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Preface

The purpose of this thesis was to determine the optimal performance of the moving-

bank multiple model adaptive estimation and control algorithms with a reduced order filter

against a higher order truth model. The moving-bank mulitple model adaptive estimation

and control algorithm is an attempt to reduce the computational loading that would be re-

quired for full-scale implementation of the multiple-model adaptive estimator or controller.

The results of this thesis showed that the performance of the reduced-order model moving-

bank algorithms could be substantially improved over ,revious research results with the

appropriate determination of filter model noise statistics and LQG controller weighting

parameters. The determination of the optimal moving-bank lo'c nd controller logic also

demonstrated performance comparable to that of a non-adaptive ',enchmark. This thesis

also demonstrated the need for adaptive estimation/control in the case of parameter/filter

location mismatch and also for the case of varying parameters for the two-bay truss struc-

ture.

I would like to extend my sincere gratitude to Dr. Peter Maybeck for his time,

guidance, and encouragement, without which I would not have been able to complete this

research. I would like to share the accomplishment of this research with my wife, Laureli.

Her love and support, while not apparent in the text of this document, was greatly needed

and was sincerely appreciated throughout the duration of this endeavor.

Robert Brent Moyle
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". Abstract

The performance of moving-bank multiple model adaptive estimation (MMAB) and

corftrol: (MMA¢) algorithms f6f large space structure control is analyzed in this thesis.

The performance of a. six-state filter moaei and associated controller are evaluated on the

basis of estimation/control performance against a 24-state truth model.

A model developed using finite element analysis is used to approximate a large flexible

space structure. The space structure is' configured as a two-bay truss which is attached

to a large central hub, where the mass of the hub is considered to be much larger than

the mass of the flexible structure. The' model is developed in physical coordinates and

then transformed into modal coordinates, where the method of singular perturbationis is

used to obtain a reduced order filter model. The actual positions and velocities of various

physical points on the structure are used in the evaluation of the moving-bank algorithm

performance.

Results of the research indicate that appropriate determination of the filter model

noise statistics as well as the LQG controller weighting matrices significantly improve

performance of the bank throughout the parameter space. The results indicate that the

performance of the moving-bank algorithms is seriously degraded by the inclusion of the

filter-computed residual covariance in the conditional probability density function for coin-

putation of the hypothesis conditional-probabilities within the multiple model algorithms.

The performance of the moving-bank MMAE/MMAC algorithms using parameter position

estimate monitoring for parameter identification, and using a modified MMAC methodol-

ogy for implementing control, provide performance comparable to an artificially informed

non-adaptive controller benchmark. The moving-bank algorithms provide performance

comparable to a benchmark controller' for the cases of slowly varying and jump parame-

ters, as well as for constant parameter values.

xiv



MOVING-BANK MULTIPLE MODEL

ADAPTIVE ESTIMATION AND CONTROL

APPLIED TO

A LARGE FLEXIBLE SPACE STRUCTURE

. Introduction

In many estimation and control applications, problems arise when the parameters

which describe the system model are not known with absolute certainty. The uncertainty

in these parameters reduces the degree to which the system model is valid and degrades

the accuracy of the algorithms based on that model. The values of these parameters may

not remain constant. In fact, quite iften these parameters will vary slowly over time

(such as due to fuel depletion), or cliange ibruptly (such as due to a structural failure).

One method to provide real-time identification of the parameter values required in these

situations entails the construction of a bank of Kalman filters; one filter is designed for

each possible parameter value. These filters are run in parallel, and their outputs are

combined through an appropriate weighting logic. This technique is referred to as Multiple

Model Adaptive Estimation (MMAE). This method not only provides estimates of the

uncertain parameters, but more importantly, it provides estimates of the system states as

well. The system state estimates provided from the MMAE approach are formulated as

the probabilistically weighted sum of the elemental filter state estimates.

The basic problem with the full-bank MMAE technique described above is that the

number of Kalman filters required to be processed in real time creates an unbearable

computer load. This thesis uses the concept of a "moving-bank" MMAE to alleviate the

computer burden. This method maintains a subset of the full-bank elemental Kalm an filters

in a small window in parameter space and dynamically redeclares the filters contail'ed in

this window such that the current parameter estimate is continuously surrounded. The

states estimated by the moving bank are then provided as inputs to a controller of some

form. Several controller designs are appropriate for implementation with the moving-bank

1-1



estimator. The control methods examined in this thesis will utilize the "assumed certainty

equivalence design" technique, which consists of developing an estimator cascaded with a

deterministic full-state feedback optimal controller [17:17]. The controllers so designed will

be based on a Linear system with a Quadratic cost .ontrol criterion driven by Gaussian

noises, or LQG, control synthesis.

In addition to maintaining fewer of the parallel Kalman filters on line, computational

loading can be further mitigated by reducing the number of system states upon which the

elemental Kalman filters and/or controllers within the moving-bank algorithm arc based.

However, when a reduced order model is used for the basis of synthesizing a filter and/or

controller, the robustness of the adaptation process to the unmodelled effects is a prime

consideration.

This thesis will use the moving-bank estimator and LQG control synthesis described

above to control a large, flexible, space structure. A Monte Carlo study will be performed

to evaluate the performance of a moving-bank algorithm based on steady-state, constant-

gain Kalman filters and controllers. In this thesis effort, the control objective is to quell any

oscillations in the structure and to "point" the structure in a commanded direction. Struc-

tural vibrations can be the result of external disturbances or from commanded maneuvers

like slewing.

1.1 Background

The development discussed in this section will provide a brief overview of the follow-

ing four areas:(1) multiple model adaptive estimation - MMAE, (2) moving-bank MMAIE,

(3) moving-bank MMAE-based controller, and (4) the system model. The discussions con-

tained in the following sections are not intended to be complete. Rather, the information

provided here is intended to allow understanding of the problem statement and approach

at the end of this chapter. Chapter 2 discusses the development of the first three algo-

rithms in more detail, whereas Chapter 3 discusses system model development in more

detail. The notation used in this thesis is intended to be consistent with the convention

found in [15] such that a stochastic pro .'ss is denoted by x while a deterministic process

is denoted by x.
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1.1.1 Multiple Model Adaptive Estimation - MMAE. In most control applications,

the normal approach for optimal control system stability and robustness is the use of full-

state feedback. However, this requires perfect access to all states, which is rarely attainable

due to the fact that the states may not be directly measurable. In addition, the states

that are measurable may be influenced by uncertain parameters. In either case, a method

must be implemented to provide the best possible state estimates to the controller.

The approach that MMAE uses to provide state estimates for system control is

to design a Kalman filter for each possible parameter value ak, for k = 1,..., K. The

MMAE approach results in a bank of K Kalman filters, where K is the number of possible

parameter values. To enhance the feasibility of the MMAE technique, it is assumed that

the uncertain parameters can realize only discrete values; either this is physically realistic

or discrete values are chosen from the continuous parameter variation range. (Proper

discretization of the parameter space is then an important issue, as vill be discussed

later.) This is necessary in order to reduce the resulting number of possible parameter

combinations. For example, if the system of interest had two uncertain parameters that

could each realize two discrete values, the resulting parameter space would be comprised

of four discrete points. On a larger scale, if the parameters could realize 100 values each,

the parameter space would be composed of 10,000 discrete points. Conceptually, a system

model would be associated for each of the 10,000 points in the parameter, each requiring

a. Kalman filter. This would create an unbearable computational load for any real-time

control system. Following the development of previous research, this investigation will

use two- parameters, where each parameter is allowed to realize ten discrete values. This

results-in a parameter space consisting of 100 points with which to approximate the actual

continuous parameter space, and the MMAE based on all 100 points will be referred to as

the "full-bank" estimator.

Each Kalman filter in the bank helps to produce a hypothesis conditional probability

that its assumed parameter is "correct". These conditional probabilities are based on the

characteristics of the residuals of the Kalman filters and are used as a. weighting factor

for the state estimate produced by each Kalman filter. The Kalman filter based upon

the "true" parameter should have residuals consistently smaller (relativ, to the filter's
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own computed residual covariance) than the residuals of the other mismatched filters.

Accordingly, the conditional probability associated with the "correct" filter model will

increase, causing the others to decrease [16:133]. The probability for each Kalman filter is

a function of the conditional probability densities related by

.Pk('t) fz(t;)aZ(tj,.)(zi I ak, Z(1.)P1(4.1)
Z-j=i fz(ti~ja,Z~ti_,)(zi I aj, Zji-Qpj(tj-i)

The first numerator term represents the probability density of the current measurement

based on the assumed ak parameter and the previous measurement history through time

ti- 1 [16:131]. The second numerator term is the previous pkj value. Equation (1.1), there-

fore, represents an iterative relation. The probability density function is formed by:

_,)(z Iak, Zi- 1) = (2.r) 1 exp
(2r1-1IAk(ti) 15

{.} = {-2rT(ti)A-'(t;)rk(tj)} (1.2)

where rk(4) is the filter residual [z(ti) - Hk(ti):k(tT)] in the kth filter, expressed in terms

of the measurement matrix Hk(ti) and the state estimate before the ith estimate is incor-

porated, _k(ti). The quantity Ak(ti) is a function of Hk(ti), the state estimation error

covariance matrix before measurement update Pk(t7), and the noise covariance matrix

Rkti), namely Ak(ti) = [Hk(ti)Pk(tT)HT(ti) + Rk(ti)]. It will be shown in Chapter 2

that the complete evaluation of Equation (1.2) is available from each separate Kalman

filter.

The denominator of Equation (1.1) is the sum of all numerator terms for j = 1,..., K,

so that the sum of all pk is unity. This property does not let any one filter control the

estimation process unless one of the estimator's probability goes to one and all the others

go to zero. Steps must be taken to prevent any probabilities from going to zero, since any

such probability would become permanently locked onto zero by the iteration performed by

Equation (1.1) even if changing conditions were to cause that particular parameter value

to become the best value. One way to prevent the probabilities from going to zero is to

set a lower limit that the Pk may assume. Other methods are discussed in Chapter 2. The

1-4



adaptive state estimate of the MMAE is then determined by summing the probabilistically

weighted outputs of each Kalman filter. This technique is referred to as the Bayesian form

of the MMAE estimator and is illustrated in Figure 1.1. A second approach for determining

the overall state estimate would be to take the state estimate of the filter with the highest

conditional probability. This method is referred to as the maximum a posteriori, or MAP,

estimator.

1.1.2 Moving-Bank MMAE. The concept behind the moving-bank MMAE is that

the state estimate provided by the full-bank MMAE may be approximated by a reduced

number of Kalman filters, say J where J < K. The moving-bank filters are dynamically

redeclared such that the center filter is located as close as possible to the current parameter

estimate. The parameter estimate of the moving-bank MMAE algorithm should be nearly

as good as the full bank estimate, provided that the vast majority of the full-bank MMAE,

algorithm parameter probability weight is contained within the moving bank. Figure 1.2

shows how the full-bank MMAE system would look if all 100 filters were used. Each of the

blocks represent a discrete parameter point used as the basis for a Kalman filter. Figure

1.3 shows how a moving 3-by-3 bank might appear surrounding the current parameter

estimate. The moving bank is composed c iiine solid blocks. The "discarded filter" points

correspond to a 3-by-3 bank at an earlier time instant when that set of nine points most

closely surrounded the estimated parameter location at that time.

There are five basic techniques for deciding when to move the bank, when to contract

the bank to a finer discretization, and when to expand the bank to encompass a coarser

discretization. "Fine" discretization implies that the filters in the bank are adjacent to one

another, as illustrated in Figure 1.3(a). "Coarse " discretization implies that the filters in

the bank are not adjacent to one another, which is illustrated in Figure 1.3(b). The five

techniques used for decision making are [19]:

s Residual monitoring

* Parameter position estimate monitoring

* Parameter position and "velocity" estimate monitoring

1-5



Kalman Filter _________

Based on a1

12 x
Kaiman Filter_____-

Based on a2

L Kalman Filter ____

Based onak

rk

P, P P

Hypothesis
Conditional
Probability --

computation
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Figure 1.2. Diagram of Full-Bank MMAE

* Probability monitoring

# Parameter estimation error covariance monitoring

Residual monitoring is used for movement of the bank as well as for expansion.

Residual monitoring uses a likelihood quotient based on the elemental filters in the bank

and is defined as:

Lj(ti) = rT(tj)Aj(t)-'rj(tj) (1.3)

which is the quadratic form within Equation (1.2). If all the Lj are above a preset move

threshold, the bank is moved. This condition indicates that all residuals are larger than

anticipated by the associated computed Aj(t1) value, and thus that none of the current

filters is based upon a particularly good assumed parameter value. In addition, the filter

with the smallest likelihood quotient should be the filter nearest the true parameter value,

thus providing the direction for movement. If the parameter undergoes a jump change or

is changing rapidly, a closely spaced bank may not be able to track the parameter ade-

quately. By comparing the Lj to a preset expansion threshold, the bank can be expanded.
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Discretization

1-8



By expanding the filter bank, the parameter value can be reacquired and a. decision to

contract the bank around the new parameter location can be made. Residual monitor-

ing is susceptible to single large samples of measurement noise and may give false alarms

[19:1876], i.e., the bank may be moved or expanded unneccessarily.

Parameter position estimate monitoring is used for movement of the bank and at-

tempts to keep the bank centered on the current estimate of the true parameter. The

estimated true parameter is given by:

J
&Qj) = .E{a(ti) I Z(i) = aj. pj(ti) (1.4)

j=1

When the "distance" between the center of the bank and the estimated parameter location

becomes larger than a preset move threshold, the filter bank is moved. Since the calculation

depends on the time history of measurements, rather than just a single one, this technique

is less susceptible to false alarms than the residual monitoring method [19:29].

Parameter position and "velocity" estimate monitoring is used for movement of the

bank and is an extension of the previous method. By tracking the "velocity" of a slowly

moving parameter through the most recent parameter position estimates, the next position

of the parameter may be predicted. If the distance between the predicted location and the

current center of the filter bank exceeds a preset move threshold, the bank is moved.

Probability monitoring is used for movement of the bank and uses the computed

probabilities provided in Equation (1.1). The computed probabilities are compared to a

preset move threshold to determine if the bank should be moved in the direction indicated

by the filter producing the highest probability exceeding the threshold.

Parameter estimation error covariance monitoring provides a means for determin-

ing whether the bank should be contracted from a coarse to a finer discretization. The

parameter estimation error covariance is given by:

P(ti) = E{[a - &(t) [a - fi(t)]T I Z(t,) = Z,}
J

E E[a - Ai(ti)][a - Ai(ti)] .pj(ti) (1.5)

j=l
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When the norm (or some other suitable measure) of the matrix Pi falls below some preset

threshold, the bank may then be contracted around the c,,rrent parameter estimate.

1.1.3 Moving-Bank MMAE Controller. There are several controller designs ap-

propriate for implementation with the full-bank or moving-bank estimator discussed in

Sections 1.1.1 and 1.1.2. All designs considered here assume that the system model is

Linear, the control cost criterion is Quadratic, and the system and measurement noises

are Gaussian. Using LQG optimal control synthesis for an adaptive control problem is

based upon the use of the "assumed certain equivalence property " [17:241]. This property

allows the independent development of an estimator cascaded with a deterministic full-

state feedback optimal controller. In addition, this property results in the LQG controller

being equivalent (in the case in which there is no parameter uncertainty) to the optimal

deterministic controller but with the states replaced with the conditional estimates pro-

vided by the estimator. This research will investigate a special form of controller known

as a "regulator" since the objectives are to drive the position and velocity states to zero.

Each controller developed in this research is a linear, quadratic cost, full-state feed-

back optimal deterministic controller based upon a specific assumed parameter valae of a.

The output of the controller is desired to be the optimal control function, u*, such that

the quadrntic cost function

J= E i [xT(ti)X(ti)x(ti) + uT(ti)U(ti)u(ti) + 2xT(ti)S(ti)u(ti)

+ X(1.6)

is minimized [17:73]. This can also be written as

N 1 ( j t )x ( t ) s ( t ) t) 1 T(
J = E o 2 u(ti) sT(ti) U(t ) u(t) (1.7)

The cross term, S, between x(ti) and u(ti) within Equation (1.7) results from the desire

to apply control at discrete time intervals to minimize an appropriate continuous-time

quadratic cost. Chapter 2 will provide a more complete discussion of the development.
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The matrices of interest in Equation (1.7) are as follows:

9 J = cost to be minimized

x = n-dimensional state vector

* X(ti) = n - by - n-dimensional ttate weighting matrix

* = n - by - n-dimensional final state weighting matrix

0 u(ti) = r-dimensional deterministic input vector

* U(ti) = r - by - r-dimensional control weighting matrix

* S(ti) = n - by - r-dimensional cross-weighting matrix

* t N+1 = final time

* tg = last time a control is applied and held constant over the next sample period

The final term in Equation (1.7) assigns a quadratic cost penalty to the magnitude

of the terminal state deviation from zero. If the cost weighting matrix associated with the

final state, Xf, is diagonal, then these diagonal terms are selected to reflect the relative

importance of maintaining each component Of X(tN+l) near zero: the more important the

state minimization, the larger the associated Xf term. The same comments can be made for

the X(ti) weighting matrix, which reflects the importance of maintaining individual state

componeit deviations at small values over each of the (N +1) sample periods. The diagonal

entries in the control weighting matrix, U(ti), determine the measure of individual control

conservation desired over each of the (N + 1) sample periods. The larger the matrix entry,

the higher will be the penalty for expending more energy. The X(ti) and Xf matrices are

assumed to be real symmetric, positive semidefinite. This allows zero cost to be assigned to

certain state variables of no significance. The U(ti) matrix is assumed to be real symmetric

and positive definite. This assu.ption precludes a controller solution which would require

an infinite amount of energy at any time. The cross-weighting matrix, S(ti), is chosen

so that the resulting symmetric composite matrix in the summation of Equation (1.7) is

positive semidefinite. This research will investigate-constant weighting matrices, as will be

discussed in Chapter 2.

If the assumption of a linear system driven by white Gaussian noise is used, with a

quadratic cost function given by Equation (1.7), then the optimal discrete linear feedback
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control law, is given by [17:16]:

u*(ti) = + )  (1.8)

where full state access has been replaced via assumed certainty equivalence by the state

estimate provided by the moving-bank MMAE. The controller gain, G*(ti), is found by

solving an n - by - n backward Riccati difference equation from an appropriate terminal

condition. Chapter 2 will address this development in more detail.

A particularly useful implementation of the control law given in Equation (1.8) can

be used for time-invariant systems with stationary noise. If the performalnce degradation

due to ignoring the terminal transient of the G*(ti) and the initial transient of the Kalma.ii

filter gain is acceptable, one might seek the steady-stae constant-gain control law to use

during a finite time interval that is long compared to the transient periods. For this case,

the optimal discrete linear feedback control law is given by: [17:243]

u'(ti) = -G(t±) (1.9)

with (t+ ) produced by a constant-gain steady-state I-alnan filter. The steady-state gain

control law provided in Equation (1.9) will be the approach taken in this research. (For

the remainder of this discussion, constant-gain algorithms will be assumed and GU will,

written simply as G*). The formulation of G* is provided in Chapter 2. As shown in

Figure 1.4, the LQG algorithm accepts sampled-data measurements from the system as

inputs, and it outputs the optimal control to apply as constant values to the system over

the next sample period, from tj to ti+,.

Six MMAE estimator/controller combinations are presented in this section. These

techniques are:

e MMAC control

* Modified MMAC control

* MAP vs. Bayesian MMAC control

e Single fixed-gain controller based on ao,
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Figure 1.4. Diagram of Sampled-Data LQG State Regulator [17:19]

" Single changeable-gain controller based on fi(ti)

" Modified single changeable-gain controller based onl f(ti)

M1MAC control consists of an elemental controller for each of the elemental filters of

the bank, and the control outputs are probabilistically weighted and summed similar to that

of the MMAE state estimates. Figure 1.5 illustrates the formation of the control vector

for a full-bank estimator/controller combination. The blocks denoted by -G (ak) are

optimal controller gains determined specifically for each discrete parameter value ak. The

only difference between the full-bank MMAC and the moving-bank MMAC method is that

the smaller number of estimators/controllers required by the moving-bank MMAC reduces

computational loading. The performance of this approach suffers due to the fact that

some magnitude (however small) of inappropriate control can be applied by filters based

on incorrect models, particularly if lower bounds are placed on computed probabilities as

discussed in Section 1.1.1.

Modified MMAC control is similar to the method described above. However, this ap-

proach consists of establishing a conditional probability threshold which must be obtained
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Figure 1.6. Diagram of Single Fixed-Gain Controller [7:,4l]

before any filter/controller combination of the moving bank can be allowed to apply con-

trol. This will reduce the amount of inappropriate control by requiring the probabilities

associated with each filter to pass a "goodness" test before the controller associated with

that filter can apply control.

MAP vs. Bayesian control is similar to the above approach. However, instead of

establishing a probability threshold, this approach uses only the control from the moving-

bank filter/controller combination with the highest conditional probability.

Single fixed-gain control is formulated by providing a state vector estimate to a fixed-

gain controller, which is designed around a nominal value of the uncertain parameter set,

a,,,,,. This method is illustrated in Figure 1.6. This method is reasonable since full-

state feedback controllers are inherently robust [7:40]. This controller receives the state

estimates from the moving-bank estimator and generates the control as follows:

u*(ti) = -G* [anom] (t') (1.10)
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The controller parameters are selected such that the controller provides adequate regulation

for any true system parameter value [7:40]. The selection of anom may not be a trivial

task.

Single changeable-gain control is formulated by providing both parameter and state

vector estimates to a single controller with gains that are dependent on the parameter

estimate. Figure 1.7(a) illustrates this approach. In this method, the control becomes as

follows:
u*(ti) = -Gc*[t )] R1.t a

For this method, a table of G, [ai]'s, one for each point in the parameter space, is estab-

lished and used for interpolation in order to generate G* [.,(ti)] [7:38].

Modified single changeable-gain control is similar to the method above. However,

the parameter estimate, a(ti), from the MMAE is provided to a single filter/controller

combination tuned specifically for that parameter value, illustrated in Figure 1.7(b). In

this approach, the filter gains, as well as the controller gains, are interpolated from the

parameter estimate. This is advantageous in reducing the possibility of underestimating

the undamped natural frequency within any part of the algorithm that directly generates

control inputs to the system, which has been previously shown to produce instability in

this particular application [24].

Now that a brief overview has been provided on the methods used for estimation and

control, it is appropriate at this time to provide a brief discussion of the structure which

will be investigated in this research.

1.1.4 System Model. The purpose of this section is provide a brief overview of the

system under investigation in this research. While this research does not perform the

development of the system model being investigated, it is important to understand the

concepts that were used in its development. A full description of the physical model and

modal model development, as well as order reduction, will be provided in Chapter 3.
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The initial feasibility study performed by Hentz investigated a simple second order

system [7:16]. The control ratio of the system is given as:

C(s) = W____2 _

R(s) S2+ 2wsw (1.12)

where ( is the damping ratio and w is the undamped natural frequency. In state variable

form (standard controllable form) the structure dynamics are described by:

0 1 + 0k -t) =2 ~ ] x@) + 0 u) (1.13)

c(t)= [1 0 ]x(t) (1.14)

The state vector, x(t), is composed of two components: xi(t), which represents a position

variable, and x2(t), which represents a velocity variable.

The structure investigated by Filios consisted of four cantilevered appendages at-

tached to a central hub [3]. This model was obtained from the Draper Laboratory/Rocket

Propulsion Laboratory Configuration space structure [3:38]. Basically, this structure rep-

resented a satellite with four whip antennas. Unfortunately, Filios discovered that this

model did not require on-line adaptation.

Following Filios, Karnick [8] obtained a space structure model that remains as the

system used for investigation today. Karnick obtained a fixed, two-bay truss model which

was originally developed to study the effects of structural optimization [27, 28] and optimal

control design [14]. Karnick incorporated one major modification to the original two-bay

truss he obtained. Basically, the-truss was attached to a hub in order to enable investigation

of rigid body motioii [8:45]. Karnick used a six-state truth model and a six-state filter, both

of which accounted for the rigid body mode and first two )ending modes of the structure.

Figure 1.8 illustrates the physical description of the structure under investigation.

This structure could represent an appendage of a larger space structure. The 13 aluminum

rods that make up the structure are assumed to be of a certain cross-sectional area and

elasticity. The additional non-structural masses attached to the structure act to lower the

1-18



Hub 100 in

7 k_ Lb 18 in

K 6 3 c 4
Y

18 in
I x

m Non-structural Masses

* Accelerometers and
Thrusters Co-located

Numbers - Nodes Letters - Structural Elements

Figure 1.8. Diagram of Rotating Two-Bay Truss Model

1-19



structural frequencies, which makes this two-bay truss model representative of large space

structures. The mass and stiffness matrices that describe the structure were obtained from

a finite element analysis [28]. For the purposes of this research, the parameters which

will be varied are the mass and stiffness matrices. It will be shown in Chapter 3 through

modal analysis that the mass and stiffness matrix variations will affect the damping ratio

and natural frequency of the structure. From the development of the mass and stiffness

matrices, the truth model describing the structure contains twelve modes, the rigid body

mode and eleven bending modes. Since each mode is represented by two states, one

corresponding to position and one to velocity, the truth model for this structure contains

24 states.

In addition to the 13 rods and non-structural masses, the structure uses three sets of

sensors (two on the truss and one on the hub) to obtain position and velocity measurements.

The sensors on the truss consist of accelerometers and are located at the midpoint and

at the end of the structure. Thrusters are co-located with each of the accelerometers to

provide control inputs. Two gyroscopes are co-located at the hub; one provides angular

displacement and the other provides angular velocity of the rigid structure. Finally, an

inertia wheel is co-located at the hub to provide rigid body control inputs.

The work performed by Lashlee [11], Van Der Werken [26], and Schore [22] all con-

tinued the use of this model. Like Karnick, Lashlee's research implemented a six-state

truth model and a six-state filter model. Van Der Werken, however, was concerned with

the effects of unmodelled states. Therefore, the research he conducted implemented the

24-state truth model and a six-state filter model. Schore's research continued the work

of Van Der Werken and therefore implemented the previous truth and filter models. As

stated previously, the results obtained by Schore indicated that the six-state filter per-

formed adequately when affected by the unmodelled states. Therefore, this research shall

continue to use the same truth and filter models as employed by Schore.

Before the objectives of this research are stated, however, it is appropriate-to provide

a brief overview of the major accomplishments of past research. The next section provides

a synopsis of the work that has been accomplished in this area by ilentz [7], Filios [3],

Karnick [8], Lashlee [11], Van Der Werken [26], and Schore [22].
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1.2 Past Research

In the past six years, research has been conducted in the area of moving-bank MMAE

algorithms to reduce the computational loading needed to perform both system state and

uncertain parameter estimation associated with the system model. Maybeck and ltentz

conducted the initial feasibility study in 1984 [7] and showed, for a simple but physically

motivated two state system, the moving-bank MMAE algorithms performed as well as the

full-bank MMAE algorithm. In addition, this performance was obtained with an order of

magnitude less computational loading. Hentz's study included a performance evaluation

of the primary bank movement, expansion and contraction algorithms used by the moving

bank as well as appropriate thresholds. Ilentz also investigated several of the control

techniques described previously. These investigations were conducted for slowly varying

parameters and jump changes as well as constant parameters.

