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Preface

The purpose of this paper is to introduce the concept of lateral inhibition as a

generalized technique for compressing time/frequency representations of electromagnetic

and acoustical signals, particularly speech. This requires at least a rudimentary treatment

of the theory of frames-which generalizes most commonly known time/frequency

distributions-the biology of hearing, and digital signal processing. As such, this

material, along with the interrelationships of the disparate subjects, is presented in a tutorial

style. This may leave the mathematician longing for more rigor, the neurophysiological

psychologist longing for more substantive support of the hypotheses presented, and the

engineer longing for a reprieve from the theoretical barrage. Despite the problems that

arise when trying to appeal to too wide an audience, I hope this thesis is a cogent analysis

of the compression of time/frequency distributions via lateral inhibitory networks.

I want to thank my thesis committee for their guidance, which was instrumental in

helping me cohere the topics investigated. Individual thanks to Col. David Norman for

his immediate and helpful feedback regarding questions in digital signal processing, Dr.

Bruce Suter and his colleague Dr. Mark Oxley for the hours they devoted in reviewing

the wavelet/frames mathematical literature with me, and to Maj. Steve Rogers for his

superb insight and his ability to immediately pick out the weaknesses and strengths of

the research as it progressed. Most importantly, my deepest and most sincere thanks to

my advisor, Dr. Matthew Kabrisky, which has made my AFIT experience so rewarding.

Without his broad knowledge in biology and engineering this research effort would not

have been the success I feel it is. I have truly enjoyed our many lively discussions and

gedanken experiments. Final thanks to my friends Capt. Dennis Ruck and Capt. Greg

Tarr for sharing their expertise in Unix and C programming with me, and to Pam Young

for her administrative assistance and her cheerful disposition.

Richard Ricart
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Abstract

A generalized method of compressing speech using lateral inhibition networks

(LINs) is proposed in this thesis. Speech signals are first decomposed using three

time/frequency transforms: the short-time Fourier transform, the Gabor transform, and the

affine wavelet transform. Redundant time/frequency coefficients are then automatically

eliminated using the dynamics of a LIN. The speech is finally resynthesized from the

compressed representations and tested for intelligibility. The LIN is modeled as a system

of shunting non-linear differential equations in the form of the neuronal cell membrane

equations first found by Hodgkin and Huxley. Thus, the LIN can be described as a

neural network. LINs perform several functions; the most important being contrast

enhancement. In contrast enhancement, spatial peaks and edges as well as temporal

changes are highlighted. The best results were obtained from the compressed short-time

Fourier spectrum. Nearly 30 times compression-which relates to over 95% elimination

of the spectrum-resulted in clearly intelligible speech. However, elimination of only a

small percentage of the affine wavelet spectrum produces wide band noise that is offensive

to the hearing mechanisms.



Speech Coding and Compression Using Wavelets

and

Lateral Inhibitory Networks

I. Introduction

Background

The primary method of communication between humans is speech. Speech is so

natural that people have demanded from science and technology the means by which the

human voice can be transmitted in communication systems. As far as the technology

is concerned, easier, more efficient communication methods are possible-Morse-code

transmission for instance. However, these alternative methods require practice and training

by the user. It is much more convenient for a person to pick up a telephone and simply

talk rather than tap codes on a key. With increasing reliance on machines, particularly

computers, the demand for natural communication systems between machines and their

operators has grown as well.

The demands for natural speech communication systems have created specific

speech processing applications. Some of the most common applications include speech

compression, for more efficient transmission and storage of the speech signal; speech

synthesis, for voice response systems; speech recognition; speaker recognition and

verification; speech processing aids for the hearing impaired; and speech enhancement of

noisy or mutilated speech [4, 38, 49, 53, 58].

The fundamental ques~.on in speech processing, regardless of the application is:

how is the speech signal to be characterized or represented? How the speech signal is

represented is crucial, for that representation must contain the information conveyed by



the speaker in a way that can be extracted by the given system. Rabiner and Schafer

proposed two major considerations in a speech processing system:

1. Preservation of the message content in the speech signal.

2. Representation of the speech signal in a form that is flexible so that
modifications may be made to the speech signal without seriously
degrading the message content. [58:2]

These considerations are tlie cruces of this research.

The question of representation takes on the greatest meaning in automatic speech

recognition. After nearly half a century of research, the recognition of natural speech is

still mostly an unsolved problem. In a recent review, Lippmann [42] reported that the best

recognizers are able to achieve only 50% sentence accuracy. Because of the slow progress

in resolving the major problems in speech recognition, some researchers are questioning

the traditional speech representation schemes [55]. These traditional schemes revolve

around the short-time Fourier transform, and Linear Predictive Coding (LPC) [53, 58].

Instead, calls for studying more natural speech encoding methods are growing.

Recently, researchers have studied the output of inner ear models as feature

sets (representations) for recognition systems [42, 55]. Lippmann [42] reported initial

comparative studies that show biologically motivated preprocessors are significantly

increasing the performance of current recognizers, particularly in the presence of noise.

However, the inner ear models are very computationally intensive and are not useful for

practical systems.

In this thesis, an alternative to a full inner ear model is examined. This alternative is

the compressed wavelet representation via a nonlinear lateral inhibitory network (LIN) (see

Chapters II and III). Briefly, the wavelet representation of speech-indeed, of an arbitrary

signal-may be defined as the summation of a finite number of weighted wavelets or

elementary signals shifted in time and frequency, or shifted in time and dilated-depending

2



on the class of wavelet [66]. The wavelets are defined locally in time and modulated;

thus, this representation describes the local frequency variations of a signal.

Besides sharing important characteristics with biological models, the wavelet

representation can be computed using algorithms of complexity comparable to the fast

Fourier transform (FFT). Therefore, this representation has the potential of providing

the benefits of inner ear model feature sets at a significantly reduced computational

cost. Furthermore, LINs provide additional characteristics, such as automatic gain control

(AGC), enhancement of signals in noise, and substantial information reduction capabilities

that may prove useful in the coding and compression of speech.

Recent mathematical advances have generalized a wide range of time/frequency

analyses by means of wavelets and their associated frames. Frames and frame operators,

along with specific examples, are defined in the following chapter. For now it is sufficient

to think of these as an umbrella description for time/frequency representations. One of

the main goals of this research is to match this general description of signals-speech

or otherwise-with a general approach to compressing these representations based on

proven biological methods. Indeed, the methods developed here for compressing three

specific wavelet representations of speech can be generalized to compress any wavelet

transform space defined under the Weyl-Heisenberg and affine classes. These methods

can be applied to analyzing and coding a wide range of electromagnetic and acoustic

phenomena.

Problem Statement

The purpose of this research is to develop non-linear lateral inhibitory networks

for coding and compressing the affine and Weyl-Heisenberg wavelet representations of

speech. The compression schemes developed are also tested for enhancing noisy speech.

3



Assumptions

In order to perform the analyses described above, all speech signals are sampled at

8 kHz. Energy in speech drops at the rate of 6 dB/octave above 600 Hz and there is little

above 4 kHz. Thus, 8 kHz is a usable sampling rate.

The speech signals are recorded in a functioning signal processing laboratory without

guarding against background noise. In addition, additive white Gaussian noise (AWGN)

is used to corrupt the speech signals in the noise filtering analysis.

Scope

The vocabulary used in this thesis is the spoken digits, zero through nine. In

addition, the phrase

Hot today; chilly and cold tomorrow

is used to test the effects of continuous speech. This phrase is chosen because of the good

balance between the fricatives and the vowel sounds found in the words.

Standards

The results of compressing the speech signals in this effort are compared against

the results of similar research conducted at New York University, Courant Institute of

Mathematical Sciences, and at the Air Force Institute of Technology (AFIT) using more

conventional speech compression schemes.

The data compression and noise filtering analyses are compared against the analyses

of Alenquer [1], Bashir [4], Kabrisky et al. [38], and McMillan [49]. The research cited

assumes that speech can be coded using a relatively small number of spectral components

[48, 57]. The spectral components were found via the short-time Fourier transform using a

Hamming window with 50% overlap. The spectral components were then t:uncated using

a rule-based system. Thus, the comparison is between different representation schemes

4



as well as different compression schemes-a rule-based system versus a dynamical LIN

system. A final comparison is made between the compression results of this research and

those of Mallat and Zhong [45]. In that study, the investigators were able to completely

reconstruct signals from only the local extrema of the affine wavelet representation.

Equipment

All software development is performed on a NeXT computer. This machine has a

resident signal processor, the Motorola 56001 Digital Signal Processor, which is used for

inputting, digitizing, and processing all voice signals.

The NeXT's built-in microphone jack is connected to an analog-to-digital converter

known as the CODEC (coder-decoder). The CODEC uses a 8012.8 Hz sampling rate and

8-bit s-law non-uniform quantization.

Approach

The 8 kHz sampled speech is decomposed into time/frequency components using

three different wavelet transforms. These are the short-time Fourier transform, the Gabor

transform, and the affine wavelet transform. Although not usually considered as wavelet

transforms, the short-time Fourier transform and the Gabor transform are special cases of

wavelet operators in Weyl-Heisenberg frames [31, 32] (see Chapter II for further details).

After decomposition, the respective wavelet time/frequency components of each

signal are then compressed by the LIN. It is then determined whether these compressed

representations can yield intelligible speech after reconstruction. If so, the results produced

from each representation are compared. These results are also compared to the results

found in [4, 45, 49]. Bit rates are then estimated for each representation. This rate is

compared to the rate determined in [49] and current state-of-the-art bit rates. Finally,

the speech signals are corrupted by AWGN, processed, compressed, and reconstructed.

The reconstructed signals are tested for intelligibility and the signal-to-noise ratio is

established.

5



Sumnmary

This introductory chapter has outlined the main problem addressed in this research

effort. In short, this research investigates a general method of compressing wavelet frame

spaces using biologically inspired lateral inhibition networks. More specifically, the

combined wavelet transform/LIN process is investigated for compressing and reducing

noise in speech signals. A brief description of the approach, the scope, and the standards

used was also given. In Chapter II, the wavelet frame is defined in the more exact language

of mathematics. Preceding this definition, a brief background discussion is provided of

several well known time/frequency analysis schemes, including the short-time Fourier

transform and the Gabor transform, and how they fit in the wavelet frame taxonomy.

Finally, the chapter concludes with the biological considerations that are most relevant to

this research. Chapter III describes of the methodology and the system design. Chapter

IV discusses the results and the comparisons to similar research. Finally in Chapter V, the

conclusions and recommendations are given.
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I. Literature Review

Introduction

This chapter begins with a brief historical perspective of a number of

time/frequency analyses. Their interrelationship and their classification under the more

general wavelet frames is also given. The short-time Fourier transform, the Gabor trans-

form, and the affine wavelet transform are then defined. The discussion then turns towards

the biological. Some putative dynamics of the inner ear and LINs are introduced. These

biological considerations are important because they highlight the shared computational

analysis performed by the inner ear and operators in affine frames. Furthermore, these

biological considerations play a fundamental role in the design of the system used in

this research. The full connection between the biology and affine frames, and how this

connection influences the system design is found in Chapter III.

Background

In 1946, Gabor [23] introduced a method of representing signals simultaneously in

time and frequency. A year later, he demonstrated this by using an optical/mechanical

apparatus he designed and called the frequency converter [23]. The device sampled the

speech signal-which was recorded on 35mm sound film--optically decomposed the

signal into the Gabor spectrum and compressed the sampled signal onto a photocell via

microscope lenses, and finally reconstructed the signal by refocusing the image on the

photocell onto another sound film. Although much different in design, the frequency

converter worked on a similar principle to that of the channel vocoder developed by

Homer Dudley a few years earlier [17]. In essence, this principle determines a sliding

interval of the signal and decomposes that portion of the signal into its constituent

frequency components. One can think of the result of this analysis as a two dimensional

representation of the signal with time on one axis and frequency on the other. The

resolution in both the time and frequency axes is determined by the chosen interval.

7



This type of analysis differs from formal Fourier analysis, which would decompose

the entire time signal into frequency components in a one-dimensional representation.

Although one has access to all the frequencies of the signal using this method, one can

not determine when in the signal these frequencies occur. Knowing where particular

frequencies occur in a speech signal is crucial in speech processing.

The vocoder can be thought as computing the short-time Fourier transform [58:341-

344]-also referred to as the complex spectrogram-therefore, it is not by accident that

the Gabor transform and the short-time Fourier transform are related [6]. As the name

implies the short-time Fourier transform determines the frequency components of short

time samples of a signal. The most important distinction between the two is that the

Gabor transform is more localized in frequency than the spectrogram, i.e., with the use

of a Gaussian window function, the Gabor representation "provides the best spectral

nformation for every point along the signal variation" [56:452].

Notwithstanding, Gabor's method did not become popular with the communica-

tion and signal analysis communities mainly owing to the lack of an explicit method

of determining the Gabor coefficients--due to the non-urthogonality of the Gaussian

window-and the frequency converter's impracticality for communication purposes [24].

Questions concerning the completeness and uniqueness of the Gabor expansion were also

raised. The short-time Fourier transform, thus, became one of the main analytical tools in

speech processing and continues to be today.

Interest in the Gabor representation waxed in the early 1980s as a result of two

key findings. Bastiaans [5, 6] found a method of computing the Gabor coefficients by

means of an auxiliary function. The importance of the finding rests with the fact that the

coefficients can be determined using the efficient FFT [19]. Janssen [36], on the other

hand, proved the completeness of Gabor expansions; however, he also proved that these

expansions are not unique.

It is interesting to note that the Gabor representation has become popular in image

analysis [7, 16, 56, 67]; however, it is still not very popular for analyzing temporal

8



signals. Gabor originally introduced his frequency/time representation in order to study

the compression of speech for communication purposes [24]--the main subject revisited

in this research.

Gabor's contention that the Gaussian window provides the best resolution in time

and frequency-first proven by Weyl [681---has recently been questioned by [35, 61].

Weyl's proof is based on finding the product of the individual uncertainties in time

and frequency. Wechsler and his colleagues [35, 61] argue that "...the proper way to

measure conjoint resolution of a joint representation is to derive such a measure directly

from the joint representation itself" [35]. Furthermore, these authors show that the

Gabor representation and the short-time Fourier transform are smoothed versions of the

(cross-)Wigner distribution [9, 10, 11].

Quite recently, the (cross-)Wigner, Gabor, and short-time Fourier transforms have

been classified as special cases of Weyl-Heisenberg (W-H) frame integral operators

[31, 32]. Duffin and Schaeffer [18] introduced frames for nonharmonic Fourier series

expansions [15] in the early 1950s. In simple terms, a frame consists of a set of kernel

functions or wavelets, which can completely characterize a given function by inner

products of that function with the set of wavelets. Frames can be distinguished from

bases in that neither orthogonality nor uniqueness is a requirement for frames. Frames are

divided into two main classes: W-H frames and affine frames. As will be shown in the

next section, the two frame classes are characterized by two distinct types of wavelets.

This background gave a very brief introduction to a variety of time/frequency anal-

yses and their interrelationship. The short-time Fourier transform, the Gabor transform,

and wavelet transforms in W-H and affine frames are more explicitly defined in the next

few sections.

The Short-Time Fourier Transform

For convenience, all signals are limited to one-dimensional, continuous-time,

square-integrable signals in this chapter. More specifically, y, g E L2(R), where y

9



describes the signal function, g describes the window or wavelet function, and L2 ( R) is

the Hilbert space over the reals. However these restrictions are not required [32]. In

particular, the definitions and properties that follow are generalizable to two-dimensional

spatial images and discrete signals as well. All proofs to the following properties may be

found in the cited material.

As was mentioned in the previous section, the short-time Fourier transform finds

the spectral characteristics of short segments of the signal y(t). More specifically,

f0
Y(r,v ) = f y(t) g*(t - r) exp[-j27rvt] dt (1)

where * denotes complex conjugation, and t, r, v E R. As can be seen from Eq (1), the

short-time Fourier transform is a function of two variables, r and v, associated with time

and frequency respectively [6]. The function 9(t) is known as the window function. In

wavelet parlance, g(t) is the mother wavelet, and Y(r, v) amounts to the inner product

of the translates and modulates of g(t) with y(t) [321. The original function y(t) can be

reconstructed from Y(r, v) by

y(t) = Y (r, v)g(t - r) exp[j27rvt] dr dv (2)

Eq (2) holds for any g. A simple proof of this was provided by Helstrom [33]. Eq

(2) describes how the short-time Fourier transform expands a signal into a continuous

set of translated and modulated wavelets or window functions. The short-time Fourier

transform is also known for discrete signals and has been use" for years in speech

and signal processing [58]. Notwithstanding, the signal processing perspective of the

short-time Fourier transform is somewhat different from the perspective just provided.

The distinction is important; however, it will not be dealt with until Chapter III.

10



The Gabor Representation

In contrast to the short-time Fourier transform, the Gabor representation expands

a signal y(t) into a discrete set of translated and modulated elementary [23] or window

functions Gm,k(t) [6]. Gm,k(t) is defined as follows:

G,,,,k(t) = g(t - ma) exp[j2rk3t] (3)

where k, m E Z. The parameters a and / are associated with the uncertainties At and

Af, respectively, found when attempting to simultaneously define a signal in both time

and frequency [23:432]. The uncertainty relationship between At and Af is defined as

AtAf > 1/2 (4)

This relationship is known as the Heisenberg uncertainty principle in the quantum

mechanics analogue. Weyl found that a Gaussian window 9(t) (see Eq (10)) minimized

Eq (4) [23, 68].

