Implementation of the Modified Monte Carlo
Technique Using Importance Sampling
on the Block Oriented System Simulator

THESIS

John B. Bennett
Captain. USAF

AFIT/GE/ENG/90D-03

DISTRIBUTICN STATEMENT A .
Approved fer pusise reiecsey j
Dismsuncn Unlimsted

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

$1 1 -3 160

AFIT/GE/ENG/90D-03

Implementation of the Modified Monte Carlo
Technique Using Importance Sampling
on the Block Oriented System Simulator

THESIS

John B. Bennett
Captain, USAF

AFIT/GE/ENG/90D-03

DETE 30 AT uENT A
Appreves 2 sinnc ro.ezael

Uheimmorszs inonoited

o — .o . h——

Approved for public release; distribution unlimited

AFIT/GE/ENG/90D-03

Implementation of the Modified Monte Carlo
Technique Using Importance Sampling
on the Block Oriented System Simulator

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

John B. Bennett, BSEE
Captain, USAF

December, 1990

Approved for public release; distribution unlimited

Acknowledgments

I'd like to thank my committee members, Mr Marty Desimio and Capt Byron
Welsh, for sacrificing many hours of their valuable time to help me in my attempt
to make this thesis work. Thanks are also given to my advisor, Lt Col Norman,
for permitting me to try to make the project completely successful up to the last

possible moment.

Thanks to Dan Zambon for keeping the computer system going through hard

times. A special mention is due to Pam Young, whose witticism kept me on my toes.

I'd like to especially thank my family for giving me the support and encourage-
ment to attempt this thesis effort (and AFIT). To my wife, Sandra, and my children,
Kimberly and Adam, I give my utmost love and appreciation for being who they are
and for what they endured during the entire AFIT time. 1 will make up the time
and attention they missed because of AFIT.

o John B. Bennett

n

Table of Contents

Page
Acknowledgments o Lo oo i
Table of Contents i
List of Figures vi
Abstract viii
L. Introduction Lo 1-1
1.1 Background 1-1
1.1.1 Computer Simulation Evaluation Method. . . 1-2
1.2 Problem 00 L. 1-4
1.3 Scope 1-5
1.4 Approach/Methodology 1-5
1.5 Equipment. 1-6
IL. Communication System Simulation 2-1
2.1 Simulation Approach 0L 2-2
2.1.1 Signal Generation. 2-2
2.1.2 Filteringof Signals. 2-4
2.1.3 Channel Nonlinearities. 2-5
2.1.4 Receiver Structures. 2-5
2.2 Monte Carlo Technique 2-7
2.3 Modified Monte Carlo Technique Using Importance Sam-

pling 2-10

2.3.1 Biasing/Unbiasing Procedure Using Gaussian Func-
tlons.l 2-13

ni

I11.

IV.

2.3.2 Estimation Error.
2.4 Simulation Software Packages
2.4.1 Modular Structure. L.
2.4.2 Simulation and Programming Language.
2.4.3 Topological Configuration.
2.4.4 Model Library.
2.4.5 Time and Event Driven Simulation.
24.6 Postprucessor.

2.4.7 User Interface..

Modeling of the System
3.1 BPSK System Decomposition

3.1.1 Data Generator.

3.1.2 BPSK Modulator.

3.13 Channel. L L.

3.1.4 BPSK Demodulator.

3.1.5 Error Detector.

3.2 BPSKSystem

3.2.1 Determining BPSK System Internal Parameters.

3.2.2 Determining System BER.
3.2.3 BPSK SYSTEM Simulation Parameter Deler-

mination. L.

Implementing Importance Sampling
4.1 Modified BPSK System Decomposition

4.1.1 Biased Noise Function.

Page
2-15
2-16
2-16

[N]

-17
2-17
2-18
2-18
2-18
2-18
2-19

3-1
3-1
3-3

3-5
3-9
3-12
3-12
3-14

3-16
3-18

4-1
4-1

4-1

Page
4.1.2 Weight Generator. o 4-2
4.1.3 Importance Sampliug Error Counter. 4-5
4.2 Modified BPSK System 4-7
4.3 MODIFIED BPSK SYSTEM Testing 4-7
V. Conclusions e 5-1
5.1 Conventional Monte Carlo Technique 5-1
5.2 Modified Monte Carlo Technique Using Importance Sam-

pling 5-1
5.2.1 CHANNEL Module. 5-2
5.2.2 WEIGHT FUNCTION GENERATOR Module. 5-2

5.2.3 IMPORTANCE SAMPLING ERROR COUNTER
Module. 5-4
5.3 Probable Problem. 5-4
5.4 Recommendations. 5-5
Bibliography BIB-1
Vita . . o oo VITA-1

List of Frgures

Elementary Communication Channel
Error Probability 000
Confidence Bands When Observed Value is 107%

. Sketch of Operations Performed with Conventional Sampling

Sketch of Operations Performed with Importance Sampling
Operational Flow of a Simulation Package

BOSS Software Structure

RANDOM DATA Internal Modules.
BPSK MOD Internal Modules
BPSK MODULATOR Internal Module
CHANNEL Internal Modules
PSK_DEMOD_AND ERROR_COUNTER Internal Modules

PSK MATCHED_FILTER DEMODULATOR Internal Modules .

. REAL BPSK MATCHCD FILTER DEMODULATOR Internal Mod-

ules .o e e
BPSKk DEMODULATOR Internal Modules
SIM STOPPER Internal Modules

.REAL ERROR COUNTER Internal Modules
.BPSK FRROR COUNTER Internal Modules

WEIGHT GENERATOR Internal Modules
WEIGHT FUNCTION GENERATOR Internal Modules

vi

Figure Page
4.3. IMPORTANCE SAMPLING ERROR COUNTER Internal Modules 4-6
4.4. MODIFIED BPSK SYSTEM Internal Modules 4-8

Vi

AFIT/GE/ENG/90D-03

. Abstract

The purpose of this eﬁbﬁt was to implement the Modified Monte Carlo tech-
nique using Importance Sampling on the Block Oriented System Simulator (BOSS).
In this-thests; computer simulation techniques of communications systems were re-
viewed. Next, conventional Monte Carlo techniques and Modified Monte Carlo tech-
niques using Importance Sampling were reviewed. Models of Binary Phase Shift
Keying (BPSK) systems using both Monte Carlo techniques were implemented and
simulated. Reasons for the model using Importance Sampling not working correctly

are postulated. “

The Monte Carlo technique is a method of ensuring that an inherently infinite
procedure, such as determining system bit error rate (BER), can be determined
within an appropriate accuracy and a confidence range after a set number of samfles.
Conventional Monte Carlo requires 10**1 samples be generated to determine a,BER \
of 107. This number of samples results in an estimated BER in the range of 0.5 to 2.0
of the true BER. The number of samples required using conventional Monte Carlo
techniques can result in unacceptable simulation times for low probability events.
Importance Sampling is a method of reducing the number of samples required to
determine an estimated BER with the same accuracy and confidence as conventional

Monte Carlo.

Vil

Implementation of the Modified Monte Carlo
Technique Using Importance Sampling
on the Block Oriented System Simulator

1. Introduction

1.1 Background

Since communications systems have become more complex, analytical ap-
proaches to evaluating these systems have become difficult, if not impossible(9:89).
The need to use simplifying assumptions to analyze modern communication systems
analytically often leads to an incorrect and misleading evaluation. Engineers have
turned to simulators to evaluate communications system performance. However, as
the performance of communication systems improve, the evaluation process becomes
more difficult because of the increasing system complexity and more time consum-
ing because more samples are required to be generated by the simulator. The time
needed to run a simulation is directly related to the number of samples required by

the simulation to determine the performance.

As the number of required samples increase, the simulation time increases to
an unacceptable level. Techniques have been developed to permit a known number
of system errors to determine the performance within an acceptable margin of error.
As communications systems improve, this method of evaluating the performance be-
comes too time consuming. The need to further reduce the amount of time required
to run a simulation led to the development of using probabilistic assumptions in
the communications system model. These assumptions reduce the number of sam-
ples required to remain within the same margin of error, and thereby decrease the

simitlation time.

-1

The bit error probability, or bit error rate (BER), in a digital communication
system is an important measure of system performance(2:1916). 'The BER is a
measure of how many bits are likely to be received in error divided by how many

bits are received.

1.1.1 Computer Simulation Evaluation Method. With the availability of sim-
ulation packages, the use of computers to simulate and evaluate the performance of
communications systems has become commonplace(3:153). The speed and ability of
the computer to perform complex repetitive mathematics eliminates the need for us-
ing simplifying assumptions in the communications system model(8:126). Relieving
the engineer of tedious mathematical calculations permits more time to be devoted

to design, rather than number crunching(1:1).

The fundamental approach of computer simulation evaluation of communica-
tion systems is to consider the output of the simulation as a series of independent
events. The independent events are the input signal and the communication systems
response to that input signal. 'The model of the communication system is known and
entered into the simulator. The . imulator’s task is to generate samples of the input
signal and process those samples through the communication system model. The
model usually consists of a transmitter, a receiver, and a medium to carry the signal
from transmitter to receiver. At th: medium stage, a noise signal is added to the
desired signal. The noise signal corrupts the data signal and causes the received
signal to be different from the transmitted signal. The processed samples out of the

receiver are stored as the received, or output, signals of the communication system.

The received signals are compared to the known input signals and any dif-
ferences are counted as errors. Dividing the number of errors by the total number
of samples vields an estimate of the BER. As the number of samples increases to
mnfinity, the estimated BER approaches the true BER. Since the time in observing

an infimite number of trials would never end, the process of finding the true value of

the BER is not possible. Thercfore, the Monte Carlo technique was created to find

an estimated BER accurate within an acceptable range.