Follow-on research conducted by Filios [3] demonstrated that using ambiguity func-

tion analysis provides a useful method for evaluating the parameter estimation perfor-

mance. In addition to formulating a useful estimator evaluation method, Filios also pro-

vided much insight into the establishment of movement and contraction thresholds. Unfor-

tunately, the results obtained by Filios indicated that the more complex system he chose

to use did not require adaptive control [3:93].

Following Filios, Karnick [8] applied the moving-bank algorithm to a 13-member,

two-bay truss. However, the results that Karnick obtained indicated that the moving-

bank MMAE was never able to identify the truth model parameters, even though it could

sometimes provide accurate state estimates [8:93]. Karnick found that the moving-bank

wandered nonsystematically throughout the parameter space and could not converge to

a consistent parameter value. The final performance results showed that a coarsely dis-

cretized full-bank MMAE could perform as well as a finely discretized moving-bank MMAE

[8:92]. The fundamental problem Karnick encountered was that measurement noise was

severe enough to hamper the moving-bank adaptation process.

Lashlee [11], following on to Karnick's research, investigated the difficulties experi-

enced by Karnick. Lashlee's research consisted of several studies including investigation of
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the dynamics noise strength and measurement noise covariance, state and control weighting

matrices, and parameter space discretization. The results of these studies indicated that

a clear distinction between good and bad models must be maintained within the moving-

bank algorithms. Once the appropriate noise values and parameter space discretization

had been found, Lashlee showed that the moving-bank MMAE was able to estimate the pa-

rameters accurately and demonstrated greater performance potential than the fixed-bank

MMAC he investigated [11:199].

Van Der Werken [26], continuing with the same structure as Karnick and Lashlee,

investigated the effects of the order mismatch between a higher order truth model and

a reduced order filter model. Whereas Karnick and Lashlee both utilized a filter model

and truth model of the same dimensions (both consisted of six states), Van )er \Werken

conducted research to investigate the effect of the order mismatch between the original 24-

state truth model and the reduced order six-state filter model [26:15]. The results obtained

by Van Der Werken indicated that the moving-bank algorithm was able to produce neither

accurate parameter nor state estimates when the bank was inicially centered oit a false

parameter [26:183]. Van Der Werken concluded that the umnodelled states had a d Jct,

negative impact on the ability of the MMAE algorithm to provide accurate estimates.

The most recent research on the moving-bank MMAE algorithms was conducted

last year by Schore [22]. Schore's objective was to continue Van Der Werken's research

to determine if the algorithm was truely confounded by the unmodelled states and, if so,

determine the minimum states required in the reduced order model for adequate estimation.

In order to accomplish this, Schore corrected some flaws in Van Der Werken's simulations

and developed a more physically motivated approach to evaluate the performance of the

reduced order filter model. Schore's research investigated how well the red,-ed order

filter estimated the true total shape of the truss, as opposed to just the truth model

states associated only with the first three modes [22:Chapter 1 pg 22]. The performance

of the moving-bank algorithm was evaluated as the affects of the higher order Slateb wVere

gradually allowed to influence the system. In addition, Schore investigated the disturbance

rejection performance of the algorithms. Schore's results indicated that, even though the

estimation process of the algorithm was "sensitive" to the reduced order mismatch, the
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degradation in performance wa- not sfficient to warrant increasing the six-state filter

model dimension [22:Chapter 6 pg 1].

1.3 Problem Statement

The basic problem with the full-bank MMAE/MMAC approach is that the number

of Kalman filters (and controllers) required creates an unbearable computational load. The

moving-bank MMAE/MMAC approach is an alternative to the full-bank IIMAE/MMAC

and has previously been shown to be successful for controlling a structure in the face of un-

modelled effects [22:Chapter 6 pg 1]. The performance of the moving-bank demonstrated

in this research, however, was less than optimal. The tuning of the Kalman filter dynamics

noise strength, Q(t), and the measurement noise covariance, R(t), the discretization strat-

egy used to generate the parameter points, as well as tuning f tke other parameters in

the filter algorithm, affect the system substantially. This research will continue the work

started by Van Der Werken and Schore by providing insight into performance optimization

of the six-state filter evaluated against the 24-state truth model.

1.4 Scope

The research performed investigates problems associated with large space structures.

The model space structure selected for this research is represented by a two-bay truss

developed by Karnick [8]. The two-bay truss is 100 inches long and 18 inches high. The

truss is attached to a hub and is allowed to move only in the x-y plane. Four non-structural

masses attached to the truss provide time varying mass problems. The addition of these

masses, provided that they are large relative to the structural mass, also produce the

low frequency structural model associated with large space structures. The structure is

described by mass and stiffness matrices obtained from a finite element analysis performed

previously by Karnick [8].

The uncertain parameters of interest for this research are the non structural masses

and the structural stiffness [8, 27]. These parameters were chosen because they physically

appear in the system dynamic equations.
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1.5 Approach

The moving-bank algorithm performance evaluation will be accomplished by mca-

suring how closely the filter estimates of positions and velocities at physical points on the

truss match the true values, and then how well the associated controller regulates those

states. Research efforts prior to Schore investigated the performance of the moving-bank

algorithms based on how well the elemental filters estimated the truth model states asso-

ciated with only the first three modes [22:Chapter 1 pg 22]. In these investigations, the

elemental filters aaid truth models both were six-state models. Schore's research, however,

evaluated the performance of the elemental filters in a more physically motivated manner

by investigating how well reduced order filters could estimate (and the regulators could

control) the true total shape of the truss, i.e., the shape due to all the modes' effects.

For his performance evaluation, Schore defined a new error term as the difference between

true and estimated positions and velocities at three locations on the truss. These three

locations consist of the accelerometer and thruster positions Ft the midpoint and at the

end of the truss and at the gyroscope and inertia wheel position at the hub (See Figure

1.8). This research will adopt the technique discussed above in evaluating the optimal

performance of the moving bank.

Optimal estimation performance of the moving-bank algorithm will be achieved by

evaluating the estimation process sensitivities during the following studies:

e Kalman filter dynamics noise strength, Q(t), and measurement noise covariance,

R(ti), value determination

* Residual, parameter position estimate, and probability monitoring performance

* Density function "bias" determination

9 Parameter space discretization

• Performance evaluation with varying parameters

Optimal control performance of the moving-bank algorithm will be achieved by eval-

uating the control process sensitivities during the following studies:
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9 State and control weighting value determination

e Optimal control vector formulation

* Parameter space discretization

9 Performance evaluation with varying parameters

For each of the studies, the state estimation and control performance of the moving

bank is compared to the performance bound of a single Kalman filter/controller that has

artificial knowledge of the true parameter. The primary figure of merit for the estimation

process is the state estimation error and the parameter estimation error. The primary figure

of merit for the controller process is how well the moving-bank controller regulates the state

statistics to zero as compared to the benchmark. The state statistics will be generated

by performing a Monte Carlo study. The number of error process samples obtained by

simulation will be adequate such that the true process statistics are approximated well by

the Monte Carlo study.

Previous research efforts have shown that system complexity [11] and unmodelled

effects [22] do not markedly degrade the performance of the algorithm as long as the

elemental filters in the bank are readily distinguishable from one another. Previous research

has shown that the major areas of concern for p.eserving this "distinguishability" are the

evaluation of the Kalman filter Q(t) and R(t) values and determination of the proper

discretization of the parameter space. For this research, the parameter space discretization

will be investigated as part of both the estimator study and the LQG controller study.

Since past research has demonstrated that control performance is significantly affected

by the parameter estimation [11], [24]. parameter space discretization will be investigated

primarily as a means to enhance the performance of the LQG controllers.

Kalman Filter Q(t) and R(t) value determination is of prime importance for the

overall performance of the moving bank. (The form of Q(t) and R(t) are constant and

therefore the time argument will be omitted.) It is important not to mask good versus bad

filter models with too much dynamics psuedonoise in an attempt to keep each elemental

filter within the MMAE structure from diverging. Each filter must be tuned for best

performance when the true value is identical to the assumed value [11]. Previous research

1-25



limited the form of the Q and R to diagonal matrices. Based upon the use of the same

sensor for position and velocity measurements, a measurement noise covariance matrix

with non-zero off-diagonal elements might be more appropriate [22:Chapter 3 pg 4]. In

addition, previous efforts at determining the appropriate values were conducted by equating

Qf to Qt and Rf to Rt [11] (where t denotes truth model and f denotes filter model);

this is reasonable if the filter-assumed model and truth model are the same, i.e., no order

reduction between the truth model and filter design model (as was the case for Lashlee's

research). Van Der Werken's research attempted to evaluate the effects of filter mismatch in

computing Rf, where there is an even stronger desire to use a non-diagonal Rj. However,

Van Der Werken still used a diagonal matrix to represent Rf and a single matrix for Q.

Schore experienced numerical difficulty with the large values of Q used by Lashlee and

ended up reducing these values by an order of magnitude [22:Chapter 4 pg 1.0]. Research

in this area will begin with the determination of the appropriate values for Qt and Rt. This

research shall then incorporate the minimum variance reduced order (MVRO) estimator

method [16:25] as used previously by Van Der Werken [26]. This method will help in

the determination of values for Rf and Qf after appropriate values for Qt and R have

been determined. This method will account for the unmodeled 18 sta.tes and produce

non-diagonal matrices.

Residual, parameter position estimate, and probability monitoring will be conducted,

as alternatives to monitoring for the bank-moving logic, in order to investigate the perfor-

mance of the algorithms as suggested by Schore. This research will evaluate the perfor-

mance of the bank using parameter position estimate monitoring, which JHentz's research

determined to provide the best overall performance (along with probability monitoring)

[7:87].

Density function "bias" determination will investigate any biasing effect due to the

nature of the computation of pk(ti). This is motivated by several sources. First, recent

research conducted by Stevens [21] indicated that the determination of the pk(ti) , given

in Equation (1.1) was artificially biased by the leading coefficient on the Gaussian den-

sity numerator term in the conditional density function computation, given in Equation

(1.2). This coefficient contains the term I Ak(ti) 11/2 in its denominator. If all elemental
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filters' residuals look "equally good" relative to their anticipated covariance, so that all of

the exponential terms of Equation (1.2) were essentially the same value, then the pk(t)

computations most heavily weight the filter associated with the smallest I Ak(ti) 1. Since

I Ak(t) I is precomputable and has nothing to do with online adequacy of models, this

is an inappropriate bias. Second, previous thesis work by Filios [3:64], Karnick [8:36],

and Lashlee [11:43] removed the scale factor associated with the I Ak(ti) I term from the

conditional density computation. This was performed to reduce numerical difficulties they

were experiencing in determinant evaluations during ambiguity function analysis. How-

ever, by so doing, the resulting expression is no longer a true density function since the

scale factor is not correct. However, because of the denominator term in Equation (1.1),

the probability weightings are still correct since they sum to one [3:65]. Research in this

area will entail removing the scale factor term from the pk(ti) computations and comparing

the performance to a "biased" estimator.

Parameter space discretization is the second area of prime importance for preserving

the distinguishability between the elemental filters. The parameters must not be spaced so

closely that the elemental filter models cannot be distinguished from one another, however

not so far apart that the elemental filters (and associated controllers) must be too robust.

Recent research [24] has shown that incorrect parameter estimation has a significant impact

on LQG controller performance. Underestimation of the higher modal frequencies resulted

in poor controller performance [24]. Hentz's earlier research into this area resulted in a

linear parameter space discretization for C and a logarithmic discretzation for W,, [7:20].

Following Hentz, a linear space discretization based on the mass and stiffness matrices

was developed. Lashlee's research, while investigating the problems Karnick experienced,

developed a non-linear discretization [11]. This discretization provided-an rms error growth

of 20 to 30 percent between each step in the parameter space. Theses three previous space

discretizations are provided in Table 1.1. This research shall begin by using the parameter

space discretization determined by La.shlee for for performing tuning of the bank filters.

Then, the insights gained from the work of Sheldon [24] shall be incorporated to attempt to

enhance the discretization and, hence, the performance of the estimator (and controller).

The performance enhancement of the controller due to parameter discretization will be
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Table 1.1. Discretized Parameter Space for Previous Research

ak Hentz [7] Linear [11] Lashlee [11]

4 w (rad/sec) Mass Stiffness Mass Stiffness

1 0.0000 6.28 0.50 0.80 0.50 0.50

2 0.1111 8.12 0.60 0.84 0.55 0.60

3 0.2222 10.48 0.70 0.88 0.60 0.70

4 0.3333 13.54 0.80 0.92 0.70 0.80

5 0.4444 17.48 0.90 0.96 0.80 0.90

6 0.5556 22.58 1.00 1.00 0.90 1.00

7 0.6667 29.16 1.10 1.04 1.10 1.16

8 0.7778 37.67 1.20 1.08 1.20 1.26

9 0.8889 48.65 1.30 1.12 1.30 1.40

10 1.0000 62.83 1.40 1.16 1.40 1.50

investigated in the simulations performed for the LQG controller study.

Performance evaluation with varying parameters will investigate the performance

of the moving bank estimator when subjected to changing parameters. The majority of

past efforts investigated only constant parameters. Hentz and Filios did limited work

with evaluating the performance of the moving bank to slowly and smoothly changing

parameters and to minor jump changes. This research shall conduct a study to determine

the performance due to slowly varying and jump changes throughout the entire parameter

space. The slowly varying parameter study will be conducted by providing a time history

for the parameters. The jump changes will consist of jumping the value of the parameter

more than one discretized value away. Research will determine if it is better to expand

the bank size to re-acquire or let the bank follow on its own without altering its size. This

rebearch will entail re-evaluat;on of the thresholds for contraction and expansion. As for the

space discretization study, the performance of the LQG controllers for varying parameters

will be investigated during the LQG controllers studies.

State and control weighting value determination will investigate the LQG controller
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performance sensitivity to altered (but constant) cost function definition, as given by Equa-

tion (1.6). In previous research [11:87], the state weighting matrix, X, values were deter-

mined by holding the control weighting matrix, U, constant and increasing the X values

one at a time until the rms values for the true states stopped decreasing drastically. After

the X values were determined, the U values were found by holding the X values constant

and decreasing the U values until the rms values for the true states stopped decreasing

drastically. This method was applied to parameter location (7,6), i.e., the mass value at its

seventh discrete value and the stiffness parameter at its sixth discrete value. This location

accounts for only one of the possible 100 points in the parameter space. These values for

X and U were then used for the other points in the parameter space. The cross weighting

matrix, S, values for the generalized quadratic cost in the LQG synthesis were also inves-

tigated by Lashlee and found to be negligible. Therefore, the values for S will be kept at

zero for this study. This research, as suggested by Lashlee and Schore, will determine the

state and control weighting matrices in a manner similar to that described above. This

will be accomplished for each parameter in the parameter space.

Control vector formulation will investigate alternate methods for forming the control

vector. All of the previous research efforts since Hentz have investigated forming the control

vector by weighted-averaging of the control for all of the filter/controller combinations in

the bank using the computed hypothesis conditional probabilities as weighting coefficients

(MMAC). This resulted in some magnitude, however small, of inappropriate control being

applied, particularly when the computed probabilities were artificially bounded from below

to prevent elemental filter lockout. This research shall continue to investigate MMAC in

addition to three alternate methods. These methods include the the modified MMAC

approach, the MAP vs Bayesian MMAC approach, and the modified single changeable-

gain controller approach, which were discussed previously. This study will evaluate aln

appropriate threshold for the modified MMAC approach as well as to evaluate performance

of all four approaches.

Parameter space discretization will be investigated to determine the impact on ap-

propriate adaptations and bank motion and on robustness of the elemental controllers.

As stated previously, Sheldon's research (23] has shown that underestimation of the higher
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modal frequencies resulted in poor (unstable) controller performance. Using the parameter

space discretization previously devised for the parameter estimation studies, the perfor-

mance of the LQG controllers will be evaluated. For this study, the straightforward MMAC

approach will be used to determine the effects of the modified parameter space on the con-

trol of the structure.

Performance evaluation with varying parameters will investigate the performance of

the moving bank controller when subjected to changing parameters. This research shall

conduct a study to determine the controller performance due to slowly varying and jump

changes throughout the entire parameter space. The varying parameter study for the

controller will be the same as for the estimator study, which will allow using the same

expansion and contraction thresholds.

1.6 Summary

The purpose of this chapter was twofold. First, it provided the background necessary

to facilitate a basic understanding of the objectives which this research intends to accom-

plish. Second, this chapter presented the approach which will be adopted to achieve the

stated objectives. The background presented concepts of the moving-bank multiple-model

adaptive estimation and controller as well as the large space structure which will be used to

investigate these concepts. The background also provided a brief synopsis of past research

in this area to illustrate the evolution of this research. The remaining chapters of this

thesis cover the following areas. Chapter 2 develops the algorithms used in the N,[MAE

and LQG controller portions of this research, including Kalman filter theory and decision

logic for moving and expanding/contracting the bank of filters/controllers. The modelling

of the large space structure, the two bay truss structure, is developed in Chapter 3. The

simulations performed by this thesis will be explained in Chapter 4. Chapter 5 p)resents the

results of this research, with corresponding conclusions and recommendlations presented in

Chapter 6.
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II. Algorithm Development

2.1 Introduction

The background discussion provided in Chapter 1 was intended to provide basic un-

derstanding of the problem statement and research approach. However, the purpose of the

development provided here is twofold. First, the discussion of Chapter 1 will be embellished

to address the general theoretical development relevant to this research. Second, discussion

contained here will highlight simplifying assumptions and insights gained from previous

research which are pertinent to the accomplishment of the objectives specific to this re-

search. Algorithm development will encompass (1) Kalman filter development, (2) multiple

model adaptive estimation development, (3) moving-bank MMAE development, and (4)

LQG controller development. While the discussion contained here will add more insight

to the discussions of Chapter 1, for an exhaustive development see references [15, 16, 17].

As stated previously, the notation used is intended to be consistent with the convention

found in [15] such that a stochastic process is denoted by x while a deterministic process

is denoted by x. The cornerstone of the MMAE concept is the Kalman filter. Therefore,

it is suitable-at this point, before discussing any of the algorithms specific to MMAE, to

provide a brief discussion of what has been described simply as "...an optimal, recursive,

data processing algorithm [15:4]".

2.2 Kalman Filter Development

It is assumed, for the purposes of this research, that the system under investigation

is adequately described by the continuous, linear, stochastic system model given by:

k(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.1)

driven by deterministic controls-and zero-mean white Gaussian noise of strength Q(t), or

more properly,

dx(t) = F(t)x(t)dt + B(t)u(t)dt + G(t)d/_(t) (2.2)
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driven by Brownian motion (t) of diffusion Q(t). In the above equations, x(.) represents

an n-state vector process, u(.) is an r-vector deterministic control input, F(.) is an n-by-

n system dynamics matrix, B(.) is an n-by-r deterministic input matrix, and G(.) is an

n-by-s noise input matrix. The model described by Equation (2.1) will be used for the

remai.,der of this discussion. The statistics of w(.) are given by:

E(w = 0 (2.3)

E{3(t)(t)T} = Q()6tti) (2.4)

where Q(t) is an s-by-s matrix that is symmetric and positive semidefinite and b(t) is the

Dirac delta function.

The state differential equation given by Equation (2.1) is propagated forward from

some initial condition, x(to). Since the initial condition is not generally known precisely a

priori, it will be modelled as a random vector with mean xo and covariance Po given by:

E{x(to)} i o (2.5)

E ([(to) - R0] [x(to) - koT} = Po (2.6)

where P 0 is an n-by-n matrix that is symmetric and positive semidefinite. Allowing Po

to be positive semidefinite provides for the case of perfectly knowing some of the initial

states or combinations thereof.

Measurements are available from the system at discrete time points (sampled-data

measurements) and are modeled by the relation given by:

(ti)= H(ti)x(ti) + y(t;) (2.7)

where z(.) is an m-vector discrete-time measurement process, which provides a. palrli(l:lar

measurement time history for each sample. Measurement noise, v(ti), accounts for the

uncertainty with which the measurements are obtained. The measurement noise is an
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in-vector discrete-time, white Gaussian process with statistics given by:

E{v(ti)} = 0 (2.8)

.Ex(tj)y(t1 )T} = R(ti)6ij (2.9)

where R(ti) is an rn-by-rn, symmetric, positive definite matrix and 6ij is the Kronecker

delta function. Requiring R(ti) to be positive definite implies that all components of the

measurement vector are noise corrupted. The measurement model in Equation (2.7) also

assumes that the system dynamics noise w(t), the measurement noise v(ti), and x(to) are

independent of each other. Since all of these quantities are assumed to be Gaussian, this

is essentially the same as stating that they are uncorrelated with each other [15:205.

Using the system model given in Equation (2.1), the measurement model from Equa-

tion (2.7), and the statistical descriptions of the uncertainties, a Bayesian point of view

can be adopted to develop the form of Kalman filter model (15:205]. Since the algorithms

developed here will be eventually implemented on a digital computer, it is desirable to

formulate discrete-time algorithms. Two methods are available for designing the discrete-

time Kalman filter algorithms. First, the designer could take the continuous-time system

model Equation (2.1), design the continuous filter, and then discretize the result. Second,

the designer could determine an equivalent discrete-time model and generate the discrete-

time filter from it. The preferable design approach is to discretize the model first and then

generate the filter [15:261]. The equivalent, stochastic difference equation describing the

system model in general is given by:

x (t ) = Pttj2jtj)+ Bdt-)(-)+ G tiIE(-) (2.10)

where the matrices P(ti, ti- 1), Bd(ti-1), Gd(ti-1), and the covariance Qd(ti-1) of the noise

Wd(ti-1) are derived from the F(.), B(.), G(.) and Q(.) matrices provided in Equations

(2.1) and (2.4). The following discussion provides general formulation of these matrices.

The state transition matrix, 1(ti, ti-1), is derived using the system dynamics matrix,

F(.). It is assumed in this research that the F(.) matrix is constant; therefore, the inverse
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LaPlace transform of the resolvent matrix can be used as:

btit- = "t - t- = ' {- [sI - F]F'} l -, (2.11)

Assuming the control u is held constant over a sample period, the deterministic input

matrix, Bd($i-1), is the discrete-time, deterministic input matrix given by:

Bd(ti- 1 ) = f (t,T)B(r)dr (2.12)
'Ii-1

The discrpte-time, zero-mean, white Gaussian system dynamics noise vector, wd(ti 1 ),

has a strength that is a function of the state transition matrix, the noise input matrix, and

the strength of the continuous-time w(t). These statistics are given by:

E{_wY(ti_)} = 0 (2.13)

-C' t_ )_Yd3ti) T } = Qd(t4) 6(i-I)5  (2.14)

where Gd is assumed to be the identity matrix and 8(i_1) is the Kronecker delta function.

Qd(ti-1) is given by:

Qd(t4-1) - (ti, r)G(r)Q)(r)GT(r),§T(ti, r)dr (2.15)

Now that the structure of the system model, as well as the uncertainties, have been

specified for all times of interest, a Kalman filter can now be completely specified. The

Kalman filter algorithms for the conditional mean state estimate and covariance time

propagation relations can be written as [15:220]:

P(t7') = §(tj,tj_j)P(t )rt k + d(4 _i)Qj(tji)GT(t_I) (2.17)

These equations provide the propagation relationship between two consecutive state

2-4



estimates and covariances from time t+,- to time tT. The"+" and "-" superscripts indicate

that the variable of interest is evaluated just after or just before a measurement is incorpo-

rated, respectively. In order to incorporate the discrete-time system measurements, given

by Equation (2.7), the following update equations are used:

g(ti) = P(ti')HT(t,) [H(ti)P(ti,)HT(ti) + R(ti)] (2.18)

:R(t + ) = R(t7-) + K(ti) [z(ti) - H(ti)R(tC)] (2.19)

P(t + ) = P(t7) - K(ti)H(ti)P(t-) (2.20)

In the above equations, there are two quantities of particular interest which need to

be highlighted. The first quantity of interest, which-is of prime importance in determining

the performance of the Kalman filter, is contained in the brackets of Equation (2.19).

This bracketed term is called the filter residual (or innovations) [15:228] and is denoted

by r(ti). The residual indicates how much correction is required by the filter, since it

is the difference between the most recent measurement and the best prediction of that

measurement based on prior measurements. The residual is weighted by K(ti) and added

to the previous estimate of the state to arrive at the new estimate of the state. The

term K(ti)r(ti) in Equation (2.19) is referred to as the new information. It can be shown

[15:229] that the filter residual sequence is a zero-mean, white Gaussian sequence with

known covariance of [H(ti)P(ti )(i) + R(ti)], which is die second quantity of interest.

As can be seen from the bracketed term in Equation (2.18), the "expected" covariance

of residuals is provided by the filter algorithms. This is the residual covariance Ak(i)

term associated with each Kalman filter in the bank. This term is used in calculating

the probability density function shown in Equation (1.2). These residual properties can

be exploited for checking the reasonableness of measurement data and other forms of

adaptation. Explicitly in connection with this research, the residuals, in conjunction with

the Ak(ti) term discussed above, are ol' prime importance for moving-bank IMAE residual

monitoring mentioned in Section 1.1.2 and described by Equation (1.3).

The previous discussion provided a short and straightforward development of the
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Kalman filter. However, "... a substantial amount of engineering insight and experience

is required to develop an effective, operational filter algorithm [15:2891". The following

discussion provides the engineering insight used to develop an effective algorithm for this

research.

Choosing values for Ro, P 0 , Qd(ti), and R(ti), often referred to as "tuning" the

Kalman filter, requires judicious selection. For example, increasing Qd(t4) would indicate

either stronger noises driving the dynamics or increased uncertainty in the adequacy of the

model itself to depict the true dynamics accurately [15:224]. This dictates that the filter

should put less confidence in its own dynamics model. Increasing R(ti) would indicate that

the measurements are subject to a stronger corruptive noise, and so should be weighted

less by the filter [15:224]. In this research, conservative approaches which may be possible

in other applications cannot be applied. Such practices as adding dynamics pseudonoise to

guard against elemental filter divergence will not be possible. It has been shown previously

[11:198] that selection of such values will degrade MMAE performance if they are chosen

so large as to mask the difference between the discretized parameters. In addition, it has

been shown [18:7] that each filter should be tuned for best performance when the "true"

values of the parameters are identical to its assumed value for theses parameters. Because

of this concern, the technique known as loop transmission recovery (LTIR) [14:7] will not

be used in this research to determine the appropriate noise values. Chapter 4 will discuss

evaluation of the appropriate noise strength values.

Filter performance for systems which are time-invariant with stationary noises can be

described by an initial transient in P(ti) and K(ti) followed by an essentially steady state

filter operation [15:224]. In many applications, the transient is short compared to the total

time of interest. This suggests a possible approximation of using the steady-state filter for

all time if the resulting performance degradation in not excessive. In addition, as can be

seen from the P(t7-) in Equation (2.17), P(O') in Equation (2.20), and K(ti) in Equation

(2.18), these quantities can be precomputed and stored for Iatir ,ise, i.hns redcing f.lir

real-time computational loading. Finally, a time-invariant system with stationary noises

and a fixed sampling rate allows the one-time computation of the Bd(ti-1) and Qd(ti-1)

matrices in Equations (2.12) and (2.15). For this research, the R(ti) matrix will also be
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considered constant. Chapter 3 will provide a detailed description of the system and filter

matrix development specific to this research.

