e e

i
£
:
3

Speech Coding and Compression Using Wavelets
and
Lateral Inhibitory Networks

: THESIS
Richard Ricart £
Captain, USAF 3
|
; ATIT/GE/ENG/S0D-51 -
DIE"TRLE'UTQN.: TS CHENT R -

~ Approved tor PuBli¢: mloamg B I
T _\“m Uniumiad

DEPARTMENT OF THE A!R/fcjgca‘:
AR UNIVERSTTY T

iR FORCE INSTITUTE OF TECHNOLOGY

A
Y

Lo
X
4
>
2.

, DOBARAIAL AR RN AR e s M

Wright-Pattorson Air Foree Base, Dhic

9L 4L 3 063 v

AFIT/GE/ENG/90D-51

Wy

'E.i} [o g- l,"""f

Y T FCTE B

d v .
JAN C8 1091 i
& B

et

4

Speech Coding and Compression Using Wavelets
and
Lateral Inhibitory Networks

THESIS

Richard Ricart
Captain, USAF

AFIT/GE/ENG/90D-51

Approved for public release; distribution unlimited

AFIT/GE/ENG/90D-51

Speech Coding and Compression Using Wavelets
and

Lateral Inhibitory Networks

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering i __

Richard Ricart, B.S.E.E.

Captain, USAF ;
|
Dl Y
December 1990 T
Rist |,

Approved for public release; distribution unlimited

| Preface

\
. Thetr s
The purpose of this paper is to introduce the concept of lateral inhibition as a

generalized technique for compressing time/frequency representations of electromagnetic
and acoustical signals, particularly speech. This requires at least a rudimentary treatment
of the theory of frames—which generalizes most commonly known time/frequency
distributions—the biology of hearing, and digital signal processing. As such, this
material, along with the interrelationships of the disparate subjects, is presented in a tutorial
style. This may leave the mathematician longing for more rigor, the neurophysiological
psychologist longing for more substantive support of the hypotheses presented, and the
engineer longing for a reprieve from the theoretical barrage. Despite the problems that
arise when trying to appeal to too wide an audience, I hope this thesis is a cogent analysis

of the compression of time/frequency distributions via lateral inhibitory networks. ,’3)ﬁ
S

I want to thank my thesis committee for their guidance, which was instrumental in
helping me cohere the topics investigated. Individual thanks to Col. David Norman for
his immediate and helpful feedback regarding questions in digital signal processing, Dr.
Bruce Suter and his colleague Dr. Mark Oxley for the hours they devoted in reviewing
the wavelet/frames mathematical literature with me, and to Maj. Steve Rogers for his
superb insight and his ability to immediately pick out the weaknesses and strengths of
the research as it progressed. Most importantly, my deepest and most sincere thanks to
my advisor, Dr. Matthew Kabrisky, which has made my AFIT experience so rewarding.
Without his broad knowledge in biology and engineering this research effort would not
have been the success I feel it is. I have truly enjoyed our many lively discussions and
gedanken experiments. Final thanks to my friends Capt. Dennis Ruck and Capt. Greg
Tarr for sharing their expertise in Unix and C programming with me, and to Pam Young

for her administrative assistance and her cheerful disposition.

Richard Ricart

I

Table of Contents

Page

Preface e e ii
Tableof Contents iii
Listof Figures vi
Listof Tables ix
Abstract L e e e e e e X
L Introduction 1
Background Lo Lo 1

Problem Statement L oL 3

AsSSumptionso e 4

Scope e e 4

Standards L 4

Eaquipment 5

Approach 5

Summary e 6

IL. Literature Review 7
Introduction 7

Background L o o o 7

The Short-Time Fourier Transform 9

The Gabor Representation 11

Wavelets 14

iii

Introduction,
Affine Wavelet Transform
Biological Considerations
Introduction
The Auditory Periphery
Lateral [nhibition Networks

Summary and Final Comments

HI. SystemDesign,
Introduction
System Environment L oL
Definitions and Notation
Short-Time Fourier Decomposition/Reconstruction

Introduction L.

The Short-Time Discrete Fourier Transform
Gabor Decomposition/Reconstruction
Affine Wavelet Decomposition/Reconstruction
Compression Using Lateral Inhibition

Review of Fourier Spectrum Compression Methods

Review of Affine Wavelet Spectrum Compression Methods

LINDesign

IV. Results
Introductiono
Results Based on Short-Time Fourier and Gabor Spectra
Results Based on Affine Wavelet Spectra
Noise Filtering Analysis

SummaryofResults

iv

27
27
27
28
29
29
30
38
42
47
47
48
49
58

V. Conclusions and Recommendations 106
Introduction 106
Summary of Results, Conclusions, and Recommendations 106
Biological Implications 109
Appendix A. Code for Gabor Transform 113
Appendix B. Code for Short-Time Fourier Transform 119
Appendix C. Code for Reconstruction Algorithm from Short-Time Fourier
Spectrum L e e e e e e 127
Appendix D. Code for LIN Compression of W-H Spectra 133
Appendix E. Code for Haar Wavelet Decomposition, Compression, and Re-
CONSIIUCHON it e e e e e e e e e e e e e e e e 139
Appendix F. Code for Morlet Wavelet Decomposition, Compression, and
Reconstruction e e 149
Bibliography e 160
Vita . . e 165

Figure

B T A o o

[S I S B S e e e o e e e e g
N = O 0¥ © N O N kA WD = O

)
W

List of Figures

The Gaussian Window and its Biorthogonal Function

The Exponential Window and its Biorthogonal Function ‘

The Gabor Time/Frequency Analysis
The Haar MotherWavelet
The Haar Wavelet at Four Resolutions
The Affine Wavelet Time/Frequency Analysis
Filter Model of the Cochlea
Lateral Inhibition Network Model
The Rectangular Window
The Compactly Supported Gaussian Window
The Hamming Window
Effect of Windowing with non-Rectangular Functions
Sum of Gaussian Windows with50% Overlap
Sum of Gaussian Windows with25% Overlap
Sum of Hamming Windows with 50% Overlap
The Morlet Wavelet
Lateral Inhibition Network Model
Typical Mexican Hat Filter Function
ERB and CB as Functions of Frequency
LIN Frequency Bandwidth and ERB vs Frequency
LIN Frequency Bandwidth and CB vs Frequency

Original Signal and Reconstructed Signal from Spectrogram Using a Rect-
angular Window L

Difference Signal Between Original and Reconstructed from Spectrogram
Using a Rectangular Window

vi

Figure Page
24. Original Signal and Reconstructed Signal from Spectrogram Using a Ham-
mingWindow L e 65

25. Difference Signal Between Original and Reconstructed from Spectrogram
UsingaHamming Window 66

26. Original Signal and Reconstructed Signal from Spectrogram Using a Gaus-
sianWindow L e 67

27. Difference Signal Between Original and Reconstructed from Spectrogram
UsingaGaussian Window 68

28. Original Signal and Reconstructed Signal from Gaussian Gabor Spectrum 69

29. Difference Signal Between Original and Reconstructed from Gaussian

Gabor Spectrum L e 70
30. Original Signal and Reconstructed Signal from Short Gaussian Gabor
Spectrum L L. e e e e e e 71
31. Difference Signal Between Original and Reconstructed from Short Gaussian
Gabor Spectrum L e e 72
32. Original Signal and Reconstructed Signal from Gabor Spectrum Using an
Exponential Window oL, 75
33. Difference Signal Between Original and Reco.structed from Gabor Spec-
trum Using an Exponential Window 76
34. Exponential Gabor Decomposition/Reconstruction Example of Aligned
Signalin Timeand Frequency 71
35. Exponential Gabor Decomposition/Reconstruction Example of Unaligned
Signalin Timeand Frequency 78
36. Frame 9 of Spectrogram for EachWindow 79
37. Frame 9 of Gabor Spectrum for Each Window 80
38. Compression of Spectrogram Using ERB Rule and Low Threshold 82
39. Compression of Spectrogram Using CB Rule and Low Threshold 83
40. Compression of Spectrogram Using CB Rule and High Threshold 84
41. Compression of Gabor Spectrum Using ERB Rule and Low Threshold . . 85

42. Compression of Gabor Spectrum Using CB Rule and Low Threshold . . 86

vii

Figure
43.

45.

46.

47.

48.
49.
50.

51.
52.
53.
54.
55.
56.

Compression of Gabor Spectrum Using CB Rule and High Threshold

Aliasing Effects Obtained from Compressed Spectrogram Using a Hamming
Window

Aliasing Effects Obtained from Compressed Gabor Spectrum Using a
GaussianWindow o

Page
87

88

89

Reconstructed and Difference Signal from Compressed Gabor Spectrum |

Using a Gaussian Window

Reconstrucied and Difference Signal from Compressed Gabor Spectrum
Using a Gaussian Window with Truncated Biorthogonal Function

Reconstructed and Difference Signal from Haar Wavelet Coefficients
Reconstructed and Difference Signal from Morlet Wavelet Coefficients

Reconstructed and Difference Signal from Narrow Variance Morlet Wavelet
Coefficients

Levels 0-2 of Frame 9 of Haar Wavelet Decomposition
Levels 3-5 of Frame 9 of Haar Wavelet Decomposition
Levels 67 of Frame 9 of Haar Wavelet Decomposition
Levels 3-5 of Frame 9 Nearest Neighbor LIN Compression Result
Levels 67 of Frame 9 Nearest Neighbor LIN Compression Result . . .

Respective Spectra of Original and Reconstructed Signals

viii

91

92
96
97

Table

A G T o

List of Tables

Frequencies Analyzed Using Haar and Morlet Wavelets
Bandwidths Analyzed by LIN
Intervals Analyzed by LIN
MSE of Reconstructed Signals
Compression Ratios Obtained from Short-Time Fourier Spectrum
MSE of Reconstructed Signals from Compressed Spectra.

MSE of Reconstructed Signals From Wavelet Coefficients

ix

AFIT/GE/ENG/90D-51

Abstract

A generalized method of compressing speech using lateral inhibition networks
(LINs) is proposed in this thesis. Speech signals are first decomposed using three
time/frequency transforms: the short-time Fourier transform, the Gabor transform, and the
affine wavelet transform. Redundant time/frequency coefficients are then automatically
eliminated using the dynamics of a LIN. The speech is finally resynthesized from the
compressed representations and tested for intelligibility. The LIN is modeled as a system
of shunting non-linear differential equations in the form of the neuronal cell membrane
equations first found by Hodgkin and Huxley. Thus, the LIN can be described as a
neural network. LINs perform several functions; the most important being corntrast
enhancement. In contrast enhancement, spatial peaks and edges as well as temporal
changes are highlighted. The best results were obtained from the compressed short-time
Fourier spectrum. Nearly 30 times compression—which relates to over 95% elimination
of the spectrum—resulted in clearly intelligible speech. However, elimination of only a
small percentage of the affine wavelet spectrum produces wide band noise that is offensive

to the hearing mechanisms.

Speech Coding and Compression Using Wavelets
and

Lateral Inhibitory Networks

1. Introduction

Background

The primary method of communication between humans is speech. Speech is so
natural that people have demanded from science and technology the means by which the
human voice can be transmitted in communication systems. As far as the technology
is concerned, easier, more efficient communication methods are possible—Morse-code
transmission for instance. However, these alternative methods require practice and training
by the user. It is much more convenient for a person to pick up a telephone and simply
talk rather than tap codes on a key. With increasing reliance on machines, particularly
computers, the demand for natural communication systems between machines and their

operators has grown as well.

The demands for natural speech communication systems have created specific
speech processing applications. Some of the most common applications include speech
compression, for more efficient transmission and storage of the speech signal; speech
synthesis, for voice response systems; speech recognition; speaker recognition and
verification; speech processing aids for the hearing impaired; and speech enhancement of

noisy or mutilated speech [4, 38, 49, 53, 58].

The fundamental ques.on in speech processing, regardless of the application is:
how is the speech signal to be characterized or represented? How the speech signal is

represented is crucial, for that representation must contain the information conveyed by

the speaker in a way that can be extracted by the given system. Rabiner and Schafer

proposed two major considerations in a speech processing system:

1. Preservation of the message content in the speech signal.

2. Representation of the speech signal in a form that is flexible so that
modifications may be made to the speech signal without seriously
degrading the message content. [58:2]

These considerations are thie cruces of this research.

The question of representation takes on the greatest meaning in automatic speech
recognition. After nearly half a century of research, the recognition of natural speech is
still mostly an unsolved problem. In a recent review, Lippmann [42] reported that the best
recognizers are able to achieve only 50% sentence accuracy. Because of the slow progress
in resolving the major problems in speech recognition, some researchers are questioning
the traditional speech representation schemes [55]. These traditional schemes revolve
around the short-time Fourier transform, and Linear Predictive Coding (LPC) [53, 58].

Instead, calls for studying more natural speech encoding methods are growing.

Recently, researchers have studied the output of inner ear models as feature
sets (representations) for recognition systems [42, 55]. Lippmann [42] reported initial
comparative studies that show biologically motivated preprocessors are significantly
increasing the performance of current recognizers, particularly in the presence of noise.
However, the inner ear models are very computationally intensive and are not useful for

practical systems.

In this thesis, an alternative to a full inner ear model is examined. This alternative is
the compressed wavelet representation via a nonlinear lateral inhibitory network (LIN) (see
Chapters II and III). Briefly, the wavelet representation of speech—indeed, of an arbitrary
signal—may be defined as the summation of a finite number of weighted wavelets or

elementary signals shifted in time and frequency, or shifted in time and dilated—depending

on the class of wavelet [66]. The wavelets are defined locally in time and modulated;

thus, this representation describes the local frequency variations of a signal.

Besides sharing important characteristics with biological models, the wavelet
representation can be computed using algorithms of complexity comparable to the fast
Fourier transform (FFT). Therefore, this representation has the potential of providing
the benefits of inner ear model feature sets at a significantly reduced computational
cost. Furthermore, LINs provide additional characteristics, such as automatic gain control
(AGC), enhancement of signals in noise, and substantial information reduction capabilities

that may prove useful in the coding and compression of speech.

Recent mathematical advances have generalized a wide range of time/frequency
analyses by means of wavelets and their associated frames. Frames and frame operators,
along with specific examples, are defined in the following chapter. For now it is sufficient
to think of these as an umbrella description for time/frequency representations. One of
the main goals of this research is to match this general description of signals—speech
or otherwise—with a general approach to compressing these representations based on
proven biological methods. Indeed, the methods developed nere for compressing three
specific wavelet representations of speech can be generalized to compress any wavelet
transform space defined under the Weyl-Heisenberg and affine classes. These methods
can be applied to analyzing and coding a wide range of electromagnetic and acoustic

phenomena.

Problem Statement

The purpose of this research is to develop non-linear lateral inhibitory networks
for coding and compressing the affine and Weyl-Heisenberg wavelet representations of

speech. The compression schemes developed are also tested for enhancing noisy speech.

Assumptions

In order to perform the analyses described above, all speech signals are sampled at
8 kHz. Energy in speech drops at the rate of 6 dB/octave above 600 Hz and there is little
above 4 kHz. Thus, 8 kHz is a usable sampling rate.

The speech signals are recorded in a functioning signal processing laboratory without
guarding against background noise. In addition, additive white Gaussian noise (AWGN)

is used to corrupt the speech signals in the noise filtering analysis.

Scope

The vocabulary used in this thesis is the spoken digits, zero through nine. In

addition, the phrase

Hot today; chilly and cold tomorrow

is used to test the effects of continuous speech. This phrase is chosen because of the good

balance between the fricatives and the vowel sounds found in the words.

Standards

The results of compressing the speech signals in this effort are compared against
the results of similar research conducted at New York University, Courant Institute of
Mathematical Sciences, and at the Air Force Institute of Technology (AFIT) using more

conventional speech compression schemes.

The data compression and noise filtering analyses are compared against the analyses
of Alenquer (1], Bashir [4], Kabrisky et al. [38], and McMillan [49]. The research cited
assumes that speech can be coded using a relatively small number of spectral components
{48, 57]. The spectral components were found via the short-time Fourier transform using a
Hamming window with 50% overlap . The spectral components were then t-uncated using

a rule-based system. Thus, the comparison is between different representation schemes

as well as different compression schemes—a rule-based system versus a dynamical LIN
system. A final comparison is made between the compression results of this research and
those of Mallat and Zhong [45]. In that study, the investigators were able to completely

reconstruct signals from only the local extrema of the affine wavelet representation.

Equipment

All software development is performed on a NeXT computer. This machine has a
resident signal processor, the Motorola 56001 Digital Signal Processor, which is used for

inputting, digitizing, and processing all voice signals.

The NeXT’s built-in microphone jack is connected to an analog-to-digital converter
known as the CODEC (coder-decoder). The CODEC uses a 8012.8 Hz sampling rate and

8-bit ¢-law non-uniform quantization.

Approach

The 8 kHz sampled speech is decomposed into time/frequency components using
three different wavelet transforms. These are the short-time Fourier transform, the Gabor
transform, and the affine wavelet transform. Although not usually considered as wavelet
transforms, the short-time Fourier transform and the Gabor transform are special cases of

wavelet operators in Weyl-Heisenberg frames [31, 32] (see Chapter II for further details).

After decomposition, the respective wavelet time/frequency components of each
signal are then compressed by the LIN. It is then determined whether these compressed
representations can yield intelligible speech after reconstruction. If so, the results produced
from each representation are compared. These results are also compared to the results
found in [4, 45, 49]. Bit rates are then estimated for each representation. This rate is
compared to the rate determined in (49] and current state-of-the-art bit rates. Finally,
the speech signals are corrupted by AWGN, processed, compressed, and reconstructed.
The reconstructed signals are tested for intelligibility and the signal-to-noise ratio is
established.

Summary

This introductory chapter has outlined the main problem addressed in this research
effort. In short, this research investigates a general method of compressing wavelet frame
spaces using biologically inspired lateral inhibition networks. More specifically, the
combined wavelet transform/LIN process is investigated for compressing and reducing
noise in speech signals. A brief description of the approach, the scope, and the standards
used was also given. In Chapter II, the wavelet frame is defined in the more exact language
of mathematics. Preceding this definition, a brief background discussion is provided of
several well known time/frequency analysis schemes, including the short-time Fourier
transform and the Gabor transform, and how they fit in the wavelet frame taxonomy.
Finally, the chapter concludes with the biological considerations that are most relevant to
this research. Chapter III describes of the methodology and the system design. Chapter
IV discusses the results and the comparisons to similar research. Finally in Chapter V, the

conclusions and recommendations are given.

Il. Literature Review

Introduction

This chapter begins with a brief historical perspective of a number of
time/frequency analyses. Their interrelationship and their classification under the more
general wavelet frames is also given. The short-time Fourier transform, the Gabor trans-
form, and the affine wavelet transform are then defined. The discussion then turns towards
the biological. Some putative dynamics of the inner ear and LINs are introduced. These
biological considerations are important because they highlight the shared computational
analysis performed by the inner ear and operators in affine frames. Furthermore, these
biological considerations play a fundamental role in the design of the system used in
this research. The full connection between the biology and affine frames, and how this

connection influences the system design is found in Chapter III.

Background

In 1946, Gabor [23] introduced a method of representing signals simultaneously in
time and frequency. A year later, he demonstrated this by using an optical/mechanical
apparatus he designed and called the frequency converter {23]. The device sampled the
speech signal—which was recorded on 35mm sound film—optically decomposed the
signal into the Gabor spectrum and compressed the sampled signal onto a photocell via
microscope lenses, and finally reconstructed the signal by refocusing the image on the
photocell onto another sound film. Although much different in design, the frequency
converter worked on a similar principle to that of the channel vocoder developed by
Homer Dudley a few years earlier [17]. In essence, this principle determines a sliding
interval of the signal and decomposes that portion of the signal into its constituent
frequency components. One can think of the result of this analysis as a two dimensional
representation of the signal with time on one axis and frequency on the other. The

resolution in both the time and frequency axes is determined by the chosen interval.

This type of analysis differs from formal Fourier analysis, which would decompose
the entire time signal into frequency components in a one-dimensional representation.
Although one has access to all the frequencies of the signal using this method, one can
not determine when in the signal these frequencies occur. Knowing where particular

frequencies occur in a speech signal is crucial in speech processing.

The vocoder can be thought as computing the short-time Fourier transform [58:341-
344]—also referred to as the complex spectrogram—therefore, it is not by accident that
the Gabor transform and the short-time Fourier transform are related [6]). As the name
implies the short-time Fourier transform determines the frequency components of short
time samples of a signal. The most important distinction between the two is that the
Gabor transform is more localized in frequency than the spectrogram, i.e., with the use
of a Gaussian window function, the Gabor representation “provides the best spectral

:nformation for every point along the signal variation” [56:452).

Notwithstanding, Gabor’s method did not become popular with the communica-
tion and signal analysis communities mainly owing to the lack of an explicit method
of determining the Gabor coefficients—due to the non-urthogonality of the Gaussian
window—and the frequency converter’s impracticality for communication purposes [24].
Questions concerning the completeness and uniqueness of the Gabor expansion were also
raised. The short-time Fourier transform, thus, became one of the main analytical tools in

speech processing and continues to be today.

Interest in the Gabor representation waxed in the early 1980s as a result of two
key findings. Bastiaans (5, 6] found a method of computing the Gabor coefficients by
means of an auxiliary function. The importance of the finding rests with the fact that the
coefficients can be determined using the efficient FFT [19]. Janssen [36], on the other
hand, proved the completeness of Gabor expansions; however, he also proved that these

expansions are not unique.

It is interesting to note that the Gabor representation has become popular in image

analysis [7, 16, 56, 67]; however, it is still not very popular for analyzing temporal

signals. Gabor originally introduced his frequency/time representation in order to study
the compression of speech for communication purposes [24]—the main subject revisited

in this research.

Gabor’s contention that the Gaussian window provides the best resolution in time
and frequency—first proven by Weyl [68]—has recently been questioned by [35, 61].
Weyl’s proof is based on finding the product of the individual uncertainties in time
and frequency. Wechsler and his colleagues [35, 61] argue that “...the proper way to
measure conjoint resolution of a joint representation is to derive such a measure directly
from the joint representation itself” [35]. Furthermore, these authors show that the
Gabor representation and the short-time Fourier transform are smoothed versions of the

(cross-)Wigner distribution [9, 10, 11].

Quite recently, the (cross-)Wigner, Gabor, and short-time Fourier transforms have
been classified as special cases of Weyl-Heisenberg (W-H) frame integral operators
(31, 32]. Duffin and Schaeffer [18] introduced frames for nonharmonic Fourier series
expansions [15] in the early 1950s. In simple terms, a frame consists of a set of kernel
functions or wavelets, which can completely characterize a given function by inner
products of that function with the set of wavelets. Frames can be distinguished from
bases in that neither orthogonality nor uniqueness is a requirement for frames. Frames are
divided into two main classes: W-H frames and affine frames. As will be shown in the

next section, the two frame classes are characterized by two distinct types of wavelets.

This background gave a very brief introduction to a variety of time/frequency anal-
yses and their interrelationship. The short-time Fourier transform, the Gabor transform,
and wavelet transforms in W-H and affine frames are more explicitly defined in the next

few sections.

The Short-Time Fourier Transform

For convenience, all signals are limited to one-dimensional, continuous-time,

square-integrable signals in this chapter. More specifically, y,g € L%(R), where y

describes the signal function, ¢ describes the window or wavelet function, and L%(R) is
the Hilbert space over the reals. However these restrictions are not required [32]. In
particular, the definitions and properties that follow are generalizable to two-dimensional
spatial images and discrete signals as well. All proofs to the following properties may be

found in the cited material.

As was mentioned in the previous section, the short-time Fourier transform finds

the spectral characteristics of short segments of the signal y(t). More specifically,

Y(rv) = / " y(t)g*(t ~) exp|—j2mvt] dt (1)

-0

where ~ denotes complex conjugation, and ¢, 7, € R. As can be seen from Eq (1), the
short-time Fourier transform is a function of two variables, 7 and v, associated with time
and frequency respectively [6]. The function g(t) is known as the window function. In
wavelet parlance, g(t) is the mother wavelet, and Y(r,v) amounts to the inner product
of the translates and modulates of g(f) with y(z) [32]. The original function y(¢) can be

reconstructed from Y'(7,v) by

y(t) = /:; /_: Y(7,v) g(t — 1) exply27vt] d7 dv (2)

Eq (2) holds for any g. A simple proof of this was provided by Helstrom [33]. Eq
(2) describes how the short-time Fourier transform expands a signal into a continuous
set of translated and modulated wavelets or window functions. The short-time Fourier
transform is also known for discrete signals and has been use for years in speech
and signal processing [58]. Notwithstanding, the signal processing perspective of the
short-time Fourier transform is somewhat different from the perspective just provided.

The distinction is important; however, it will not be dealt with until Chapter III.

10

The Gabor Representation

In contrast to the short-time Fourier transform, the Gabor representation expands
a signal y(t) into a discrete set of translated and modulated elementary [23} or window
functions G, (t) [6). G i(t) is defined as follows:

Gumalt) = gt — ma) explj2nkpt] (3)

where k,m € Z. The parameters a and [are associated with the uncertainties At and
Af, respectively, found when attempting to simultaneously define a signal in both time

and frequency [23:432]. The uncertainty relationship between At and A f is defined as

AtAf > 1/2 (4)

This relationship is known as the Heisenberg uncertainty principle in the quantum
mechanics analogue. Weyl found that a Gaussian window ¢(t) (see Eq (10)) minimized

Eq (4) [23, 68].

With this in mind, the Gabor expansion of y(t) is defined as

y(t) = E Z Cm,ka,k(t)
k=—o00o m=—o00
= Y Y Cuxg(t — ma) explj2rkpt] (5)
k:—oom=—®

As stated earlier, because of the non-orthogonality of the Gaussian g, solutions to
the Gabor coefficients were not found until recently. It so happens that an infinite number

of solutions to Cy, ;. are possible [36]. Bastiaans {5, 6] found the following solution:

Cri= [y(t)7°(t - ma) exp|—j2mkst] (6)

11

The function «(t) is known as the biorthogonal function of g(t) and is defined by the

relationship
o0
/ g(t) 7 (t = ma) exp[~j2nkft)dt = i bm

(7)

where 6, = 1 for n = 0, and 6, = 0 for n # 0 (the Kronecker delta)[6, 19, 22]). The
biorthogonal function v(t), in turn, can be found via the Zak transform [22, 37]. The Zak

transform of g(t) is defined as

(Zg)(r,w) = i T2 g(1 + kT) exp|—j27kwT),

k=-00

0<7<T, 0<w<T™!
where T is the sampling interval. One can now obtain v(¢) by

1 dw
1= [Zortrm

For Gabor’s original Gaussian window

96(t) =

(—‘é—i) " exp [(t/T)?]

Bastiaans [5, 6] found its biorthogonal function to be

(8)

(10)

1/2
m(w:(gﬁ) (Ko/m)™exp 7 (¢/T)] 5 (=1)"exp[-n(n+1/2] (11)

n+1/2>¢/T

where Ky = 1.85407468. Eqgs (10), and (11), with T = 1, are plotted in Figure 1.

Others have investigated alternative window functions for the Gabor representation

[6, 22]. Of special interest is Friedlander and Porat’s [22] investigation of the one-sided

exponential window gg(t) for representing transient signals. The function gg(t) and its

12

-4 -2 2 4
-0.5:

-1.5

Figure 1. The Gaussian Window (left) and its Biorthogonal Function (right)

biorthogonal function vg(t) are defined as follows:

ge(t) exp[—t/7] u(t) 12)
ve(t) = explt/7][-u(t + 1)+ 2u(t) - u(t - 1)] 13)

where u(t) is the unit step function and 7 is the time constant. The plots of Eqs (12), and

(13) are illustrated in Figure 2.

ge() e
1
1.5
0.8
i
0.6 0.5
0.4
-4 -2 2] t
0.2 k
3] 3 8 R -2

Figure 2. The Exponential Window (left) and its Biorthogonal Function (right)

13

Janssen [37:26] found the following alternative method of determining the Gabor

coefficients using the Zak transform of the signal and window functions:
1
Cop = /0 /0 (Zy)(1,w)(Zg)~}(7,w) exp[j2rmrt — j2rkwt] dT dw (14)

The main advantage of Eq (6) over Eq (14) is that Eq (6) can be conveniently and easily
approximated via the FFT [19, 22](see Eqs (39), (40), and (41)).

The two-dimensional Gabor representation is illustrated in Figure 3. As the figure
shows, the magnitude of the Gabor coefficients |C,, x| are shown uniformly spaced in time

and frequency as defined by a = Atand g = Af.

=
S

/ ! |
N
A

Al/ijlr Ii//l/l.
AV

/A

N
]
SN
D
™
-

N
RN
~
RN

-
\

Figure 3. The Gabor Time/Frequency Analysis

Wavelets

Introduction In this section some very basic definitions of wavelets and their
associated frames are given. Up-to-date surveys of wavelets and their associated frames

have been written by Heil and Walnut [31, 32]. Reference [31] is geared towards

14

the engineer. The main contributions to the field of wavelets include the works of I.
Daubechies, A. Grossman, Y. Meyer, and J. Morlet [15, 13, 14, 28]. Other introductions

to wavelets can be found in {12, 66].

As was discussed at the outset of this chapter, the short-time Fourier, Gabor, and
(cross-)Wigner distributions are examples of W-H frame operators [32]. These transforms
compute the inner product of a given function y(t) with the translates and modulates of a
function—or wavelet—g(t). Affine frame operators are characterized by transforms that
also compute the inner product of a function with a wavelet; however, in contrast to W-H
frames, these wavelets are translated and dilated—or constricted, depending on how the

analysis is defined. This is shown in the following subsection.

One of the developments in frame research that is of particular importance to signal
processing is that a method for finding wavelets that produce orthonormal bases in affine
frames has been found [13]. Orthogonality is important when reconstruction from a
compressed set of frequency components ic requircd. The issue of orthogonality will be

revisited in greater depth in the r.ext chapter.

Affine Wavelet Transform The affine wavelet transform is defined in this subsection.
To differentiate between the two types of wavelets and to use the notation found in the
wavelet literature, let ¢(t) correspond to a wavelet function in an affine frame. The affine

wavelet transform is then defined as [32]

(Wy)(a,é) = /_ Ty &Py et —a) dt (15)

where a, b,¢ € R. The function y(t) can be reconstructed from (Wy)(a, ¢®) by

y(t) = /Ooo /_i(Wy)(a,) /2y (ebt - a) da db (16)

As in the case of the other transforms discussed in the preceding two sections, the discrete

versions of Eqs (15), and (16) exist [12].

15

A specific case of a wavelet is now defined and used to explain the consequence of
Eq (15) [12]. Consider an orthonormal basis described by translating and constricting the
mother wavelet ¥(t), where (t) is defined by

1, 0<t<1/2
Y(t) =< -1, 1/2<t<1 (17)

0, otherwise

where F = 2//2¢(2't — k); I,k € N; and the support of ¢ is the interval, I, defined by
the inequality 0 < 2/t — k < 1. This orthonormal basis v is known as the Haar basis
[13]. Eq (17) is plotted in Figure 4.

Figure 4. The Haar Mother Wavelet

Eq (15), with ¢f in the integrand, calculates the frequencies proportional to 2!
contained in y about the interval I. In a linear filtering perspective, Eq (15) can be
modeled by correlating y with a series of overlapping bandpass filters that increase in
bandwidth logarithmically—base 2 in this example-as a function of the filter’s center

frequency.

An alternative explanation can be defined in terms of a multilevel resolution analysis.

