
on the truss; the second column represents actuator inputs located at node 2 on the truss;
and the third column is due to the actuator located at node 7, i.e, the hub. The nonzero
portion of the first two columns follows the development of previous theses [11, 22, 26] and

was designed in physical coordinates as follows:



:Zl

01 0000O0CO0O0OO0OTU0OO

b=

0000O01O0O0OO0ODOO

and then transformed into modal coordinates. The nonzero entries correspond to physical

positions and velocities on the truss. The angular input actuator was then added by

augmenting a third column and entering a one in the row corresponding to the rigid body

angular velocity state.

H, Matriz

Row 1

Row 2

Row 3

Row 4

6.075E-1
-3.194E-2
0
0
3.440E-1
-2.914E-2
0
0
0
0
6.075E-1
-3.194-2
0
0
3.4408F-1
-2.9144-2

-3.287E-1
-5.658L-2
0
0

5.904F-1
-5.342E-3
0
0
0
0
-3.287E-1
-5.658E-2
0
0
5.9043E-1
-5.3428E-3

-1.231E-1
2.029L-7

0

0
-2.036E-1
-1.20412-4

0

0

0

0
-1.231E-1
2.029E-7

0

0
-2.0361L-1
-1.2048L-4

6.2761-1
2.435E-9
0
0
-3.257E-1
-3.734E-6
0
0
0
0
6.276-1
2.4355-9
0
0
-3.2572F-1
-3.7340L-6

1.147E-1
2.143-9

0

0
-1.156B-1
-2.003L-6

0

0

0

0
1.1471-1
2.143%-9

0

0
-1.1565E-1
-2.003355-6

-2.993E-1
-3.4758-10
0
0
-5.9295-1

1.69515-7

0

0

0

0

-2.993L-1

-3.4751-10

0

0
-5.92941-1
1.6959-7



Row5 1.000E4+0 O G 0 0 0 0 0 0 0 O O
0 0 0000 O0OO0OO0OOT OF@WOO

Row 6 0 0 00 00 O0OCO0OO0OO0OCO0OTO
1.000E+40 0 0 0 0 0 0 0 0O 0O O O

The first and second rows of the 6 — by — 24 H, matrix represent position measurements
from the sensors located at nodes 1 and 2. The third and fourth rows represent velocity
measurements from the sensors located at nodes 1 and 2. The fifth and sixth rows represent
angular position and velocity measurements at the hub, node 7. The development of the
non-zero portions of rows one and two (as well as the non-zero portions of rows three and
four) of the matrix follows the development of previous theses [11, 22, 26] and is calculated

in physical coordinates as follows:

01000O0OO0OOCOOOTDO
00COO0OT1TO0O0OUOOOOO

Hp = Hy =

and then transiormed into modal coordinates. The dimension of the matrix partition is
2 — by — 12 due to the fact that the truth model state vector is partitioned into 12 modal
positions followed by 12 modal velocities. The partitions are arranged according to the form
shown in Equation (3.18). Angular position and velocity measurements were then added
by augmenting with rows five and six and entering a one in the columns corresponding to
the rigid body angular position and velocity states. Note that the 2 — by — 12 partitions
in rows one and two are identical to the partitions in rows three and four because of the
co-location of the position and velocity sensors. Note that the form of the H, provided here
is different from that provided in the general development of Equation (3.18) due to the

way in which the rigid body angular position and velocity measurements are incorporated.




Reduced Order Matrices

The reduced order matrices for the design of the Kalman filter and LQG controller

are now provided. The matrices are developed by retaining the first three modes in the

Fy, By, and H; matrices in Equations (3.26) and (3.27). These matrices are associated

with the filter model state vector given in Equation (3.29).