2.3 Bayesian MMAE Development

The basic concept of the MMAE algorithm was presented in Chapter 1. While the

following material is presented for completeness, a thorough development is presented by

Maybeck [16:129-136]. The purpose of the Bayesian eatimator is to compute the conditional

density function:

f x(t.aJZ(t)( I Zi) = /x(t 1)ja,_z(ti)(I a, Zi)faIz(t)(a I Zi) (2.21)

Equation (2.21) is the conditional density of x and a given the measurement history

through the current time, where Zi is composed of partitions equal to the realizations

Of (0, A_(t2), ... ,z(ti). Let a be the vector of uncertain parameters for the model under

study which can effect any or all of P(ti, ti-1), Bd(ti-1), Gd(ti-1), H(ti), Qd(ti), or R(It).

The parameter vector a can assume values in the continuous range A C RP, where RP is

real Euclidean p-dimensional space. The parameter vector may be "uncertain but con-

stant, it may be slowly varying, or it may undergo jump changes" [11:211. The nature of

a being continuous would cause a problem computationally since the calculations to solve

for the conditional density would require an infinite number of separate Kalman filters

and integrations that would make online usage of the Bayesian estimator prohibitive. To

allow online computation, the parameter space is discretized. The parameter vector might

be defined by selecting a finite set of discrete values, {al, a2,.. ., aJ}, that are dispersed

throughout the region of reasonable parameter values. Each discrete value ak has an indi-

vidual system model associated with it, requiring computation of the matrices describing

Equations (2.7) and (2.10) for each value of ak. For this research, 100 discrete parameter

values are possible which requires 100 different 4(ti,ti-1), Bd(til), Gd(t4-1), and H(ti)

system matrices to be calculated and stored.

The conditional density function provided Equation (2.21) can be described by dis-

cussing the two terms on the right hand side of the equation. The first. density on tlhe
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right hand side is produced by each elemental Kalman filter based on the assumption tha.t

a = er. The second density on the right hand side is given as .--- pk(ti)6(a - ak). The

state estimate produced by the adaptive filter is given by [16:131]:

=Ct' E{1(i0 I Zt = Zj}
=k~

-c fx(ti)Ia,Z(t0)( ak, Zp (1

K

= Zxk(t+).pk(ti) (2.22)
k=1

where *k(i + ) is the state estimate produced by a Kalman filter based on the assumption

that the parameter equals a,. The state estimate is the sum of all the probabilistically

weighted estimates generated bS be K Kalman filters, where the hypothesis conditional

probabilities pk(ti) are the weighting factors. The generation of pk.(ti) was provided in

Section 1.1.1, Equation (1.1).

The form of the conditional covariance of the state is similar to that of Equation

(2.22) and is given by [16:131]:

P~t) -F {~(-) - R(t±)] Ex(ti) - kth I K(i) = zi}
K

- Zk~i){PKtt +[*k(t - *(tt)] [Xk(tt) -:40t] 1  (2.23)
k=1

The conditional covariance Pk(t) is the "state error covariance" associated with the

Kalman filter based on the parameter aj,. The conditional covariance is dependent on

Pk(ti), *k(t), and k(ti) as shown in Equation (2.23), and therefore is not precomputable.

However, it is not necessary to compute it for online filter implementation.

The other estimate that may be desired or required is that of the parameter vector,

i(ti). The conditioial mean of the parameter vector a.t time ti is given by [16:132]:
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i(tj) = E{az() t) = Zj}
= 00= foo fajZ(tj)(ot IZj)doe

K

= Zak .pk(ti) (2.24)
k=1

The covariance of the estimated parameter vector gives an indication of the precision

of the estimate, and it can be estimated via [16:133]:

P = E{[a - i(ti)][a - fi(t,)]T I Z(t) = Z,)
K

= Z[ak - a(ti)I[ak - 5(i)]T "Pk(ti) (2.25)
k=1

As with the calculation of the state error covariance, Equation (2.23), the calculations of

the parameter estimate, Equation (2.24), and the covariance of the parameter estimate,

Equation (2.25), are not required for the calculation of the state estimate (16:133].

The multiple model adaptive estimation algorithm developed above is an adaptive

filter structure and was shown in Figure 1.1. Discussion of the performance of the IVIMAE

will follow two general topics: first, fundamental performance of the algorithm based on

elemental filter residual generation, and second, discussion of performance to varying pa-

rameters.

As discussed in Section 1.1.1, the characteristic of the Kalman filter residual is the

key to MMAE performance. If a particular filter is nearest to the true parameter location,

the residual from -that filter would be expected to be smallest in magnitude (relative to

the filter-computed covariance Ak(ti)) of the active bank of filters. Equation (1.2) would

then provide the largest conditional density value foi this filter and when applied to Equa-

tion (1.1), would ultimately yield the highest probability to the "best" filter. However. if

residuals were of the same "goodness", i.e. if the quadratic forms within the exponential

of Equation (1.2) were all of the same magnitude, the value of I Ak(ti) I would begin to

dominate. Under this condition, the pk(ti)'s are dominated by the filter with the lowest
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I Ak(ti) I due to the leading coefficient in Equation (1.2). However, the I Ak(t) I values

are independent of not only the residuals, but also of the relative correctness of the K mod-

els being used. Therefore, the resulting pk($i) values would be totally erroneous [16:133].

Previous work by Filios [3:64], Karnick [8:36], and Lashlee [11:43] investigated removing

this term in performing ambiguity function analysis. More recently, Stevens (21:121 inves-

tigated the "bias" caused by this term in the Pk computations. As mentioned previously,

this research will investigate this issur

Another form of conditional density function computation, which may be used if no

confidence can be given to the precomputed residual covariance, entails the removal of the

Ak term from the exponential, as well as from the coefficient of Equation (1.2). If it is as-

sumed that the filter residuals are Gaussian with a covariance equal to the identity matrix,

it is assumed tha he residuals follow a "maximally non-committed residual distribution"

[23:32]. In this case, the conditional density function computation can be given as:

z(tj)IaZ(tj_1.)(zij expI{-ar,'(t))Irk(ti)) (2.26)
(27r)'T II11 2

Equation (2.26) is termed a Maximum Entropy with Identity Covariance (ME/I) den-

sity computation [23, 24]. The ME/I density computation results in the filter with the

lowest residual autocorrelation (i.e., absolute magnitudes, not magnitudes scaled by filter-

computed standard deviations) being given the highest pk(ti) value. During investigations

of the Ak term, the ME/I density function may be investigated if it is determined that

less than full confidence can be given to Ak.

Based on the previous discussion, it is essential to ensure that the residuals of "good"

versus "bad" filters have very distinguishing characteristics. The "distinguishability" of

the elemental filters will be accomplished first by the means of tuning each elemental filter

and second, by the manner of discretizing the parameter space.

Tuning of the elemental Kalman filters was discussed in Section 2.2. In addition to

the methods related to Kalman filter tuning in general, a simplifying approach will be taken

to tune the dynamics driving noise strength for the filters used in the MMAE algorithm.

For this research, a single, non-adaptive, artificially informed filter will be tuned based on
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the correct parameter and the values selected for this case will be considered representative

of all the filters in the entire parameter space.

Description of an appropriate parameter space has been investigated previously by

Hentz [7:20] and Lashlee [11:81]. More recently, Sheldon and Maybeck [24] have proposed

an optimizing design strategy for parameter space discretization. This strategy chooses

the parameter set by-minimizing a cost functional representing the average state prediction

error autocorrelation for estimator design, and mean square regulation error for controller

design. The average state estimation or regulation error autocorrelation is taken as the

true parameter range over the admissible parameter set [24:1]. As stated previously, this

methodology will be investigated by this research.

The second area of discussion for MMAE performance is performance of the algorithm

to varying parameters. A problem which can result from varying parameters has been

investigated in previous thesis efforts and has been described as filter "lock out". "Lock

out" occurs when the MMAE algorithm gives any one elemental Kalman filter a probability,

pk(ti) of Equation (1.1), of zero. As seen by the iterative nature of the equation, the Pk(i)

for this filter cannot take on a value other than zero once the pk(ti) equals zero. This

means that, even if parameter began to vary and the filter thereby became based on the

correct parameter, the MMAE algorithm would continue to ignore the estimates from the

elemental filter. Filter "lock out" causes the moving-bank MMAE to lose its ability to

produce adaptive state estimates effectively [11:28].

Unfortunately, there are no complete theoretical results available for varying parain-

eters [1, 6, 11]. IIowever, there are two methods available for avoiding "lock out". One

method is to add dynamics pseudonoise to the assumed model for each elemental filter

[16:25]. However, as discussed previously, pseudonoise would tend to mask the difference

between "good" and "bad" models. The second method to prevent filter "lock out" is

to establish a lower threshold, P,, on the Pk(ti). This has been the approach in past

research efforts [7, 8, 11, 22, 26]. The hypothesis conditional probabilities are monitored

and when one or more probabilities fall below the threshold, they are set to the minimum

and the entire bank rescaled to maintain the unity sum of the probabilities.
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2.4 Moving-Bank Algorithm Development

The MMAE filter algorithm presented in the previous section presents an immense

computational burden if implemented in a full bank form, i.e., a filter for every discrete

point in the parameter space. As discussed previously, this research will investigate the

technique of a moving bank of filters to lessen the computational loading. In general, this

moving bank will contain Jfilters, where J < K. Specifically, the moving bank investigated

in this research will consist of nine elemental filters (J=9) where the parameter space

will consist of 100 filters (K=100). The moving-bank MMAE technique was originally

investigated by Maybeck and Hentz [19]. Their research provided the basic techniques for

moving this smaller bank. This section discusses the technique for (1) moving the bank,

(2) expanding the bank, (3) contracting the bank, and (4) initializing new filters.

2.4.1 Moving the Bank. The moving-bank MMAE is a subset of the full-bank

MMAE. Conceptually, the bank is centered around the best estimate of the parameter.

The knowledge of the parameter may be uncertain a priori or the parameter location may

change. Two courses of action are available when it is detected that the true parameter

position is outside the region of the moving bank. The bank can either be moved in the

direction of the true parameter point so as to encompass it, or the bank can be expanded

so as to encompass it. This section discusses the four basic decision logics used to move

the bank: (1) residual monitoring, (2) parameter position monitoring, (3) parameter posi-

tion and "velocity" monitoring, and (4) probability monitoring. The threshold values used

for these techniques must be determined through performance evaluation. This section

provides a description of the logic as well as some insight into previous work performed in

establishing appropriate thresholds for these methods.

2.4.1.1 Residual Monitoring. The effect of the residuals on the calculation of

the probability density function was discussed in Section 1.1.1 and shown in the exponential

term of Equation (1.2). In Section 1.1.2, this exponential term was defined as the likelihood

quotient, Lj(ti), based on the active elemental filters in the bank. This was discussed in

relation to Equation (1.3). Considered in the scalar case, the likelihood quotient is the ratio

of the tesidual squared divided by the filter-computed variance for the residual. Consider
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the effect of the parameter being outside the area of the filter. The residual values would

.ecome large and drive all the J likelihood quotients high. A preset threshold could be

determined through performance evaluations such that when the smallest Lj exceeds some

threshold an appropriate filter movement action could be determined. In other words, a

possible detection scheme would be to move the bank when

min(L1, L2,.. ., Li) L_ Tleid (2.27)

Additionally, the filter closest to the true parameter should have the smallest likelihood

quotient and thus provide an indication of where to move the bank. In determining T.sid,

Hentz noted, as expected, that when the threshold was set too high the moving-bank took

longer to identify the parameters [7:61]. When the threshold was set too low, the moving

bank failed to maintain estimation of the true parameters. The use of residual monitoring

should be limited, however, to situations where the system is not subject to "single large

samples of measurement noise" [19:1876]. Examination of Equation (1.3) shows that the

values of Lj(ti) would all rise appreciably in the face of a sudden high value of v(ti) which

affects the residual directly through the realized measurement value. This would result in

an erroneous decision to move the bank.

2.4.1.2 Parameter Position Estimate Monitoring. Equation (2.24) gave an

expression for the estimated parameter location based on the K discretized parameter

locations (now based on the J discrete moving-bank filter locations) and hypothesis con-

ditional probabilities. The estimated parameter location is used in this technique for

determining where the center of the moving bank should be. If the parameter location

begins to move to the edge of the current bank or to move to some predetermined -distance

from the current center, then the decision to move the bank could be made. Note that

the bank cannot always be centered over the estimated parameter position, s when the

estimated position is near the outer edges of the overall parameter space. Ccntcring the

bank in this case would require that some elemental filters lie outside the overall parameter

space. Reviewing Equation (2.24) shows that the benefit of this technique is that it relies

on a history of measurements rather than just on the single current measurement. Thus it
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is not prone to the single-large-sample measurement noise problem, of residual monitoring.

2.4.1.3 Parameter Position and "Velocity" Estimate Monitoring. This tech-

nique is an extension of the previous parameter position monitoring technique. If the

parameter is varying slowly, the position and "velocity" can both be monitored. The pa-

rameter velocity is the change in parameter location between sample periods or over an

extended period of time. The velocity vector could be used to estimate where the parame-

ter will be at the next sample period. If the predicted location is outside the current bank

of filters or beyond a certain threshold distance, Tpredicted position, from the current center,

then a move of the bank is indicated in the direction of the velocity vector. Evaluation of

Tpredictedposition by Hentz indicated that this method showed no real enhancement in speed

to acquire, and important destabilization of the bank's position in parameter space [7:62].

2.4.1.4 Probability Monitoring. Monitoring the hypothesis conditional prob-

abilities generated by Equation (1.1) provides insight into which filter is located nearest

the true parameter location. Using a preset threshold, Tprob, the bank can be moved in

the direction of the filter providing the most correct parameter estimate, i.e., the one with

the highest pj(ti) value which is also above Tprob. The bank seeks to center itself on the

filter which is based on the most correct assumed parameter value. As with parameter po-

sition monitoring, probability monitoring uses a time history of measurements and is less

susceptible to radical changes due to individual large realizations of measurement noise.

Hentz found that the performance of the bank improved as Tp,.,b was decreased from high

values to low [7:62]. Essentially, with a low Tprob, the bank moved anytime the probability

weightings on the perimeter elemental filters exceeded the weighting on the center filter.

Hentz found this method and the parameter estimate monitoring method to provide the

best performance. However, probability monitoring has the additional benefit of a slightly

less costly computational loading than position monitoring [7:87].

2.4.2 Expanding the Bank. The size of the bank need not be fixed and the bank

filters need not be at adjacent finely discretized points in the parameter space. If the active

filters are not associated with adjacent discrete parameter values, the bank behaves as a
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coarsely discretized moving bank. A coarsely discretized bank was illustrated in Figure

1.3(b). The estimates provided by such a bank may not provide as accurate estimates as

a bank where the active filters occupy adjacent discrete parameter locations. However, it

does offer a higher probability that the true parameter location will be within the bank.

This is a good attribute for two specific cases. First, the bank may require expansion to a

coarser discretization for the case of a jump change of the true parameter location. Second,

a coarse discretization may be desired for initialization of the moving bank. Expansion of

the bank due to a jump parameter change is discussed first while the initial acquisition

cycle is discussed in the next section.

Using residual monitoring, a jump change in the parameter can be detected and the

bank expanded. After a parameter jump, the likelihood ratios of the implemented filters

are expected to be large, exceeding some threshold , Texpand,. Residual monitoring is used

because the needed information (that none of the current filters in the bank correspond to

a "good" assumed parameter value) is not available from either the covariance of 4, or k

itself [7:58]. When the bank expands, it is set to an initial coarse discretization with its

center at (5,5). Essentially, the moving bank starts the initial acquisition cycle over when

an expand decision is made. Evaluation of Texpand by Hentz determined that, if it was

set too high, the bank waited too long after the parameter jump before expanding. When

Texpand was set too low, the bank expanded inappropriately during the runs [7:69]. Using

residual monitoring for bank expansion has the same problem as that for bank movement;

in the face of a sudden high value of v(ti), the values of Lj(ti) would all rise appreciably,

which would result in an erroneous decision to expand.

2.4.3 Contracting the Bank. As discussed previously, a coarsely discretized bank

could result from the decision to expand the bank due to a jump parameter change, or

during the initial acquisition cycle, where convergence has a higher probability of occur-

ring. Maybeck and Hentz found that using an initial coarse discretization of the bank

improved parameter acquisition [19]. As stated previously, the estimates provided by such

a bank may not be as accurate as those provided by a bank where the active filters occupy

adjacent discrete parameter locations. Therefore, once the parameter estimate is made, it
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is desirable to contract the bank to a finer discretization as soon as possible. The following

discussion will highlight the acquisition cycle and the determination of the contraction

threshold.

In the initial acquisition cycle, the discrete parameter value spacing is set such that

the moving bank covers nearly the entire parameter space. In this way, the true parameter

will always be within the region spanned by the large moving bank. The covariance of the

parameter estimate is then used to contract the bank as appropriate. The formulation of

Pi was given in Equation (2.25). One scheme to contract this coarsely discretized bank is

to contract the spacing in two steps (see [7:64] and [3:79]), as opposed to the alternative

of being contracted to finest discretization in one step. The bank initially has a spacing of

four between the elemental filters. When the covariance of the parameter estimate drops

below a specified threshold, Tcontractl, the bank contracts to an intermediate spacing of two.

Finally, when the covariance of the parameter estimate drops below a second threshold,

Tcontract2, the bank contracts to its finest discretization, a spacing of one. Each time the

bank contracts, it contracts such that its center is the discretized parameter point nearest

to ak. This has the disadvantage of all the nine filters generally going through an initial

transient. Another option would be to contract the bank to the quadrant of the parameter

space before contraction that contained the estimated parameter point position. This

ensures that four filters of the bank before contraction remain in the bank after contraction.

This is desirable in order to minimize the impact of initial transients in the state estimates

[3:80]. For this research, the bank will be contracted in one step and will be centered on

the discretized parameter point nearest to ak.

It is important to note that the covariance of the parameter estimate in this research

is a two-by-two matrix. In order to compare this matrix to the threshold level, a scalar

value associated with this matrix is needed. Ilentz used the larger of the two diagonal

elements, after performing an inverse mapping on the w estimated variance to give both

elemr.nts the same relative magnitude [7:64]. (Recall that Hentz's parameter discretization

for the w parameter was logarithmic.) In determining the values for these thresholds, Hentz

found that if the thresholds were set too high, the bank contracted before a good parameter

estimate could be obtained. If the thresholds were set too low, the bank did not contract
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soon enough, degrading performance while it is in the coarse mode. Filios [3] found that

requiring both variances to be below the thresholds gave a more accurate determination of

when to contract. However, this required tradeoffs in the determination of the threshold,

since the same threshold was not necessarily the most appropriate for both variances. Filios

found that the threshold he used proved to be sensitive to the probability weight lower

bound, Pmin, used to keep the bank from "locking out" any elemental filters. A potentially

better idea, and the method which will be incorporated into this research, is to contract

in separate directions using separate diagonal terms, which allows for rectangular banks.

Karnick proposed an alternative method in which the probability of a side of the

bank was monitored such that

Z=side f&(ti)aZ(t,-)(zi I aj, Zi- 1 ) (2.28)
Pside~i) = E4 sides fI( ,)Ia,z(L,_.)(zj a, Zi- 1)

is the probability associated with each side [8:27-29]. If the side probability falls below some

threshold, then the side is contracted. "Conversely, if the probability associated with a side

rises above some threshold, the remaining three sides are 'moved in' " [8:291. The third

possibility involves evaluating all four sides, and when the sum of the sides' probabilities

fall below an appropriately determined threshold, the bank is contracted. This method is

totally ad hoc.

2.4.4 Initialization of New Elemental Filters. When the bank is moved, expanded,

or contracted, three processes must occur. First, the matrices -I, B,!, Gd, H, Ak, D (which

will be discussed Section 3.4 of Chapter 3), K, P(t'), and P(t+ ) for each elemental filter

(and G* for each elemental controller) are changed to correspond to the new parameter

points. Second, the changed filters must be initialized with new values for ,^j(ti). And

third, the changed filters must be initialized with new values for pj(ti).

The first process is achieved by simply retrieving the matrices which have been

previously calculated and stored. The second pro.ess can be achieved by selecting j(ti)

for the changed filters as the current moving-bank estimate of the system state, R(4+). For

the third process, several options have been investigated [8:29-32].

2-17



The first option for initialization of pj(ti) is to set all of the pj(ti)'s (for both changed

and unchanged elemental filters) to 1. This option has been shown to result in sluggish

convergence to a parameter estimate. A second option is to redistribute the sum of the

discarded filter probabilities equally among the new filters. A third method, proposed

by Hentz, is to re-assign the total discarded filter probability based on the "correctness"

of the new filters [7:29]. A new filter's "correctness" is based on the computation of its

probability density function value for the current measurement relative to the sum of the

changed filters probability density functions' values. Hentz's algorithm is riven as:

pj ~th~i[- f lAZ(t,)(zI a1 , Z.. 1) I E pl(i) (2.29)Echh~ ) =i AEt-,(Z I aj, zi-1) uc

where ch=changed and unch=unchanged elemental filters. However, this method requires

additional computation and has demonstrated no significant performance improvement

over equal re-distribution of the discarded probabilities [3:76]. The special case of bank

expansion results in the resetting of all the filters in the bank. Dividing the probability

among all the filters is appropriate since the old probability weightings may no longer be

valid. In all of the methods described above, the sum of the probabilities of the bank after

the reset must equal one (as mentioned in Section 1.1.1); this may require a rescaling step.

Finally, in addition to investigating how to initialize new filters, lentz investigated

the need for "warming up" the new filters before they were actually brought on line. This

warmup would allow initial transients in state estimates and conditional probabili ties to (lie

out. Ilentz's results indicated that there was no detectable improvement in performance

when filter warm up was used [7:100]. This research will use equal redistribution of the

discarded filters and no filter warmup.

2.5 Stochastic Controller Development

As stated in Section 1.1.3, the moving-bank and fixed-bank MMAE algorithms cani be

used with several stochastic controller designs. The controller implementations investigated

in this research will be the MMAC, the modified MMAC, the MAP vs Bayesian MMAC,

and the modified single changeable-gain controller. The "assumed certainty equivalence
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design" methodology presented by Maybeck [17:241-245] will be used. Each controller

developed is a linear, quadratic cost, full-state feedback optimal deterministic controller

based upon a specific assumed parameter value of ak. As discussed previously, the out-

put of the controller is desired to be the optimal control function, such that a quadratic

cost function is minimized, in order to cause the closed loop system to behave properly,

quickly quelling out any bending vibrations. The following discussion provides the basic

development of the general quadratic cost function in order to highlight aspects which are

of concern to this research.

As developed in Maybeck [17:73], consider a continuous-time system such as that

provided in Equation (2.1) to which it is desired to apply sampled-data control of the

form u(t) = u(ti) for all t. What we are really concerned with is the behavior of the

continuous-time system for all t E [to, tN+l] and not just at the sample times ti. Assume

that the control objective will be realized when the following continuous-time quadratic

cost function is minimized:

J-E ~ ~ rftN+ I().,tut +7~~. 2x7TIjI' i4VZtI
J +,0  1 t ) + Jv)xu.&)U&)]

+ 1 XT tN+1)XfX(tN+i)J (2.30)

where the W (t) is positive semidefinite and W,.,(t) is positive definite for all t. Following

the development in [17], the cost can be equivalently expressed in discrete time by dividing

the desired time interval into (N + 1) control intervals which yields the following:

J = E{ 1 [T(ti)X(ti)x(t) + uT(t)U(ti)u(ti) + 2x7 (ti)S(ti)u(ti) + L(ti)]

+ XT(tN+)X(tN+1)J (2.31)

where

X(ti) pT(t, ti)W,.,:(t)qiT(t. ti)dt (2.32)
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U(t) = 9T+1 (t, ti)W.(t)f(t, ti) + Wt,(t)
+B:T(t, t,)W,,(t) + WT ,(ti)W, i)] dt (2.34)

ti

and

(,i) (t,r)B()dr (2.35)

The residual cost, Lr(ti), in Equation (2.31) ha. no bearing on the evaluation of the optimal

control function and is therefore not evaluated here [17:76]. Examination of Equation (2.34)

reveals that there are two instances where the cross terms in the general cost need to be

evaluated. First, if the continuous-time cost matrix W',,(t) is non-zero, then non-zero

S(ti) will also exist. Second, due to the desire to apply control to the state over the entire

sample period (not just at the sample times), S(ti) will still exist even if W -(t) 0: see

the first of two terms in the integral of Equation (2.34).

If the assumption of a linear system driven by white Gaussian noise is used, with a

quadratic cost function given by Equation (2.31), then the optimal discrete linear feedback

control law was shown to be of the form given in Equation (1.8), where the gain is given

by [17:731:

G*(t) =[tT(ti) + B T(t4)Kc(ti+l )Bd(ti)] -1 [B~iK(i1c~ i i) + ST (t)] (2.36)

which is also part of the solution of the backward Riccati equation solving for K(ti) [17:73]:

KC(ti) = X(t,) + ,T(t+.,t)K (I4+)I(i+b t)

- [BT(t)K+(t+1 ) (4i+i,.i) + sT(t)]T G-(ti) (2.37)

as solved backward from the terminal condition:

KC(tN+1) = Xf (2.38)
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If the assuinption of a time-invariant linear system driven by white Gaussian noise

is used, with a quadratic cost function given by Equation (2.31) with constant weighting

matrices, then the optimal constant-gain discrete linear feedback control law was shown to

be of the form given in Equation (1.9), where the gain is given by [17:242]:

= u+ MKBdJ [BdZ T (2.39)

where Ke is the solution to the steady state Ricatti equation:

= x + .I- + ST] T [+BTK B 1 [BRi, + ST] (.0

By assuming the use of constant weighting matrices and assuming steady-state op-

eration, the quadratic cost of Equation (2.31) becomes:

J= E E _(tTX( + UT(ti)Uu(ti) + 2xT(tj)Su(tj)] (2.41)

As stated previously, the selection of the weighting matrices found in Equation (2.41.) is

important in determining the performance of the controller. Tuning of the control and

state weighting matrices "is usually required, in analogy to tuning ol Qd and 11...." in the

Kalman filter [17:10-11]. This research will investigate the performance enhancement by

determining the state weighting matrices, X, for all the discrete parameter points, ak. As

stated previously, the cross weighting, S, will be kept at zero based on previous research

which indicated a minimal relative magnitude [11].