Let ! denote the level of analysis. Furthermore, for simplicity, let the analysis be performed

16

over the inte;val I, defined by the inequality 0 < ¢t < 1, of the signal y(t). At the first
level, [= 0, the analysis of y(t) is performed with the mother wavelet ¥/ = ¥(t). The
analysis amounts to the inner product of the two functions. At the next level of resolution,
| = 1, the wavelet is constricted or shrunk along the time axis by 1/2, and an inner product
is again computed. Since the interval covered by the wavelet at this resolution is 7/2,
the wavelet is translated once (k = 1) and a second inner product is computed in order
to cover the entire interval I. The wavelet at this level becomes ¥f = 2!/2y(2t — k),
where k = 0, 1. The analysis at subsequent levels is performed similarly by constricting
the mother wavelet by 2~/ at level I and computing the inner product of y(¢) and ¥} for
E=0,1,...,2" — 1. The Haar wavelets at levels 0-3 and at all translations to cover I are

shown in Figure 5.

k=0

' k=0 1 k=1

! k=0 ! kel ! k=2 ! k=3

i) ' t
keO 1 ket | k2 | ka3 i kud | ke5 | ke | ka7

-

Figure 5. The Haar Wavelet at Four Resolutions

The Fourier transform of i has a bandwidth proportional to 2!. This means the
bandwidth is doubled at each subsequent level of resolution. The time/frequency analysi:

performed by v} is illustrated in Figure 6. The vertical bars correspond to the amplitude

17

of the correlation coefficients that result from the wavelet analysis just described. The
value of the coefficients are defined by their height, which is arbitrary in this example for
instructive purposes. The coefficients are also shown as positive values to simplify the
drawing. The frequency axis is labeled f, and the time axis is labeled t. Figure 6 shows
that the interval of the analysis performed by a wavelet at each subsequent level decreases

by one half and its bandwidth doubles, as expected from the previous discussion.

/‘%J 7
.

(Wyi(k1)

t >

Figure 6. The Affine Wavelet Time/Frequency Analysis

Meyer and others have defined an entire class of smooth orthonormal bases of the

form ¥, [13], which perform log,

analyses of signals. However, the logarithmic analysis of the wavelet transform
does not have to be in base 2. The affine wavelet transform analyzes functions in a
logarithmic scale of base b in general. This characteristic is what differentiates affine
wavelet analysis from W-H frame analysis. The W-H wavelet analysis localizes uniformly
in time and frequency, whereas the affine wavelet analysis localizes logarithmically in
time and frequency. This difference can be seen by comparing the illustrations of the

Gabor time/frequency analysis and the affine wavelet time/frequency analysis in Figures

18

3 and 6. Thus, the affine transform may have advantages over W-H transforms for speech
processing and other nonstationary signal processing, because it analyses signals over
multiple scales of resolution. In contrast, for example, the Gabor analysis requires that a
specific At and A f be defined for a single resolution analysis. It may not always be easy

to find these values.

The analysis of signals in a logarithmic frequency scale performed by the affine
wavelet transform is also performed, to a great extent, by the inner ear. In the following

section, the parallels between the dynamics of the ear and wavelet frames are explored.

Biological Considerations

Introduction This section provides a very brief introduction to the anatomy and
physiology of hearing. The discussion concentrates around the topics of most relevance
to this research. For a comprehensive, current introduction to the science of hearing see
Gulick, et al [29]. Most of the material covered in the next subsection is a summary of

portions of that text.

The Auditory Periphery The peripheral auditory system consists of the external
ear, the middle ear, and the internal ear. This system acts as a transducer, which converts
air sound pressure into electrical impulses that our brains can process. In addition, the
peripheral auditory system acts as a system of bandpass filters. These filters define
the frequency range that animals can perceive. In humans, this frequency range is

approximately 20 Hz-20 kHz [29:217].

The external ear is composed of the pinna, the external meatus, and the tympanic
membrane. The pinna and the meatus—commonly referred to as the ear and ear canal
respectively—act as a first stage filter that increases the amplitude of frequency components
in the range of approximately 500 Hz-10 kHz [29:87]. At the end of the meatus, lies the
flexible tympanic membrane, or ear drum, which is set into complex patterns of vibratory

motion by external sound waves. The tympanic membrane forms the boundary between

19

the external ear and middle ear. Thus, to summarize the function of the external ear, sound
waves are collected, filtered, and propagated to the tympunic membrane by the pinna and

the meatus. The tympanic membrane then responds to these sound waves by vibrating.

Beyond the tympanic membrane lies the middle ear. The middle ear is comprised
of a cavity containing a chain of three small bones: the malleus, incus, and stapes. This
chain connects the tympanic membrane to the oval window of the cochlea. The fluid filled
cochlea is the main sensory organ of hearing and comprises the internal ear. The function
of the bony chain, therefore, is to transmit the vibratory action of the tympanic membrane
to the sensory receptors in the cochlea, and to provide an impedance match between free

space and the liquid filled cochlea.

The cochlea—Latin for snail—is a coiled cavity in the temporal bone containing
three fluid filled chambers: the scala vestibuli, scala media, and scala tympani. A stiff
membrane, called the basilar membrane separates the scala media and scala tympani. In
humans, the basilar membrane is approximately 35mm in length, .Smm wide at the apex
of the cochlea, and .08mm wide at the base (towards the oval window). The basilar
membrane has a logarithmic gradient of stiffness that increases along its length from the
apex to the base of the cochlea. Both the tapered shape of the basilar membrane in
conjunction with the stiffness gradient produce the logarithmic filtering characteristics
mentioned earlier. A collection of structures called the organ of Corti rests on the basilar
membrane. The most important of these structures are the tectorial membrane, the inner
hair cells, and the outer hair cells. The hair cells are organized along the basilar membrane

in rows, with the tectorial membrane covering these cells like a canopy.

The cochlear dynamics are now described. As the stapes moves back and forth at
the oval window, longitudinal waves are produced in the fluid of the interior chambers of
the cochlea. These waves produce localized oscillations of the basilar membrane whose
positions are a function of the external frequency of the sound. For example, a 1 kHz tone
produces a maximum pattern of displacement at a precise location along the length of the

basilar membrane. The action of the basilar membrane produces shearing forces on the

20

inner hair cells via the tectorial membrane. When this occurs, the inner hair cells produce
electrical signals that are transmitted to subsequent processing layers of the brain along
the cochlear nerve. Therefore, the cochlea would signal the occurrence of a pure 1 kHz

input by breaking into oscillations at a specific place along its length.

Complex sounds composed of a number of frequencies are encoded along the
basilar membrane by oscillatory displacements at specific locations corresponding to the
frequencies of the sound. In other words, the basilar membrane can be thought as a spatial
frequency template or tonotopic map. In addition to this spatial information, temporal
information is also produced by the firing rates of the inner hair cells. The preferred
or characteristic frequency (CF) of an inner hair cell is the frequency that produces the
maximal displacement of the basilar membrane where that hair cell resides. Hair cells
with CFs of 4 kHz and below fire at the same rate as their CF. This phenomenon is known
as phase synchrony. It is not known how the brain uses this spatio/temporal information;
however, it is known that tonotopicity is maintained at all the relay stations leading to the
neocortex, as well as at the primary sensory fields of the auditory cortex. The assumption,
thus, is that spatial patterns are important to the brain. The meaning of the temporal

information is more difficult to decipher.

The spatial encoding characteristics of the basilar membrane should not be construed
as only a simple Fourier analysis capability. The situation is much more complex than
that and still largely not understood. This is illustrated by a phenomenon called masking
[29:300-313]. As was mentioned earlier, a pure tone produces localized patterns of
electrical activity in fibers in the auditory nerve whose CFs coincide with the tone’s
frequency. It has been found that the firing rate of an auditory nerve fiber can be
suppressed or masked by presenting tones of similar frequencies [62]. Furthermore,
masking is not possible after the masking tones have deviated from the CF by a certain
amount. Therefore, masking occurs within certain frequency bands called critical bands
[29:306]. How these bandwidths are determined is a subject of controversy [21, 50, 70];

however, the general consensus is that the masking phenomenon suggests that the cochlea

21

acts as system of overlapping bandpass filters. Although there is a question as to exactly
how wide these filters are, it is known that their bandwidths increase logarithmically as a
function of the CF. Patterson [54] has determined the shape of these filters using masking
experiments and found them to be cone shaped. Figure 7 illustrates this phenomenon.

The intensity and bandwidth of the filters shown in Figure 7 are not precise; they are

70 t 1

60

&

Intensity (dB)
5

30

20

100 1000 10000
Frequency {Hz)

Figure 7. Filter Model of the Cochlea; Adapted from [29:307]

meant to illustrate the filter function of the cochlea.

The simple description of the anatomy and physiology of the cochlea just given
does little justice to the complexity of this system. Much is still not known about the
function of the cochlea, in particular the feedback system, called the efferent system,

which incorporates the outer hair cells.

As is evident from the previous section, the computational analysis performed
by the ear is reminiscent of the analysis performed by the affine wavelet transform.
The subsequent processing of information in the numerous auditory nuclei beyond the

cochlear nerve is not understood. However, evidence for one type of processing has been

22

accumulating over the last 15 years. This type of processing is called lateral inhibition, or

is also known as on-center off-surround processing. LINs are examined next subsection.

Lateral Inhibition Networks Lateral inhibition networks were first found by Hartline
and Ratliff [59, 60] in the eye of the horseshoe crab (Limufus). Since Ratliff’s discovery,
lateral inhibition has been found to be a common processing strategy in all sensory systems
across species [64], including the auditory system [40, 63]. LINs perform several functions;
the most important being contrast enhancement. In contrast enhancement, spatial peaks
and edges as well as temporal changes are highlighted. Other important functions of LINs
include noise suppression, automatic gain control, buffering of information for short-term
memory, and a variety of oscillatory functions. These effects have been modeled and

studied by many over the years [20, 25, 27, 59, 60, 63].

As discussed above, many LIN models have been developed (see [26] for a review).
The one adopted in this research is based on the non-linear, shunting cell membrane
equation (see Eq (18)) found by Hodgkin and Huxley [26, 34] in electrophysical studies
of the giant squid axon. In a study that investigated the effects of lateral inhibition on the
output of a cochlea model, Shamma [63] used an additive version of the shunting equation
in his LIN model. Elias and Grossberg [20], however, have shown that the shunting model
is much less susceptible to oscillatory behavior than the additive model, and therefore
justifies the use of the shunting model in this research. Before describing the membrane

equation, a structural description of a typical LIN will be presented.

Figure 8 illustrates the cell interactions of a recurrent LIN. The cells or nodes of
the system are labeled v,. Each node has an input g, and produces an output f(z,). The
parameter i1, is called the activity of node v,. The arrows illustrate excitatory connections
or positive gain communication lines, and the small circles illustrate inhibitory or negative
gain connections. To simplify the illustration, only the connections exiting node v; are
shown. The outputs of all other nodes are considered to be similar to the outputs of node

v,.

23

f(X;.2) f(xi_1) f(x;) f(Xi11) f(X;12)

Figure 8. Lateral Inhibition Network Model

As Figure 8 shows, LIN interaction can described as a process cell self excitation
and neighborhood inhibition. The pattern of excitation does not have to be limited to
individual nodes. Groups of nodes can mutually excite one another and in turn inhibit
a surrovnding neighborhood. The networks are also not restricted to one dimension. In

fact, two-dimensional LINs are the ones found in the cortex.

The activity and output equations for each node can now be defined as in Eq (18)
and in Eq (19) respectively. Although the z; and g; are functions of time, the variable ¢

has been omitted in the following equations for simplicity.

5= ~-zi+ (A -1,) g+ f(z:))] = (B+z:)DY_ f(z;) (18)
i
2 2 2)
f(z) = {I'/(I'M)’ 720 (19)
0, .'L‘,‘<0

24

All properties of Eq (18) can be found in [20, 25, 27]. Eq (19) defines a sigmoidal
function. Other sigmoid functions have been used, in particular f(x) = 1/(1 + exp[—z]).

The shunting Eq (18) is in the form of Eq (20) found by Hodgkin and Huxley [34],

which describes the membrane potential V' of neurons .

LV = (VP V)@ + (VF = Vgt + (V™ = V)g™ (20)

Cx

C relates to a constant lipid membrane capacitance. The constants V7, V*, and V-
relate to the passive, excitatory, and inhibitory membrane potential saturation points
respectively. In the Hodgkin and Huxley model, these saturation points indicate the
equilibrium potential of specific ions. The terms g?, g%, and g~ are the passive, excitatory,
and inhibitory ionic condu tances respectively. By simple changes of variables, Eq (18)
and Eq (20) can be = .ated. Capacitance C becomes constant one in the shunting model.
Membrane potcntial V' is characterized by activity ;. Membrane potential saturation
points V7, V'*, and V~ become constants 0, A, and B respectively. Likewise, the passive
ionir conductance g equals one, the excitatory conductance g* equals the input to the
cell g; plus feedback f(z;), and the inhibitory conductance g~ equals an inhibitory gain
D times the sum of the outputs of the competing neurons 3= ,; f(z;). In reality, there are
many more ionic conductances than those shown in Eq (20) (see [64]), but these can be
grouped functionally into the three main types of conductances: passive conductances,
that bring the cell back to its resting potential; excitatory conductances, that raise the
cell membrane potential towards the signaling potential; and inhibitory conductances, that

suppress the cell membrane potential and cell firing.

How do LINs relate to what has been described thus far? One of the main problems
addressed in this research is finding compression codes for speech. LINs have properties
which make them potentially useful for eliminating redundant frequency or correlation
terms in wavelet—W-H or affine—transform space. This will be addressed in depth next

chapter.

25

Summary and Final Comments

In this chapter, wavelets and wavelet frames were introduced. To recap, wavelet
frames are divided into two classes: Weyl-Heisenberg frames and affine frames. Most
time/frequency distributions, including the short-time Fourier transform and the Gabor
transform, belong in the Weyl-Heisenberg frame class. These distributions are charac-
terized by transforms that compute the inner product of a function with translates and
modulates of a wavelet. The affine wavelet transforms, on the other hand, are chnarac-
terized by transforms that compute the inner product of a function with translates and
dilates of a wavelet. It was also shown that the affine wavelet transform can be thought
as computing a correlation between a signal and a series of overlapping bandpass filters
whose bandwidths increase logarithmically as a function of frequency. Evidence was
then presented that suggests that the peripheral auditory system, particularly the cochlea,
performs a similar analysis to that of the affine wavelet transform. The final section dealt

with the architecture and dynamics of LINs.

Next chapter consists of the system design for decomposing, compressing, and
reconstructing speech. The full connection between LINs and wavelet transforms is

shown.

26

IIl. System Design

Introduction

This chapter details the methods used to decompose, compress, and regenerate
speech signals in this research effort. Three transforms are used for this purpose: the
short-time discrete Fourier transform, the discrete Gabor transform, and the discrete affine
wavelet transform. In the first section, the software and signal processing environments
are described. Several definitions and the notation used throughout the remainder of this
document is provided immediately after. The remainder of this chapter concentrates on
defining the discrete versions of the transforms introduced in the last chapter, and on the
subsequent interaction of LINs. A variety of window or wavelet functions are explored
for each transform defined. Compression is achieved by eliminating local low energy
correlation or frequency components produced by the varied transforms via the dynamics
of LINs. The interaction between these networks and the transform outputs is fully

discussed.

System Environment

As was mentioned in the introductory chapter, all digital signal processing and
software development is performed on the NeXT computer. The speech signals are
sampled at 8012.8 Hz by the CODEC and quantized using 8-bit u-law logarithmic
compression [65:76-78]. Each sampled and quantized speech signal is then stored in
Objective C files by resident software routines. All further processing of the speech
data is performed by software written in a combination of Objective C, ANSI C, and C
macros wrapped around assembly language vector processing routines for the resident
Motorola 56001 Digital Signal Processor—hereafter called the DSP. Most array processing,
including FFTs, is performed by the DSP. Whatever processing is not performed by the
DSP is performed by the NeXT’s Motorola 68030 in floating point format.

27

The data in the speech files are easily accessible using Objective C routines. These
routines convert the data from 8-bit u-law to a 16-bit linear format. The speech data
are again converted—this time to floating point—so that the data can be scaled between
values small enough to prevent overflow errors in the DSP. All values in the DSP must be
maintained between -1 and 1 in a 24-bit linear format; thas, the floating point values are

scaled then converted to 24-bit linear. The linear scaling function S(z) used is described

as
S(r) = = @n = M) + (21)
where
z, = the maximum value of the range of x
m, = the minimum value of the range of x
r, = the maximum value of the new range
m, = the minimum value of the new range

Outputting the processed speech is nearly a reversal of the process just explained.
The 24-bit DSP data are converted to floating point and processed further if need be.
The completely processed data are finally converted back to 16-bit linear and stored in
Objective C sound files. Resident software using mouse activated windows can now be

used to activate the CODEC and play back the synthesized sound files.

Definitions and Notation

The discussion and definitions in Chapter II dealt with the decomposition and
reconstruction of continuous time signals y(¢). In this and subsequent chapters, operations
will be performed on discrete sequences y(n), where n € Z. Discrete y(n) is obtained

from the continuous time signal by sampling y(t) at rate 1/T. More precisely,

y(n) = y(t)|1=nr = y(nT) (22)

28

Time dependence is dropped by omitting the sampling period T in Eq (22).

Where possible, the discrete Fourier transform (DFT)—by means of the FFT—will
be used to decormpose signals. The DFT and inverse DFT are defined as

N-1
X(k) = 3 z(n)exp[-j27kn/N}, 0< k<N -1 (23)
n=0
N-1
z(n) = 1/N Y X(k)exp[j2rkn/N], 0<n <N -1 (24)
k=0

respectively, where N is the number of samples in z(n) and 1/N is the fundamental
digital frequency in cycles. Therefore, the frequency index k is related to the digital and

analog frequencies f; and v, respectively, as follows [43:287]:

k— fi=k/N — v=k/NT (25)
Frequency Index Digital Frequency Analog Frequency

(cycles) (Hz)

As previously mentioned, the sampling rate for all signals is 1/7 = 8012.8 Hz. All DFT
sequences are of length N = 256, which relates to a window of NT = 31.95 msec. Thus,
the fundamental analog frequency is f; = 1/NT = 31.3 Hz. A 31.95 msec. window
length is reasonable since it is known that speech is relatively stationary (i.e., the statistics

of the signal remain constant) in periods of approximately 30 msec. or less.

The windowed versions of Eq (23) and Eq (24) are used for short-time Fourier and
Gabor decomposition. The next two sections detail both the decomposition and synthesis

of speech signals using these methods.

Short-Time Fourier Decomposition/Reconstruction

Introduction In the previous chapter, the short-time Fourier transform was intro-
duced and described in the perspective of the more general theory of frames; in particular,

Weyl-Heisenberg frames. In that perspective, decomposition of signals amounts to a

29

projection onto a basis defined by g(t — 7)exp[j27ut], or the translates and modulates
of g(t). The bases defined in this manner need not be orthogonal to form complete sets.
However, for discrete translations and modulations of g—as in the case of the Gabor
expansion—care must be taken when defining g. The non-orthogonality of the Gaussian
g created difficulties in finding a solution to the Gabor coefficients until Bastiaans and

Janssen found the solutions defined earlier.

The traditional perspective taken by the signal processing community is somewhat
different. As in the perspective of frames, successive intervals of the desired signal
to be decomposed are analyzed one at a time. However, the analysis of the signal is
always considered to be an orthogonal expansion into a combination of basis functions
defined by the complex exponent, exp[j27vt]. In other words, the window function g is
not considered part of the basis but part of the signal to be analyzed. The choice of ¢
depends on the ease by which the original, or close approximation of the function y can be
resynthesized from the windowed expansion, and on the specific frequency characteristics
of g itself (see Harris [30] for a study on windows and their characteristics). Thus, the
question of whether the function g produces an orthogonal set or not rarely comes up. An

in-depth treatment of discrete short-time Fourier analysis is found in [58:250-354].

The Short-Time Discrete Fourier Transform Three window functions are used
in the short-time Fourier decomposition of speech signals in this research. These are
the rectangular window, the Hamming window, and the compactly supported Gaussian
window. These windows along with the short-time versions of Eqs (23) and (24) are
defined in this section. In addition, a modification to the inverse short-time DFT is defined,
which is necessary for reconstructing good quality speech from a compressed Fourier

space.

The rectangular, Hamming, and compactly supported Gaussian windows are defined

30

Rectangular:

1, 0<n<N-1
gr(n) = { (26)

0, otherwise
Hamming:

54 — Q. N — _
on(n) = {054 046coslomn/(N = 1), 0Sn<N-1

0, otherwise

Gaussian:
exp|—-4(2=2)2) 0<n<N-1
g5(n) = B @8
0, otherwise

The plots of each of these windows are shown in Figures 9, 10, and 11 respectively.

-64 64 128 192 256 320

Figure 9. The Rectangular Window

The decomposition and reconstruction formulas for y(n) depend on the window

used. This is shown by first defining the general form of the short-time DFT pair as

N-—
Y(m,k) = zl y(n) g(n — mN) exp[—j27kn/N}, 0 < k< N -1 (29)
n=0
N-1
y(n)g(n — mN) = 1/N Y Y(m,k) exp[j2rkn/N]), 0<n < N -1 (30)
k=0

31

&)

Figure 10. The Compactly Supported Gaussian Window

gn(n)

0.8

Figure 11. The Hamming Window

32

where m € A/. When a rectangular window is used, y(n) can be decomposed and exactly
recovered by Eq (30). Since gg(n — mN) = 1 by definition, y(n) is recovered exactly

by summing over all window shifts. More precisely

M-l
Y y(n) gr(n — mN) = y(n) (31)

m=0

where M represents the number of subsequences of length N that describe the finite se-
quence y(n). Meaning that, y(n) is of length M N. The decomposition and reconstruction

formulas for y(n) with a rectangular window thus becomes

N-1
Yr(m,k) = > y(n)gr(n — mN) exp|—j27kn/N], 0 <k < N-1 (32)
=0

y(n) = 1/N Ail Nz—l Yr(m, k) explyj27kn/N], 0<n < N -1 (33)

m=0 k=0
If g(n) is not rectangular then the right side of Eq (33) will not result in y(n) but
in y(n)g(n — mN),Vm. In other words, the result is y(n) multiplied by all translations
of g(n). Figure 12 shows this result. The top graph shows the original y(n), a sampled
sinusoid. Directly underneath, the consequence of Eq (33), in the case g is Gaussian, is

shown.

Nevertheless, an approximation of y(n) can still be reproduced if the windows
are overlapped. That is, if g(n) is repeatedly translated by R < N, then y(n) can be
approximated. To illustrate this, Figure 13 shows the plot of S¢(n) = ¥, g5(n — TR),
for R/N = 0.50, or 50% overlap. The ideal result of summing the overlapped window
function would be the unit function, as illustrated by the gray line. In this ideal case, y
could be exactly recovered. However, it can be seen that for the Gaussian window a low

amplitude wobble—with a fundamental frequency of 62.6 Hz in the present case-results.

The error in y(n) can be reduced with more overlap of g(n). Figure 14 shows this
for Sy(n)/2 with R/N = 0.25. The plot is scaled to show the small peak error in this

case, which is approximately 15 x 1073, A similar situation arises when the Hamming

33

sin(4nn/N)

1'/\/\/\/\

-64 64 128 132 256 3:,0 394 448 512

_lv’\/vv

2 sin(dnn/N) gg(n-mN)

Y¥Tites

1
0.5 H ;

-64 6 1:2::8 1 56/3\0 3:;:4 45€/(12n
-1

Figure 12. Effect of Windowing with non-Rectangular Functions

34

1 . P e
NS N N~
0.8
0.6
0.4
0.2
<64 €1 128 182 256 320

Figure 13. Sum of Gaussian Windows with 50% Overlap

window is used. Figure 15 shows the plot of Sy(n) = ¥, gu(n—rR), with R/N = 0.50.
As can be seen from this figure, the peak error in this case—approximately 5.6 X 1073—is
less than the peak error produced by the Gaussian window with 25% overlap. Itis known
that the error produced in the speech signal—by processing the signal in the manner just
described—is barely perceptible if a Hamming window with 50% overlap is used. The
result of using the compactly supported Gaussian window in this process is investigated

next chapter.

The overlap and add method described above is more precisely defined by the

following transform pair:

N-1
Y(r,k) = 3 y(n)g(n—rR)exp[—j2rkn/N], 0< k<N -1 (34)
=0
N/R(M-1) N -1
gn) = 1N S Y Y(rk)exp[j2nkn/N], 0<n <N -1 (35)
r=0 k=0

35

Sg(n)/2

0.975

0.95

0.925

64 128 192 256 320

Figure 14. Sum of Gaussian Windows with 25% Overlap

Sh(n)

1.1y
1

1.08\—/\/\

1.04

—64 64 128 192 256 320 N

Figure 15. Sum of Hamming Windows with 50% Overlap

36

where g(n) denotes the approximation of y(n). In this research, R/N = 0.50 is chosen

in all cases.

One last modification must be made for reconstructing the speech signal from the
compressed Fourier components. Before defining this modification, the consequence
of compressing in the frequency space is considered. Theory states that in order to
avoid time aliasing, Y (m, k) must be uniformly sampled at N frequencies for each
interval m [58:270]. The reconstruction methods defined above satisfy this condition.
However, as previously mentioned, compression in this thesis amounts to eliminating
many frequency components in each defined interval of the signal sequence. What remains
is an undersampled version of Y (m, k) with nonuniformly spaced frequencies. Therefore,
time aliasing is to be expected. As shown in the next chapter, the resulting time aliasing
manifests itself as noise or amplitude errors concentrated around the window ends of
the synthesized speech. These errors can be attenuated by multiplying the reconstructed
intervals of y(n) by a Hamming window. The Hamming window is a good choice since
it attenuates the signal at the ends of the window. Also, as was discussed previously, the
Hamming window, when overlapped by 50%, produces very little distortion in the signal.

The modification leads to the following reconstruction equation:
IM-IN-1
yn)=K > Y Y(rk)gu(n-rN/2)exp[j2xkn/N],0<n<N-1 (36)

r=0 k=0

where A’ is some constant, and #(n) is the approximation of y(n) that results from the

compressed short-time Fourier coefficients ¥ (r, k).
Since f’(r, k) is complex, Eq (36) can be expressed in the following way:
2M—1 N~1

=K Y 3 |V k)' explidei] gn(n — rN/2) exp|j2rkn/N],

r=0 k=0
0<n<N-1 @37

where o, is the phase angle of Y(r, k).

37

Furthermore, since y(n) is real going into the transform, the regenerated approxi-
mation of y(n) should be real coming out. This means that the imaginary terms in Eq
(37) can be omitted. This is done by combining the exponential terms, applying Euler’s

identity, and eliminating the resultant imaginary term, resulting in

2M-1N~1

g(n) =K z Z

r=0 k=0

Y (r, k)| gn(n~7N/2) cos(2mkn/N + i), 0 < n < N—1 (38)

This is the form of the reconstruction formula used by [1, 4, 49] in their investigations of

speech coding and noise reduction using a subset of the short-time Fourier space.

To summarize, the equations used to decompose and reconstruct the signal sequences
depends on the window used and whether the short-time Fourier coefficients have been
compressed or not. If the window function is rectangular and compression is not
performed, then Eqs (32) and (33) are used. For Gaussian and Hamming windows, the
valid transform pair is described by Eqs (34) and (35) if tlie Fourier coefficients are not
compressed. When compression is performed, Eqs (34) and (36) are used regardless of

the window used to compute Y (r, k).

Gabor Decomposition/Reconstruction

For the Gabor decomposition of y(n), Bastiaans’ solution (see Chapter II) is adopted

here. In general, the discrete version of Eq (6) can be represented as (see [19])

N-1

Comk = Y Ymn €xp[—j27kn/N), 0 <k < N — 1 (39)
n=0
where
Q-1
Ymn = 9_Y(n+gN)Y (n+gN —mN),0<m<M-1,0<n<N-1 (40)
q=0

where () < M. The parameter Q) is a free variable in Eq (40) and determines the interval

of support of 7. The consequence of varying Q) is discussed next chapter. Eq (39) can be

38

M

conveniently computed using the FFT.

The signal y(n) can be recovered from Cy, , by

M=1N-1
y(n) =Y 3 Cmigln —mN)exp[j2rkn/N], No<n<2N -1 (41)
m=0 k=0

where Ny depends on the window function g(n).

Eq (41) can be computed using the FFT algorithm. Nevertheless, another method

is used in this effort. By similar arguments used in the previous section, Eq (41) can be

rewritten as
M-1N-1
y(n) = Z Z |Crnk| g(n = mN) cos2thkn/N + ¢mi), No<n<2N -1 (42)
m=0 k=0

Eq (42) is inconvenient to program in the computer since the cosine term must be
computed each time for every different phase angle that results. This takes considerable
processor time. It is more desirable to precompute sine and cosine tables and access them
from memory as needed. Fortunately, Eq (41) can be rewritten in an equivalent form of
Eq (42) that when programmed can take advantage of precomputed tables. That form is

yln) = Mi NZ—'[Re(C,,.,k) cos(2mkn/N) = Im(Crn) sin(2mkn/N)] g(n — mN),
e No<n<2N-1 43)
where
Re(z) = = ';x' (44)
Im(z) = z ;jx‘ (45)

Two window functions are investigated in the Gabor expansion/regeneration of
y(n). These are the sampled versions of the Gaussian window, defined in Eq (10), and the
one-sided exponcatial window, defined in Eq (12). The discrete versions of these signals,

in the form used in this research effort, along with their corresponding biorthogonal

39

functions are defined as

Gaussian:

1/4 exp[— 7, - <2N -1
seln) = {2 exp[-n(n/N)¥, 2N <n <)

0, otherwise
Biorthogonal of gs(n):

16(n) = { e1(n) Tioea(nyi), —QN <n<QN -1 @7

0, otherwise

where

e(n) = (1/2)"* (Ko/m) ™ exp [x (n/N)?]
ean,i) = (~D)INRV ¥ exp [x(||n/N|+1/2) +i +1/2)°]
Ko = 185407468 (48)

Exponential:

exp[-n/N]u(n), 0<n<2N -1
ge(n) =

0, otherwise

(49)

Biorthogonal of gg(n):

vE(n) exp[n/N][~u(n + N) +2u(n) —u(n — N)| (50)

where |z is the largest integer less than or equal to z, (e.g., |3.7) = 3). Eqs (46) and
(49) define Ny. In the case g¢ is used in the transform, Ny = —2N; when gg is used,
Ny = 0. In addition, Eq (50) implies Q = 1 for the exponential window’s biorthogonal
function. The sum in Eq (11), which describes the continuous biorthogonal function of
the Gaussian function, converges very rapidly. This is reflected in Eq (47), where the sum

is iterated over only three values of the variable i.

As in the case of the short-time DFT, when the Gabor coefficients C,, . are

40

compressed, the overlap and add method is used to suppress the noise that results from

time aliasing. Thus, the Gabor coefficients, with R/N=0.50, are found by

N-1
Crp = D Yrm €xp[—j2mkn/N], 0< k<N -1 (51)
n=0
where
Q-1
=Y yn+gN)y (n+gN-rN/2),0<r<2M -1,0<n<N-1 (52)
=0

A few steps are needed to obtain the approximation of the signal sequence §(n). The
approach taken is to reconstruct two partial sequences of §(n)—each a shifted version of
the other by N/2. Each sequence is then windowed by repeatedly shifted versions gy, and
finally added together—when properly aligned in time—to produce j(n). More explicitly,
the partial sequences are defined as

SN
nm=33 [Re(@z,.'k)cos(ZTrkn/N) — Im(Corx) sin(Zwkn/N)] g(n - rN),
r=0 k=0

No<n<2N -1 (53)

and

>
~
]

2

M"l

[Re(CerL cos(2rkn/N) - Im(62,+,,k)sin(27rkn/1\')] g(n —rN),
k=0

l
=)

r

No<n<2N-1 (54)

where CA”,,,c are the compressed Gabor coefficients. Each partial sequence is now windowed

by the Hamming function as follows:

M-1

hin) = %i{n) gu(n — mN) (55)
m=0
M-1

Ya2(n) = $2(n) gy(n — mN) (56)
m=0

41

Finally, the desired approximation of y(n) is obtained by

§(n) = Gi(n) + fa(n — N/2) (57)

Affire Wavelet Decomposition/Reconstruction

The discrete wavelet transform can be implemented in various ways. In this effort,
the straight forward inner product approach is used. This approach simply computes the
wavelet coefficients by taking inner products of the signal with translated and constricted
versions of the mother wavelet. The signal is reconstructed by the weighted sum of
the wavelets at all shifts and resolutions. The weights are the previously computed

coefficients.

A more computationally efficient algorithm was developed by Mallat [44]. In that
study, the original wavelet is characterized by two discrete filters. One filter, denoted by G,
smooths the signal, thereby filtering frequencies higher than the frequencies of the current
level of analysis. The second filter, denoted by H, is associated with the wavelet function
and is derived by taking the desired number of derivatives of the smoothing function.
This multi-stage process of low-pass filtering followed by higher order derivative filter
correlations has been used in the past in spatial image [46] analysis and has also recently
been used to develop an orthogonal polynomial transform [47]. Although less efficient,
the more direct approach is embraced here for educational purposes and to establish a

baseline for any future research.