With this in mind, the Gabor expansion of y(t) is defined as

y(t) =C,,G,,k(t)
k=-oo m=-oo

00 010

= E > C,,k g(t - ma) exp[j27rkt] (5)
k=-oo m=-oo

As stated earlier, because of the non-orthogonality of the Gaussian g, solutions to

the Gabor coefficients were not found until recently. It so happens that an infinite number

of solutions to Cr,k are possible [36]. Bastiaans [5, 6] found the following solution:

Cm,k = y(t) y*(t - ma) exp[-j27rkt] dt (6)

11



The function -y(t) is known as the biorthogonal function of g(t) and is defined by the

relationship 00
0g(t)-y(t - ma) exp[-j21rkdt]dt = 6 k m (7)

where 6,, = I for n = 0, and 6,, = 0 for n 0 0 (the Kronecker delta)[6, 19, 22). The

biorthogonal function -y(t), in turn, can be found via the Zak transform [22, 37]. The Zak

transform of g(t) is defined as
00

(Zg)(r,W) = 12 g ( - + kT) exp[-j21rkwT],

0<r<T, O<w<T- ' (8)

where T is the sampling interval. One can now obtain -y(t) by

7y(r) = (9'(dw) (9)
0o (Zg)*(,r,w) d, 9

For Gabor's original Gaussian window

gG(t) = ( ) exp [-7r (t/T)2  (10)

Bastiaans [5, 6] found its biorthogonal function to be

00(t) = (Ko/7r)-3/2exp [7r (t/T)2] y: (-1)"exp[-r(n+l/2)21 (11)
T vf2-n+l/2>t/T

where K0 = 1.85407468. Eqs (10), and (11), with T = 1, are plotted in Figure 1.

Others have investigated alternative window functions for the Gabor representation

[6, 22]. Of special interest is Friedlander and Porat's [22] investigation of the one-sided

exponential window gE(t) for representing transient signals. The function gE(t) and its

12



gG(t) YG(t)

0.8 05

0. 40.

0.21.

-2 -1 2 t

Figure 1. The Gaussian Window (left) and its Biorthogonal Function (right)

biorthogonal function -'E(t) are defined as follows:

gE(t) = exp[-t/r] u(t) (12)

-YE(t) = exp[t/r] [-u(t + 1) + 2u(t) - u(t - 1)] (13)

where u(t) is the unit step function and r is the time constant. The plots of Eqs (12), and

(13) are illustrated in Figure 2.

g~(t) YE(t)

1

0.8

0.6 0.

0.4 -

0.2 0.5

2 4 6 8 lot

Figure 2. The Exponential Window (left) and its Biorthogonal Function (right)
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Janssen [37:26] found the following alternative method of determining the Gabor

coefficients using the Zak transform of the signal and window functions:

Cm,k = j j(Zy)(r,w) (Zg)-'(r,w ) exp[j27rmrt - j27rkwt] dr dw (14)

The main advantage of Eq (6) over Eq (14) is that Eq (6) can be conveniently and easily

approximated via the FFT [19, 22](see Eqs (39), (40), and (41)).

The two-dimensional Gabor representation is illustrated in Figure 3. As the figure

shows, the magnitude of the Gabor coefficients ICmkl are shown uniformly spaced in time

and frequency as defined by a = At and 3 = Af.

A

/I

Figure 3. The Gabor Time/Frequency Analysis

Wavelets

Introduction In this section some very basic definitions of wavelets and their

associated frames are given. Up-to-date surveys of wavelets and their associated frames

have been written by Hell and Walnut [31, 32]. Reference [31] is geared towards
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the engineer. The main contributions to the field of wavelets include the works of I.

Daubechies, A. Grossman, Y. Meyer, and J. Morlet [15, 13, 14, 28]. Other introductions

to wavelets can be found in [12, 66].

As was discussed at the outset of this chapter, the short-time Fourier, Gabor, and

(cross-)Wigner distributions are examples of W-H frame operators [32]. These transforms

compute the inner product of a given function y(t) with the translates and modulates of a

function--or wavelet-g(t). Affine frame operators are characterized by transforms that

also compute the inner product of a function with a wavelet; however, in contrast to W-H

frames, these wavelets are translated and dilated--or constricted, depending on how the

analysis is defined. This is shown in the following subsection.

One of the developments in frame research that is of particular importance to signal

processing is that a method for finding wavelets that produce orthonormal bases in affine

frames has been found [13]. Orthogonality is important when reconstruction from a

compressed set of frequency components if rcqI':IcI. The issue of orthogonality will be

revisited in greater depth in the i.zxt chapter.

Affine Wavelet Transform The affine wavelet transform is defined in this subsection.

To differentiate between the two types of wavelets and to use the notation found in the

wavelet literature, let 0(t) correspond to a wavelet function in an affine frame. The affine

wavelet transform is then defined as [32]

(Wy)(a, Eb) = y(t) Eb/2 4 'Ebt - a) dt (15)

where a, b, c e R. The function y(t) can be reconstructed from (Wy)(a, Eb) by

y(t) = 1. _(Wy)(a, Eb) fb/ 2 , (Ebt - a) da db (16)

As in the case of the other transforms discussed in the preceding two sections, the discrete

versions of Eqs (15), and (16) exist [121.
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A specific case of a wavelet is now defined and used to explain the consequence of

Eq (15) [12]. Consider an orthonormal basis described by translating and constricting the

mother wavelet 4'(t), where V(t) is defined by

1, O<t<1/2
¢(t= 1, 1/2< t< 1 (17)

0, otherwise

where ,k = 2'/2V(2't - k); 1, k E A(; and the support of 0 k is the interval, I, defined by

the inequality 0 < 21t - k < 1. This orthonormal basis V4 is known as the Haar basis

[13]. Eq (17) is plotted in Figure 4.

'v (t)

0.5

-0.5 0

-0.5

-1

Figure 4. The Haar Mother Wavelet

Eq (15), with ,k in the integrand, calculates the frequencies proportional to 2'

contained in y about the interval I. In a linear filtering perspective, Eq (15) can be

modeled by correlating y with a series of overlapping bandpass filters that increase in

bandwidth logarithmically-base 2 in this example-as a function of the filter's center

frequency.

An alternative explanation can be defined in terms of a multilevel resolution analysis.

Let I denote the level of analysis. Furthermore, for simplicity, let the analysis be performed
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over the interval I, defined by the inequality 0 < t < 1, of the signal y(t). At the first

level, I = 0, the analysis of y(t) is performed with the mother wavelet ?Po = V1(t). The

analysis amounts to the inner product of the two functions. At the next level of resolution,

I = 1, the wavelet is constricted or shrunk along the time axis by 1/2, and an inner product

is again computed. Since the interval covered by the wavelet at this resolution is 1/2,

the wavelet is translated once (k = 1) and a second inner product is computed in order

to cover the entire interval I. The wavelet at this level becomes 7P4 = 21/ 2a1(2t - k),

where k = 0, 1. The analysis at subsequent levels is performed similarly by constricting

the mother wavelet by 2-' at level I and computing the inner product of y(t) and t i for

k = 0, 1, ... , 2' - 1. The Haar wavelets at levels 0-3 and at all translations to cover I are

shown in Figure 5.

1.0oi 1j r
60 61

I-0 t

1

I-1t

-17

1- k= klk= k3

i k-O 1 k-1 k.2 : k-3 Io4 k-5 k-6 ' k-7
1. riF- ]r -- r]
.Il IL LiL L U Li UiL

Figure 5. The Haar Wavelet at Four Resolutions

The Fourier transform of V), has a bandwidth proportional to 21. This means the

bandwidth is doubled at each subsequent level of resolution. The time/frequency qnalysi ,

performed by ?P is illustrated in Figure 6. The vertical bars correspond to the amplitude
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of the correlation coefficients that result from the wavelet analysis just described. The

value of the coefficients are defined by their height, which is arbitrary in this example for

instructive purposes. The coefficients are also shown as positive values to simplify the

drawing. The frequency axis is labeled f, and the time axis is labeled t. Figure 6 shows

that the interval of the analysis performed by a wavelet at each subsequent level decreases

by one half and its bandwidth doubles, as expected from the previous discussion.

fI

__ (Wy)(k,)

Figure 6. The Affine Wavelet Time/Frequency Analysis

Meyer and others have defined an entire class of smooth orthonormal bases of the

form ip/ [13], which perform log 2

analyses of signals. However, the logarithmic analysis of the wavelet transform

does not have to be in base 2. The affine wavelet transform analyzes functions in a

logarithmic scale of base b in general. This characteristic is what differentiates affine

wavelet analysis from W-H frame analysis. The W-H wavelet analysis localizes uniformly

in time and frequency, whereas the affine wavelet analysis localizes logarithmically in

time and frequency. This difference can be seen by comparing the illustrations of the

Gabor time/frequency analysis and the affine wavelet time/frequency analysis in Figures
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3 and 6. Thus, the affine transform may have advantages over W-H transforms for speech

processing and other nonstationary signal processing, because it analyses signals over

multiple scales of resolution. In contrast, for example, the Gabor analysis requires that a

specific At and Af be defined for a single resolution analysis. It may not always be easy

to find these values.

The analysis of signals in a logarithmic frequency scale performed by the affine

wavelet transform is also performed, to a great extent, by the inner ear. In the following

section, the parallels between the dynamics of the ear and wavelet frames are explored.

Biological Considerations

Introduction This section provides a very brief introduction to the anatomy and

physiology of hearing. The discussion concentrates around the topics of most relevance

to this research. For a comprehensive, current introduction to the science of hearing see

Gulick, et a [29). Most of the material covered in the next subsection is a summary of

portions of that text.

The Auditory Periphery The peripheral auditory system consists of the external

ear, the middle ear, and the internal ear. This system acts as a transducer, which converts

air sound pressure into electrical impulses that our brains can process. In addition, the

peripheral auditory system acts as a system of bandpass filters. These filters define

the frequency range that animals can perceive. In humans, this frequency range is

approximately 20 Hz-20 kHz (29:217].

The external ear is composed of the pinna, the external meatus, and the tympanic

membrane. The pinna and the meatus--commonly referred to as the ear and ear canal

respectively-act as a first stage filter that increases the amplitude of frequency components

in the range of approximately 500 Hz-10 kHz [29:87]. At the end of the meatus, lies the

flexible tympanic membrane, or ear drum, which is set into complex patterns of vibratory

motion by external sound waves. The tympanic membrane forms the boundary between
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the external ear and middle ear. Thus, to summarize the function of the external ear, sound

waves are collected, filtered, and propagated to the tympanic membrane by the pinna and

the meatus. The tympanic membrane then responds to these sound waves by vibrating.

Beyond the tympanic membrane lies the middle ear. The middle ear is comprised

of a cavity containing a chain of three small bones: the malleus, incus, and stapes. This

chain connects the tympanic membrane to the oval window of the cochlea. The fluid filled

cochlea is the main sensory organ of hearing and comprises the internal ear. The function

of the bony chain, therefore, is to transmit the vibratory action of the tympanic membrane

to the sensory receptors in the cochlea, and to provide an impedance match between free

space and the liquid filled cochlea.

The cochlea-Latin for snail-is a coiled cavity in the temporal bone containing

three fluid filled chambers: the scala vestibuli, scala media, and scala tympani. A stiff

membrane, called the basilar membrane separates the scala media and scala tympani. In

humans, the basilar membrane is approximately 35mm in length, .5mm wide at the apex

of the cochlea, and .08mm wide at the base (towards the oval window). The basilar

membrane has a logarithmic gradient of stiffness that increases along its length from the

apex to the base of the cochlea. Both the tapered shape of the basilar membrane in

conjunction with the stiffness gradient produce the logarithmic filtering characteristics

mentioned earlier. A collection of structures called the organ of Corti rests on the basilar

membrane. The most important of these structures are the tectorial membrane, the inner

hair cells, and the outer hair cells. The hair cells are organized along the basilar membrane

in rows, with the tectorial membrane covering these cells like a canopy.

The cochlear dynamics are now described. As the stapes moves back and forth at

the oval window, longitudinal waves are produced in the fluid of the interior chambers of

the cochlea. These waves produce localized oscillations of the basilar membrane whose

positions are a function of the external frequency of the sound. For example, a I kHz tone

produces a maximum pattern of displacement at a precise location along the length of the

basilar membrane. The action of the basilar membrane produces shearing forces on the
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inner hair cells via the tectorial membrane. When this occurs, the inner hair cells produce

electrical signals that are transmitted to subsequent processing layers of the brain along

the cochlear nerve. Therefore, the cochlea would signal the occurrence of a pure I kHz

input by breaking into oscillations at a specific place along its length.

Complex sounds composed of a number of frequencies are encoded along the

basilar membrane by oscillatory displacements at specific locations corresponding to the

frequencies of the sound. In other words, the basilar membrane can be thought as a spatial

frequency template or tonotopic map. In addition to this spatial information, temporal

information is also produced by the firing rates of the inner hair cells. The preferred

or characteristic frequency (CF) of an inner hair cell is the frequency that produces the

maximal displacement of the basilar membrane where that hair cell resides. Hair cells

with CFs of 4 kHz and below fire at the same rate as their CF. This phenomenon is known

as phase synchrony. It is not known how the brain uses this spatio/temporal information;

however, it is known that tonotopicity is maintained at all the relay stations leading to the

neocortex, as well as at the primary sensory fields of the auditory cortex. The assumption,

thus, is that spatial patterns are important to the brain. The meaning of the temporal

information is more difficult to decipher.

The spatial encoding characteristics of the basilar membrane should not be construed

as only a simple Fourier analysis capability. The situation is much more complex than

that and still largely not understood. This is illustrated by a phenomenon called masking

[29:300-313]. As was mentioned earlier, a pure tone produces localized patterns of

electrical activity in fibers in the auditory nerve whose CFs coincide with the tone's

frequency. It has been found that the firing rate of an auditory nerve fiber can be

suppressed or masked by presenting tones of similar frequencies [62]. Furthermore,

masking is not possible after the masking tones have deviated from the CF by a certain

amount. Therefore, masking occurs within certain frequency bands called critical bands

[29:306]. How these bandwidths are determined is a subject of controversy [21, 50, 70];

however, the general consensus is that the masking phenomenon suggests that the cochlea
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acts as system of overlapping bandpass filters. Although there is a question as to exactly

how wide these filters are, it is known that their bandwidths increase logarithmically as a

function of the CF. Patterson [54] has determined the shape of these filters using masking

experiments and found them to be cone shaped. Figure 7 illustrates this phenomenon.

The intensity and bandwidth of the filters shown in Figure 7 are not precise; they are
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Figure 7. Filter Model of the Cochlea; Adapted from [29:307]

meant to illustrate the filter function of the cochlea.

The simple description of the anatomy and physiology of the cochlea just given

does little justice to the complexity of this system. Much is still not known about the

function of the cochlea, in particular the feedback system, called the efferent system,

which incorporates the outer hair cells.

As is evident from the previous section, the computational analysis performed

by the ear is reminiscent of the analysis performed by the affine wavelet transform.

The subsequent processing of information in the numerous auditory nuclei beyond the

cochlear nerve is not understood. However, evidence for one type of processing has been
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accumulating over the last 15 years. This type of processing is called lateral inhibition, or

is also known as on-center off-surround processing. LINs are examined next subsection.

Lateral Inhibition Networks Lateral inhibition networks were first found by Hartline

and Ratliff [59, 60] in the eye of the horseshoe crab (Limulus). Since Ratliff's discovery,

lateral inhibition has been found to be a common processing strategy in all sensory systems

across species [64], including the auditory system [40, 63]. LINs perform several functions;

the most important being contrast enhancement. In contrast enhancement, spatial peaks

and edges as well as temporal changes are highlighted. Other important functions of LINs

include noise suppression, automatic gain control, buffering of information for short-term

memory, and a variety of oscillatory functions. These effects have been modeled and

studied by many over the years [20, 25, 27, 59, 60, 63].

As discussed above, many LIN models have been developed (see [26] for a review).

The one adopted in this research is based on the non-linear, shunting cell membrane

equation (see Eq (18)) found by Hodgkin and Huxley [26, 34] in electrophysical studies

of the giant squid axon. In a study that investigated the effects of lateral inhibition on the

output of a cochlea model, Shamma [63] used an additive version of the shunting equation

in his LIN model. Elias and Grossberg [20], however, have shown that the shunting model

is much less susceptible to oscillatory behavior than the additive model, and therefore

justifies the use of the shunting model in this research. Before describing the membrane

equation, a structural description of a typical LIN will be presented.

Figure 8 illustrates the cell interactions of a recurrent LIN. The cells or nodes of

the system are labeled v,. Each node has an input g,, and produces an output f(x,). The

parameter .i, is called the activity of node v,. The arrows illustrate excitatory connections

or positive gain communication lines, and the small circles illustrate inhibitory or negative

gain connections. To simplify the illustration, only the connections exiting node vi are

shown. The outputs of all other nodes are considered to be similar to the outputs of node

'23
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Figure 8. Lateral Inhibition Network Model

As Figure 8 shows, LIN interaction can described as a process cell self excitation

and neighborhood inhibition. The pattern of excitation does not have to be limited to

individual nodes. Groups of nodes can mutually excite one another and in turn inhibit

a surrounding neighborhood. The networks are also not restricted to one dimension. In

fact, two-dimensional LINs are the ones found in the cortex.