1.1.1.1 Monte Carlo Techniqgue. Monte Carlo techniques are used to
reduce the number of required simulation samples, and thereby reduce the time
needed to measure the BER. In the Llonte Carlo technique of estimating the prob-
ability of bit error, enough samples are gener-ted such that a degree of confidence
can be assumed that the estimate of the BER is approaching the true BER. In gen-
eral, a minimum of 10¥*! samples, where 10~* is the true BER, must be observed
before there is an acceptable degree of confidence in the observed value of the BER
estimate(9:93)(3:157). The 10**! samples define a confidence interval where the es-
timated BER will range from one half to twice the actual BER. This interval is

considered an acceptable uncertainty(3:157).

Random number generators in simulators generate the signals used for com-
munication system models. The input signal for digital systems is random data
where all possible signal values occur with an equal probability. The noise input
used for communications systems is additive white gaussian noise (AWGN). The
amplitude of the noise occurs according to the Gaussian probability density function
(pdf). Samples of the Gaussian pdf are generated by a random number generator,
added to the desired signal in the transmission medium, and processed through the
communication system model by the simulator. A communication system with an
expected BER of 107° requires 107 samples to be processed before sufficient errors
can be counted to arrive at an acceptable confidence level in the BER estimate. As
an example, about 2 1/2 days are required to run a simulation of 107 samples using

the Block Oriented Systems Simulator (BOSS)(13:5-2).

The time required to evaluate the performance of a system requir g a large
number of samples must be r luced. One method of reducing the simulation time

is to modify the noise input signal to make errors occur more frequently. The data

is then manipulated to remove the effect of the biased input. Using a modified
probabilistic input noise signal is referred to as the Modified Monte Carlo technique

using Importance Sampling.

1.1.1.2 Modified Monte Carlo Technique. Modified Monte Carlo simu-
lation, using Importance Sampling, is a method of reducing the number of samples
required to estimate the BER. Importance Sampling biases the Gaussian noise pdf
to increase the rate at which errors occur. The simulator compares the signal input
and signal output and decides if an error has occurred. The simulator then deter-
mines the weight of the noise during the symbol that caused the error to occur. The
errors are counted using these weights. The effect of biasing the input pdf is removed
by this weighting and an estimated BER is determined. Reducing the number of
samples reduces.the time required to run a simulation. Theoretically, using Impor-
tance Sampling can result in significant reduction in the number of required samples
and still achieve the same [evel of confidence for a simulation using the conventional

Monte Carlo technique.

1.2 Problem

In evaluating the performance of communication systeins, a key parameter is
the probability of bit error. Because of the complexity of current communication
systems, computer simulation is nsed to evaluate the BER. The Monte Carlo tech-
nique is used to determine the BER within an acceptable range. The Modified Monte
Carlo technique using Importance Sampling is one method to reduce the number of

samples required to evaluate the BER within an acceptable range.

The Block Oriented Systems Simulator (BOSS) does not support any sample
reduciion method to reduce simulation time. This purpose of this thesis is to imple-
ment the Modified Monte Carlo technique using Importance Sampling on the BOSS

simulator.

1.3 Scope

The Block Oriented Systems Simulator (BOSS) will be used to simulate the
communication system and evaluate the BER using the conventional Monte Carlo
technique and the Modified Monte Carlo technique with Importance Sampling. Im-
portance Sampling will be the only type of sampling used in the Modified Monte
Carlo simulation. Other sampling methods such as tail extrapolation, extreme-value

or quasi-analytical will not be used.

The Gaussian pdf will be the only input noise type considered in this thesis.
The principal simulation parameter to be changed in the all simulations will be the
random number generator seeds. No other signal parameter biasing will be used.

The performance factor of the communication system to be measured and compared

is the BER.

All simulations will be performed using baseband signals to speed up the in-
dividual simulations. The communication system used will be simple for ease in
understanding. The system will be set up using common modulators, demodulators,

filters, and number generators.

1.4 Approach/Methodology

A digital communication system with a BER of about 107 will be modeled. A
conventional Monte Carlo simulation of the communication system will be run using
Gaussian amplitude distributed noise with a variance of one as the noise sequence to
establish a baseline. Ten simulations will be made varying the seeds of the random
number gencrators. From these runs a normalized error of the estimated BER will

be determined.

The communication system will be modified to include the modules for using
the Modified Monte Carlo technique. The variance of the Gaussian noise signal will

be changed. As before, ten simulations will be made using different seeds for the

random number generators and and the normalized error will be determined. The
sample reduction will be determined that maintains the same level of uncertainty as

the conventional Monte Carlo method.

1.5 FEquipment

The equipment used in this thesis is that necessary to run the simulation:

e BOSS User’s Manual
o BOSS Software Version: ST*AR 2.02

o DEC VAXstation 3

1-6

II. Communication System Simulation

The central issues in the design of communication systems are performance
evaluations and tradeoff analysis(8:126). The use of computer-aided modeling or
analysis to evaluate a communication system depends on factors such as system
complexity and required accuracy (8:126). Except for some idealized and often over-
simplified cases, it is extremely difficult to evaluate the performance of complex
communication systems using analytical techniques alone(10:5). Analytical tech-
niques are viable only under limited circumstances, and the network being modeled
must often be unduly distorted to fit a model amenable to analytical solution(8:126).
In fact, because of the distortions introduced to the system model, often one can

wind up with the right solution to the wrong problem(8:126).

It has become increasingly common to use computer-aided techniques to es-
timate the performance of digital communication systems(3:153). Simulation is a
powerful tool for evaluating the performance of communication systems(8:126). Sim-
ulation is often the only viable method to evaluate systems where the complexity
is too involved and analytical techniques are too difficult(8:126). Some major ad-
vantages of analysis using simulation over analytical techniques are that simula-
tions are more accurate and the engineer is freed from tedious number-crunching

calculations(8:126).

This chapter is a summary of computer simulation techniques as these tech-
niques apply to communication systems. The first section is an overview to model-
ing communications systems. The next two sections will describe the Monte Carlo
method and the Modified Monte Carlo method using Importance Sampling as the
evalnation techniques. Next, general features of simulation software packages are
presented. Finally, the features of the Block Oriented Systems Simulator (BOSS).

the simulator used in this thesis, are summarized.

2.1 Simulation Approach

Four major steps are fundamental to the simulation of any communication
system. These steps include creating and storing the sampled representation of
the signal, filtering the sampled signal, operating on the signal according to channel
nonlinearities, and demodulating the signal to observe the effect of the channel(9:89).
These steps will be discussed in terms of an elementary communication channel as

shown in Figure 2.1.

LINEAR NON-

—P-| MODULATOR | 1 reo 3™ | \ncariTy [~ DEMODULATOR i

Figure 2.1. Elementary Communication Channel (9:90)

2.1.1 Signal Generation. The first step of a simulation is to create a set of
samnpled signals. The sampled signals are representative of the real signals. In order
to reduce the sampling rate and the simulation time, bandpass signals are normally
represented by their low-pass equivalents (complex envelopes)(1:3). A bandpass

signal, z(t), may be represented by

x(t) = Xp(t)cos(2m fot)y — Xo(t)sin(2x fot) (2.1)

where

z(t) = timedomain signal
Xp(t) = direct component
Xo(t) = quadraturecomponent
f(t) = center frequency of the process

Using standard trigonometric identities, the bandpass signal can be equivalently

represented as

a(t) = R(t)cos[2x f.t + ®(1)] (2.

o
N
p—

where

R(t) = [X3(t)+ X3(0)2

— Xolt)
o(t) = arcta71,[ﬁ;m]

The complex envelope of z(t) is then

X(t) = R(t)exp[j0(t)] (2.3)

This representation of the signal is known as the complexr low-pass representa-
tion. Use of the complex representation significantly reduces simulation time because

the center (carrier) frequency is not required in the simulation.

For a sampling frequency f,, the complex envelope representation is(9:90)

ek dt) = Ak d)PPexpli2r(Z2)k + jO(k - db)] (2.4)

fo
s

e
M

where

Alk - db) represents amplitude modulation
Gk - db) represents phase modulation
{ ~:) 15 the relative carrier frequency
P s the signal power

fo= 1/ dt s the sampling frequency

k 15 the sample index

The main consideration in selecting the sampling frequency f; is the total band-
width required around the channel carrier frequency. In a digital communication
system, the bandwidth is determined by the frequency spectrum of the transmitted
symbol. Nyquist's Sampling Theorem states that only 2 samples per symbol are
necessary to reconstruct the original signal. For simulation purposes, the sampling
frequency should be an even integer between 8 and 16(9:90). If the sampling fre-
quency is less than 8 samples per symbol, accuracy is lost; with more than 16 samples

per symbol, excess simulation time is used without significant gain in accuracy(9:90).

2.1.2 Filtering of Signals. The next consideration in the simulator is the
use of filters in the system. The primary purpose of system filters is to give an
acceptable tradeoff between desired signal distortion and interference from adja-
cent channels(9:91). The simulator requires a flexible capability to model different

gains/delays versus the frequency functions(9:91).

Efficient algorithms are necessary for a simulator because filtering tends to be
the most CPU-intensive aspect of the simulation(9:91). There are three methods
usually used to simulate filter actions: 1) convolve the sampled signal with a stored
filter impulse response; 2) multiply the discrete Fourier transform (DEFT) of the
signal by the filter frequency transform function and take the inverse DFT to return

the signal to the time domain representation; and 3) operate on the signal according

2-4

to the difference equation governing the filter(9:91). Direct convolution, the first
method, is rarely used because of the excessive CPU time required to perform the
computations. The DFT approach is the most general and commonly used method
to simulate the effects of filtering. However, for low order classical filters, such as

the Butterworth or Chebyshev, the difference equation method is quicker than the

DFT method.