With that in mind, the discrete versions of Eqs (15) and (16) are used. In general,

these equations are defined as

(Wy)(k,2') = i y(n) 224" (2'n - k) (58)
y(n) = f: f: (Wy)(k.20)2'2yp(2ln — k) (59)
1=0 k=—oc

42

where [,k € Z. The parameter 2! used in the notation for the wavelet transform,

(Wy)(k,?2'), is adopted here to specify the log, analysis performed by the transform.

Since in practice both signal and wavelet sequences are of finite length, Eqs (58)
and (59) must be modified. There are other factors to consider that determine the final
form of these equations. One of these factors is the mother wavelet to be used. Two
mother wavelets are investigated here: the Haar wavelet, defined earlier, and the Morlet
wavelet [S1]. These are two very different types of wavelet. The sampled Haar wavelet is
a real valued function, which is compactly supported in the interval 0 < n < N — 1. On
the other hand, the sampled Morlet wavelet is a complex valued function centered around
n = 0, which decays to zeru at too. However, for practical reasons, the sampled Morlet

wav. ‘et must be truncated. These mother wavelets are defined as

Haar:
1, 0<n<N/2
d’"(n) = —1, N/ZSnSN—l (60)
0, otherwise
Morlet:
(exp [~jwon/N] — C) exp |—(n/N)*/2|, —QN <n< QN -1
() = p [~ jwon/N] p[-~(n/NY}/2] 1)
0, otherwise
where
wp = m(2/In2)!/? (62)
C = exp[-ui/?2] (63)

The plots of the real and imaginary portions of the Morlet wavelet are shown in Figure
16. As can be seen from Eq (61) and Figure 16, the mother Morlet wavelet is nearly the
Gabor window function modulated at wy. One can, therefore, think of the Morlet wavelet

as the affine counterpart of the W-H frame Gabor wavelet.

43

Re[ypq(n)

0.7
0.
0.2
-1024-7681:?\%\?/—2 6 %6 @(ﬁse 7674 "
-b.95
o}s
-o\frs
Im{yp(n)]

1

/\0.5

JAY
-1024-7678'-51!\725

-1

‘25}3 Ni7 768 1024 n

Figure 16. The Morlet Wavelet

The other factors that remain to be determined are the number of samples /V, and
the total number of levels L necessary to cover the required frequency range of y(n)
during the wavelet analysis. When the Haar wavelet is used, N = 256 is chosen. This
relates to an analysis at level | = O of approximately 31.3 Hz; the same as the fundamental
frequency of the Fourier and Gabor analyses. Only 8 levels (L = 8) of analysis are
possible; however, these are sufficient to cover the frequency range of y(n). The Haar
wavelet analysis using 8 levels produces 255 real valued coefficients for each window of
N points. This is one less than the number of useful coefficients found in the short-time

Fourier and Gabor decompositions discussed previously.

Morlet and his associates [51:228] suggested that a complete representation of a
signal can be computed using four wavelets per octave. The completeness of the set
used was not proven, but hypothesized experimentally. This clearly produces many more
coefficients than in the radix 2 wavelet analysis proposed here. The tradeoff made here is,
obviously, fidelity of the signal versus the number of coefficients used. If the total number
of coefficients used in the Morlet case are going to approximate the number of coefficients
used in the other analysis/synthesis methods, then the number of analysis levels have to
be limited. Consequently, two values of /V are investigated . For N = 256, the wavelet
analysis is computed at octaves of 31.30 fo Hz ~ 26.58 Hz, where fy = wp/27. In this
case, 8 levels nearly cover the frequency range of y(n). N = 128 is also investigated.
The analysis for this value is nearly the same as when N = 256; however, the frequency
analyzed at [= 0 is 53.17 Hz. Only 7 levels of analysis are possible when N = 128.
Table 1 summarizes the frequencies analyzed—as defined by the parameter N—at the
different levels of the wavelet analysis. All values in the table are in Hz. One may
wonder why fo = 1 is not chosen in order to analyze the same frequencies as in the Haar
wavelet analysis. For fy = 1, the imaginary portion of the wavelet—at the highest level
of resolution (! = 7)-would be sampled at the zero crossings. Therefore, at this level,
errors might arise since the imaginary pertion of the analysis would always be zero. This

problem does not arise when the wavelet is defined as in Eq (61).

45

Table 1. Frequencies Analyzed (in Hz) Using Haar and Morlet Wavelets

Haar Morlct
N =256 N=2564rN=128
31.30 26.58 53.17
62.60 53.17 106.34
125.20 106.34 212.67
250.40 212.67 425.34
500.80 425.34 850.68
1001.60 850.68 | 1701.36
2003.20 | 1701.36 | 3402.72
4006.40 | 3402.72 —

N AN BRIV = O] ~

All the necessary information is now available to define the wavelet transform pair.

When the Haar wavelet is used, the signal y(n) is projected onto the wavelet basis by
N-1
(Wy)(k,2") = 3 y(n) 2245 (2'm —kN), 0< k< (2 -)M (64)
n=0
and in turn, the signal y(n) can be reconstructed from the wavelet coefficients by

L-1(2'-nM

yn) =3 3 (Wy)k,2)2yy(2'n—kN),0<n<N-1 (65
=0 k=0

where M is, again, the number of subsequences of length N that describe y(n). In the
case the Morlet wavelet is used, the wavelet transform is
QN-1
(Wy)k,2) = Y y(n)292'm—kN), 0<k< (2 -1)M (66)
n=—QN
and the inverse transform is
L-1(2'-)M

y(n) =3 > (Wy)k,2)2/%u(2'n —kN), -QN<n<QN-1 (67)
=0 k=0

These equations are implemented using a linked binary tree data structure in a

46

recursive algorithm. This approach best fits the structure of the equations that describe
the affine transform pair.

These transform pairs described do not change when the wavelet coefficients
(Wy)(k,2') are compressed via the LIN. Next section describes how the LIN truncates
the W-H and affine frequency spaces.

Compression Using Lateral Inhibition

Before describing the compression process performed by LINs, it is instructive to
summarize the methods of compression used in the research that most resembles this
effort. Several speech compression methods using short-time Fourier analysis are first
presented. Research in the analysis and compression of speech in the affine wavelet space
is quite new and the literature sparse. Also, the work that has been done so far appears
to be inconclusive. However, one method of compression investigated by Mallat [45] is

very closely related to the method used here and, therefore, is reviewed in this section.

Review of Fourier Spectrum Compression Methods McAulay and Quatieri [48, 57]
developed a method of reproducing intelligible speech based on only a small subset of
the frequency components of the speech signal. In their research, these investigators
decomposed speech using the short-time Fourier methods similar to those previously
described. Compression was aci ved by picking spectral peaks in each time slice—
usually referred to as a frame in speech processing—of the short-time Fourier spectrum
(Y'(m, k)). The peaks were chosen by a combination of simple peak-picking and a handful
of rules devised to match peaks from frame to frame. McAulay and Quatieri [48] reported
that anywhere from 16 to 40 spectral components per frame were sufficient to reproduce
good quality speech. How they rated good was not defined.

McAulay and Quatieri’s research inspired several research efforts at the Air Force
Institute of Technology (AFIT) in speech coding, compression, and noise reduction.
Bashir [4] and K.abrisky et al. [38] developed a system to improve mutilated speech based

47

on the principles developed by McAulay and Quatieri. However, the spectral peaks were
chosen somewhat differently. The glottal frequency was determined and the spectrum
was then sampled at that rate. Rules were then developed to search on either side of
the originally chosen peaks to determine the final candidates. A rule was also developed
to differentiate between voiced and unvoiced speech. That system was reported to have

“appreciably” increased the the quality of the noisy speech [38].

In another AFIT study, Alenquer [1] investigated that same peak-picking algorithm
for speech compression. In that research, it was thought that since the spectrum of speech
rolls off at about 6 dB/octave above 625 Hz or so, that only the first N components should
suffice to reproduce the speech signal. Again by subjective criteria, N = 16 was found
to be sufficient to reproduce good quality speech for male speakers. The system was
not tested on female speakers. McMillan [49] has modified the peak-picking strategy
further by first designing an equalizing filter that boosts the energy of the higher frequency
components to match those of the lower frequency components. The spectrum in each
frame is then sampled at the glottal frequency-—as in the previous two investigations—
however, the IV largest components are chosen. The rules to search for the final frequency
peaks to keep were also expanded. The compressed spectrum is passed through the inverse
of the equalizing filter before the speech is reconstructed. No voiced/unvoiced decisions
are needed with that system. Currently, seven frequency peaks per frame appear to be

sufficient to reproduce good quality speech of either male or female speakers.

The common theme found in these compression algorithms is a search process
designed to locate the dominant frequency peaks of the spectrum. All other frequency
components are eliminated. The speech, in each of the investigations just reviewed, is
reconstructed by summing sinusoids of magnitudes and frequencies corresponding to the

chosen frequency peaks.

Review of Affine Wavelet Spectrum Compression Methods Mallat [45] has proven

that under certain conditions 1 complete reconstruction of a signal is possible from only

48

the local extrema of the affine wavelet frequency space. He has also empirically shown
that very close approximations to the the original signal can be produced from only the

relative maxima of the magnitude of the wavelet coefficients.

The process begins by finding the local extrema of the wavelet coefficients. The
eliminated coefficients are then approximated by cubic spline interpolations and the
resulting wavelet space sequences are projected onto a convex Sobolev space. The
resulting sequences are then projected back out to the signal space, and again into the
wavelet space. This procedure is iterated until the original signal is obtained to the desired
accuracy. Mallat described a similar process in the case the relative maxima of the wavelet

coefficients are chosen.

LIN Design The methods used to compress the Fourier spectral characteristics of
speech just reviewed have relied on rule-based systems that have been developed in an ad
hoc manner. Specific knowledge regarding the Fourier spectral characteristics of speech
was necessary in order to design the systems based on Fourier expansion. As is shown in
this section, LINs will replace the rule based systems for compression in both the W-H
frequency space and the affine frequency space. In contrast, the design principles of the
LINs are based on a solid mathematical foundation and on several known physiological

phenomena of hearing.

The design principles used in this thesis are meant for wider application than just
compressing the speech spectrum. The choice of LINs for this research is biologically
motivated, and as such, specific knowledge about how the hearing mechanism works is
used. This approach differs from the approach of the previous efforts, since the emphasis
is not placed on knowledge about source signals but on how biological systems process
these signals. Animals across species use the basic principles adopted here in nearly all
sensory systems to preprocess environmental information. These design principles may,
therefore, be applicable to coding and compressing other acoustical and electromagnetic

signals as well as two-dimensional spatial images.

49

In the affine wavelet case, Mallat’s compression and reconstruction methods are
based on a more solid mathematical foundation than the other compression methods
reviewed here. Nevertheless, Mallat’s iterative process does not appear to be feasible
for real-time processing. As shown in 2 following section, the local maxima of the
wavelet spectrum will be chosen by the LIN but no attempts of regenerating the eliminated
coefficients will be made. One of the main reasons for this is to compare the effects of
eliminating coefficients in the W-H transform space versus the affine wavelet transform
space of speech. The other reason for not using Mallat’s iterative algorithm is for

computational reasons.

LIN Compr~ession of Short-Time Fourier and Gabor Spectra To recall from
Chapter II, LINs are found in the subcortical relay stations that carry patterns of electrical
activity from the auditory nerve to the primary auditory sensory fields of the cortex. The
main function of the LINs in that system is presumed to be contrast enhancement of
spatio/temporal information. This is precisely the function assigned to LINs in this effort.
The magnitude of the spectral coefficients of speech are analogous to the electrical activity
found in the auditory nerve. The dynamics of the LINs will search for local energy peaks
and suppress weaker ones. Nothing is assumed about the incoming signal. The only
information used to design the competitive architecture of the LINs is the experimentally

derived filter bandwidths of the cochlea.

The LIN design for W-H frequency compression begins with the numerical or
discrete time approximation of the activity equation of LIN nodes described in Eq (18)
in Chapter II. Figure 8, with the indexes relabeled, is shown again in Figure 17 for
more convenient refcrence. The discrete time approximation of Eq (18) used is found by
Euler’s method, one of the simplest techniques known for solving differential equations.
As long as the inputs to the LIN are normalized or scaled between zero and one, Euler’s
approximation of Eq (18) remains stable throughout its computation, leading to steady-

state, with reasonable step size values. Thus, for a given step size 7, the activity equation

50

f(%,.2) f(%.1) f(x,) f(Xee1) f(%.2)

Figure 17. Lateral Inhibition Network Model

becomes

l‘k(t + 1) = l‘k(t) + T{[A - Ik(t)]Ek - [B + l'k(t)]fk}

where

Er = g+ flxx)
I = DY f(z;)

i#k
g = |Y(r,k)| or |Cril

The output, Eq (19), is modified to include a threshold and becomes

(zk = 0 /[(zk = 0) + 0%, z, >0
flze) =
0, ., <80

51

(68)

(69)

The variables in Eqs (68) and (69) are chosenas A=1,B=1, D =1, c¢ = 0.5, and
7 = 0.1. In addition, the result of varying @ is investigated in Chapter IV as well.

In simple terms, Eq (68) says to increase the activity z; of node v, by a maximum
of A7 if the excitatory term is greater than the inhibitory term (E; > I), or decrease
7, by a maximum of B7 if I, > E;. In other words, if the current node’s input plus
feedback from itself is greater than the sum of the outputs of the competing nodes,r then
that node’s activity will increase and will tend suppress the activity of the competing
nodes. Parameter D is chosen to produce winner-take-all competition. This means that
the node with the highest input will kill off the activity of all nodes competing with it.
In this way the spectral coefficient with the largest magnitude will be chosen over others
within a defined bandwidth.

One can also view Eq (68) as an implementation of a Mexican hat function discrete
filter. Indeed, the plot of a typical implementation of the transfer function (H)s) of this
filter resembles a Mexican hat, as can be seen from Fig (18). This particular filter
implementation is modeled by the negative of the second derivative of the Gaussian
function, or

Hy (k) =1 - (k/N)? exp|(k/N)?/2] (70)

It is evident from Fig (18) where the term on-center off-surround processing—the
alternative expression for lateral inhibition—originated. Frequency components in the
center of the filter are magnified, whereas the frequency components on the periphery
of the filter are attenuated. In the specific case of the LIN used in this thesis, the filter
center boosts the energy of only one spectral component, and uniformly attenuates an
equal number of components on either side of the center, These filter bandwidths are now
defined.

A competitive band is defined to be a set of competing nodes. Similarly, a
competitive bandwidth, denoted as Wy € N, is the number of nodes in a competitive

band. The competitive bandwidth, therefore, has a frequency bandwidth W associated

L
(28]

Hp(k)

o ©o © o
. . . .
N b B @

128 256\ 384] 512 1640 /768 896 1024k
~0.2
-0.4

Figure 18. Typical Mexican Hat Filter Function

with it, and is defined by the following relationship:
W =313WcHz (71)

The LIN is designed to have overlapping competitive bands—or overlapping Mexican hat
filters. The competitive bandwidths of these overlapping bands are chosen to approximate
the bandwidths of the triangular filter models of the cochlea. As one may recall from
Chapter II, the bandwidths of these overlapping filters increase logarithmically as a
function of frequency. There are two main models describing these bandwidths. One is
called the equivalent rectangular bandwidth (ERB) [50]; the other is called the critical
bandwidth (CB) [70].

The ERB was derived to have the following function:
Wers(f) = 6.23f* +93.39f + 28.52 (72)
The function ascribed to the CB is

Wep(f) =25+ 75(1 + 1.4 f2)09 (73)

53

where f is frequency in kHz. A plot of these two relationships is shown in Figure 19.
This plot clearly shows that the ERBs are much more conservative that the CBs, especially
for frequencies less than 600 Hz. A LIN designed to approximate the CB model will,

therefore, produce more compression.

1000

=~

z

£

©

2

2 100

(3]

m
ERB —
CB ----

10 s
0.1 10

1
Characteristic Frequency (kHz)

Figure 19. ERB and CB as Functions of Frequency

In practice, the frequency bandwidths associated with the competitive bandwidths
of the LIN can only approximate the experimentally derived bandwidths of the cochlear
filters. The reason for this is that each LIN node is chosen to compete with an equal
number of nodes on each side of it for simplicity. This means that the frequency
bandwidths of the LIN cannot increase smoothly, but in steps. Table 2 summarizes the
competitive bandwidths W, , and the associated frequency bandwidths W) of the LIN
that approximate the ERBs and CBs of the cochlea. The column labeled ERB(CB) CF
shows the characteristic frequencies, CFs, that have associated ERBs(CBs) equal to that
of the frequency bandwidths Wy of the LIN. In other words, Wggpcs) (CF) = W;.

54

The column labeled ERB(CB) k, shows the frequency indexes & that produce the analog
frequencies v closest to the ERB(CB) CFs. Figures 20 and 21 show the LIN’s frequency

Table 2. Bandwidths (in Hz) Analyzed by LIN

We, | Wa ERB CB
CF | k J Vi CFT k l 14

3 939 670 21| 657.3 —| —
51565 { 1264 | 40 | 1252.0 || 947 | 30| 939.0
7} 219.1 j 1820 | 58 | 1815.4 || 1456 | 47 | 1471.1
9 [t 281.7 }1 2344 | 75 {23475 | 1880 | 60 | 1878.0
11 |1 344.3 }1 2842 | 91 | 2848.3 || 2262 | 72 | 2253.6
13 || 406.9 || 3318 | 106 | 3317.8 || 2616 | 84 | 2629.2
15 |l 469.5 || 3773 | 121 | 3787.3 || 2950 | 94 | 2942.2

17 }| 532.1 — | — — || 3269 | 104 | 3255.2
19 || 594.7 — | — — 13575 | 114 | 3568.2
21 || 657.3 — | — — {1 3870 | 124 | 3881.2

bandwidth approximations of the ERB and CB curves, respectively, as defined by Table
2.

To summarize, the LIN designed to compress the W-H wavelet spectrum can be
thought as a series of overlapping Mexican hat filters. The bandwidths of these filters
are chosen to approximate the putative filter bandwidths of the cochlea, which increase in
bandwidth logarithmically as a function of the CF. The function of these filters is to search

for energy peaks in their bandwidth and attenuate all others.

Once the LIN converges, all non-zero output nodes are used as pointers to the
original spectrum. This means that the original spectral magnitudes (of the chosen
coefficients) are used to resynthesize the signal, and not the values of the outputs uf the
LIN nodes.

LIN Compression of Affine Wavelet Spectrum The LIN design for compress-
ing the affine wavelet spectrum is based on more speculative criteria than what was used

in the previous section. The LIN design for the W-H wavelet spectrum is based on an

55

1000

T
.

N
=
L
B
3
c 100
G
o
ERB —
LIN Bandwidth ----
10 L
0.1 4

1
Characteristic Frequency (kHz)

Figure 20. LIN Frequency Bandwidth and ERB vs Frequency

attempt to approximate filter bandwidths found in the cochlea. These filter bandwidths are
nearly constant for CFs less than 1 kHz or so, and then increase logarithmically for CFs
above 1 kHz. The resultant W-H transform/LIN process is a forced logarithmic frequency
analysis of the input signal. This analysis highlights the frequency peaks or changes in
each time slice, or frame. The match between each frame of the W-H spectrum and
the LIN is straightforward, since both are one-dimensional representations of frequency
or frequency operators. In contrast, the affine wavelet transform performs a logarithmic
analysis of the input signal to begin with. Each affine wavelet frame—defined in this
case as the interval of time of the lowest level analysis—is both a time and frequency

representation.

The direct counterpart of the previous design, is to highlight the temporal changes
or peaks in each octave band or analysis level. The LIN design for compressing the

affine spectrum at each analysis level is identical to the LIN design for compressing the

56

1000 _

LJ

N
L
£
S
=
e 100
[30]
m
CB —
LIN Bandwidth ----
10 .
0.1 4

1
Characteristic Frequency (kHz)

Figure 21. LIN Frequency Bandwidth and CB vs Frequency

W-H spectrum; however, the competitive bands remain constant for any given level. A
competitive band in the present case now corresponds to a competitive interval, which

is denoted as T € N. The relationship between the competitive interval and the true

interval associated with it in this effort is

31.95T¢
= ———— msec

T o

(74)

where [is the level of analysis, and the time constant 31.95 msec. was found in the

beginning of this chapter.

The competitive interval for each level is determined by the reciprocal of competitive
bandwidth for the frequencies analyzed by each level of analysis. In this case, only the
CB rule is used. Table 3 lists the intervals over which the LIN is compressing at each

level. These approximate the intervals determined by the CB rule, which are denoted by

T~y and are also listed in Table 3.

57

Table 3. Intervals (in msec.) Analyzed by LIN

LlTe| T|Tcs|

0] O 01]9.99
11 0 01]9.97
21 0 0]9.89
31 3]11.98]9.57
41 5| 9981|852
51 5| 499 6.15
6| 7| 349332
7] 7] L75]1.45

Table 3 shows that no compression is possible in the first three levels of analysis
using the CB tuned LIN method of compression. This suggests that the affine decomposed
speech will not be compressed to the levels that the W-H decomposed speech is capable

of being compressed with LINs.

Summary

This chapter defined the decomposition, compression, and reconstruction algo-
rithms used in this thesis. The chapter began with a description of the software and
hardware environments along with some basic definitions and notation. The short-time
Fourier, Gabor, and affine wavelet transforms, along with the varied window or wavelet
functions used, were then precisely defined. Finally, the LIN designs for compressing
each of the transform derived spectra were presented. Briefly, the LINs’ overlapping
bandwidths(intervals) were designed to approximate the bandwidths(intervals) of the
theoretical overlapping filter model of the cochlea. The following chapter summarizes the
results found in regenerating speech signals from the compressed spectra obtained from

the methods described in this chapter.

58

IV. Results

Introduction

This chapter summarizes the results obtained from decomposing, compressing, and
regenerating the spoken integers by the methods described in the previous chapter. For
economy, the results are shown only for the word seven spoken by the author unless
otherwise noted. These results are representative of the results obtained from the entire

vocabulary.

This chapter is organized into four main sections. In the first section, the results
obtained from compressing the short-time Fourier and Gabor spectra are discussed. These
results highlight the differences obtained from using the various window functions and
various LIN configurations. The second section summarizes the results obtained from
compressing the affine wavelet spectrum. The third section discusses the results obtained
from the noise filtering tests. The final section compares the results summarized in

previous sections.

The criteria used here to establish the best results are mean square error (MSE)
between the original time signal and the reconstructed signal (both signals are amplitude
normalized before the MSE is computed), and subjective listening tests. The subjective
tests consist simply of questions regarding the intelligibility and quality of the reconstructed
speech judged by randomly chosen listeners. Since this research is only a preliminary
study in the LIN compressing capabilities of a variety of spectra, such informal testing
seems reasonable. Any subsequent research based on this thesis that looks to optimize the
intelligibility and communication bit rates of speech should use more rigorous listening

tests such as the diagnostic rhyme test.

59

Results Based on Short-Time Fourier and Gabor Spectra

The results reported in this section are organized by first comparing the original
discrete signal to the reconstructed signal from all the spectral coefficients produced
from the short-time Fourier and Gabor decompositions defined in the previous chapter.
The results of compressing the varied spectral representations with the LIN are then
examined. These results show how the spectral components are eliminated as the
competitive bandwidths are increased and the LIN output threshold is increased. Finally,
the reconstructed signals from their compressed spectral representations are compared and
ranked by MSE and auditory quality.

The plots of the original and the reconstructed signal sequences of the word seven,
from the various short-time Fourier and Gabor representations, are shown in Figures 22
through 32. Immediately after each of these plots, the difference signal between the
original and reconstructed signals are shown, rescaled, in order to better demonstrate the
resuliant error. All signals are linearly scaled between minus one and one in order to

eliminate irrelevant scale variations.

The plot titles describe the window and the method of decomposition used.
Spectrogram in these titles refer to the short-time Fourier decomposition, and Gabor is
self explanatory. For example, the plot labeled Seven Rectangular Spectrogram describes
the resynthesized word seven derived from the short-time Fourier spectrum using a
rectangular window. The plot entitled Seven Original, naturally, is the plot of the original
signal. The word seven is omitted from the title of the plots illustrated in Figures 31 and
beyond, with the understanding that the results shown are derived from this spoken word.
All signal sequences in this section are discretized, of course, but are plotted with points

joined and give the illusion of continuous time signals.

As may be recalled from the previous chapter, the interval of support of the
biorthogonal function is determined by parameter) in Eqs (40) and (52). That interval of
support is defined by the inequality —QN < n < QN, where N is the number of points in

each window. By definition,) = 1 for the exponential biorthogonal function. In the case

60

of the Gaussian biorthogonal function , @ < M [19]. Two values of Q) were chosen in
the Gaussian case: @ = M, for the maximum support, and @ = 2, for minimum support.
The plots labeled Gauss Gabor are of reconstructed signals from the Gabor representation
computed using (Q = M. Likewise, the plots labeled Short Gaussian Gabor are associated
with Q = 2. This nomenclature will be adopted hereafter for all references to the Gabor

representations computed using the two values of Q.

The plots in Figs 22 through 25 reveal that the errors produced from reconstructing
the signal from the short-time Fourier spectrum using rectangular or Hamming windows
are very small and nearly identical. Taking floating pbint and other arithmetic errors
into account, these small errors are to be expected from the theory described in the
previous chapter. The result of using the compactly supported Gaussian window produces
a larger error in the reconstructed signal, and again this is to be expected from the
theory. Numerous subjects listened to the original and reconstructed signals and could not

distinguish between them.

As seen from Figures 28 through 33, the errors produced from the Gabor representa-
tions are much greater and different in nature. Figure 28 illustrates the reconstructed signal
from the Gaussian Gabor spectrum, that is, using the maximally supported biorthogonal
function of the Gaussian window. The first and last few time frames were omitted in
the reconstruction process in order to avoid out of range indexing in the data structure
used to hold the values of the reconstructed signal. Omitting these time frames created
two unexpected spikes at the beginning and end of the reconstructed signal. These errors
foreshadow the errors that occur when the Gabor spectrum is compressed. Figure 29
illustrates the error signal produced from the signals plotted in Figure 28. The two
large spikes in the reconstructed signal were removed prior to computing that difference.
Besides the 31.3 Hz sinusoidal error observed in Figure 28, a handful of impulses are also
seen. Although these errors are much greater than the errors produced by the short-time

Fourier reconstructions, they were not perceivad by the listening subjects.

As shown in Figure 31, the reconstructed signal from the short Gaussian Gabor

61

spectrum has large periodic spikes. These spikes were clearly audible in the listening
tests. Although intermediate values of () were not tested, it is clear that subjective quality
of the reconstructed signal is a function of the parameter (). This is also verified by the
MSE of these signals shown in Table 4.

It appears that the spikes that are manifested in the reconstruction process leak
through when the Gaussian and its biorthogonal function do not entirely cancel each other
out. The large spikes, shown in the lower plot in Figure 28, that occurred when sections

of the Gabor coefficients were removed support this conjecture.

Figures 32 and 33 illustrate the result of reconstructing the speech signal from
the Gabor representation using an exponential window. Figure 33 shows that periodic
(31.3 Hz) spiky errors are also produced in this reconstructed signal. The arrows point
to the most obvious ones. Also notice that the overall error tends to follow a decaying
exponential function; the same as the window function. The explanation for these errors
is different from the one offered in the Gaussian case. This explanation is given without
proof with the following simple example. Suppose a modulated one sided exponential
function is defined with the same time constant as the exponential window used in a
Gabor expansion. Furthermore, suppose that this function is exactly shifted in time by an
integer multiple of a = At and modulated by an integer multiple of 3 = Af. A Gabor
decomposition of this signal will result in a single impulse in the two-dimensional Gabor
lattice. This impulse results from the perfect match between the signal and the window
shifted and modulated at precisely the same values as the signal. Figure 34 precisely

illustrates this phenomenon. The original signal plotted on the top left hand graph is

defined as
y(t) = exp[—(t — to)/7] sin(27 fot) u(t — to) (75)
where
to = 3
fo = 11

62

Seven Original

Seven Rectangular Spectrogram

0 1024 2048 3072 4096 5120 6144 7168

Figure 22. Original Signal and Reconstructed Signal from Spectrogram Using a Rectan-
gular Window

63

0.1 ¥ l T AJ T T ¥

005 F i e e

Difference Original/Rectangular Spectrogram

-0.1 : i A i 1 1] n
0 1024 2048 3072 4096 5120 6144 7168

Figure 23. Difference Signal Between Original and Reconstructed from Spectrogram
Using a Rectangular Window

Seven Original

Seven Hamming Spectrogram

0 1024 2048 3072 4096 5120 6144 7168

Figure 24. Original Signal and Reconstructed Signal from Spectrogram Using a Ham-
ming Window

65

0.1 ; .' r 1 ' _' T

0.05 |- §

005 F- - -

Difference Original/Hamming Spectrogram

0.1 A R SR SR S
0 1024 2048 3072 4096 5120 6144 7168

Figure 25. Difference Signal Between Original and Reconstructed trom Spectrogram
Using a Hamming Window

66

Seven Original

0 1024 2048 3072 4096 5120 6144 7168

Seven Gaussian Spectrogram

0 1024 2048 3072 4096 5120 6144 7168

Figure 26. Original Signal and Reconstructed Signal from Spectrogram Using a Gaussian
Window

67

0-1 r ¥ T LE 1 f T

0.05 _ e, i

Difference Original/Hamming Spectrogram

0.1 s i i ; L HE

0 1024 2048 3072 4096 5120 6144 7168

Figure 27. Difference Signal Between Original and Reconstructed from Spectrogram
Using a Gaussian Window

68

Seven Original

Seven Gaussian Gabor

0 1024 2048 3072 4096 5120 6144 7168

Figure 28. Original Signal and Reconstructed Signal from Gaussian Gabor Spectrum

69

0.2 ! ! ; ; ! ! !

g 0.15 Fi PO S SO S SO e

54 : ; z 5 5 5 1

O]

c 0.1

)

(7]

=1 0.05

m

g

© 0

£

o

5 -0.05

3

5 -0.1

k3

5 015 S A S N
-0.2 i A L 1 1 t i n

0 1024 2048 3072 4096 5120 6144 7168

Figure 29. Difference Signal Between Original and Reconstructed from Gaussian Gabor
Spectrum

70

Seven Original

Seven Short Gaussian Gabor

0 1024 2048 3072 4096 5120 6144 7168

Figure 30. Original Signal and Reconstructed Signal from Short Gaussian Gabor
Spectrum

A

0.6 T T T T T T T

Difference Original/Short Gaussian Gabor

06 Y S S S S SR P
0 1024 2048 3072 4096 5120 6144 7168

Figure 31. Difference Signal Between Original and Reconstructed from Short Gaussian
Gabor Spectrum

72

fo 11

The units are arbitrary. This signal is sampled at 1/T = 64 and N = 64. The three
dimensicnal plot illustrates the Gabor decomposition of the signal and shows the resulting
impulse centered on the time axis at m = 3, and centered on the frequency axis at
k = 1l—corresponding exactly with #; and f; (the indexes in the Gabor lattice plots
are off by one due to the plotting software). The bottom left hand graph shows perfect

reconstruction as expected.

If, however, the signal is not shifted and modulated at precise integer multiples
of time and frequency, respectively, the resulting Gabor representation is quite different
as shown in Figure 35. The original signal is shifted and modulated by t;, = 3.3 and
fo = 11.2 in this case. The Gabor lattice now shows ringing in both the time and
frequency axes. This ringing is due to the uncertainty produced in trying to pinpoint
the signal in time and frequency. Indeed, the Gabor representation can be thought as a
«wvo-dimencional probability density function. From the Gabor coefficients shown plotted
in Figure 35, the reconstructed signal displays the uncertainty produced in the expansion
of the onginal signal. Notice that a small error occurs at n = 192 (t; = 3) as well as at
subsequent integer multiples of n = 64 (t). This same phenomenon is exhibited in the
error signal shown in Figure 33. This is to be expecied since naturally occurring speech
signals are not expected to have temporal, frequency, and envelope characteristics that

perfectly match the window function.