The activity and output equations for each node can now be defined as in Eq (18)

and in Eq (19) respectively. Although the x, and gi are functions of time, the variable t

has been omitted in the following equations for simplicity.

d-d x = -x, + (A - x,) [g, + f(x,)] - (B + x,)D E_,(Xj) (18)

f (Xt) = X/(X' + a'), Xi > 0 (9f =x-)(19)

0, Xi<0
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All properties of Eq (18) can be found in [20, 25, 27]. Eq (19) defines a sigmoidal

function. Other sigmoid functions have been used, in particular f(x) = 1/( 1 + exp[-x]).

The shunting Eq (18) is in the form of Eq (20) found by Hodgkin and Huxley [34],

which describes the membrane potential V of neurons.

d V = (VP - V)g p + (V + - V)g + + (V- - V)g- (20)
dt

C relates to a constant lipid membrane capacitance. The constants VP, V +, and V-

relate to the passive, excitatory, and inhibitory membrane potential saturation points

respectively. In the Hodgkin and Huxley model, these saturation points indicate the

equilibrium potential of specific ions. The terms gP, g+, and g- are the passive, excitatory,

and inhibitory ionic condy .Lances respectively. By simple changes of variables, Eq (18)

and Eq (20) can be -. ated. Capacitance C becomes constant one in the shunting model.

Membrane potcntial V is characterized by activity xi. Membrane potential saturation

points V', V+, and V- become constants 0, A, and B respectively. Likewise, the passive

ionir conductance gP equals one, the excitatory conductance g+ equals the input to the

cell g, plus feedback f(xi), and the inhibitory conductance g- equals an inhibitory gain

D times the sum of the outputs of the competing neurons Eji f(xj). In reality, there are

many more ionic conductances than those shown in Eq (20) (see [64]), but these can be

grouped functionally into the three main types of conductances: passive conductances,

that bring the cell back to its resting potential; excitatory conductances, that raise the

cell membrane potential towards the signaling potential; and inhibitory conductances, that

suppress the cell membrane potential and cell firing.

How do LINs relate to what has been described thus far? One of the main problems

addressed in this research is finding compression codes for speech. LINs have properties

which make them potentially useful for eliminating redundant frequency or correlation

terms in wavelet-W-H or affine-transform space. This will be addressed in depth next

chapter.
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Summary and Final Comments

In this chapter, wavelets and wavelet frames were introduced. To recap, wavelet

frames are divided into two classes: Weyl-Heisenberg frames and affine frames. Most

time/frequency distributions, including the short-time Fourier transform and the Gabor

transform, belong in the Weyl-Heisenberg frame class. These distributions are charac-

terized by transforms that compute the inner product of a function with translates and

modulates of a wavelet. The affine wavelet transforms, on the other hand, are charac-

terized by transforms that compute the inner product of a function with translates and

dilates of a wavelet. It was also shown that the affine wavelet transform can be thought

as computing a correlation between a signal and a series of overlapping bandpass filters

whose bandwidths increase logarithmically as a function of frequency. Evidence was

then presented that suggests that the peripheral auditory system, particularly the cochlea,

performs a similar analysis to that of the affine wavelet transform. The final section dealt

with the architecture and dynamics of LINs.

Next chapter consists of the system design for decomposing, compressing, and

reconstructing speech. The full connection between LINs and wavelet transforms is

shown.
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III. System Design

Introduction

This chapter details the methods used to decompose, compress, and regenerate

speech signals in this research efforL Three transforms are used for this purpose: the

short-time discrete Fourier transform, the discrete Gabor transform, and the discrete affine

wavelet transform. In the first section, the software and signal processing environments

are described. Several definitions and the notation used throughout the remainder of this

document is provided immediately after. The remainder of this chapter concentrates on

defining the discrete versions of the transforms introduced in the last chapter, and on the

subsequent interaction of LINs. A variety of window or wavelet functions are explored

for each transform defined. Compression is achieved by eliminating local low energy

correlation or frequency components produced by the varied transforms via the dynamics

of LINs. The interaction between these networks and the transform outputs is fully

discussed.

System Environment

As was mentioned in the introductory chapter, all digital signal processing and

software development is performed on the NeXT computer. The speech signals are

sampled at 8012.8 Hz by the CODEC and quantized using 8-bit p-law logarithmic

compression [65:76-78]. Each sampled and quantized speech signal is then stored in

Objective C files by resident software routines. All further processing of the speech

data is performed by software written in a combination of Objective C, ANSI C, and C

macros wrapped around assembly language vector processing routines for the resident

Motorola 56001 Digital Signal Processor-hereafter called the DSP. Most array processing,

including FFTs, is performed by the DSP. Whatever processing is not performed by the

DSP is performed by the NeXT's Motorola 68030 in floating point format.
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The data in the speech files are easily accessible using Objective C routines. These

routines convert the data from 8-bit j_-law to a 16-bit linear format. The speech data

are again converted-this time to floating point-so that the data can be scaled between

values small enough to prevent overflow errors in the DSP. All values in the DSP must be

maintained between -1 and 1 in a 24-bit linear format; thus, the floating point values are

scaled then converted to 24-bit linear. The linear scaling function S(x) used is described

as
S(X) = X- m, (X"- m,")+ m," (21)

X o - m o

where

xo = the maximum value of the range of x

m, = the minimum value of the range of x

x, = the maximum value of the new range

m, = the minimum value of the new range

Outputting the processed speech is nearly a reversal of the process just explained.

The 24-bit DSP data are converted to floating point and processed further if need be.

The completely processed data are finally converted back to 16-bit linear and stored in

Objective C sound files. Resident software using mouse activated windows can now be

used to activate the CODEC and play back the synthesized sound files.

Definitions and Notation

The discussion and definitions in Chapter II dealt with the decomposition and

reconstruction of continuous time signals y(t). In this and subsequent chapters, operations

will be performed on discrete sequences y(n), where n E Z. Discrete y(n) is obtained

from the continuous time signal by sampling y(t) at rate I/T. More precisely,

y(n) = y(t)lt=.T = y(nT) (22)
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Time dependence is dropped by omitting the sampling period T in Eq (22).

Where possible, the discrete Fourier transform (DFT)-by means of the FFT-will

be used to decompose signals. The DFT and inverse DFT are defined as

N-I

X(k) = 1: x(n) exp[-j27rkn/N], 0 < k < N - 1 (23)

N-I

x(n) = 1/N E X(k) expti2irkn/N, 0 < n < N - 1 (24)
k=O

respectively, where N is the number of samples in x(n) and 1/N is the fundamental

digital frequency in cycles. Therefore, the frequency index k is related to the digital and

analog frequencies fk and vk, respectively, as follows [43:287]:

k ) fk = k/N o vk = kINT (25)

Frequency Index Digital Frequency Analog Frequency

(cycles) (Hz)

As previously mentioned, the sampling rate for all signals is IT = 8012.8 Hiz. All DFT

sequences are of length N = 256, which relates to a window of NT = 31.95 msec. Thus,

the fundamental analog frequency is f, = 1/NT = 31.3 Hz. A 31.95 msec. window

length is reasonable since it is known that speech is relatively stationary (i.e., the statistics

of the signal remain constant) in periods of approximately 30 msec. or less.

The windowed versions of Eq (23) and Eq (24) are used for short-time Fourier and

Gabor decomposition. The next two sections detail both the decomposition and synthesis

of speech signals using these methods.

Short-Time Fourier Decomposition/Reconstruction

Introduction In the previous chapter, the short-time Fourier transform was intro-

duced and described in the perspective of the more general theory of frames; in particular,

Weyl-Heisenberg frames. In that perspective, decomposition of signals amounts to a

29



projection onto a basis defined by g(t - r) exp[j2rt], or the translates and modulates

of g(t). The bases defined in this manner need not be orthogonal to form complete sets.

However, for discrete translations and modulations of g---as in the case of the Gabor

expansion-care must be taken when defining g. The non-orthogonality of the Gaussian

9 created difficulties in finding a solution to the Gabor coefficients until Bastiaans and

Janssen found the solutions defined earlier.

The traditional perspective taken by the signal processing community is somewhat

different. As in the perspective of frames, successive intervals of the desired signal

to be decomposed are analyzed one at a time. However, the analysis of the signal is

always considered to be an orthogonal expansion into a combination of basis functions

defined by the complex exponent, exp[j27rvt]. In other words, the window function g is

not considered part of the basis but part of the signal to be analyzed. The choice of 9

depends on the ease by which the original, or close approximation of the function y can be

resynthesized from the windowed expansion, and on the specific frequency characteristics

of g itself (see Harris [30] for a study on windows and their characteristics). Thus, the

question of whether the function g produces an orthogonal set or not rarely comes up. An

in-depth treatment of discrete short-time Fourier analysis is found in [58:250-354].

The Short-Time Discrete Fourier Transform Three window functions are used

in the short-time Fourier decomposition of speech signals in this research. These are

the rectangular window, the Hamming window, and the compactly supported Gaussian

window. These windows along with the short-time versions of Eqs (23) and (24) are

defined in this section. In addition, a modification to the inverse short-time DFT is defined,

which is necessary for reconstructing good quality speech from a compressed Fourier

space.

The rectangular, Hamming, and compactly supported Gaussian windows are defined

as
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Rectangular:

9R(n) = 1, O<n<N-1 (26)
1 0, otherwise

Hamming:

054- 0.46cos[27rn/(N - 1)], 0< n <N - 1
9H(n) = (27)

1 0, otherwise

Gaussian:

() exp[-4( 2ZM)2], 0 < n < N - 1
g(n) = (28)

0, otherwise

The plots of each of these windows are shown in Figures 9, 10, and 11 respectively.
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Figure 9. The Rectangular Window

The decomposition and reconstruction formulas for y(n) depend on the window

used. This is shown by first defining the general form of the short-time DFT pair as

N-I

Y(m, k) = E y(n) g(n - miN) exp[-j27rkn/N], 0 < k < N - 1 (29)
n=0

N-I

y(n) g(n - inN) = 1/N E Y(m, k) exp[j27rkn/Nl, 0 < n < N - 1 (30)
k=O
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Figure 11. The Hamming Window
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where m E KV. When a rectangular window is used, y(n) can be decomposed and exactly

recovered by Eq (30). Since gR(n - raN) = 1 by definition, y(n) is recovered exactly

by summing over all window shifts. More precisely

M-I

E y(n)gR(n - mN) = y(n) (31)
rn=0

where Al represents the number of subsequences of length N that describe the finite se-

quence y(n). Meaning that, y(n) is of length MN. The decomposition and reconstruction

formulas for y(n) with a rectangular window thus becomes

N-i

)'(m,k) = E y(n)gR(n - iaN) exp[-j21rkn/N], 0 < k < N - 1 (32)
n=0

AM-I N-1

y(n) = 1/N E Z YRf(m, k) exp[j27rkn/N], 0 < n < N - 1 (33)
m=0 k=0

If g(n) is not rectangular then the right side of Eq (33) will not result in y(n) but

in y(n)g(n - mN), m. In other words, the result is y(n) multiplied by all translations

of g(n). Figure 12 shows this result. The top graph shows the original y(n), a sampled

sinusoid. Directly underneath, the consequence of Eq (33), in the case g is Gaussian, is

shown.

Nevertheless, an approximation of y(n) can still be reproduced if the windows

are overlapped. That is, if g(n) is repeatedly translated by R < N, then y(n) can be

approximated. To illustrate this, Figure 13 shows the plot of S 9(n) = Er g9(n - rR),

for R/N = 0.50, or 50% overlap. The ideal result of summing the overlapped window

function would be the unit function, as illustrated by the gray line. In this ideal case, y

could be exactly recovered. However, it can be seen that for the Gaussian window a low

amplitude wobble-with a fundamental frequency of 62.6 Hz in the present case-results.

The error in y(n) can be reduced with more overlap of g(n). Figure 14 shows this

for S9(n)/2 with R/N = 0.25. The plot is scaled to show the small peak error in this

case, which is approximately 15 x 10- 3. A similar situation arises when the Hamming
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window is used. Figure 15 shows the plot of Sh(n) = , gj(n - rR), with R/N = 0.50.

As can be seen from this figure, the peak error in this case-approximately 5.6 x 10 3 -- is

less than the peak error produced by the Gaussian window with 25% overlap. It is known

that the error produced in the speech signal-by processing the signal in the manner just

described-is barely perceptible if a Hamming window with 50% overlap is used. The

result of using the compactly supported Gaussian window in this process is investigated

next chapter.

The overlap and add method described above is more precisely defined by the

following transform pair:

N-I

Y(r,k) = 1_ y(n)g(n - rR) exp[-j27rkn/N], 0 < k < N - 1 (34)
n=0

N/R(M-I) N-I

f(n) = I/N E 1 Y(r,k) exp[j27rkn/N], 0 < n < N - 1 (35)
r=O k=O
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where (n) denotes the approximation of y(n). In this research, R/N = 0.50 is chosen

in all cases.

One last modification must be made for reconstructing the speech signal from the

compressed Fourier components. Before defining this modification, the consequence

of compressing in the frequency space is considered. Theory states that in order to

avoid time aliasing, Y(m, k) must be uniformly sampled at N frequencies for each

interval m [58:270]. The reconstruction methods defined above satisfy this condition.

However, as previously mentioned, compression in this thesis amounts to eliminating

many frequency components in each defined interval of the signal sequence. What remains

is an undersampled version of Y(m, k) with nonuniformly spaced frequencies. Therefore,

time aliasing is to be expected. As shown in the next chapter, the resulting time aliasing

manifests itself as noise or amplitude errors concentrated around the window ends of

the synthesized speech. These errors can be attenuated by multiplying the reconstructed

intervals of y(n) by a Hamming window. The Hamming window is a good choice since

it attenuates the signal at the ends of the window. Also, as was discussed previously, the

Hamming window, when overlapped by 50%, produces very little distortion in the signal.

The modification leads to the following reconstruction equation:

2Af-1 N-I

7= 1 K E E Y(r, k) gH(n - rN/2) exp 27rkn/Nj, 0 < n < N - 1 (36)
r=O k=O

where K is some constant, and (n) is the approximation of y(n) that results from the

compressed short-time Fourier coefficients Y(r, k).

Since Y"(r, k) is complex, Eq (36) can be expressed in the following way:

2M-I N-I

(n) = K E E 1(r,k)IexpUid k]g H(n - rN/2) exp[j27rkn/N],
r=0 k=0

0<n<N- 1 (37)

where 0r.k is the phase angle of Y (r, k).
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Furthermore, since y(n) is real going into the transform, the regenerated approxi-

mation of y(n) should be real coming ouL This means that the imaginary terms in Eq

(37) can be omitted. This is done by combining the exponential terms, applying Euler's

identity, and eliminating the resultant imaginary term, resulting in

2M-1 N-I

K(n) = K 1 Ej Y(r,k)Ig(n-rN/2) cos(2rkn/N+¢r,k), 0 < n < N- 1 (38)
r=0 k=O

This is the form of the reconstruction formula used by [1, 4, 49] in their investigations of

speech coding and noise reduction using a subset of the short-time Fourier space.

To summarize, the equations used to decompose and reconstruct the signal sequences

depends on the window used and whether the short-time Fourier coefficients have been

compressed or not. If the window function is rectangular and compression is not

performed, then Eqs (32) and (33) are used. For Gaussian and Hamming windows, the

valid transform pair is described by Eqs (34) and (35) if the Fourier coefficients are not

compressed. When compression is performed, Eqs (34) and (36) are used regardless of

the window used to compute Y(r, k).

Gabor Decomposition/Reconstruction

For the Gabor decomposition of y(n), Bastiaans' solution (see Chapter II) is adopted

here. In general, the discrete version of Eq (6) can be represented as (see [19])

N -

Cm,k = Y,,n exp[-j27rkn/N], 0 < k < N - 1 (39)
n=O

where

Q-1
ym,n =1y(n+qN) -"(n+qN-mN), 0<m<M-1, 0<n<N-1 (40)

q=0

where Q - Al. The parameter Q is a free variable in Eq (40) and determines the interval

of support of -y. The consequence of varying Q is discussed next chapter. Eq (39) can be
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conveniently computed using the WT.

The signal y(n) can be recovered from Cm,k by

M-1N-I
y(n) = E E C.,k g(n - inN) exptj27rkn/N], No < n < 2N - 1 (41)

m=0 k=0

where No depends on the window function g(n).