2.1.3 Channel Nonlinearities. Analytical approaches become complex, if not
impossible, to use when the systern model contains nonlinearities. Simulation is often
the only practical approach to perform system evaluation(9:92). Most simulations
of devices with abrupt nonlinearities generate input/output tables to map input
values to output values. These lookup tables are used when the simulator encounters
abrupt changes to the input value and interpolation of the data points are used if
necessary. For gradual nonlinearities in the simulation, power series representations

of the input/output relationship are used(9:92).

2.1.4 Receiver Structures. The first module in the receiver structure is the
receiver front-end filter. At this point in the model the remaining steps in tie
simulation include the addition of noise, demodulation, and quantitative performance
evaluation(9:93). Performance evaluation would be measured by the signal to noise

ratio for analog systems and the bit error rate for digital systems(9:93).

Two types of simulations are used depending on whether thermal noise, usually
Gaussian, is added. The hybrid simulation/analysis approach is used if thermal noise
is not added in the simulator. This approach uses simulation to obtain the statistics
of any other sources of signal interference or distortion. The effect of thermal noise is
then added to the statistics and an average error rate is calculated(9:94). In the direct
simulation approach, thermal noise is added, demodulation is performed, and the
performance of the overall system is evaluated. For digital systems, error counting is

required, therefore making these simulations inherently time-consuming(9:94). The

Monte Carlo technique is a method of ensuring that simulating a certain number
of symbols will yield the estimated BER within a range of accuracy and a level of

confidence.

The demodulation and detection processes reduces the waveform to a number
which is then compared to a threshold. The decision process can be described in
relation to the probability density functions (pdf) fo(v;7) and fi(v;7), of the input
voltage at the sampling instant 7. The detection decision is made relative to the input
voltage at the sampling time 7 given that a “one” or a “zero” was sent. Deciding
a “one” was received when a “zero” was sent occurs when there is a large positive
excursion of the receive voltage from the value of a “zero”. If the excursion of the
voltage is sufficiently large to exceed the threshold voltage Vr, an error will occur.
Sample densities are shown in Figure 2.2. These densities may, in general, assume

any shape and are not necessarily identical.

v
T (THRESHOLD)

Figure 2.2. Error Probability(3:155)

The probability of error, given that a one was sent, is

| S
[}
N

Problerror/one] = p; = /Tfl(zr')(lv (:

The probability of error. given that a zero was sent, is

Problerror/zero] = py = /v—'x}fo(v)dv (2.6)

T

The average probability is then
p = T1pP1 + ToPo (2.7)
where
T is the apriori probability of the symbol “one”
To ts the apriori probability of the symbol “zero”

2.2 Monte Carlo Technique

The Monte Carlo method is basically an error counting technique. In other
words, the Monte Carlo technique estimates the probability of bit error by observ-
ing the number of error occurrences. Suppose that a “zero” was sent. Then the

probability of error is

Po = /Vc:fo(v)dv (2.8)

This may be rewritten as

po = /_ Zho(v) folv)dv (2.9)

where hy 1s an error detector given by

Recognizing that Equation 2.9 expresses the expected value of hg, the prob-
ability of error can be estimated with a sample mean of hg. In other words, the

probability of error

po = E[ho(v)] (2.10)

can be estimated by counting the number of errors over N trials as given by

. 1 N
Po = 7\72/10(%') (2.11)
V=1

where hg is an error detector, the summation is an error counter, v; = v(t;), and ¢;

is the symbol-spaced instant at which the decision is made.

Equation 2.11 defines the Monte Carlo method(3:156). The probability of bit
error is estimated by counting the number of error occurrences over a set of trials.
Simplifying the above equation for 7 bit errors out of N bits observed defines an

unbiased Monte Carlo estimate of the probability of bit error p as

p=n/N (2.12)

where

n is the number of errors

N is the total number of bits

As the number of trials increases to infinity, the error probability estimate p
apnroaches the true error probability p. The simulation time required for an mfinite
number of trials would never end and is therefore unacceptable. The Monte Carlo

method was created in order to find a relatively accurate estimate of p.

N
Py

In the Monte Carlo method of estimating the probability of error p , enough
errors need to be counted to ensure that a degree of confidence can be assumed that
the error probability estimate p is relatively close to the actual error probability p.

The confidence level can be defined as(3:156)

Plhy <p<h]=(1-a) (2.13)

where

hy — hy isthc confidence interval

(1 —a) is the confidence level

In other words, (1 - «) is the probability that the true value of the BER pis bracketed
by h; and h,. Figure 2.3 shows the number of trials that needs to be observed before

the estimate error rate lies within a desired confidence level of the actual error rate.

In general, a minimum of 10+ symbols should be observed before there is an
acceptable degree of confidence in the error estimate p (3:157). This is equivalent to
a vertical slice on the chart where N = (10%*1). Going across the chart at the 90%
confidence range shows that observing 10¥*! symbols defines a confidence interval
where the estimated error probability p is in the range of 0.5p to 2p. This interval

is considered acceptable(3:157).

Figure 2.4 illustrates the operations performed by a Monte Carlo simulation.
The input r to the processor is a random variable of a known probability density
function, fx(z). Using a finite number of observations, we want to estimate the
number of errors occurring in y. The sorting operation is deciding if an error has

occurred. The output = is the number of errors.

However, use of the conventional Monte Carlo technique is limited to error

probabilities in the region of 1072 107 _and possibly 107* (9:93). Verifying lower

2.9

10 &Y

gl.llllJJ

|

_\ —
107% — %0% #o% .
B N
I
&
m 1
.
‘O-M‘) T 'f"'l" ¥ ¥ K] l"’l' L] L L{ 'l“'l
1ok 1ok 1o&* 1ok

N, Total Number of Trials Observed

Figure 2.3. Confidence Bands When Observed Value is 107% (3:158)

error rates becomes extremely time consuming because of the number of samples
the simulator is required to generate. A variation of the conventional Monte Carlo
method using Importance Sampling has been developed to reduce the number of

samples required, thereby reducing the simulation time.

2.3 Modified Monte Carlo Technique Using Importance Sampling

The large number of samples required to be generated for a small number of
errors to be conunted make the Monte Carlo method inefficient. The majority of
the generated signals do not cause errors (the “important™ event). If the noise is

zero-mean Gaussian. for example, the most probable value is zero, and zero will

2-10

THRESHOLD

INPUT, x OUTPUT, vy SORTING OBSERVABLE, z

. PROCESSOR o =
F(x) OPERATION
X

Figure 2.4. Sketch of Operations Performed with Conventional Sampling (6:17)

not generate an error. There is . «_riain range of values centered around the mean
value that also do not contribute to error occurrences. The samples generated that
do not induce errors are, in effect, wasted. linportance sampling is a method of
making errors occur more frequently by a deliberate distortion, called biasing, of the

statistics of the underlying noise process that causes errors to occur(3:158).

The probability of error given a “zero” was sent, as shown in Equation 2.9, can

be rewritten as

where fi(v) is the biased density function. Noise samples from fj(v) will cause the
errors o occur more frequently because, as shown later, f; will be formed from fqo

in such a wav as to increase the noise power(3:159).

The ratio

w(v) = folv)/f3(v) (2.15)

is called the weight, or “unbiaser”, of the function and the inverse of w(v)

B(v) = w'(v) = f5(v)/ fo(v) (2.16)

is called the bias of the function.

Equation 2.14 can be rewritten as

P = /_o:oho(v)w(v)fg(v)dv (2.17)
= [B(o)fi(o)do (2.18)

where hj(v) is an error detector, not now based on a count of one as in conventional

Monte Carlo, but now based on the weight w(v).

As shown in Section 2.2, Equation 2.18 may be written as

po = E[hy(v)) (2.19)

As before, the estimate of this equation can be expressed as the sample mean

R lN‘
Po. = NZ};.;;(M) (2.20)
*i=1
1/\’0
= NZ[[O(’U,')?I‘(I.’I') (2.21)
*i=1

[\
t
[V

where Hy(v) is identical to ho(v) but the changed symbol is a reminder that Ho(v) is
the error detecior when the biasing function fj is the governing density(3:159). The
:1(v;) sequence of observed values is interpreted as the weighting function given in
Equation 2.15 evaluated at the sequence of observed voltages v(¢;). Equation 2.21
1s the conceptual basis for producing an estimate using the modified Monte Carlo

technique(3:159).

Figure 2.5 illustrates the operations performed by the Modified Monte Carlo
simnulation using Importance Sampling. As before in Section 2.2, the input « to the
processor is a random variable of a known probability density function fx (). Using
a finite number of observations, we want to estimate the number of errors occurring
in y. The sorting operation decides if an error has occurred. However, the output

Zm 18 now the weighted number of errors.

INPUT, x OUTPUT, y SORTING OBSERVABLE, zq,

——-{ PROCESSOR | gt o000 P WEIGHT L

!