2.6 Summary

This chapter highlighted the concepts which are instrumental in this research. First,

it discussed general Kalman filter algorithms as well as practical insights which will specif-

ically affect this research. Next, Bayesian 'MMAE development was disciussed as the basis

for describing the moving-bank MMAE concept, which includes logic for moving and ex-

panding/contracting the bank of filters/controllers. Finally, LQG controller development

was presented. Most important to the discussions of the results in the chapters that follow
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is the rational and appropriateness for the simplifying assumptions which will be adopted

in this research. Basically, the system under investigation can be adequately represented by

time invariant noises and adequate performance is obtained by using steady-state Kalman

filters, steady-state optimal LQG controller gains, and constant state and control weighting

matrices. Chapter 3 provides the development of the large space structure which is under

investigation.
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III. Rotating Two-Bay Truss Model Development

3.1 Introduction

The system model discussion provided in Chapter I was intended to provide a basic

understanding of the system under investigation. The purpose of the current develop-

ment (like that found in Chapter 2) is twofold. First, the system model description of

Section 1.1.4 will be enriched to address the general theoretical development relevant to

this research. Second, discussion contained here will highlight simplifying assumptions and

insights gained from previous research which are pertinent to the accomplishment of the ob-

jectives specific to this researth. Rotating two-bay truss model development will encompass

(1) a description of the two-bay truss, (2) system model development, (3) reduced-oider

model development, and (4) truth model/filter model design. For a complete development,

see Karnick [8] and Lynch [14J.

3.2 Two-Bay Truss Description

The two-bay truss has been discussed in general terms to this point. This section (1)

gives a physical description of the model used , (2) describes the sensors and their locations,

and (3) relates the physical system parameter uncertainty to the MIvJAE development

discussed previously.

3.2.1 Physical Construction. In 1986, Karnick [8:45] provided the space structure

model that has been used since that time and is shown in Figure 1.8. For his research,

Karnick obtained a fixed two-bay truss which was originally developed to study the effects

of structural optimization on optimal control design [27]. A similar model was used to

research active control laws for vibration damping [14]. In order to study the effects of

rigid body motion, Karnick modified the fixed twvo-bay truss by adding a. hub of relatively

large mass. Rigid body motion is established by holding the hub center fixed while the

truss is free to rotate about this -point in the x-y plane. Thus, the Jotating two-bay

truss approximates a space structure that has a hub with appendages extending from

the structure, where the hub can be rotated to point the appendage in the commanded

direction.
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Table 3.1. Structural Member's Cross-Sectional Areas

Member Area (in2) Member Area (n )

a 0.00321 It 0.00328
b 0.00100 i 0.00439
c 0.00321 j 0.00439
d 0.01049 k 0.20000
e 0.00100 1 0.20000
f 0.01049 m 0.20000
g 0.00328

The thirteen rods that make up the truss structure a;e listed in Table 3.1 with

their cross-sectional areas. The members are made of aluminum which has a modulus of

elasticity of 10' psi and weight density of 0.1 pounds per cubic inch. The rods connecting

the truss to the hub are much larger in diameter than the truss members, causing this

link to be very stiff compared to the truss rigidity. The addition of this physical link does

introduce high frequency modes into the system but maintains the low frequency modes

of the original fixed structure (11:57].

Non-structural masses with a mass of 1.294 lb. sec2/in are located at nodes 1 through

4 as indicated in Figure 1.8. This mass is very large compared to the member masses, which

achieves the low frequencies associated with large space structures [14:14]. The actual mass

values were selected based on an optimizing technique that maintains the lowest undamped

natural frequency (associated with the lowest mode) of 0.5 Iz [14]. The mass and stiffness

matrices, which describe the system model, were obtained using finite element analysis

[28]. The mass and stiffness matrices for the nominal structure are listed in Appendix A.

3.2.2 Sensors and Actuators. A combination of gyros and accelerometers is used to

provide motion information to the control system. Accelerometers are located at nodes 1

and 2 as shown in Figure 1.8. These sensors measure physical displacements in the y-axis

direction. The accelerometers are not located at the node of the bendling modes being

detected since the "displacement of the truss caused by the bending modes can not be

detected" [11:59] under those conditions. The outputs of the accelerometers are integrated

once to obtain velocity data and once again to obtain position data. This would argue
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for a non-diagonal Rt matrix. However, for this research, the simplifying assumption

will be made that the Rt matrix can be adequately modelled with a diagonal matrix.

Gyros are placed at the hub (node 7) to provide angular displacement and angular velocity

information. Actuators are co-located with the accelerometers ,' nodes 1 and 2. The

actuators act along the y-axis only. The co-location is done to simplify the system model,

specifically the measurement matrix H. The actuators at nodes 1 and 2 are assumed to

be thrusters. The hub also contains an inertia wheel to act as an additional actuator.

Dynamics noise, w, is assumed to enter the system at the actuators.

3.2.3 Physical System Parameter Uncertainty. The purpose of this thesis is to test

the moving-bank MMAE and control algorithms. Therefore, the model must have pa.ram-

eter uncertainty which requires adaptive estimation to be applied. As discussed previously,

the parameter space investigated in this research is composed of 100 discrete comb"2tions

of the parameters of interest, where the parameters of interest are the non-structural

mass and the stiffness matrix. The non-structural mass changes are representative of the

depletion of fuel tanks on the structure, refueling of the fuel tanks (where weight is being

added), or weight being shifted from one part of the truss to another. The variations in

stiffness of the truss members might be caused by structural fatigue in a rod or rods or,

in the more extreme case, actual failure of one of the members. Not only does this choice

of parameter variations make sense physically, but as will be seen in the next section, the

choice of mass and stiffness as parameters is motivated mathematically due to their explicit

appearance in describing the dynamics equation of the structure.

3.3 System Model Development

A mathematical model is required to del armine the feasibility of the MMAE esti-

mation and contr, 1 techniques for the large spa, e structure described in Section 3.2. This

section will (1) 1 , the development of the general system model in state space form

and (2) motivate the need for and describe the development of modal decomposition.

3.3.1 Phys; al Coordinate Form. "The standard second order matrix differential

equation, developed through finite element methods, which governs the flexural vibrations
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of a structure" is given by [14:3], [8:39]:

Mi(t) + Ci(t) + Kr(t) = F(t) = Fl(u, t) + F 2(t) (3.1)

where

* r(t) = n-dimensional vector representing the structure's physical position

* F,(u,t) = r-dimensional deterministic control inputs

* F2(t) = r-dimensional disturbances and unmodeled control inputs

e M = n - by - n constant mass matrix

• C = n - by - n constant damping matrix

o K = n - by - n constant stiffness matrix

If the external disturbances are assumed to be white Gaussian noises, then Equation

(3.1) becomes [14:4], [8:40]:

M (t) + C"(t) + Kr(t) = -bu(t) - gw(t) (3.2)

where [11:48]

* u(t) = r-dimensional vector actuator inputs

e b = n - by - r control input matrix identifying position and relationships between
actuators and controlled variables

* w(t) = s-dimensional vector representing the dynamics driving noise, where s is the
number of noise inputs

* g = n - by - s noise input matrix identifying position and relationships between the
dynamics driving noise and controlled variables

If the states of the system are taken to be composed of the position and velocity

variables, then Equation (3.2) may be written in state space form as [14:4], [8:40]:

= Fx(t) + Bu(t) + Gw(t) (3.3)
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where the states are stochastic processes since they are driven by noise as well as a deter-

ininistic input. The state vector is given by [14:4], [8:41]:

x(t)= [ -( )1((3.4)
2nXl

The state vector described in Equations (3.3) and (3.4) are position and velocity contri-

butions of the various rigid body and bending modes to physical position and velocity

variables at selected points on the structure which are measurable by accelerometers. Tle

uncertain parameters enter the mathematical model via the constant matrices in Equation

(3.3). Relating this to the discussion of Section 2.3, Equation (3.3) represents the same

system as described by Equation (2.1). The constant system matrices a.re given by [8:41]:

F -M-nxn - nxn (3.5)
-M-'~x. M-'Cxn2nX2n

B = [ 02$1xr I2Xr(3.6)-M -lbnxr 2~

G= OInxs (3.7)

_-M -lgn sJ2,,xs

One of the assumptions taken in this thesis is that the system dynamics driving

noise enters the system at the same location as the actuators (thrusters). This assumption

causes the g and b matrices to be equal, and therefore G = B.

The model of the discrete-time mcasurement of the states is given by [8:42]:

z(t)={ [ H Hp x(tl +(X(ti) (3.8)
0 H v, I 77x2n
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where:

* m = number of measurements

* v(ti) = m-dimensional uncertain measurement disturbance modeled as a zero-mean
white Gaussian noise of covariance R(ti)

* Hp = (m/2) - by - n position measurement matrix in physical coordinates

* Hv = (m/2) - by - n velocity measurement matrix in physical coordinates

Relating this to the discussion of Section 2.2, Equation (3.8) represents the same

measurement model as described by Equation (2.7). For this research, since the position

and velocity measurements are co-located, Hp - Hr.

The equations developed here are highly coupled, that is, the equations are not

independent. This situation is not desirable, therefore modal decomposition is used to

transform the sets of equations into independent modal equations.

3.3.2 Modal Coordinate Form. The equations just developed are transformed into

a system of equations that are decoupled. "The general response of a complicated system

can be broken down into the sum of n simple responses" [2:260]. The assumption that the

matrices are constant allows the modal decomposition to be useful. If the matrices were

variable, then the advantage of using modal decomposition would be lost [2:262].

Following the research performed by Lynch and Banda, the damping matrix is as-

sumed to be a linear combination of the mass and stiffness matrix [14:4]:

C = am+ OK (3.9)

Due to the transformation from physical to modal coordinates, the actual determination

of a and f are not required. If the modal coordinates are denoted by i", the relationship

between the modal and physical coordinates is given by [14:5J:

r = Ti (3.10)
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where T is the n - by - n transformation matrix composed of eigenvectors determined from

the solution of [14:5]:

w2MT = KT (3.11)

Note that Equation (3.11) relates the modal frequency, w, the mass matrix, and the stiffness

matrix. The damping matrix is not involved in the solution of the eigenvectors, therefore,

the solution of ce and , in Equation (3.9) are not explicitly found since they are not required

for the modal decomposition. The values of w that satisfy Equation (3.11) are called the

natural or modal frequencies.

Substituting Equation (3.10) into Equation (3.3) yields the transformed state space

equation to [14:5];

(t = FR(t) + Bu(t) + Gw(i) (3.12)

where ( ) represents the modal coordinate frame and the state vector is now defined as

[14:5]:

=(t) Ft)1 (3.13)
[-(t) I2nxi

The matrices describing Equation (3.3) are also transformed and calculated as [14:5]:

F = [ J (3.14)_7"-IM-K7,  _T-1M-CTI2nJ

B = =G (3.15)

12nXr

Orthogonality of the modal vectors and the following definition

[-T-1M-1CTI = -2(iwi (3..6)
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allows the open loop plant matrix to be written in terms of the undamped natural fre-

quencies and the damping ratio of the i-th mode. Therefore, F becomes:

[-2 ( w I n n (3.17)

where each of the four entries in F are n x n and are diagonal. Finally, the equation

describing the measurement process may be rewritten as [8:44]:

z_) 0 ] (ti) + X(ti) (3.18)
0 HvT Ix2n

The measurement matrix in Equation (3.18) shows the general formi and will be referred

to as Ht. The actual implementation of Ht is different from that shown in Equation (3.18)

due to the method used to incorporate rigid body position and velocity measurements into

the matrix; it corresponds to a reordering of the components of z(ti). The form of H used

for this research is provided in Appendix A.

The use of modal coordinates allows the following assumptions to be made [14:14].

The structural damping is assumed to be uniform throughout the structure. The damping

coefficient selection does not play a role in the undamped natural frequencies and therefore

may be selected based upon design requirements. The previous theses used a value of

C = 0.005 based on work performed by Lynch and Banda [14] and as representative of

many space structures.

The mathematical structure of the system model has been developed in both physical

and modal coordinates. The parameters used in the equations of this section were derived

from finite element analysis of the structure. However, large order systems present a

problem computationally. As a result, low-order models are desired. The next section

provides a detailed explanation of the method used in this research to arrive at a. low-order

design model.
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3.4 Reduced-Order Model Development

The state reduction performed on the system of equations developed follows the work

of Kokotovic, et.al. [10:123-124]. The need to reduce the state dimension is (lue to the

large computational load that a 24-state system would place on the MMAE algorithm.

The reduced order model is developed in this section from the basis of the system model

developed in the previous section.

3.4.1 Order Reduction Development. The continuous, linear, stochastic system model

given in Equation (3.3) is reformulated as [10:123], [8:52]:

(t) _(t) F11 F12 24(t) I+ B] u(t) + G I () (3.19)

_C2(t) F21 F22 2(t) B2 [ G2

where the system is driven by deterministic controls and zero-mean, white Gaussian noise

of 3trength Q(t). The state vector partition xy(t) corresponds to "slower" modes to be

maintained in the design model and x2(t) corresponds to "faster" modes to be ignored.

The sampled-data measurement model provided in Equation (3.8) is reformulated as:

A(ti) = [H, H2 ] E [ 4 + I X(ti) (3.20)

where the measurement noise is a zero-mean, discrete-time, white Gaussian process with

covariance R(ti).

If steady state is assumed to be reached instantaneously by the "fast" modes, the

x2(i) modes are removed while maintaining the low frequency modes in xl(t). Fil and

F22 are square matrices and x2(t) can be expressed in terms of xI(t) assuming that F-'

exists. Then the higher order modes may be expressed by [10:123], [8:52]:

2(t) = F21x1 (t) + F 22x9 (t) + B2u(t) + G2w(t) = 0 (3.21)

x2(t ) = -F-' [F21Xl(t) + B2u(t) + G 2w(t)] (3.22)
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Substituting these equations into Equations (3.19) and (3.20) yields [10:123], [8:52]

-k()= [F11 - F 1 2 F 2 1 x1 (t) + [ 1 -F 2 2 'B]ut

+ [G1 - F12F-1 G2 ] (t) (3.23)

z(t) = [H, - H2F--F212 ] x(ti) - H2F' [S 2u(ti) + G2 V(ti)]

+X(ti) (3.24)

The second term in Equation (3.24) is a direct feedforward term created by the order

reduction [10:123], [8:52].

Applying the above order reduction technique to the original system model in modal

coordinates (provided in Equations (3.12) through (3.18)) yields a new system dynamics

matrix given by [10:123], [8:53]

0 I : 0 0

1-W2] [-2(lw,] 0 0

...... ...... ...... ...... ...... (3 .25 )

0 o : 0 I

o : [-w2] [-2(2w21

The matrix given by Equation (3.25) has obvious partitions. The upper left partition

contains the low frequency modes (denoted with subscript 1) to be retained while the lower

right partition (denoted with subscript 2) contains the high frequency modes assumed

to reach steady state instantaneously. The partitions correspond to the F 1 and F 22

partitions observed in Equation (3.19). Each of the subpartitions in Equation (3.25) are

diagonal natIces, but the entries in any one subpartition are all different. Additionally,

the submatrices :', '1, are zero. Substituting this information into Equations (3.23)

and (3.24) yields [10:12.. ,:53]:

_ (t) = F1 IRI(t) + Bmu(t) + Gwy,(t) = FRI(t) + Bru(t) + G,.w,.(t) (3.26)
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= H1 *(ti) - H2fF 'b 2U(ti) - ft 2P~ 22 2(i) + Yr(ti)

SHTrli(ti)+ Du(ti) + ,W(ti) +r(ti) (3.27)

where the subscript r denotes "reduced-order." The only terms associated with the high

frequency modps are the direct feedthrough terms in Equation (3.27), b,, and D,. These

direct feedthrough terms allow direct measurement of the control inputs u(ti) as well as

the system dynamics driving noise w(t). The noise vectors. ,.(jt) in Equation (3.26) and

_,.(ti) in Equation (3.27), represent noise vectors which account for the truncation of the

high frequency modes from the system model.

The direct feedthrough terms, Ib, and f), in Equation (3.27) are the most coin-

plicated since the other terms are realily available. (The other matrices are found by

truncating the states associated with X2(1) from the full state model.) As previously dis-

cussed in Section 3.3.1, the G and B matrices are equal and therefore, D = b", = D. The

terms seen in b show that it is dependent on the state terms that are assumed to reach

steady state immediately. The development of b is provided in Appendix A. Research

performed by Karnick and Lashlee did not incorporate the D terms since the truth model

and the filter models they used were of the same dimension. Van Der Werken and Schore

both provided development of such matrices for theii unmodelled effects investigations,

however it is doubtful that their simulations actually incorporated these terms. This will

be discussed in more detail in Chapter 4.

3.4.2 Order Reduction Selection. For each location in the discretized parameter

space, eigenvalues and eigenvectors of the unreduced system may be calculated from the

system dynamics matrix F given in Equation (3.17). Table 3.2 shows the natural frequen-

cies and damping factors associated with the nominal mass and stiffness matrices, i.e., no

scaling. The damping factors are all close to the 0.005 value used as an approximation in

previous theses. The eigenvalues fall into closely spaced groups. For example, one group

of three modes is seen in modes 4-through 6. Research performed by Van Der Werken [26]

and Schore [22] were the only previous works to use a 24-state truth model; both Van Der

Werken and Schore elected to use the first three modes in the filter model corresponding
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Table 3.2. Natural Frequencies and Damping Factors for Nominal Structure

Mode Eigenvalue Natural Frequency (Hz) Damping Factor
1 0.2934 + j 0.0000 0.0000 0.000
2 -0.0449 + j 8.8982 1.4152 5.0459E-3
3 -0.1127 + j 22.5490 3.5888 4.998033-3
4 -0.1477 + j 29.5444 4.7021 4.9993E-3
5 -0.1558 + j 31.1511 4.9579 5.0014E-3
6 -0.1640 + j 32.7999 5.2203 5.0002E-3
7 -0.2719 + j 54.3886 8.6562 4.9992E-3
8 -0.2908 + j 58.1586 9.2562 5.0001E-3
9 -4.9296 + j 985.904 156.91 5.0000E -3

10 -45.0945 + j 9018.79 1435.4 5.0000E-3
11 -57.5800 + j 11515.9 1832.8 5.0000E-3
12 -99.7825 + j 19956.3 3176.2 5.000033-3

to a 6-state filter model as done previously by Karnick [8] and Lashlee [11]. As stated

previously, this research will continue with the same truth model and filter model as that

used. by Van Der Werken and Schore. The next section discusses the specific development

of the truth model and filter model which will be used.

3.5 Truth Model/Filter Model Design

The previous sections provided a general background for developing a system model

for the two-bay truss as well as a method for selecting a suitable reduced order model for

basing the Kaiman filter and stochastic controller. This section provides specific details

for the truth model and Kalman filter model used in this research. This section discusses

(1) the form of the truth model and filter state vectors, and (2) determination of the

appropriate sampling frequency for the discrete formulation.

Equations (3.14), (3.15), and (3.18) show the form of the matrices needed to describe

the system and measurement models. These matrices are functions of the true parameter

vector at, a two-dimensional vector with scalar components that dictate the value of M

and K, respectively, where M and K are the mass and stiffness matrices described earlier.

For this research, the truth model vector is assumed to be composed of the rigid body and

first eleven bending mode position states, followed by the corresponding twelve velocity
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states:

X1 Rigid body mode position

X2 First bending mode position

12 Eleventh bending mode position (

X13 Rigid body mode velocity

Xii First bending mode velocity

X241 Eleventh bending mode velocity

Matrices developed to describe the truth model and measurement model corresponding to

the - t vector will be denoted by subscript t.

The filter-model states used in this research and previous research eflorts are defined

by:

X1 Rigid body mode position

X2 First bending mode position

X3 Second bending mode position

X4l Rigid body mode velocity

X.5  First bending mode velocity

X6 Second bending mode velocity

Matrices developed to describe the filter model and measurement model corresponding to

the Rf vector will be denoted by subscript f.

In order to evaluate the error between the 24-state truth model and the six-state

filter model, Van Der Werken transformed the the truth model so that the first six states

correspond to the states of the filter [26:233]. However, for this research, his transformation

is not needed. Formation-of the error vector for this resval'l, will hr, disrilsqd in Ch.,lptor.

4. Appendix A provides a listing of the truth model and filter model matrices used in this

research.
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As discussed in Section 2.2, the algorithms which will be implemented need to be in

discrete form. Therefore, selection of a sampling period is required for evaluation of the

truth model matrices 4,t, Bd,, and Qd, and the filter model matrices ,Ij, Bdl, and Qd1 as

developed in Equations (2.10) and (2.15). Based upon the frequencies shown for the states

to be retained in the filter model, a sampling period of 0.05 seconds (20 ]Iz sampling rate)

is appropriate.

3.6 Summary

This chapter provided the framework for developing a practical mathematical model

for basing a "truth" model and a Kalman filter design model for investigating the multiple-

model adaptive estimation and control algorithms. Use of modal decomposition is instru-

mental in establishing the mathematical model. For this method to be useful, this research

assumes that the matrices describing the second order differential equation of the struc-

ture are constant. Using the method of singular perturbations, appropriate selection of

reduced-order states can be accomplished for basing the Kalman filter model. The de-

velopment and form of the 24-state truth model and six-state Kalman filter matrices are

provided in Appendix A. Chapter 4 discusses the simulations which will be performed in

this research.
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IV. Simulation

4.1 Introduction

The space structure discussed in Chapter 3 is simulated in order to study the estima-

tion and control capabilities of the MMAE and controller techniques discussed in Chapter

2. To determine the statistical properties of the estimation/control process, Monte Carlo

analysis is performed. This chapter provides (1) a discussion of the Monte Carlo analysis,

(2) a description of the software, (3) a discussion of the modifications to existing software,

and (4) the simulation plan for this research.

4.2 Monte Carlo Analysis

The Monte Carlo analysis performed by the simulation software provides the sta-

tistical information about the performance of the MMAE and the controller algorithms

described in the previous chapters. If the system under investipfion were fully linear,

then covariance analysis could be used [15:329]. However, the adaptive nature of the

NIMAE technique used to control the large space structure requires the employment of

Monte 'Carlo analysis to obtain many samples of the process and evaluate the statistics

of the process. As with the work performed by Van Der Werken [26] and Schorc (22],

the sirp-tlaticn involves two models: a 24-state "truth model" for accurate simulation and

performanzce evaluati, n and a six-state filter and controller design model based on the

development of Chapter 3. The design model is the same one used by Karnick [8], Lashlee

[11], Van Der Werken [26], and Schore [22]. The 24-state truth model was developed by

Van Der Werken [26] and used by Schore [22]. This section will discuss (1) the error vector

formulation and (2) the error vector statistics.

4.2.1 Error Vector Formulation. WhiP previous thesis efforts [8, 11, 26] viewed

the e5timatiou and control of the modal state: a5 the primary objective, the goal of tiis

research is to view physically meaningful quantities. The first simulation is concerned

with the estlmation of the structure positions and velocities at nodes 1, 2, and 7 (i.e., at

the midpomtt and end of the two bay truss, and at the !o , A, )eral vector of error
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signals (which consists of three physical positions and three velocities) is determined by

subtracting the filter estimates of these quantities from the true positions and velocities.

The error term formulation used in this research is modified from that presented by Schore

[22:Chapter 1 pg 22]. The error-term is computed as:

9etj=H/_t j- fsI s (t ), pj(t ) (11
j=1

where Ilt is a modified version of the general truth model measurement matrix, in modal

coordinates, and relates the three physical positions and velocities to the truth model states

(assumed to be 12 modal positions and velocities, in that order, described by Equation

(3.28)). The form of H't is given by [22:Chapter 4 pg 8]:

Htf=[ H1 1 3X3  AHINX9 H 0 6X24 (4.2)0 1) HfI23x3 AI:t,,3.9 x,

where fItp corresponds Lo the effect of the upper nine modal position states, and ft,"

to the effect of the upper nine modal velocity states. Schore implemented a modified

version of this error form to investigate the effects of the higher order bending modes of

the structure on the ability c' the estimation t.chnique to provide accurate position and

velocity estimates. The effects of the Itp and ftH, partitions of the I 1t matrix can be

varied by the scalar variable, A, between 0 and 1. (A = 0 allows no higher order modes

whereas ,\ = 1 allows the full effect of-the higher order modes.) For this research, the full

effects of the higher order modes will be investigated, therefore requiring A equal to one in

Equation (4.2) unless otherwise specified.

The filter measurement matrix, I 1 , relates the three physical positions and three

velocities, in that order, to the filter assumed states (three modal positions a.ri airee

velocities, in that order). The general form of Hf is given by:

H [ 0 (4.3)0 Hf~t23x3 1 6 i6



Figure 4.1(a) shows a block diagram of the Monte Carlo analysis simulation which

is similar to that used by Schore [22:Chapter 4 pg 3]. To review, the variables of interest

are [22]:

* Rt(ti): the truth model states; 24-dimensional and in modal coordinates, representing

the rigid body mode and eleven bending modes

* Xf(ti): estimates of the system states; 6-dimensional and in modal coordinates, rep-

resenting the rigid body and the first two bending modes

@ at(ti): the vector representing the true structure mass and stiffness parameters

* _&(ti): estimates of the uncertain parameter vector

* a(ti): the error in the parameter estimate defined as ea(ti) = at(ti) - f(tj)

* ex(ti): the error in the system estimate defined by Equation (4.1). The form is due

to the development of the It and I matrices and is given as follows:

e,, Node 1 position error

e12 Node 1 velocity error

9e(ti)= ex3  Node 2 position error (4.4)

eX4  Node 2 velocity error

ex, Node 7 position error

eX LNode 7 velocity error

The second simulation performed implements a controller for closed-loop estimation

and control. The control simulation is depicted in Figure 4.1(b). The regulation error

signals are generated and evaluated statistically as for the estimation study. Here, the

signals of most interest are the true sti ucture positions and velocities at the three points of

int rest (described pre, iously). Basically this-is the-quantity Hx t . This is sih:.:ficant since

the goal of the controller is to quell the oscillations of the structure that may be induced

by moving the structure, changes in structural characteristics, oi changes in non-structural

masses on the structure. Also of interest is u since the amount of control available from
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Figure 4.1. Diagram of (a) Estimator Simulation, and (b) Controller Simulation [22]
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the actuators is realistically limited. The dither block shown in Figure 4.1(a) and (b) will

be described in Section 4.4.1.

4.2.2 Error Vector Statistics. The statistics of primary concern for the estimation

error (and control) processes may be defined as the sample mean and covariance of the

processes. The mean is determined by [26:67], [11:74]:

1 LF-{e(ti)} Pt M .(tj) = L E e.., (ti) (4.5)

k=1

where L is the number of Monte Cailo analysis runs made and eXk(ti) is the value of the

error signal during the kth simulation run at run time ti. The covariance may be calculated

as [15:130]:

M.= T -t -

L L T (

k=1

The statistics of the parameter estimation errors, _%(ti), or true structure positions, HtR (ti),

may also be obtained similarly witn appropriate substitutions into Equations (4.5) and

(4.6). This research will use sample statistics computed on the basis of ten Monte Carlo

runs to approximate the true statistics. Each run will be ten seconds in duration.

)1.3 Software Description

4.3.1 Introduction. The software used in this research was started by Hentz [7] and

then modified and used by Filios [3], Karnick [8], Lashlee [11], Van Der Werken [26] and

Schore [22]. The work performed through Lashlee was performed on a CDC Cyber com-

puter (a non-AFIT resource). Van Der Werken [26:69-70] moved the FORTA N programs

to an Elxsi 6400 superminicomputer (in-house). During Schore's research, the programs

were moved once again. The programs now reside on two separate computer systems within

AFIT: an ELXSI 6400 superminicomputer and a DEC VAX-11/785 superminiconiputer.