Eq (41) can be computed using the FFT algorithm. Nevertheless, another method

is used in this effort. By similar arguments used in the previous section, Eq (41) can be

rewritten as

M-I N-I

y(n) = E IC.,kl g(n - inN) cos[2rkn/N + kmk], No <5 n < 2N - 1 (42)
rn=0 k=0

Eq (42) is inconvenient to program in the computer since the cosine term must be

computed each time for every different phase angle that results. This takes considerable

processor time. It is more desirable to precompute sine and cosine tables and access them

from memory as needed. Fortunately, Eq (41) can be rewritten in an equivalent form of
Eq (42) that when programmed can take advantage of precomputed tables. That form is

Al-I N-I

(n)= E E [Re(Cm,k) cos(21rkn/N) -IM (Cm,k) sin(27rkn/N)] g(n - rnN),
m=0 k=O

No<n<2N- 1 (43)

where

Re(x) = + X (44)
2

Im(x) x (45)2j

Two window functions are investigated in the Gabor expansion/regeneration of

y(n). These are the sampled versions of the Gaussian window, defined in Eq (10), and the

one-sided exponential window, defined in Eq (12). The discrete versions of these signals,

in the form used in this research effort, along with their corresponding biorthogonal
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functions are defined as

Gaussian:

gG(n) = 2 / 4 exp [- r ( n / N )2] , -2N < n < 2N - 1 (46)
0, otherwise

Biorthogonal of g(n):

e (n),0 E2(n,i), -QN < n < QN - 1=f (n = (47)
0, otherwise

where

EI(n) = (1/2)"4 (Ko/7r) - 31 2 exp [7r (n/N)2 ]

E2(n,i) = (-1)ln/NI+1/ 2j + i exp [-7r (tn/NI + 1/2j + i + 1/2)2]

K0 = 1.85407468 (48)

Exponential:

= exp[-n/N] u(n), 0 < n<ZN- (49)

1 0, otherwise

Biorthogonal of 9E(n):

-YE(n) = exp[n/N][-u(n + N) + 2u(n)- u(n - N) (50)

where [xJ is the largest integer less than or equal to x, (e.g., [3.7J = 3). Eqs (46) and

(49) define No. In the case 9G is used in the transform, No = -2N; when gE is used,

N0 = 0. In addition, Eq (50) implies Q = I for the exponential window's biorthogonal

function. The sum in Eq (11), which describes the continuous biorthogonal function of

the Gaussian function, converges very rapidly. This is reflected in Eq (47), where the sum

is iterated over only three values of the variable i.

As in the case of the short-time DFT, when the Gabor coefficients C,,k are
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compressed, the overlap and add method is used to suppress the noise that results from

time aliasing. Thus, the Gabor coefficients, with R/N=0.50, are found by

N-I

Cr,k = yr,,, exp[-j27rkn/N], 0 < k < N - 1 (51)
n=O

where

Q-I

y,.= 1_ y(n + qN)-y*(n + qN - rN/2), 0<r<2M-1, 0 < n < N -1 (52)
P-0

A few steps are needed to obtain the approximation of the signal sequence (n). The

approach taken is to reconstruct two partial sequences of (n)-each a shifted version of

the other by N/2. Each sequence is then windowed by repeatedly shifted versions gH, and

finally added together-when properly aligned in time-to produce (n). More explicitly,

the partial sequences are defined as

N- -I

(,,)= S, S [Re(c'2rk)cos(27rkn/N) - IM(C2,,k)sin(27rkn/N)] g(n - rA),
r=O k=O

No: <n < 2N- 1 (53)

and
Alt - I

N-I

=2 (n E [Re(C 2 r+I,k) cos(21rkn/N) - IM(C 2r+I,k) sin(27rkn/N)1 g(n - rN),
r=0 k=0

Non< 2N- 1 (54)

where C,,k are the compressed Gabor coefficients. Each partial sequence is now windowed

by the Hamming function as follows:

M-I
,(n) = E .(n)H (n - mN) (55)

M=O

M-I

Y2(n) = S l2(n)gH(n- mN) (56)
m =0
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Finally, the desired approximation of y(n) is obtained by

(n) = D,(n) + 92(n - N/2) (57)

Affine Wavelet Decomposition/Reconstruction

The discrete wavelet transform can be implemented in various ways. In this effort,

the straight forward inner product approach is used. This approach simply computes the

wavelet coefficients by taking inner products of the signal with translated and constricted

versions of the mother wavelet. The signal is reconstructed by the weighted sum of

the wavelets at all shifts and resolutions. The weights are the previously computed

coefficients.

A more computationally efficient algorithm was developed by Mallat [44]. In that

study, the original wavelet is characterized by two discrete filters. One filter, denoted by G,

smooths the signal, thereby filtering frequencies higher than the frequencies of the current

level of analysis. The second filter, denoted by H, is associated with the wavelet function

and is derived by taking the desired number of derivatives of the smoothing function.

This multi-stage process of low-pass filtering followed by higher order derivative filter

correlations has been used in the past in spatial image [46] analysis and has also recently

been used to develop an orthogonal polynomial transform [47]. Although less efficient,

the more direct approach is embraced here for educational purposes and to establish a

baseline for any future research.

With that in mind, the discrete versions of Eqs (15) and (16) are used. In general,

these equations are defined as

n=oo(WVy)(k,2') = _ y~)l;(t- k) (58)

y(n) = x: z (Wy)(k.2')2'/20(2'n -k) (59)
1=0 k=-oo
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where 1, k E Z. The parameter 2' used in the notation for the wavelet transform,

(Wy)(k, 21), is adopted here to specify the log 2 analysis performed by the transform.

Since in practice both signal and wavelet sequences are of finite length, Eqs (58)

and (59) must be modified. There are other factors to consider that determine the final

form of these equations. One of thcse factors is the mother wavelet to be used. Two

mother wavelets are investigated here: the Haar wavelet, defined earlier, and the Morlet

wavelet [51]. These are two very different types of wavelet. The sampled Haar wavelet is

a real valued function, which is compactly supported in the interval 0 < n < N - 1. On

the other hand, the sampled Morlet wavelet is a complex valued function centered around

n = 0, which decays to zeru at ±o. However, for practical reasons, the sampled Morlet

way let must be truncated. These mother wavelets are defined as

Haar:

1, 0< n < N/2

jn(n) = -1, N/2 < n < N-1 (60)

0, otherwise

Morlet:

, (exp [-jwon,/N] - C) exp [-(n/N)2/2], -QN < n < QN - 1
= -(61)

0, otherwise

where

wo = 7r(2/In2)" /2  (62)

C = exp [-w02/2] (63)

The plots of the real and imaginary portions of the Morlet wavelet are shown in Figure

16. As can be seen from Eq (61) and Figure 16, the mother Morlet wavelet is nearly the

Gabor window function modulated at w0. One can, therefore, think of the Morlet wavelet

as the affine counterpart of the W-H frame Gabor wavelet.
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Figure 16. The Morlet Wavelet
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The other factors that remain to be determined are the number of samples N, and

the total number of levels L necessary to cover the required frequency range of y(n)

during the wavelet analysis. When the Haar wavelet is used, N = 256 is chosen. This

relates to an analysis at level I = 0 of approximately 31.3 Hz; the same as the fundamental

frequency of the Fourier and Gabor analyses. Only 8 levels (L = 8) of analysis are

possible; however, these are sufficient to cover the frequency range of y(n). The Haar

wavelet analysis using 8 levels produces 255 real valued coefficients for each window of

N points. This is one less than the number of useful coefficients found in the short-time

Fourier and Gabor decompositions discussed previously.

Morlet and his associates [51:228] suggested that a complete representation of a

signal can be computed using four wavelets per octave. The completeness of the set

used was not proven, but hypothesized experimentally. This clearly produces many more

coefficients than in the radix 2 wavelet analysis proposed here. The tradeoff made here is,

obviously, fidelity of the signal versus the number of coefficients used. If the total number

of coefficients used in the Morlet case are going to approximate the number of coefficients

used in the other analysis/synthesis methods, then the number of analysis levels have to

be limited. Consequently, two values of N are investigated. For N = 256, the wavelet

analysis is computed at octaves of 31.30fo Hz - 26.58 Hz, where fo = wo/27r. In this

case, 8 levels nearly cover the frequency range of y(n). N = 128 is also investigated.

The analysis for this value is nearly the same as when N = 256; however, the frequency

analyzed at I = 0 is 53.17 Hz. Only 7 levels of analysis are possible when N = 128.

Table I summarizes the frequencies analyzed-as defined by the parameter N-at the

different levels of the wavelet analysis. All values in the table are in Hz. One may

wonder why fo = 1 is not chosen in order to analyze the same frequencies as in the Haar

wavelet analysis. For fo = 1, the imaginary portion of the wavelet-at the highest level

of resolution (I = 7)-would be sampled at the zero crossings. Therefore, at this level,

errors might arise since the imaginary portion of the analysis would always be zero. This

problem does not arise when the wavelet is defined as in Eq (61).
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Table 1. Frequencies Analyzed (in Hz) Using Haar and Morlet Wavelets

Haar Moflct
I N =1256 N=256 N=128
0 31.30 26.58 53.17
1 62.60 53.17 106.34
2 125.20 106.34 212.67
3 250.40 212.67 425.34
4 500.80 425.34 850.68
5 1001.60 850.68 1701.36
6 2003.20 1701.36 3402.72
7 4006.40 3402.72 _

All the necessary information is now available to define the wavelet transform pair.

When the Haar wavelet is used, the signal y(n) is projected onto the wavelet basis by

N-I

(Wy)(k,2') = E y(n)2/ 2V) (2'n - kN), 0 < k < (2'- 1)M (64)
n=0

and in turn, the signal y(n) can be reconstructed from the wavelet coefficients by

L-1 (21-l)M

y(n) = E E (Wy)(k,2')2'12 PH(2'n - kN), 0 < n < N - 1 (65)
1=0 k=0

where M is, again, the number of subsequences of length N that describe y(n). In the

case the Morlet wavelet is used, the wavelet transform is

QN-i

(Wy)(k, 2) = 1_ y(n)2" 2 ,P (2'n - kN), 0 < k < (2' - 1)M (66)
n=-QN

and the inverse transform is

L-I (2'-1)M

y(n) = , (Wy)(k,2')2/ 2 OH(2n - kN), -QN < n < QN - 1 (67)
1=0 k=0

These equations are implemented using a linked binary tree data structure in a
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recursive algorithm. This approach best fits the structure of the equations that describe

the affine transform pair.

These transform pairs described do not change when the wavelet coefficients

(Wy)(k, 21) are compressed via the LIN. Next section describes how the LIN truncates

the W-H and affine frequency spaces.

Compression Using Lateral Inhibition

Before describing the compression process performed by LINs, it is instructive to

summarize the methods of compression used in the research that most resembles this

effort. Several speech compression methods using short-time Fourier analysis are first

presented. Research in the analysis and compression of speech in the affine wavelet space

is quite new and the literature sparse. Also, the work that has been done so far appears

to be inconclusive. However, one method of compression investigated by Mallat [45] is

very closely related to the method used here and, therefore, is reviewed in this section.

Review of Fourier Spectrum Compression Methods McAulay and Quatieri [48, 57]

developed a method of reproducing intelligible speech based on only a small subset of

the frequency components of the speech signal. In their research, these investigators

decomposed speech using the short-time Fourier methods similar to those previously

described. Compression was ack ved by picking spectral peaks in each time slice-

usually referred to as a frame in speech processing--of the short-time Fourier spectrum

(Y(m, k)). The peaks were chosen by a combination of simple peak-picking and a handful

of rules devised to match peaks from frame to frame. McAulay and Quatieri [48] reported

that anywhere from 16 to 40 spectral components per frame were sufficient to reproduce

good quality speech. How they rated good was not defined.

McAulay and Quatieri's research inspired several research efforts at the Air Force

Institute of Technology (AFIT) in speech coding, compression, and noise reduction.

Bashir [4] and Kabrisky et a. [38] developed a system to improve mutilated speech based
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on the principles developed by McAulay and Quatieri. However, the spectral peaks were

chosen somewhat differently. The glottal frequency was determined and the spectrum

was then sampled at that rate. Rules were then developed to search on either side of

the originally chosen peaks to determine the final candidates. A rule was also developed

to differentiate between voiced and unvoiced speech. That system was reported to have
"appreciably" increased the the quality of the noisy speech [38].

In another AFIT study, Alenquer [1] investigated that same peak-picking algorithm

for speech compression. In that research, it was thought that since the spectrum of speech

rolls off at about 6 dB/octave above 625 Hz or so, that only the first N components should

suffice to reproduce the speech signal. Again by subjective criteria, N = 16 was found

to be sufficient to reproduce good quality speech for male speakers. The system was

not tested on female speakers. McMillan [49] has modified the peak-picking strategy

further by first designing an equalizing filter that boosts the energy of the higher frequency

components to match those of the lower frequency components. The spectrum in each

frame is then sampled at the glottal frequency-as in the previous two investigations-

however, the N largest components are chosen. The rules to search for the final frequency

peaks to keep were also expanded. The compressed spectrum is passed through the inverse

of the equalizing filter before the speech is reconstructed. No voiced/unvoiced decisions

are needed with that system. Currently, seven frequency peaks per frame appear to be

sufficient to reproduce good quality speech of either male or female speakers.

The common theme found in these compression algorithms is a search process

designed to locate the dominant frequency peaks of the spectrum. All other frequency

components are eliminated. The speech, in each of the investigations just reviewed, is

reconstructed by summing sinusoids of magnitudes and frequencies corresponding to the

chosen frequency peaks.

Review of Affine Wavelet Spectrum Compression Methods Mallat [45] has proven

that under certain conditions i complete reconstruction of a signal is possible from only
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the local extrema of the affine wavelet frequency space. He has also empirically shown

that very close approximations to the the original signal can be produced from only the

relative maxima of the magnitude of the wavelet coefficients.

The process begins by finding the local extrema of the wavelet coefficients. The

eliminated coefficients are then approximated by cubic spline interpolations and the

resulting wavelet space sequences are projected onto a convex Sobolev space. The

resulting sequences are then projected back out to the signal space, and again into the

wavelet space. This procedure is iterated until the original signal is obtained to the desired

accuracy. Mallat described a similar process in the case the relative maxima of the wavelet

coefficients are chosen.

LIN Design The methods used to compress the Fourier spectral characteristics of

speech just reviewed have relied on rule-based systems that have been developed in an ad

hoc manner. Specific knowledge regarding the Fourier spectral characteristics of speech

was necessary in order to design the systems based on Fourier expansion. As is shown in

this section, LINs will replace the rule based systems for compression in both the W-H

frequency space and the affine frequency space. In contrast, the design principles of the

LINs are based on a solid mathematical foundation and on several known physiological

phenomena of hearing.

The design principles used in this thesis are meant for wider application than just

compressing the speech spectrum. The choice of LINs for this research is biologically

motivated, and as such, specific knowledge about how the hearing mechanism works is

used. This approach differs from the approach of the previous efforts, since the emphasis

is not placed on knowledge about source signals but on how biological systems process

these signals. Animals across species use the basic principles adopted here in nearly all

sensory systems to preprocess environmental information. These design principles may,

therefore, be applicable to coding and compressing other acoustical and electromagnetic

signals as well as two-dimensional spatial images.
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In the affine wavelet case, Mallat's compression and reconstruction methods are

based on a more solid mathematical foundation than the other compression methods

reviewed here. Nevertheless, Mallat's iterative process does not appear to be feasible

for real-time processing. As shown in - following section, the local maxima of the

wavelet spectrum will be chosen by the LIN but no attempts of regenerating the eliminated

coefficients will be made. One of the main reasons for this is to compare the effects of

eliminating coefficients in the W-H transform space versus the affine wavelet transform

space of speech. The other reason for not using Mallat's iterative algorithm is for

computational reasons.

LIN Comp-ession of Short-Time Fourier and Gabor Spectra To recall from

Chapter II, LINs are found in the subcortical relay stations that carry patterns of electrical

activity from the auditory nerve to the primary auditory sensory fields of the cortex. The

main function of the LINs in that system is presumed to be contrast enhancement of

spatio/temporal information. This is precisely the function assigned to LINs in this effort.

The magnitude of the spectral coefficients of speech are analogous to the electrical activity

found in the auditory nerve. The dynamics of the LINs will search for local energy peaks

and suppress weaker ones. Nothing is assumed about the incoming signal. The only

information used to design the competitive architecture of the LINs is the experimentally

derived filter bandwidths of the cochlea.

The LIN design for W-H frequency compression begins with the numerical or

discrete time approximation of the activity equation of LIN nodes described in Eq (18)

in Chapter II. Figure 8, with the indexes relabeled, is shown again in Figure 17 for

more convenient refcrence. The discrete time approximation of Eq (18) used is found by

Euler's method, one of the simplest techniques known for solving differential equations.

As long as the inputs to the LIN are normalized or scaled between zero and one, Euler's

approximation of Eq (18) remains stable throughout its computation, leading to steady-

state, with reasonable step size values. Thus, for a given step size T, the activity equation
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Figure 17. Lateral Inhibition Network Model

becomes

Xk(t + 1) = Xk(t) + r{[A - Xk(t)]Ek - [B + Xk(t)]lk} (68)

where

Ek = gk + f(Xk)

Ik = D f f(xj)

9k = IY(r, k)l or IC,,kI

The output, Eq (19), is modified to include a threshold and becomes

_( (xk - 9)2/[(k- .. )2+ +a2], Xk > o
f(Xk) _2(69)( 0, Xk < 0
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The variables in Eqs (68) and (69) are chosen as A = 1, B = 1, D = 1, a = 0.5, and

- = 0.1. In addition, the result of varying 0 is investigated in Chapter IV as well.

In simple terms, Eq (68) says to increase the activity xk of node vk by a maximum

of Ar if the excitatory term is greater than the inhibitory term (Ek > Ik), or decrease

Xk by a maximum of Br if Ik > Ek. In other words, if the current node's input plus

feedback from itself is greater than the sum of the outputs of the competing nodes, then

that node's activity will increase and will tend suppress the activity of the competing

nodes. Parameter D is chosen to produce winner-take-all competition. This means that

the node with the highest input will kill off the activity of all nodes competing with it.