Fignre 2.5, Sketch of Operations Performed with Importance Sampling (6:17)

2.3.1 Biasing/Unbiasing Procedure Using Gaussian Functions. Let X b a
sero-mean Cratssian rando ariable. The zero mean Gaussiz If with variance o2
zero-mean Gaussian random variable. The zero mean Gaussian pdf with variance o

15

flz) = (1/V2x0)exp(—z2/20?) (2.22)

For importance sampling, the Gaussian noise pdf is changed to cause errors to

occur more frequently. The biasing function B(z) is defined as

fx (=)
fx(z)

B(z) = (2.23)

where the variance o? of f(z) is unity and the variance o2 of f*(z) is greater than
one so errors will occur more frequently. If f3(z) is used as the noise pdf rather than

the original fy(z), then more samples will come from the region of interest (the tails

of the pdf)(2:1918).
The biasing scheme suggested is (2:1920)
B(z) = +—— (2.24)

where the constants ¢ and o are chosen such that the new density fy(x) has unity

arca. This means that

/ firla)de = / ' B(2)f(z)de = 1 (2.25)
The « is optimized for the BER of a particular system using(2:1920)
—(2M + 1) + 2M 4+ 1)2 4+4T*1 + 17
aopr = () \/() () (2.26)

27

where M is the memory in the system and T iz the threshold defined by T =

A

(2~ '(Pg). This means that

2-14

(2.27)

The weighting function w(z) is given by f(z)/f*(z) for a single sample point.
From Equation 2.21, the BER is estimated by counting the errors and unbiasing
each count by the ratio of the input densities. For the case where there is several
samples per symbol and the input samples are independent, the weight of the noise

that caused the error to occur is given by(3:160).

M
w(z;) = [] fx(zizja)/ fx(zizja) (2.28)

i=1

where fx and f% are single dimensional (assumed stationary) densities, ¢ is the
symbol index, j is the sample index within the symbol, and M is the number of

samples within the symbol.

2.3.2 Estimation Irror. Associated with simulation is the error of the esti-
mated value with respect to the calculated value. The number of samples required

to estimate P, by direct counting is(2:1922)

1

N
> 2P,

(2.29)

where ¢ is the normalized error of the estimated P.. Rewriting Equation 2.29, the

normalized error is

UP,,

P,

¢ =

where a, is the standard deviation of the estimate P.

When computer simulation has been chosen to evaluate a communication sys-
tem, it is important to choose a simulation software package that is both flexible and

accurate.

2.4 Simulution Software Packages

Several software packages are now available for simulating communication sys-
tems. The features that make one simulation program a better choice for a particuar
application are not clear-cut(1:2). However, it is important to understand the fea-
tures that a communication simulation package should have, and a summary of

desirable features as identified by Balaban and Shanmugan (1) are listed below.

2.4.1 Modular Structure. To provide maximum flexibility, simulation soft-
ware packages used for communication systems analysis and design should have a
modular structure. Most simulation software packages in use now are made up of
four major components: the model library, the system configurator, the simulation
exercisor, and the postprocessor. The operational flow of a simulation package is

shown in Figure 2.6.

The model library is used to store a set of functional blocks that can be accessed
by the modeler to build a system to be simulated. The system configurator is used to
configure the set of models selected from the model library in the desired topology.
The indi;'idua.l block simulation parameters may be entered at the configuration level.
The simulation exerciser generates the simulation sequence and stores histories of
events or waveforms that occur at various points in the communication system model.
Individual block simulation parameters may be entered and system level simulation
parameters must be entered at the simulation exercisor level. At the conclusion of the
simulation, the post processor outputs are used to verify if the design requirements
and design constraints are met. Iterations of the simulation may be run by varying

the parameters and nsing the postprocessor to compare the results.

2-16

TOPOLOGICAL SYSTEM DESCRIPTION
(SIMULATION LANGUAGE OR GRAPHIC INPUT)

N6PoLoay SYSTEM - MODEL
» CONFIGURATION (atlf - - LIBRARIES
|
|
COMPILED !
SIMULATION !
PROGRAM !
|
|
NEW |
PARAMETERS SIMULATION I MODEL AND
SYSTEM
EXERCISOR PARAMETERS

SIGNAL OR EVENT
TIME HISTORIES

POST
PROCESSOR

* PERFORMANCE ANALYSIS,
GRAPHIC QUTPUT,
ERROR RATES,

TIME DELAYS,

ETC..

Figure 2.6. Operational Flow of a Simulation Package

2.4.2 Simulation an: “rogramming Language. The software used in the sim-
ulator should be written in a higher level programming language such as Fortran,
Pascal, or C. These langnages, however, do not allow input to the simulator via block
diagrams. Therefore, to connect the block diagrams to the simulation exercisor, a

preprocessor simulation language is required.

2.4.3 Topological Configuration. The configurator of the simulator software

package should allow connection of the model functional blocks in any topological

configuration. This feature permits muaximum configuration flexibility, however, it

may complicate the simulator software structure.

2.4.4 Model Library. The usefulness of a simulation software package de-
pends heavily on the number of functional blocks contained in the model library.
The model configurator should allow unlimited nesting of the blocks in the model
library to permit any subsystem model to be built. The user should be able to write
his own model, and either enter it directly into the system model for simulation or

enter it into the model library.

2.4.5 Time and Event Driven Simulation. A simulator should be designed
so that processing can occur either at every “tick” of the simulation clock or when
identified events occur. For maximum flexibility, both options should be made avail-
able to the user. Provisions should be made in the simulator so that the user can

designate model blocks either as event driven or time driven.

2.4.6 Postprocessor. 'The postprocessor function of the simulator should en-
able the designer to view the results of the simulation. The postprocessor should
allow the users to draw direct cause-and-effect inferences about the system opera-
tion. As a minimum, the postprocessor should perform functions of common test
instruments such as spectrum analyzers, and software utilities such as profilers of
resource utilization. Statistical analysis. as well as graphics display routines, are also

essential for the postprocessor.

2.4.7 User Interface. The simulation package should be user friendly. The
documentation provided with the package should be comprehensive and understand-
able. On-line documentation. such as “help”, should be available and noncryptic to

the nser.

218

2.5 Block-Oriented Systems Simulator

The Block-Oriented Systems Simulator (BOSS) provides an interactive envi-
ronment for block oriented system analysis and design(12:1-2). The BOSS software
structure is shown in Iligure 2.7. BOSS has a rich environment of block modules in
the model library. The supplied blocks are easily altered, enabling new blocks to be
designed. “Primitive” blocks may be interconnected to build a new block. These

new blocks may be added to the model library.

BOSS has a hierarchical method of building systems to be simulated. BOSS
performs consistency checking to ensure proper connectivity between all modules

and to verify valid input parameters are used.

When the system to be modeled is stored in the simulator, the parameters are
entered and the simulation is performed. The post processor displays the data in
various formats. The user decides what data is to stored by inserting probes into

the model.

BOSS runs under the VMS operating system on a DEC VAX Station or under
the UNIX operating system on the SUN-3 workstation(12:1-2). BOSS provides high
resolution bit mapped graphics (10214 x 864) and uses both a mouse and the keyboard

for inputs.

2-19

Display

Screen
Display
Manager
Post Block
Diagram
Processor Editor
Signals - Database el — Code
Generator
Simulation
Manager

Figure 2.7. BOSS Software Structure (12:1-7)

[
A

o

=

III. Modeling of the System

The Block Oriented Systems Simulator (BOSS) provides for simulation-based
analysis and design of any communication system which can be represented in block
diagram form(12:1-2). Simulation models of systems to be evaluated are built us-
ing a hierarchical block diagram approach. Once the system to be modeled is ex-
pressed in block diagram form, BOSS supports a time-domain, or waveform level

simulation(12:1-2).

To build a system to test and verify the Monte Carlo technique and Importance
Sampling using BOSS, it was decided to use a simple, real-valued Binary Phase Shift
Key (BPSK) system ene ating at baseband. Built-in BOSS modules were used in
the system where ¢ Lossible. Changes made to existing BOSS modules were kept
to a minimur.. BOSS modules, systems, or parameters will be capitalized to set
them apart from generic terms. This chapter will begin with building the basic
BPSK system and will then evaluate the system using the conventional Monte Carlo

method.

3.1 BPSK System Decomposition

The first step in the BOSS modecling process is to perform a top-down de-
composition of the system. The blocks required for a BPSK system are the data
generator, the BPSK modulator, the channel, and the BPSK demodulator. Added
to the model will be an error detector to identify errors and provide the estimated

BER. The next sections will discuss the modeling of these blocks.

3.1.1 Data Generator. BOSS provides a digital data generator in the model
library. The generator in BOSS is called RANDOM DATA and is located under the
group DIGITAL SOURCES. Figure 3.1 shows the internal modules that make up

the data generator module.

3-1

RANDOM DATA

UNIFORM .
RAN_GEN =
O REALLL o |
-~ A
A |
IMPULSE CONS
U TRaIN D O &N >
O# 1 OUTPUT

Figure 3.1. RANDOM DATA Internal Modules

RANDOM DATA generates a random binary bit stream (logical “true” or
“false”) at a specified bit rate and probability of false. RANDOM DATA requires

the parameters shown in Table 3.1 to generate the bit stream.

Table 3.1. RANDOM DATA Parameters

ISEED
PROBABILITY OF FALSE
BIT RATE

The parameter ISEED is the seed of the underlying random number generator.
The generator has a uniform distribution. ISEED will be renamed DATA GENERA-
TOR SEED to differentiate between the different seeds in the model. This parameter
will be passed up to the system level because the DATA GENERATOR SEED will
be one of the parameters varied to determine the estimation error. The parameter
PROBABILITY OF FALSE will be set internally in the RANDOM DATA module
to be 0.5. This setting ensures random data is output from the module. The pa-
rameter BI'T RATE will be renamed SYMBOI RATE and will be passed up to the

system model.

3-2

3.1.2 BPSK Modulator. BOSS provides a BSPK modulator in the model
library. The modulator in BOSS is called BPSK MOD and is located under the
group DIGITAL MODULATORS. Figure 3.2 shows the internal modules that make

up the modulator module.