The 6 — by — 6 F° s matrix is developed similar to the F;, matrix, but only the first three

modes are retained:

0 0
0 0
. 0 0
F;=
0.0 0
0 -7918F -1
i 0 0

c O o o

0
~5.084L + 2

1.0 0
0 1.0
0 ]
0.0 0
0 -8.898L -2
0 0

0

=2.25410 ~ 1 |

The 6-by—3 B ;= G s matrix is developed similar to that for the B, matrix:

s}
[y

o

0

0

0
-4.762L - 1
2.584F - 1
9.694F — 2

0 0

0 0

0 0
-2.747L -1 1.0

-4.742E-1 0

1.578E -1 0

The 6 — by — 6 H; matrix is developed similar to that for the H; matrix:




6.075E~1 —3.287E—-1 —1.231F—1 0 0 0 1
3440E—1 5904E—1 —2.031E—1 0 0 0
1, = 0 0 0 6.075E—1 -3.287E -1 -1.231E -1
0 0 0 3440E—-1 5.904F—1 ~—2.036E —1
1.0 0 0 0 0 0
i 0 0 0 1.0 0 0 |

Previous theses have shown, that for the reduced order model investigated [8:55-56],

[11:65-66], [26:59-60], D of Equation (3.27) is given by:

I:Iszxg 02)(9 2
_ R i [~wil2Cwaloxs  [~wilone Oox3
= - 2%9 2v2 I
xe Ioxo Oox9 b2ows | . 3
Osgo O2x0 s 18x18 18%
_ | Haol-wf] by (A1)
0
4x3 6x3

where the unmodeled position states for nodes 1 and 2 are represented by ITIQ,, and the
unmodelled velocity states for nodes 1 and 2 are represented by Hy,. The by matrix
contains the unmodelled portion of the control input matrix. These matrix partitions were
derived from matrix development provided previously in this appendix as well as Equations
(3.19) and (3.20) in Section 3.4.1. The resulting m — by — » D matrix (which is 6 — by — 3

in this research) is given as:

| _4939E—~4 6423E—5 0.0 |
6461E—5 —3.586E—4 0.0
0 0

(w]]
]

o o o o

0 0
0 0
0 0
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Appendix B. Dynamics Noise Strength and Measurement Noise Covariance

Matrices

The purpose of this appendix is to provide the truth model and filter model dynamics
noise strength and measurement noise covariance values used for the simulations. These
matrices were initial described in Section 4.4.2. In addition, this appendix describes in
more detail how the truth model dynamics noise strength is incorporated into the truth

model propagation simulation.
Dynamics Noise Strength Matrices

This section expands on two ideas related to determination and implementation of
dynamics niose strength matrices. First, iterations to find appropriate values actually
changed Q; and Qy and then discrete versions were computed. The values used for dupli-

cation and those finally determined are provided below.

Duplication Simulations. The value of Q; used in the duplication and modification simu-

lations is as follows:
0.05 0.00 0.00

Q:=| 0.00 0.05 0.00
0.00 0.00 0.05

The units of Q are in%/sec (rad?/sec) for position states and in®/sec® (rad?/sec®) for

velocity states.

The value for Qgqq, as described in Section 5.2.3, used in the duplication and modification

simulations is as follows:
7.95 0.00 0.00

Qedd = | 0.00 7.95 0.00
0.00 0.00 4.95

The value for Qy used in the duplication and modification simulations is as follows:

8.00 0.00 0.00
Qs = 0.00 8.00 0.00
0.00 0.00 5.00
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Dynamics Noise Strength Tuned Values. The tuned value of Q; found in this research,

described in Section 5.2.3, is as follows:

0.05 0.00 0.00
Q:=| 0.00 0.05 0.00
0.00 0.00 0.05

The tuned value for Quqq found in this research is as follows:

79.95 00.00 00.00
Qedd = | 00.00 79.95 00.00
00.00 00.00 49.95

The tuned value for Q found in this research is as follows:

80.00 00.00 00.00
Qs = 00.00 80.00 00.00
00.00 00.00 50.00

The value for Qy is found by adding Qg4q to the Q; matrix in each case. The values for

Q; are those used by Lashlee in his research [11].

Second, implementing the truth model propagation noise is sliglitly different from
that provided in Equation (2.15). For this research, a first order approximation is made
to the Qg, computation provided in Equation (2.15) due to the fact that wg,(¢;) will be
transformed by the G4, matrix (as shown in Equation (2.10), which is not the identity

matrix). In this case, a first order approximation is given as follows:
Qs ~ GQGTA¢ (B.1)

Using a first order approximation of Gy = GA1, the covariance of the quantity G w,({,)

becomes:

E{Gqw,(t:)wa(t:)T GE} ~ GALE{wy(t)wy(t:) }GT At (13.2)

K
o




In order for Equation (B.2) to equal (B.1) (to first order), the following must be true:

E{wy(t)wa(t:)T} = % (B.3)

Therefore, implementing this in the simulation requires the noise transformation matrix, A,
given in Equation (4.9) to be calculated as A = / %%, where in this research At = 0.05sec.
Measurement Noise Covariance Matrices

Duplication Simulations. Implementing the measurement noise is straightforward as de-
scribed in Equation (4.9). The value of R; used in the duplication and modification

simulations is as follows:

[ 2.7E - 06 0 0 0

0 0
0  27E-07 0 0 0 0
0 0  25E-04 0 0 0
R, =
0 0 0  42668E-04 0 0
0 0 0 0 12.0 0
o 0 0 0 0 855505 |

2

Units of R are in? - sec (rad? - sec) for position measurements and n?/sec (rad?/sec) for

velocity measurements [11:94].

The value of Rygq used in the duplication and modification simulations is as follows:

—6.24F — 08 0 0 0 0 o |
0 1.048E— 06 0 0 0 0
0 0 4.45 0 0 0
Radd =
0 0 0 34E-01 0 0
0 0 0 0 00 0
_ 0 0 0 0 0 9.77E-15 |




The value of Ry used in the duplication and modification simulations is as follows:

0

(=R e I o N o

[ 9.6376 -- 06

0
1.318E - 06
0

0
0
0

0

0
4.4502

0

0

0

0
0
0

3.3957F — 01

0
0

1

0
0
0
0
2.0
0

8.55L7 - 05

o O O o

0

Note: The 4-4 entry used for Rqqq resulted in a Ry matrix which is not positive definite.

Measurement Noise Tuned Values. The tuned value of R; used in this research, as described

in Section 5.2.3, is as follows:

R,

Note that the 5-5 entry is the only difference between the R; matrix used in this research

and the R; matrix used in previous research. This difference is discussed in Section 5.2.3.

[ 2.7E - 06

0
0
0
0
0

The value of R,yq used in this research is as follows:

Radg =

1.5944F — 08
1.0295E — 06
7.1842E — 07
8.6427E — 09
5.3644E — 09

[ 1.1325E — 08  1.5944E — 08

4.3735E — 08
5.6043F — 07
4.2306L - 07
3.6657F — 08
5.5507E — 09

1.0296E — 06
5.6047E — 07
1.9865E — 05
1.6783E — 06
1.6763L — 06
2.1497F - 07

7.1844E - 07
4.2312F - 07
1.6783F — 06
1.8856E — 05
1.2183F -~ 06
1.1496 5 — 07

0 0 0 0
2.7E - 07 0 0 0
0 2.5F - 04 0 0
0 0 4.2668F — 04 0
0 0 0 4.8875F - 07
0 0 0 0

8.64275 - 09
3.6657F — 08
1.6763 £ — 06
1.2182F - 06
0.0000L + 00
0.0000 -+ 00

o o O O

0
8.5512 — 05 |

5.3644F ~ 09
5.5507 — 09
3.1497F ~ 07
11496 E — 07
0.0000£ + 00 |
0.0000£ +00




The value of Ry used in this research is as follows:

[ 2.7113E — 06
1.5944E — 08
1.0295E — 06
7.1842E — 07
8.6427F — 09

| 5.3644E — 09

1.5944F ~ 08
3.1373F — 07
5.6043E - 07
4.2306E — 07
3.6657E — 08
5.5507E — 09

1.0296 E — 06
5.6047F — 07
2.6986E — 04
1.6783F - 06
1.6763E — 06
2.1497F - 07

7.1844E ~ 07
4.2312F — 07
1.6783F — 06
4.4553F — 04
1.2183F — 06
1.1496 £ — 07

8.6427E — 09
3.6657F — 08
1.6763 L5 ~ 06
1.2182F - 06
4.88755 — 07
0.0000E + 00

The value for Ry is found by adding R,4q to the Ry matrix in each case

is a symmetric, positive definite matrix.