In this way the spectral coefficient with the largest magnitude will be chosen over others

within a defined bandwidth.

One can also view Eq (68) as an implementation of a Mexican hat function discrete

filter. Indeed, the plot of a typical implementation of the transfer function (HM) of this

filter resembles a Mexican hat, as can be seen from Fig (18). This particular filter

implementation is modeled by the negative of the second derivative of the Gaussian

function, or

HM(k) = [1 - (k/N)2 ] exp[(k/N)2 /2] (70)

It is evident from Fig (18) where the term on-center off-surround processing-the

alternative expression for lateral inhibition-originated. Frequency components in the

center of the filter are magnified, whereas the frequency components on the periphery

of the filter are attenuated. In the specific case of the LIN used in this thesis, the filter

center boosts the energy of only one spectral component, and uniformly attenuates an

equal number of components on either side of the center. These filter bandwidths are now

defined.

A competitive band is defined to be a set of competing nodes. Similarly, a

competitive bandwidth, denoted as Wc E A/, is the number of nodes in a competitive

band. The competitive bandwidth, therefore, has a frequency bandwidth W associated

(1. j
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Figure 18. Typical Mexican Hat Filter Function

with it, and is defined by the following relationship:

W = 31.3WcHz (71)

The LIN is designed to have overlapping competitive bands-or overlapping Mexican hat

filters. The competitive bandwidths of these overlapping bands are chosen to approximate

the bandwidths of the triangular filter models of the cochlea. As one may recall from

Chapter II, the bandwidths of these overlapping filters increase logarithmically as a

function of frequency. There are two main models describing these bandwidths. One is

called the equivalent rectangular bandwidth (ERB) [50]; the other is called the critical

bandwidth (CB) [70].

The ERB was derived to have the following function:

WERB(f) = 6.23f 2 + 93.39f + 28.52 (72)

The function ascribed to the CB is

WCB(f) = 25 + 75(1 + 1.4 f2).69 (73)
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where f is frequency in kHz. A plot of these two relationships is shown in Figure 19.

This plot clearly shows that the ERBs are much more conservative that the CBs, especially

for frequencies less than 600 Hz. A LIN designed to approximate the CB model will,

therefore, produce more compression.

1000

C- 10 - - - - - - -

I

N, -

C 100

ERB
CB

10
0.1 1 10

Characteristic Frequency (kHz)

Figure 19. ERB and CB as Functions of Frequency

In practice, the frequency bandwidths associated with the competitive bandwidths

of the LIN can only approximate the experimentally derived bandwidths of the cochlear

filters. The reason for this is that each LIN node is chosen to compete with an equal

number of nodes on each side of it for simplicity. This means that the frequency

bandwidths of the LIN cannot increase smoothly, but in steps. Table 2 summarizes the

competitive bandwidths Wc,,, and the associated frequency bandwidths Wk of the LIN

that approximate the ERBs and CBs of the cochlea. The column labeled ERB(CB) CF

shows the characteristic frequencies, CFs, that have associated ERBs(CBs) equal to that

of the frequency bandwidths Wk of the LIN. In other words, WERB(CB)(CF) = Wk.
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The column labeled ERB(CB) k, shows the frequency indexes k that produce the analog

frequencies vk closest to the ERB(CB) CFs. Figures 20 and 21 show the LIN's frequency

Table 2. Bandwidths (in Hz) Analyzed by LIN

WC Wk I ERB CB_ CFlkI vk CF kI vk
3 93.9 670 21 657.3 - - -
5 156.5 1264 40 1252.0 947 30 939.0
7 219.1 1820 58 1815.4 1456 47 1471.1
9 281.7 2344 75 2347.5 1880 60 1878.0

11 344.3 2842 91 2848.3 2262 72 2253.6
13 406.9 3318 106 3317.8 2616 84 2629.2
15 469.5 3773 121 3787.3 2950 94 2942.2
17 532.1 - - - 3269 104 3255.2
19 594.7 - - - 3575 114 3568.2
21 657.3 -1 - - 3870 124 3881.2

bandwidth approximations of the ERB and CB curves, respectively, as defined by Table

2.

To summarize, the LIN designed to compress the W-H wavelet spectrum can be

thought as a series of overlapping Mexican hat filters. The bandwidths of these filters

are chosen to approximate the putative filter bandwidths of the cochlea, which increase in

bandwidth logarithmically as a function of the CF. The function of these filters is to search

for energy peaks in their bandwidth and attenuate all others.

Once the LIN convcrges, all non-zero output nodes are used as pointers to the

original spectrum. This means that the original spectral magnitudes (of the chosen

coefficients) are used to resynthesize the signal, and not the values of the outputs of tnc

LIN nodes.

LIN Compression of Affine Wavelet Spectrum The LIN design for compress-

ing the affine wavelet spectrum is based on more speculative criteria than what was used

in the previous section. The LIN design for the W-H wavelet spectrum is based on an
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Figure 20. LIN Frequency Bandwidth and ERB vs Frequency

attempt to approximate filter bandwidths found in the cochlea. These filter bandwidths are

nearly constant for CFs less than 1 kHz or so, and then increase logarithmically for CFs

above 1 kHz. The resultant W-H transform/LIN process is a forced logarithmic frequency

analysis of the input signal. This analysis highlights the frequency peaks or changes in

each time slice, or frame. The match between each frame of the W-H spectrum and

the LIN is straightforward, since both are one-dimensional representations of frequency

or frequency operators. In contrast, the affine wavelet transform performs a logarithmic

analysis of the input signal to begin with. Each affine wavelet frame-defined in this

case as the interval of time of the lowest level analysis-is both a time and frequency

representation.

The direct counterpart of the previous design, is to highlight the temporal changes

or peaks in each octave band or analysis level. The LIN design for compressing the

affine spectrum at each analysis level is identical to the LIN design for compressing the
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W-H spectrum; however, the competitive bands remain constant for any given level. A

competitive band in the present case now corresponds to a competitive interval, which

is denoted as Tc E A/. The relationship between the competitive interval and the true

interval associated with it in this effort is

31.95 Tc
T= 2' msec. (74)

where I is the level of analysis, and the time constant 31.95 msec. was found in the

beginning of this chapter.

The competitive interval for each level is determined by the reciprocal of competitive

bandwidth for the frequencies analyzed by each level of analysis. In this case, only the

CB rule is used. Table 3 lists the intervals over which the LIN is compressing at each

level. These approximate the intervals determined by the CB rule, which are denoted by

Tr-B and are also listed in Table 3.
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Table 3. Intervals (in msec.) Analyzed by LIN

II [Tc I T1 I TCB
0 0 0 9.99
1 0 0 9.97
2 0 0 9.89
3 3 11.98 9.57
4 5 9.98 8.52
5 5 4.99 6.15
6 7 3.49 3.32
7 7 1.75 1.45

Table 3 shows that no compression is possible in the first three levels of analysis

using the CB tuned LIN method of compression. This suggests that the affine decomposed

speech will not be compressed to the levels that the W-H decomposed speech is capable

of being compressed with LINs.

Summary

This chapter defined the decomposition, compression, and reconstruction algo-

rithms used in this thesis. The chapter began with a description of the software and

hardware environments along with some basic definitions and notation. The short-time

Fourier, Gabor, and affine wavelet transforms, along with the varied window or wavelet

functions used, were then precisely defined. Finally, the LIN designs for compressing

each of the transform derived spectra were presented. Briefly, the LINs' overlapping

bandwidths(intervals) were designed to approximate the bandwidths(intervals) of the

theoretical overlapping filter model of the cochlea. The following chapter summarizes the

results found in regenerating speech signals from the compressed spectra obtained from

the methods described in this chapter.
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IV. Results

Introduction

This chapter summarizes the results obtained from decomposing, compressing, and

regenerating the spoken integers by the methods described in the previous chapter. For

economy, the results are shown only for the word seven spoken by the author unless

otherwise noted. These results are representative of the results obtained from the entire

vocabulary.

This chapter is organized into four main sections. In the first section, the results

obtained from compressing the short-time Fourier and Gabor spectra are discussed. These

results highlight the differences obtained from using the various window functions and

various LIN configurations. The second section summarizes the results obtained from

compressing the affine wavelet spectrum. The third section discusses the results obtained

from the noise filtering tests. The final section compares the results summarized in

previous sections.

The criteria used here to establish the best results are mean square error (MSE)

between the original time signal and the reconstructed signal (both signals are amplitude

normalized before the MSE is computed), and subjective listening tests. The subjective

tests consist simply of questions regarding the intelligibility and quality of the reconstructed

speech judged by randomly chosen listeners. Since this research is only a preliminary

study in the LIN compressing capabilities of a variety of spectra, such informal testing

seems reasonable. Any subsequent research based on this thesis that looks to optimize the

intelligibility and communication bit rates of speech should use more rigorous listening

tests such as the diagnostic rhyme test.
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Results Based on Short-Time Fourier and Gabor Spectra

The results reported in this section are organized by first comparing the original

discrete signal to the reconstructed signal from all the spectral coefficients produced

from the short-time Fourier and Gabor decompositions defined in the previous chapter.

The results of compressing the varied spectral representations with the LIN are then

examined. These results show how the spectral components are eliminated as the

competitive bandwidths are increased and the LIN output threshold is increased. Finally,

the reconstructed signals from their compressed spectral representations are compared and

ranked by MSE and auditory quality.

The plots of the original and the reconstructed signal sequences of the word seven,

from the various short-time Fourier and Gabor representations, are shown in Figures 22

through 32. Immediately after each of these plots, the difference signal between the

original and reconstructed signals are shown, rescaled, in order to better demonstrate the

resultant error. All signals are linearly scaled between minus one and one in order to

eliminate irrelevant scale variations.

The plot titles describe the window and the method of decomposition used.

Spectrogram in these titles refer to the short-time Fourier decomposition, and Gabor is

self explanatory. For example, the plot labeled Seven Rectangular Spectrogram describes

the resynthesized word seven derived from the short-time Fourier spectrum using a

rectangular window. The plot entitled Seven Original, naturally, is the plot of the original

signal. The word seven is omitted from the title of the plots illustrated in Figures 31 and

beyond, with the understanding that the results shown are derived from this spoken word.

All signal sequences in this section are discretized, of course, but are plotted with points

joined and give the illusion of continuous time signals.

As may be recalled from the previous chapter, the interval of support of the

biorthogonal function is determined by parameter Q in Eqs (40) and (52). That interval of

support is defined by the inequality -QN < n < QN, where N is the number of points in

each window. By definition, Q = I for the exponential biorthogonal function. In the case
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of the Gaussian biorthogonal function, Q < M [19]. Two values of Q were chosen in

the Gaussian case: Q = M, for the maximum support, and Q = 2, for minimum support.

The plots labeled Gauss Gabor are of reconstructed signals from the Gabor representation

computed using Q = M. Likewise, the plots labeled Short Gaussian Gabor are associated

with Q = 2. This nomenclature will be adopted hereafter for all references to the Gabor

representations computed using the two values of Q.

The plots in Figs 22 through 25 reveal that the errors produced from reconstructing

the signal from the short-time Fourier spectrum using rectangular or Hamming windows

are very small and nearly identical. Taking floating point and other arithmetic errors

into account, these small errors are to be expected from the theory described in the

previous chapter. The result of using the compactly supported Gaussian window produces

a larger error in the reconstructed signal, and again this is to be expected from the

theory. Numerous subjects listened to the original and reconstructed signals and could not

distinguish between them.

As seen from Figures 28 through 33, the errors produced from the Gabor representa-

tions are much greater and different in nature. Figure 28 illustrates the reconstructed signal

from the Gaussian Gabor spectrum, that is, using the maximally supported biorthogonal

function of the Gaussian window. The first and last few time frames were omitted in

the reconstruction process in order to avoid out of range indexing in the data structure

used to hold the values of the reconstructed signal. Omitting these time frames created

two unexpected spikes at the beginning and end of the reconstructed signal. These errors

foreshadow the errors that occur when the Gabor spectrum is compressed. Figure 29

illustrates the error signal produced from the signals plotted in Figure 28. The two

large spikes in the reconstructed signal were removed prior to computing that difference.

Besides the 31.3 Hz sinusoidal error observed in Figure 28, a handful of impulses are also

seen. Although these errors are much greater than the errors produced by the short-time

Fourier reconstructions, they were not perceived by the listening subjects.

As shown in Figure 31, the reconstructed signal from the short Gaussian Gabor
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spectrum has large periodic spikes. These spikes were clearly audible in the listening

tests. Although intermediate values of Q were not tested, it is clear that subjective quality

of the reconstructed signal is a function of the parameter Q. This is also verified by the

MSE of these signals shown in Table 4.

It appears that the spikes that are manifested in the reconstruction process leak

through when the Gaussian and its biorthogonal function do not entirely cancel each other

out. The large spikes, shown in the lower plot in Figure 28, that occurred when sections

of the Gabor coefficients were removed support this conjecture.

Figures 32 and 33 illustrate the result of reconstructing the speech signal from

the Gabor representation using an exponential window. Figure 33 shows that periodic

(31.3 Hz) spiky errors are also produced in this reconstructed signal. The arrows point

to the most obvious ones. Also notice that the overall error tends to follow a decaying

exponential function; the same as the window function. The explanation for these errors

is different from the one offered in the Gaussian case. This explanation is given without

proof with the following simple example. Suppose a modulated one sided exponential

function is defined with the same time constant as the exponential window used in a

Gabor expansion. Furthermore, suppose that this function is exactly shifted in time by an

integer multiple of a = At and modulated by an integer multiple of / = Af. A Gabor

decomposition of this signal will result in a single impulse in the two-dimensional Gabor

lattice. This impulse results from the perfect match between the signal and the window

shifted and modulated at precisely the same values as the signal. Figure 34 precisely

illustrates this phenomenon. The original signal plotted on the top left hand graph is

defined as

y(t) = exp[-(t - to)/r-] ;in(2irfot) u(t - to) (75)

where

to = 3

fo = II
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fo - 11

The units are arbitrary. This signal is sampled at 1/T = 64 and N = 64. The three

dimensional plot illu.strates the Gabor decomposition of the signal and shows the resulting

impulse centered on the time axis at m = 3, and centered on the frequency axis at

k = 11--corresponding exactly with to and fo (the indexes in the Gabor lattice plots

are off by one due to the plotting software). The bottom left hand graph shows perfect

reconstruction as expected.

If, however, the signal is not shifted and modulated at precise integer multiples

of time and frequency, respectively, the resulting Gabor representation is quite different

as shown in Figure 35. The original signal is shifted and modulated by to = 3.3 and

fo = 11.2 in this case. The Gabor lattice now shows ringing in both the time and

frequency axes. This ringing is due to the uncertainty produced in trying to pinpoint

the signal in time and frequency. Indeed, the Gabor representation can be thought as a

,,vo-dimenzional probability density function. From the Gabor coefficients shown plotted

in Figure 35, the reconstructed signal displays the uncertainty produced in the expansion

of the original signal. Notice that a small error occurs at n = 192 (to = 3) as well as at

subsequent integer multiples of n = 64 (t). This same phenomenon is exhibited in the

error signal shown in Figure 33. This is to be expecied since naturally occurring speech

signals are not expected to have temporal, frequency, and envelope characteristics that

perfectly match the window function.

The type of errors shown in Figure 33 are audibly experienced as clicks. These

clicks are more pronounced in some words than in others. All hearing test subjects

reported the presence of the clicks in the reconstructed signals. However, all subjects

reported that these errors were not as obtrusive as the errors experienced in the regenerated

signals from the short Gaussian Gabor spectrum. Since audible errors resulted from using

the exponential window, no compression/reconstruction tests were performed bascd on

73



these decompositions. The minimally supported biorthogonal Gaussian function, on the

other hand, is important when reconstructing the speech signals from a compressed Gabor

representation. This will be examined later in this section.

Table 4 lists the MSEs of all regenerated signals described thus far. Subjectively,

the results can be ranked nearly the same as the MSE ranking. The only difference is that

the first four entries in the table can be subjectively ranked with equal weight, and each of

these are indistinguishable from the original signal.

Table 4. MSE of Reconstructed Signals

Reconstruction Source MSE

Rectangular Spectrogram 5.3682x 10-6
Hamming Spectrogram 5.3682x 10-6

Gaussian Spectrogram 5.7554x 10-

Gaussian Gabor 2.7366x 10- 4

Exponential Gabor 6.9777 x 10- 4

Short Gaussian Gabor 7.9441 x 10 -

The next series of plots in Figures 36 through 43 show frame 9 (n = 2304) of the

short-time Fourier spectra and the Gabor spectra for each window used. Frame 9 of the

signal corresponds to the first vowel e (e, from the International Phonetic Alphabet) in the

word seven. Figure 36 demonstrates that the spectrum obtained from a Hamming window

is nearly the same as the one obtained from the Gaussian window. One would expect that

from the similarity of the two window functions. On the other hand the Gabor spectra are

quite different, as shown in Figure 37. The Gaussian window in this case produces much

more energy below 150 Hz or so. In addition, the Gaussian Gabor decomposition tends

to attenuate the energy of the higher formants. Unexpectedly, the one-sided exponential

window produces a Gabor spectrum much closer to the short-time Fourier spectrum.

Again, these examples are representative of the effects observed in the entire vocabulary.