BPSK MOD
LOGICAL COMPLEX
1 D—~p TO D> >SPECTRALD>—> 1
[] NUMERIC [JSHIFTER
1# 1 BPSK MODULATED SIGNAL O# 1 BPSK MODULATED SIGNAL

Figure 3.2. BPSKk MOD Internal Modules

The BOSS module BPSK MOD modulates the input bit stream to the constel-
lation of (1,0) and (-1,0). In order to set the bit error rate to a desired value later,
the values of the constellation were changed to be (TRUE VALUE0) and (FALSE
VALUE.0). Both constellation values were set to be real numbers. Also, because the
simulation will be run at baseband, the COMPLEX SPECTRAL SHIFTER block
was deleted. To differentiate the user generated module from the BOSS module.
the new module is saved as BPSK MODULATOR in the group MISCELLANEOUS.
BPSK MODULATOR is shown in Figure 3.3. This module output is connected to
both the channel mput and to the uncorrupted input of the BPSK demodulator.
BPSK MODULATOR requires the parameters shown in Table 3.2 to generate the

modulated bit stream.

The parameters TRUE VALULE and FALSE VALUL set the amplitudes of the

logical data generator outputs. FALSE VALUE was set internally in module to be

3-3

BPSK MODULATOR

LOGICAL
TO
(] NUMERIC

I# 1 BPSK BINARY INPUT O# 1 QUTPUT

Figure 3.3. BPSK MODULATOR Internal Module

Table 3.2. BPSK MODULATOR Parameters

TRUE VALUE
FALSE VALUE

the negative of TRUL VALUE. TRUE VALUE was passed up to the system level

and will be used to set up a predicted BER.

3.1.2 Channel. BOSS does not provide a chanuel that was desired for this
model. The channel for this model requires a real-valued white noise generator
and an adder. BOSS provides a generator called GAUSSIAN RAN_GEN under the
group NOISE AND INTERFERENCE. The BOSS module GAUSSIAN RAN_GEN
generates real-valued Gaussian white noise with adjustable mean and variance. Table

3.3 shows the parameters required to generated the Gaussian noise.

Table 3.3. GAUSSIAN RAN_GEN Parameters
ISEED
MEAN

VARIANCIS

3-1

The parameter ISEED was renamed NOISE GENERATOR SEED. VARI-
ANCE and NOISE GENERATOR SEED were passed up to the syste.n level. NOISE
GENERATOR SEED must be a large odd integer and will be varied to determine the
estimation error. VARIANCE will be set to a value of one for conventional Monte
Carlo and will be changed for the Importance Sampling module. MEAN was set to

0.9 and stored in the module.

To model the channel, a module called CHANNEL was generated. This mod-
ule will input tne BPSK signal, add Gaussian noise to the signal, and output the
corr ,ted BPSK signal. TI'igure 3.4 shows the internal modules of the user gener-
ated CHANNEL. CHANNEL paramecters are the same as GAUSSIAN RAN_GEN

parameters shown in Table 3.3.

CHANNEL

1 > D/\ D 1

+
AN

GAUSSIAN
U] RAN_GEN D

i# 1 INPUT O# 1 OUTPUT

Figure 3.4. CHANNEL Internal Modules

3.1.4 BPSK Demodulator. BOSS provides a PSK demodulator and er-
ror counter in the model library. This module is called PSK_.DEMOD_AND
FRROR.COUNTER and 1s located under the group DEMODULATORS.
PSK_DEMOD_AND ERROR_.COUNTER internal modules are shown in Figure 3.5.

However, the module supplied by BOSS is configured for complex signals and was

changed to work with real signals. The module was further changed to move the er-
ror counter outside the module so that changes to incorporate Importance Sampling

would be easier. The error counter changes are discussed in the next section.

PSK_ DEMOD_AND ERROR_COUNTER

[J Psk 10

1 | D—D> MuLn SYMBOL
> wwsen D) S
DELAY >
2 JDQ
D— PSK_TO
P MATCHED FILTER SYMBOL >
DEMODULATOR [> NuMBER

POSITION
IN_SYMBOL P>

1 TRANSMITTED PSK
#2 RECEIVED PSK

Figure 3.5. PSK_.DEMOD_AND ERROR_COUNTER Internal Modules

The BOSS module PSK MATCHED _FILTER DEMODULATOR internal mod-
ules are shown in Figure 3.6. The integrate and dump integrator integrates over one
symbol interval and dumps the output at the end of each symbol. The PSK DE-
TECTOR quantizes the output of the integrator to the nearest constellation point.
In other words, for BPSI, the PSK decides which constellation point the received
symbol represents by checking whether the integrator output is greater than or less
than zero. Removing the IMAG OFF COMPLEX and REAL OF COMPLEX mod-
ules, one INTEGRATE AND_DUMP module, and adding a constant generator were
the changes necessary for the demodulator to function for real-valued signals. The

constant generator was required for the MAKE COMPLEX module input because

3-6

the PSK DETECTOR requires a complex signal. The modified module was saved
as REAL BPSK MATCHED FILTER DEMODULATOR in the group MISCELLA-
NEOUS and is shown in Figure 3.7.

PSK MATCHED FILTER DEMODULATOR
REAL
| D—[o St D e crod—D |
IM'::LP gmresnlmsb
O hesme]]
Doeira D
I# 1 RECEIVED PSK STREAM O# 1 DEMODULATED PSK

Figure 3.6. PSK MATCHED_FILTER DEMODULATOR Internal Modules

The REAL BPSK MATCHED FILTER DEMODULATOR module requires
the parameters shown in Table 3.4. The MAKE COMPLEX IMAG INPUT was set
to zero and stored in the module. Because the system is real-valued and channel
phase rotation does not occur, CHANNEL PHASE ROTATION (DEG) was set to
zero and stored in the module. PSK CONSTELLATION FIRST ANGLE (DEG)
was set to 180 degrees and PSK MODULATION ORDER was set to 2, both for
BPSK, and stored in the module. The model has no delay elements between data
generation and the input to the demodulator, therefore TIME DELAY TO INPUT
(SEC) was set to zero. SYMBOL RATE was the only parameter carried up to the

system level.

REAL BPSK MATCHED FILTER DEMODULATOR

T

1 D> INTEGRATE
AND_DUMP

MAKE
DCOMPL)‘> D PSK

[:]mErECTOFJ> —> | 1

POSITION
0 in_symeol>[

O DIRAC DJ—

DELTA

ONSTANB

c
a 0.0

I# 1 RECEIVED BPSK STREAM O# 1 DEMODULATED BPSK

Figure 3.7. REAL BPSK MATCHED FILTER DEMODULATOR Internal
Modules

Table 3.4. REAL BPSK MATCHED FILTER DEMODULATOR Parameters

MAKE COMPLEX IMAG INPUT
CHANNEL PHASE ROTATION (DEG)
PSK CONSTELLATION FIRST ANGLE (DEG)
SYMBOL RATE
TIME DELAY TO INPUT (SEC)

PSK MODULATION ORDER

3-8

The changes were made to PSK_ DEMOD_AND ERROR_.COUNTER and
stored as BPSK DEMODULATOR under the group MISCELLANEOUS. The BPSK
DEMODULATOR module is shown in Figure 3.8. Again, the only BPSK DEMOD-
ULATOR parameter to be passed to the system level is SYMBOL RATE.

BPSK DEMODULATOR
1 >[5 Mum [J psk_TO
STAGE SYMBOL > 1
[] peLAY Dé‘éﬁfu [> NUMBER >
CONSTANT i
U3 >
REAL E%ET& D> 2
2 | D—D Watbwen D [> Numeen
[] FILTER
DEMODULATOR]
I#1 TRANSMITTED BPSK O# 1 TRANSMITTED DETECTED ABPSK
1#2 RECEIVED BPSK O# 2 RECEIVED DETECTED BPSK SIGNAL

Figure 3.8. BPSK DEMODULATOR Internal Modules

3.1.5 FError Detector. BOSS provides an error detector in the library. The
error detector is located under the group DEMODULATORS - INTERNALS. Added
to the BOSS supplied error detector was a print module so the output data would
include the BER calculation. Also added was a biock to stop the simulation when a
certain number of symbols were counted. The simulation stopper module was stored
as SIM STOPPER and is shown in Figure 3.9. The altered error counter was stored
as REAL EFRROR COUNTER and is shown in Figure 3.10. This module requires

an enable which is added as shown in Figure 3.11 and was stored as BPSK ERROR

COUNTER. The enable is required so the error counter will only be active for the

sample at the end of the symbol rather than active for every sample.

SIM STOPPER
1| >—p '>"=TZ“ > TRAN
< &N o
1# 1 INPUT

Figure 3.9. SIM STOPPER Internal Modules

The BPSK ERROR COUNTER module counts the number of times its two
inputs are unequal. The module prints the number of errors, the calculated BER,
and the number of symbols. BPSK ERROR COUNTER requires the parameters

shown in Table 3.5.

Table 3.5. BPSK ERROR COUNTER Parameters

PRINT ESTIMATE MODULO
SIM STOPPER NUMBER OF SYMBOLS
BIT RATE
SYMBOL FOR SAMPLE TIME
TIME DELAY TO INPUT (SEC)

TIME DELAY TO INPUT is the number of seconds of delay between trans-
mission of the first bit and that bit appearing at the input of the demodulator. TIME
DELAY TO INPUT was set to 1077 seconds because the integrate and dump filter
delays the signal by one symbol duration. PRINT ESTIMATE MODULLE is an input

that determines after how many samples the BER. number of symbols, and mumber

3-10

REAL ERROR COUNTER

-t

>

>—]
2 | D—D>reaLincD>

[]F_UNEQUAL

PRINT

INTGR
T0
REAL

INTGR
REAL

A

>
[] COUNTER F

SIGNAL

0o

PRINT
SIGNAL

E> PRINT
SIGNAL

_'J -
FALSE
R
MPULSE
stopper[]| [BFUL
I#1 INPUT 1
I#2 INPUT 2

Figure 3.10. REAL ERROR COUNTER Internal Modules

BPSK ERROR COUNTER
1 > > error
2 > [> COUNTER
oo
IN_SYMBOL
Ht 1 INPUT 1
2 INPUT 2

Figure 3.11. BPSK ERROR COUNTER Internal Modules

of bits are calculated and saved. SIM STOPPER NUMBER OF ERRORS is an
input that terminates the simulation when a certain number of symbols are counted.
PRINT ESTIMATE MODULE and SIM STOPPER NUMBER OF ERRORS were

passed up to the system level.