This section will discuss the (1) preprocessor, (2) the processor, and (3) the postprocessor.
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4.3.2 The Preprocessor: SETUPS.F. The preprocessor resides on tile DEC VAX-

11/785 computer. This is due to the availability of the IMSL [4] library routines on this

machine. In addition, this program is linked to a software library named LQGLIB [13].

The preprocessor generates the matrices used to describe the structure over a range of

mass and stiffness parameter points. The parameter space is determined by multiplying

both the mass and stiffness matrices by ten different scalar values, thus generating the

100-point space. The matrices generated are 4 , Bd, H, and Qd for the system model, and

'If, bd, and Hf for the filter models, as well as the direct feedthrough matrix D, the

Kalman filter gains K, the filter computed residual covariance Ak, and the LQ controller

gains G* for the 100-point parameter space. An input file is used to input the state (X)

and control (U) weighting matrices, the measurement noise covariance matrix (R), the

dynamics driving noise strength matrix (Q), and the time variables (start time, stop time,

and time increment). A second input file provides the mass and stiffness matrices tha~t

describe the structure. This program is linked to the LQGLIB [13] and IMSL [4] libraries.

The truth models and the reduced-state filter models are stored in two output files to be

used by the processor.

4.3.3 The Processor: MOVBNK.F. The primary processor uses the information

generated by the preprocessor to perform the moving-bank simulation via Monte Carlo

analysis. As Figures 4.1(a) and 4.1(b) indicate, the processor propagates the true system,

which is a full 24-state model of the structure, and uses measurements of this system to

update the estimator (and controller). At the measurement input to the estimator, noise

is introduced in the form of a white Gaussian noise vector. The software has the capability

to perform bank expansions, contractions, and movements according to the logic described

in Section 2.4.1. These functions are used once the states of the filter bank have been

updated and various internal parameters are compared to preset thresholds. This prograim

is linked to the LQGLIB [13] library. At the end of each time increment, pertinent data is
written to output files tobe postproeessed.

4.3.4 The Postprocessor: RESULT.F. Once the simulation is completed, the data

must be reduced using the methods described by Equations (4.5) and (4.6), and put into
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a presentable format, i.e., graphs of the mean ± one standard deviation of quantities of

interest . The most important values observed in this thesis effort are the errors in position

and velocity estimation and the corresponding true positions and velocities for control

evaluation. This program provides data in the form compatible with the GNUPLOT

plotting routine [5].

4.4 Special Simulation Processes

This section discusses two processes depicted in Figure 4.1(a) and (b) which are

required for the estimation and control simulations. First, the generation of a dither signal

is discussed, and second, generation of appropriate system dynamics and measurement

noise is presented.

.4.4.1 Dither Signal. To view the effects of the different modes of the large space

structure adequately, a dither signal is applied at the beginning of each ten second Monte

Carlo analysis run. The dither signal excites the system model and enhances parameter

identification [11:74]. (Schore corrected the dither signal used in previous research and this

corrected version is used for this research [22:Chapter 4 pg 7]). The sample period used in

this and previous thesis research is 0.05 seconds which corresponds to a sample frequency

of:
_ 13 tadfl OHz , 63a (,1.7)

2T 2 x 0.05 sec

From Table 3.2, the first eight average frequencies are all below this 10 Iz frequency and

should be adequately excited by the dither signal used for this research. The square wave

used does contain harmonics of the fundamental frequency with sufficient energy to excite

the higher order modes of the structure. The effect of the higher modes of the structure

may well be negligible, but major software modifications would be required to change this

limitation. The dither signal magnitude of 10 lbs was determined by trial and error to

provide adequate excitation and is applied for 0.5 seconds-through the-control actuators at

node 2 and node 7. For the estimation simulations, after 0.5 seconds the dither is turned

off and the actuator outputs are zeroed for the remainder of the simulation time. For the

control simulations, after 0.5 seconds the dithr is turned off and closed-loop control is
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allowed to be applied, as shown in Figure 4.1(b).

4.4.2 Dynamics and Measurement Noise. The driving noise w,1(ti) and the Inca-

surement noise v(ti) are provided by the simulation. A zero-mean Gaussian random vari-

able with a variance of one can be approximated by [7:45], [3:58]:

12

1(ti) = - 6 (4.8)
j=l

where y, is a random variable that is evenly distributed uniformly between zero and

one (available through a random number generator). In order to simulate a a zero-mean

Gaussian random vector with covariance Qd, the following operation is performed [7:45],

[3:58]:

S= A. r(t ) (4.9)

where the elements of r(ti) are computed by Equation (4.8) and A = -,.1 -d, i.e., Qd =

A . AT. A Cholesky square root is used to generate the transformation matrix A. Anal-

ogously, A = /R is used to simulate v(ti). Appendix B provides more detail as to the

approximations used to compute the A matrix when the Gd matrix is not the identity ma-

trix, as is the case for this research. The random number generator used in this research

is start-d with the same seed for every ten-run Monte Carlo set to ensure the same noise

samples are used for each study.

4.5 Software Modifications

Several problems with the existing software were 'countered during this research.

The simulations performed to study the effects of th( uttware modifications became an

important early objective of this research. This section briefly discusses the major modifi-

cations which were investigated and corrected before the major objectives of this research

were initiated. These modifications are discussed according to which of the programs were

affected.
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4.5.1 The Preprocessor: SETUPS.F. During review of the pre-processor program,

three problems were investigated.

First, the feedthrough term, D, of Equation (3.27) was calculatcd as a two-by-two

matrix instead of a six-by-three matrix. This matrix results from the truth model order

reduction and should improve performance of the filters by providing information of the

states not incorporated into the filter model.

Second, the development of the reduced order control input matrix, B,., of Equation

(3.26) did not incorporate the rigid body angular velocity input. Correct development of

this matrix will allow optimal control gains computed for the rigid body velocity to be

transferred through the actuator at the hub.

Third, the calculation of Ak implemented the truth model measurement noise co-

variance matrix instead of the filter model measirrement noise covariance. Incorporating

the filter measurement noise covariance matrix will alter the computation of Ak, described

in Equation (2.18), and therefore the likelihood quotient for residual monitoring shown

in Equation (1.3) as well as the density function computation of Equation (1.2) will be

affected.

4.5.2 The Processor: MOVBNK.F. During review of the processor program, sev-

eral discrepancies were corrected. First, a major modification which affected the estimation

and control simulations rectified the fact that the error vector was incorrectly computed

as the center measurement matrix multiplied by the first filter state estimate. A better

approach is to use a Bayesian approach and form a sum of probabilistically weighted filter

estimate errors, as seen in Equation (4.1). This will be discussed in more detail in the

duplication of past research.

Second, the direct feedthrough term, D, calculated from the preprocessor program

was not incorporated into the filter measurement model. As stated previously, incorpora-

tion of this term in the filter measurement model should improve performance of the filters

by providing information of the controls not incorporated previously into the filter model.

Third, the probability density computation of Equation (1.2) was affected by initial-

ization of the pk's for new filters not being correctly implemented as an equal redistribution
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of the discarded filter Pk's. Since the density computation relies on the previous probability

calculation, this correction is important (especially for probability monitoring). Also, a

software coding error was corrected in the exponential term of the density computation.

Fourth, the residual likelihood quotient used for bank movement vas implemented

as rj-'rj instead of as shown in Equation (1.3). Correctly implementing this logic, in addi-

tion to the correct use of the filter measurement noise covariance in the Ak computation,

warrants re-evaluation of the bank move threshold. Also, the move logic incorrectly com-

pared the computed minimum likelihood quotient by testing if it was less than the move

threshold instead of larger, as discussed in Equation (2.27). This is important in correctly

re-evaluating the threshold value.

Fifth, the sum of the probabilistically weighted control inputs for the MMAC im-

plementation was incorrectly initialized. Also, new values of G' for each of the elemental

controllers were not correctly implemented in the moving bank after a movement occurred.

These two corrections are important for the comparisons which will be made for alternate

control vector formulation, which will be investigated in this research.

4.5.3 The Postprocessor: RESULT.F. The post-processor was modified to be com-

patible with the GNUPLOT plotting program [5].

4.6 Simulation Plan

The main objective of this thesis effort is to determine the performance of MMAE

and controller algorithms. A means to observe the capability of the MMAE and controller

algorithms to provide useful estimates (in the case of the filter) and/or control (in the case

of the controller) is to monitor the position and velocity estimation errors and true position

and velocities of the structure. The purpose of this section is to describe the simulations

performed which deal with the performance of the estimation of the structui'e shape and

rigid body orientation, and the performance of the control algorithm, in the presence of a

higher order truth model. This research entails five studies for evaluating the estimation

performance and two studies for evaluating control performance. These seven studies were
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previously outlined in Chapter 1. Before these simulations are presented, a brief discussion

describing duplication of past work as well as modification investigations is presented.

4.6.1 Duplication of Past Research. Prior to initiating the moving-bank simulations

described in the following sections, an effort was made to duplicate the results produced by

Schore [22] . Duplication of past research is valuable in two respects. First, duplication of

previous research- results is desirable to ensure that the software is operating in the manner

as for previously obtained results and to gain familiarity with operating the software.

Ideally, in order to satisfy this requirement, duplication of previous research should use

the exact software and input parameters. However, for this research, the exact software

and input parameters could not be discerned. Therefore, the duplication of past research

performed in this research will be considered successful if the results demonstrate the major

characteristics of past research. Second, duplication provides a benchmark to evaluate the

affects of software modifications. Duplication cases for both estimation and control will

be investigated. Once duplications have been performed, investigation of the software

modifications will be performed to determine affects-on both estimation and control.

4.6.2 Dynamics Noise Strength and Measurement Noise Covariance Determination.

The first study conducted to investigate the performance of the estimator is the determi-

nation of the dynamics noise strength, Qd, and measurement noise covariance, R. Values

for Qd,, Qdf, Rt, and R1 will need to be determined. Determination of Qd, and Rt will

be accomplished first, followed by the values of R1 f and Qd,

The values of -Qd must be large enough to excite the system reasonably over a single

propagation cycle, but not too large as to mask the difference between the models. The

dynamics noise is evaluated as it affects the physical positions at nodes 1, 2, and 7. In order

to determine the values for Qt, the initial form is an identity matrix. The corresponding

Qd, is computed as in Equation (2.15). The physical positions and velocities are observed

open loop to determine when adequate excitation has been achieved.

The utilization of the same sensors to provide position and velocity measurements

on the truss and hub imply a highly correlated noise measurement covariance matrix with
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corresponding non-zero off-diagonal elements. The form of Rt will initially be diagonal

with later investigations using a non-diagonal matrix. The evaluation of Rt is determined

physically to represent actual sensor precision.

Once the values for Qd, and Rt are determined, the values for I f are determined

using the MVRO approach as used by Van Der Werken [26]. The form of ft. is determined

by increasing Rt by an amount equal to the difference between the 24-state matrix product

HtPt(t7)HT and the six-state matrix product HfPf(t-)HT [26:78]. This difference should

be symmetric, positive definite, and provides off-diagonal terms.

Once appropriate values for Qd,, Rt, and R are found, values for Qd1 can be

determined. The values for this matrix represent the effect of omitting the higher order

states from the filter model. A conservative approach must be taken so as not to mask the

performance of the elemental filters. As with evaluation of the Qd, matrix, the values for

this matrix are computed after first selecting the entries of the diagonal continuous-time

form, Qf.

4.6.3 Moving-Bank Logic Study. Once the filters have been properly tuned, the

bank will be initialized away from the true parameter and the bank will be free to move.

For this study, the bank will be initialized in the middle of the parameter space and the

true parameter will be initialized several parameter points away. A finely discretized bank

will be employed and expansion and contraction will be disabled. Residual monitoring

will be the move logic evaluated first and will establish the performance baseline for tile

moving bank. This benchmark will be used to evaluate both parameter position estimate

and probability monitoring. For each of the studies, an appropriate move threshold will

be established to obtain the best possible parameter identification, and therefore, the best

possible estimation performance.

4.6.4 Density Function "Bias" Study. Following the move logic investigation, a

btudy to determine the effectds of the coefficient term on the probability density function

will be performed. This will entail removing the constant coefficient from the conditional

density computation in Equation (1.2). Therefore, the new probability density function
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will be computed as follows:

fz(ii)iaZ(tii._,)(zi I ak, Zi. 1) = exp {-rT(ti)A .(ti)rk(ii)} (,t.10)

While the the resulting expression is no longer a true conditional density function since

the scale factor is not correct and the resulting area under the curve is no longer one, the

probability weightings are still correct since they sum to one because of the denominator

term in Equation (1.1). This study will be accomplished by determining the effects of the

modification on movement of the bank using residual, parameter position estimate, and

probability monitoring. If the results of the study indicate that the Ak.1 term in Equation

(4.10) affects the performance adversely, then further investigations will be performed to

lnvrstifate removal of the A-' term in the exponential, basically investigating the ME/I

fc,'m discussed in Section 2.3 and described by Equation (2.26).

4.6.5 Estimator Parameter Space Discretization Study. Following the density func-

tion study, an improved parameter space discretization will be determined using insights

gained from Sheldon's research [24]. Since his research determined that underestimating

the modal frequencies had a major destabilizing impact on closed-loop controller perfor-

mance, a modified parameter space will be determined such that the region of the space

which corresponds to the higher modal frequencies in the structure will be more densely

discretized. Recalling the development of the system model in modal coordinates in Equa-

tion (3.11), the region of the space which corresponds to higher modal frequencies will be

the region of lower M and higher K scaling values. For this study, the current boundaries

for each of the scaling parameters will be maintained and a logarithmic scale will be imple-

mented to yield nonlinear discretization values. Using the best moving-bank logic method

found in the previous investigations, the performance of the moving-bank estimator with

the new parameter space discretization will be determined. The performance of the associ-

ated controllers with the new parameter space will also be investigated in the simulations

performed for the controller study.
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4.6.6 Estimator Varying Parameter Study. The goal of this study will be to eval-

uate the optimal estimation algorithms previously found, for the case of varying the true

parameters. Following the parameter space discretization study, the true parameters will

be allowed to vary slowly throughout the space. For this research, a "slow" true parameter

variation will be implemented by changing the true parameter value by one discrete point

at the midpoint of the simulation. For this research, true parameter "jumps" will also be

investigated. For this research, a "jump" in the true parameter will be implcmented as a

change in the value of the true parameter by four discrete values. In addition to maintain-

ing a finely discretized bank during the "slow" and "jump" changes, bank expansions and

contractions will be allowed. Therefore, the appropriate thresholds for contraction and

expansion will be determined. As for the space discretization study, the performance of

the controllers fat varying parameters will also be investigated later.

4.6.7 State and Control Weighting Matrix Determination. This study will deter-

mine if the moving-bank controller performance could be enhanced by evaluating appro-

priate values for the X and U weighting matrices. The state weighting matrix, X, and

control weighting matrix, U, evaluated by Lashlee [11] will be the starting point for this

investigation. The goal of this study will be to maintain relatively small values for U

while increasing the values of X until the rms values for the true states stop decreasing

drastically. This will be accomplished for each parameter in the parameter space so that

each controller will be tuned for a specific parameter value.

4.6.8 Optimal Control Vector Formulation Study. The goal of the control vector

study is to compare the performance of a moving-bank controller using several proposed

m,.thodologies. The goal is to optimize the controller performance by investigating the

MMAC, modified MMAC, MAP vs Bayesian, and the modified single changeable-gain

controller approaches (recall Section 1.1.3). Using the optimal moving-bank parameter

estimation logic d-termined previously, the MMAC approach will be accomplished first

,nd will be considered the benchmark for performance. The modified MMAC, MAP

vs Bayesian, and the modihed single changeable-gain controller will be compared to the

MMAC approach.
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4.6.9 Controller Parameter Space Discretization Study. Following the control vec-

tor study, the effect of improved parameter space discretization on controller performance

will be determined using insights gained from Sheldon's research [24]. A parameter space

such that the region of the space which corresponds to the higher modal frequencies in the

structure are more densely discretized will be investigated to enhance performance. For

this study, the parameter space determined for the previous estimator -space discretization

study will be used. The MMAC approach will be used to investigate the effects of the new

parameter space on control of the structure.

4.6.10 Controller Varying Parameter Study. The goal of this study will be to eval-

uate the optimal control algorithms for the case varying parameters. Following the space

discretization study, the true parameters will be allowed to vary slowly throughout the

space. True parameter jumps will also be investigated. In addition to maintaining a finely

discretized bank and allowing the bank to move, expanding and contracting the bank

will be investigated. This study will use the appropriate thresholds for contraction and

expansion previously found in the estimation study.

4.7 Summary

This chapter provided a wide variety of information relating to the simulations per-

formed in this thesis. Section 4.2 explained the need for and use of Monte Carlo analysis

as it pertains to this thesis. Sections 4.3 through 4.5 describe the software used to im-

plement the simulations and some of the problems encountered with the implementation.

Finally, Section 4.6 presented the simulation plan which will be followed to accomplish the

objectives of this research. Chapter 5 describes the results derived from this simulation.
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V. Results

5.1 Introduction

The purpose of this thesis is to determine the optimal performance which can be

expected from the moving-bank estimation and control algorithms when a six-state Kalman

filter and/or associated LQG controller is evaluated against a 24-state truth model. This

evaluation is conducted in a physically motivated manner by observing physical positions

and velocities of the space structure at various selected locations. This chapter provides the

results of the Monte Carlo simulations in two major sections: Section 5.2 provides results

from the MMAE investigations, beginning with the simulations that duplicate previous

results and continuing through the study plan of the previous chapter, and Section 5.3

provides results from the LQG controller investigations, also beginning with the duplication

simulations.

5.2-- Mtdtipte Model Adaptive Estimation Study

This section discusses results from the studies which investigated estimation perfor-

inance of the moving-bank MMAE algorithms. These studies are as follows: 1) duplication

of past MMAE research; 2) modifications to software; 3) Kalman filter dynamics noise

strength and measurement noise covariance determination; 4) residual, parameter posi-

tion estimate,.-and probability monitoring performance determination; 5) density function

"bias" investigation; 6) parameter space discretization; and 7) varying-parameter estima-

tior performance. The plots discussed in this section are provided after Section 5.2.6.2.

5.2.1 Duplication of Past MMAE Research. Duplication of past MMAE research

entails two studies. The first .,Audy is the duplication of Schore's MMAE benchmark

simulation. [22]. The estimation benchmark consists of setting A equal to one (yielding

the full effects of the 24-state truth model) and placing the filter bank and parameter

locatio- at--T,6)jiThi., the mass parameter is located at its seventh discrete value out of

terand:thestiffnesspmatrix is at its sixth discrete location out of ten. Additionally, the

probability of filter five in the bank (the center of the finely discretized bank) is set to ole,
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and the bank move threshold is set extremely high so as not to allow the bank to i, ye.

In essence, this is the case of an artificially informed (with correct parameter values), non-

adaptive, single filter. Figures 5.1 through 5.3 provide the results for this duplication. The

apparent divergence after 5 seconds demonstrated in the position errors for nodes I and

2 duplicate the estimation errors of Schore's research very well. This apparent divergence

will be addressed later in Section 5.2.2 also. A second form of non-adaptive benchmark

which could have been performed for the duplication study is a single-filter worst-case

analysis. For this case, the single filter is set to the (5,5) parameter position and is made

to be non-adap, ye. The true parameter is located at (7,6). This duplication simulation

was not performed since it was felt that the non-adaptive, best-case single filter and the

moving-bank simulation, described next, provided an adequate demonstration of MMAE

performance duplication.

The second study for the MMAE duplication determines the ability of the bank to

move within the filter space when the initial parameter estimate and filter location differ

from the true parameter location. The duplication consists of setting the bank center filter

to the (5,5) parameter position. The true parameter is located at (7,6). The probabilities

of all the filters in the bank are initialized to §1 and the lower limit of the probabilities,

Pni,. is set to 0.05. Residual monitoring is used for the movement logic and the move

threshold set to 0.25. These threshold values were determined previously by Schore [22] to

provide the best performance for his software configuration. The estimation error results

of this duplication are shown in Figures 5.4 through 5.6. Figure 5.7 provides the mea~n

bank center location and the mean parameter estimate in the parameter space. Note that

the value of A is set equal to 0.5 for the bank movement duplication since Schore (22] does

not provide figures for A equal to one.

5.2.2 MMAEModification Study. Due to the fact that several software issues needed

to be investigated, this became a substantial part of initial research efforts in order to de-

termine the affects of the modifications. Individual studies were performed for each error

in order to determine the performance impact to physical position and velocity estimation

error and parameter estimation. This section provides a discussion of the major impacts.
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This section concludes by providing simulation results from the cumulative modifications

made to the software.

The first major modification that significantly impacts the estimation errors for all of

the simulations performed in this research is the computation of the error vector described

in Equation (4.1). Instead of using the Bayesian approach demonstrated in Equation (4.1),

the previously developed software used a somewhat modified MAP approach. Specifically,

the estimated physical positions and velocities were implemented as the bank center filter

measurement matrix, fII,, multiplied by single-filter state estimates from the first filter in

the bank, f1(ti). For the non-adaptive, single-filter bachmark case, this haO the effect

of providing position and velocity estimates from a siagle filter that was offset by one

discrete step in each direction of parameter space from the -.%nk center filter location.

Modification of the error vector computation to that shown in Eq: tion (4.1) removes the

divergent estimation errors in the node 1 and 2 position estimation errors for the MHNIA1,

non-adaptive benchmark (Figures 5.1 and 5.2). The effect of this modification is apparent

in Figures 5.8 and 5.9. Any effect on the node 7 position error, shown in Figure 5.10,

is unobservable. Note also the effect of dither that is obvious in Figure 5.9; this will be

discussed with respect to the third modification. Figures 5.8 through 5.10 incorporate all

modifications investigated.

The second major modification incorporates the rigid body angular velocity actuator

into the development of the B, matrix described in Equation (3.26) and developed in

Appendix A. Modification of this matrix allows the inertia wheel located at the hub to

apply control to the rigid body mode. In the previous software, this control capability was

inadvertantly removed. The effects of this are more apparent in the MMAC duplication

and will be discussed in Section 5.3.2. However, the estimation process benefits from this

modification because the dither signal can adequately excite the modes as intended.

The third major modification incorporates the direct feedthrough term, D, as de-

scribed in Equation (3.27). Since this study incorporates the full 24-state truth model

and a six-state filter model, the correct computation of D was implemented and incorpo-

rated into generation of the residuals, as described in Equation (2.19). This modification

is apparent in the dither signal direct feedthrough in node 2 position and velocity error
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illustrated in Figure 5.9. There were several other software modifications made which were

minor compared to the three described above and were discussed in Section 4.5.

The results obtained with the modified software establish a baseline which will be

used for comparing the results of varying Q and R values and other variations to be con-

sidered in the following sections. Simulations to investigate the modification impacts for

the moving-bank MMAE algorithms were not performed since the moving-bank logic was

itself to be changed as part of this research eff--t; also this would have required determi-

nation of appropriate move thresholds. These studies are more appropriately investigated

as part of the MMAE moving-bank logic study presented in Section 5.2.4.

5.2.3 Dynamics Noise Strength and Measurement Noise Covariance Determination.

The goal of this study was to determine appropriate values for the 24-state truth model

dynamics noise strength matrix, Qdt, and measurement noise covariance matrix, Rt. In

addition, the six-state filter model dynamics noise strength matrix, Qdj, and measurement

noise covariance matrix, RI were determined. As a starting point, previous values for

these matrices were used. (The values of Q and R used to investigate duplications and

modifications are provided in Appendix B.) For these studies, the bank was configured to

represent an open-loop, non-adaptive single filter with knowledge of the true parameter

location, which was selected as (7,6). This represents the nominal parameter values and

is assumed to be representative of the rest of the parameter space. For this study, the flull

impact of the unmodelled effects is incorporated into the analysis, i.e., A is set equal to one.

A primary consideration, in addition to minimizing the rms estimation errors, is the ability

of the tuned filters to perform distinguishably different when the assumed true parameter

is correct versus when it is wrong. The initial values of Qd, (the values which had been

used by Schore [22]) were-varied by orders of magnitude to investigate the sensitivity of the

truth model and filter. However, small values of Qd, (reduced by an order of magnitude)

result in a large mean error in the position estimates. This "ringing" effect is the result

of low energy values being transferred to the structure by means of the wideband (white)

noise process, thus allowing the initial dither signal to remain in the slightly damped

structure. Since the higher values of Qd, better represent the magnitude of noise which a
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space structure may experience, and in order to maintain a baseline consistent with past

research, the larger values are used for the remainder of this research.

Next, the values for Rt were investigated. The Rt matrix used in previous researcnl

provided values characteristic of the physical capabilities of curxen sensors. However, it

was noted that the rigid body angular position measurement noise variance was several

orders of magnitude larger than the rest of the diagonal elements. in effect, this was

"telling" the filter that the measurements from this sensor were extremely poor and should

be weighted less. Since there was no reasonable explanation for this situation, the value

was decreased so that the ratio of rigid body angular position to rigid body angular velocity

was approximately the same as the node 1 and 2 position-to-velocity ratios. The remainder

of the matrix was left unchanged.

With the values of Qd, and Rt determined as above, the values for Rf and Qdf were

determined. The values for these matrices were determined by adding appropriate amounts,

lRadd and Qadd, to Rt and Qd, , respectively, to account for the fewer states used in the

filter model. Using the MVRO approach [16:25], an approximation to Radd was determined

from the difference between the 24-state matrix product, HtP(t')HT, and the six-state

matrix product, HfPf (tT)HT'. For this determination, P(t-) was computed as an average

value from the last five seconds of the simulation; this was in order to avoid the transient

period of the simulation. With this initial value of R1 available, and using the initial

value of Qf as used by Schore, an iterative approach was used to obtain minimum rms

estimation errors. The Rf matrix which resulted indicated very weak coupling between the

hub angular position and velocity measurements and highly correlated position and velocity

measurements for both node 1 and node 2. The measurements at the hub are dominated by

the rigid body mode, whereas the rigid body and bending modes all contribute importantly

to measurements at nodes 1 and 2. For the final Q and R values, the quality of the

final filter tuning was investigated by determining the covariance of the true position and

velocity estimation errors f'oi the Monte Carlo simulation. These values are compareal

to the steady-state, pre-computed, filter indicated performance HfPf(t^,)H"'. (Pf(t+)

was used because the estimation errors for the Monte Carlo simulation are computed after

measurement update.) This comparison is provided in Figures 5.11 through 5.13 and shows
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that the filter is well tuned for the nominal case, i.e., parameter location (7,6). These values

of Q and R are used for all of the filters in the parameter space.

5.2.3.1 Non-Adaptive Single-Filter Best-Case Analysis. The simulations per-

formed for the Q and R determination study for parameter location (7,6) also represent

the performance for the best-case, non-adaptive, single filter with artificial knowledge of

the true parameter. Comparing the results shown in Figures 5.11 through 5.13 with that

for the untuned filter of Section 5.2.2, it is apparent from Figures 5.11 and 5.12 that the

velocity errors for nodes 1 and 2 have been reduced by an order of magnitude. Also, the

large mean error which exhibits some phase information has been removed for these two

velocities. More importantly, Figure 5.13 shows that the node 7 position error has been

reduced by an order of magnitude. The oscillatory mean error previously exhibited also

has been removed. Thus, estimation accuracy for the rigid body position of the structure

has been improved.