The tvpes of errors shown in Figure 33 are audibly experienced as clicks. These
clicks are more pronounced in some words than in others. All hearing test subjects
reported the presence of the clicks in the reconstructed signals. However, all subjects
reported that these errors were not as obtrusive as the errors experienced in the regenerated
signals from the short Gaussian Gabor spectrum. Since audible errors resulted from using

the exponential window, no compression/reconstruction tests were performed based on

73

these decompositions. The minimally supported biorthogonal Gaussian function, on the
other hand, is important when reconstructing the speech signals from a compressed Gabor

representation. This will be examined later in this section.

Table 4 lists the MSEs of all regenerated signals described thus far. Subjectively,
the results can be ranked nearly the same as the MSE ranking. The only difference is that
the first four entries in the table can be subjectively ranked with equal weight, and each of

these are indistinguishable from the original signal.

Table 4. MSE of Reconstructed Signals

[Reconstruction Source | MSE |

Rectangular Spectrogram | 5.3682x107°
Hamming Spectrogram | 5.3682x107°
Gaussian Spectrogram 5.7554x107°
Gaussian Gabor 2.7366x10~*
Exponential Gabor 6.9777x10~*
Short Gaussian Gabor 7.9441x10~*

The next series of plots in Figures 36 through 43 show frame 9 (n = 2304) of the
short-time Fourier spectra and the Gabor spectra for each window used. Frame 9 of the
signal corresponds to the first vowel e (¢, from the International Phonetic Alphabet) in the
word seven. Figure 36 demonstrates that the spectrum obtained from a Hamming window
is nearly the same as the one obtained from the Gaussian window. One would expect that
from the similarity of the two window functions. On the other hand the Gabor spectra are
quite different, as shown in Figure 37. The Gaussian window in this case produces much
more energy below 150 Hz or so. In addition, the Gaussian Gabor decomposition tends
to attenuate the energy of the higher formants. Unexpectedly, the one-sided exponential
window produces a Gabor spectrum much closer to the short-time Fourier spectrum.

Again, these examples are representative of the effects observed in the entire vocabulary.

Figures 38 through 43 show how the LIN eliminates spectral components as a

function of competitive bandwidth rule and threshold. The spectral lines shown in these

74

Seven Original

A 1 1 1 1

-1) :
0 1024 2048 3072 4096 5120 6144 7168

1
0.8
0.6
0.4
0.2

0

-0.2
-0.4
-0.6
-0.8

_1 1 1 i i i 4

0 1024 2048 3072 4096 5120 6144 7168

Seven Exponential Gabor

Figure 32. Original Signal and Reconstructed Signal from Gabor Spectrum Using an
Exponential Window

75

0.25
3 0.2
©
© 0.15
©
< 0.1
c
ot 0.05
D
3 0
c
:g» -0.05
O
Q '0.1
e
o -0.15
2
5 -0‘2 . N B . N !

-0.25 1 L 1 1 1 " L n

0 1024 2048 3072 4096 5120 6144 7168

Figure 33. Difference Signal Between Original and Reconstructed from Gabor Spectrum
Using an Exponential Window

76

Exponential Gabor Representation

c g‘ c R’:
T T L T T vo- T T L T 9
[{e (e}
- 4 M - 4o
x [+
L A § T S § §
L 4 Lo J
e 19
3% 3E
- 3 p >
<
1o Jod
1 o 1. @
g E 3£
18k 18+
© 4 ©
4w . n
~N N
. o
[o] [o]
-t N e B N
L -—
§ F J
o 1 1 e A A A i o
- - ® © ¥ N O N ¥ © @ -«
© © o o e Q@ e
[fenuai;odx3 pateinpow [eubuo sjenusuodxy paieiNpopy PalonuIsu09ay

Figure 34. Exponential Gabor Decomposition/Reconstructior. Example of Aligned Sig-
nal in Time and Frequency

77

Exponential Gabor Representation

cS e
T T L T v T ¥ T o LA T T T L] 1 LI o
8 €O
+ . - . (o]
o 18
- e | ls
4 L
Qa 1o
3E 3E
L 3)
3 o3
r e b
- T [+]
<8 158
r Vi) =
[7e] ﬂ Lo}
o el B e
N { N
L & 18
L j
A A o o
- ® © 3
o o
jenusuodx3 pelenpow 1eu!'s110 fenusuodx3 Paje|NPOyy PeIorUISUCI8Y

Figure 35. Exponential Gabor Decomposition/Reconstruction Example of Unaligned
Signal in Time and Frequency

78

08 bt b
0.6 b i o

0.4 bopd

S —
——r
1.

02 b

I S
H‘I};Hi ”‘(i ll!l,"lﬂj 'l“ltl MR §I|H|” Ll MI il nlh " hlli;".”l:u k
0 10 20 30 40 50 60 70 80 90 100110120

Frame 9 Rectangular Spectrogram

0

08+ -

0.4 | - 1

i
0.2 F Hil
l* |
L i . ‘
0 H!Hn“ * sl »:‘i‘iitf!i‘»i};uu Al “ll”hlhn
0 10 20 30 40 50 60 70 80 90 100110120

€
e)
g
g
: |
15
g j
o |
Q@ |
& :
w

1 e

A

Frame 9 Gaussian Spectrogram

0
0 10 20 30 40 50 60 70 80 90100110120

Figure 36. Frame 9 of Spectrogram for Each Window
79

Frame 9 Gaussian Gabor

Frame 9 Short Gaussian Gabor

Frame 9 Exponential Gabor

08 |

0.6 |

0.4

0.2

06 - -

04 F -

0.2

0

0_8 - .

0.6 r

04

02+t -

e

I? \lﬂ\h;;ll’

20 30 40 50 &0 70 80 90 100110120

il

”," M}”M” ,,,,,, I .

T N
)fhliih R

0 10 20 30 40 S0 60 70 80 90 100110120

—

“ln |

all .;“. n ||||.| 1.1 [k

0 10 20 30 40 50 60 70 80 90 100110120

Figure 37. Frame 9 of Gabor Spectrum for Each Window

80

figures represent the normalized output of the LIN after convergence. One may recall that
the competitive bandwidths used to approximate the ERB are more conservative than the
CB (see Figure 19). As a result the CB rule produces more compression than the ERB
rule. The LIN output function thresholds used were 8 = .0009, .09, and are referred to as
the low threshold and high threshold in Figures 38 through 43. The high threshold in all
compressions tends to eliminate the higher frequency components—above 1500 Hz—due
to their low energy. This is evident in Figures 40 and 43. Although it may be difficult to
determine from the figures, the LIN consistently finds the local maxima as defined by the
competitive bandwidths. These local maxima correspond the the glottal frequency (the

first maximum chosen) and its harmonics, including the the formant peaks.

Before describing the results of regenerating the signal from the compressed spectra,
the time-aliasing effects described in the previous chapter are shown in Figures 44 and
45 for two cases. Figure 44 shows the plot of the reconstructed and difference signal
from the compressed Fourier spectrum using a Hamming window, and, similarly, the plots
shown in Figure 45 are derived from the compressed Gaussian Gabor Spectrum. In th»
former case, the errors can be described as large amplitude errors concentrated around t! -
window edges, whereas in latter case, the errors can be described as spiky noise. The
spiky noise in the Gabor case was predicted earlier in the discussion pertaining to Figure
28. Again, the conjecture is that the spikes of the biorthogonal function seem to leak

through if the window function does not entirely cancel them out.

The windowing process described in Eq (36) completely eliminates the time-
aliasing effects in the case of the short-time Fourier spectra. Consequently, the best results
were obtained—both subjectively and in terms of MSE—from these representations. The
compressed Gabor spectra did not reproduce signals as well the Fourier spectra, even
with windowing. However, all signal reproductions revealed that a truncated biorthogonal
function should be used when compressing the Gabor spectrum. This is illustrated in
Figures (46) and (47). The spike noise cannot be fully eliminated when a maximally

supported biorthogonal function is used. With a truncated biorthogonal function, spikes

81

0.8 b il

0.4 bl

oz [yl r TR

o LU u) ‘ N P
0 10 20 30 40 50 60 70 80 90 100110120

Al

Frame 9 Compressed Rectangular Spectrogram
[=]
o

08 oo e < D S e FRRRES L e o

06 F 441 - e 1

0.2—-#-'«»

0 10 20 30 40 50 60 70 80 90 100110120

Frame 9 Compraessed Hamming Spectrogram

06+ - G ‘ 4
0_4...:. e o : e R : : {

02| At

Frame 9 Compressed Guassian Spectrogram

im Hll J N

0
0 10 20 30 40 50 60 70 80 90 100110120

Figure 38. Compression of Spectrogram Using ERB Rule and Low Threshold
82

U110 O O
S N O O O O

04 b4l

0.2 Ft 1 N

UL gm;?;.;J; y

0 10 20 30 40 50 60 70 80 90 100110120

Frame 9 Compressed Rectangular Spectrogram

08 L. o . O ‘ ey s , e

04F W L]

02} 'l . Lol Gl 4
| : |

0 l by T n‘ e n Ll k

0 10 20 30 40 50 60 70 80 90 100110120

Frame 9 Compressed Hamming Spectrogram

08} 1
06 +4i1 . T
o4t |1 o U S PR U

02 bt by S S S S o
RN L..; Lo

0 10 20 30 40 50 60 70 80 90 100110120

Frame 9 Compressed Gaussian Spectrogram

Figure 39. Compression of Spectrogram Using CB Rule and Low Threshold
83

Frame 9 Compressed Rectangular Spectrogram

IR

A T

1

0

0 10 20 30 40 50 60 70 80 90 100110120
g
g
g 0.8
77}
g
E
E 06 e T S
5]
b d
§ 0.4 F b4 o
2
Q
g :
&) 02 L R R
;] X
) |
e ;l
S 0 i i i d i i i i 4 y)
& 0 10 20 30 40 50 60 70 80 90 100110120
5 1 T Al T T T T 1 A L B
g
§ 08 b
7]
[=4
o
4 06} -
3]
(V]
é oal {1{!
o
Q
g
() 02+
[+.]
-]
e L
m A i A d 1 1 i 1 L A
(e

0
0 10 20 30 40 50 60 70 80 90 100110120

Figure 40. Compression of Spectrogram Using CB Rule and High Threshold

84

08 |-

0.6 b

Frame 9 Compressed Gaussian Gabor

0 ;“_ pbe e,
0 10 20 30 40 50 60 70 80 90 100110120

08 b fl |
0 Pl
oa I g

oz AL]

Frame 9 Compressed Short Gaussian Gabor

o LU LT it
0 10 20 30 40 50 60 70 80 90 100110120

Figure 41. Compression of Gabor Spectrum Using ERB Rule and Low Threshold

85

0.8 |
06 |- : ,
0 [oo

o2 P b o

Frame 9 Compressed Gaussian Gabor

MR R T P S
0 10 20 30 40 50 60 70 80 90 100110120

08 b _— T T
08 ol o]

08 [P

02 LIl b

. J IR N
0 10 20 30 40 50 60 70 80 90 100110120

Frame 9 Compressed Short Gaussian Gabor

Figure 42. Compression of Gabor Spectrum Using CB Rule and Low Threshold

86

08 |- ‘
06 F--- A -
04 - . _______ o _______ ______ _______ -

0.2 bbif i i

Frame 9 Compressed Gaussian Gabor

oYL S N S T S S W ST W 1%

0 10 20 30 40 50 60 70 80 S0 100110120

08 |- o T
0.6 | i o
0.4 | it

0.2 foffirr

Frame 9 Compressed Short Gaussian Gabor

Y O S S S S SR S S

0 10 20 30 40 50 60 70 80 S0 100110120

Figure 43. Compression of Gabor Spectrum Using CB Rule and High Threshold

87

Compressed Hamming Spectrogram

Difference Original/Compressed

Hamming Spectrogram

0 1024 2048 3072 4096 5120 6144 71€8

Figure 44.

Aliasing Effects Obtained from Compressed Spectrogram Using a Hamming
Window

88

Compressed Gaussian Gabor

Difference Original/Compressed Gaussian Gabor

0 1024 2048 3072 4096 5120 6144 7168

Figure 45. Aliasing Effects Obtained from Compressed Gabor Spectrum Using a Gaus-
sian Window

89

do not appear, however, the quality of the reconstructed speech can be characterized as

rough sounding.

As previously shown, the amount of compression can be controlled by either
increasing the competitive bandwidths or increasing the output threshold of the LIN. The
reconstructed speech obtained from the compressed spectra using a LIN tuned to the
ERB rule was virtually indistinguishable (subjectively) from the speech obtained from
the compressed spectra using the CB rule. This is true only for a low output threshold.
Increasing the LIN output threshold tends to degrade the fricatives. However, this is
preferable to increasing the competitive bandwiuths much beyond the CB rule. Speech
compressed using the LIN tuned to twice the CB rule produced markedly deteriorated
reconstructed speech. This result supports the argument that CB rule better describes the
filter bandwidth characteristics of the cochlea than the ERB rule.

The best results, overal!, were produced from the short-time Fourier spectrum using
a compactly supporied Gaussian window. Also, unexpectedly, better compression resulted
from this representation than any other representation compressed with an identically tuned
LIN. Table 5 lists the compression ratios obtained using a LIN tuned to the CB and twice
the CB rule with two values of output threshold for each window used. The compression
ratio is defined as

R. = N;/N., (76)

where ', is the total number of coefficients, and NN, are the total number of coefficients

left after compression.

Speech compressed using the LIN tuned to the CB rule produced clearly intelligible
speech when resynthesized, even when a high LIN output threshold was used. Table 6
lists the MSEs obtained from the respective compressed spectra using the CB rule and
an output threshold § = .09. As before, the subjective ranking coincides with the MSE
ranking.

Although the reconstructed speech from the compressed short-time Fourier spectrum

90

Compressed Gaussian Gabor

A

0 1024 2048 3072 4096 5120 6144 7168

Difference Original/Compressed Gaussian Gabor

Figure 46. Reconstructed and Difference Signal from Compressed Gabor Spectrum
Using a Gaussian Window

91

Compressed Short Gaussian Gabor

Difference Original/Compressed

Short Gauss Gabor

0 1024 2048 3072 4096 5120 6144 7168

.. .
S O P e
i))

Figure 47.

Reconstructed and Difference Signal from Compressed Gabor Spectrum

Using a Gaussian Window with Truncated Biorthogonal Function

92

Table 5. Compression Ratios Obtained from Short-Time Fourier Spectrum

i Compression Ratios (R.) |
LIN Tuning Window
Rule | Threshold | Rectangular | Hamming | Gaussian
CB .0009 8.84 11.23 11.77
CB .0900 18.08 23.55 24.72
2xCB | .0009 14.95 18.54 19.40

Table 6. MSE of Reconstructed Signals from Compressed Spectra

[Reconstruction Source | MSE |

Gaussian Spectrogram 1.8736x1073
Hamming Spectrogram | 1.9066x 10>
Rectangular Spectrogram | 3.2633x 107>
Short Gaussian Gabor 4.3132x107°
Gaussian Gabor 4.8427x10~°

was intelligible, it can not be claimed that this speech is of toll quality. In tests performed
on continuous speech, musical quality tones are perceived around some fricatives in the
reconstructed speech. The phrase processed in these tests was present2d in Chapter I,

Section Scope.

This section concludes with an estimate of the bit rate achieved by compressing
the Gaussian window derived Fourier spectrum of the test phrase. No source or channel
coding is assumed in the bit rate estimate. The LIN was tuned with the CB rule and an
output threshold of .09. A compression ratio of 26.81 was achieved in this case. This
translates to an average of 4.774 coefficients per frame. Since the frames are overlapped
by 50%, an average of approximately 10 coefficients per 31.95 msec was sufficient to
represent the signal. Approximately 31 frames are needed for each second of speech.
In order to find the bit rate, the total number of bits that represent the frequency index,
magnitude, and phase of each coefficient is established. The total number of bits needed

for the frequency index is fixed at 7. The number of bits used to represent the magnitude

93

and phase were decreased to 4 and 2 respectively; down from 16 bits each. This reduction
in the number of bits did not significantly degrade the speech signals (neither in MSE nor
subjectively). Thus, the total number of bits necessary to represent each coefficient is 13,
times 10 coefficients per frame, times 31 frames per second yields 4030 bits per sec. This
compares favorably with the 4800 bit rate speech demonstrated by McMillan [49].

Results Based on Affine Wavelet Specira

As in the previous section, the resynthesized signal from all the coefficients of the
affine wavelet spectrum—using the Haar and the Morlet wavelets—are first examined.
Afterwards, the result of compressing the affine wavelet spectrum via the LIN, as defined

in the previous chapter, is presented.

The regenerated signal from the Haar wavelet obtained coefficients is nearly identical
to the original signal, as shown in Figure 48. The error obtained from this reconstruction
is almost the same as the error obtained from the signal resynthesized from the short-time
Fourier spectrum using the rectangular or Hamming windows. The high fidelity of this

reconstructed signal is to be expected due to the completeness of the Haar wavelet set.

In the previous chapter, it was mentioned that four times as many Morlet wavelet
levels than are used in this effort are necessary for a complete representation. As a result,
a large error between the original and the reconstructed signal from the Morlet wavelet
decomposition is to be expected. Figure 49 verifies this. However, what was not expected
is that the subjective quality of this reconstructed signal is quite good, although different

from the original and somewhat noisier.

The Gaussian envelope of the Morlet wavelet-exp[—(n/N)?/2), as presented in
Eq (61)—has a variance 0> = 1 if one defines the general form of the Gaussian as
exp[—t2/(20?)]. In this form, the Morlet wavelet produces quite a large overlap during
the computation of the wavelet transform. The variance was reduced to 62 = 1/(27)—in
order to reduce the overlap—and the signals were decomposed and resynthesized wiih

the new wavelet set. The result, represented in Figure 50, was a reduction in the MSE

94

between the original and reconstructed signals. The listening test subjects reported that
these resynthesized signals sounded closer to the original than the signals resynthesized
from the wider variance Morlet wavelet decompositions. Table 7 lists the MSEs of the

three regenerated signals described in this section.

Table 7. MSE of Reconstructed Signals From Wavelet Coefficients

| Reconstruction Source | MSE |
Haar Spectrum 5.3224x107°
Morlet Spectrum 3.2461x1073
Narrow 02 Morlet Spectrum | 9.8497x10~*

The reconstructed speech from the compressed affine spectrum—by the method
described in Chapter Il—was intelligible but of poor quality, regardless of the wavelet
used. This reconstructed speech has a very rough quality associated with it. Even when
reducing the compression by allowing only nearest neighbor competition in the LIN, the
resultant reconstructed speech is rough and muffled. Figures 51 through 53 show the result
of compressing all eight Haar generated coefficieit levels of frame 9 of the speech signal
using the CB rule. At each level, the coefficients have been duplicated an appropriate
number in order to span 128 points. For example, at level 0, the only coefficient found
at that level is duplicated 128 times, at level 1, both coefficients found at that level are
duplicated 64 times, and so on. This provides a convenient method of illustrating the
affine spectrum. Recall that the 128 points are associated with a 31.95 msec. interval.
The result of compressing the coefficients are shown as shaded areas in the plots. Figures
54 through 55 show the result of compressing the same frame with only nearest neighbor
competition. Clearly, this method of compressing the affine spectrum is not useful for

regenerating good quality speech.

95

From Haar Wavelet Spectrum

0 1024 2048 3072 4096 5120 6144 7168

0-1 l T T 1 I T T

0.05 _ S 4

005 |

Ditference Original/Haar Wavelet Spectrum

o1l

0 1024 2048 3072 4096 5120 6144 7168

Figure 48. Reconstructed and Difference Signal from Haar Wavelet Coefficients

96

From Morlet Wavelet Spectrum

Difference Original/Morlet Wavelet Spectrum

0 1024 2048 3072 4096 5120 6144 7168

Figure 49. Reconstructed and Difference Si, ial from Morlet Wavelet Coefficients

97

From Narrowo?2 Morlet Wavelet Spectrum

Difference Original/Narrow c?
Morlet Wavelet Spectrum

r N T S SR S
0 1024 2048 3072 4096 5120 6144 7168

Figure 50. Reconstructed and Difference Signal from Narrow Variance Morlet Wavelet
Coefficients

98

120 T T T T ™

100 b e o

80 b T S -

Frame 9, Level 0 Coefficient
3

200 -

150 O ‘ e , e e - J

100 } - N T T o

Frame 9, Level 1 Coefficients
o

0 20 40 60 80 100 120

-100 | -

-200

T

Frame 9, Level 2 Coefficients

0 20 40 60 80 100 120

Figure 51. Levels 0-2 of Frame 9 of Haar Wavelet Decomposition
99

Y T T T \j v

: : : Uncompressed ——

1

200 | 1t

BTG
(TGN
IBIHTNIT

(LU ETTTIINE]
HIHINn
HIRIEE)
ninnn
ELLOTTR LRI

. HIN I : : :
200 1 e AT oo drme e et Frreessaeeree R

..............

Frame 9, Level 3 Coefficients

400 Foeee e . AAAAAA “::::::: ::::::

1 L 1 i 1

800 . , : : ,
600 (RPN FO. L IERET Y e]

400

200 AR o]
X ||||||||\—‘_
RSV I o

-200 +- ; o

-400 |- Feee

Frame 9, Level 4 Coefficients
Q

-600 : : S —

-800

1000

Frame 9, Lavel 5 Coefficients

'Uncompressed —
Compressed ---- _

1 A I " k
0 20 40 60 80 100 120

—

Figure 52. Levels 3-5 of Frame 9 of Haar Wavelet Decomposition
100

Frame 9, Level 6 Coefficients

Frame 9, Level 7 Coefficients

400
200
-200
-400 : . j
: - Uncompressed —
600 b __Qomgressed.;::::
0 20 40 60 80 100 120
400 T T T 1 T 1
300
200
100
0
-100 5_
-200
-300 , _ .
400 L S Uncompressed —
400 g Compressed :---- ;
-500) 1 i 1 1 4
0 20 40 60 80 100 120

Figure 53. Levels 6-7 of Frame 9 of Haar Wavelet Decomposition

101

" ﬁ : Uncompressed ——
400 b e }Cb”rr‘\g'r'é; I

[y

200 Fooooe T s S s 01 “"“'lf:j."'_f_—

'HII“IIIIIHIIII
LTI

. ‘llllllllll!llll: kit
0 hnmmm: e el TG Wi, 4

LLUETRITEINI }
It
FENTHTTT]
(IR
TR . : :
FUTET : :
UMY e Teemesmees R
[IONTTRITT : :
[T
MHIIHb
(IR BTHO]
HNDINHINNE,

IRt : . :
400 b SIRE B R TPREPRRY SPRISPRIPR [

Frame 9, Lavet 3 Coefficients

800 : . y . —

LT .
[T
S AN e
nit)
R
i

ceecdduie L sy

600

400 |-

T TUTU B
J““ tepent T T naNR

Frame 9, Level 4 Coefficients

-600 .Uncombressed — e S . o

Compressed ---- ‘ : :

-800 1 S) X 1 A k
0 20 40 60 80 100 120

Frame 9, Level 5 Coefficients

U U Uncompressed —
. Compressed ----
-1000 L —L 1 I L Kk
o] 20 40 60 80 100 120

Figure 54. Levels 3-5 of Frame 9 Nearest Neighbor LIN Compression Result
102

Frame 9, Level 6 Coefficients

Frame 9, Level 7 Coefficients

400

200

-200

-400

-600

400
300
200
100

-100
-200
-300
-400
-500

...Uncompressed..=—......... ...

e Comp{essed =

0 20 40 60 80
L Uncompressed-—— S
g - Compressed ---- : :
s i 1 i i ——Jk
0 20 40 60 80 100 120

Figure 55. Levels 6-7 of Frame 9 Nearest Neighbor LIN Compression Result

103

Noise Filtering Analysis

Preliminary tests suggest that the use of LINs for noise filtering neither enhances
nor degrades the intelligibility of the speech signal. With high signal-to-noise ratios
(SNRs) the speech was equally intelligible before and after compression. Similarly, when
the SNR was lowered significantly, the speech was not understood either before or after
compression. Although this is not a dramatic result, it is significant when comparing
with LPC coded speech. It is well known that LPC coded speech degrades very rapidly
(nonlinearly) as a function of decreasing SNR. Thus, if the speech signal is understandable,
no extra noise filtering is required before the speech is compressed with LINs as is required

for LPC compressed speech.

Summary of Results

The results reported in this chapter were for the spoken word seven, and, again,

these results are representative of the results found for the rest of the spoken digits.

In the case where speech is decomposed using the short-time Fourier and Gabor
transforms, the LIN is capable of finding all relative maxima that are associated with the
glottal frequency and its harmonics, and most importantly the formant peaks. When the
Gabor decomposition was used, it was found that the quality of the reconstructed speech
depends on the variable (), which defines the extent of the biorthogonal function. Small
values of () are preferable than large values of Q in this case, but just the opposite is true
if all the Gabor coefficients are used. A one-sided exponential window produces periodic
clicks in the reconstructed signal, even when all coefficients are used. The reconstructed
speech from the compressed short-time Fourier spectrum is of much better quality than
the Gabor reconstructed speech. Of the three windows used in the short-time Fourier
decomposition, the Gaussian window produced the best quality reconstructed speech.
Speech reconstructed from the LIN compressed Gaussian spectrum using the ERB rule
is virtually indistinguishable from the LIN compressed spectrum using the CB rule.

The CB rule appears to define the limit of the competitive bandwidths since increasing

104

the bandwidths beyond this limit significantly degrades the quality of the reconstructed
speech. Overall, compression ratios between approximately 20 and 28 were achieved
resulting in perfectly understandable speech. This amount of compression translates to

well below 4.8 kbits/sec. speech.

The LIN, as designed in this thesis, does not compress the affine wavelet spectrum
suitably for resynthesizing good quality speech. Even in efforts where compression was
allowed in only one level, the resultant regenerated speech was sufficiently degraded in a
manner that was consistently rated worse than the regenerated speech from the compressed
short-time Fourier spectrum. In these cases the compression of the Fourier spectrum was

nearly 20 times greater the the compression of the affine spectrum.

In the concluding chapter, the implications of these results, especially as they relate
to the physiology of hearing, are explored. In addition, suggestions as to how the quality
of the reconstructed speech can be improved from the compressed spectra explored in this

thesis are offered.

105

V. Conclusions and Recommendations

Introduction

The main purpose of this research was to develop non-linear lateral inhibition
networks (LINs) for coding and compressing the affine and W-H decompositions of
speech. The choice of LINs for compression is biologically motivated since these
networks are ubiquitous in sensory preprocessing systems across species for the main
purpose of spatio/temporal contrast enhancement. In the W-H case, the LIN is designed
to search for spectral peaks and eliminate the rest of the frequency components in each
time slice of the two-dimensional transform lattice. In the affine wavelet transform space,
the LIN is designed to pick temporal coefficient peaks in each level of frequency analysis.
The LIN was tuned to approximate the overlapping bandwidths of the theoretical filter

model of the cochlea.

In the following section, the most important results of this research are summarized.
From these results, conclusions and recommendations for possible future research are
suggested. This chapter and this thesis concludes with the biological implications of the

results found in this research.

Summary of Results, Conclusions, and Recommendations

The best overall decomposition/compression/resynthesis results were obtained from
the short-time Fourier domain. In that case, up to approximately 28 times compression
of the short-time Fourier spectrum was achieved resulting in clearly intelligible speech.
This amounted to approximately 95% elimination of the spectrum. The resynthesized
speech compressed at these levels translates to under 4.8 kbits/sec. speech. Although
the compressed speech is perfectly understandable, this speech is not of toll quality
due to the musical quality of the fricatives. The compression ratios achieved—for a

specific tuning of the LIN-were a function of the window used in the Fourier expansion.

106

The compactly supported Gaussian window produced the best compression, followed
by the Hamming window, and the rectangular window in that order. If one examines
the spectral characteristics of each window [30], one might conclude that this is due to
the side lobe characteristics of each window. All other things being equal, the more
the side lobes are suppressed, the more the LIN compresses. This hypothesis can be
tested in future research by using other windows with even better side lobe characteristics
than the compactly supported Gaussian window, in particular the Dolph-Chebyshev and

Kaiser-Bessel windows.

Compressing the Gabor spectrum produced much noisier resynthesized speech than
what was obtained from the short-time Fourier domain. It is concluded here, that the
poor compression/resynthesis obtained from the Gabor decomposed speech is not due to
the LIN compression. In each case, the LIN found peaks that were associated with the
important characteristics of speech: the glottal frequency and its harmonics as well as
the formant peaks. Therefore, the problem in the case of the Gabor expansion is not in
the information the LIN is extracting but the fact that components are being eliminated.
The conjecture is that errors arise due to problems in approximating and truncating
the biorthogonal function of the window in the Gabor expansion. Further elimination -
of spectral components may produce Gibbs like errors that cannot be eliminated with
windowing. Because of these errors and the extra computational complexity of the Gabor
expansion, this representation is not recommended as an appropriate representation for

speech compression.

The LIN compressed affine wavelet spectrum does not produce good quality
resynthesized speech. Regardless of whether the Haar or Morlet wavelet was used to
decompose speech, the signals regenerated from the compressed representations are quite
rough sounding. This was found to be the case even when the LIN was tuned for
minimal competition, that is, only nearest neighbor competition. It appears that Mallat’s
method [45] of regenerating the coefficients via convex space projections is necessary

to reproduce good quality reconstruction. This process requires that at least the local

107

maxima are chosen. The LIN chooses local maxima that do not necessarily coincide with
the local maxima defined by Mallat. Therefore, if the LIN is to be used for this purpose,

the network must be redesigned.

Even if a LIN can be designed to choose the appropriate maxima and the projection
method is used to regenerate the speech signals, there appears to be at least two fundamental
problems with the affine wavelet representation for speech compression. The first is the
limitation of compression that may be achieved through the process described above. As
may be seen from Figures 51 through 55, the high rate of variation in the speech signal
produces a high rate of variation in the affine spectrum. As a result of this, relatively
few components can be classified as non-maxima and thereby eliminated. As a rough
estimate, only 25% of the coefficients of the speech signals processed in this thesis fall in
that category. This is far less than the number of coefficients that can be eliminated in the
short-time Fourier space. In addition, a real-time convex space projection system would

require a highly parallelized and expensive system.

Because of the expense of the convex space projection method, a simple cubic
spline or Hermite polynomial first cut interpolation of the coefficients should be tested.
This may be all that is required to dramatically impiove the reconstructed speech. This
method should also be tried in the compressed short-time Fourier spectrum, for it might

eliminate the musical quality of the the fricatives of the reconstructed speech.

There are other implementation issues which must also be addressed. In this
thesis, the LIN was modeled as a system of non-linear differential equations whose
solutions are approximated by Euler’s method. This is not the most efficient method of
implementation, however, it established a baseline. As may be recalled, in Chapter 111, a
linear approximation to the LIN may be implemented as overlapped Mexican-hat function
digiial filters. In fact, this can be reformulated as a wavelet process. This approach
would significantly reduce the computational load. This suggests that an affine wavelet
decomposition could be used on the short-time Fourier spectrum as the compression

algorithm. A number of implementations are, therefore, possible when viewed in this

108

manner. In spite of this, it must be realized that linear approximations of non-linear LIN
dynamics will not produce the same computational results. Whether these approximations
will yield results that sound acceptable to listeners should be established. In addition to
the digital implementations, analog VLSI and CMOS implementations of LINs are also

available [52, 41]. These circuits should satisfy the most stringent real-time requirements.

Biological Implications

In the previous chapter it was reported that nearly 95% of the frequeiicy components
of the short-time Fourier spectrum can be eliminated without producing a significant assault
to the hearing mechanisms, whereas eliminating even a small number of coefficients in
the affine wavelet spectrum produces errors that the hearing mechanism does not tolerate.
What are the differences in the types of errors that occur when compressing the respective
spectra, and how do these affect the hearing mechanism? The answer to the first question

is straightforward. However, one must hypothesize when answering the second question.

It was discussed in Chapter III that time aliasing errors occur when the Fourier
spectrum is nonuniformly sampled below the Nyquist rate. However, these errors can be
suppressed with windowing. On the other hand, compressing the affine wavelet spectrum
produces random or high frequency noise [45, 3]. The author of an Aware, Inc. technical

report writes:

Fourier-based spectral techniques [in compression] tend to produce errors
of the aliasing type since the frequency spectrum itself is distorted, while
wavelet methods tend to produce errors of the noisy type. Noise is far less
offensive to the human visual system than aliasing. [3:40]

Evidently, just the opposite is true for the auditory system. Why this should be the case is

now explored.