3.2 BPSK System

The modules described in Section 3.1 are connected to form a BPSK system
model. This model was named BPSK SYSTEM and stored in the group SYSTEM.
Figure3.12 shows the interconnecting of the modules. Table 3.6 shows the parameters

required by BPSK SYSTEM.

The parameter STOP-TIME specifies the maximum value of time (in seconds)
for the simulation. DT is the time between discrete simulation signal samples (in

seconds). The other parameters have been presented in previous sections.

3.2.1 Determining BPSK System Internal Parameters. Values for the pa-

rameters listed in Table 3.6 remain to be determined. STOP-TIME is not important

3-12

BPSK SYSTEM

RANDO =
DATA DI
0 BPSK > D> BPSK
MODULATO L
> U sesk >—P COUNTER
3 Dl—[> DEmopuLATOR|]
CHANNEL

Figure 3.12. BPSK SYSTEM Internal Modules

Table 3.6. BPSK SYSTEM Parameters

STOP-TIME
DT
SIM STOPPER NUMBER OF SYMBOLS
PRINT ESTIMATE MODULO
SYMBOL RATE (HZ)

VARIANCE

NOISE GENERATOR SEED

TRUL VALUE
DATA GENERATOR SEED

to this system because the simulations will be stopped by the symbol count, not by
the simulation clock. Therefore, the value of STOP-TIME was set to 10'Y seconds
to ensure the simulator will run until enough symbols are counted. SYMBOL RATIS
for this simulation is arbitrary, so a symbol rate of 1000Hz will be used for all simu-
lations. DT is the time between discrete simulation signal samples (in seconds). As
explained in Section 2.1.1, the signal will be sampled at a rate of ten times the sym-
bol rate, or 1074 seconds. SIM STOPPER NUMBER OF SYMBOLS and PRINT
ESTIMATE MODULO are parameters that will vary for different simulations and
will be determined later. NOISE GENERATOR SEED and DATA GENERATOR
SEED will be the values shown in Table 3.7. Parameter values for VARIANCE and
TRUE VALUE determine the expected system BER and will be developed in the

next section.

Table 3.7. NOISE GENERATOR SEED and DATA GENERATOR SEED Values

RUN | NOISE GENERATOR SEED [DATA GENERATOR SEED
1 1,599,999,999 1,899,999,999
2 1,699,999,999 1,999,999,999
3 1,799,999,999 2,099.999.999
4 1,899,999,999 1,299.999,999
5 1,999,999,999 1,399,999,999
6 2,099,999.999 1,499.999,999
7 1,299,999,999 1,599,999,999
8 1,399,999,999 1,699.999,999
9 1,299.999,999 1.899.999,999
10 1,199,999,999 1,999.999,999

3.2.2 Determining System BER. To establish baseline parameters for com-
paring the estimated BER with the calculated BER, the expected system BER had to

he determined. The BER for an antipodal BPSK system is calculated nsing(11:156)

BER = Q (

where

Ey s the energy per transmaitted bit

No is the white noise power spectral density amplitude

and Q(-) is the well known complementary error function that is tabulated in many

communication texts and is defined by

1 [-2
Q(z) = \7—27/ e dt (3.2)

3.2.2.1 Determining Energy Per Bit, E,. Assuming equal energy sig-
nals, the energy per bit £, is(11:157)
T T
B, = f s2(t)dt = / 2(t)dt (3.3)
0 0
I'or BPSK, s(t) is the bit amplitude A. Also, for antipodal BPSK signals,
s2(t) = s(t) = s*(t). Therefore, the energy per bit Ej is given by
T €
Ey = / A%dt = AT (3.4)
0

3.2.2.2 Determining Noise Factor Ny. The noise factor Ny is deter-
mined by the value of VARIANCE entered and the simulation bandwidth. The

simulation bandwidth B, is a function of the sampling rate f;, where

_off) oo L 3.5
133 =2 <5) “‘fs = [)T (3))

and is shown in Figure 3.13. The power, or variance o2, in a zero-mean, real-valued,
>] N> ’

Gaussian random variable within the simulation bandwidth Bg is found using

3-15

ol = / f’jf Gn(f)df = / hre <—A@—) df = ‘V;fs = VARIANCE (3.6)

Figure 3.13. Simulation Bandwidth of a Gaussian Random Variable

The value of Ny is found from Equation 3.6 as

2(VARIANCE)

A/\r() — fs

= 2(VARIANCE)(DT) (3.7)

2.2.3 BPSK SYSTEM Simulation Parameter Determination. The BPSK SYS-

TEM system internal parameters have been determined. Next. the system will be

3-16

baselined using the conventional Monte Carlo technique. The system parameters

remaining to be determined are shown in Table 3.8.

Table 3.8. BOSS SYSTEM Parameters Remaining To Be Determined

SIM STOPPER NUMBER OF ERRORS

PRINT ESTIMATE MODULO

VARIANCE

NOISE GENERATOR IMAGINARY SEED

NOISE GENERATOR REAL SEED

TRUE VALUE

[DATA GENERATOR SEED

The performance of the Monte Carlo techniques are to be evaluated by compar-

ing the estimated BER against the calculated BER. A desired calculated BER of 10~°

was chosen. This BER value was chosen so the simulation time of the conventional
Monte Carlo technique would not be excessive. VARIANCE and TRUE VALUE
(the bhit amplitudes) determine the system BER. The parameter value VARIANCE

was chosen to be one because the the calculations are made easier in the Importance

Sampling section. Therefore, the bit amplitudes will be set to determine the system

BER. The value for TRUE VALUE remains to be determined.

After combining Equation 3.7, Equation 3.4, Equation 3.1 and simplifying, the

BER may be rewritten as

. (A2)(T)
BIR=Q (J (VARIANCE)(DT))

Solving Equation 3.8 for the bit amplitude A yields

\/(\Q\RIAN(‘.E)(D’I‘)

= . Q" (BER)

Substituting in the known parameter values yields

3-17

(3.8)

| [mao

BT [Q)] & 1.349

3.8 BP5K SYSTEM Verification

The BPSK SYSTEM was simulated using the parameters previously discussed
to determine the estimated BER and estimation error. Ten simulations were ran
using the seed parameters listed in Table 3.7. The results of the runs are shown in

Table 3.9. All simulations took about 2 hours and 54 minutes to run.

Table 3.9. BPSK SYSTEM Using Conventional Monte Carlo Technique Results

RUN | B, (1079)
1.40
1.00
1.60
1.30
1.70
1.30
1.20
1.20
1.30
2.00

QO GO =I[O] U x| WO} —

—
o

The statistics of the BPSK SYSTEM using conventional Monte Carlo tech-
niques are shown in Table 3.10. Accoraing to Shanmugan(2:1917), this estimator is

“good” because the estimator error ¢ is less than 1.

Table 3.10. BPSK SYSTEM Using Conventional Monte Carlo Technique Statistics

Pe(107°%) | 0% (1071) | o (107%) | ¢
(84
1.40 0.84 2.90 0.29

The next chapter will develop the modules for using the Modified Monte Carlo

technigue using Iimportance Sampling.

3-1%

IV. Implementing Importance Sampling

Most of the BPSK System model developed in the previous chapter is un-
changed using the Modified Monte Carlo technique with Importance Sammpling. Mod-
ules to implement Importance Sampling will be new modules that either replace
existing modules or are added to the system model. The new system will be called
MODIFIED BPSK SYSTEM. This chapter will begin with building the new mod-
ules, incorporating the new modules into the system, and then evaluating the new

system as the performance compares with the old system.

4.1 Modified BPSK Syste> DNecomposition

MODIFIED BPSK SYSTEM requires a biased function generator, a weight
generator, and an error counter to calculate the estimated BER. The biasing proce-
dure is implemented by changing the VARIANCE parameter in the module CHAN-
NEL. The unbiasing procedure, however, requires adding a module for calculating
the error “weight” used for unbiasing the error count value. An error counter must
be added that will accumuiate the error weight sum and use that sum for calculating

the Importance Sampling estimated RER.

4.1.1 Biased Noise Function. The biasing function B(x) was shown in Sec-

tion 2.3.1 to be

B(r) = (1.1)

The biased noise function suggested is of the form(3:161)

[y = cfn(m)/[fx(n)]" (-1.2)

where ¢ and « are constants to be calculated so the area under the pdf is one.
The equations to determine the constants ¢ and a are shown as Equation2.27 and
Equation2.26, respectively.

Equation 4.2 represents the new noise to be added to the BPSK signal in
the channel module. Equation 2.26, with M = 10 being the number of samples
per symbol and T' = 4.3, yields @ = 0.605. Equation 2.27 shows that ¢ = 0.13.

Substituting these values into Equation 4.2, the new noise pdf is

fa(n) = 0.25exp(—0.197527) (4.3)

This Gaussian pdf has a variance of 2.53.

The previous module CHANNEL did not need to be modified to generate the

biased noise function. VARIANCE was again passed up to the system level.