5.2.3.2 Non-Adaptive Single-Filter Worst-Case Analysis. In addition to the

best-case benchmark, a worst-case, non-adaptive case was investigated. Previous efforts

[11, 22] considered a non-adaptive filter located at parameter location (5,5) with the true

parameter located at (7,6) to be the worst case. However, for this configurations, the

performance of the filter for this case does not differ significantly from that of the best-

case benchmark. Therefore, a non-adaptive single filter was located at (5,5) with the true

parameter set to (2,9). This was selected so that the estimator performance could be

established for the case of under-estimation of bending mode natural frequencies through

assumed parameter values, which will be of major concern for the following controller

studies. The results are shown in Figures 5.14 through 5.16. The figures indicate that

the node 1 and 2 position error magnitudes are about twice as large as the best-case

benchmark.

5.2.3.3 Open-Loop Structure Positions. Parameters which will be highlighted

in the following controller performance evaluations are the true positions at selected points

on the structure. As described previously, these are found via Htxt. The open-loop strite-
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ture positions are shown in Figure 5.17 for the nominal parameter value (7,6). Recalling

the eigenvalues from Table 3.2, the structure is stable. The error variances shown for node

1 and node 2 have not reached steady state values. Based on the damping coefficient for

the highest mode, the settling time is approximately 0.04 seconds. However, the lowest

order bending mode has a settling time of approximately 88.91 seconds. The true position

for node 7, which represents the rigid body position of the structure, is not damped and

can be interpreted as a rigid body rotation in either direction in the x-y plane. These plots

provide a baseline of comparison for exhibiting the effectiveness of MMAC control later.

5.2.4 MMAE Moving-Bank Logic Study. The goal of this study was to investigate

the best move logic of those discussed previously. The best logic is determined not only

by how well the bank identifies the true parameter, but also by how well the states, or

in this casc stfucture positions and velocities, are esuiiuated. Although the purpose is

not to design a parameter identifier, the state estimation errors are expected to be less

for the logic which provides the algorithms with the best parameter identification. This

section discusses results from evaluation of the best threshold for each logic, the effects of

the density function "bias" on each logic, as well as removing the Ak matrix of Equation

(1.2) entirely from the density function, i.e., using the ME/I approach. The simulation

performed for the following studies consisted of centering the bank at parameter location

(5,5) and positioning the true parameter at location (7,6). (This simulation will be referred

to as case 1). The probabilities of the nine filters were initially set to 1 and the bank was

allowed to move. The results for these studies are presented first for residual monitoring,

then for probability monitoring, and finally for parameter position estimate monitoring.

5.2.4.1 Residual Monitoring Analysis. The first step taken to investigate this

method for bank movement was to establish performance for the bank with the full condi-

tional density function as in Equation (1.2) for probability Pk computation and a likelihood

quotient of r(ti)A,'rk(tj) for bank-moving decisions. Performance evduation is deter-

mined by observing the mean parameter estimate and mean center filter location for the

Monte Carlo study as well as the physical structure state estimation errors. The significant

result from this study is that the incorporation of the Ak"1 matrix in the likelihood quotient
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causes the bank to move in an incorrect direction. The movement of the bank is charac-

terized by a dramatic move toward the lowest mass parameter value and a moderate move

toward a higher stiffness parameter, as shown in Figure 5.18. It was determined that the

scaling of the likelihood quotient quadratic form by the Ak 1 might cause such undesirable

behavior, and therefore an alternate likelihood computation should be investigated. This

alternate form was to omit the Ak"1 matrix from the likelihood quotient, which resulted in

r.'(tj)rk(tj) as the scalar quantity upon which to base bank-moving decisions. With this

alternate form incorporated, the simulation was repeated. Initially, the bank movement is

as before, however, the parameter identification improves after the first half of the run and

the estimated parameter moves toward the correct parameter. Extending the simulation

time from 10 seconds to 15 se-onds does not improve the final parameter estimation.

It was thought that the "biased" results obtained from the bank movement could be

due to the leading coefficient of the probability density function computations of Equation

(1.2). Therefore, as earlier proposed, the coefficient was removed from the density com-

putations and the benchmark simulation performed. The alternate form for the residual

likelihood quotient was maintained. The resulting parameter estimation still exhibits a.

strong bias tendency toward a low mass parameter and a higher s 'fness parameter. Fi-

nally, the ME/I approach was used to compute the probability density function, which is

equivalent to replacing Ak by I throughout the entire density of Equation (1.2), and in

the likelihood quotient as well. For this move logic, a threshold of 0.09 was established

as providing the best results. The results of the associated parameter identification are

shown in Figure 5.19.

5.2.4.2 Probability Monitoring Analysis. This study began by incorporating

the entire probability density function, as provided in Equation (1.2), into the algorithms.

However, with this configuration, the mass parameter estimate (and resulting bank move-

ment) exhibits the same biased movement as for the residual logic study. Therefore, the

leading coefficient was removed from the density function. The resulting performance ot

the bank is not significantly affected by the modified algorithm. Therefore, total removal of

the A " matrix from the density computation, or ME/I density function computation, was
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used. This modification improves the mass parameter estimate, although it still exhibits

an initial bias tendency. The best performance for this method is obtained for a move

threshold of 0.13. The parameter identification results for this configuration are shown in

Figure 5.20.

5.2 .4.3 Parameter Position Estimate Monitoring Analysis. As for the pre-

vious two move logic studies, the initial form for the moving-bank algorithms used the

complete form for the probability density function of Equation (1.2). However, as might

be anticipated based on the results from the previous two studies, the performance of the

bank to this algorithm indicate an obvious bias toward a lower mass and higher stiffness

parameter values. Removing the leading coefficient coefficient from the density function

computation does not significantly correct the biased movement. Finally, the ME/I fort1

alleviates the severity of the parameter estimation bias. The best results are obtained for

a move threshold of 0.01. These results are shown in Figure 5.21.

5.2.4.4 MMAE Moving-Bank Logic Summary. The results obtained for the

parameter position estimate logic study represent the best moving-bank logic results for the

benchmark case investigated here. While these results indicate slightly better performance

for the ME/I density function form, in order to investigate and compare the capabilities

of the ME/I and proper density forms fully, both methodologies are investigated for the

MMAE moving-bank analysis which follows.

5.2.4.5 MMAE Moving-Bank Analysis. In order to evaluate the performance

of the moving-bank algorithms throughout the parameter space, two simulations were

performed in addition to the simulation conducted for the moving-bank logic analysis

described in Section 5.2.4. These two additional simulations were as follows:

1. Case 2: True parameter at location (2,9) with bank initially at location (5,5)

2. Case 3: True parameter at location (9,2) with bank initially at location (5,5)

For both of the cases listed above, the probabilities of the bank filters are initially set

to 1 and the threshold for parameter position estimate monitoring is set to 0.01. For
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these simulations, both the ME/I and proper density function computations ar' used.

Case 2 represents the performance of the bank to initial underestimation of the natural

frequencies for the bending modes. Case 3 represents the performance of the bank to initial

overestimation of the natural frequencies.

For the case 2 study, Figures 5.22 through 5.24 show the state estimation performance

using ME/I computations. The position estimation errors for nodes 1 and 2 indicate

increasing uncertainty, similar to that seen earlier in the duplication studies in Section

5.2.1. The parameter estimation performance is slbown in Figure 5 25. The performiance

obtained for the proper density computation provides final parameter estimation slightly

worse (mass parameter estimate of 3.5 and stiffness estimate of 8.1). The e"-timation errors

also exhibit the increasing uncertainty trends for the node 1 and 2 position errors as for

the ME/I computation.

For the case 3 study, the performance using ME/I provides rathe, poor parameter

estimation, with a final mass estimate of 6.7 and stiffness estimate of 4.5. The truss

position estimates indicate the same trends of increasing uncertainty. Agaia, the results

for incorporating the proper density are only slightly worse, with a final mass estimate of

6.2 and stiffness estimate of 5.1.

A summary of the results for the three test cases using ME/I co~aputa .ions is pro-

vided in the upper half of Tables 5.1 and 5.2. For all three test cases examined, the two

cases investigated here and the first case investigated in Section 5.2.4, the moving-bank

state estimation errors show increasing uncertainty, which is worse than the non-adaptive

benchmark investigated in Section 5.2.3.1. The parameter estimation results presented in-

dicate the performance at the end of the simulation, i.e., at t = 10 seconds. This is selected

as a representative performance indicator since the parameter estimation throughout the

duration of the simulation run is relatively steady, as shown in Figures 5.19 through 5.21.

The results indicate that the ME/I computation performs slightly better than the proper

density function and is the only form of density computation investigated for th remainider

of the moving-ban:K MMAE studies.
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Table 5.1. MMAE Parameter Space Discretization Position Estimation Errors

Old Parameter Space Discretization

Simulation Node 1 Error(1 ) Node 2 Error(1)

4 Mean 10o Mean la

Case 1 0.0003 0.1585 0.0003 0.0901

Ca,-e 2 0.0047 0.1042 0.0027 0.0587

Case 3 -.0139 j 0.1503 -.0078 0.0849

New Parameter Space Discretization

Case 1 -.0167 0.1445 -.0095 0.0827

Case 2 0.0006 0.0807 0.0004 0.0463

Case 3 0.0009 0.1442 0.0006 0.0828

Note (1): Average values for 10 seconds (inches)

Table 5.2. MMAE Parameter Space Discretization Position Estimation Errors and Para-

meter Estimates

Old Parameter Space Discretization

Simulation Node 7 Error(') _ (2)

Mean la M S

Case 1 0.0005 0.2611 6.5 6.9

Case 2 0.0078 0.1734 3.2 8.9

Case 3 -.0228 0.2473 6.7 4.5

New Parameter Space Discretization

Case 1 -.0274 0.2784 3.6 8.5

Case 2 0.0011 0.1332 2.1 6.9

Case 3 0.0016 0.2381 6.1 4.5

Note (1): Average values for 10 seconds (radians)

Note (2): Mass (M) and Stiffness (S) estimates at t = 10 seconds
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5.2.5 Estimator Parameter Space Discrctization Study. Motivated by the controller

study which follows, the region of the parameter space for higher values of modal frequen-

cies was more densely packed than the region for lower frequencie.. This was an attempt

to reduce the possibility of applying potentially destabilizing control to th. structure from

controllers based on incorrect models that underestimated true modal frequencies. The

boundaries for the mass and stiffness scaling factors remained the same and a logarithmic

scaling was performed for each of the 10 mass and stiffness parameters. The new parameter

space, determined in this ad hoc fashion, is provided in Table 5.3. For this study, the three

test cases described in Section 5.2.4.5 were performed using parameter position logic and

ME/I computations. The results for the three test cases are provided in the bottom half of

Tables 5.1 and 5.2. The structure estimation errors and the parameter estimation obtained

for this new space do not significantly differ from that of the original space discretization.

These results are not unexpected since it wasn't anticipated that the new parameter space

discretization would make a significant difference for the estimation process. Therefore,

for the remaining varying parameter simulations, the original space is used.

Table 5.3. New Discretized Parameter Space

ak Lashlee [11] New Space

4 Mass Stiffness Mass Stiffness

1 0.50 0.50 0.500 0.500

2 0.55 0.60 0.541 0.801

3 0.60 0.70 0.587 0.977

4 0.70 0.80 0.639 1.102

5 0.80 0.90 0.700 1.199

6 0.90 1.00 0.771 1.278

7 1.00 1.16 0.858 1.345

8 1.20 1.26 0.971 1.403

9 1.30 1.40 1.129 1.454

10 1.40 1.50 1.400 1.500
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5.2.6 Estimator Varying Parameter Study. The goal of this study was to investigate

the performance of the estimator algorthms to two types of parameter changes: first, slowly

moving parameters, where the true parameter does not vary by more than one discrete

value at a time, and second, a jump change where the true parameter changes by several

discrete values. In order to investigate the performance of the algorithms to slowly varying

and jump parameters properly, benchmarks for establishing best-case performance must

be performed. The benchmarks for these simulations are similar to the non-adaptive, best-

case single-filter study performed in Section 5.2.3.1. However, for these benchmarks, the

bank is allowed to move and it is artificially informed of the true parameter change during

the simulation. A benchmark for each parameter variation study must be perlormi in

order to analyze the results correctly.

5.2.6.1 Slowly Varying Parameter Analysis. For the slowly varying parame-

ter study, two cases were investigated:

1. Case 1: True parameter and bank initially at parameter location (5,5) with true

parameter change to (4,6)

2. Case 9: True parameter and bank initially at parameter location (5,5) with true

parameter change to (6,4)

The first test case represents a change toward higher natural frequencies of the bending

modes, whereas the second test case represents a change toward lower natural frequencies.

For each test case, the true parameter variation was a discrete change implemented at

t=5.0 seconds into each 10-second Monte Carlo run. A better approach to simulating

slowly varying parameters would consist of interpolating the truth model matrices, i.e.

I,, H, and Bd,, between the discret,, parameter points. Therefore, the only difference

between the slowly varying parameterstudy and the jump parameter study conducted in

this research is the number of discrete points that the true parameter is changed. (Since

the jump parameter study is only a more severe case of the slowly varying parameter

study, the simulation results will , nly provide plots for the jump parameter study, while

summarizing both sets of results in table form). The move logic consisted of parameter
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position estimation with ME/I computations. The results of these simulations, as well as

the corresponding benchmark results, are provided in Tables 5.4 and 5.5. For both of he

test cases, the parameter estimation is very poor. For both case 1 and case 2, the truss

position estimation error results are similar to that obtained for the constant parameter

moving-bank analysis of Section 5.2.4.5. Basically, the node 1 and node 2 position errors

exhibit increasing uncertainty and are much worse than the benchmarks.

5.2.6.2 Jump Parameter Analysis. For the jump parameter study, two meth-

ods were investigated for allowing the bank to adapt to the parameter change. The first

method maintains a fine discretization and allows the bank only to move to the new pa-

rameter. The second method not only allows the ban% to move but also to expand to

acquire the new parameter and then contract around it. For this case, appropriate thresh-

olds were determined and are provided in the following discussion. For each of the two

bank adaptation methods, two parameter jump cases were investigated:

1. Case 1: True parameter and bank initially at parameter location (5,5) with true

parameter change to (2,9)

2. Case 2: True parameter and bank initially at parameter location (5,5) with true

parameter change to (9,2)

The first test case represents a change-toward higher natural frequencies, whereas the sec-

ond test case represents a change toward lower natural frequencies. For the first method,

tie move logic consisted of parameter position estimate monitoring and ME/I computa-

tions. The artificially informed single-filter benchmark performance for the case 1 study is

provided in Figures 5.26 through 5.29. Figures 5.30 through 5.33 show the state estimation

errors and the parameter estimation for the fine-bank move for case 1. (Results for this

simulation, as well as the case 2 tudy, are provided in Tables 5.6 and 5.7). The state

estimation errors indicate an increasing uncertainty and do much worse than the bench-

mark. The stiffness estimate in Figlre 5.33 looks as though no jump occurred. However,

Figure 5.34 shows that the bank properly reacts when the jump change is in the opposite

direction, as is the situation for case 2. For case 2, the estimation performance is similar

to that for case 1 in that the node 1 and 2 position errors demonstrate a divergent trend.
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Table 5.4. MMAE Varying Parameter Position Estimation Errors

Simulation Node 1 Error(1) Node 2 Error(1)

Mean Ia Mean l

Benchmarks

Bench 1 0.0001 0.0024 0.0000 0.0015

Bench 2 0.0011 0.0037 1 0.0002 0.0008

Fine-Bank Movement

Case 1 -.0095 0.28651 -.0056 0.1623

Case 2 .0171 0.2494 -.0101 0.1471

Note (I): Average values for t > 5.0 seconds (inches)

Table 5.5. MMAE Varying Parameter Position Estimation Errors and Parameter
Estimates

Simulation Node 7 ErrorO) _ (2)

Mean lZM S

Benchmarks

Bench 1 0.0000 0.0322 N/A N/A

Bench 2 0.0001 0.0027 N/A N/A

Fine-Bank Movement

Case 1 -.0157 0.4722 4.2 8.0

Case 2 -.0286 0.4157 6.4 5.3

Note (1): Average values for t > 5.0 seconds (radians)

Note (2): Mass (M) and Stiffness (S) estimates at t = 10 seconds

5-15



The second method for acquiring the parameter after a jump change allows expansion

of the bank. After establishing an appropriate expansion threshold of 0.5 using rT(ti)r(ti)

as the scalar quantity to monitor for expansion decisions, the simulations were performed

with the bank allowed to expand. Two contraction thresholds were investigated: the first

threshold contracts from coarse discretization (four parameter locations between filters in

the bank) to medium discretization (two parameter locations between filters in the bank)

and was established at 10.00; the second threshold contracts from medium discretization

• fine discretization (filters in the bank are at adjacent parameter locations) and was

estvblished at 5.00. The mass and stiffness estimates were compared separately to the

thresholds, which allowed for rectangular banks. The results for both case 1 and case 2,

as shown in Tables 5.6 and 5.7, demonstrate that parameter estimation is worse and the

resulting structure estimation errors are slightly worse than for the method of only allowing

the finely-discretized bank to move.
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Table 5.6. MMAE Jump Parameter Position Estimation Errors

Simulation Node 1 Error(') Node 2 Error(1 )

Mean la Mean la

Benchmarks

Bench 1 0.0000 [0.0023 0.0000 0.0006

Bench 2 0.0000 0.0035 0.0001 0.0010

Fine-Bank Movement

Case 1 -.0146 0.2063 [ -.0081 0.1158

Case 2 0.0027 0.2434 0.0018 0.1378

Expansion/ Contraction

Case 1 -.0429 0.2178 -.0114 0.1654

Case 2 0.0058 0.3561 1 0.0076 0.1723

Note (1): Average values for t > 5.0 seconds (inches)

Table 5.7. MMAE Jump Parameter Position Estimation Errors and Parameter Estimates

Simulation Node 7 Error(') _ (2)

Mean la M S

Benchmarks

Bench 1 0.0000 0.0007 N/A N/A
Bench 2 0.0003 0.0013 N/A N/A

Fine-Bank Movement

Case 1 -.0239 0.3391 3.5 8.7

Case 2 0.0046 0.4008 7.5 4.2

Expansion/Contraction

Case 1 -.0346 0.3924 4.3 6.1

Case 2 0.0051 0.5195 7.3 5.1

Note (1): Average values for t > 1',0 seconds (radians)

Note (2): Mass (M) and Stiffness (S) estimates at t = 10 seconds
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5.3 Multiple Model Adaptive Controller Study

This section discusses results from the studies which investigated control performance

of the moving-bank MMAC algorithms. These studies are as follows: 1) duplication of past

research; 2) modifications to software; 3) state and control weighting matrix determination;

4) optimal control vector formulation; 5) parameter space discretization; and 6) varying

parameter controller performance. The plots discussed in this section are provided after

Section 5.4.

5.3.1 Duplication of Past Controller Research. Duplication methodology for the

the LQG controller algorithms is similar to the duplications previously performed for the

MMAE studies. All duplications use Q and R matrices for filter tuning, as well as X

and U matrices for LQG controller cost definition, used by Schore [221. Appendix B

provides the values for Q and R whereas Appendix C provides the values for X and U

used in the duplication. The duplication simulations consist of the MMAC benchmark and

the moving-bank MMAC. The MMAC benchmark is equivalent to a non-adaptive, single

LQG controller with artificial knowledge of the true parameter. For this study, the center

filter/controller and true parameter location are set to parameter (7,6). The probability

of the center filter/controller is set equal to one and the bank is not allowed to move. The

estimation error results of the duplication for A equal to one are shown in Figures 5.35

through 5.37. The mean true positions for the structure are provided in Figure 5.38. The

control inputs applied to the system are also of interest and are presented in Figure 5.39.

The results provided here correspond very well with the estimation errors, true positions,

and actuator responses obtained by Schore [22].

As with the MMAE duplication, the second duplication analysis of the MMAC al-

gorithm determines the ability of the bank to move within the filter space when the initial

parameter estimate and filter location differ from the true parameter location. The dupli-

cation is generated by setting the center filter/controller of the bank to the (5,5) parameter

location while the true parameter is located at parameter (7,6). The probabilities of all the

filter/controllers in the bank are initialized to 1 and the lower limit of the probabilities,

p77, , is set to 0.05. Residual monitoring is used for the movement logic and the move
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threshold set to 0.25 [22]. The results of this duplication for the estimation errors, true

positions, and actuator responses are shown in Figures 5.40 through 5.42, Figure 5.43,

and Figure 5.44, respectively. As with the single filter/controller duplication previously

performed, these results compare very well with the results obtained by Schore [22].

There are several items to note from these duplication results. The first item to note

from these results is the form of the dither signal applied to the structure. The dither signal

is apparent from the control input shown for nodes 2 and 7 in Figure 5.39. Also, since the

control input matrix was not correctly formed for the unmodified software, actuator 3 (toes

not apply control to the structure after the dither signal is turned off. The actuators at

nodes 1 and 2, therefore, expend considerable amounts of control energy, approximately 66

lbs of thrust for actuator 1 and approximately 33 lbs of thrust for actuator 2, to quell the

oscillations of the structure as quickly as possible. Comparing the true structure positions

shown in Figure 5.38 to the uncontrolled structure positions discussed earlier in Section

5.2.3.3 and provided in Figure 5.17, the control algorithm provides stable control of the

structure. However, the large control outputs impact the estimation errors for node 1 and

2 velocities by creating large transient effects, as shown in Figures 5.35 and 5.36(note the

effect of dither for the first half second in Figure 5.36(b) followed by the onset of large

magnitude control with a tapering transient; this is highly correlated with Figure 5.39(b)).

It will be shown that, with the correct form of the control input matrix, the actuator 1 and

2 outputs will be substantially reduced with corresponding improved performance in the

estimation errors. Note that the rigid body position in Figure 5.38 is adequately controlled

without the use of actuator 3.

5.3.2 Controller Modification Study. Section 5.2.2 described the results of the ma-

jor modifications for the MMAE simulations. This section describes the affects of the

modifications on the MMAC simulations. The major investigation is the modification of

the control input matrix, B,, to allow control from the hub to affect the structure. The

Br modification, combined with the modifications discussed previously, caused numerical

instability problems such that the simulation could not be performed before the appropri-

ate values of Q and R were determined. After determination of these-values, as described
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in Section 5.2.3 and provided in Appendix B, simulations to investigate the modifications

for the non-adaptive, artificially informed single LQG controller were performed. For this

case, the bank and true parameter are set to parameter (7,6) and the bank is not al-

lowed to move. Figures 5.45 through 5.47 -provide the estimation error results. The steady

state estimation errors for velocities at nodes 1 and 2 seem to be reduced by an order of

magnitude compared to Figures 5.35 and 5.36. Figure 5.48 shows that the true positions

are basically unchanged compared to Figure 5.38. However, note the control inputs from

all three actuators are significantly affected, as shown in Figure 5.49, which are directly

comparable to Figures 5.39. The initial control energy expended by the actuators located

on the truss has been dramatically reduced; actuator 1 now expends approximately 12.5

lbs of thrust whereas actuator 2 expends approximately 9.5 lbs of thrust. Actuator 3

is now operating effectively after the dither is removed. The control modifications have

resulted in less control being required from each of the truss actuators while providing

the same control authority over the structure. This could have significant implications

for determining the capabilities required of the actuators. While the increased actuator

outputs froni actuators 1 and 2 demonstrated in the duplication analysis do not indicate

excessive actuator thrusting, the corrected simulations indicate thrusters with much less

capability can be used. As for the MMAE modification study, no modification analysis

was performed for the moving-bank MMAC algorithm. The study performed in Section

5.3.3.3 will investigate the performance-of the moving-bank MMAC using the move logic

established for the estimation studies.

5.3.3 State a7 4 Control Weighting Determination. Determination of the appropri-

ate state and control weighting matrices for the LQG controllers is similar to the deter-

muination of the dynamics noise strength and measurement noise covarince matrices for

the Kalman filters. For this- study, the values of X and U were iteratively increased until

the rms errors of the corresponding states or controls stopped decreasing substantially.

Ti6i method was performed for the (7,6) parameter and is the method used to determine

appropriate tuning for the remainder of the controllers. Appendix C provides the X and

U matrices which were found previously for the (7,6) parameter location (11).
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This study began with re-evaluation of the single controller performance for pa-

rameter location (7,6). Performance of this controller is unaffected by alterations to the

weighting matrices as large as one order of magnitude, which is also true for the region of

the discretized parameter space for the lower natural frequencies, i.e., values for M (mass)

parameters greater than the seventh discrete location and values for the S (stiffness) pa-

rameter less than the sixth discrete location. An indication of how well the controller is

tuned for the (7,6) parameter is provii _ d by the small true position magnitudes, which

are on the same order of magn;tude as the estimation errors. Following re-evaluation of

the controller based on the (7,6) location, the controllers for the parameters in the high

natural frequency range were investigated, i.e., values for M parameters less than the sev-

enth discretized location and values for S parameters greater than the sixth discretizecd

location. It was d 'rmined that the controller performance in this region, which had pre-

viously used the X and U matrices determined for the (7,6) location, could be improved

substantially. Several parameter points were selected in this region for direct investigatioln

while the remaining points were interpolated from the results. For example, Figures 5.50

through 5.52 show the state estimation performance for the parameter location (1,9) using

the X and U values for location (7,6), i.e., the "untuned" performance for this controller.

The estimation errors for the positions and velocities demonstrate large mean errors. Fig-

tire 5.53 show the true positions of the structure are oscillating due to the effect of the

relatively high natural frequencies. Figure 5.54 shows the associated actuator outputs. In

order to-tune this controller, the values of U were held-constant while the values of X were

increased. Then the values of X were held constant while the values of U were increased.

(The values of U were increased to avoid excessive control magnitudes). The appropri-

ate weighting matrices were determined by scaling the values for Lashlee's matrices. The

tuned controller for parameter location (1,9) is provided in Figures 5.55 through 5.59.

These figures show that the oscillations previously characteristic of the estimation position

errors are quelled to steady-state levels in approximately 2.0 seconds. More importantly,

the true positions of the structure are effectively regulated to zero in the same time period

without the expenditure of excessive control power. Especially note the improved control

of the structure for node 2 position shown for the tuned controller in Figure 5.58 compared
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to the untuned controller performance shown in Figure 5.53. Appendix C provides the

parameter locations and the associated state and control weighting matrix scaling factors

for the controllers tuned in this section.

5.3.3.1 Non-Adaptive Single-Controller Best-Case Analysis. The simulations

performed for the controller modification study for parameter location (7,6) in Section 5.3.2

also represent the non-adaptive, single controller best-case benchmark. This is selected as

the benchmark because it represents the nominal case and is in the center of the space.

The controller for this location, as discussed in the previous section, did not require any

additional tuning from that obtained from using the weighting matrices from previous

research. The results are presented in Figures 5.45 through 5.49 and were discussed in

Section 5.3.2.