Until quite recently, the role of the efferent or descending auditory system was little

more than a mystery. There remains a general lack of consensus as to the function of

109

this system; however, recent hypotheses seem to be converging towards the following
oversimplified process (2, 8, 29, 39, 69]. As may be recalled from Chapter 1I, acoustic
signals produce frequency dependent vibratory motion at specific locations along the
basilar membrane. This vibratory motion is transduced into electric potentials by the inner
hair cells located on the basilar membrane. The electric potentials in turn activate the
cochlear nerve fibers that ultimately signal the primary auditory fields of the neocortex
via several brainstem and thalamic nuclei. This system is known as the afferent or
ascending system. Thus, the afferent system acts as the primary auditory receptor system
by transducing and encoding acoustic phenomena, and relaying that information to the

brain.

The brain seems to actively control this process via the efferent system. A
descending communication system, separate from but parallel to the ascending system,
terminates in the brain at four nuclei—two on each side of the brain stem—called the
lateral and medial superior olivary nuclei. These nuclei reside just above and ventral
10 the cochlear nucleus, the first relay station of the afferent system. Neurons from the
olivary nuclei ultimately communicate with the cochlea through the olivocochlear bundle.
The axons of this transmission line bifurcate and either synapse with the dendrites of the
afferent system (near the inner hair cells) or synapse directly with the outer hair cells.
Functionally, axodendritic stimulation appears to inhibit inner hair cell signaling. Outer
hair cell stimulation produces much more complicated and interesting results. Evidence
suggests that outer hair cell stimulation produces structural changes to the cell resulting in
a mechanical action on the tectorial membrane. This electro-mechanical action acts as an

automatic gain control of the afferent system. Kim elucidates with the following quotation

The function of the OHCs [outer hair cells] is to enhance actively the
sensitivity, tuning, and dynamic range of the mechanical response of the
entire organ of Corti . .., conferring high sensitivity, sharp tuning, and a wide
dynamic range to the IHC [inner hair cell] subsystem. [39]

110

and Wiederhold adds:

The efferents could also serve in a control system, possibly driven from
cortical origins of the descending auditory pathways, to filter out acoustic
signals that are distracting, or to make more intelligible those stimuli of
particular interest. [69]

This last quotation may finally shed light on the question left unanswered in the
beginning of this section: why are the errors produced by compressing the Fourier
spectrum of speech tolerated by the hearing mechanism and not the errors produced by
the compressed affine wavelet spectrum of speech? To aid the argument, Figure 56
shows, from top to bottom, the plots of the short-time Fourier spectrum of frame 18 (see
previous chapter) of the onginal signal, the reconstructed signal from the compressed
short-time Fourier spectrum using a Gaussian window, and the reconstructed signal from
the compressed Morlet affine wavelet spectrum respectively. The middle plot shows
that the process of reconstruction filled in some of the components eliminated in the
compression process. Aliasing, then, amounts to localized energy reductions of the
spectrum. On the other hand, the bottom plot verifies that broad band noise is produced
when the affine wavelet spectrum is compressed. Thus, the conjecture is that the brain
actively enhances the quality of the compressed Fourier spectrum reconstructed speech
by boosting the gain at the appropriate locations along the basilar membrane. The brain
is incapable of enhancing the compressed affine spectrum reconstructed speech to the
same degree because the error is spread along the entire length of the basilar membrane.
Therefore, the brain is unable to correctly enhance or attenuate the vii - .tory motion of
the basilar membrane due to the improper cues. Psycho/physiological experiments can be

designed and performed that test these hypotheses.

111

08 s ______ AAAAAA - S
06 Lol i ______ T — -

T e S S

Frame 9 Original

0.4 [t

0.2 tf

0 H.H. \M!lhmll”‘l |‘ Hl!htn|Iulhm|nlmhllnl. m|l||ll K

0 10 20 30 40 50 60 70 8C 90 100110120

1 T _—
08} &
0.6 |

04 ‘ i}

Rl
tlimh ol li'

0 IIJ..HI bl ‘l A
0 10 20 30 40 50 60 70 80 90 100110120

Frame 9 Compressed Fourier Spectrum

Mmoo
o.2-|]' H l . ﬁ
o lllzl iHI’ ln'v ltlhi”[! H"HIMHH"m’ll“luhl‘!lmlH\”Hi'!lmh K

!
0 10 20 30 40 50 60 70 80 90 100110120

Frame 9 Compressed Atfine Wavelet Spectrum

Figure 56. Respective Spectra of Original and Reconstructed Signals
112

Appendix A. Code for Gabor Transform

/ﬁ!tlit.it.‘t...‘i't"". gabor-m 't.ﬁtﬁlﬁ'ﬁ'ﬁﬁ‘tﬁt..‘ﬁ.ﬁ.!i.ﬁ!tt/
/* Written by Rick Ricart, Capt, USAF */
/* Computes the Gabor representation of speech files using a Gaussian window */
/* The sound is sampled by the Codec at 8012.8 Hz. Each samle is, therefore, */

/* taken every .24.8E-06 sec. Delta t is chosen to bhe 256*124,.8E-06 or */
/* 31.949E-03 sec. Delta f is, therefore, 31.3 Hz. */
/* This version uses 50% overlapped windows */

/* Call program as follows: gabor <filename> val, where val is 0 or 1 */
/* val=0 truncates biorthogonal function, val=l leaves biorthogonal function */
/* at its maximum extent. */

/ﬁtlttﬁiﬁﬂﬁk.ﬁ.t!ﬁ'**.tﬁﬁ*iitﬁ'tii*ﬂtl"ﬁ..ﬁtﬁitﬁﬂ'll'i'iﬁ'ﬁil.ﬁ*titﬁﬂiiﬁtt'tt/

#import <sound/sound.h>
#import <math.n>

fimport <dsp/arrayproc.h>
#import <mach.h>

#import <stdlib.h>

#import <stdio.h>

#import <objc/objc.h>
fimport <soundkit/Sound.h>
timport <soundkit/soundkit.h>
#import <string.h>

#import <macros.h>

tdefine N_DELTA_T 256

#define POINTS 2*N_DELTA T

tdefine K_TOTAL_DFS 128

fdefine M_TOTAL_DTS 31

tdefine TOT M_TOTAL_DTS*N DELTA T /* approximately one sec of sound */
tdefine TAU 1 /* exponential time constant */

#define PI 3.141592654

#define ABS (x) sgrt (pow(x,2.0))

tdefine ABS2(x) ((float)sqrt ({{(double)x)*((double)x)))

/* Global Variables */

id mySound, newSound;

SNDSoundStruct *soundStruct, *convertStruct;

/* the filenames */

char magnitudefile([80), phasefile[80]), signalfile(80):

void get_data(short **temp,char *infile)

{

int error, data_size,i;

BOOL edit:

/-
inPtr = (short *) ((char *) inputSound + inputSound->datalocation);
outPtr = (short *) ((char *) *outputSound + (*outputSound)->datalocation);

*/

error = [mySound readSoundfile:infile]:

/* initialize mySound to infile’s mySound object */

soundStruct =[mySound soundStruct]):

{mySound isEditable]:

data_size = soundStruct->dataSize:

SNDAlloc (&convertStruct,data_size, SND_FORMAT_LINEAR 16,SND_RATE CODEC,
soundStruct->channelCount, "%):

113

SNDConvertScund{soundStruct, &éconvertStruct) ;
*temp= (short *) (convertStruct+convertStruct->datalocationj:
}

void write_output_files(short *signal, float *gaborMag,
float *gaborPhase, float *gamma,

char *infile, char *index)

{

FILE *f1,*£2,*£3,*£4;

int k,m,n;

size_t s_len;

/* get length of input file not counting null terminator */
s_len=strlen(infile);

/* start name of signalfile with infile minus suffix .snd */
strncpy(signalfile, infile, (s_len-4)):

/* must add terminating null, strncpy does not automatically do it */
signalfile(s_len-4]="\0’;

/* start name of magnitudefile with infile minus suffex .snd */
strncpy (magnitudefile,infile, (s_len-4)):
magnitudefile[s_len-4])="\0‘;

/* start name of phasefile with infile minus suffex .snd */
strncpy (phasefile,infile, (s_len-4));
phasefile(s_len-4]='\0’;

/* add the appropriate gamma truncation index */

strcat (phasefile, index):

strcat (magnitudefile, index)

/* signalfile=filename.dat */

strcat (signalfile,".dat");

/* magnitudefile=filename_gaborMag.dat */

strcat {magnitudefile, "_gaborMag.dat”);

/* phasefile=filename_gaborPhase.dat */

strcat (phasefile, " _gaborPhase.dat"):

/* open and write signal data to signalfile */
if ((f1 = fopen(signalfile,”w")) == NULL) {
printf ("\n*** Cannot can’t create %s **+*",signalfile);
exit (0):
}
loopn (TOT)
fprintf (£f1,”%d\n", signal{n]):
/* open and write gaborMagnitude data to magnitudefile */
if ((f2 = fopen (magnitudefile,"w")) == NULL) {
printf ("\n*** Cannot can’t create %s ***" magnitudefile);
exit (0);
}
loopm (TOT)
fprintf (£2,"%f\n",gaborMag(m]);
/* open and write gaborPhase data to phasefile */
if ((£3 = fopen(phasefile,"w")) == NULL) {
printf("\n*** Cannct can’t create %s ***",phasefile);
exit (0):
}
loopm (TOT)
fprintf (f3,"%£\n",gaborPhase([m]):

/* if ((f4 = fopen("gammal.dat”™,"w"))} == NULL){
printf ("\n*** Cannot can’t create %s ***" "gamma(0.dat"):
exit (0);
}
loopm (2*TOT)
fprintf (£4,"%£f\n",gamma (m]);*/
/* close all files */
fclose (fl):
fclose (£2);

114

fclose (£3):
/* fclose(f4);*/
}

/tiﬁt'i..iiti.' qet gma() ...ﬁi"'ﬁﬁ'ﬁii/

/* This function creates the biorthogonal function
of the Gaussian window */
/"tQ..'Qtt.iﬁiitﬁtttﬁ.tﬁ't!tiﬁtlttﬁttt.../

void get_gamma(float *gamma, int index)

{

int i,n;

double k,coeff,time;

char in_string(8]:

coeff=sqrt (sqrt (0.5)):

k=1.85407468;

/* create biorthogonal window function */
loopn {2*TOT) {
time=((double) (n-TOT)/ (double) (N_DELTA_T)):
if(l!index)&&((n(TOT-Z'N_DELTA_T)ll(n>=TOT42'N_DELTA_T)))(
if (n==0)

printf (“"truncated gamma function, index=0\n");
gamma{n]=0;

}

else|

if (n==0)

printf ("max gamma function, index=1\n");
loopi(3)

gamma [n]+= (float) (coeff*
exp(PI*time*time-PI*

pow (floor (ABS(time) +0.5) +0.5+ (double})i, 2.0))*
pow { (k/PI), (-3.0/2.0))*

pow(-1.0, floor (ABS (time)+0.5+ (double)i)))

}

}

}

/tt"*'!l.itﬂ wlndow data tt'ttﬁﬁ‘*ﬂ.ﬂk*t.#.ﬁttﬁ/

/* This function produces:

SUM(over gq=0...M_DELTA_DTS) f(n+q‘N_DELTA_T)’gamma(n#(q-m)'N_DELTA_T),

for a given time slice m, and where f is the signal function (timeReal) and
gamma is the biorthogonal function of the window */

/ﬁﬁ‘QQQt'i'tﬂik'iﬂl'.."'.kttt!ﬂ.ﬁﬁti‘tiﬁtttiﬁ'i.tﬁ/

void window_data(float *gamma, float *signal, float *timeReal)

define A_ADR DSPAPGetLowestAddress() /* address of signal data part */
define B_ADR (A_ADR + N_DELTA_T)} /* address of biorthogonal data part */
define C_ADR (B_ADR + N_DELTA_T) /* address of accumulated sum */
define D_ADR (C_ADR + N_DELTA T) /* address of result */

define INC 1 /* increment for all array */

W A M W W

int p:

/* DSPFix24 arrays */
DSPFix24 A_ARRAY[N_DELTA_T],B_ARRAY [N_DELTA_T},RESULT [N_DELTA_T]:

/* set vectors C and D to zero */
DSPAPvclear (C_ADR, INC,N_DELTA_T) ;
DSPAPvclear (D_ADR, INC,N_DELTA T):

loopp (M_TOTAL_DTS) {

/* Convert data from float to DSPFix24 */
DSPFloatToFix24Array (ésignal [p*N_DELTA T], A_ARRAY, N_DELTA_T);

115

DSPFloatToFix24Array (égamma(p*N_DELTA_T], B_ARRAY, N_DELTA_T):

/* load arrays to DSP memory */
DSPAPWriteFix24Array (A_ARRAY, A_ADR, INC, N_DELTA_T):;
DSPAPWriteFix24Array (B_ARRAY, B_ADR, INC, N_DELTA_T);

/* swap C and D arrays (answer to summing array) */
DSPAPvswap (C_ADR, INC,D_ADR, INC,N_DELTA_T);

/* This function computes A*B+C and puts answer in D */
DSPAPvtvpv (A_ADR, INC,B_ADR, INC,C_ADR, INC,D_ADR, INC,N_DELTA_T) ;
}

/* Return result from DSP memory to host memory */
DSPAPReadFix24Array (RESULT, D_ADR, INC, N_DELTA_T);

/* Convert data from DSPFix24 to float */
DSPFix24ToFloatArray (RESULT, timeReal, N_DELTA T):

}

/* squash data */

float squash(flocat val, float oldmax, float oldmin, float newmax, float newmin)
{

float answer;

answer=(((val-oldmin)/(oldmax-oldmin))* (newmax-newmin)) +newmin;
return answer:

}

void fft_wind_data(float *timeReal, float *timelmag, float *gaborReal,
float *gaborImag)

{

define DATA_ADR DSPAPGetLowestAddressXY ()

define COEF_ADR (DATA ADR + N_DELTA_T)

define IMAG_DATA DSPMapPMemY (DATA_ADR)

define REAL_DATA DSPMapPMemX (DATA_ADR)

define SIN_TABLE DSPMapPMemY (COEF_ADR)

define COS_TABLE DSPMapPMemX (COEF_ADR)

W W A Wk W W

flocat *sinTab = DSPAPSinTable(N_DELTA T):
float *cosTab = DSPAPCosTable (N _DELTA T):
int i,m;

/* DSPFix24 arrays */
DSPFix24 TimeReal[N_DELTA_T],TimeImag[N_DELTA_T],GaborReal[N_DELTA_T),
GaborImag[N_DELTA_T):

/* Squash float data from -1 to 1 */

/* loopi (N_DELTA_T){
timeReal{i)=squash(timeReal(i], 1E6,-1E6,1.0,-1.0);
timeImag(i}=squash(timeImag(i),1E6,-1E6,1.0,-1.0);
Y/

/* Convert data from float to DSPFix24 */
DSPFloatToFix24Array(timeReal, TimeReal, N_DELTA_T);
DSPFloatToFix24Array(timelmag, TimeImag, N_DELTA T):

/* put the time domain complex array */

DSPAPWriteFix24Array(TimeReal, REAL_DATA, 1, N_DELTA_T}:
DSPAPWriteFix24Array(TimeImag, IMAG_DATA, 1, N_DELTA_T):

116

/* put the cos and sine tables */
DSPAPWriteFloatArray(cosTab, COS_TABLE, 1, N_DELTA_T/2):
DSPAPWriteFloatArray(sinTab, SIN_TABLE, 1, N_DELTA_T/2):

DSPAPfftr2a (N_DELTA_T, DATA_ADR, COEF_ADR);

/t
* Get the gabor domain complex array.

* Tell monitor to read the array back with bit-reversed

* addressing because fftr2a leaves its output shuffled.

* Note _hat the skip factor (N_DELTA_T/2) is used to set the

* DSP ’'N’ register.

*/

DSPSetDMAReadMReg (0) ;

DSPAPReadFix24Array (GaborReal, REAL_DATA, N_DELTA_T/Z, N_DELTA_T):
DSPAPReadFix24Array (GaborImag, IMAG_DATA, N_DELTA_T/2, N_DELTA_T):
DSPSetDMAReadMReg (-1); /* re-select linear addressing */

/* Convert data from DSPFix24 to float */
DSPFix24ToFloatArray (GaborReal, gaborReal, N_DELTA_T):
DSPFix24ToFloatArray (GaborImag, gaborImag, N_DELTA T):

/* Squash float data from -1 to 1 */

loopi (N_DELTA_T) {

gaborReal [i])=squash (gaborReal{i},1.0,-1.0,1E6,-1E6);
gaborImag({i}=squash(gaborImag(i],1.0,-1.0,1E6,-1E6);
}

void get_gabor_mag(float *gaborReal, float *gaborImag, float *gaborMag)
{
int k,m;

loopm (M_TOTAL_DTS*2)

loopk (K_TOTAL_DFS)

gaborMag[m*K_TOTAL_ DFS+k)=

{float)sqgrt ((double)gaborReal [m*N_DELTA_T+k]*
(double) gaborReal [m*N_DELTA_T+k]+

(double) gaborImag (m*N DELTA T+k]}*

(double) gaborImag {m*N_DELTA_T+k]):

}

void get_gabor _phase(float *gaborReal, float *gaborImag, float *gaborPhase)
{

int k,m;

loopm (M_TOTAL_DTS*2)

loopk (K_TOTAL_DFS)

if {(gaborReal [m*N_DELTA_T+k)==0) é& (gaborImag(m*N_DELTA_ T+k]==0))
gaborPhase [m*K_TOTAL_DFS+k]=((float)PI/2):

else

gaborPhase (m*K_TOTAL_DFS+k]=
{(float)atan2((double)gaborimag{m*N _DELTA T+k],

{double) gaborReal [m*N_DELTA_T+k])):

)

main (int argc, char **argv)

{

short *temp; /* integer representation of original data */

float signal (TOT+N_DELTA_T/2]: /* float representation of original data */

117

float timeReal [2*TOT]):; /* the overlapped windowed signal */

float timeImag(N DELTA T):; /* the imaginary portion of the data */
float gaborReal (2*TOT), gaborImag[2*TOT), gaborMag[TOT), gaborPhase[TOT]:
float gamma({2*TOT]: /* the biorthogonal function of the window */
float temp gamma[2*TOT]: /* squashed version of gamma */

int i;

/* initialize sound objects */

mySound={Sound new];

newSound=[Sound new]};

/* get sound data; timeReal has float rep. of sound */

get_data(étemp,argv(l]):

/* get float values of signal */

loopi (TOT)

signal(i]l=(float)temp[i]:

/* clear rest of signal */

for (i=TOT;i<TOT+N_DELTA_T/2:++i)

signal (i]=0;

/* zero out timelmag(] */

loopi (N_DELTA T)

timeImag[i}=0;

/* clear gamma[] */

loopi (2*TOT)

gamma [1]=0;

/* generate biorthogonal window */

get_gamma (gamma, atoi {(argv(2])):

/* Copy elements of data and gamma function to temporary arrays and
squash float data from -1 to 1 */

loopi {TOT)

signal[i)=squash(signal(i]),1E6,=-1E6,1.0,-1.0);

loopi (2*TOT)

temp gammali)=squash{gammal[i},b 200,-200,1.0,-1.0):

/* Initialize the DSP chip */

DSPAPInit {):

/* This computes Eq. (14) in the Einziger reference using the DSP chip
but with 50% overlap windows */

loopi (M_TOTAL DTS*2){

1f£(i¥2==0)

window_data(&temp_gamma (TOT-i*N_DELTA_T/2],signal,
stimeReal (i*N _DELTA T]):

else
window_data(&temp_gamma[TOT- (i-1) *N_DELTA_T/2], &signal (N_DELTA_ T/2},
étimeReal [i*N_DELTA_T});

printf("windowing pass no. %d--%d\n",i,i%2);

}

/* This computes the FFT of each windowed time slice */
loopi (M_TOTAL_DTS*2) {

fft_wind_data(stimeReal [i*N_DELTA_T],

timeImag,

sgaborReal [i*N_DELTA_T],

tgaborImag(i*N_DELTA_TIl):

}

/* Free the DSP chip */
DSPAPFree(}:

get gabor_mag(gaborReal, gaborlImag, gaborMag):
get _gabor_phase(gaborReal, gaborImag, gaborPhase):
write_output_files(temp, gaborMag, gaborPhase, gamma,argv(1l},argv(2]);:

}

118

Appendix B. Code for Short-Time Fourier Transform

/il.!ﬁ.'t.ﬁ."..t.‘t."" spectrogrm.m ..."..ﬁ"t.ﬂ'ﬂ."'tl'ﬁ'/
/* Written by Rick Ricart, Capt, USAF */
/* Computes the spectrogram of arbitrary signals */
/* Call program as: spectrogram filename.snd vall val2 */
/* Where vall=0 for a Rectangular window, vall=1l for a */
/* Gaussian window and vall=2 for a Hamming widow */
/* val2 is the standard deviation of the Gaussian noise */

/* 1f val2=0 no noise is add=d

*/

/'.tﬂﬁtiliﬂ"’i!'i.llﬁﬁti..ﬁﬁ'ttt.!Q!Qi.ﬁtiﬂt..iﬂ..iﬁﬁt.t*’ﬁ‘ttﬁii’tttttt'ﬁttt/

#import <sound/sound.h>
timport <math.h>

#import <dsp/arrayproc.h>
timport <mach.h>

timport <stdlib.h>
#import <stdio.h>
#import<objc/objc.h>
#import<soundkit/Sound.h>
#import<soundkit/soundkit.h>
timport<string.h>
¢import<macros.h>

tdefine N_DELTA_T 256
tdefine K_TOTAL_DFS 128

tdefine M_TOTAL_DTS 66 /* Change this accordingly */

#define TOT N_DELTA_T*M_TOTAL_DTS
tdefine PI 3.141592654

#define ABS(x) ((float)sqrt ({(double)x)*((double)x)))

/* Global Variables */
id mySound, newSound:

SNDSoundStruct *soundStruct, *convertStruct;

/* the filenames */

char spectrofile[80), phasefile([80], signalfile[80}, newsignalfile(80],

newsoundfile[80]:

/* Procedures and Functions */
float gasdev():
void get_data(short **temp,char *infile)
{
int error, data_size,i:;
BOOL edit:
/Q
inPtr = (short *) ((char *) inputSound

+ inputSound->datalocation);

outPtr = (short *) ((char *) *outputSound + (*outputSound)->datalocation);

*/
error = [mySound readSoundfile:infile]):

/* initialize mySound to infile’s mySound object */

soundStruct ={mySound soundStruct]:
[mySound isEditable]:

data_size = soundStruct->dataSize;
printf("data size is %d\n",data_size):

SNDAlloc (éconvertStruct,data_size, SND_FORMAT_LINEAR_16,SND_RATE_CODEC,

soundStruct->channelCount, ""):

SNDConvertSound (soundStruct, éconvertStruct):

temp= (short *) (convertStruct+convertStruct->datalocation):

119

printf ("Finished get_data()\n");
}

void write_output_files(short *signal, float *newsignal,
float *Phase, float *spectrogram,

float *window, char *infile, char *wtype)

{

FILE *£1,*£2,%£3,*£4,*£f5;

int k,m,n;

size_t s_len;

/* get length of input file not counting null terminator */
s_len=strlen(infile):

/* start name of newsignalfile with "new_(wtype)™ */

strcpy (newsignalfile, "new_¥);

strcat (newsignalfile,wtype):

/* start name of signalfile with infile minus suffix .snd */
strncpy(signalfile,infile, (s_len-4));

/* must add terminating null, strncpy does not automatically do it */
signalfile(s_len-4]="\0";

/* start name of phasefile with infile minus suffix .snd */
strncpy {(phasefile,infile, (s_len-4)});
phasefile[s_len-4)="\0":

/* start name of spectrofile with infile minus suffix .snd */
strncpy (spectrofile,infile, (s_len-4});
spectrofile(s_len-4]=°\0";

/* signalfile=filename.dat */

strcat {(signalfile,".dat™):

/* newsignalfile=new_filename.dat */

strcat (newsignalfile,signalfile);

/* add in window index */

strcat (phasefile,wtype):

strcat (spectrofile,wtype);

/* phasefile=filename_Phase.dat */

strcat (phasefile, " Phase.dat™):

/* spectrofile=filename_spectrogram.dat */

strcat (spectrofile, ™ spectrogram.dat™);

/* open and write signal data to signalfile */

if ((f1 = fopen(signalfile,"w™)) == NULL) {
printf ("\n*** Cannot can’t create %s ***" signalfile):
exit (0);
}
loopn {TOT)

fprintf (f1,"%d\n",s8ignal(n]):
/* open and write newsignal data to newsignalfile */
if ((f2 = fopeninewsignalfile,"w™)) == NULL) {
printf ("\n**+* Cannot can’‘t create %s ***" newsignalfile):
exit (0);
}
loopn (TOT)
fprintf (£2,"%f\n",newsignal(n]}:
/* open and write Phase data to phasefile */
if ((f3 = fopen(phasefile,"w")) == NULL) {
printf(®\n*** Cannot can’t create %s ***" phasefile);
exit (0);
}
loopm (TOT)
fprintf (£3,"%f\n",Phase[m]):
/* open and write spectrogram data to spectrofile */
if ({f4 = fopen(spectrofile,”w"™)) == NULL){
printf("\n*** Cannot can’'t create %s ***", spectrofile);
exit (0);

120

loopm (TOT)
fprintf (£4,"%£f\n", spectrogram(m});
/* if ({f5 = fopen("gauss_window.dat","w")) == NULL) {
printf("\n*** Cannot can’t create %s ***7", “"gauss_window.dat");
exit (0);
}
loopm (N_DELTA_T)
fprintf (£5, "%£f\n",window[m)) ;*/

/* close all files */
fclose(fl);

fclose (£2):

fclose (£3);

fclose (£f4);
/*fclose (£5) :*/

}

void get_window(float *hamWindow, int window)
{

int n:

double time:

/* create window */

if (window==0)

loopn (N_DELTA_T)

hamWindow(n]=1.0; /* Rectangular */

else

if (window==1)

loopn (N_DELTA_T) {

time=(dcuble) (n-N_DELTA_T/2)/{(double) (N_DELTA_T);
hamWindow({n)=(float) (exp(-P1*4.0*time*time)); /* Gaussian */
}

else

if (window==2)

loopn (N_DELTA_T)

hamWindow({n}= (float) (0.54-0.46* /* hamming */

cos ({double)PI* (double) (2*n) / (double) (N_DELTA_T-~1))):
else

if (window==3)

loopn (N_DELTA_T}

hamWindow([n]= /* one period sin */

(float) (sin((double)PI* (double)n/(double}N_DELTA T)):
}

void ham_data(float *signal, float *hamWindow, float *timeReal)
{

int n;

/* multiply every N_DELTA T points of data by window */
loopn (N_DELTA_T)

timeReal[n}=signal[n)*hamWindow([n]):

}

/* squash data */
float squash(float val, float oldmax, float oldmin, float newmax, float newmin)
{

float answer;
answer=(((val-oldmin) / (oldmax=-oldmin)) * (newmax-newmin)) +newmin;

return answer;
}

void fft_wind_data(float *timeReal, float *timeImag, float *gaborReal,
float *gaborlImag)

121

define DATA_ADR DSPAPGetlowestAddressXY ()
define COEF_ADR (DATA_ADR + N_DELTA T)
define IMAG_DATA DSPMapPMemY (DATA_ADR)
define REAL_DATA DSPMapPMemX (DATA_ADR)
define SIN_TABLE DSPMapPMemY (COEF_ADR)
define COS_TABLE DSPMapPMemX (COEF_ADR)

My W AR W W A

float *sinTab = DSPAPSinTable(N_DELTA_T):
float *cosTab = DSPAPCosTable(N_DELTA T):;
int i,m;

/* DSPFix24 arxays */
DSPFix24 TimeReal[N_DELTA_T],TimeImag[N_DELTA_T],GaborReal[N_DELTA_T],
GaborImag{N _DELTA_T}:

/* Squash float data from -1 to 1 */

loopi (N_DELTA_T) {

timeReal [i]=squash (timeReal[i), 1E6,-1E6,1.0,-1.0);
timeImag{il=squash(timeIlmag[i],lE6,-1E6,1.0,-1.0);
)

/* Convert data from float to DSPFix24 */
DSPFloatToFix24Array (timeReal, TimeReal, N_DELTA_T):
DSPFloatToFix24Array(timelmag, Timelmag, N_DELTA_T):

/* put the time domain complex array */
DSPAPWriteFix24Array(TimeReal, REAL_DATA, 1, N_DELTA_T);
DSPAPWriteFix24Array (Timelmag, IMAG_DATA, 1, N_DELTA_T);

/* put the cos and sine tables */
DSPAPWriteFloatArray(cosTab, COS_TABLE, 1, N_DELTA T/2):
DSPAPWriteFloatArray(sinTab, SIN_TABLE, 1, N_DELTA_T/2):

DSPAPfftr2a (N_DELTA_T, DATA_ADR, COEF_ADR);

* Get the gabor domain complex array.

* Tell monitor to read the array back with bit-reversed

* addressing because fftr2a leaves its output shuffled.

* Note that the skip factor (N_DELTA_T/2) is used to set the

* DSP ’N’ register.