4.1.2 Weight Generator. The weighting, or unbiasing, function is represented

by(4:69)

This simplifies to(4:69)

w(z) = (o./c)exp[—(1 = a?/a?)(x?/2)] (4.5)

Fquation 4.5 represents the function that determines the weight of one noise
sample within a symbol interval. The module to generate this weight function is
shown in IYigure 4.1.

WEIGHT GENERATOR requires the parameters shown in Table 4.1. MEAN
was set to 0.0 and VARTANCE was set to 1.0. ISEED was renamed NOISE GIEN-

ERATOR SEED and was passed up to the system level.

WEIGHT GENERATOR

SSIAN
0 gEs o6 <6 x—B% 5

D3 P Lo Bise P

O# 1 QUTPUT

Figure 4.1. WEIGHT GENERATOR Internal Modules

Table 4.1. WEIGHT GENERATOR Parameters

VARIANCE
MEAN
ISEED

VARIANCE
MIEAN

This weight generator outputs a value for the noise at one sampling instant.
Equation 2.28 shows that the weight of the noise for one symbol interval is the
product of the weights of each noise sample in that symbol. WEIGHT FUNCTION
GENERATOR, shown in Figure 4.2, takes the value of each noise sample, multiplies
the value for 10 samples (one symbol), and outputs the value. Each SAMPLE
& HOLD module samples the value at the symbol fraction shown in the input to
each SAMPLE & HOLD. The TEN INPUT MULTIPLIER multiplies the inputs and

outputs the product after 10 samples have been taken.

WEIGHT FUNCTION GENERATOR
SAMPLE
> &_HOLD
s
> ’A D
g
— . - D
— : JR— D
DgEEl'l%’F?ATORD_:. ® g Pt 1
— : —_—] D
-
> TEN
D> input
([> MULTIPLIER
awoLd
> A
DO.B
SAMPLE
> &_HOLD
‘
O# 1 OUTPUT

Figure 4.2. WEIGHT FUNCTION GENERATOR Internal Modules

WEIGHT FUNCTION GENERATOR requires the parameters shown in Table
4.2. NOISE GENERATOR SEED will again be passed up to the system level to be

varied to determine the estimation error. VARIANCE and SYMBOL RATE (HZ)
will be passed to the system level. TIME DELAY TO INPUT (SEC) will be set
to 0.0 because there is no delay elements between the sample generation and the
input to the SAMPLE & _HOLD module. SYMBOL FRAC FOR SAMPLE TIME is
the parameter that determines which noise sample within a symbol each SAMPLE
& _HOLD module samples. The SYMBOL FRAC FOR SAMPLE TIME parameters
are entered for each module that inputs to each SAMPLE & HOLD MODULE.
These values range from 0.0 to 0.9 in increments of 0.1 and are shown for each

module on Figure 4.2.

Table 4.2. WEIGHT FUNCTION GENERATOR Parameters

NOISE GENERATOR SEED
VARIANCE
TIME DELAY TO INPUT (SEC)
SYMBOL FRAC FOR SAMPLE TIME
SYMBOL RATE (HZ)

4.1.8 Importance Sampling Error Counter. Once the weight for the noise in
each sample has been determined, the error counter must sum the values of the
weights when each error occurs. The estimated BER is determined by dividing the

weight sum by the number of transmitted symbols.

Figure 4.3 shows the internal odules of the error counter that determines
the estimated BER using Importance Sampling. The module =REAL compares the
two inputs and determines if they are equal within a parameter called ALLOWED
ROUNDOFF FRACTION. If the inputs are equal, this module outputs ‘true’, and
tf the inputs are unequal, this module outputs ‘false’. LOGICAL TO NUMERIC
converts the true or false outputs from the compare module into numerical outputs.
The output is set to 0.0 when the inputs are equal, and 1.0 when the mputs are
nunequal. The multiplier module multiplies the error weight by 1.0 when an error

has occured and the RUNNING SUM module adds and stores the error weight sum.

That sum is divided by the number of transmitted symbols to yield the estimated
BER.

IMPORTANCE SAMPLING ERROR COUNTER

PRINT
SIGNAL

P LQGICAL RUNNING

2| D—D- D Overc DHP X >sum >/

[JReAL J A
3| D
COUNTER INTGR
U A DE@AL ™
u TRAIN >

1#1 INPUT 1

1#2 INPUT 2

1#3 ERROR WEIGHT INPUT

Figure 4.3. IMPORTANCE SAMPLING ERROR COUNTER Internal Modules

IMPORTANCE SAMPLING ERROR COUNTER requires the parameters
shown in Table 4.3, ALLOWED ROUNDOFF FRACTION is set to 0.1. TRUE
VALUL s set to 0.0 because when the mmput is true means that an error has not
occured. The value of the noise during a svibol not is error i1s not of interest and
multiplying that error weight by 0.0 does not include that value in the ranning sum.
PRINT SIGNAL TEXT was set to read “Probability of Importance Sampling BER
[« 70 PRINT FSTIMATE MODULO was passed up to the system level.

4.2 Modified BPSK System

The BPSK system developed in Section 3.2 was modified to include the modules
developed in Section 4.1.3, Section 4.1.2, and Section 4.1.1. The model was named
MODIFIED BPSK SYSTEM and stored in the group SYSTEM. Figure 4.4 shows
the interconnecting of the modules. Table 4.4 shows the parameters required by

MODIFIED BPSK SYSTEM. All of the parameters listed have been covered in

previous sections.

4.3 MODIFIED BPSK SYSTEM Testing

MODIFIED BPSK SYSTEM was simulated using the parameters shown in
Table4.5. NOISE GENERATOR SEED and DATA GENERATOR SEED were var-

ied as shown in Table3.7.

Table4.6 shows the results of the tests. The results are obviously not what
were expected. The model has been extensively reviewed, rebuilt, and tested. Good
estimated BER values were never given by the MODIFIED BPSK SYSTEM. Chapter
5 will speculate why the system does not work and suggest some further testing that

could be performed.

Table 4.3. IMPORTANCE SAMPLING ERROR COUNTER Parameters

ALLOWED ROUNDOFI* FRACTION
TRUE VALUE
FALSE VALUE
PRINT ESTIMATE MODULO
PRINT SIGNAL TEXT

MODIFIED BPSK SYSTEM

RANDO
Coata Nb~ >
O BPSK > > D apsk
MODULATO 0 Dle-{> Error
D> susep DEMG COUNTER
>}—{[> DEMODULATOR 0
1 cHANNEL
4> imporTANCE
[> SAMPLING
O ERROR
WEIGHT COUNTER
[[] FUNCTION >
GENERATOR

Figure 4.4. MODIFIED BPSK SYSTEM Internal Modules

Table 4.4. MODIFIED BPSK SYSTEM Parameters

STOP-TIME
DT
SIM STOPPER NUMBER OF SYMBOLS
PRINT ESTIMATE MODULO
SYMBOL RATE (HZ)
VARIANCE
NOISE GENERATOR SEED
TRUL VALUE
DATA GENERATOR SEED

Table 4.5. MODIFIED BPSK SYSTEM Test Parameters

STOP-TIME lelO

DT le —4

SIM STOPPER NUMBER OF SYMBOLS | 100000
PRINT ESTIMATE MODULO 10000
SYMBOL RATE (HZ) 1000

NOISE GENERATOR SEED Varied
TRUE VALUE 1.349

DATA GENERATOR SEED Varied

Table 4.6. MODIFIED BPSK SYSTEM Test Results

~

SYMBOLS | P.(10-5) | «

4000 9.1 8.3
3000 16.9 15.0
24000 29.3 20.0
40000 35.7 16.0

V. Conclusions

This chapter will discuss the test results of the system using conventional
Monte Carlo technique and the system using modified Monte Carlo technique with
Importance Sampling. Further, possible reasons for the modified system not working

are given.

5.1 Conventional Monte Carlo Technique

BPSK SYSTEM was tested using the modules and parameters as explained in
Chapter 3. The results of the test are shown in Table 3.9 and Table 3.10. The average
of the estimated BER is 1.4X107°. The mean was well within the Monte Carlo
expected value of 0.5X107° to 2.0X1073. Further, the estimator error statistic € was
0.29. Again, this was well within the range of 0 to 1, which shows the conventional

Monte Carlo technique is a good estimator of the actual BER.

However, conventional Monte Carlo technique requires the simulator to gen-
erate 105+ symbols for a BER of 107%. For simulations of low probability events,
the time for conventional Monte Carlo techniques become excessive. An extension of
the conventional Monte Carlo technique is to use Importance Sampling. Importance
Sampling is a method of reducing the number of required symbols while retaining
the confidence levels of conventional Monte Carlo. The results and discussion of

implementing Importance Sampling follow in the next section.

5.2 Modified Monte Carlo Technique Using Importance Sampling

MODIFIED BPSK SYSTEM was built to include Importance Sampling by
modifying the BPSK SYSTEM model. The MODIFIED RPSK SYSTEM model
and parameters are explained in Chapter 4. Some test results are shown in Table

4.6.

ot
T
[y

The test results received using MODIFIED BPSK SYSTEM were not the re-
sults expected. The estimated BER started out higher than expected, and then
gradually got worse as the simulation ran. The estimated BER should have settled

into a value in the same range as the conventional Monte Carlo technique did.

The model MODIFIED BPSK SYSTEM was built using the theory of Modi-
fied Monte Carlo simulation with Importance Sampling as explained in articles by
Balaban and Shanmugan[2], Jeruchim(3], Lu and Yao[4], and Mitchel[6]. The arti-
cles, while for the most part similar, do differ in their approaches and methods to

setting up an Importance Sampling model.