Figures 38 through 43 show how the LIN eliminates spectral components as a

function of competitive bandwidth rule and threshold. The spectral lines shown in these
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figures represent the normalized output of the LIN after convergence. One may recall that

the competitive bandwidths used to approximate the ERB are more conservative than the

CB (see Figure 19). As a result the CB rule produces more compression than the ERB

rule. The LIN output function thresholds used were 0 = .0009, .09, and are referred to as

the low threshold and high threshold in Figures 38 through 43. The high threshold in all

compressions tends to eliminate the higher frequency components-above 1500 Hz-due

to their low energy. This is evident in Figures 40 and 43. Although it may be difficult to

determine from the figures, the LIN consistently finds the local maxima as defined by the

competitive bandwidths. These local maxima correspond the the glottal frequency (the

first maximum chosen) and its harmonics, including the the formant peaks.

Before describing the results of regenerating the signal from the compressed spectra,

the time-aliasing effects described in the previous chapter are shown in Figures 44 and

45 for two cases. Figure 44 shows the plot of the reconstructed and difference signal

from the compressed Fourier spectrum using a Hamming window, and, similarly, the plots

shown in Figure 45 are derived from the compressed Gaussian Gabor Spectrum. In th

former case, the errors can be described as large amplitude errors concentrated around t! -

window edges, whereas in latter case, the errors can be described as spiky noise. The

spiky noise in the Gabor case was predicted earlier in the discussion pertaining to Figure

28. Again, the conjecture is that the spikes of the biorthogonal function seem to leak

through if the window function does not entirely cancel them out.

The windowing process described in Eq (36) completely eliminates the time-

aliasing effects in the case of the short-time Fourier spectra. Consequently, the best results

were obtained--both subjectively and in terms of MSE-from these representations. The

compressed Gabor spectra did not reproduce signals as well the Fourier spectra, even

with windowing. However, all signal reproductions revealed that a truncated biorthogonal

function should be used when compressing the Gabor spectrum. This is illustrated in

Figures (46) and (47). The spike noise cannot be fully eliminated when a maximally

supported biorthogonal function is used. With a truncated biorthogonal function, spikes

81



S 0.8 ...

0.6 ...

0 0.2

T 0 K . j j L ,k;
U.. 0 10 20 30 40 50 60 70 80 90 100110120

0.8

E 0.6

0.

0. 0.2 ....

E

U. 0 k
U-0 10 20 30 40 50 60 70 80 90 100110120

E 1 -

0.8

CU 0.6

0

o 0.2

V0 L

0 10 20 30 40 50 60 70 80 90 100110120

Figure 38. Compression of Spectrogramn Using ERB Rule and Low Threshold

82



E

10 .8 4 .... ...... ...... ......

P0.6 ...... ... ......

1 0.4 ......E.

E

Tu 0k
LA. 0 10 20 30 40 50 60 70 80 90 100110120

E 1

CL

2 0.6

( 0.4

0.2

LI
00

LL 0 10 20 30 40 50 60 70 80 90 100110120

E 1

C0 0.8 I
0.6

CL

E
o 0.2

U. 0 10 20 30 40 50 60 70 80 90 100110120

Figure 39. Compression of Spectrogram Using CB Rule and Low Threshold

83



E

aa

cc 0.4
ts

c

0 0.2.. ...... ..

e

LL 0 10 20 30 40 50 60 70 80 90 100110120

CL 0.8

0.

(D~

V 06

S 0.4 . ...

0-

0
L) 0.2

L01030 40 50 60 70 80 90 100110120

0.44



CO

a 0.4
E

0 -

0

0.

E

LL 0 ~ . _ _ _ _ _ _ _

0 10 20 30 40 50 60 70 80 90 100110120

0.85



cd1

0 . .... ...:. .. 1.. .. ... ... ....

CL 0.4....... ... ..
E
0

0 .2.. .. .... .....
E
CO
LL

0 1 L 11 1 11 1 :-
0 10 20 30 40 50 60 70 80 90 100 110 120

.0

C

CL
E

CD

E

LL 0k
0 10 20 30 40 50 60 70 80 90 100110120

Figure 42. Compression of Gabor Spectrum Using CB Rule and Low Threshold

86



CD0 .8 ...- -- -----. .. ...... ...

C

CL 0.4......... ..
E
0
0

oD 0.2 ... .... ......
E
cd

U-

0 1 t I 1 i1 k
0 10 20 30 40 50 60 70 80 90 100110120

C

0 .8.. . .. .. .... .

0.4 ...

E
00l

U, -

0 10 20 30 40 50 60 70 80 90 100110120

Figure 43. Compression of Gabor Spectrum Using CB Rule and High Threshold

87



20.6 ... ....

E 04

EE

C. -0.6
E

o-0.8

0 1024 2048 3072 4096 5120 6144 7168

0 .1 ...... . .. .......... - - .....

0 .8 ...... ..... ................. ... .....
E

0 2
0 .6 ... ..... ...... ... .....

.9 U 040
0o0 2 ----- ....... ... ..... .... .........

E~0.

0 -0.64837 09 1061476

Figure 44. Abiasing Effects Obtained from Compressed Spectrogram Using a Hamming
Window

88



-o0.6.......--- -

ca0.2 ....... .. .....

0

U,-0 .2 I.. ..... .. .. .... ...... ..
2-0 .4 .... ... .. . ....

CL
E

0-0 .6 1. ..... ...... .... ...... ...

-0 .8 .... ... .... ... ..... ...

-1 n
0 1024 2048 3072 4096 5120 6144 7168

0

.0

(D I

0

.S -~0.6 ...
0 0 6 - - - - - . . . . . . . . . . .. . . ... . . .. . . . . . . . .

0 0.4
-0 8...... ---

0)n
0.2 2 0830249 12 1476

Fiue4.AaigEfcsOtie0)m opesdGbrietu sn as

sia 0indo

E8



do not appear, however, the quality of the reconstructed speech can be characterized as

rough sounding.

As previously shown, the amount of compression can be controlled by either

increasing the competitive bandwidths or increasing the output threshold of the LIN. The

reconstructed speech obtained from the compressed spectra using a LIN tuned to the

ERB rule was virtually indistinguishable (subjectively) from the speech obtained from

the compressed spectra using the CB rule. This is true only for a low output threshold.

Increasing the LIN output threshold tends to degrade the fricatives. However, this is

preferable to increasing the competitive bandwidis much beyond the CB rule. Speech

compressed using the LIN tuned to twice the CB rule produced markedly deteriorated

reconstructed speech. This result supports the argument that CB rule better describes the

filter bandwidth characteristics of the cochlea than the ERB rule.

The best results, overall, were produced from the short-time Fourier spectrum using

a compactly supported Gaussian window. Also, unexpectedly, better compression resulted

from this representation than any other representation compressed with an identically tuned

LIN. Table 5 lists the compression ratios obtained using a LIN tuned to the CB and twice

the CB rule with two values of output threshold for each window used. The compression

ratio is defined as

RC = Nt/N. (76)

where .'ir is the total number of coefficients, and Nc are the total number of coefficients

left after compression.

Speech compressed using the LIN tuned to the CB rule produced clearly intelligible

speech when resynthesized, even when a high LIN output threshold was used. Table 6

lists the MSEs obtained from the respective compressed spectra using the CB rule and

an output threshold 0 = .09. As before, the subjective ranking coincides with the MSE

ranking.

Although the reconstructed speech from the compressed short-time Fourier spectrum
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Table 5. Compression Ratios Obtained from Short-Time Fourier Spectrum

Compression Ratios (Re)
LIN Tnidng Wmindow

Rule reshold Rectangular Hamming Gaussian

CB .0009 8.84 11.23 11.77
CB .0900 18.08 23.55 24.72
2xCB .0009 14.95 18.54 j 19.40

Table 6. MSE of Reconstructed Signals from Compressed Spectra

Reconstruction Source__[ MSE 0
Gaussian Spectrogram 1.8736x 10- 3

Hamming Spectrogram 1.9066x 10- 3

Rectangular Spectrogram 3.2633 x 10- 3

Short Gaussian Gabor 4.3132x 10- r
Gaussian Gabor 4.8427 x 10- 1

was intelligible, it can not be claimed that this speech is of toll quality. In tests performed

on continuous speech, musical quality tones are perceived around some fricatives in the

reconstructed speech. The phrase processed in these tests was presented in Chapter I,

Section Scope.

This section concludes with an estimate of the bit rate achieved by compressing

the Gaussian window derived Fourier spectrum of the test phrase. No source or channel

coding is assumed in the bit rate estimate. The LIN was tuned with the CB rule and an

output threshold of .09. A compression ratio of 26.81 was achieved in this case. This

translates to an average of 4.774 coefficients per frame. Since the frames are overlapped

by 50%, an average of approximately 10 coefficients per 31.95 msec was sufficient to

represent the signal. Approximately 31 frames are needed for each second of speech.

In order to find the bit rate, the total number of bits that represent the frequency index,

magnitude, and phase of each coefficient is established. The total number of bits needed

for the frequency index is fixed at 7. The number of bits used to represent the magnitude
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and phase were decreased to 4 and 2 respectively; down from 16 bits each. This reduction

in the number of bits did not significantly degrade the speech signals (neither in MSE nor

subjectively). Thus, the total number of bits necessary to represent each coefficient is 13,

times 10 coefficients per frame, times 31 frames per second yields 4030 bits per sec. This

compares favorably with the 4800 bit rate speech demonstrated by McMillan [49].

Results Based on Affine Wavelet Spectra

As in the previous section, the resynthesized signal from all the coefficients of the

affine wavelet spectrum-using the Haar and the Morlet wavelets-are first examined.

Afterwards, the result of compressing the affine wavelet spectrum via the LIN, as defined

in the previous chapter, is presented.

The regenerated signal from the Haar wavelet obtained coefficients is nearly identical

to the original signal, as shown in Figure 48. The error obtained from this reconstruction

is almost the same as the error obtained from the signal resynthesized from the short-time

Fourier spectrum using the rectangular or Hamming windows. The high fidelity of this

reconstructed signal is to be expected due to the completeness of the Haar wavelet set.

In the previous chapter, it was mentioned that four times as many Morlet wavelet

levels than are used in this effort are necessary for a complete representation. As a result,

a large error between the original and the reconstructed signal from the Morlet wavelet

decomposition is to be expected. Figure 49 verifies this. However, what was not expected

is that the subjective quality of this reconstructed signal is quite good, although different

from the original and somewhat noisier.

The Gaussian envelope of the Morlet wavelet-exp[-(n/N)2 /2], as presented in

Eq (61)-has a variance or2 = I if one defines the general form of the Gaussian as

exp[-t 2/(20r 2)]. In this form, the Morlet wavelet produces quite a large overlap during

the computation of the wavelet transform. The variance was reduced to a2 = 1/(27r)-in

order to reduce the overlap--and the signals were decomposed and resynthesized with

the new wavelet set. The result, represented in Figure 50, was a reduction in the MSE
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between the original and reconstructed signals. The listening test subjects reported that

these resynthesized signals sounded closer to the original than the signals resynthesized

from the wider variance Morlet wavelet decompositions. Table 7 lists the MSEs of the

three regenerated signals described in this section.

Table 7. MSE of Reconstructed Signals From Wavelet Coefficients

Reconstruction Source MSE

Haar Spectrum 5.3224x 10-6

Morlet Spectrum 3.2461 x 10- 1
Narrow a 2 Morlet Spectrum 9.8497x 10- 4

The reconstructed speech from the compressed affine spectrum-by the method

described in Chapter II-was intelligible but of poor quality, regardless of the wavelet

used. This reconstructed speech has a very rough quality associated with it. Even when

reducing the compression by allowing only nearest neighbor competition in the LIN, the

resultant reconstructed speech is rough and muffled. Figures 51 through 53 show the result

of compressing all eight Haar generated coefficieait levels of frame 9 of the speech signal

using the CB rule. At each level, the coefficients have been duplicated an appropriate

number in order to span 128 points. For example, at level 0, the only coefficient found

at that level is duplicated 128 times, at level 1, both coefficients found at that level are

duplicated 64 times, and so on. This provides a convenient method of illustrating the

affine spectrum. Recall that the 128 points are associated with a 31.95 msec. interval.

The result of compressing the coefficients are shown as shaded areas in the plots. Figures

54 through 55 show the result of compressing the same frame with only nearest neighbor

competition. Clearly, this method of compressing the affine spectrum is not useful for

regenerating good quality speech.
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Noise Filtering Analysis

Preliminary tests suggest that the use of LINs for noise filtering neither enhances

nor degrades the intelligibility of the speech signal. With high signal-to-noise ratios

(SNRs) the speech was equally intelligible before and after compression. Similarly, when

the SNR was lowered significantly, the speech was not understood either before or after

compression. Although this is not a dramatic result, it is significant when comparing

with LPC coded speech. It is well known that LPC coded speech degrades very rapidly

(nonlinearly) as a function of decreasing SNR. Thus, if the speech signal is understandable,

no extra noise filtering is required before the speech is compressed with LINs as is required

for LPC compressed speech.

Summary of Results

The results reported in this chapter were for the spoken word seven, and, again,

these results are representative of the results found for the rest of the spoken digits.

In the case where speech is decomposed using the short-time Fourier and Gabor

transforms, the LIN is capable of finding all relative maxima that are associated with the

glottal frequency and its harmonics, and most importantly the formant peaks. When the

Gabor decomposition was used, it was found that the quality of the reconstructed speech

depends on the variable Q, which defines the extent of the biorthogonal function. Small

values of Q are preferable than large values of Q in this case, but just the opposite is true

if all the Gabor coefficients are used. A one-sided exponential window produces periodic

clicks in the reconstructed signal, even when all coefficients are used. The reconstructed

speech from the compressed short-time Fourier spectrum is of much better quality than

the Gabor reconstructed speech. Of the three windows used in the short-time Fourier

decomposition, the Gaussian window produced the best q:vality reconstructed speech.

Speech reconstructed from the LIN compressed Gaussian spectrum using the ERB rule

is virtually indistinguishable from the LIN compressed spectrum using the CB rule.

The CB rule appears to define the limit of the competitive bandwidths since increasing
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the bandwidths beyond this limit significantly degrades the quality of the reconstructed

speech. Overall, compression ratios between approximately 20 and 28 were achieved

resulting in perfectly understandable speech. This amount of compression translates to

well below 4.8 kbits/sec. speech.

The LIN, as designed in this thesis, does not compress the affine wavelet spectrum

suitably for resynthesizing good quality speech. Even in efforts where compression was

allowed in only one level, the resultant regenerated speech was sufficiently degraded in a

manner that was consistently rated worse than the regenerated speech from the compressed

short-time Fourier spectrum. In these cases the compression of the Fourier spectrum was

nearly 20 times greater the the compression of the affine spectrum.

In the concluding chapter, the implications of these results, especially as they relate

to the physiology of hearing, are explored. In addition, suggestions as to how the quality

of the reconstructed speech can be improved from the compressed spectra explored in this

thesis are offered.
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V Conclusions and Recommendations

Introduction

The main purpose of this research was to develop non-linear lateral inhibition

networks (LINs) for coding and compressing the affine and W-H decompositions of

speech. The choice of LINs for compression is biologically motivated since these

networks are ubiquitous in sensory preprocessing systems across species for the main

purpose of spatio/temporal contrast enhancement. In the W-H case, the LIN is designed

to search for spectral peaks and eliminate the rest of the frequency components in each

time slice of the two-dimensional transform lattice. In the affine wavelet transform space,

the LIN is designed to pick temporal coefficient peaks in each level of frequency analysis.

The LIN was tuned to approximate the overlapping bandwidths of the theoretical filter

model of the cochlea.

In the following section, the most important results of this research are summarized.

From these results, conclusions and recommendations for possible future research are

suggested. This chapter and this thesis concludes with the biological implications of the

results found in this research.

Summary of Results, Conclusions, and Recommendations

The best overall decomposition/compression/resynthesis results were obtained from

the short-time Fourier domain. In that case, up to approximately 28 times compression

of the short-time Fourier spectrum was achieved resulting in clearly intelligible srFech.

This amounted to approximately 95% elimination of the spectrum. The resynthesized

speech compressed at these levels translates to under 4.8 kbits/sec. speech. Although

the compressed speech is perfectly understandable, this speech is not of toll quality

due to the musical quality of the fricatives. The compression ratios achieved-for a

specific tuning of the LIN-were a function of the window used in the Fourier expansion.
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The compactly supported Gaussian window produced the best compression, followed

by the Hamming window, and the rectangular window in that order. If one examines

the spectral characteristics of each window [30], one might conclude that this is due to

the side lobe characteristics of each window. All other things being equal, the more

the side lobes are suppressed, the more the LIN compresses. This hypothesis can be

tested in future research by using other windows with even better side lobe characteristics

than the compactly supported Gaussian window, in particular the Dolph-Chebyshev and

Kaiser-Bessel windows.

Compressing the Gabor spectrum produced much noisier resynthesized speech than

what was obtained from the short-time Fourier domain. It is concluded here, that the

poor compression/resynthesis obtained from the Gabor decomposed speech is not due to

the LIN compression. In each case, the LIN found peaks that were associated with the

important characteristics of speech: the glottal frequency and its harmonics as well as

the formant peaks. Therefore, the problem in the case of the Gabor expansion is not in

the information the LIN is extracting but the fact that components are being eliminated.