*/
DSPSetDMAReadMReg (0) ;
DSPAPReadFix24Array (GaborReal, REAL_DATA, N_DELTA_T/2, N_DELTA_T):
DSPAPReadFix24Array (GaborImag, IMAG_DATA, N_DELTA_T/2, N_DELTA_T);
DSPSetDMAReadMReg (~1); /* re-select linear addressing */

/* Convert data from DSPFix24 to float */
DSPFix24ToFloatArray(GaborReal, gaborReal, N_DELTA_T):
DSPFix24ToFloatArray (Gaborimag, gaborlmag, N_DELTA T):

/* Squash float data from ~1 to 1 */

loopi {N_DELTA_T) {

gaborReal [i])=*squash (gaborReal[i],1.0,-1.0,6E3,-6E3);
gaborImag{i)=squash (gaborImag(i},1.0,-1.0,6E3,-6E3):;
}

}
void get_phase(float *spectroReal, float *spectrolmag, float *Phase)

{

int k,m;

122

loopm (M_TOTAL_DTS*2)

loopk (K_TOTAL_DFS)
if((spectroReal[m'N_DELTA_T+k]==O)£&(spectroImag{m'N_DELTA_T+k]-=0))
Phase [m*K_TOTAL_DFS+k)=((float)P1/2):

else

Phase[m*K_TOTAL_DFS+k]=
((float)atan2((double)spectrolmag[m*N_DELTA_T+k],

(double) spectroReal (m*N_DELTA_T+k}}):

}

void get_spectrogram{float *spectroReal,float *spectrolmag, float *spectrogram)
{
int k,m:

loopm (M _TOTAL_DTS*2)

loopk (K_TOTAL DFS)

spectrogram[m*X_TOTAL _DFS+k]=

(float)sqrt { (double)spectroReal (m*N_DELTA T+k]*
(double) spectroReal [m*N_DELTA_T+k]+

(double) spectrolmag [m*N_DELTA_T+k]*

(double) spectrolmag{m*N_DELTA T+k)):

}

void generate_tables(float *cosine,float *sine)
{

int k,m,n;

double temp:

/* create sine and cosine tables */

loopk (K_TOTAL_DFS)

loopn (N_DELTA_T) {

cosine (k*N_DELTA_T+n]=(float) (cos (PI* (double) (2*k*n)
/ (double)N_DELTA T)}:
sine(k*N_DELTA_T+n]=(float) (sin(PI* (double) (2*k*n)

/ {(double)N_DELTA_T)):

}

}

void regenerate_sound(float *Real, float *Imag,
float *new_soundl, float *new_sound2,

float *cosine, float *sine)

{

int i,k,m,n;

loopm (M_TOTAL_DTS) {

/* printf("regenerating time slice %d ...\n",m); */
loopk (K_TOTAL_DFS)

loopi (N_DELTA_T)

new_soundl [m*N_DELTA_T+i]+=

(Real [2*m*N_DELTA_T+k]*

cosine[k*N_DELTA_ T+i)-

Imag(2*m*N_DELTA_T+k]*

5ine[k'N_DELTA_T+i]):

}

loopm (M_TOTAL_DTS) {

/* printf ("regenerating time slice %d ...\n",m): */
loopk (K_TOTAL DFS)

loopi (N_DELTA_T)

new_sound2 (m*N_DELTA T+i]+=
(Real[((2'm)+1)'N~DELTA_T+k]‘

cosine (k*N_DELTA_T+i}-

Imag(((2*m)+1) *N_DELTA_T+k]*

sine(k*N_DELTA_T+i)):

123

}
}

void ham_Newdata (float *new_soundl, float *new_sound2,
float *hamWindow,char *infile, int window)
{

int k,m,n;

/* multiply every N_DELTA T points of data by window */
/* loopm(M _TOTAL_DTS)
loopn (N_DELTA_ T)
new_soundl {m*N_DELTA_T+n] *=hamWindow([n};*/
/* mulitply every N_DELTA_T points by window */
/* loopm(M_TOTAL_DTS)
loopn (N_DELTA_T)
new_sound2 [m*N_DELTA T+n)*=hamWindow([n]; */
/* if window not rect, add the overlapped reconstructed data points */
if (window) { /* if window is not rectangular... */
printf ("Adding overlapped sample; not rectangular\n®);
loopm (M_TOTAL_DTS)
loopn (N_DELTA_T)
new_soundl [m*N_DELTA_T+n+N_DELTA _T/2}+=
new_sound2 (m*N_DELTA_T+n];
}
else
printf ("Not adding overlapped samples; rectangular\n");
/* look for overflow data points */
k=0;
loopn (TOT)
if (ABS (new_soundl [n})>32767.0)
k +=1;
printf£("\nI found %d overflow data points processing %s\n",k,infile);
}

void add_noise(float *signal, float sdev)

{

int 1, idum;

/* Noise power is the variance or sdev*sdev of Gaussian noise */
float temp;

/* set variance */
idum = -1;

loopi (TOT)
signal{i] +=sdev*gasdev (&idum):

}

main (int argc, char **argv)
{
short *temp; /* integer representation of original data */
float *timeReal; /* windowed overlapped signal data*/
float *signal;
float *timelmag:; /* the imaginary portion of the data */
float *Phase;
float *spectroReal, *spectrclmag, *spectrogram;
loat *hamWindow;
float *now_soundl, *new_sound2;
float *cosine; /* the cosine table */
float *sine; /* the sine table */
size_t s_len:
int i;

MALLOC (t imeReal, 2*TOT, float, "timeReal™) ;
MALLOC (signal, TOT+N_DELTA_T/2, float, "signal”);

124

MALLOC (timeImag,N_DELTA_T, float, "timelmag");

MALLOC (Phase, TOT, float, "Phase™);

MALLOC {spectroReal, 2*TOT, float, "spectroReal™);

MALLOC (spectrolmag, 2*TOT, float, "spectroImag®);

MALLOC (spectrogram, TOT, float, "spectrogram”™)

MALLOC (hamWindow,N_DELTA T, float, "hamWindow") :

MALLOC (new_soundl, TOT+N_DELTA_T/2, float, "new soundl"}:
MALLOC (new_sound2, TOT, float, "new soundl"):

MALLOC (cosine,K_TOTAL_DFS*N_DELTA_ T, flnat, "cosine table");
MALLOC (sine,K_TOTAL DFS*N_DELTA T, float,"sine table”);
mySound=[Sound new};

newSound=[Sound new];

loopi (TOT) {

new_soundl (i]=0;

new_sound2(i]=0;

}

/* get sound data; timeReal has float rep. of sound */
get_data(&étemp,argv’ ,);

/* copy and change integer sound samples to floats */
loopi (TOT)

signal(i]j= (float)temp[i]:

printf ("Accessed data'\n");

/* add AWGN to signal */

i1f(atoi{argv[3])'=0)

add_noise(signal,atof (argv[3]));

/* pad rest of signal with zeroces */

for (i=TOT: i<TOT+N_DELTA__T/2; ++1) {

signal{i}=0;

new_soundl {i}=0:

}

/* compute hamming window */

get_window (hamWindow, atoi (argv(2])):

/* This multiplies signal times window with 50% overlap */
/**wsaxariaar*s change ham_data to array processor routine on NeXT #*#***/
loopi (M_TOTAL_DTS*2) {

ham_data(&signal {i*N_DELTA_T/2],hamWindow,

étimeReal (i*N_DELTA_T));

printf ("windowing pass no. %d\n",i):

}

loopi (N_DELTA T)

timelmag([i]=0;

/* compute the dft of the windowed data */

DSPAPINnit();

loopi (M_TOTAI_DTS*2) {

fft_wind_data(&timeReal [i*N_DELTA_T],

timelImag,

éspectroReal [i*N_DELTA_T],

éspectrolmag[i*N_DELTA_T));

printf (" spectrogram pass no. %d\n",i);

}

DSPAPFree () :

get phase (spectroReal, spectrolmag,Phase);
get_spectrogram(spectroReal, spectrolmag, spectrogram);
generate_tables(cosine, sine);
regenerate_sound (spectroReal, spectrolmag, new_soundl,new_sound?2,
cosine,sine):

ham_Newdata (new_soundl, new_sound2, hamWindow, argv([1l],atoi (argv(2])):
write_output_files (temp,new_soundl,Phase, spectrogranm,
hamWindow, argv(1l),argv(2}):

/* .t there are any overflow cata points truncate to + or- 32767 */
loopi (TOT)

temp{i]=(ABS (new_soundl[i))>32767)?

({short) (new_soundl (i]/ABS (new_soundl(i]))*32767.0)):

125

((short)new_soundl[i]):

/* get length of input file not counting null terminator */
s_len=strlen(argv(l]):

/* start name of newsoundfile with "new_" */

strcpy (newsoundfile, "new_");

strcat (newsoundfile,argv{2]):

/* concatenate input file name to "new_" in newsoundfile(] */
strcat (newsoundfile,argv{l]): /* newsound[]=new_filename.snd */
SNDWriteSoundfile (newsoundfile, convertStruct):

126

Appendix C. Code for Reconstruction Algorithm from Short-Time Fourier

Spectrum
/(lt'.ﬁtk'!iﬂ'tiiﬂiﬁ"tl‘ regenexate-m ﬁﬁﬁﬁttittﬁtﬁtti*.ii'ﬂiﬂt‘/
/* Written by Rick Ricart, Capt, USAF */
/* This program reconstructs signals from the LIN output of gabor magnitudes */
/* This version is for overlapped coefficients */

/!ﬂ'tﬁ.ttt‘l.ti'ltitttl..lt'ﬂtt'i‘i1‘Qﬂﬁt'!tﬂﬁk'tttnﬁﬁ!t"lt!iﬁktﬁﬂﬁ.ttttﬂﬂttt/

timport <sound/sound.h>
timport <dsp/arrayproc.h>
#import <math.h>

timport <mach.h>

#import <stdlib.h>
#import <stdio.h>
timport<objc/objc.h>
#import<soundkit/Sound.h>
#import<soundkit/soundkit.h>
#import<string.h>
#import<macros.h>

#define N_DELTA_T 256

tdefine K_TOTAL_DFS 128

tdefine M_TOTAL DTS 78

#define TOT N_DELTA_T*M _TOTAL_ DTS /* approximately one sec of sound */
#define TAU 1 /* exponential time constant */

#define PI 3.141592654

#define ABS(x) ((float)sqrt(((double)x)* ({(double)x)))

/* Global Variables */
id mySound;
SNDSoundStruct *soundStruct, *convertStruct;

char newsoundfile(80),newsignalfile{80];

/* Procedures and Functions */
void get_soundstruct():

void get_data():

void find_energy():

void get_real imag():

void write_output_files():
void generate_tables();

void regenerate_sound():

void get_window():

void ham_Newdata () :

void output_newSpect ():

/*These are needed for splines */
void spline():

void splint ()

float *vector():

main (int argc, char **argv)

{

FILE *f£f1:

float *new_soundl, *new_sound2;

short *temp; /* integer representation of reconstructed signal */

127

float *spectroReal, *spectrolmag, *spectrogram;
float *new_spectrogram, *Phase;

float *hamWindow;

float *cosine; /* the cosine table */

float *sine; /* the sine table */

int i,size;

size_t s_len;

MALLOC (spectroReal, 2*TOT, float, "spectroReal®”)} ;
MALLOC (spectrolmag, 2*TOT, float, "spectrolmag®);
MALLOC (spectrogram, TOT, float, "spectrogram”) ;
MALLOC (new_spectrogram, TOT, float, "new spectrogram”);
MALLOC (Phase, TOT, float, "Phase”) ;
MALLOC (hamWindow, N_DELTA_T, float, "hamWindow");
MALLOC (new_soundl, TOT+N_DELTA T/2, float, "new soundl”);
MALLOC (new_sound2, TOT, float, "new soundl”):
MALLOC (cosine,K_TOTAL DFS*N_DELTA_T, float, "cosine table”);
MALLOC (sine,K_TOTAL_DFS*N_DELTA T,float, "sine table");
loopi (TOT) {
new_soundl [i]=0;
new_sound2[i]=0;
}
/* pad rest of signal with zeroes */
for (i=TOT;i<TOT+N_DELTA_T/2:++i)
new_soundl (i]=0;
get_data (spectrogram,new_spectrogram,Phase,argv(l],argv(2],argv(3]):
/* find_energy (new_spectrogram);*/
get_real imag(spectrogram,new_spectrogram,Phase, spectroReal, spectroImag):
generate_tables(cosine,sine);
regenerate_sound (spectroReal, spectrolmag, new_soundl,new_sound2,
cosine, sine);
/* compute hamming window */
get_window (hamWindow) ;
ham_Newdata (new_soundl, new_sound2,hamWindow, argv(1]};
mySound={Sound new]:
get_soundstruct (stemp);
size=soundStruct->dataSize:
/* clear old sound */
loopi (size)
temp(i])=0;
loopi (TOT)
temp{i)=(ABS (new_soundl [i])>32767)?
((short) (new_soundl [i]/
ABS (new_soundl (i])*32767.0)):
{ (short)new_soundl[i]);
/* loopi (TOT)
temp(i]=(short) (cos(PI*(double) (2*20*i)/(double}N_DELTA_T}*10000);*/
/* get length of input file not counting null terminator */
s_len=strlen(argv{3}):
/* start name of newsoundfile and newsignalfile with "short_" */
strcpy {newsoundfile, "short_");
strcpy (newsignalfile, "short_"):
/* concatenate name of original sound file minus "_Phase.dat™ identifier */
strncat (newsoundfile,argv(3), (s_len-10)):
strncat (newsignalfile,argv(3], (s_len-10)):
strcat {(newsoundfile,".snd"):
strcat (newsignalfile, ".dat”);
printf ("The new sound file is %s\n”",newsoundfile);
SNDWriteSoundfile (newsoundfile, convertStruct):
/* open and write signal data to newsignalfile */
if ((f1 = fopen(newsignalfile, "w")) == NULL) {
printf ("\n*** Cannot can’t create %s ***" newsignalfile);
exit (0):;
}
loopi (TOT)

128

fprintf (£1, "$£\n",new_soundl (i]}:
fclose(fl);

}

void get_soundstruct (short **temp)

{

int error,data_size,i;

BOOL edit;

/-
inPtr = (short *) ((char *) inputSound + inputSound->datalocation):
outPtr = (short *) ((char *) *outputSound + (*outputSound)->datalocation):

*/

error = [mySound readSoundfile:"blank.snd"];

/* initialize mySound to infile’s mySound object */

soundStruct =[mySound soundStruct]}:

data_size = soundStruct->dataSize:

SNDAlloc (4convertStruct,data_size, SND_FORMAT_LINEAR_16,SND_RATE_CODEC,

soundStruct->channelCount, "™ ");

SNDConvertSound (soundStruct, §convertStruct):

*temp= (short *) (convertStruct+convertStruct->datalocation);

printf ("Leaving get_soundstruct () \n");

}

void get_data(float *gaborMag, float *new_gaborMag, float *gaborPhase,
char *infilel,char *infile2,char *infile3)

{

int i;

FILE *f1,*£2,*£3;

printf ("the three files are %s, %s, and %s\n",infilel,infile2,infile3);
if((fl = fopen(infilel,™r"))==NULL) {

printf("\n*** I can’t read %s ***",infilel);

exit (1)

}

if((£f2 = fopen{(infile2,"r"))==NULL) {

printf ("\n*** I can’t read %s ***",infile2);

exit (1)

1

1f((£f3 = fopen(infile3, "r"))==NULL) {

printf("\n*** I can’t read %s ***",infile3):

exit (1)

}

for (i=0; (fscanf (f1,"%f", sgaborMag[i}) '=EOF):++1i); /* reading gaborMag */
for (i=0; (fscanf(f2,"%£f", énew_gaborMag[i]) !=EOQF) ; ++i);

for (i=0; (fscanf (£f3,"%f", sgaborPhase[i]) !=EOF) ; ++i);

fclose (fl):

fclose (£2);

fclose (£3);

/* printf ("Leaving get_data\n"):*/
}

void find_energy(float *new_gaborMag)
{

int k,m,n;

float max,energy,threshold:

/* clear variable max */

max=0.0;

/* set average threshold energy */

threshold=0,05;

/* determine the max value in current time slice */

129

loopm (M_TOTAL_DTS*2)

loopk (K_TOTAL_DFS)

max= (new_gaborMag [m*K_TOTAL_DFS+k]>max}?
(new_gaborMag[m*K_TOTAL_DFS+k]) :max;

/* printf ("The max value is %7.4g\n",max);*/
/* divide by max value of new_gaborMag(] */
loopm(M_TOTAL_DTS*2)

loopk (K_TOTAL_DFS)
new_gaborMag[m*K_TOTAL_DFS+k] /=max:

/* find the energy in each ~15msec. window */
loopm(M_TOTAL_DTS*4) {

n=0;

energy=0.0;

loopk (K_TOTAL_DFS/2)

if (new_gaborMag[m*K_TOTAL_DFS/2+k]!=0) {

++n;

energy += new_gaborMag[m*K_TOTAL DFS/2+k]}:

}

energy /=(float)n:;

/* printf ("window %d--energy %7.4g--survivors %d\n",m, energy,n);*/
/* if the energy is less than the threshold zero entire window */
if (energy<threshold)

loopk (K_TOTAL_DFS/2)

new_gaborMag (m*K_TOTAL_DFS/2+k]=0:

}

/* multiply by max value of new_gaborMag(] */
loopm (M _TOTAL_DTS*2)

loopk (K_TOTAL_DFS)

new_gaborMag [m*K_TOTAL_DFS+k] *=max;

}

void get_real imag(float *gaborMag, float *new_gaborMag, float *gaborPhase,
float *gaborReal, float *gaboriImag)

{

int m,k,1;

float *temp, *org;

/* the following are for spline, splint calls */

float *x_set,*y_set,*y2,new_y;

float ans;

MALLOC (temp, TOT, float, "temp spect™):

MALLOC (org, TOT, float, "temp spect”):

/* Use new_gaborMag (the truncated gabor coefficients) as an index */
/* Do this by zeroing out gaborMag{] components which correspond to */
/* zero components of new_gaborMag(] */

memcpy (org, gaborMag, TOT*sizeof (float))

loopm(M_TOTAL_DTS*2)

loopk (K_TOTAL DFS)

if ((new_gaborMag [m*K_TOTAL_DFS+k]==0) || (k<0})

/* if(k>100)*/

gaborMag[m*K_TOTAL_DFS+k]=0;

memcpy (temp, gaborMag, TOT*sizeof (float));

/* Fill in freq and phase components with spline interpolation */
/* x_setsvector(1,128);

y_set=vector(1,128):

y2=vector(1,128);

loopm(M_TOTAL_DTS'2)l

i=0;

loopk (K_TOTAL_DFS)

if (gaborMag{m*K_TOTAL_DFS+k]}!=0] |k==0) {

+4+1;

x_set{i]=(float)k:

y_set [i]=gaborMag[m*K_TOTAL_DFS+k]:

i

130

x_set[i+1)=127.0;

y_set[i+1]=0.0;

spline(x_set,y_set,i,0.0,0.0,y2):

loopk (K_TOTAL_DFS) {

splint (x_set,y_set,y2,i, (float)k, éans);
gaborMag[m*K_TOTAL DFS+k}=ans;

}

if (m==19)

loopk (K_TOTAL_DFS) {

printf("%5.3g %5.3g $5.3g\n",temp(m*K_TOTAL_DFS+k],
gaborMag[m*K_TOTAL DFS+k],

org(m*K_TOTAL_DFS+k])):

}

|4

/* Get real and imaginary values from magnitude and phase */
loopm (M_TOTAL_DTS*2)

loopk (K_TOTAL_DFS){ /* if Gaussian window *4 */
gaborReal [m*N_DELTA_T+k]=4.0*gaborMag{m*K_TOTAL DFS+k]*
(float) cos ((double)gaborPhase (m*K_TOTAL_DFS+k]):
gaborImag[m*N_DELTA_T+k)=4.0*gaborMag(m*K_TOTAL DFS+k]}*
(float)sin((double)gaborPhase[m*K_TOTAL DFS+k]):

}
/* printf("Leaving get_real imag()\n"};*/
}

void generate_tables(float *cosine, float *sine)
{

int k,m,n;

double temp:

/* create sine and cosine tables */

loopk (K_TOTAL_DFS}

loopn (N_DELTA_T) {

cosine [k*N_DELTA_T+n]=(float) (cos (PI* (double) (2*k*n)
/ (double)N_DELTA_T)):
sine[k*N_DELTA_T+n]=(float) (sin(PI* (double) (2*k*n)
/(double}N_DELTA_T)):

}

/* printf ("Leaving generate_tables()\n"):*/

}

void regenerate_sound(float *Real, float *Imag,
float *new_soundl, float *new_soundZ,

float *cosine, float *sine)

{

int i,k,m,n;

lcopm (M_TOTAL_DTS) {

/* printf("regenerating time slice %d ...\n",m); */
loopk (K_TOTAL_DFS)

loopi (N_DELTA_T)

new _scundl [m*N_DELTA T+i]+=

(Real (2*m*N_DELTA_T+k]*

cosine[k*N_DELTA_T+i]-

Imag(2*m*N_DELTA_T+k]*

sine(k*N_DELTA_T+i]):

}

loopm (M_TOTAL_DTS) {

/* printf("regenerating time slice %d ...\n",m); */
loopk (K_TOTAL_DFS)

loopi (N_DELTA_T)

new_sound2 {m*N_DELTA_T+i}+=

(Real([((2*m) +1)*N_DELTA_T+k}*
cosine[k*N_DELTA_T+i]-

131

Imag[((2*m)+1) *N_DELTA_T+k]*
sine[k*N_DELTA_T+i]):

}

/* printf ("Leaving generate_sound()\n"):*/
}

void get_window{float *hamWindow)
{

int n;

double time;

/* create Hamming window */

loopn (N_DELTA_T)

hamWindow[n]=(float) (0.54-0.46*

cos ({double)PI* (double) (2*n)/(double)} (N_DELTA_T-1))):
/* printf ("Leaving get_window()\n"):*/

}

/* change this to a dsp routine */

void ham_Newdata(float *new_soundl, float *new_sound2,
float *hamWindow,char *infile)

{

int k,m,n;

/* multiply every N _DELTA_T points of data by window */
loopm (M_TOTAL_DTS)
loopn (N_DELTA_T)
new_soundl (m*N_DELTA_T+n]*=hamWindow(n]:
/* mulitply every N DELTA T points by window */
loopm (M_TOTAL_DTS)
loopn (N_DELTA_T)
new_sound?2 [m*N_DELTA_T+n}*=hamWindow(n]:
/* add the overlapped reconstructed data points */
loopm (M_TOTAL_DTS)
loopn (N_DELTA_T)
new_soundl {m*N_DELTA_T+n+N_DELTA_T/2]+=
new_sound2 [m*N_DELTA_T+n}:
/* look for overflow data points */
k=0;

loopn (TOT)

if (ABS (new_soundl (n}])>32767.0)

k +=1;

praintf ("\nI found %d overflow data points processing %s\n",k,infile);
}

132

Appendix D. Code for LIN Compression of W-H Spectra

JRRR R AR R RN AANR AR AR ARt COMPETE C * AR A A2 AR A AN T AR RN AR R AN AR R]

/* Written by Rick Ricart, Capt, USAF */
/* This program computes LIN competition of W-H frequency spaces */
/* using the ERB and CB criteria. Call program as follow: */
/* compete <filename> <0 or 1> <threshold> */
/* where 0 signifies ERB and 1 CB. */
/* Threshold is any value, v such that O0O<v< 1, (e.g., .009) */
/* result filenames are automatically generated */

/.Qtt'ﬁﬁ.'ﬁ'ﬁt"".Qﬁ""Qtl.l'ﬁﬁ.t'Q'tQQlﬁﬁ'.Q.ﬂ.".i't"!""’t./

tinclude <math.h>
tinclude <stdio.h>
#include <macros.h>

#define FO 0.25
#define TAU 0.1

#define EPS 1.0

#define MAX 1.0

tdefine MIN 1.0

tdefine COMPGAIN 10.0
fdefine K_TOTAL_DFS 128
#define M_TOTAL_DTS 70
#define SURVIVORS 50

#define SQUARE (x) ((x)*(x))
#define SIGMOID (2) (SQUARE (1)) / (SQUARE (%) +F0)

FILE outfile[80], result[80];

typedef struct{
float input:

float activity:
float output;

int *competitors;
int num_competitors:
}nodes;

float squash(float val, float oldmax, float oldmin, float newmax, float newmin)
{
float answer:;

answer={{{val-oldmin)/(oldmax~-oldmin))* (newmas-newmin)) +newmin;
Teturn answer;

}

void write output (float *gaborMag,char *infile,int size,int bw, char *thresh)
{

FILE *fi,*fopeni):

int k,m,n;

printf("Starting to output files\n");
/* start name of outfile with "ERB or CR"™ */
if (tbw){
strcpy (outfile, "ERB") ;
/* outfile{3}="\0";*/
1
else(
strcpy (outfile, "CB™)

133

/* outfile[2)="\0";*/

}

strcat (outfile,thresh):

/* newsignalfile=new_infile */

strcat (outfile,infile):

/* open and write signal data to signalfile */

if ((£f1 = fopen(outfile,"w")) == NULL) {
printf("\n*** Cannot can’t create %3 ***" outfile):
exit (0):

}

loopn (size)

fprintf (fl,"%£f\n",gaborMag[n]});

fclos(fl):;

}

void write_xesuit (float *gaborMag, char *infile)
{

FILE *f1,*fopen():

int k,m,n;

/* start name of outfile with "new_" */
strcpy (result, "result_"):

/* newsignalfile=new_infile */

strcat (result,infile);

if ((fl = fopen(result,™w"™}) == NULL) {
printf ("\n*** Cannot can’t create %s ***” result):
exit (0):
}
/* loopm(M_TOTAL DTS) for nonovelapped coefficients loop(M_TOTAL DTS*2jfor
overlapped coefficients */
loopm (M_TOTAL_DTS*2) {
fprintf (f1,"TIME %d: ",m);
loopk (K_TOTAL_DFS)
if (gaborMag[m*K_TOTAL_DFS+k}!=0)
fprintf (£f1,"%d,%5.2g ", k,gaborMag{m*K_TOTAL DFS+k]):
fprintf (f1,"\n"):
}
fclosei{fl):
}

void compute_activity(nodes *n_list,nodes *node)
{

float a,exc,inh;
int i:

a=node->activity;

inh=0;

exc=node->cutput+node->input;

loopi (node->num_competitors)

inh+=n_list [node->competitors(i]].output;
node->activity=a+TAU*EPS* (-a+ (MAX-a) *exc~ (MIN+a) *inh*COMPGAIN) ;
}

void compute_output (nodes *node, float thresh)
{
float a;

a=node->activity:
/* if (a<0)
node->output=0;
else
if(a>=0&sa<=1)
node->output=a;
else

134

node->output=1;*/
node->output=(a-thresh<0) ?0: (SIGMOID (a~thresh}) ;
}

void initialize_competitors(nodes *node,int index,int size, int bw)
{

int i, j,num,count;

char in_string[8]);

/* change these appropriately thru freq vals MUST BE AN EVEN NUMBER */
/* Make this a SWITCH statement */
if('bw){ /* this does ERB competition */
if (index == ()
printf ("Doing ERB competition\n®):

if (index<30) /* for ERB <40, CB<30 */
num=2; /* for ERB 2, CB 4 */

else

if (index<58) /* for ERB 58, CB 47 */
num=4; /* for ERB 4, CB 6 */

else

if{index<75) /* for ERB 75, CB 60 */
num=6; /* for ERB 6, CB 8 */

else

if (index<92) /* for ERB 91, CB 72 */
num=8; /* for ERB 8, CB 10 */

else

if {(index<106) /* for ERB 106, CB 84 */
num=10; /* for ERB 10, CB 12 */

else

if (index<121l) /* for ERB 121, CB 94 */
num=12; /* for ERB 12, CB 14 */

else

num=14; /* for ERB 14, CB 16 */

}
elsef /* this does CB competition */
if (index == 0)
printf ("Doing CB competition...\n"):

if (index<30) /* for ERB <40, CB<30 */
num=4; /* for ERB 2, CB 4 */ /
else

if({index<47) /* for ERB 58, CB 47 */
num=6; /* for ERB 4, CB 6 */

else

if (index<60) /* for ERB 75, CB 60 */
num=8; /* for ERB 6, CB 8 */

else

if (index<72) /* for ERB 91, CB 72 */
num=10; /* for ERB 8, CB 10 */

else

if{index<R4) /* for ERB 106, CB 84 */
num=12; /* for ERB 10, CB 12 */

else

if (index<%4) /* for ERB 121, CB 94 */
num=14; /* for ERB 12, CB 14 */

else

num=16; /* for ERB 14, CB 16 */

}
node->num_competitors=num;
MALLOC (node->competitors, num, int, "allocating num_competitors™);
/* competitors of index less than index of current node */
count=1;
loopi {(num/2)
if(index=-i~1>=0)
node~>competitors{il=index~i-1;
else(

135

if (index-1-i+count==index)

count +=1;

node->competitors[i]l=index-1-i+count;

count +=2;

}

/* competitors of index greater than index of current node */
count=1;

loopi (num/2)

if (index+l+i<=size-1)
node->competitors[i+num/2)=index+1+i;

else(

if (index+l+i-count==index)

count +=1;
node~->competitors[i+num/2]=index+l+i~count;

count +=2;

}

/ttttitt.tii'tﬁﬂ‘t p:int statements *'ﬁﬁ'itﬁii‘itﬁii/
/* printf ("the current node is %d and the competitors are: ", index):;
loopi (num)

printf ("%d ",node->competitors([i}):

printf("\n");

printf ("Hit ENTER to continue™):;

gets{in_string);*/

VARRARERASEL RS E RS L] KRR I ARARRRR AN AR [

}

main (int argc, char **argv)

{

float *array, *outarray,max,min,temp;
int i,3,k,1,size,time, count, index,tot;
size_t s_len;

nodes *n_list;

char in_string(8];

FILE *fin, *fout;

/* open input file */

if((fin = fopen(argv(l],"r"™))==NULL) {

printf("\n*** I can’t read %s ***", argv[l]):

exit (1)

}
/ttﬁtt’ﬂiitﬁ'..ﬁititttt't.ﬁttﬂﬁﬁﬁﬁiﬁﬁi'ﬂﬁl*i!iﬁﬁiﬂtiti'!titﬂ'ﬁﬁ!ﬁiﬁﬁitiﬂ*t/
/* for nonoverlapped gabor coefficients size=K_TOTAL_DFS*M TOTAL_DTS,

for overlapped gabor coefficients size=¥_TOTAL_DFS*M_TOTAL_DTS*2 */
/'tt'tt'!.tt'.i'ﬁﬁﬁﬁt!*tiﬂﬁﬁtﬁ"lti.'i!ﬁiﬂﬁttli!tttlikﬁttt*ttttt!ﬁiﬁttittti/
printf(”"\n starting %s\n",argv[1]):

printf ("Bandwidth %s, and threshold %s\n"”, argv{2}, argvi{3]}):
size=K_TOTAL_DFS*M TOTAL_DTS*2:

/* allocate memory */

MALLOC (array, size, float, "allocating array"”):

MALLOC (outarray, size, float, "allocating outarray");
MALLOC({n_list,K TOTAL DFS, nodes,"allocating n_list"):;

tot = 0;

/* copy values of input file into array */

for(i=0; (fscanf (fin,"%f", éarray(i]) '=EOF) ;++1i):

/* loopi(size)

arrayli]=(array[i)!=0)?((float)loglO((double)array[i})):0;*/

/* determines which nodes compete */

loopi (K_TOTAL_DFS)
initialize_competitors(&n_list(i),i,K_TOTAL_DFS,atoi(argv(2}));:

/* initialize total number of time increments for solving shunting equations */
time=100;
/tt't.ﬁ.tt!t..!ﬁt.t.ﬁ"’ﬁ."ﬂtti.'ﬁtﬂﬁtt’ﬁ'ﬁﬁ'ﬁ’ﬁ!ﬁ',ﬂ"'ﬁ"ﬁﬁ"ﬂﬂ"ﬁﬁﬁ’!’ﬂt!t/

/* This is the outer loop for each time slice. Within this loop, the max

136

magnitude of the Gabor coefficients per time slice is determined and
all frequency components in that time slice are squashed between 1 and -1.
These values are then passed to the LIN and the activity and outputs
are determined for each node in the LIN. The result is then saved in
outarray(] */
/.ttttti't.tt.-llﬂlﬂ'ﬁ'ﬁ'..'t!!tttllitﬁ*ﬁﬁﬁﬁ"iﬁ'ttﬁk'ltt‘!ttiﬁiﬁ'iiit't!it!!l/
loopk (M_TOTAL_DTS*2) {

/* clear variable max */

max=0.0;

/* determine the max value in current time slice */

loopi (K_TOTAL_DFS)

if(array[k*K_TOTAL_DFS+i]>max)

max=array[k*K _TOTAL_DFS+i];

printf ("\nMax element is %f at time %d---Starting squash...\n",max,k):
/* squash all frequency components of current time slice between 1 and -1 */
loopi (K_TOTAL_DFS)
array(k*K_TOTAL_DFS+i)=squash{array(k*K_TOTAL_DFS+i],max,0.0,1.0,0.0);
/* clear activity and output variables of all nodes */

loopi (K_TOTAL_DFS) {

n_list[i).activity=0.0:

n_list(i}.output=0.0;

}

/* initialize input to all nodes */

loopi (K_TOTAL_DFS)

n_list[i).input=array[k*K_TOTAL_DFS+i]);

/* compute the activity and output of all nodes in current time slice */
loopj(time){

loopi (K_TOTAL_DFS)

compute_activity(n_list,&n_list[i]):

loopi (K_TOTAL_DFS)

compute_output {(én_list[i],atof (argv{3]));

}

/* copy the result to outarray([] */

loopi (K_TOTAL_DFS)

outarray{k*K_TOTAL DFS+i]=n_list[i].output;

VAR R AR ptint statements *r*rxxekkdan/

/* loopi (K_TOTAL_DFS) {

printf ("Node: %d Array: %7.4f Input: %7.4f

Activity: %7.4f Output: %7.4f\n",
i,array(k*K_TOTAL_DFS+i],n_list(i].input,
n_list{i).activity,n_list[i].output):

printf ("Hit ENTER to contiriuae”):

gets(in_string):

yr/
/'uQt!'tﬂttklﬁtﬁli'tﬂtﬂilﬂ!!ttt!!.t/
count =0;

/* unsquash result */

loopi (K_TOTAL_DFS) {

temp=squash (outarray(k*K_TOTAL_DFS$+i],1.0,0.0,max,0);

if (temp<l10.0)

outarray(k*K_TOTAL_DFS+i}=0;

else{

outarray{k*K_TOTAL_DFS+i]=temp;

count +=1;

}

}

printf("In time slice %d there were %d survivors\n",k,count):
if (count>SURVIVORS) {

loopj ((count -=SURVIVORS)) {
min=outarray(k*K_TOTAL DFS]:

index=0;

printf (" Cutting %d survivors to %d\n",count, SURVIVORS):;
loopi (K_TOTAL_DFS) {

if (outarray(k*K_TOTAL DFS+i]<min) {
min=outarray{k*K_TOTAL_DFS+i]):

137

index=j;