5.3644 15 - 09
5.5507L ~ 09
214975 - 07
1.1496 /7 - 07
0.0000L 4 00
8.5500.8 — 05

. The Ry matrix




Appendix C. LQG State and Control Weighting Matrices

The purpose of this appendix is to provide the state weighting, X , and control
weighting, U, matrices used in the duplication of past research and those matrices found
in the controller tuning study described in Section 5.3.3. These matrices were initially

described in Section 1.1.3.
State Weighting Matrices

Duplication Simulations. The values of X used in the duplication and modification simu-

lations are as follows:

[ 7.62E +5 0.00 0.00 0.00 0.00 0.00 ]
0.00 7918+ 3 0.00 0.7 0.00 0.00
X = 0.00 0.00 5.08F + 2 0.00 0.00 0.00
0.00 0.00 0.00 8.20F + 01 0.00 0.00
0.00 0.00 0.00 0.00 1.00E + 0 0.00
| 0.00 0.00 0.00 0.00 0.00 LO0E 40 |

This matrix corresponds to the parameter point (7,6) and represents the nominal case for

tuning (i.e., a scale factor of 1.0).

State Weighting Matriz Tuned Values. The appropriate values for the state weighting
matrices in this research were obtained by selecting a few parameter points in the high
natural frequency region of the parameter space and determining an appropriate scaling
factor for the state weighting matrix provided above. The remaining state weighting matrix
scaling factors were interpolated from those determined by simulations. ‘Che parameter
locations used for state weighting matrix tuning and the associated scaling factors are
provided as follows: parameter (1,6): scale 34.5; parameter (1,1C,: scale 70.0; parameter

(5,6): scale 8.5; parameter (5,9): scale 26.0; and parameter (7,9): scale 1.4.

C-1




Control Weighting Matrices

Duplication Simulations. The values of U used in the duplication and modification simu-

lations are as follows:
3.0 0.0 0.0

U=1{0.0 30 0.0
0.0 0.0 9.0

This matrix corresponds to the parameter point (7,6) and represents the nominal case for

tuning (i.e., a scale factor of 1.0).

Control Weighting Matriz Tuned Values. The methodology for determining the appro-
priate control weighting matrices is the same as for the state weighting matrices. The
appropriate values were obtained by selecting a few parameter points in the high natural
frequency region of the parameter space and determining an appropriate scaling factor
for the control weighting matrix provided above. The remaining control weighting matrix
scaling factors were interpolated from those determined by simulations. The parameter
points used for control weighting matrix tuning ave the same as those for the state weight-
ing matrix determination. The parameter locations and the associated scaling factors are
as follows: parameter (1,6): scale 5.0; parameter (1,10): scale 10.0; parameter (5,6): scale

1.2; parameter (5,9): scale 3.7; and parameter (7,9): scale 2.0.

C-2




10.

11.

12.

13.

Bibliography

. Baram, Y., and Sandell, N. R., Jr. “An Information Theoretic Approach to Dynamic

System Modeling and Identification,” IEEE Transactions on Automatic Control, AC-
23 (1): 61-66 (1978).

. Brogan, William L. Modern Control Theory. Englewood Clifts, New Jersey: Prentice-

Hall, Inc., 1985.

. Filios, Capt Paul G. Moving-Bank Multiple Model Adaptive Algorithms Applied to

Spacecraft Control. MS Thesis AFIT/GE/ENG/85D-14. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB, Ohio, December 1985
(AD-A164 016).

. FORTRAN Subroutines for Mathematical Applications Software. Houston: IMSL

Inc., Houston, Texas (1989).

. GNUPLOT USER’S MANUAL. “An Interactive Plotting Program.” Williams,

Thomas, and Colin Kelley.

. Hawkes, Robert M., and John B. Moore. “Performance Bounds for Adaptive Estima-

tion,” Proceedings of IEEE, 64: 1143-1150 (August 1976).

. Hentz, 1Lt Karl P. Feasibility Analysis of Moving Bank Multiple Model Adaptive

Estimation and Control Algorithms. MS Thesis AFIT/GE/ENG/84D-32. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, Ohic,
December 1984 (AD-A152 015).

. Karnick, 2Lt Drew A. Moving Bank Multiple Model Adaptive Estimation Applied to

Flexible Spacestructure Control. MS Thesis AFIT/GE/ENG/86D-41. School of Engi-
ueering, Air Force Institute of Technology (AU), Wright-Patterson AFB, Ohio, De-
cember 1986 (AD-A178 870).

. Karnick, Drew A., and Peter S. Maybeck. “Moving Bank Multiple Model Adaptive

Estimation Applied to Flexible Spacestructure Control.” Proceedings of the 26th IEEL
Conference on Decision and Control: 1249-1257. Los Angeles, California (December
1987).