The conjecture is that errors arise due to problems in approximating and truncating

the biorthogonal function of the window in the Gabor expansion. Further elimination

of spectral components may produce Gibbs like errors that cannot be eliminated with

windowing. Because of these errors and the extra computational complexity of the Gabor

expansion, this representation is not recommended as an appropriate representation for,

speech compression.

The LIN compressed affine wavelet spectrum does not produce good quality

resynthesized speech. Regardless of whether the Haar or Morlet wavelet was used to

decompose speech, the signals regenerated from the compressed representations are quite

rough sounding. This was found to be the case even when the LIN was tuned for

minimal competition, that is, only nearest neighbor competition. It appears that Mallat's

method [45] of regenerating the coefficients via convex space projections is necessary

to reproduce good quality reconstruction. This process requires that at least the local
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maxima are chosen. The LIN chooses local maxima that do not necessarily coincide with

the local maxima defined by Mallat. Therefore, if the LIN is to be used for this purpose,

the network must be redesigned.

Even if a LIN can be designed to choose the appropriate maxima and the projection

method is used to regenerate the speech signals, there appears to be at least two fundamental

problems with the affine wavelet representation for speech compression. The first is the

limitation of compression that may be achieved through the process described above. As

may be seen from Figures 51 through 55, the high rate of variation in the speech signal

produces a high rate of variation in the affine spectrum. As a result of this, relatively

few components can be classified as non-maxima and thereby eliminated. As a rough

estimate, only 25% of the coefficients of the speech signals processed in this thesis fall in

that category. This is far less than the number of coefficients that can be eliminated in the

short-time Fourier space. In addition, a real-time convex space projection system would

require a highly parallelized and expensive system.

Because of the expense of the convex space projection method, a simple cubic

spline or Hermite polynomial first cut interpolation of the coefficients should be tested.

This may be all that is required to dramatically improve the reconstructed speech. This

method should also be tried in the compressed short-time Fourier spectrum, for it might

eliminate the musical quality of the the fricatives of the reconstructed speech.

There are other implementation issues which must also be addressed. In this

thesis, the LIN was modeled as a system of non-linear differential equations whose

solutions- are approximated by Euler's method. This is not the most efficient method of

implementation, however, it established a baseline. As may be recalled, in Chapter III, a

linear approximation to the LIN may be implemented as overlapped Mexican-hat function

digital filters. In fact, this can be reformulated as a wavelet process. This approach

would significantly reduce the computational load. This suggests that an affine wavelet

decomposition could be used on the short-time Fourier spectrum as the compression

algorithm. A number of implementations are, therefore, possible when viewed in this
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manner. In spite of this, it must be realized that linear approximations of non-linear LIN

dynamics will not produce the same computational results. Whetheir these approximations

will yield results that sound acceptable to listeners should be established. In addition to

the digital implementations, analog VLSI and CMOS implementations of LINs are also

available [52, 41]. These circuits should satisfy the most stringent real-time requirements.

Biological Implications

In the previous chapter it was reported that nearly 95% of the frequeixcy components

of the short-time Fourier spectrum can be eliminated without producing a significant assault

to the hearing mechanisms, whereas eliminating even a small number of coefficients in

the affine wavelet spectrum produces errors that the hearing mechanism does not tolerate.

What are the differences in the types of errors that occur when compressing the respective

spectra, and how do these affect the hearing mechanism? The answer to the first question

is straightforward. However, one must hypothesize when answering the second question.

It was discussed in Chapter III that time aliasing errors occur when the Fourier

spectrum is nonuniformly sampled below the Nyquist rate. However, these errors can be

suppressed with windowing. On the other hand, compressing the affine wavelet spectrum

produces random or high frequency noise [45, 3]. The author of an Aware, Inc. technical

report writes:

Fourier-based spectral techniques [in compression] tend to produce errors
of the aliasing type since the frequency spectrum itself is distorted, while
wavelet methods tend to produce errors of the noisy type. Noise is far less
offensive to the human visual system than aliasing. [3:40]

Evidently, just the opposite is true for the auditory system. Why this should be the case is

now explored.

Until quite recently, the role of the efferent or descending auditory system was little

more than a mystery. There remains a general lack of consensus as to the function of
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this system; however, recent hypotheses seem to be converging towards the following

oversimplified process [2, 8, 29, 39, 691. As may be recalled from Chapter II, acoustic

signals produce frequency dependent vibratory motion at specific locations along the

basilar membrane. This vibratory motion is transduced into electric potentials by the inner

hair cells located on the basilar membrane. The electric potentials in turn activate the

cochlear nerve fibers that ultimately signal the primary auditory fields of the neocortex

via several brainstem and thalamic nuclei. This system is known as the afferent or

ascending system. Thus, the afferent system acts as the primary auditor,, receptor system

by transducing and encoding acoustic phenomena, and relaying that information to the

brain.

The brain seems to actively control this process via the efferent system. A

descending communication system, separate from but parallel to the ascending system,

terminates in the brain at four nuclei-two on each side of the brain stem--called the

lateral and medial superior olivary nuclei. These nuclei reside just above and ventral

to the cochlear nucleus, the first relay station of the afferent system. Neurons from the

olivary nuclei ultimately communicate with the cochlea through the olivocochlear bundle.

The axons of this transmission line bifurcate and either synapse with the dendrites of the

afferent system (near the inner hair cells) or synapse directly with the outer hair cells.

Functionally, axodendritic stimulation appears to inhibit inner hair cell signaling. Outer

hair cell stimulation produces much more complicated and interesting results. Evidence

suggests that outer hair cell stimulation produces structural changes to the cell resulting in

a mechanical action on the tectorial membrane. This electro-mechanical action acts as an

automatic gain control of the afferent system. Kim elucidates with the following quotation

The function of the OHCs [outer hair cells] is to enhance actively the
sensitivity, tuning, and dynamic range of the mechanical response of the
entire organ of Corti .... conferring high sensitivity, sharp tuning, and a wide
dynamic range to the IHC [inner hair cell] subsystem. [391
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and Wiederhold adds:

The efferents could also serve in a control system, possibly driven from
cortical origins of the descending auditory pathways, to filter out acoustic
signals that are distracting, or to make more intelligible those stimuli of
particular interest. [69]

This last quotation may finally shed light on the question left unanswered in the

beginning of this section: why are the errors produced by compressing the Fourier

spectrum of speech tolerated by the hearing mechanism and not the errors produced by

the compressed affine wavelet spectrum of speech? To aid the argument, Figure 56

shows, from top to bottom, the plots of the short-time Fourier spectrum of frame 18 (see

previous chapter) of the original signal, the reconstructed signal from the compressed

short-time Fourier spectrum using a Gaussian window, and the reconstructed signal from

the compressed Morlet affine wavelet spectrum respectively. The middle plot shows

that the process of reconstruction filled in some of the components eliminated in the

compression process. Aliasing, then, amounts to localized energy reductions of the

spectrum. On the other hand, the bottom plot verifies that broad band noise is produced

when the affine wavelet spectrum is compressed. Thus, the conjecture is !hat the brain

actively enhances the quality of the compressed Fourier spectrum reconstructed speech

by boosting the gain at the appropriate locations along the basilar membrane. The brain

is incapable of enhancing the compressed affine spectrum reconstructed speech to the

same degree because the error is spread along the entire length of the basilar membrane.

Therefore, the brain is unable to correctly enhance or attenuate the vi' - Aory motion of

the basilar membrane due to the improper cues. Psycho/physiological experiments can be

designed and performed that test these hyp3theses.

Ill
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Appendix A. Code for Gabor Transform

1* * **** **** * ******gabor .m **t** 1
Written by Rick Ricart, Capt, USAF *

/* Computes the Gabor representation of speech files using a Gaussian window *
/* The sound is sampled by the Codec at 8012.8 Hz. Each samle is, therefore, *

/* taken every -24.8E-06 sec. Delta t is chosen to be 256*l24.8E-06 or
/* 31.949E-03 sec. Delta f is, therefore, 31.3 Hz. '
/* This version uses 50% overlapped windows */
/* Call program as follows: gabor <filename> val, where val is 0 or 1
/* val-0 truncates biorthogonal function, val-l leaves biorthogonal function *
/* at its maximum extent. *

#import <sound/sound.h>
#import <math.hi>
#import <dsp/arrayproc.h>
#import <mach.h>
#import <stdlib.h>
#import <stdio.h>
#import <objc/objc.h>
#import <soundkit/Sound.h>
#import <soundkit/soundkit.h>
#import <string.h>
#import <macros.h>

#define NDELTAT 256
#define POINTS 2*NDELTAT
#define KTOTALDFS 128
#define MTOTALDTS 31
#define TOT MTOTAL_DTS*N_-DELTA_-T /* approximately one sec of sound ~
#define TAU 1 /* exponential time constant *

#define PI 3.141592654
#define ABS(x) sqrt(pow(x,2.0))
#define ABS2(x) ((float)sqrt(((double)x)*((double)x)))

/* Global Variables */
id mySound, newSound;
SNDSoundStruct *soundStruct, *convertStruct;
I' the filenames */
char magnitudefile[80], phasefile[801, signalfile[801;

void get-data (short **temp, char *infile)

int error, data_size,i:
BOOL edit;

inPtr - (short )((char *)inputSound + inputSound->dataLocation);
outPtr - (short *)((char *)*outputSound + (*outputSound)->dataLocation);

error - [mySound readSoundfile:infile];
I' initialize mySound to infile's rnySound object/
soundStruct -[mySound soundStruct);
(mySound isEditable]:
data-size -soundStruct->dataSize;

SNDAlloc(ficonvertStruct,data - ize,SNDFORMATLINEAR_16,SNDRATECODEC,
soundStruct->channelCount,"");-
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SNDConvertSound(soundStruct, £convertStruct);
*temp- (short *) (convertStruct+convertStruct->dataLocation),

void write_output files (short *signal,float *gaborMag,
float *gaborPhase, float *gamma,
char *infile, char *index)

FILE *fl,*f2,*f3,*f4;
int k~m,n;
size-t s-len;

I" get length of input file not counting null terminator *
s len-strlen Cinfile);
/; start name of signalfile with infile minus suffix .snd *
strncpy (signalfile, infile, (s_len-4);
I" must add terminating null, strncpy does not automatically do it ~
signalfile~s_len-4]-'\0';
/* start name of magnitudefile with infile minus suffex .snd *
strncpy (magnitudefile, infile, (s-len-4));
magnitudefile[s len-4]='\O';
/* start name of phasefile with infile minus suffex .snd ~
strncpy (phasefile, infile, (s_len-4));
phasefile~s len-4]='\O';
/* add the appropriate gamma truncation index *

strcat (phasefile, index);
strcat (magnitudefile, index);
/* signalfile=filename.dat *
strcat (signalfile, ".dat");
I" magnitudefile-filename_gaborMag.dat ~
strcat (magnitudefile, "gaborMag.dat");
/* phasefile-filename_gaborPhase.dat *
strcat (phasefile, "gaborPhase.dat");

/* open and write signal data to signalfile *
if ( (fl - fopen (signalfile, "w") ) -= NULL) j

printf("\n*** Cannot can't create %s ***",signalfile);
exit (0)

loopn (TOT)
fprintf(fl,"%d\n",signalj);
/* open and write gabor?4agnitude data to magnitudefile ~
if M(f = fopen (magnitudefile, "w")) - ULL){f

printf("\n*** Cannot can't create %s ***",magnitudefile);
exit (0)

loopm (TOT)
fprintf(f2,"%f~n",gaborMagfm]);
/* open and write gaborPhase data to phasefile *
if ((f3 - fopen(phasefile,"w")) -- NULL)(

printf("\n*** Cannot can't create %s **,phasefile);
exit (0)

100pm (TOT)
fprintf (f3, "%f\n",gaborPhase(m]):

/* if ( (f4 - fopen ("gamma0.dat","w"))- NULL){
printf("\n*** Cannot can't create %s ***","gammJa0.dat");
exit (0)

loopm (2*TOT)
fprintf (f4,"%f\n",gamma [m]) ;*/
/* close all files *
fclose (fl);
fclose (f2);

114



fClo3e (f3);

/* fclose(f4);*/

/ ~***~*****tget gamma C *******

I' This function creates the biorthogonal function
of the Gaussian window '

void get-gamma (float *gamma, mnt index)

mnt i,n;
double k,coeff,time;
char in-string(8];

coeff-sqrt (sqrt (0.5)):
k=1.8B5407468;
I' create biorthogonal window function '
loopn (2*TOT) {
time= ((double) (n-TOT) /(double) (NDELTA T));
ifU'!index)&&((n<TOT-2*NDELTAT) II(n>=TOT+2*NDELTAT)))(
if (n==0)
printf ("truncated gamma function, index=0\n");
gamma (nI '0;