}

}
outarray{k*K_TOTAL_DFS+index]=0;
}

}

tot +=count;

printf ("Total now is %d\n",tot):;

;!ﬁ!’ﬁﬁ.ﬁﬁ.ﬁﬁl’ﬁﬁﬁt'ititﬁ'li end of main loop tﬁﬁtﬁtﬁﬁﬁ.t'ﬁﬁﬁiiﬂ.ﬁ'tﬂt‘-ﬁtﬂt./
/rrrrrrr print statements *rAskxnia/

/* printf ("ARRAY:\n"):

loopi ()

printf("%3.2f ",array([i]);

printf("\n");

printf ("OUTPUT:\n");

loopi (K_TOTAL_DFS)

printf("%3.2f ",n_list[i].output):

printf ("\n");

printf ("OUTARRAY:\n");

loopi (size)

printf("%3.2f ",outarray(i)):*/

I’!lﬂ'ﬂl!itl!Q..'Qﬁiﬁ'tﬁ!.ii!'i'ﬂﬁﬂ*/

write_output (outarray,argv(l],size,atoi(argv(2)),argv(3});

printf ("The average no. of survivors per window is %5.3g, and RC=%5.3g\n",
(float)tot/(float) (2*M_TOTAL_DTS),
(float)(2'M_TOTAL_DTS*X_TOTAL_DFS)/(float)tot);

/* write_result (outarray,argv(l)); */

fclose{fin):;

}

138

Appendix E. Code for Haar Wavelet Decomposition, Compression, and

Reconstruction
/ttﬂitt!!tﬁﬁtﬂﬁltﬁtﬁﬁﬁiit wavelet.m ﬁi.ﬁiiitltﬁﬁ*tttiﬂtt!lit/
/* Written by Rick Ricart, Capt, USAF *x/
/* This program computes the Haar wavelet decomposition,compression, */
/* and reconstruction of a time signal */

/nQtiQitRl'i'iﬁti*i!iﬁtttﬁi'tlQﬂQtntt'ttﬁt'tt.t*l*.itﬁ'iiﬂﬁ!tttttlltttttti/

timport <sound/sound.h>
#import <math.h>

#inport <dsp/arrayproc.h>
timport <mach.h>

#import <stdlib.h>

timport <stdio.h>

#import <objc/objc.h>
#import <soundkit/Sound.h>
#import <soundkit/soundkit.h>
#import <string.h>

#import <macros.h>

#define N_DELTA_T 256
#define K _TOTAL_DFS 128
#define M_TOTAL_DTS 31
#define TOT M_TOTAL_DTS*N _DELTA_T /* approximately one sec of sound */
tdefine PI 3.141592654
#define LEVELS 8
#define MAX 1

#define MIN 1

#define COMPGAIN 10.0
#define FO 0.25

#define TAU 0.1

#define EPS 1.0

#define ABS(x) sqrt (pow(x,2.0))

#define ABS2(x) ((float)sqrt(((double)=)*((double)x)))
#define SQUARE (x) ((x)*(x))

#define SIGMOID(x) (SQUARE (x))/(SQUARE (x)+F0)

/* Global Variables */
id mySound, newSound:
SNDSoundStruct *soundStruct, *convertStruct, *shortStruct;

/* the filenames */
char newsoundfile[80),shortsoundfile[80]):

void compute_trans{();
float compute_iproduct():

typedef struct grid_element
struct grid_element *r_ptr;
stzuct grid_element *1 ptr;
scruct grid_element *rleg _ptr:
struct grid_element *lieg ptr:
struct grid_element *up_ptr:
float iproduct_val,

139

float input;
float activity;
float output;
int type:

} grid_element:

typedef struct
grid_element *head, *current;
} list:

typedef sti.ct {
float *wavelet:;
} wavelets;

/ttt'-tt***tttﬁiﬁttit get data() 'ﬁﬁitﬁitttiﬁﬁ'it*ﬁiiiti‘lttti.t'.t**/

/* This procedure opens and reads the signal values of a sound file */
/ttti'ﬁﬁliitﬁtttﬁit.tttt'tﬁ'ttt.tﬂtttttQﬁﬂﬁ'**ii'tttli'tttﬁi*ﬁtt*iﬁi*/
void get_data(short **temp,short **temp2,char *infile)
{
int error, data_size,i;
BOOL edit:
/*
inPtr = (short *) ((char *) inputSound + inputSound->dataliocation):;
outPtr = (short *) ((char *) *outputSound + (*outputSound)->datalocation);
*/
error = [mySound readSoundfile:infile];
/* initialize mySound to infile’s mySound object */
soundStruct =[mySound soundStruct];
[mySound isEditable];
data_size = soundStruct->dataSize;
SNDAlloc (sconvertStruct,data_size, SND_FORMAT LINEAR 16,SND_RATE_CODEC,
soundStruct->channelCount,"");
SNDAlloc (éshortStruct,data_size, SND_FORMAT_LINEAR_16, SND_RATE_CODEC,
soundStruct->channelCount, "");
SNDConvertSound (soundStruct, &éconvertStruct) ;
SNDConvertSound (soundStruct, §shortStruct)
*temp= (short *) (convertStruct+convertStruct->datalocation);
*temp2= (short *) (shortStruct+shortStruct->datalocation):
}

list *make_grid{()
{
list *temp;

MALLOC (temp,1,list, "Allocating list");
temp->head=NULL;

temp->current=NULL;

/* printf("Made make_grid successfully\n"):*/
return temp;

}

void allocate_node(list *1, grid_element *node)
{

if (1->head==NULL) {

l->head=node;

l->current=node;
node->1_ptr=node->r_ ptr=NULL;

}

else|

node->1 ptr=l->current:
l->current->r_ptr=node;
l->current=node;

}

node->rleg_ptr=node->lleg ptr=NULL;
node->up_ptr=NULL:

140

}

void allocate_grid triad(list *1, grid_element *element)
{
grid element *templ, *temp2;

/* printf("\nAllocating a triad\n");*/

/* allocate both legs */

MALLOC (templ,l,grid_element, "allocating lleg”):
MALLOC (temp2,1,grid_element, "allocating rleg”);
templ->type=0;

temp2->type=1;

element->lleg ptr=templ;

element->rleg_ptr=temp2;

templ->r ptr=temp2:;

temp2->1_ ptr=templ;
templ->up_ptr=temp2->up_ptr=element;

if (element->] ptr==NULL||element->1 ptr->rleg ptr==NULL)
templ->1 ptr=NULL:

else {

templ->1 ptr=element->1_ptr->rleg_ptr;
element->1 ptr->rleg ptr->r_ptr=templ:

}

temp2->r_ptr=NULL:
templ->rleg_ptr=temp2->rleg_ptr=templ->lleg ptr=temp2->lleg ptr=NULL;
l->current=element;

/* printf("allocated grid triad successfully\n”);*/
}

void inner_loop{int level, list *1, grid_element *element, wavelets *wl,
float *signal, float *new_signal,

int m, int points)

{

int elements;

elements={int)pow (2.0, {(double) (LEVELS-level));

if(level==Q)

return;

else

if (element->r_ptr==NULL) {

points -=elements:

/* printf("Moving up a level, moving element ptr up, and inner loop.\n");*/
return inner_loop(--level,l,element=element->up ptr,
wl,signal,new_signal,m, points);

)

else(

/* printf ("Moving element ptr right and allocating another triad\n");*/
points +=elements:

compute_trans(level,l,element=element->r ptr,wl,signal,
new_signal,m,points):

}

}

void regenerate_signal (float *new_signal, wavelets *wl,int elements,
int points, int m, float mag)
{

int i;

loopi (elements) {

new_signal (m*N_DELTA_T+i+points) +=wl->wavelet [i)*mag:
/* printf("%5.3g\n",new_signal[m*N_DELTA_T+i+points]):*/
}

}

141

/ﬂﬁﬂ.ﬁ'ttﬁ..ﬁ*tiﬁ‘tt compute trans() iﬁttit'ﬁ.iﬁiﬁli‘tﬁﬁi‘.ﬁ'ﬁ'ii/

/Qt!i‘i‘ti"l.ﬁﬁ!ﬁﬁﬁﬁ.tﬁtﬂ.iiti'!fkﬁl'ﬁﬁﬁ'ltitti.ﬁﬁtiﬁﬁt.ﬁiﬂ.ﬁﬁ.t/

void compute_trans(int level, list *1, grid_element *element, wavelets *wl,
float *signal,float *new_signal, int m, int points)

{

float top,left,right,epsilon:;

int elements;

elements=(int)pow (2.0, (double) (LEVELS-level));
/* ONE */
allocate_grid triad(l, element);
/* TRO */
/tntttﬁﬁﬁ‘*t'ﬁt ADDED THIS SECTION ii*tﬁﬁﬁttiittﬁittiﬁ/
if (element->up_ptr==NULL) {
top=compute_iproduct(&wl[level],&signal[m*N_DELTA_T+points],elements);
element->iproduct_val=top;
element->input=top:
regenerate_signal (new_signal,&wl(level],elements,points,m, top);
}
/* top=compute_iproduct (&wl{level], &signal [m*N_DELTA T+points],elements);*/
top=element->iproduct_val;
/iltﬁﬁttitﬁt'ttﬁtik!tﬁiﬂﬁtﬂﬁ*iiﬁtttiﬂattﬂtﬁ'tiitt!ﬁtli/
element->iproduct_val=top;
left=compute_iproduct (s§wl{level+l],&signal [m*N_DELTA T+points],elements/2):
element->lleg ptr->iproduct_val=left;
element->lleg _ptr->input=left;
right=compute_iproduct (&wl{level+l],
§signal {m*N_DELTA_ T+points+elements/2],elements/2);
element->rleg _ptr->iproduct_val=right;
element->rleg ptr->input=right;
/* printf("ip=%$5.3g i=%5.3g lip=%5.3g 1i=%5.3g rip=%5.3g ri%5.3g\n\n",
element->iproduct_val,element->input,
element->lleg _ptr->iproduct_val,element->lleg_ptr->input,
element->rleg ptr->iproduct_val,element->rleg ptr->input):*/
/'ﬁtﬁttt.!.l.t' ADDED THIS sECTION Qﬁttﬁtﬁiiﬂﬁltt'tﬂﬂt/
regenerate_signal (new_signal,ewl(level+l],
elements/2,points,m,left);
regenerate_signal (new_signal,&wl[level+l],
elements/2,points+elements/2,m,right);
/nk.ﬁlQﬁ.‘iﬁ.tittﬁi!'iiﬁ*.i..ittiﬂﬂttt'i!"ﬁ*!lﬁﬁﬁ*!tt/
if (level==LEVELS-2) {
inner_loop(level,l,element,wl,signal,new_signal,m,points):
}
else {
return compute_trans{(++level,l,element=element->lleg ptr,wl,signal,
new_signal,m,points);

}

}

FARAAALARALLESEREARASS LSS get wavelets() RN AARRRK RN R AR KR AR N AR RN AR AR N RN S

/* This procedure creates the wavelet function for each resolution used */
/Q.Q‘t.ﬁttti.itﬁﬁﬁﬁttt..ﬁ'Qtnt'.ﬂ'..ﬁtl.lﬂﬂﬁﬂ.'tﬂtﬁﬁﬂtiti!'!t'..ttﬂ'kl!ﬂ‘/
void get_wavelets{int level, wavelets *w)

{

int 1l,elements;

FILE *f1l:;

/* printf("\nCreating wavel«ts at resolution %d\n",level);*/
elements=(int)pow (2.0, {(double) (LEVELS-level));

/* printf("No. of elements is %d\n",elements);*/

MALLOC (w->wavelet,elements, float, "allocating wavelets”);

142

loopl (elements) {

if(l<elements/2)

w->wavelet [1]=(float)sqrt ((pow (2.0, (double)level))):
else

w->wavelet [1])=-(float)sqgrt ((pow (2.0, (double) level)));
}

/* loopl (elements) {

w->wavelet [1]=(float) (sqrt (pow (2.0, (double) level)) *sqrt (2.0)*
sin{2.0*PI*pow (2.0, (double)level)*

(double) 1/ (double)N_DELTA T));

}

if ((f1 = fopen("wavelet.dat",™a")) == NULL) {
printf("\n#*** Can’t create $s ***", “wavelet.dat"):;
exit (0):

}

loopl (elements)

printf ("$f\n",w->wavelet (1]):

fprintf (£1,"\n");

fclose(fl):*/

}

/llt.i.liiﬂﬁt Compute_iproduct ﬁtﬁktﬂﬁiit!kﬂl*!t!ﬁtﬁﬁ/

/* This function produces the inner product of the signal
samples at a particular time shift and resolution*/
/tttQliiﬁiﬁiﬁﬁtﬁ*ﬁ.Qtt.tﬁiﬁ'.ltt.tttﬁ‘lt*ti.tﬁltttt/

float compute_iproduct (wavelets *w, float *signal, int elements)

{

int i:
float val;

vail=0:

loopi (elements)

val +=w->wavelet[i}*signalfi]:
val /=N_DELTA_T;:

return val;

)

float squa. {float val, float oldmax, float oldmin, float newmax, float newmin)
{
float answer:;

answer={((val-oldmin)/(oldmax-oldmin)) * (newmax-newmin' +newmin;
return answer;

}

void compute_activity(grid_element *element, int level,int t, int which)
{
float a,exc,inh;
char string{10};
grid_element *left,*right;
int 1:

a=element->activity:;

inh=0;

exc=element->output+ABS2 (element->input)
left=right=element;

if (level>which)

loopl (level/2) {

if(left->1 ptr!=NULL) {

left=left->1 ptr;

inh +=left->output;

)

143

if (right->r_ptr!=NULL) {
right=right->r_ptr;

inh +=right->output;

}

}

element->activity=a+TAU*EPS* (~a+ (MAX-a) *exc- (MIN+a) *inh*COMPGAIN) ;
/* printf ("activity=%5.3g\n\n", element->activity):

printf ("Hit enter to continue™):

gets (string) %/

}

void compute_output (grid_element *element)
{
float a;

a=element->activity;

/* if (a<0)

element->output=0;

else

if (a>=06&8a<=1)

element->output=a;

else

element->output=1;*/
element->output=(a-.0009<0)?0: (SIGMOID (a-.0009));
}

main (int argc, char **argv)

{

short *temp, *temp2; /* integer representation of original data */
list *grid_list:

grid_element *node,*current_node, *top_node;
wavelets *wavelet list:

int level,l,m,n,i:

int tot_points, points,elements:

float signal{TOT]):

float newsignal [TOT], shortsignal [TOT]:
float max,min;

size_t s_len;

FILE *f1,*£f2,*£f3,*£4,*£5;

char string(10]}:

mySound=[Sound new]

/* get signal, temp has integer representation of signal */
get_data(&temp, stemp2,argv(l]):

printf ("Got data successfully!'\n"):

loopm (TOT)

signal(m]=(float)temp(m];

if ((f1 = fopen(“"signal.dat”,”w")) == NULL) {

printf("\n*** Can’t create %s **+”, "sjignal.dat"):

exit (0);

}

loopm (TOT)

fprintf (f1,"%£\n",signalm]);

grid_list=make_grid();

MALLOC (node,M_TOTAL_DTS,grid_element, "allocating first node™);
MALLOC (wavelet_list,LEVELS,wavelets, "allocating wavelet list"™):
loopl (LEVELS)

get_wavelets(l,&wavelet list(1l));

/* printf("Going into main loop\n"): */

locpm (M_TOTAL_DTS) {

allocate_node(grid_list, énodem]);

/* printf("\ntime is %d going into compute_trans\n",m); */
level=0;

tot_points=0;

144

compute_trans(level,grid_list,énode(m],wavelet_list,signal,
newsignal,m, tot_points);
}
printf (“starting squash\n"):
/**** This loop finds max at each time slice and uses max to squash ##%w#s/
loopm (M_TOTAL_DTS) {
top_node=&node [m];
current_nocde=top_node;
grid_list->current=top_node;
max=min=0;
/* this loop checks for max value in time slice */

loopl (LEVELS) {
points=0;
elements=(int)pow (2.0, (double) (LEVELS-1));

loopn (N_DELTA T/elements) {

if (current_node->input>max)
max=current_node->input;

if(current_node->input<min)
min=current_node->input;

if(current_node->r_ptr != NULL){
current_node=current_node~>r_ptr;

}

}

if(grid_list->currunt->lleg_ptr !'= NULL) {
grid_list->current=grid_list->current->lleg _ptr:
current_node=grid_list->current;

}

}

/* end of check max loop */

if (max<ABS2(min))
max=ABS2 (min) :
printf ("Max=%f min=%f at time %d---Starting squash...\n",max,min,m);
/* this loop squashes all values between using max as old max */
top_node=§node{m];

current_node=top_node;

grid_list->current=top node:

locpl (LEVELS) {
points=0;
elements={int)pow (2.0, (double) (LEVELS-1));

loopn (N_DELTA T/elements) {
current_node->input=squash(current_node->input,max,-max,1.0,-1.0);
/* printf("after squashing: iproduct=%5.3g input=%5.3g\n\n",
current _node->iproduct_val, current_node->input) ;
printf ("Press enter to continue!");
gets(string);*/

if (current_node->r_ptr '= NULL) {
current_node=current_node->r_ptr;

}

}

if(grid_list->current->lleg ptr != NULL)({
grid_list->current=grid_list->curren.->lleg ptr:

current _node=grid_list->current;

}

}

/* end of squash loop */

}
printf ("end of squash loop/n”):
/'...Q.Ql."ll.i""'Q'ﬁ'l!ﬁ'ﬂtt'.'ttl’ﬂt.'t.ﬁ.t.ﬁ.ﬁttt.tt.t...tt..'t'ﬁAﬂlﬂ’/
/rerenasrenensn the following computes lateral inhibition #*aeassensensnannrany
loopm (M_TOTAL_DTS) {
printf ("starting LIN of time %d\n",m);

loopi (50) {
top_node=&node[m);
current_node=top_node:;
grid_list->current=top_node;

145

loopl (LEVELS) {
elements=(int)pow (2.0, (double) (LEVELS~1)):

loopn (N_DELTA_T/elements) {

compute_activity (current_node,1,i,atoi(argv(2]}));
if {current_node->r ptr != NULL) {
current_node=current_node->r_ptr;

}

}

if(grid_list->current->lleg ptr != NULL){
grid_list->current=grid list->current->lleg ptr;
current_node=grid list->current;

}

}

top_node=&node [m] ;

current_node=top_node:
grid_list->current=top_node;

loopl (LEVELS) {
elements=(int)pow (2.0, (double) (LEVELS-1)}:

loopn (N_DELTA_T/elements) {

compute_output (current_node) ;

if (current_node~>r_ptr != NULL){
current_node=current_node->r_ptr:

)

}

if(grid_list->current->lleg_ptr '= NULL){
grid_list->current=grid_list->current~->lleg ptr;
current_node=grid_list->current;

}
}

}

}

/ttntiﬁlt'ttttt'.t end of latexal inhibition i'tttttﬁ.tﬁﬁﬁit‘lttttt'!"t*.t"t/
/*as»rtaxwzar the following regenerates signal from compressed grid **#**xas/
loopm(M_TOTAL_DTS) (

top_node=énode (m];

current_node=top_node;

grid_list->current=top_node;

loopl (LEVELS) {

if (m==0&&1l==0) {

printf("top=%5.3g lleg=%5.3g rleg=%5.3g\n",
current_node->iproduct_val,current_node->lleg ptr->iproduct_val,
current_node->rleg_ptr->iproduct_val):

printf ("newtop=%5.3g newlleg=%£f5.3g newrleg=%f.3g\n",
current_node->output, current node->lleg ptr->output,
current_node->rleg ptr->output):

}

points=0;

elements= (int)pow (2.0, (double) (LEVELS-1)):

loopn (N_DELTA_T/elements) {

if (current_node->output!=0)

regenerate_signal (shortsignal, éwavelet list(l],
elements, points,m, current_node->iproduct_val):

else

regenerate_signal (shortsignal, éwavelet_ list(l],
elements,points,m,0);

points +=elements;

if (current_node->r ptr != NULL){
current_node=current node->r_ptr;

}

}

if(grid_list->current->lleg_ptr !'= NULL){
grid_list->current=grid_list->current->lleg ptr;
current_node=grid_list->current;

146

}

}

}

printf ("regenerated short signal\n™);
/.t.'ttittQttﬁt'tﬁﬁ.ﬁt.ttti.'tk'i'!it*.l'tﬁtl...ﬁﬁ.'i*itiﬂ*!..t'tttitﬁ.tt.ﬁttﬁ/
/a*twssrran the following outputs the grid and compressed grid outputs *#ssxxa/
if ((£f3 = fopen("grid.dat”,”"w™)) == NULL) {

printf ("\n*#** Can’t create %s ***", "grid.dat");

exit (0):

}

if ((f4 = fopen("compressed.dat™, "w")) == NULL) ({
printf("\n*** Can’t create %s ***", "compressed.dat"):
exit (0):

}

loopm (M_TOTAL_DTS) {

top_node=énode (m] ;

current_node=top_node:;

grid_list~>current=tcop_node;

loopl (LEVELS) {

points=0;

eiements=(int)pow (2.0, {(double) (LEVELS-1,;):

loopn (N_DELTA_T/elements) {

if (current_node->output!=0)

fprintf (£4,"%5.3g ", current_node->iproduct_val);
else

fprintf (£4,"%5.39 ",0):

fprintf(£3,"%5.3g ", current_ncde->iproduct_val);

if (current_node->r ptr != NULL) (
current_node=current_node->r_ptr;

}

}

fporintf(£3,"\n"):

fprintf (£4,"\n");

if(grid_list->current->lleg_ptr != NULL) {
grid_list->current=grid_list->current->lleg_ptr;
current_node=grid_list->current;

}

}

}

printf ("outputted grid and compressed grid data\n");
/'ﬁ!!'ﬁ‘t""!ﬂﬂ.ﬁ'l'tt!ﬁiﬁiliﬂﬂﬁﬂttﬂﬂﬂlittt?iit'ﬂtttttkttl‘ttﬁtkt'ttlttittt!*t/
if ((f2 = fopen("new_signal.dat”™,"w")) == NULL) {
printf ("\n*** Can’t create %s ***", "new_signal.dat"):
exit (0);

}

loopm (TOT)

fprintf(£2,"%£\n",newsignal(m]):

if ((£5 = fopen("short_signal.dat”™,"w")) == NULL) (
printf("\n*** Can’t create %s ***","short_signal.dat");
exit (0);

}

loopm (TOT)

fprintf (£5,"%£\n",shortsignal[m]);

loopi (TOT) {

temp[i)=(short)newsignal[i]);
temp2[i]=(short)shortsignal{i]:

}

/* get length of input file not counting null terminator */
s_len=strlen(argv(l]):

/* start name of newsoundfile with "new_" */

strcpy (newsoundfile, "new_"):

/* start name of shortsoundfile with "short_ " */

strcpy (shortsoundfile, "short_");

/* concatenate input file name to "new_" in newsoundfile(] */

147

strcat (newsoundfile,argv[1l]); /* newsound(]=new_filename.snd */

/* concatenate input file name to "short_" in shortsoundfile[] */
strcat (shortsoundfile,argv(1]); /* shortsound(}=short_filename.snd */
SNDWriteSoundfile (newsoundfile, convertStruct);

SNDWriteSoundfile (shortsoundfile, shortStruct):

fclose (fl):
fclose (£2);
fclose (£3):
fclose (f4);
fclose (£5):

}

148

Appendix F. Code for Morlet Wavelet Decomposition, Compression, and

Reconstruction
/l"tttttiﬁﬁtttﬁtttiﬁt.ﬂt morlet Vavelet-m ..ti*ﬂ'ttttttnttﬁt'tt!tt/
/* Written by Rick Ricart, Capt, USAF */
/* This program computes the Morlet wavelet decomposition,compression, */
/* and reconstruction of a time signal */

/..'tiQﬁ.".'Q.*ﬁQ"'ﬁi*li.ltﬁ'."‘iﬁt.ﬁ',ﬂﬂtll!lﬂ"'i.t!*.**ﬁ'ttl.t'ﬁiﬁﬁﬂ/

#import <sound/sound.h>
#import <math.h>

#import <dsp/arrayproc.h>
#import <mach.h>

#import <stdlib.h>

timport <stdio.h>

#import <objc/objc.h>
#import <soundkit/Sound.h>
#import <soundkit/soundkit.h>
#import <string.h>

#import <macros.h>

#define N_DELTA_T 256
#define K_TOTAL_DFS 128
#define M_TOTAL_ DTS 31
#define TOT M _TOTAL_DTS*N_DELTA_T /* approximately one sec of sound */
#define PI 3.141592654
#define LEVELS 8
#define OVERLAP 2
#define MAX 1

#define MIN 1

#define COMPGAIN 10.0
#define FO 0.25

#tdefine TAU 0.1

#define EPS 1.0

#define ABS(x) sgrt(pow(x,2.0))

tdefine ABS2(z) ((float)sqrt ({(double)x)*((double)x)))
#define SQUARE (x) ((x)*(x))

#define SIGMOID (%) (SQUARE (x))/ (SQUARE (x)+F0)

/* Global Variables */
id mySound, newSound;
SNDSoundStruct *soundStruct, *convertStruct, *shortStruct:

/* the filenames */
char newsoundfile[80],shortsoundfile[80];

void compute_trans():
float compute_iproduct ()

typedef struct grid_element {
struct grid element *r_ptr:
struct grid_element *1 _ptr:
struct grid_element *rleg ptr:
struct grid element *lleg ptr:
struct grid_element *up ptr:

149

float iproduct_val;
float input;

float activity;
float output;

int type:

} grid_element;

typedef struct {
grid_element *head, *current;
} list:

typedef struct {
float *wavelet;
} wavelets;

/t'ttti.tit.tﬁﬁtﬂt.i! qet_dﬂta() tttt'tI.‘ittitinﬁtﬂ!tt"tiiﬁtﬁttﬁi*t/
/* This procedure opens and reads the signal values of a sound file */
/ﬂtiiﬁﬁ"lnt*!ttﬁi*k*ﬁttﬁitﬁ'!ﬂﬂttﬁt*ttttttitt*k!tkt!ttti*itt‘litﬂttﬂ/
void get_data(short **temp,short **temp2,char *infile)
{
int error, data_size,i;
BOOL edit:
/-A
inPtr = (short *) ((char *) inputSound + inputSound-~>datalocation):;
outPtr = (short *) ((char *) *outputSound + (*outputSound)->datalocation):;
*/
error = [mySound readSoundfile:infilej;
/* initialize mysound to infile’s mySound object */
soundStruct =[{mySound soundStruct]:
[mySound isEditable]:;
data_size = soundStruct->dataSize;
SNDAlloc (&convertStruct,data_size, SND_FORMAT LINEAR_16, SND_RATE_CODEC,
soundStruct->channelCount, "");
SNDAlloc (sshortStruct,data_size, SND_FORMAT_LINEAR_16, SND_RATE_CODEC,
soundStruct~>channelCount, "");
SNDConvertSound (soundStruct, sconvertStruct);
SNDConvertSound {soundStruct, éshortStruct);
*temp= (short *) (convertStruct+convertStruct->dataLocation);
*temp2= (short *) (shortStruct+shortStruct->datalocation):
}

list *make_grid()
{
list *temp;

MALLOC (temp,1,list, Allocating list”);
temp~>head=NULL;

temp~>current=NULL;

/* printf("Made make_grid successfully\n");*/
return temp;

}

void allocate_node(list *1, grid_element *node)
{

if (1->head==NULL) {

1->head=node:

l->current=node;
node->1_ptr=node->r_ptr=NULL;

}

else(

node->1_ptr=l->current;
l->current->r_ ptr=node;
l->current=node;

)

node->rleg ptr=node->lleg ptr=NULL:

150

node->up_ptr=NULL;
}

void allocate_grid triad(list *1, grid_element *element)
{
grid_element *templ,*temp2:

/* printf("\nAllocating a triad\n®);*/

/* allocate both legs */

MALLOC (templ,1,grid_element, "allocating lleg"):
MALLOC (temp2,1,grid_element, "allocating rleg"):
templ->tyra=(;

temp2->ty, e=1;

element->lleg ptr=templ;

element->rleg ptr=temp2:

templ->r_ ptr=temp2;

temp2->1_ptr=templ;

templ->up_ptr=temp2->up ptr=element:

if (element->1 ptr==NULL|(element->1 ptr->rleg_ptr==NULL)
templ->1_ ptr=NULL;

else {

templ->]1 ptr=element->1 ptr->rleg ptr;

element->1 ptr->rleg_ptr->r_ptr=templ;

}

temp2->r_ ptr=NULL;
templ->rleg_ptr=temp2->rleg_ptr=templ->lleg ptr=temp2->lleg ptr=NULL;
l->current=element;

/* printf("allocated grid triad successfully\n");*/
}

void regenerate_signal (float *new_signal, wavelets *wl,int elements,
int points, int m, float mag)
{

int i,tot:

if (OVERLAP!=0)

tot=elements*2*OVERLAP;

else

tot=elements;

loopi (tot) {

new_signal [m*N_DELTA_T+i+points-tot/2] +=wl->wavelet[i]*mag:
/* printf("%5.3g\n",new_signal (m*N_DELTA T+i+points]);*/

}

}

void inner_loop(int level, list *l, grid element *element, wavelets *wl,
float *signal, float *new_signal,

int m, int points)

{

int elements;

elements=(int)pow (2.0, (double) (LEVELS-1level));

if (level==0)

return;

else

if{element->r ptr==NULL) {

points -melements;

/* printf ("Moving up a level, moving element ptr up, and inner loop.\n");*/
return innet_loop(--level,l,element-element->up_ptr,
wl,signal,new_signal,m,points);

}

else(

/* printf("Moving element ptr right and allocating another triad\n"):*/
points +=elements;

151

compute_trans(level,l,element=element~->r ptr,wl,signal,
new_signal,m,points);

}

}

/.k*iiﬁﬁ'ﬁ'l‘ﬁtﬁ‘ﬁi' compute trans‘) i!iﬁ*!titttitﬁiﬁi*!ﬁii*i*ﬂiﬂ/

/QtQ.Qﬁtt.'.tﬁtiﬁ.ﬁii.ﬁﬁIﬁﬁﬁ*ﬁﬁtlﬁﬁt'ttﬁﬁtiiﬁtt*i!ﬁtﬁti.ﬁ"ii*'tt/

void compute_trans(int level, list *1, grid element *element, wavelets *wl,
float *signal, float *new_signal, int m, int points)

{

float top,left,right,epsilon;

int elements;

elements=(int)pow (2.0, {(double) (LEVELS-level)):
/* ONE */
allocate_grid triad{(l, element);
/* TWO */
/ﬂttti'iiﬂikﬁﬁ! ADDED THIS SECTION iﬁ"ﬁ’itttﬁﬁt*t*tii/
if (element->up_ptr==NULL) {
top=compute_iproduct (swl[level],&signal {m*N_DELTA_T+points],elements);
element->iproduct_val=top:
element->input=top:
regenerate_signal (new_signal,&wl[level],elements,points,m,top);
}
/* top=compute_ iproduct (éwl[level], &signal [m*N_DELTA_T+points],elements);*/
top=element->iproduct_val;
/ittiiiﬁill'ﬁlttitttt'ﬁﬂ!ttt!ﬁ'ttititttlt'itttttﬁﬁ*ﬂ**/
element->iproduct_val=top;
left=compute_iproduct (swl{level+l], ssignal [m*N_DELTA_ T+points],elements/2);
element->lleg _ptr->iproduct_val=left;
element->lleg ptr->input=left;
right=compute_ iproduct (éwl([level+l],
é¢signal (m*N_DELTA T+points+elements/2],elements/2):
element->rleg _ptr->iproduct_val=right;
element->rleg ptr->input=right;
/* printf("ip=%5.3g i=%5.3g lip=%5.3g 1i=%5.3g rip=%5.3g ri%5.3g\n\n",
element->iproduct_val,element->input,
element->lleg_ptr->iproduct_val,element->lleg ptr~>input,
element->rleg ptr->iproduct_val,element->rleg ptr->input);*/
/ttatﬁtntaﬁttta ADDED THIS SECTION liﬂﬁ'tttﬁttﬂt!tiﬁﬁﬁ/
regenerate_signal (new_signal,swl(level+l],
elements/2,points,m,left);
regenerate_signal (new_signal,&wl([level+l],
elements/2,points+elements/2,m, right);
/'ti'iﬁ.lﬁ"'tt.iﬁ'tiﬂ"'lt'*lﬁt*ttﬂﬂ‘tt!ﬁﬁ‘ﬂttttt"it/
if (level==LEVELS-2) {
iraer_loop(level,l,element,wl,signal, new_signal,m, points);
}
else {
return compute_trans(++level,l,element=element->lleg_ptr,wl, signal,
new_signal,m,points):