Kokotovic, P.V., 0’Malley, R.E. Jr., and Sannuti, P. “Singular Pertubations and Order
Reduction in Control Theory — An Overview,” Automatica, 12: 123-132 (1976).

Lashlee, Capt Robert W. Moving Bank Multiple Model Adaptive Estimation Applied
to Flezible Spacestructure Control. MS Thesis AFIT/GE/ENG/87D-36. School-of En-
gineering, Air Force Institute of Technology (AU), Wright-Patterson AF'B, Ohio, De-
cember 1987.

Lashlee, Robert W., and Peter S. Maybeck. “Spacestructure Control Using Moving
Bank Multiple Model Adaptive Estimation,” Proceedings of the 27th IEI’E Conference
on Decision and Control: 712-717. Austin, ‘Texas (December 1988).

LQGLIB USER’S MANUAL. “A Description of Computer Routines for Use in Linear
Systems Studies.” Air Force Institute of Technology (May 1984).

BIB-1




14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Lynch, P.J., and Siva S. Banda. “Active Control for Vibration Damping,” Damping:
1986 Proceedings, Technical Report. Flight Dynamics Laboratory, Air Force Wright
Aeronautical Laboratory, Wright-Patterson AFB, Ohio, 1986 (AFWAL-TR-86-3509).

Maybeck, Peter S. Stochastic Models, Estimation, and Control, Volume 1. New York:
Academic Press, 1979.

————— . Stochastic Models, Estimation, and Control, Volume 2. New York: Academic
Press, 1982.

————— . Stochastic Models, Estimation, and Control, Volume 3. New York: Academic
Press, 1982.

----- . “Moving-Bank Multiple Model Adaptive Estimation and Control Algorithms:
An Evaluation,” Control and Dynamic Systems: Advances in Aerospace System Dy-
namics and Control Systems, Edited by C. T. Leondes, 81: 1-31. Academic Press, San
Diego CA. (1989).

Maybeck, Peter S., and Capt Karl P. Hentz. “Investigation of Moving- Bank Multiple
Model Adaptive Algorithms,” Proceedings of the 24th Conference on Decision and
Control: 1874-1881. Ft. Lauderdale, FLorida (December 1985).

Maybeck, Peter S., and Michael Roger Schore. “Robustness of A Moving-Bank Multi-
ple Model Adaptive Algorithm For-Control of a Flexible Spacestructure”™. Proceedings
of the IEEE National Aerospace and Electronics Conference: 368-374. Dayton, Ohio
(May 1990).

Maybeck, Peter S., and Richard D. Stevens. “Reconfigurable Flight Control Via Mul-
tiple Model Adaptive Control Methods,” Proceedings of IEELE Conference on Decision
and Control. Honolulu, Hawaii (December 1990).

Schore, Capt Michael Roger. Robustness of a Moving-Bank Multiple Model Adaptive
Controller for a Large Space Structure. MS Thesis AFIT/GE/ENG /89D-46. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFD, Ohio,
December 1989.

Sheldon, Stuart N. An Optimizing Design Strategy for Multiple Model Adaptive Lsti-
mation and Control. PhD dissertation. School of Engineering, Air I'orce Institute of
Technology (AU), Wright-Patterson AFB, Ohio, December 1989.

Sheldon, Stuart N., and Peter S. Maybeck. “An Optimizing Design Strategy for Mul-
tiple Model Adaptive Estimation and Control.” Proceedings of IEEE Conference on
Decision and Control. Honolulu, Hawaii (December 1990).

Stevens, Richard D. Characterization of a Reconfigurable Multiple Model Controller
Using @ STOL F-15 Model. MS Thesis AFIT/GE/ENG/89D-52. School of Engineer-
ing, Air Force Institute of Technology (AU), Wright-Patterson AI'3, Ohio, December
1989 (AD-B139 226).

Van Der Werken, Capt Daniel F., Jr. A Robustness Analysis of Moving-Bank Multiple
Model Adaptive Estimation and Control of a Large . lexible Space Structure. MS Thesis
AFIT/GE/ENG/88D-59. School of Engineering, Air Iorce Institute of Technology
(AU), Wright-Patterson AFB, Ohio, December 1988.

BIB-2




27.