The only differences between the BPSK SYSTEM model and the MODIFIED
BPSK SYSTEM model are the CHANNEL module, the WEIGHT FUNCTION
GENERATOR module, and the IMPORTANCE SAMPLING ERROR COUNTER
module. Because the BPSK SYSTEM model worked as expected, the unchanged
modules kept for the MODIFIED BPSK MODULE were not considered to be caus-
ing the faulty data. Each of the changed modules will now be discussed as they may

have contributed to the error.

5.2.1 CHANNEL Module. There was no actual changes to the CHANNEL
module. The change was increasing the parameter VARIANCE to make errors oc-
cur more frequently. The fact that increasing the noise power caused errors to occur
more frequently was evident in the data. The value to set the VARIANCE param-
eter to was not clear in the articles. One article optimized the VARIANCE to 2.5
while another article stated the optimum new VARIANCE was about 4.32 times the
baseline VARTANCE. VARIANCES in the range of 2.0 to 20 in increments of 0.2

were used with no improvement of the data shown.

5.2.2 WEIGHT FUNCTION GENERATOR Module. The weight functions

were given in the various articles as either:

1. w(z) = fx(z)/ fx(z), or
2. w(z) = [fx(z)]*/c, or

3. w(e) = (2)expl-3(% — el

which are all equivalent equations. This weighting function is realized in the WEIGHT
GENERATOR module. The only question in this function is from where the input
variable z is derived. The articles infer that the variable z is input from the noise
sample from the biased Gaussian pdf. However, the WEIGHT FUNCTION GEN-
ERATOR output using that input seems to have an amplitude too high for the noise

sample.

The estimated BER is determined by
p=
N

where 7 is the sum of the individual error weights for each symbol and N is the
total number of bits counted in the simulation. Using conventional Monte Carlo, the
BER is determined by dividing a relatively small number of errors by a relatively
large number of bits. In Chapter 3, on the average, each test had 14 errors for 10°
symbols. Using Modified Monte Carlo, for the estimated BER p to remain within
the expected Monte Carlo range of values, the number of bits N would decrease by
the “sample saving”. That would mean that the sum of the error weights n would
decrease by the same magnitude. As an example using the conventional Monte Carlo

numbers given above, if the sample savings is a magnitude of 10%, then
N
Z W, =~ 1073
e=1

where W' represents the sum of the error weights and e is the index for each error.

5-3

For all simulations, the weight of each noise sample ranged from 1072 to 10°
with the average noise sample value being approximately 10%. This was a discrepancy
that can only be explained by the input variable z of the weight function generator

being incorrect.

The sample and hold modules that pick out the noise value at a particular
sample time in the symbol worked correctly. The multiply module used to form the
product of the 10 sample noise weights functioned correctly. The module WEIGHT
GENERATOR was tested using a constant generator as the source, rather than the
WEIGHT GENERATOR, and the output was as expected.

5.2.3 IMPORTANCE SAMPLING ERROR COUNTER Module. This mod-
ule was generated from the module REAL ERROR COUNTER. The only changes
were for this module to sum the error weights and only output the estimated BER
for Importance Sampling. This module functioned correctly when tested as a stand
alone module with known inputs. The only critical part of this module is that the
error occurrence multiplier arrive at one input of multiply module at the same time
the error weight of the noise that caused the error arrived at the other input. The

timing was confirmed as correct.

5.9 Probable Problem

From the analysis performed in the previous section, the problem must lie
in how the weight of each noise sample is determined. Either the weight function
equation is incorrect or the variable z to put into the weight equation was not
generated in this module. Every reasonable (and some not so reasonable) input and

combination of inputs was used for the variable z, all with invalid results.

5.4 Recommendations

The idea of using Modified Monte Carlo simulation technique with Impor-
tance Sampling to simulate low probability events seems an invaluable tool for the

researcher. The following items are recommended for further study:

1. Determine the problem with the model derived to implement Modified Monte
Carlo technique with Importance Sampling. Test the model to determine the
sample savings as a function of system memory, BER, and variance of the new

noise pdf.

2. Apply the working model to simulations performed for previous thesis and
determine the time saved and samples reduced using the Modified Monte Carlo

technique with Importance Sampling.

3. Generate a self-contained module that when inserted into most simulation mod-
els only requires the parameters of that particular model be input. In other

words, make the Importance Sampling model as “exportable” as possible.

b4
|
-

o

It

9.

10.

Bibliography

. Balaban, Philip and K. Sam Shanmugan. “Computer-Aided Modeling, Analysis,

and Design of Communication Systems: Introduction and Issue Overview,”
IEEE Journal on Selected Areas in Communcications, 2: 1-T (January 1984).

Balaban, Philip and K. Sam Shanmugan. “A Modified Monte-Carlo Simulation
Technique for the Evaluation of Error Rate in Digital Communication Systems,”
IEEFE Transactions on Communications, 28: 1916-1924 (November 1980).

. Jeruchim, Michel C. “Techniques for Estimating the Bit Error Rate in the Sim-

ulation of Digital Communication Systems,” IELLE Journal on Selected Arcas
in Commaunications, 1: 153-170 (January 1984).

Lu, Dingging and Kung Yao. “Improved Importance Sampling Technique for
Efficient Simulation of Digital Communication Systems,” [EEE Journal on
Selected Areas in Communications, 6: 67-74 (January 1988)

Matis, Kurt R. and James W. Modestino. “Interactive Simulation of Digital
Communication Systems,” [EEE Journal on Selected Areas in Communications
1: 51-55 (January 1984).

Mitchel, R. L. “Importance Sampling Apphed to Simulation of False Alarm
Statistics,” IEEFE Transactions on Aerospace and FElectronic Systems 1: 15-24
(January 1981).

. Morgan, Capt Fernando A. Analysis and Simulation of a Pseudonoise Synchro-

niation System. MS Thesis AFIT/GE/ENG/88D-31. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AI'B OH, December 1988.

. Mouftah, Hussein 1. and Charles H. Sauer. “Guest Editorial Computer-Aided

Modeling, Analysis, and Design of Communication Networks: Introduction and
[ssue Overview,” [ELE Journal on Selected Arcas in Communications, 1: 126-
129 (Jannary 1988).

Palmer, Lary C. “Computer Modeling and Simulation of Communicatious Satel-
lite Channels,” IEEE Jouwrnal on Sclected Arcas in Communications [: R9-101
(January 1984).

Shamugan, K. Sam. “An Update on Software Packages for Simulation of Com-

imunication Systems (Links),” IEEE Jowrnal on Selected Areas in Connnunica-
tions 1: 5-10 (January 1988).

. Sklar, Bernard. Digital Communications. Iinglewood Cliffs. New Jersev: Pren-

tice Hall. 1988.

STYAR Corporation. Lawrence, KA. BOSS (Block-Oriented Softwarc Simula-
tor) User’s Manual (Boss version: st 7ar 2.02 Fdition), 1989,

BI3-1

13. Stoops, Capt Stephen Alan. Simulation of Flectronic Warfare Receivers. MS
Thesis AFIT/GE/ENG/89D-53. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1989.

BIB-2

Vita

Captain John B. Bennett was born on 29 August 1952 in Jackson, Mississippi.
He graduated from Forest Hill High School in Jackson, Mississippi in 1970. After
attending Delta State University in Cleveland, Mississippi for one year, he enlisted
in the USAF in June 1970. After basic training, he served for eleven years as a
Wideband Radio Technician before attending the University of Arkansas under the
Airman Education and Commissioning Program (AECP). He graduated from the
University of Arkansas in 1984 with the degree of Bachelor of Science in Electrical
Engineering. After graduation, he received a commission in the USAF through
Officer’s Training School at Lackland AFB, Texas. After commissioning, he served
as an Aircraft Nuclear Safety/Compatibility engineer at the Air Force Weapons
Laboratory at Kirtland AFB, New Mexico until entering the School of Engineering,
Air Force Institute of Technology, in May 1989.

Permanent address: 104 Sunset Strip
Joliet, Illinois 60435

VITA-1

December 1990 Master’s Thesis

IMPLEMENTATION OF THE MODIFIED MONTE CARLO
TECHNIQUE USING IMPORTANCE SAMPLING
ON THE BLOCK ORIENTED SYSTEM SIMULATOR

John B. Bennett, Captain, USAF

Air Force Institute of Technology

Approved for public release; distribution unlimited

Abstract

The purpose of this effort was to implement the Modified Monte Carlo technique using Importance
Sampling on the Block Oriented System Simulator (BOSS). In this thesis, computer simulation techniques
of communications systems were reviewed. Next, conventional Monte Carlo techniques and Modified Monte
Carlo techniques using Importance Sampling were reviewed. Models of Binary Phase Shift Keving (BPSK)
systerns using both Monte Carlo techniques were implemented and simulated. Reasons for the model using
Importance Sampling not working correctly are postulated.

The Monte Carlo technique is a method of ensuring that an inherently infinite procedure, such as de-
termining system bit error rate (BER), can be determined within an appropriate accuracy and a confidence
range after a set number of samples. Conventional Monte Carlo requires 10"* samples be generated to
determine a BER of 107", This number of samples results in an estimated BER in the range of 0.5 to 2.0
of the true BER. The number of samples required using conventional Monte Carlo techniques can resuit
in unacceptable simulation times for low probability events. Importance Sampling is a method of reducing
the number of samples required to determine an estimated BER with the same accuracy and confidence as
conventional Monte Carlo.

Monte Carlo, modified Monte Carlo, importance sampling, Block Oriented System 71

Simulator, conventional Monte Carlo, simulation, error weighting, sample reduction,
probability of error, Monte Carlo, low probability simulation

Unclassified Unclassified Unclassified UL