}

/tﬁﬁ'tﬂ..l""ﬂ'ﬁﬁ.ﬂ't‘ﬁﬁ get wavelets() Q.iﬁ"ﬁ.‘ﬁﬁﬂﬂi‘ﬁﬁ'ﬁﬁilﬂ't.ﬂﬁﬁ"'/

/* This procedure creates the wavelet function for each resolution used */
/QntQQQQ'QQQQ.'QQQQQQQ'tf.'t'ﬁ.ilQtﬂ‘ﬂ‘ﬁQ.t'tttﬁt.'t!Q!.Qttttﬁﬁ.tttﬂtﬁt!t/
void get_wavelets(int level, wavelets *w, wavelets *iw)

{

int 1l,elements,tot;

double time,omega,cc:

152

FILE *fl,*£2;

/* These are Morlet wavelet parameters */

printf ("\nCreating wavelets at resolution %d\n", level):

elements=(int)pow (2.0, (double) (LEVELS-level)):

if (OVERLAP!=0)

tot=elements*2*OVERLAP;

else

tot=elements;

/* printf ("No. of elements is %d\n",elements);*/

MALLOC (w->wavelet,tot, £float, "allocating wavelets"):

MALLOC (iw->wavelet,tot, float, "allocating wavelets") :

omega=PI*sqrt (2.0/10g(2.0));

cc=exp (~pow(omega,2.0)/2.0);

loopl (tot) {

time=pow (2.0, (double) level) * (double) (1-tot/2)/(double})N DELTA T:

w->wavelet [1]=(float) ((cos (omega*time)-cc)*

exp(~PIl*pow(time,2.0))*

sqrt ((pow (2.0, (double)level)))):
iw->wavelet[l]=(float) ((sin(omega*time)~cc)*

exp(-PI*pow(time,2.0))*

sqrt ((pow (2.0, (double)level)})):

}

if ((f1 = fopen("rwavelet.dat","a")) == NULL) ({
printf ("\n*** Can’t create %s ***", 6 "rwavelet.dat™);
exit (0);

}

loopl (tot)

fprintf (£1,"%f\n",w->wavelet[l]):

fprintf(f1,”\n");

fclose(f1};

if ((f2 = fopen("iwavelet.dat","a")) == NULL) ({
printf ("\n*** Can’t create %s ***", "iwavelet.dat"):
exit (0}

}

loopl (tot)

fprintf(£2,"%f\n", iw->wavelet(1]):
fprintf (£2,"\n");

fclose (£2);

}

/nﬁn'tﬁtiitﬂt Compute iproduct ﬁtiiﬁtittﬁttitl.ﬁtﬁktﬁ/

/* This function produces the inner product of the signal
samples at a particular time shift and resolution*/
/tﬁ!ﬁt'ﬂttﬁt!ﬁQQQﬁtﬁtﬂtﬂﬂtiﬁﬂ*iiﬁttﬁ*ﬂttﬁﬂﬂyttitt’t/

float compute_iproduct (wavelets *w, float *signal, int elements)

{

int i,tot;
float val;

val=0;

if (OVERLAP!=0)
tot=elements*2*OVERLAP;

else

tot=elements;

loopi (tot)

val +=w->wavelet(i]*signal[i-tot/2):
val /=N_DELTA_T:

return val;

}

float squash(float val, float oldmax, float oldmin, float newmax,
{

153

float newmin)

float answer;

answer=‘((val-cldmin)/{(oldmax-oldmin))* (newmax-newmin)) +newmin;
return answer;

}

void compute_activity(grid_element *element, int level,int t, int which)
{
float a,exc,inh;
char string[10];
grid_element *left,*right;
int 1:

a=element->activity;
inh=0;
eic=element->output+element~>input;
left=right=element;

if (level>which)

loopl (level/2) {

if (left~>1_ptr!'=NULL) {
lefr=left->1 ptr;

inh +=left->output;

}
if(right->r_ptr!=NULL) {
right=right->r_ptr:

inh +=right->output;

}

}

element->activity=a+TAU*EPS* (-~a+ (MAX-a) *exc~ (MIN+a) *inh*COMPGAIN) ;
/* printf("activity=%5.3g\r\n",element->activity):

printf ("Hit enter to continue®};

gets(string).*/

}

void compute_output (grid_element *element)
{
float a:

a=element->activity:

/* if (a<0)

element->output=0;

else

i1f(a>=068a<=1)

element->output=a;

else

element->output=1;*/
element->output=(a-.0009<0)?0: (SIGMOID(a-.0009)):
}

main (int argc, char **argv)

{

short *temp, *temp2; /* integer representation of original data */
list *rgrid_list,*igrid_list;

grid_element *node, *current_node, *top_node;

grid_element *inode, *icurrent_node,*itop_node; /* added this */
wavelets *wavelet_list,*iwavelet_ list; /*added iwavelet_list */
int level,l,m,n,i:

int tot_points, points,elements;

float signal {TOT+OVERLAP*2*N_DELTA T}:

float newsignal (TOT+OVERLAP*2*N_DELTA_T]:

float shortsignal (TOT+OVERLAP*2*N_DELTA_T):

float max,min,energy_tot,eneryy_trunc;

size_t s_len;

FILE *f1,*£2,%£3,*£4,*£5;

154

char string(10]}:

mySound= [Sound new];

/* get signal, temp has integer representation of signal */
get_data(&temp, étemp2,argv(l]);

printf ("Got data successfully!\n");

loopm (TOT)

signal [m+OVERLAP*N DELTA T]=(float)temp(m]):

if ((f1 = fopen("signal.dat"™,"w")) == NULL) {

printf("\n*** Can’‘t create %s ***" "“gignal.dat");

exit (0);

}

loopm(TOT)

fprintf (£1,"%£f\n",signal (m+OVERLAP*N_DELTA_T]):
rgrid_list=make_grid{();

igrid_list=make_grid{():

MALLOC (node,M TOTAL_DTS,grid_element, "allocating first layer real nodes"):
MALLOC (inode,M_TOTAL_DTS,grid_element, "allocating first layer imag node"):
MALLOC (wavelet list,LEVELS,wavelets, "allocating real wavelet list");
MALLOC (iwavelet_list,LEVELS,wavelets, "allocating imag wavelet list");
loopl (LEVELS)

get_wavelets (l,&wavelet_list[l}],&iwavelet_list(l]));

printf{"Going into main loop\n"):

/* This loop produces the inner products of the real part of the wavelet */
loopm (M_TOTAL_DTS) {

allocate_node({rgrid_list,&node(m]):

/* printf("\ntime is %d going into compute_trans\n",m); */

level=0;

tot_points=0;

compute_trans{level,rgrid_list, &node[m],wavelet_list,
&signal[OVERLAP*N_DELTA_T],&newsignal[OVERLAP'N_DELTA_T],
m,tot_points);

}

/* This loop produces the inner products of the imag. part of the wavelet */
loopm (M_TOTAL_DTS) {

allocate_node(igrid_list,&inode(m]):

level=0;

tot_points=0;
compute_trans{level,igrid list, &inode(m},iwavelet_list,

&signal [OVERLAP*N_DELTA T]}, &newsignal [OVERLAP*N_DELTA T],
m,tot_points);

}

printf ("starting squash\n");

/**** This loop finds max at each time slice and uses max to squash **x#x*/
loopm (M_TOTAL_DTS) {

top_node=&node (m];

itop_node=ginode(m];

current_node=top_node;

icurrent_ node=top_node;

rgrid_list->current=top_node;

igrid_list->current=itop_node;

max=0;

loopl (LEVELS) {

points=0;

elements=(int)pow (2.0, (double) (LEVELS-1)):

loopn (N_DELTA_T/elements) {

if ((current_node->input=

(float) sqrt (pow ((double) current_node->input,2.0)+

pow ((double) icurrent_ncde->input, 2.0))) >max)
max=current_node->input;

if (current_node->r_ptr != NULL)({

current_node=current_node->r_ptr;
icurrent_node=icurrent_node->r_ ptr;

}

}

155

if (rgrid_list->current->lleg ptr != NULL){
rgrid_list->current=rgrid list->current->lleg_ptr:
igrid_list->current=igrid_list->current->lleg_ptr:
current_node=rgrid_list->current:
icurrent_node=igrid_list->current;

}

}

printf ("Max=%f min=%f at time %d---Starting squash...\n",max,min,m);
top_node=&node [m];

current_node=top_node;
rgrid_list->current=top_node;

loopl (LEVELS) {

points=0;
elements=(int)pow (2.0, (double) (LEVELS-1)):

loopn (N_DELTA_T/elements) {
current_node->input=squash (current_node->input,max,0,1.0,0);
if (current_node->r_ptr != NULL) {
current_node=current_node->r ptr;

}

}

if(rgrid_list->current->lleg ptr != NULL){
rgrid_list->current=rgrid_list->current->lleg _ptr;
current_node=rgrid list->current;

}

}

}

printf ("end of squash loop\n"):;
/QnRﬂﬂttﬁttttiﬁﬁt*ﬁtﬁtttt!*iitttﬁ*tfﬁtttﬁtiitt*ttt*ii*itntttﬂ*ttttitt*ﬂtttt/
/*xxxwrxkurtssr the following computes lateral inhibition ***axssxsxassanes/
loopm (M_TOTAL_DTS) {

printf ("\nstarting LIN at time %d\n",m);

loopi (50) {

top_node=&node m];

current_node=top_node;
rgrid_list->current=top_node;

loopl {(LEVELS) {
elements=(int)pow (2.0, (double) (LEVELS-1)):

loopn (N_DELTA_T/elements) {
compute_activity(current_node,l,i,atoi{argv{2]));
if (current_node->r_ptr != NULL) {
current_node=current_node->r_ptr;

}

}

if(rgrid_list->current->lleg ptr != NULL){
rgrid_list~>current=rgrid list->current->lleg ptr:
current_node=rgrid list->current:

}

}

top_node=&node [m] ;

current_node=top_node:
rgrid_list->current=top_node;

loopl (LEVELS) {
elements=(int)pow (2.0, (double) (LEVELS-1}):

loopn (N_DELTA_T/elements) {

compute_output (current_node) ;

if (current_node->r_ptr != NULL){
current_node=current_node->r_ptr;

}

}

if(rgrid_list->current->lleg ptr != NULL){
rgrid_list->current=rgrid_list->current->lleg ptr;
current_node=rgrid list->current:;

}

}

156

}
}
VARAREELERELE LSS NNY Vol of lateral inhibition ‘nttttkttatttttttntnat'tittﬁat:t/
Jrrraxxnaswrrnt the follOwing energy normalizes rrsksxtaksddanans/
printf ("\nstarting energy normalization\n”,m);
loopm (M_TOTAL_DTS) {
top_node=gnode (m) ;
itop_node=¢inode[m];
current_node=top_node;
icurrent_node=top node;
rgrid_list->current=top_node;
igrid_list->current=itop_node;
/** find the total energy and truncated energy at each r2solution **/
loopl (LEVELS) {
elements=(int)pow (2.0, (double) (LEVELS-1)):
loopn (N_DELTA_T/elements) {
energy_tot += (float)pow((double)current_node->input,2.0):
if (current_node->output !=0)
energy_trunc += (float)pow((double)current_node->input,2.0);
if (current_node->r ptr != NULL)
current_node=current_node->r_ptr;
}
current_node=rgrid list->current;
/** multiply both the real and imag coefficients by the energy change **/
loopn (N_DELTA_T/elements) {
current_node->iproduct_val *= energy_tot/energy trunc:
icurrent_node-~>iproduct_val *= energy_tot/energy trunc:
if (current_node->r ptr != NULL) {
current_node=current_node->r_ptr;
icurrent_node=icurrent_node->r_ptr;
}
}
if(rgrid_list->current->lleg_ptr != NULL) {
rgrid_list->current=rgrid_list->current->lleg_ptr;
igrid_list->current=igrid_list->current->lleg_ptx;
current_node=rgrid list->current;
icurrent_node=igrid_list-~>current:
}
}
}

/tttt.ﬂﬂ!ttﬂﬁ!ﬁﬂkt end of energy noImallzation ttt!iﬁﬂiﬂﬁ"tﬂtti!tﬁliﬂ!.ti/

/rrrenarnrtes the following regenerates signal from compressed grid ****u*r/
printf("\nstarting to regenerate signals\n”);
loopm (M_TOTAL_DTS) {

top~node=snode[m];

itOp_node’éinode(m);

current_node=top_node;

icurrent_node=top_node;
rgrid_list->current=top_node;
igrid_list->current=itop_node;

loopl (LEVELS) {

points=0;
elements=(int)pow (2,0, (double) (LEVELS-1)):

loopn (N_DELTA_T/elements) {

if (current_node->output !=0){
regenerate_signal (éshortsignal [OVERLAP*N_DELTA T],
twavelet_ list(1],

elements, points,m,current_node->iproduct_val):
regenerate_signal (éshortsignal [OVERLAP*N_ DELTA Tj,
tiwavelet list{l],
elements,points,m,icurrent_node->iproduct_val):

)

else(

157

regenerate_signal (éshortsignal [OVERLAP*N_DELTA T],
swavelet list{l],

elements,points,m,0);

regenerate_signal (éshortsignal [OVERLAP*N_DELTA T],
siwavelet list(l],

elements,points,m,0);

}

points +=elements;

if (current_node->r_ptr !'= NULL) {
current_node=current node->r_ptr;

icurrent _node=icurrent_node->r_ptr:

}

}

if (rgrid_list->current->lleg_ptr != NULL) {
rgrid_list->current=rgrid_list->current->lleg_ptr;
igrid_list->current=igrid list->current->lleg_ptr:
current_node=rgrid_list->current;
icurrent_node=igrid_list->current;

}

}

)

printf ("regenerated short signal\n");
/ttltitttﬂiﬁtittﬁti*iﬁ!tt*tit*tﬂtitﬁttttttti*ii*i*itlﬁitt*tt!tt.Qtitﬁﬁtﬁt.ttﬂt/
/rrxxaakarx the following outputs the grid and compressed grid outputs **rasxi/
if ((£3 = fopen("grid.dat”,"w")) == NULL) ({

printf ("\n*** Can’t create %s ***" "grid.dat"):

exit (0):

}

if ((f4 = fopen(”"compressed.dat”,”w”)) == NULL)} {
printf("\n*** Can’t create %s ***", "compressed.dat");
exit (0)

}

loopm (M_TOTAL_DTS) {

top_node=&node [m}

current_node=top_node:;
rgrid_list->current=top_node:

loopl (LEVELS) {

points=0;
elements=(int)pow (2.0, (double) (LEVELS-1)):
loopn(N_DELTA_T/elements) {

if (current_node->output!=0) /*change this if */
fprintf (£4,"%5.3g ", current_node->input);

else

fprintf (£4,"%5.39g ",0);

fprintf(£3,"%5.3g ", current_node->input);

if (current_noc¢ ~>r _ptr != NULL){
current_node=current node->r_ptr;

}

}

fprintf(£3,"\n");

fprintf(£4,"\n");
if(rgrid_list->current->lleg_ptr != NULL) {
rgrid_list->current=rgrid_list->current->lleg ptr;
current_node=rgrid_list->current;

}

}

}

printf ("outputted grid and compressed grid data\n"):
/IQ'tl..Qt.tﬁ'i.tﬂﬁt....'.!ﬁlﬁ.'ﬁﬁ‘.ﬁ.tlQt’ﬁ"ﬂﬁ'ﬁit.ﬁ.‘.tﬁ..Q.'lﬂ'.t!!t.'ﬁtﬁ./
if ((£2 = fopen("new_signal.dat™, "w")) == NULL) {
printf("\n*** Can’t create %s ***","new_signal.dat");
exit (0) ¢

}

loopm (TOT)

fprintf (£2,"%£\n",newsignal [m+OVERLAF *N_DELTA_T}) ;

158

if ((£5 = fopen("short_signal.dat™, "w")) == NULL) {
printf ("\n*** Can’t create %s ***","short_signal.dat"):
exit (0);

i

loopm (TOT)

fprintf (£5,"%£\n", shortsignal [m+OVERLAP*N_DELTA_T]}):

loopi (TOT) {

temp[i)=(short)newsignal [i+OVERLAP*N_DELTA_T];
temp2[i]=(short)shortsignal [i+OVERLAP*N_DELTA_T]:

}

/* get length of input file not counting null terminator */
s_len=strlen(argv[l)):

/* start name of newsoundfile with "new_" */

strcpy (newsoundfile, "new_");

/* start name of shortsoundfile with "short_" */

strcpy (shortsoundfile, "short_"):

/* concatenate input file name to "new_" in newsoundfile{] */
strcat (newsoundfile,argv({l]); /* newsound[]=new_filename.snd */
/* concatenate input file name to "short_" in shortsoundfile[] */
strcat (shortsoundfile,argv(l}): /* shortsound{]=short_filename.snd */
SNDWriteSoundfile (newsoundfile, convertStruct);

SNDWriteSoundfile (shortsoundfile, shortStruct):

fclose(fl):
fclose(£2);
fclose(£3);
fclose (£4);
fclose (£5):

159

10.

11

12.

Bibliography

. Alenquer, Luis M. F. Rule Based Sinusoidal Encoding of Speech. MS thesis,

AFIT/GE/ENG/90M-1, Air Force Institute of Technology, Wright-Patterson AFB
OH, March 1990.

. Ashmore, Jonathan F. “The Cellular Physiology of Isolated Outer Hair Cells:

Implications for Cochlear Frequency Selectivity.” In Moore, Brian C.J. and Roy D.
Patterson, editors, Auditory Frequency Selectivity, pages 103-108, New York:
Plenum Press, 1986.

. Aware, Inc. Develop, Apply, and Evaluate Wavelet Technology. Quarterly Technical

Report AD900302, Cambridge, MA: Aware, Inc., March 1990.

. Bashir, Nadeem A. Phoneme Adjustment in Enhanced Speech. MS thesis,

AFIT/ENG/89M-2, Air Force Institute of Technology, Wright-Patterson AFB OH,
March 1989 (AD-A206 357).

. Bastiaans, Martin J. “Gabor’s expansion of a signal into Gaussian elementary

signals,” Proceedings of the IEEE, 68(4):538-539 (April 1980).

. Bastiaans, Martin J. “A sampling theorem for the complex spectrogram, and

Gabor’s expansion of a signal in Gaussian elementary signals,” Optical Engineering,
20(4):594-598 (July/August 1981).

Bovik, Alan Conrad, et al. “Multichannel] texture analysis using localized spatial
filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):55—
73 (January 1990).

. Brownell, William E. “Outer Hair Cell Motility and Cochlear Frequency Selectivity.”

In Moore, Brian C.J. and Roy D. Patterson, editors, Auditory Frequency Selectivity,
pages 109-118, New York: Plenum Press, 1986.

Claasen, T.A.C.M and W.E.G. Mecklenbrduker. “The Wigner distribution—a tool
for time—frequency signal analysis, Part I: Continuous-time signals,” Philips Journa!
of Research, 35:217-250 (1980).

Claasen, T.A.C.M and W.E.G. Mecklenbrauker. “The Wigner distribution—a tool
for time—frequency signal analysis, Part II: Discrete-time signals,” Philips Journal
of Research, 35:276-300 (1980).

Claasen, T.A.C.M and W.E.G. Mecklenbriduker. “The Wigner distribution—a tool
for time—frequency signal analysis, Part III: Relations with other time-frequency
signal transformations,” Philips Journal of Research, 35:372-389 (1980).

Coifman, R.R. “Wavelet Analysis and Signal Processing.” In Auslander, L., et al,,
editors, Signal Processing, Part I: Signal Processing Theory, pages 59-73, New
York: Springer-Verlag, 1990.

160

13.

14.

15.

16.

17.

18.

19.

20.

22.

23.

24.

26.

27.

Daubechies, Ingrid. “Orthogonal bases of compactly supported wavelets,” Commu-
nication on Pure and Applied Mathematics, XLI:909-996 (1988).

Daubechies, Ingrid. “The wavelet transform, time-frequency localization, and signal
analysis,” IEEE Transactions on Information Theory, 36(5):961-1005 (September
1990).

Daubechies, Ingrid, et al. “Painless nonorthogonal expansions,” Journal of Mathe-
matical Physics, 27:1271-1283 (1986).

Daugman, John G. “Complete discrete 2-D Gabor transforms by neural networks
for image analysis and compression,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, 36(7):1169-1179 (July 1988).

Dudley, Homer. “Remaking speech,” Journal of the Acoustical Society of America,
11:169-177 (1939).

Duffin, R.J. and A.C. Schaeffer. “A class of nonharmonic tourier series,” Transac-
tions of the American Mathematical Society, 72:1271-1283 (1952).

Einziger, P.D. “Numerical implementation of the Gabor representation,” Electronic
Letters, 24:810-811 (1988).

Ellias, Samuel A. and Stephen Grossberg. “Pattern formation, contrast control, and
oscillations in the short term memory of shunting on-center off-surround networks,”
Biological Cybernetics, 20:69-98 (1975).

. Fastl, Hugo and Edwin Schorer. “Critical Bandwidth at Low Frequencies Recon-

sidered.” In Moore, Brian C.J. and Roy D. Patterson, editors, Auditory Frequency
Selectivity, pages 311-322, New York: Plenum Press, 1986.

Friedlander, Benjamin and Boaz Porat. “Detection of transient signals by the Gabor
representation,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
37(2):169-180 (February 1989).

Gabor, D. “Theory of communication,” The Journal of the Institution of Electrical
Engineers, 93:429-457 (1946).

Gabor, D. “New possibilities in speech transmission,” The Journal of the Institution
of Electrical Engineers, 94:369-390 (1947).

. Grossberg, Stephen. “Contour enhancement, short term memory, and constancies in

reverberating neural networks,” Studies in Applied Mathematics, 52:217-257 (1973).

Grossberg, Stephen. “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural Networks, 1(1):17-61 (1988).

Grossberg, Stephen and Daniel Levine. “Some development and attentional biases
in the contrast enhancement and short term memory of recurrent neural networks,”
Journal of Theoretical Biology, 53:341-380 (1975).

161

28.

29.

30.

3L

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42,

43.

Grossman, A. and J. Morlet. “Decompocition of functions into wavelets of constant
shape, and related transforms.” In Mathematics and Physics, Lectures on Recent
Results, pages 135-165, Singapore: World Scienfific, 1985.

Gulick, W. Lawrence, et al. Hearing: Physiological Acoustics, Neural Coding, and
Psychoacoustics. New York: Oxford University Press, 1989.

Harris, Fredric J. “On the use of windows for harmonic analysis with the discrete
Fourier transform,” Proceedings of the IEEE, 66(1):51-83 (January 1978).

Heil, Christopher. “Wavelets and Frames.” In Auslander, L., et al., editors, Signal
Processing, Part 1: Signal Processing Theory, pages 147-160, New York: Springer-
Verlag, 1990.

Heil, Christopher E. and David F. Walnut. “Continuous and discrete wavelet
transforms,” SIAM Review, 31(4):628-666 (December 1989).

Helstrom, Carl W. “An expansion of a signal in Gaussian elementary signals,” IEEE
Transactions on Information Theory, IT-12:81-82 (January 1966).

Hodgkin, A.L. and A.F. Huxley. “A quantitative description of membrane current
and its application to conduction and excitation in nerve,” Journal of Physiology,
117:500-544 (1952).

Jacobson, D. and Harry Wechsler. “Joint spatial/spatial-frequency representation,”
Signal Processing, 14:37-68 (1988).

Janssen, A.J.LE.M. “Gabor representation of generalized functions,” Journal of
Mathematical Analysis and Applications, 83:377-394 (1981).

Janssen, A.J.LEM. “The Zak transform: A signal transform for sampled time-
continuous signals,” Philips Journal of Research, 43:23—69 (1988).

Kabrisky, Matthew, et al. “Reconstruction of Mutilated Speech,” IEEE Aerospace
and Electronics Systems Magazine, pages 39-43 (September 1989).

Kim, D.O. “Functional Roles of the Inner and Outer-Hair-Cell Subsystems in the
Cochlea and Brainstem.” In Berlin, Charles I., editor, Heaing Science: Recent
Advances, chapter 7, pages 241-262, San Diego: College Hill Press, 1984,

Knudsen, Eric I. “Center-surround organization of auditory receptive fields in the
owl,” Science, 202(17):778-780 (November 1978).

Lazzaro, J., et al. “Winner-take-all Networks of O(/N') Complexity.” In Touretzky,
David S., editor, Advances in Neural Information Processing Systems I, pages
703-711, San Mateo, CA: Morgan Kaufman Publishers, Inc., 1989.

Lippmann, Richard P. “Review of Neural Networks for Speech Recognition,” Neural
Computation, 1:1-38 (1989).

Ludeman, Lonnie C. Fundamentals of Digital Signal Processing. New York: John
Wiley and Sons Inc., 1986.

162

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

. Mallat, Stephane G. “A theory for multiresolution signal decomposition: The wavelet

transform,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(7):674-693 (July 1989).

Mallat, Stephane G. and Sifen Zhong. Complete Signal Representation With Multi-
scale Edges. Technical Report 483, New York: New York University, Department
of Computer Sciences, Courant Institute of Mathematical Sciences, December 1989.

Marr, D. and E. Hildreth. “A theory of edge detection,” Proceedings of the Royal
Society of London, 207:187-217 (1980).

Martens, Jean-Bernard. “The Hermite Transform~Theory,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, 38(9):1595-1606 (September 1990).

McAulay, R.J. and T.F. Quatieri. “Magnitude only reconstruction using a sinusoidal
speech model.” In Proceedings of the International Conference of Acoustics, Speech,
and Signal Processing, pages 27.6.1-27.6.4, 1984.

McMillan, Vance M. Rule-Based Frequency Domain Speech Coding. MS thesis,
AFIT/GE/ENG/90D, Air Force Institute of Technology, Wright-Patterson AFB OH,
December 1990.

Moore, Brian C.J. and Brian R. Glasberg. “Suggested fomulae for calculating
auditory-filter bandwidths and excitation patterns,” Journal of the Acoustical Society
of America, 74(3):750-753 (September 1983).

Morlet, J., et al. “Wave propagation and sampling theory,” Geophysics, 47(2):203—
236 (February 1982).

Nabet, Bahram, et al. “Analog Implementation of Shunting Neural Networks.” In
Touretzky, David S., editor, Advances in Neural Information Processing Systems I,
pages 695-702, San Mateo, CA: Morgan Kaufman Publishers, Inc., 1989.

Parsons, Thomas W. Voice and Speech Processing. New York: McGraw-Hill Book
Company, 1987.

Patterson, R.D. “Auditory filter shapes derived with noise stimuli,” Journal of the
Acoustical Society of America, 59:640-654 (1976).

Pisoni, David B. “Speech perception: Some new directions in research and theory,”
Journal of the Acoustical Society of America, 78:381-388 (1985).

Porat, Moshe and Yehoshua Y. Zeevi. “The generalized Gabor scheme of image
representation in biological and machine vision,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10:452-468 (1988).

Quatieri, Thomas E. and R.J. McAulay. “Speech transformation based on a sinusoidal
representation.” In Proceedings of the International Conference of Acoustics, Speech,
and Signal Processing, pages 13.5.1-13.5.4, 1985.

Rabiner, Lawrence R. and Ronald W. Schafer. Digital Signal Processing of Speech.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1978.

163

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Ratliff, F. Mach Bands: Quatitative Studies on Neural Networks in the Retina. New
York: Holden-Day, 1965.

Ratliff, F,, et al. “Spatial and temporal aspects of retinal inhibitory interactions,”
Journal of the Optical Society of America, 53:110-120 (1963).

Reed, Todd R. and Harry Wechsler. “Segmentation of textured images and gestalt
organization using spatial/spatial-frequency representations,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(1):1-11 (January 1990).

Sellick, P.M and 1.J. Russell. “Two-tone suppression in cochlear hair cells,” Hearing
Research, 1:227-236 (1979).

Shamma, Shihab A. “Speech processing in the auditory system II: Lateral inhibition
and the central processing of speech evoked activity in the auditory nerve,” Journal
of the Acoustical Society of America, 78(5):1622-1632 (November 1985).

Shepherd, Gordon M. Neurobiology (Second Edition). New York: Oxford Univer-
sity Press, 1988.

Sklar, Bemnard. Digital Communications: Fundamentals and Applications. Engle-
wood Cliffs, NJ: Prentice Hall, 1988.

Strang, Gilbert. “Wavelets and dilation equations: A brief introduction,” SIAM
Review, 31(4):614-627 (December 1989).

Tumner, M.R. “Texture discrimination by Gabor functions,” Biological Cybernetics,
55:71-82 (1986).

Weyl, H. Theory of Groups and Quantum Mechanics. New York: Dutton, 1932.

Wiederhold, Michael L. “Physiology of the Olivocochlear System.” In Altschuler,
Richard A., et al., editors, Neurobilogy of Hearing, pages 349-370, New York:
Raven Press, 1986.

Zwicker, E. and E. Terhardt. “Analytical expressions for critical-band rate and
critical bandwidth as a function of frequency,” Journal of the Acoustical Society of
America, 68(5):1523-1525 (November 1980).

164

Vita

Captain Richard Ricart was born on February 1, 1954 in Havana, Cuba. He
immigrated with his family to the United States in 1960, and took up residence in Miami,
Florida. Captain Ricart graduated from Miami Coral Park Senior High School, Miami,
Florida in 1972 and joined the City of Miami Fire Department in 1975, where he worked
as a firefighter/paramedic until January, 1984. In June, 1984 he graduated Magna Cum
Laude from the University of Miami in Coral Gables, Florida, with a B.S.E.E and soon
after received his commission from Officer Training School in October 1984. His first
assignment was to the Avionics Laboratory at Wright-Patterson AFB, OH, where he served
as an Artificial Intelligence Systems Engineer, System Avionics Division until entering

the School of Engineering, Air Force Institute of Technology in May 1989.

Permanent address: 2711 State Route 235
Xenia, Ohio 45385

165

form Approved

REPORT DOCUMENTATION PAGE OMB No 07040188

1. AGENCY USE ONLY (ieave piank) | 2. REPORT DATE 3. REFORT TYPE AND DATES COVERED !
December 1990 Master’s Thesis !

4. TITLE AND SUBTITLE 5. FUNDING NUMEBERS
Speech Coding and Compression Using Wavelets and Lateral Inhibitory Networks

6. AUTHOR(S)
Richard Ricart, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

) ; REPORT NUMEER i
Air Force Institute of Technology, WPAFB OH 45433-6583
oree Institute ot fechnology. AFIT/GE. ENG/90D-51

G. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING ' MONITORING
RADC/IRAA, Griffiss AFB, NY 13441 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT . 12b. DISTRIBUTION CODE
Approved for Public Release; Distribution Unlimited.

13, ABSTRACT /Marximum 200 words) o .
A generalized method of compressing speech using lateral inhibition networks (LINs) is proposed in this thesis. Speech

signals are first decomposed using three time/frequency transforms: the short-time Fourier transform, the Gabor transform,
and the affine wavelet transform. Redundant time/frequency coefficients are then automatically eliminated using the
dynamics of a LIN. The speech is finally resynthesized from the compressed representations and tested for intelligibility.
The LIN is modeled as a system of shunting non-linear differential equations in the form of the neuronal cell membrane
equations first found by Hodgkin and Huxley. Thus, the LIN can be described as a neural network. LINs perform several
functions; the most important being contrast enhancement. In contrast enhancement, spatial peaks and edges as well
as temporal changes are highlighted. The best results were obtained from the compressed short-time Fourier spectrum.
Nearly 30 times compression—which relates to over 95% elimination of the spectrum—vesulted in clearly intelligible
speech. However, elimination of only a small percentage of the affine wavelet spectrum produces wide band noise that is
offensive to the hearing mechanisms.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Speech Coding, Speech Compression, Wavelets, Lateral Inhibition Networks, Gabor
Transform 15. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

NST 754007 2RG-3500 Standarg Feem 298 Rey -89,

P e b, At 1Sy