28.

Venkayya, Vipperla B., and Victoria A. Tischler. “Frequency Control and Its Effect
on the Dynamic Response of Ilexible Structures,” AJIAA Journal, 23 1768-1774
(November 1985).

Venkayya, Vipperla B. ‘Analyze’ - Analysis of Aerospace Structures with Membrane
FElements. Technical Report. Analysis and Optimization Branch, Structural Mechan-
ics Division, Air Force Flight Dynamics Laboratory, Air Force Wright Aeronautical
Laboratories, Wright-Patterson AFB, Ohio, December 1978 (AFFDL-TR-78-170).

BIB-3




-~ Form Approved
N <
REF’ORT DUCUWIENT FLY !UN PAGE OMB No. 0704-0188

Se e Wen b they 0ot b LT o L Limagea TR T RO ITIEUSe, N tuding the Tme 05 £0 0 NG IAsteyCtiony, »6@(thﬁ9’3"§l‘r{q dot?wurc's,
#ubh, nncy‘:‘.‘J Lt’is:“f,“‘lv"( ‘\:\’w Y s,‘,l,q',\]' ,‘.\3 ‘_Cy‘wt«m\nq ma ;: " .:f,; N \n-{ CHLALOR UE HITEMBCT N R0 CUmimUnts fegaiding this burden ostim ste ur Ar:/ uthr g usx;u‘\(':)f this
: ‘A‘!?:‘I ;f ; m‘ nraln :n Cadibe g gyt sl O E00 R LS DWde 0 L aashin iy s a0Qantens eiviees, Uectos it Tor intormation L,pw“!.u(tons and ».{npcatsé 1245 offerson
o ».:z«;;;h-,‘. el 4 ks o, SR 297304304 d 0ot O o Tlanags ment 10 Rudqget, P geraor Reduction Projuct 10703-0188), 1 sshington, 0C 20503
1. AGENCY USE ONLY (Leave plank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December :‘ll ter” .
1990 . he FUNDING HUMBERS

4, TITLE AND SUBTITLE 5. FU S

Moving-Bank Multiple Model Adaptive Estimation and Control Appliedtoa
Flexible Space Structure

6. AUTHOR(S)

Robert B. Moyle
Captain, USAF

| ) AR £S5(E 8. PERFORMING ORGANIZATION
7. PERFORMING. ORGANIZATION NAME(S) AHND ADDRESS(ES) PERFORMING OF

Air Force Institute of Technology
WPAFB OH 45433-6583 AFIT/GE/ENG/90D-45

: s ¢ £) AN RESS(ES 10. SPONSQRING / MONITORING
9. SPONSORING, MOMITORIMG AGENCY NAME(L) AND ADDRESS{ES) AOINCY NEPORT MUMBER

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for Public Release; Distribution Unlimited.

13. ABSTRACT (Maximum 200 words)

The performance of moving-bank multiple model adaptive estimation (MMAE) and control (MMAC) algorithms is
analyzed in this thesis. The performance of a six-state filter/controllermodel is evaluated on the basis of estimation/control
performance against a 24-state truth model. A model developed using finite element analysis is used to approximate a large
flexible space structure, The space structure is configured as a two-bay truss which is attached to a large central hub. Results
indicate that appropriate determination of the filter model noise statistics as well as the LQG controller weighting matrices
significantly improve performance of the bank throughout the parameter space. The performance of the moving-bank
algorithms is seriously degraded by the inclusion of the filter-computed residual covariance in the conditional probability
density function for computation of the hypothesis conditional probabilities within the multiple model algorithms. The
performance of the moving-bank MMAE/MMAC algorithms using parameter position estimate monitoring for parat.;eter
identification, and using a modified MMAC methodology for implementing control, provide performance comparable to

an artificially informed controller benchmark for the cases of slowly varying and jump parameters, as well as for constant
parameter values.

14, SUBJECT TERMS 15. NUMBER OF PAGES
, . " . . 4

Mult.xple Model Adaptive Estimation, Multiple Model Adaptive Control, LQG Contivl, ) 3%12:5 CODE

Flexible Space Structure
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION 1} 20. LIVITATION OF ABSTRACT

OF REFORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7580-01-280-5500 Standard Form 298 {(Rev 2-89)

Pregenbed by &NSEStY 2308
298102