5.3.3.2 Non-Adaptive Single-Controller Worst-Case Analysis. In order to es-
tablish a worst-case benchmark, a non-adaptive, single LQG controller with the incorrect

parameter was investigated. For this study, the true paramater was located at (2,9) and

the bank was fixed at several locations throughout the space. Results show that the fixed

elemental filter/controller performs well within a boundary region close to the true param-

eter location. For non-adaptive controllers within the "boundary" locations, performance

is adequate for stable control although only slightly degraded from the best-case bench-

mark. Once the single filter/controllers are fixed outside of this "boundary", instability

problems prevent completion of the simulations. A worst-case "boundary" was determined

such that a non-adaptive, single filter/controller outside of this "boundary " could not be

evaluated. The boundary parameter points consist of the following: (4,1), (5,3), (6,6),

(7,8), and (8,10).

5.3.3.3 MMAC Moving-Bank Analysis. As for the MMAE moving-bank anal-

ysis, three simulations were performed to investigate the performance of the tuned con-

troller algorithms throughout the parameter space:

1. Case 1: True parameter at location (7,6) with bank initially a.t location (5,5)

2. Case 2: True parameter at location (2,9) with bank initially at location (5,5)
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3. Case 3: True parameter at location (9,2) with bank initially at location (5,5)

All three cases above used parameter position estimate monitoring with a. threshold of 0.01.

Both the ME/I and complete density function algorithms were investigated. The results

for the case 1 study using ME/I computations demonstrate that the algorithm provides

stable control, i.e., the true positions are quelled to approximately zero in less than 2.0

seconds. The results for the proper density computations provide similar control of the

structure, also quelling the true positions of the structure to zero within the same amount

of time.

The results for case 2 using ME/I are shown in Figures 5.60 through 5.65. Note

that the bank moves rather quickly to the correct region of the parameter space. In this

case, parameter identification is enhanced since the bending modes are greatly excited by

the (inappropriate) control based on incorrectly assumed parameter values. For this sim-

ulation, the actuators provide an initial transient after which the steady state estimation

errors and true structure positions perform as well as the non-adaptive best-case bench-

mark. Comparing these results to the MMAE simulations (Figures 5.22 through 5.24),

the estimation errors are quickly brought to steady state values. For case 2, the MNMAC

simulation using the proper density function could not be completed due to instability.

For the case 3 study using ME/I computations, the MMAC algorithm provides ad-

equate control even though the bank parameter estimate (and resulting bank location) is

not in close proximity to the true parameter (final parameter estimate (6.5,4.5)). Stable

control is possible in this situation due to-the fact that the bank estimation and movement

maintained control based on controllers which overestimated the natural frequencies of the

bending modes. The case 3 performance using the proper density function provides pa-

rameter estimation slightly worse than for the ME/I,-however, the control of the structure

is not degraded due to the overestimation of the bending mode frequencies. The top half

of Tables 5.8 and 5.9 provides a summary of the MMAC performance for the three test

cases using ME/I computations. Comparing these results to the corresponding MMAE

simulation results shown in Tables 5.1 and 5.2 show that the position estimation errors are

reduced by two orders of magnitude.
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Table 5.8. MMAC Parameter Space Discretization Position Estimation Errors

Old Parameter Space Discretization

Simulation Node 1 Error(') Node 2 Error(')

4 Mean l0 Mean la

Case 1 0.0000 0.0014 0.0000 0.0009

Case 2 0.0000 0.0025 0.0000 0.0011

Case 3 0.0001 0.0014 0.0000 0.0009

New Parameter Space Discretization

Case 1 -.0002 0.0031 0.0001 0.0011

Case 2 -.0001 0.0024 0.0000 0.0009

Case 3 -.0001 0.0014 0.0000 0.0010

Note (1): Average values for t > 5.0 seconds (inches)

Table 5.9. MMAC Parameter Space Discretization True Positions

Old Parameter Space Discretization

Simulation Node 1 True( ' )  Node 2 True(' )

4 Mean la Mean la

Case 1 0.0001 0.0012 -.0004 0.0014

Case 2 0.0019 0.0028 -.0003 0.0013

Case 3 -.0007 0.0016 -.0002 0.0011

New Parameter Space Discretization

Case 1 0.0007 0.0015 0.0002 0.0012

Case 2 0.0009 0.0028 -.0001 0.0013

Case 3 -.0004 0.0013 -.0003 0.0011

Note (1): Average values for t > 5.0 seconds (inches)
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Finally, an additional simulation was performed to investigate the performance of the

MMAC moving-bank algorithm when the bank is initially located beyond the boundary

of stable control as discussed in Section 5.3.3.2. From the results presented in Section

5.3.3.2, it was determined that a non-adaptive filter/controller at location (7,6) with the

true parameter at location (2,9) was beyond the bounds of stable controller algorithm

performance. However, when the bank is allowed to move from this location, very good

estimation error performance using ME/I computation results with very rapid acquisition

of the true parameter location. These results are characteristic of the performance obtained

for the case 2 study.

5.3.4 Optimal Control Vector Formulation Study. The goal of this study was to

determine if moving-bank modified MMAC, MAP vs. Bayesian, or modified single-fixed

gain control formulation could provide better control than the conventional moving-bank

MMAC method. The primary basis for comparison are the true positions, Hx(I,), since

this determines how effective the controller is in quelling the bending modes and pointing

of the structure. Estimation errors and control input magnitudes also provide a. basis

for performance comparison. For each of the control options investigated, the estimator

uses parameter position estimate monitoring and a threshold of 0.01. All three test cases

described in Section 5.3.3.3 are investigated. In addition, both the ME/I and the proper

density function are considered.

5.3.4.1 Modified MMiAC Analysis. For this study, a lower bound to be sur-

passed in order for control to be included in the modified MMAC computations was d-

termined to be pmmac=0.10. Recall the lower probability bound, p,,i, was set to 0.05.

For the case 1 study using ME/I computations, no significant difference is obtained from

the standard MMAC method in the previous section. The structure positions for nodes

1 and 2 are quelled to zero in approximately the same time. The proper density function

provids similar stable control results.

Figures 5.66 through 5.71 show the performance for the case 2 study using ,IE/l

computations. The settling time of the true positions for nodes I and 2 in Figure 5.69

are improved when compared to the standard MMAC results, shown in Figure 5.63. The
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settling of the true position for nodes 1 and 2 is reduced from 2.0 seconds to less than

1.0 second. This indicates that the controllers with a substantial probability (versus any

nonzero probability; recall that lower bounding is used) provide appropriate control. This

more appropriate control also affects computation of the residuals and allows better pa-

rameter estimation for both ME/I and the proper density function computations. Figure

5.71 shows quicker good stiffness parameter estimation when compared to the conventional

parameter estimation performance shown in Figure 5.65. The case 2 study using the proper

density function provided a similar improvement from the standard MMAC using ME/I

(whereas the proper density computations for the standard MMAC for case 2 results in

instability).

The results for case 3 are not much different from those for the MMAC analysis;

stable control is obtained within 2.0 seconds. Using the proper density function, stable

control is obtained similar to that for the standard MMAC.

An additional simulation was performed to determine if the parameter estimation

(and therefore structure control) could be further improved if the same probability thresh-

old, Pmmac, is used for computing ak. This investigation was performed for case 2 using

ME/I computations. The resulting parameter estimation performance is severely degraded.

The final parameter estimation is (1.6,1.4). The resulting structure control is degraded by

an increased settling time (approximately 3.6 seconds) and increased actuator outputs for

this implementation.

5.3.4.2 MAP vs Bayesian Analysis. This approach uses the moving-bank el-

emental filter/controller associated with highest computed conditional probability rather

than generating a probability-weighted average. For all three test cases, the performance of

the controller in quelling the truss positions is similar to that obtained for the correspond-

ing standard MIVIAC results. The use of the proper density function also provides similar

results (the case 2 study results in instability, as is the case for the standard MMAC).

5.3.4.3 Modified Single Fixed-Gain Analysis. This method was described in

Section 1.1.3 and illustrated in Figure 1.7. Using ME/I computations, the control results
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for the three test cases are not significantly different from the standard MMAC method

(the structure node 1 and 2 positions are quelled to zero in about 2.0 seconds). However,

for the proper density computations, test case 1 and 2 both result in instability. These

results indicate that the method is extremely sensitive to-underestimation of the bending

mode frequencies. Case 3 results (where the controller overestimated the bending mode

frequencies) provide stable control, similar to the standard MMAC.

5.3.4.4 Optimal Control Vector Summary. The results indicated here show

that the moving-bank modified MMAC provides noticeable performance improvement over

the MMAC method and performance comparable to that of the artificiaily informed non-

adaptive benchmark. The use of ME/I computations provides slightly better performaiice

than use of the proper density function. In addition, instability problems result with the

proper density function implementation for case 2 in every study conducted (except for

the modified MMAC method). Therefore, the remainder of the controller simulations use

the ME/I method.

5.3.5 Control Parameter Space Discretization Study. For this study, the region of

the parameter space for high values of modal frequencies was "densely packed" in order to

reduce the destabilizing affects-of understimating the modal frequencies during the con-

troller synthesis. The boundaries for the mass and stiffness scaling factors remained the

same as before, while the space was discretized using a logarithmic scaling. The new pa-

rameter space, determined in an ad hoc fashion, is provided in Table 5.3. For this study,

the three test cases described in Section 5.3.3.3 were investigated using parameter position

estimate monitoring with a threshold of 0.01 and ME/I computations. The controller logic

implemented the conventional MMAC algorithm instead of the modified MMAC logic to

determine the impact of the new space without omitting any controllers in the bank. The

results for all three cases indicate no significant difference in controller performance when

compared to the moving-bank MMAC simulation performed for the original space dis-

cretization. These results are provided in the bottom half of of Tables 5.8 and 5.9. This is

understandable since there are two major differences between Sheldon's work [23] and the

application investigated here. First, the discretized parameter space investigated by Shel-
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don had only three coarsely discretized points. Underestimation of the natural frequency

modes for the structure with such a coarse space results in significantly inappropriate con-

trol. Second, the moving-bank algorithm quickly moves the controllers to the appropriate

region of parameter space (unlike a non-moving-bank MMAC with lower bounding on com-

puted pk'S, which ensures that some nonzero control contribution is generated on the basis

of very incorrect parameter assumptions), thereby reducing the magnitude of inappropri-

ate control. Based on these results, the remaining parameter variations investigations use

the original parameter space discretization.

5.3.6 Controller Varying Parameter Study. The goal of this study was to investi-

gate the performance of the moving-bank controller algorithms to two types of paraneter

changes. The test cases investigated here are the same as those used previously for the

estimator studies in Section 5.2.6. In order to investigate the performance of the con-

troller algorithms to slowly varying paramers and jump parameters properly, benchmarks

for best-case performance must be established. The benchmarks for these simulations

are similar to the non-adaptive, artificially informed best-case single-controller study per-

formed in Section 5.3.3.1. However, for these benchmarks, -the bank is allowed to move aid

it is artificially informed of the true parameter change during the simulation. A bench-

nark for each parameter variation study must be performed in order to-analyze the-results

correctly.

5.3.6.1 Slowly Varying Parameter Analysis. The first test case,-as described

previously in Section 5.2.6.1, represents a change toward higher natural frequencies-of the

I)ending modes, whereas the second test case represents a change toward lower natural

frequencies. For each test case, the true parameter. variation was a discrete change imple-

mented at t=5.0 seconds into each 10-second Monte Carlo run. The move logic consisted

of parameter position estimation with ME/I calculations. The controller logic used modi-

fied MMAC with a threshold of 0.10. Results of the controller performance in controlling

the structure for case 1 indicate- performance comparable-to the benchmnark. Tables 5.10

and 5.11 provide a summary of these results. Comparing the results to the IMAAE slowly

varying parameter study, provided in Tables 5.4 and 5.5, the control is very good.
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Table 5.10. Modified MMAC Varying Parameter Position Estimation Errors

Simulation Node 1 Error(l) Node 2 Error(')

Mean la Mean l4

Benchmarks

Bench 1 0.0002 0.0011 0.0000 0.0001

Bench 2 0.0000 0.0012 0.0000 0.0003

Fine-Bank Movement Simulations

Case 1 -.0001 0.0014 1 0.0000 0.0001

Case 2 0.0000 0.0014 0.0000 0.0010

Note (1): Average values for t > 5.0 seconds (inches)

Table 5.11. Modified MMAC Varying Parameter True Positions

Simulation Node 1 True (1) Node 2 True (1)

Mean I l5 Mean

Benchmarks

Bench 1 0.0001 0.0012 -.0002 0.0001

Bench 2 -.0001 0.0013 -.0003 0.0003

Fine-Bank Movement Simulations

Case 1 -.0001 0.0015 -.0004 0.0009

Case 2 0.0001 0.0015 -.0001 0.0012

Note (1): Average values for t > 5.0 seconds (inches)
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For the case 2 study, the bank performed as well, as demonstrated by the small I a

estimation errors and true position values provided in Tables 5.10 and 5.11.

5.3.6.2 Jump Parameter Analysis. In order to evaluate the controller perfor-

mance for jump parameters, as for the estimation studies of Section 5.2.6.2, two methods

were investigated for allowing the bank to adapt. The first method disables the expan-

sion/contraction capability to investigate the performance of the finely discretized bailk to

move to the correct location. Figures 5.72 through 5.76 show the single-controller bench-

mark for jump parameter case 1. Figures 5.77 through 5.82 show the estimation errors

and the controller performance for the fine-bank move for the case 1 jump using parameter

position estimate monitoring, the ME/I density, and modified MMAC. Tables 5.12 and

5.13- provide a summary of these results. The resulting truss control compares favorably to

the artificially informed benchmark. Comparing these results to the corresponding MMAE

studies for the jump parameter (provided in Tables 5.6 and 5.7 in Section 5.2.6.2), this

method provides very good control over the truss positions. The results for the case 2

study also indicate that the fine-bank movement provides very tight control over the truss

positions.

The-second method for acquiring the parameter after a jump change allows expansion

and contraction of the bank. Using an expansion threshold of 0.5, the bank was allowed

to expand after 1.0 seconds into the run to -avoid- erroneous expansion due to the large

initial control output from the-actuators. The first contraction threshold was set to 10.00.

The second contraction threshold was 5.00. As for the first method, parameter position

estimate monitoring, the ME/I density, and modified MMAC are implemented. The results

provide slightly worse control performance compared to the fine-bank move results. The

results for the case 2 jump also provide performance slightly worse than for the fine-bank

movement, as seen in Tables 5.12 and 5.13. Therefore, the results of this study indicate

estimation errors and controller performance are better for bank movement alone than

allowing expansion and contraction.
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Table 5.12. Modified MMAC Jump Parameter Position Estimation Errors

Simulation Node 1 Error(I) Node 2 Error0l)

.Mean la Mean IlC

Benchmarks

Bench 1 0.0000 0.0019 0.0000 0.0001

Bench 2 0.0000 0.0012 0.0000 0.0000

Fine-Bank Movement
Case 1 -.0001 0.0019 0.0000 0.0010

Case 2 0.0000 0.0014 0.0000 0.0011

Expansion/Contraction

Case 1 0.0000 0.0029 0.0001 0.0011

Case 2 0.0001 0.0017 1 0.0001 0.0012

Note (1): Average values for t > 5.0 seconds (inches)

Table 5.13. Modified MMAC Jump Parameter True Positions

Simulation Node 1 True(') Node 2 True(' )

Mean l0 Mean la

Benchmarks

Bench 1 0.0012 0.0022 -.0002 0.0012

Bench 2 0.0009 0.0008 1 0.0001 0.0007

Fine-Bank Movement

Case 1 0.0007 0.0021 -.0004 0.0010

Case 2 -.0001 0.0013 0.0000 0.0001

Expansion/Contraction

Case 1 0.0001 0.0023 -.0001 0.0011

Case 2 0.0003 0.0016 0.0005 0.0004

Note-(1): Average values for t > 5.0 seconds (inches)
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5.4 Summary

The results presented in this chapter covered the performance of the moving-bank

MMAE and MMAC algorithms. The modification studies, which became a. substantial part

of this study, demonstrated significant improvement in the performance of lthe algorithms

and established baseline performance res',,"- difficult to improve upon. The use of the

filter-computed residual covariance, Ak, was found to provide biased results in the Pk

computation and was therefore not used in conjunction with parameter position estimate

monitoring, which was determined to provide the best moving-bank estimation results.

After appropriate determination of the filter Q and R matrices and the LQG controller

state and control weighting matrices for the high bending-mode natural frequency region of

the space, a modified MMAC methodology provided results comparable to that obtained

from a non-adaptive artificially informed benchmark. The evaluation of a parameter space

discretization densely packed in the high natural frequency region provided results not

significantly different from the original discretization. Finally, the moving-bank algorithm

performance to slowly varying and jump parameters indicate that the best estimation

and control results were obtained by a fine-bank move without the use of expansion and

contraction logic. Chapter 6 provides a detailed discussion of these results and provides

recommendations for future research.
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VI. Conclusions and Recommendations

6.1 Introduction

The purpose of this research was to determine the full capabilities of moving-bank

adaptive estimation and control algorithms using a six-state filter model against a 24-state

filter model. The measure of performance was the estimation and control of a two-bay truss

at various physical locations on the structure. This chapter preserts conclusions based on

the results presented in Chapter 5 and recommendations for future research.

6.2 Conclusions

The modification studies, which became a substantial part of this study, refined the

implementation software and demonstrated significant improvement in the performance of

both the estimation and control algorithms. The modification results established a baseline

for performance significantly different from past research using the same filter/controller

and truth models. For the non-adaptive artificially informed single-filter studies, the esti-

mation errors no longer showed trends of increasing parameter uncertainty. For the non-

adaptive single-controller studies, the modified control input matrix allowed the output

from the actuator at the hub to relieve the load requirements on the truss actuators.

Proper tuning of the Kalman filters and the LQG controllers provided significant

performance improvement. For the estimator study, proper determination of the filter

noise statistics, dynamics noise strength Q and measurement noise covariance R, improved

performance by an order of magnitude for the truss velocities as well as for the rigid body

position. This performance was obtained without conservative tuning approaches, and

thus while successfully avoiding "masking" the differences between the multiple models.

For the LQG study, controllers based on higher natural frequencies for the bending modes

performed significantly better after the appropriate determination of the state, X, and

control, U, weighting matrices for the quadratic cost function. Investigation of a worst-

case non-adaptive benchmark for the controllers resulted in stability problems. Therefore,

for the non-adaptive single controller benchmark, a region of the parameter space was

determined about a nominal parameter value beyond which the control algorithms caused
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stability problems. Underestimating the true natural frequencies of the bending modes

was found to be critical in inducing instabilities.

The moving-bank logic study indicated that using the filter-computed residual co-

variance matrix, Ak, in the probability density computation required in calculating the

hypothesis conditional probabilities (pk's) resulted in poor performance of the bank. Poor

performance was also demonstrated when this matrix was incorporated into the residual

likelihood quotient for residual-monitoring move logic as well as for bank expansion. Us-

ing the best methodology investigated in this research, maximum entropy with identity

assumed covariance (ME/I) computations and parameter position estimate monitoring,

the moving-bank estimator compared poorly to non-adaptive artificially informed bench-

marks. The incorporation of the residual covariance in the probability density computa-

tion resulted in numerical precision problems for the moving-bank controller performance.

iowever, using ME/I computations and parameter position estimate monitoring and a

modified MMAC approach, the moving-bank controller provided performance nearly as

good as a non-adaptive artificially informed benchmark.

The space discretization study, with densely discretized parameters in the high liat-

ural frequency region-of the s1 :e, did not provide any improvement for the moving-bank

estimation or control simulations. These results are primarily due to the relatively fine

discretization of the parameter space and the ability of the moving-bank algorithms to

place the bank within adequate proximity of the true parameter.

For the case of varying parameters, the controller results show that the algorithms

provide control nearly comparable to an artificially informed benchmark. The results for

the jump parameter showed that the performance was better when the finely discretized

bank was only allowed to move rather than expand and contract for parameter acquisi-

tion. For the problem investigated here, with only 100 discretized values closely spaced,

the acquisition time with a fine-bank move was acceptable. (The additional computation

associated with the expanision and contraction logic was not warranted). However, for

applications where the number of discrete parameters is substantially more or the dis-

cretization is finer, the performance of the expansion and contraction algorithms may be

substantially better than those that do not allow alteration of bank size.
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The moving-bank MMAE/MMAC algorithms provide stabilizing control over the

two-bay truss structure investigated in this research. However, there remain several topics

of research that should be investigated to determine the full capabilities of the algorithms.

The next section outlines recommendations that should be performed in futire research.

6.3 Recommendations

The scope of this and past research performed was sufficient to cover all areas of in-

terest for the present structure, filter/controller models, and truth models. Future research

should be continued to address the full capabilities of the algorithms on a more complex

space structure. The-following recommendations are made for future research:

1. Modify the current two-bay structure by adding at least a third bay, or adopt a model

representative of an entire flexible space structure. This would entail development

of an appropriate truth model using finite element analysis with possible addition of

sensors and actuators. Special attention should be paid to the development of the

measurement and control input matrices in physical coordinates.

2. Perform an analysis for determining the lowest order filter/controller capable of ade-

quately controlling the structure. Investigate performance of moving-bank MMAE/

MMAC algorithms in this new application, considering the same issues as explored

in this research. Continue with a physical interpretation of the structure positions

for determining the algorithm performance.
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Appendix A. Rotating Two-Bay Truss Truth and Filter Model Matrices

This appendix lists (1) the nominal mass, M, and stiffness matrices, K, (2) the 24-

state truth model matrices, (3) the reduced order six-state filter and controller design model

matrices, and (4) the implemented error vector formulation. The matrices developed here

are-for the nominal structure, i.e., no scaling of the mass and stiffness matrices. (Recall

that the two parameters are scalar multipliers on these matrices.) In addition, the truth

model matrices are associated with the truth model vector described by Equation (3.28).

Mass and Stiffness Matrices

The development of the truth model was provided in Sections 3.3.1 and 3.3.2. The

mass and stiffness matrices, which describe the system model, were obtained using finite

element analysis [28]. Finite elemenL analysis models a structure as consisting of a finite

number of nodes connected by elements. The finite element program produces mass and

stiffness matrices with dimension equal to the number of degrees of freedom (DOF's) as-

sociated with the model. Each row of the mass and stiffness matrices is associated with a

specific node and DOF. For the rotating two-bay truss in Figure 1.8, row I of each mass

and stiffness matrix is associated with the x-axis DOF of node 1. Each node has three

translational DOF's. Only planar motion is being considered; therefore, the nodes are

modeled with only two DOF's. For this research, node 7 is fixed. Therefore, all three

DOF's associated with this mode are eliminated, thereby reducing the dimensionality of

the mass and stiffness matrices to 12 states. Accounting for both position and velocity

of each of the 12 states yields a 24-state truth model. These are the nominal matrices

from which parameter variations are considered for this research. Parameter variations are

obtained by scaling these nominal matrices. The 12 - by - 12 mass and stiffness matrices

for the specifications previously defined are provided on the following pages (8:99-105],,

[11:205- 210], [26:215-223].

A-1



Mass Matrix

Row 1 .118E+4 .196E+3 0.0 0.0 -.642E+3 0.0

-.546E+3 -.196E+3 0.0 0.0 0.0 0.0

Row 2 .196E+3 .626E+3 0.0 -.555E+3 0.0 0.0

-.196E+3 -.707E+2 0.0 0.0 0.0 0.0

Row 3 0.0 0.0 .118E+4 -.196E+3 -.5,16E+3 .196E+3

-.642E+3 0.0 0.0 0.0 0.0 0.0

Row 4 0.0 -.555E+3 -.196E+3 .626E+3 .196E-+3 -.70713+2

0.0 0.0 0.0 0.0 0.0 0.0

Row 5 -.642E+3 0.0 -.546E+3 .196E+3 .401E+4 .669E+2

0.0 0.0 -.209E+4 0.0 -.732E+3 -.263D,+3

Row 6 0.0 0.0 .196D,+3 -.707E+2 .669D-+2 .721E+3

0.0 -.555E+3 0.0 0.0 -.263E+3 -.9487E +2

Row 7 -.546E+3 -.196E+3 -.6412E+3 0.0 0.0 0.0

.4011,+4 -.669E+2 -.732E+3 .263D-+03 -.209E+04 0.0

Row 8 -.196E+3 -.707D-+2 0.0 0.0 0.0 -.555E+3

-.669E+2 .7212E+3 .263E+3 -.948E+2 0.0 0.0

Row 9 0.0 0.0 0.0 0.0 -.209E,+4 0.0

-.732E+3 .263E+3 .861E+5 .478E+5 0.0 0.0

Row 10 0.0 0.0 0.0 0.0 0.0 0.0

.263E+3 -.948E-+2 .47813+5 .139E+6 0.0 -.1111-+6

Row 11 0.0 0.0 0.0 0.0 -.732D,+3 -.263E3+3

-.209E+4 0.0 0.0 0.0 .8611-+5 -.47813+5

Row 12 0.0 0.0 0.0 0.0 -.263E+3 -.948E+2

0.0 0.0 . 0.0 -.111E+6 -.478E+5 0.139E+6

Note that the first eight elements of the mass matrix are essentially the values of the non-

structural mass because-the non structural mass is large comparcd to the structurc mass.

The units mass matrix elements used here are lb. sec2/in.
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Stiffness Matrix

Row 1 .129E+1 -.239E-5 0.0 0.0 .692E,-5 0.0

.665E-5 .239E-5 0.0 0.0 0.0 0.0

Row 2 -.239E-5 .129E+1 0.0 .776D--6 0.0 0.0

.239F_-5 .862E-6 0.0 0.0 0.0 0.0

Row 3 0.0 0.0 .129E+1 .239E-5 .665E-5 -.239E-5

.692E-5 0.0 0.0 0.0 0.0 0.0

Row 4 0.0 .776E-6 .239E-5 .129D3+1 -.2393-5 .862E-6

0.0 0.0 0.0 0.0 0.0 0.0

Row 5 .692D,-5 0.0 .665E-5 -.239E-5 .129E. I -.815E-6

0.0 0.0 .226E-4 0.0 .891E-5 .321E-5

Row 6 0.0 0.0 -.239E-5 .86213-6 -.815E-6 .1291-+1

0.0 .776E-6 0.0 0.0 .321E-5 .115E-5

Row 7 .665E-5 .239E-5 .692E-5 0.0 0.0 0.0

.129D3+1 .815E-6 .891E-5 -.321E-5 .226E-4 0.0

Row 8 .239E-5 .862E-6 0.0 0.0 0.0 .776E-6

.815E-6 .129E+1 -.321E-5 .115D,-5 0.0 0.0

Row 9 0.0 0.0 0.0 0.0 .226E-4 0.0

.891E-5 -.321E-5 .881E-3 -.640E-4 0.0 0.0

Row 10 0.0 0.0 0.0 0.0 0.0 0.0

-.321E-5 .115E-5 -.640E-4 .834E-3 0.0 .1551,-3

Row 11 0.0 0.0 0.0 0.0 .89113-5 .321.E-5

.226E-4 0.0 0.0 0.0 .881E-3 .6,10E-4

Row 12 0.0 0.0 0.0 0.0 .321E-5 .115E1-5

0.0 0.0 0.0 .155E-3 .640E-4 .834E-3

Note that both the mass and stiffness matrices are symmetric due to the way the finite

element analysis generated the data. The units of stiffness matrix elements used here are

lb/in.

Truth Model Matrices
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The truth model matrices are provided here. These matrices-are shown in Equatc

(3.14), (3.15), and (3.18).

F' Matrix

Row 1 0 0 0 0 0 0 0 0 0 0 0 I

1.0 0 0 0 0 0 0 0 0 0 0 0

Row 2 0 0 0 0 0 0 0 0 0 0 0 0

0 1.0 0 0 0 0 0 0 0 0 0 C

Row 3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1.0 0 0 0 0 0 0 0 0 0

Row 4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1.0 0 0 0 0 0 0 0 0

Row 5 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1.0 0 0 0 0 0 0 0
Row 6 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1.0 0 0 0 0 0 0

Row 7 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1.0 0 0 0 0 0

Row 8 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1.0 0 0 0 0

Row 9 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1.0 0 0 0

Row 10 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1.0 0 0

Row 11 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1.0 0

Row 12 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1.0
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Row 13 O.OOOE+O 0 0 0 0 0

o 0 0 0 0 0

0.OOOE+0 0 0 0 0 0

0 0 0 0 0 0

Row 14 0 -7.917E+1 0 0 0 0

0 0 0 0 0 0

0 -8.898E-2 0 0 0 0

0 0 0 0 0 0

Row 15 0 0 -5.084E+2 0 0 0

0 0 0 0 0 0

0 0 -2.254E-1 0 0 0

0 0 0 0 0 0

Row 16 0 0 0 -8.728E+2 0 0

0 0 0 0 0 0

0 0 0 -2.954E-1 0 0

0 0 0 0 0 0

Row 17 0 0 0 0 -9.704E+2 0

0 0 0 0 0 0

0 0 0 0 -3.115E-1 0

0 0 0 0 0 0

Row 18 0 0 0 0 0 -1.076E+3

0 0 0 0 0 0

0 0 0 0 0 -3.280E-1

0 0 0 0 0 0
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Row 19 0 0 0 0 0 0

-2.958E+3 0 0 0 0 0

0 0 0 0 0 0

-5.438E-1 0 0 0 0 0

Row 20 0 0 0 0 0 0

0 -3.382D3+3 0 0 0 0

0 0 0 0 0 0

0 -5.815E-1 0 0 0 0

Row 21 0 0 0 0 0 0

0 0 -9.720E +5 0 0 0

0 0 0 0 0 0

0 0 -9.859E +0 0 0 0

Row 22 0 0 0 0 0 0

0 0 0 -8.134E +7 0 0

0 0 0 0 0 0

0 0 0 -9.018E+1 0 0

Row 23 0 0 0 0 0 0

0 0 0 0 -1.326E+8 )

0 0 0 0 0 0

0 0 0 0 -1.151E+2 0

Row 24 0 0 0 0 0 0

0 0 0 0 0 -3.982E+8

0 0 0 0 0 0

0 0 0 0 0 -1.99513+2

Note that frequency of the the rigid body mode, or the Ft matrix elements corresponding

to that mode, is set to zero in the 24 - by - 24 matrix and therefore is unaffected by the

parameter variations [8:89].
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B= Gt Matrix

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1) 0 0

0 0 0

0 0 0

0 0 0

0 0 0

-4.762E - 1 -2.747L, - 1 1.0

2.584E - 1 -4.742E - 1 0

9.694E - 2 1.578E - 1 0

-4.848E - 1 2.519E - 1 0

-8.862E - 2 9.464E - 2 0

2.295E - 1 4.591E - 1 0

2.931E - 2 2.683E - 2 0

4.325E - 2 3.949E - 3 0

-4.322E - 5 1.182L? - 1 0

4.354E - 8 4.148E - 3 0

6.177F, - 7 2.348E - 3 0

-4.210E - 9 -2.567E - 4 0

The first column of the 24 - by - 3 t3t matrix represent actuator inputs located at node 1

on the truss; the second column represents actuator inputs located at node 2 on the truss;

and the third column is due to the actuator located at node 7, i.e, the hub. The nonzero

portion of the first two columns follows the development of previous theses [11, 22, 26] and

was designed in physical coordinates as follows:
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010000000000
b =

0 0 0 0a 1 0 0 a 0 0 0]

and then transformed into modal coordinates. The nonzero entries correspond to physical

positions and velocities on the truss. The angular input actuator was then added by

augmenting a third column and entering a one in the row corresponding to the rigid body

angular velocity state.

Ht Matrix

Row 1 6.075E-1 -3.287E-1 -1.231E-1 6.276E-1 1.147E-1 -2.993E-1

-3.194E-2 -5.658E-2 2.029E-7 2.435E-9 2.143E-9 -3.475E-10

0 0 0 0 0 0

0 0 0 0 0 0

Row 2 3.440E-1 5.904DE-1 -2.036E-1 -3.257E-1 -1.156E-1 -5.929E-1

-2.914E-2 -5.342E-3 -1.204E-4 -3.734E--6 -2.003D,-6 1.695E-7

0 0 0 0 0 0

0 0 0 0 0 0

Row 3 0 0 0 0 0 0

0 0 0 0 0 0

6.075E-1 -3.287E-1 -1.231E-1 6.276D3-1 1.1471-1 -2.993D3-1

-3.19413-2 -5.65813-2 2.02913-7 2.43513-9 2.14313-9 -3.47513-10

Row 4 0 0 0 0 0 0

0 0 0 0 0 0

3.4408E-1 5.9043E-1 -2.036113-1 -3.2572E-1 -1.1565E-1 -5.92941;3-1

-2.9144E-2 -5.3428E-3 -1.2048E-4 -3.7340E-6 -2.0033E-6 1.6959E-7
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Row5 .OOOE-I-0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Row6 0 0 0 0 0 0 0 0 0 0 0 0

1.OOOE+0 0 0 0 0 0 0 0 0 0 0 0

The first and second rows of the 6 - by - 24 ftIt matrix represent position measurements

from the sensors located at nodes 1 and 2. The third and fourth rows represent velocity

measurements from the sensors located at nodes 1 and 2. The fifth and sixth rows represent

angular position and velocity measurements at the hub, node 7. The development of the

non-zero portions of rows one and two (as well as the non-zero portions of rows three and

four) of the matrix follows the development of previous theses [11, 22, 26] and is calculated

in physical coordinates as follows:

010000000000Hp = Hv =I

0 0 0 0 0 1 0 0 0 0 0 0

and then transformed into modal coordinates. The dimension of the matrix partition is

2 - by - 12 due to the fact that the truth model state vector is partitioned into 12 modal

positions followed by 12 modal velocities. The partitions are arranged according to the form

shown in Equation (3.18). Angular position and velocity measurements were then added

by augmenting with rows five and six and entering a one in the columns corresponding to

the rigid body angular position and velocity states. Note that the 2 - by - 12 partitions

in rows one and two are identical to the partitions in rows three and four because of the

co-location of the position and velocity sensors. Note that the form of the IIt provided here

is different from that provided in the general development of Equation (3.18) due to the

way in which the rigid body angular position and velocity measurements are incorporated.
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Reduced Order Matrices

The reduced order matrices for the design of the Kalman filter and LQG controller

are now provided. The matrices are developed by retaining the first three modes in the

F1 , 13f, and Hi1 matrices in Equations (3.26) and (3.27). These matrices are associated

with the filter model state vector given in Equation (3.29).

The 6 - by - 6 tf matrix is developed similar to the Ft matrix, but only the first three

modes are retained:

0 0 0 1.0 0 0

0 0 0 0 1.0 0

0 0 0 0 0 1.0

0.0 0 0 0.0 0 0

0 -7.918E- 1 0 0 -8.89SE- 2 0

0 0 -5.084E + 2 0 0 -2.25,1E - 1

The 6 - by - 3 B1 = 6f matrix is developed similar to that for the bt matrix:

0 0 0

0 0 0

- 0 0 0B1 = =

-4.762E - 1 -2.747E - 1 1.0

2.584E - 1 -4.742E - 1 0

9.694E - 2 1.578E - 1 0

The 6 - by - 6 1 matrix is developed similar to that for the fHt matrix:
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6.075E- 1 -3.287E- 1 -1.231E- 1 0 0 0

3.440E - 1 5.904E - 1 -2.031E - 1 0 0 0

1.j = 0 0 0 6.075E-1 -3.287E- 1 -1.231E-1

0 0 0 3.440E - 1 5.904E - 1 -2.036E - 1

1.0 0 0 0 0 0

0 0 0 1.0 0 0

Previous theses have shown, that for the reduced order model investigated [8:55-56],

[11:65-66], [26:59-60], D of Equation (3.27) is given by:

D = 2 2

- H2P2 X9  
02X9[w]I2w]x - I 9  [b2 3 i83

[2x9 H22 9  19x9 0 9X9 093I

I9X9 O9X 1SX18 b29X3x3

0 2X9 0 2X9 6X18

-2p[- 2J6 22X3  (A.I)
04X3 6x3

where the unmodeled position states for nodes I and 2 are represented by f-12p and the

unmodelled velocity states for nodes 1 and 2 are represented by f12v. The 6 2 matrix

contains the unmodelled portion of the control input matrix. These matrix partitions were

derived from matrix development provided previously in this apl)endlix as well as Equations

(3.19) and (3.20) in Section 3.4.1. The resulting m - by - r b matrix (which is 6 - by - 3

in this research) is given as:

-4.239E - 4 6.423E - 5 0.0

6.461E - 5 -3.586E - 4 0.0

0 0 0
0=

0 0 0

0 0 0

0 0 0
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Appendix B. Dynamics Noise Strength and Measurement Noise Covariance

Matrices

The purpose of this appendix is to provide the truth model and filter model dynamics

noise strength and measurement noise covariance values used for the simulations. These

matrices were initial described in Section 4.4.2. In addition, this appendix describes in

more detail how the truth model dynamics noise strength is incorporated into the truth

model propagation simulation.

Dynamics Noise Strength Matrices

This section expands on two ideas related to determination and implementation of

dynamics niose strength matrices. First, iterations to find appropriate values actually

changed Qt and Qf and then discrete versions were computed. The values used for dupli-

cation and those finally determined are provided below.

Duplication Simulations. The value of Qt used in the duplication and modification simu-

lations is as follows:

0.05 0.00 0.00

Qt 0.00 0.05 0.00

0.00 0.00 0.05

The units of Q are in2 /sec (rad2/sec) for position states and in2/scC3 (rad2/3ec 3) for

velocity states.

The value for Qadd, as described in Section 5.2.3, used in the duplication and modification

simulations is as follows:
7.95 0.00 0.00

Qadd = 0.00 7.95 0.00

0.00 0.00 4.95

The value for Qf used in the duplication and modification simulations is as follows:

8.00 0.00 0.00

Q= 0.00 8.00 0.00

0.00 0.00 5.00

B-1



Dynamics Noise Strength Tuned Values. The tuned value of Q found in this research,

described in Section 5.2.3, is as follows:

0.05 0.00 0.00

Qt = 0.00 0.05 0.00

L 0.00 0.00 0.05

The tuned value for Qadd found in this research is as follows:

79.95 00.00 00.00

Qadd= 00.00 79.95 00.00

00.00 00.00 49.95

The tuned value for Qf found in this research is as follows:

80.00 00.00 00.00

Q/= 00.00 80.00 00.00

00.00 00.00 50.00

The value for Qj is found by adding Qadd to the Qt matrix in each case. The values for

Qf are thiose used by Lashlee in his research [11].

Second, implementing the truth model propagation noise is slightly different from

that provided in Equation (2.15). For this research, a first order approximation is made

to the Qd, computation provided in Equation (2.15) due to the fact that Wd,(ti) will be

transformed by the Gd, matrix (as shown in Equation (2.10), which is not the identity

matrix). In this case, a first order approximation is given as follows:

Qd ; GQGTA (B.1)

'Using a first order approximation of Gd ; GAt, the covariance of he qua ltil-y G,!dYxd)

becomes:

E{Gd3Yd(ti)3d(ti)TGT} GA tE{Wd(4)wd(ti)T'}GTAt (]3.2)
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In order for Equation (B.2) to equal (B.1) (to first order), the following must be true:

E{3d(t)d(t)T } Q (133)
At

Therefore, implementing this in the simulation requires the noise transformation matrix, A,

given in Equation (4.9) to be calculated as A w 't here in this research At = 0.05sec.

Measurement Noise Covariance Matrices

Duplication Simulations. Implementing the measurement noise is straightforward as de-

scribed in Equation (4.9). The value of Rj used in the duplication a.n1d modification

simulations is as follows:

2.7E - 06 0 0 0 0 0

0 2.7E- 07 0 0 0 0

0 0 2.5E - 04 0 0 0Rt -=

0 0 0 4.2668.E - 04 0 0

0 0 0 0 12.0 0

0 0 0 0 0 8.55 E - 05

Units of R are in 2 . sec ('ad2 . sec) for position measurements and in2 /sec (rad2/sec) for

velocity measurements [11:94].

The value of Radd used in the duplication and modification simulations is as follows:

-6.24E- 08 0 0 0 0 0

0 1.048E-06 0 0 0 0

0 0 4.45 0 0 0
Radd

0 0 0 3.4E- 01 0 0

0 0 0 0 0.0 0

0 0 0 0 0 9,77,E- 15
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The value of Rf used in the duplication and modification simulations is as follows:

2.6376-106 0 0 0 0 0

0 1.31SE- 06 0 0 0 0

0 0 4.4502 0 0 01 =

0 0 0 3.3957E -01 0 0

0 0 0 0 12.0 0

0 0 0 0 0 8.55E - 05

Note: The 4-4 entry used for Radd resulted in a R1 f matrix which is not positive definite.

Measurement Noise Tuned Values. The tuned value of Rt used in this research, as described

in Section 5.2.3, is as follows:

2.7E - 06 0 0 0 0 0

0 2.7E - 07 0 0 0 0

0 0 2.5E- 04 0 0 01Rt =

0 0 0 4.2668E- 04 0 0

0 0 0 0 4.8875E- 07 0

0 0 0 0 0 8.55E - 05

Note that the 5-5 entry is the only difference between the Rt matrix used in this research

and the Rt matrix used in previous research. This difference is discussed in Section 5.2.3.

The value of Radd used in this research is as follows:

1.1325E - 08 1.5944E -08 1.0296E - 06 7.1844E - 07 8.6427E - 09 5.36441E - 09

1.5944E - 08 4.3735E - 08 5.6047E - 07 4.2312E - 07 3.6657E - 08 5.5507E - 09

1.0295E - 06 5.6043E - 07 1.9865E - 05 1.6783E - 06 1.6763E - 06 2.1497E - 07
IRudd -

7.1842E - 07 4.2306E - 07 1.6783E - 06 1.8856E - 05 1.2182E - 06 1.1496E - 07

8.6427E - 09 3.6657E - 08 1.6763E - 06 1.2183E - 06 0.0000E + 00 0.0000B, + 00

5.3644E - 09 5.5507E - 09 2.1497E - 07 1.1496E - 07 0.00001E+ 00 0.0000E + 00
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The value of R f used in this research is as follows:

2.7113E - 06 1.5944E - 08 1.0296E - 06 7.1844E - 07 8.6427E - 09 5.3644E - 09

1.5944E - 08 3.1373E - 07 5.6047E - 07 4.2312E - 07 3.6657E - 08 5.5507E - 09

1.0295E - 06 5.6043E - 07 2.6986E - 04 1.6783E - 06 1,6763E - 06 2.1497E - 07R!=

7.1842E - 07 4.2306E - 07 1.6783E - 06 4.4553E - 04 1.2182E - 06 1.1496E - 07

8.6427E - 09 3.6657E - 08 1.6763E - 06 1.2183E - 06 4.8875E - 07 0.0000E + 00

5.3644E - 09 5.5507E - 09 2.1497E - 07 1.1496E - 07 0.0000E + 00 8.5500E - 05

The value for Rf is found by adding Radd to the Rt matrix in each case. The Rf matrix

is a symmetric, positive definite matrix.
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Appendix C. LQG State and Control Weighting Matrices

The purpose of this appendix is to provide the state weighting, X , and control

weighting, U, matrices used in the duplication of past research and those matrices found

in the controller tuning study described in Section 5.3.3. These matrices were initially

described in Section 1.1.3.

State Weighting Matrices

Duplication Simulations. The values of X used in the duplication and inodification shiu-

lations are as follows:

7.62E + 5 0.00 0.00 0.00 0.00 0.00

0.00 7.91E + 3 0.00 0.' 0.00 0.00

0.00 0.00 5.08E + 2 0.00 0.00 0.00

0.00 0.00 0.00 8.20E + 01 0.00 0.00

0.00 0.00 0.00 0.00 1.00E + 0 0.00

0.00 0.00 0.00 0.00 0.00 .OOE + 0

This matrix corresponds to the parameter point (7,6) and represents the nominal case for

tuning (i.e., a scale factor of 1.0).

State Weighting Matrix Tuned Values. The appropriate values for the state weighting

matrices in this research were obtained by selecting a few parameter points in the high

natural frequency region of the parameter space and determining an appropriate scaling

factor for the state weighting matrix provided above. The remaining state weighting matrix

scaling factors were interpolated from those determined by simulations. The parameter

locations used for state weighting matrix tuning and the associated scaling factors are

provided as follows: parameter (1,6): scale 34.5; parameter (1,10): scale 70.0; parameter

(5,6): scale 8.5; parameter (5,9): scale 26.0; and parameter (7,9): scale 1.4.
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Control Weighting Matrices

Duplication Simulations. The values of U used in the duplication and modification simu-

lations are as follows:

3.0 0.0 0.0

U= 0.0 3.0 0.0

0.0 0.0 9.0

This matrix corresponds to the parameter point (7,6) and represents the nominal case for

tuning (i.e., a scale factor of 1.0).

Control Weighting Matrix Tuned Values. The methodology for determining the appro-

priate control weighting matrices is the same as for the state weighting matrices. The

appropriate values were obtained by selecting a few parameter points in the high natural

frequency region of the parameter space and determining an appropriate scaling factor

for the control weighting matrix provided above. The remaining control weighting matrix

scaling factors were interpolated from those determined by simulations. The parameter

points used for control weighting matrix tuning are the same as those for the state weight-

ing matrix determination. The parameter locations and the associated scaling factors are

as follows: parameter (1,6): scale 5.0; parameter (1,10): scale 10.0; parameter (5,6): scale

1.2; parameter (5,9): scale 3.7; and parameter (7,9): scale 2.0.

C-2



Bibliography

1. Baram, Y., and Sandell, N. R., Jr. "An Information Theoretic Approach to Dynamic
System Modeling and Identification," IEEE Transactions on Automatic Control, AC-
23 (1): 61-66 (1978).

2. Brogan, William L. Modern Control Theory. Englewood Cliffs, New Jersey: Prentice-
Hall, Inc., 1985.

3. Filios, Capt Paul G. Moving-Bank Multiple Model Adaptive Algorithms Applied to
Spacecraft Control. MS Thesis AFIT/GE/ENG/85D-14. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patteion AFB, Ohio, December 1985
(AD-A164 016).

4. FORTRAN Subroutines for Mathematical Applications Software. Houston: IMSL
Inc., Houston, Texas (1989).

5. GNUPLOT USER'S MANUAL. "An Interactive Plotting Program." Williams,
Thomas, and Colin Kelley.

6. Hawkes, Robert M., and John B. Moore. "Performance Bounds for Adaptive Estima-
tion," Proceedings of IEEE, 64: 1143-1150 (August 1976).

7. Ilentz, iLt Karl P. Feasibility Analysis of Moving Bank Multiple Model Adaptive
Estimation and Control Algorithms. MS Thesis AFIT/GE/ENG/84D-32. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, Ohio,
December 1984 (AD-A152 015).

8. Karnick, 2Lt Drew A. Moving Bank Multiple Model Adaptive Estimation Applied to
Flexible Spacestructure Control. MS Thesis AFIT/GE/ENG/86D-41. School of Engi-
neering, Air Force Institute of Technology (AU), Wright-Patterson AFB, Ohio, De-
cember 1986 (AD-A178 870).

9. Karnick, Drew A., and Peter S. Maybeck. "Moving Bank Multiple Model Adaptive
Estimation Applied to Flexible Spacestructure Control." Proceedings of the 26th IEEE
Conference on Decision and Control: 1249-1257. Los Angeles, California (December
1987).

10. Kokotovic, P.V., O'Malley, R.E. Jr., and Sannuti, P. "Singular Pertubations and Order
Reduction in Control Theory - An Overview," Autornatica, 12: 123-132 (1976).

11. Lashlee, Capt Robert W. Moving Bank Multiple Model Adaptive Estimation Applied
to Flexible Spacestructure Control.-MS Thesis AFIT/GE/ENG/87D-36. School of En-
gineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, Ohio, De-
cember 1987.

12. Lashlee, Robert W., and Peter S. Maybeck. "Spacestructure Control Using Moving
Bank Multiple Model Adaptive Estimation," Proceedings of the 27th IEEE Conference
on Decision and Control: 712-717. Austin, Texas (December 1988).

13. LQGLIB USER'S MANUAL. "A Description of Computer Routines for Use in Linear
Systems Studies." Air Force Institute of Technology (May 1984).

BIB-1



14. Lynch, P.J., and Siva S. Banda. "Active Control for Vibration Damping," Damping:
1986 Proceedings, Technical Report. Flight Dynamics Laboratory, Air Force Wright
Aeronautical Laboratory, Wright-Patterson AFB, Ohio, 1986 (AFWAL-TR-86-3509).

15. Maybeck, Peter S. Stochastic Models, Estimation, and Control, Volume 1. New York:
Academic Press, 1979.

16. ------. Stochastic Models, Estimation, and Control, Volume 2. New York: Academic
Press, 1982.

17. ------. Stochastic Models, Estimation, and Control, Volume 3. New York: Academic
Press, 1982.

18. -----. "Moving-Bank Multiple Model Adaptive Estimation and Control Algorithms:
An Evaluation," Control and Dynamic Systems: Advances in Aerospace System Dy-
namics and Control Systems, Edited by C. T. Leondes, 31: 1-31. Academic Press, San
Diego CA. (1989).

19. Maybeck, Peter S., and Capt Karl P. Hentz. "Investigation of Moving- Bank Multiple
Model Adaptive Algorithms," Proceedings of the 24th Conference on Decision and
Control: 1874-1881. Ft. Lauderdale, FLorida (December 1985).

20. Maybeck, Peter S., and Michael Roger Schore. "Robustness of A Moving-Bank Multi-
ple Model Adaptive Algorithm For- Control of a Flexible Spacestructure". Proceedings
of the IEEE National Aerospace and Electronics Conference: 368-374. Dayton, Ohio
(May 1990).

21. Maybeck, Peter S., and Richard D. Stevens. "Reconfigurable Flight Control Via Mul-
tiple Model Adaptive Control Methods," Proceedings of IEEE Conference on Decision
and Control. Honolulu, Hawaii (December 1990).

22. Schore, Capt Michael Roger. Robustness of a Moving-Bank Multiple Model Adaptive
Controller for a Large Space Structure. MS Thesis AFIT/GE/ENG/89D-46. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, Ohio,
December 1989.

23. Sheldon, Stuart N. An Optimizing-Design Strategy for Multiple Model Adaptive Esti-
mation and Control. PhD dissertation. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, Ohio, December 1989.

24. Sheldon, Stuart N., and Peter S. Maybeck. "An Optimizing Design Strategy for Mul-
tiple Model Adaptive Estimation and Control." Proceedings of IEEE Conference on
Decision and Control. Honolulu, Hawaii (December 1990).

25. Stevens, Richard D. Characterization of a Reconfigurable Multiple Model Controller
Using a STOL P-15 Model. MS Thesis AFIT/GE/ENG/89D-52. School of Engineer-
ing, Air Force Institute of Technology (AU), Wright-Patterson AF3, Ohio, December
1989 (AD-B139 226).

26. Van Der Werken, Capt Daniel F., Jr. A Robustness Analysis of Moving-Bank Multiple
Model Adaptive Estimation and Control of a Large . "lexible Space Structure. MS Thesis
AFIT/GE/ENG/88D-59. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB, Ohio, December 1988.

BIB-2



27. Venkayya, Vipperla B., and Victoria A. Tischler. "Frequency Control and Its Effect
on the Dynamic Response of Flexible Structures," AIAA Journal, 23: 1768-1774
(November 1985).

28. Venkayya, Vipperla B. 'Analyze' - Analysis of Aerospace Structures with Membrane
Elements. Technical Report. Analysis and Optimization Branch, Structural Mechan-
ics Division, Air Force Flight Dynamics Laboratory, Air Force Wright AeroDautical
Laboratories, Wright-Patterson AFB, Ohio, December 1978 (AFFDL-TR-78-170).

BIB-3



Form Approved

REPORT DOCUMENTATION PAGE OMB No 07040188

11 JC 'll t~irsi, n tf-, t~msc tot If,i~.n 10 'ctvI s, Jii1hiA tfln I ~ t d al .I' 1 -4 JI. .. . aI I Ii J 1 I rm Itics) I noQ crnrriSt% (.rq f a Inct this b~ufden QstI MI ,tt Uf 'I"? thfr iSPVu t tbi5
IT I , , l, ,", -it, e u I ,Co, ,, ,ct In ,,m it(o n ,1r, t to 5 n o 3 4

1. AGENCY USE ONLY (Leave oiank) ' 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE ANJD SUBTITLE 5]" eL--h - " -res-"hIdI 5. FUNDING NUMBERS

Moving-Bank Multiple Model Adaptive Estimation and Control Applied to a
Flexible Space Structure

6. AUTHOR(S)

Robert B. Moyle
Captain, USAF

7. PERFORMING ORGANIZA-TtON NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology
WPAFB OH 45433-6583 AFf/GWENG/90D-45

9. SPONSORING, AONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING i MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; Distribution Unlimited.

13. ABSTRACT (Maximum 200 words)
The performance of moving-bank multiple model adaptive estimation (MMAE) and control (MMAC) algorithms is
analyzed in this thesis. The performance of a six-state filter/controller model is evaluated on the basis of estimation/control
performance against a 24-state truth model. A model developed using finite element analysis is used to approximate a large
flexible space structure. The space structure is configured as a two-bay truss which is attached to a large central hub. Results
indicate that appropriate determination of the filter model noise statistics as well as the LQG controller weighting matrices
significantly improve performance of the bank throughout the parameter space. The performance of the moving-bank
algorithms is seriously degraded by the inclusion of the filter-computed residual covariance in the conditional probability
density function for computation of the hypothesis conditional probabilities within the multiple model algorithms. The
performance of the moving-bank MMAE/MMAC algorithms using parameter position estimate monitoring for parat.:eter
identification, and using a modified MMAC methodology for implementing control, provide performance comparable to
an artificially informed controller benchmark for the cases of slowly varying and jump parameters, as well as for constant
parameter values.

114. SUBJECT TERMS 15. NUMBER OF PAGES

Multiple Model Adaptive Estimation, Multiple Model Adaptive Control, LQG Control, -23
Flexible Space Structure 16. _PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIMCATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACTOF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified [uUL

NSN 7540-01-280-5500 Standard Fori 298 (Rev 2-89)
Pt.-10d by ANSI W1 I39133
298-1Wy