else(
if (n==0)
printf("max gamma function, index=l\n");
loopi (3)
gamma[n]+-(float) (coeff*
exp (PI'time'time-PI*
pow(floor(ABS(time)+0.5)+0.5+(double)i,2.0))*
pow( (k/PI) ,(-3.0/2.0))
pow(-1.0,floor(ABS(time)+0.5+(double)i)));

~~~ ~window-data ********4*/

I' This function produces:
SUM(over q-0. ...24_DELTAOTS) f(n+q'NDELTAT)*gamma (n+ (q-m)*N DELTAT),
for a given time slice m, and where f is the signal function (time~eal) and
gamma is the biorthogonal function of the window '

void window-data(float *gamma, float *signal, float 'timneReal)

# define AADR DSPAPGetLowestAddress() /* address of signal data part '
# define B_-ADR (AADR + NDELTAT) I' address of biorthogonal data part '
I define C_-ADR (B ADR + N_-DELTAT) I' address of accumulated sum '
# define 0_ADP (CADR + N_-DELTA_-T) I' address of result *
# define INC 1 I' increment for all array '

int P;

I' DSPFix24 arrays '
DSPFix24 AAP.PAY[NDELTAT],B_ARPAY(NDELTATL.RESILT[NDELTATJ;

I' set vectors C and D to zero 'I
DSPAPvclear(C-ADR.INCNDELTAT);
DSPAPvclear CDADR.INC N-DELTA-T);

loopp(M_-TOTAL_-DTS)(
I' Convert data from float to DSPFix24 '
DSP~loatToFix24Array (&signal[p*N_DELTAT], AARRAY, NDELTAT);
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DSPFloatToFix24Array (&gamma [p*NDELTATI. BARRAY. N DELTAT);

/* load arrays to DSP memory */
DSPAPWriteFix24Array(A ARRAY, AADR. INC, N_-DELTAT);

DSPAPWrite~ix24Array(B ARRAY, BADR, INC, NDELTAT);

/* swap C and D arrays (answer to summing array) *
DSPAPVswap (CADR, INC. D ADR, INC. NDELTAT);

/* This function computes A*B+C and puts answer in D *
DSPAPvtvpv (A-ADR, INC, FAD, INC, C_AlR, INC, DADR, INC, NDELTAT);

/* Return result from DSP memory to host memory ~
DSPAPReadFix24Array (RESULT, D-ADR, INC, NDELTAT);

/* Convert data from DSPFix24 to float */
DSPFix24ToFloatArray (RESUILT, timeReal, NDELTAT):

/* squash data *
float sqtiash(float val, float oldinax, float oldmin, float newmax, float newmin)

float answer;

answer= ( ( (val-oldmin) / (oldmax-oldmin) )*(newmax-newmin) ) +newmnjn;
return answer;

void fft -wind -data(float *timeReal, float *timelmag, float *gaborReal,

float *gaborlnag)

# define DATAADR DSPAPGetLowestAddressXY()
# define COEF_-ADR (DATAADR + NDELTAT)
# define IMAG_-DATA DSPMapPMemY (DATAADR)

# define REALDATA DSPMapPMemX (DATAADR)

# define SIN_-TABLE DSPMapPMemY(COEFADR)

# define COS-TABLE DSPMapPMemX(COEFADR)

float *sinTab = DSPAPSinTable(NDELTAT);
float *cosTab - DSPAPCosTable(NDELTAT);

int i,m;

/* DSPFix24 arrays *
DSPFix24 TimeRealf N_DELTAT,Timelmag[NDELTAT],GaborReal[NDELTAT),
Gaborlmag[NDELTATJ;

/* Squash float data from -1 to 1 *
/* loopi (N DELTA_-T)(
timeRealfil-squ.ash(timeReali],lE6,-lE6,l.O,-l.O);
timelmag [i)-squash (timelmag (i), 1E6, -lE6,l1.0, -1.0);

/* Convert data from float to DSPFix24 ~
DSPFloatToFix24Array(timeReal, TimeReal, N_DELTA_-T);

DSPFloatToFix24Array(timelmag, Timelmag, NDELTATI:

/* put the time domain complex array */

DSPAPWriteFix24Array(TimeReal, REAL_-DATA, 1, N_-DELTAT);

DSPAPWr it erix2 4Array (Time Imag, IMAGDATA, 1, NDELTATI:
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/- put the Cos and sine tables */
DSPAPWrite5~loatArray(co3Tab, COS_-TABLE, 1, N_-DELTA_-T/2);
DSPAPWriteFloatArray(sinTab, SINTABLE, 1, NDELTAT/2);

DSPAPfftr2a(NDELTAT, DATAADR, COEFADR);

" Get the gabor domain complex array.
" Tell monitor to read the array back with bit-reversed
" addressing because fftr2a leaves its output shuffled.
" Note -hat the skip factor (NDELTAT/2) is used to set the
" DSP 'N' register.

DSPSetDMAReadM~eg (0);
DSPAPReadFix24Array(GaborReal, REAL_-DATA, N_-DELTA_-T/2, NDELTATI;
DSPAPReadFix24Array(Gaborlmag, IMAGDATA, NDELTA_-T/2, NDELTAT):
DSPSetDMAReadMReg(-l); /* re-select linear a;ddressing *

/* Convert data from DSPFix24 to float */
DSPFix24ToFloatArray(GaborReal, gaborReal, N_-DELTA_-T),
DSPFix24ToFloatArray(Gaborlmag, gaborlmag, NDELTAT);

/* Squash float data from -1 to 1 ~
loopi (N -DELTA_-T)(
gaborRealI i]I=squash (gaborReal(i],l1.0,-1.0,1E6, -lE6);
gaborlmag (i]-squash (gaborlmag~i],1.0, -1.0,lE6, -1E6);

void get gabor-mag(float *gaborReal, float *gaborlmag, float *gaborMag)

int k,m;

loopm(MTOTALDTS*2)
loopk (KTOTAL_-DFS)
gaborMag[m*K_-TOTALDFS+k]-
(float) sqrt ((double) gaborReal Cm*NDELTAT+k] *
(double) gaborReal [m*N_DELTA T+k] +
(double) gaborlmag [m*N -DELTAT+k] *
(double) gaborlmag (m*N DELTAT+k]);

void get_gaborjphase(float *gaborReal, float *gaborlmag, float *gaborPhase)

int k,m;

100pm (M TOTAL_DTS*2)
loopk (K TOTAL -DFS)
if((gaborReal~m*NDELTAT+kI==0)&&(gaborlmag(m*NDELTAT+k--))
gaborPhasefm*K TOTAL DFS+kI=((float)PI/2);*
else
gaborPhase[m*KTOTAL_-DFS+kI-
((float)atan2((duuble)gaborlmag~m*N -DELTA T+k],
(double) gaborReal Em*NDELTAT+k]));

main (mnt irgc, char **argv)

short *temp; /* integer representation of original data '
float signal (TOT.N_DELTAT/21; /* float representation of original data
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float timeReal [2*TOT]: ;I' the overlapped windowed signal *
float timelmag[N_DELTA_-T]; /* the imaginary portion of the data *
float gaborReal(2*TOTI,gaborlmag(2*TOTI ,gaborMag[TOT] ,gaborPhase (TOT];
float gamrma[2*TOT]; /* the biorthogonal function of the window *
float temp gamma[2*TOT]: /* squashed version of gamma *
int i;

1* initialize sound objects "
mySound (Sound new];
newSound-[Sound new]:
/* get sound data; timeP~eal has float rep. of sound
get data (&ternp,argv (1]);
/* get float values of signal *

loopi (TOT)
signal(iV-(float)temp(i];
/* clear rest of signal */
for(i-TOT:i<TOT+NDELTAT/2;++i)
signalEil-0;
/* zero out timelmag(I
loopi(NDELTA -T)
timelmag[i]=0;
/* clear gammna(]
loopi (2*TT)
gamma(i]-0.
/* generate biorthogonal window
get_gamma (gamma, atoi (argv[2HIf;
/* Copy elements of data and gamma function to temporary arrays and

squ.ash float data from -1 to 1
loopi (TOT)
signal[i]-squash(signal[i],lE6,-lE6,1.0,-1.0);
loopi (2*TOT)
temp gammatil-squash(gamma[i),200,-200,1.0,-l.0);
/* Initialize the DSP chip *
DSPAPInit 0:

/I* This computes Eq. (14) in the Einziger reference using the DSP chip
but with 50% overlap windows *
loopi(M_TOTALDTS*2){
if (i%2==0)
window -data(&temp gamma(TOT-i*NDELTAT/2],signal,
&timeReal[i*NDELTATI);
else
window -data(&temp gamma(TOT-(i-l)*NDELTAT/2],&signal[N_DELTAT/2],
&timeRealti*N_-DELTATi);
printf ("windowing pass no. d-dni%)

/* This computes the FFT of each windowed time alice
loopi(M _TOTAL -DTS*2)(
fft -wind-data(fitimeReal[i*N DELTA T],
timelmag,
&gabor~ealli*NDELTATI,
&gaborimag(i*N_DELTA_TI);

f* Free the DSP chip ~
DSPAPFree 0;

get -gabormag(gaborReal, gaborlmag,gaborMag):
get-gaborphase(gaborReal,gaborlmag,gaborPhase);
write-output_files(temp,gaborMaggaborPhase,gamna,argv[1I,argv[2]);
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Appendix B. Code for Short-Time Fourier Transform

/ .******************spectrogram.m

Written by Rick Ricart, Capt. USAF *
/* Computes the spectrogram of arbitrary signais *
ft Call program as: spectrogram fiiename.3nd vail valZ
/* Where vail-O for a Rectangular window. vail-i for a *
/* Gaussian window and vall-2 for a Hamming widow *
ft val2 is the standard deviation of the Gaussian noise
ft If vai2-O no noise is addsd

*import <sound/sound.h>
#import <inath.h>
*import <dsp/arrayproc.h>
#import <mach.h>
#import Cstdlib.h>
#import <stdio.h>
#import<objc/objc .h>
* imrport<soundkit /Sound.h
#import<soundkit/soundkit .h>
#irnport<string .h>
#import<macros .h>

#define NDELTAT 256
#define 1KTOTALDFS 128
#define M_TOTAL_DTS 66 /* Change this accordingly *

#define TOT NDELTAT*M -TOTAL-DTS
#define PI 3.141592654
#define ABS(x.) ((float)sqrt(((double)x)*((doubie)x)))

/* Global Variables */
id mySound, newSound;
SNDSoundStruct *soundStruct, *convertStruct;
/* the filenames */
char spectrofiie[80], phasefiie[80]. signalfile[80], newsignalfile(80],
newsoundfiie[80];

/* Procedures and Functions ~
float gasdevo;
void get data(short **temp,char *infile)

int error, data-size,i:
BOOL edit;

ft t sot (car ipton nu~on-dt~cto)

intPtr - (short * ((char * inputSound + (*nuputSound)->dataLocation);

error - mySound readSoundfiie:infile];
ft initialize rnySound to infile's mySound object t

3oundStruct -(mySound soundStruct];
[EnySound isEditable):
data size - soundStruct->dataSize;
printf(-data size is %d\n",data size):
SNDAlloc(&convertStruct,data-size,SNO_FORMAT_LINEAR-16,SNDRATECODEC,
soundStruct->channelCount,""):
SNDConvertSound (3oundStruct. &convertStruct);
*temp- (short *) (convertStruct+convertStruct->dataLocation):
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printf ("Finished get data C)\n");

void write_output files (short *sjgnal~float *newsignal,
float *Phase, float *spectrogram,
float *window, char *infile, char *wtype)

FILE *fl,*f2,*f3,*f4,*f5;
int k,m,n;
size-t s-len:

I' get length of input file not counting null terminator '
s len-strlen(infile);
/7 start name of newsignalfile with "new_ (wtype)"'
strcpy (newsignalfile, "new_ -);
strcat (newsignalfile,vtype);
/* start name of signalfile with infile minus suffix .snd '
strncpy(signalfile,infile,( Cs len-4))
/* must add terminating null, strncpy does not automatically do it '
signalfile[s_len-4]='\O';
I" start name of phasefile with infile minus suffix .snd '
strncpy(phasefile,infile, (s-len-4));
phasefilets_len-4]='\O '-
I" start name of spectrofile with infile minus suffix .snd '
strncpy (spectrofile, infile, (s-len-4));
spectrofile[s_len-4]=' \O';
f" signalfile-filename.dat "
strcat(signalfile,".dat");
I" newsignalfile-new -filename.dat "
strcat Cnewsignalfile, signalfile):
/* add in window index */
strcat (phasefile,wtype);
strcat Cspectrofile,wtype);
I, phasefile-filename_-Phase.dat "
strcat (phasefile,2 _Phase.dat");
/* spectrofile-filename_spectrogram.dat '
strcat(spectrofile,"_spectrogram.dat");

I" open and write signal data to signalfile "
if ((fl - fopen~signalfile."w")) == NULL)(

printf("\n*** Cannot can't create %s ***",signalfile);
exit (0)

loopn (TOT)
fprintf(fl,*%d\n",signal (njl;
/* open and write newsignal data to newsignalfile '
if ( (f2 - fopen (newsignalfile, "w")) -- NULL){(

printfC"\n*** Cannot can't create %s "",newsignalfile);
exit (0)

loopn (TOT)
fprintf~f2,"%f\n",newsignal(n]):
I" open and write Phase data to phasefile "
if ((f3 - fopen(phasefile,*w")) -- NULL)(

printfI("\n** Cannot can't create %s '"*,phasefile);
exit (0)

loopm (TOT)
fprintf (f3, "%f\n",Phase [in)

I" open and wtite spectrogram data to spectrofile '

if ((f4 - fopen(spectrofile,"w")) -- N4ULL)(
printf("\n*** Cannot can't create %s ***",s;pectrofile);
exit (0)
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loopm (TOT)
fprintf(f4,"%f\n",spectrogram[m]);
/* if ((fM - fopen ("gausswindow.dat", w"))- NULL){f

printf("\n*** Cannot can't create %s **", "gauss window.dat");
exit (0)

loopm(N_DELTAT)
fprintf(f5,w%f\n,window[m]) ;*/

I" close all files *
fclose(fl);
fclose (f2):
fclose (f3);
fclose (f4);
/*fclose(f5) ;*/

void get window(float *haznWindow, mnt window)

int n;
double time;

/* create window ~
if (window-0)
loopn(N_DELTATT)
hamWindow~n]-l.0; /* Rectangular *

else
if(window-l)
loopn(N_DELTA_-T){
tirne=(dcuble) (n-N_-DELTAT/2)/(double) (NDELTAT);
hamWindow[n) =(float) (exp(-PI*4.0*timetime)) /* Gaussian ~

else
if (window==2)
loopn(N_DELTA_-T)
harnWindowjn]- (float) (O.54-0.46* /* hammi~ng *

cos((double)PI*(double) (2*n)/(double) (NDELTAT-l)));
else
if(window--3)
loopn(N_DELTA_-T)
harnWindow(n]= /* one period sin ~
(float) (sin((double)PI*(double)n/(double)NDELTA-TI);

void ham data (float *signal, float *hamWindow, float *timeReal)

int n;

/* multiply every N_DELTAT points of data by window *
loopn (NDELTA_-T)
timeReal [nj-si gnal En]*hamWindowjn];

/* squash data *

float squash(float val, float oldmax, floait oldmin, float newmax, float newmin)

float answer;

answer- ( ((val-oldmin) /(oldmax-oldnmin) ) *(newmax-newmin) I+newmin;
return answer;

void fft wind -data(float *timeReal, float *timelmag, float *gaborReal,
float *gaborlmag)
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* define DATAADR DSPAPGetLowestAddressXY()
# define COEFADR (DATAADR + NDELTAT)
* define IMAG_-DATA DSPMapPMemY (DATA_ADR)
# define REAL_-DATA DSPMapPMemX (DATAADR)
# define SIN -TABLE DSPI~apPMemY(COEE'_ADR)
# define COS-TABLE DSPMapPMemX(COEFADR)

float *sinTab - DSPAPSinTable(NDELTAT);
float *cosTab - DSPAPCosTable(NDELTAT);
int i,rn;

/* DSPFix24 arrays *
DSPFjx24 TimeReal(NDELTAT],Timelmag[N DELTAT],GaborReal[NDELTAT],
Gaborlmag[N _DELTATI:

/* Squash float data from -1 to 1 *
loopi (N_DELTA_-T){I

timeReal~i]-squash(timeReal[i],1E6,-1E6,1.O,-l.O);
timelmag~il-squash(timelmag[i],lE6,-1E6,1.O,-l.O);

1* Convert data from float to DSPFix24 *

DSPFloatToFix24Array (timeReal, TimeReal, N_-DELTA TI;
DSPFloatToFix24Array(timelmag, Timelmag, N DELTAT);

/* put the time domain complex array */
DSPAPWriteFix24Array(TimeReal, REALDATA, 1, NDELTAT);
DSPAPWriteFix24Array(Timelmag, IMAGDATA, 1, NDELTAT);

/* put the cos and sine tables */
DSPAPWriteFloatArray(cosTab, COSTABLE, 1, NDELTAT/2);
DSPAPWriteFloatArray (sinTab, SINTABLE, 1, NDELTAT12);

DSPAPfftr2a(NDELTAT, DATAADR, COEFADR);

" Get the gabor domain complex array.
" Tell monitor to read the array back with bit-reversed
" addressing because fftr2a leaves its output shuffled.

" Note that the skip factor (NDELTAT/2) is used to set the

" DSP IN' register.

DSPSetDMAReadMReg (0);
DSPAPReadFix24Array(GaborReal, REAL_-DATA, N_-DELTAT/2, NDELTAT);
DSPAPReadFix24Array(Gaborlmag, IMAG_-DATA, N_-DELTA_-T/2, N_-DELTATI;
DSPSetDMARead!'eg(-l); /* re-select linear addressing *

/* Convert data from DSPFix24 to float *1
DSPFix24ToFloatArray(GaborReal, gaborReal, NDELTAT);
DSPFi x2 4ToFl oatArray (Gabor Imag, gaborlmag, NDELTAT);

/* Squash float data from -1 to 1I*
loopi (N_DELTA_-TI I
gaborReal~i]=squash(gaborReal[ijl.0,-1.0,6E3,-6E3);
gaborlmag(i)-squash(gaborlmag(i],l.0,-l.0,6E3,-E);

void getphase (float *3pectroReal, float *spectrolmag, float *Phase)

mnt k,m;
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loopm(MTOTALDTS*2)
loopk(KTOTALDFS)
if((spectroReal[mN-DELTAT+k-=O)&(spectroImagfmNDELTAT+k-=O))
Phase [m*KTOTALDFS+k]=( (float)PI/2);
else
Phaselm*KTOTALDFS+kh-
((float)atan2( (double)spectrolmaglm*N DELTA T+kJ,
(double) spectroReal Em*N_DELTAT+k]l)

void get_spectrogram (float *spectroReal, float *spectrolmag, float *Spectrogram)

int k,m;

loopm(MTOTALDTS*2)
loopk(K_TOTAL_-DFS)
spectrogram[.n*K _TOTALDFS+k]-
(float) sqrt((double) spectroReal [m*N_-DELTAT+k] *

(double) spectroReal [m*N_DELTA_-T+k] +

(double) spectrolmag [r*NDELTA_-T+kl*

(double) spectrolrnag [m*NDELTAT+k]);

void generate tables(float *cosine,float *sine)

i k,m,n;
double temp;

/* create sine and cosine tables ~
loopk(K_TOTALDFS)

loopn(N_DELTAT)(

cosine[k*N_DELTA-T+n]=(float) (cos(Pl* (double) (2*k*n)

/(double)NDELTAT));

sinetk*N_-DELTAT+n]=(float) (sin (PI*(double) (2*k*n)
/(double)N DELTA To);

void regenerate-sound (float *Real, float *Imag,
float *new soundi, float *new sound2,
float *cosine, float *sine)

int i,k,m,n;

loopm(MTOTALDTS)(
/* printf ("regenerating time slice %d .. \n",m); *
loopk(IK_TOTALDFS)
loopi (N_-DELTAT)

new -soundl~m*N DELTA T+i]+=

(Real[2*m*NDELTA T+k)*

cosine~k*N_-DELTAT+i]-

ImagE2*m*NDELTA-T+k]*
sinefk*NDELTAT+i]);

looprn(M_TOTAL_-DTS)(
/* printf ("regenerating time slice %d ... \n",m); *
lonpk(K_TOTALDFS)
loopi(NDELTA T)
new sound2[m*NDELTAT+ij+=
(Reall((2*m)+l)*N_DELTAT+kj*
cosine~k*NDELTAT+i]-
Imag(((2*m)+l)*NDELTA_-T+k]*
sine(k*N_DELTA T+il):
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void ham_Newdata(float *new Isoundl,float *new sound2,
float *hamWindow. char *infile, int window)

int k,m,n;

/* multiply every NDELTA-T points of data by window '
/* loopm(14 TOTALDTS)
loopn(N_DELTAT)
new-soundl~m*N_DELTA_-T+n]'=hamWindow[n];*/
1' mulitply every N_DELTAT points by window '
/* loopm(M TOTALDTS)
loopn(N_DELTAT)
new sound2[m*NDELTAT+n]*=hamWindow[n]; '
/* if window not rect, add the overlapped reconstructed data points *
if (window) ( 1* if window is not rectangular ... *
printf ("Adding overlapped sample; not rectangular\n");
loopm(MTOTALO TS)
loopn(NDELTA_-T)
new-soundlfm'NDELTAT+n+NDELTAT123+=
new -sound2(m*NDELTAT+n];

else
printf ("Not adding overlapped samples; rectangular\n");
/* look for overflow data points *

k=Q;
loopn (TOT)
if(ABS(new-soundl~nl)>32367.O)
k +=I;
printf("\nI found %d overflow data points processing %s\n",k,infile);

void add-noise (float *signal,float sdev)

int i,idum;
/* Noise power is the variance or sdev*sdev of Gaussian noise ~
float temp;

/* set variance '
idum = -1;

loopi (TOT)
signalfiJ +=sdev*gasdev(&idum);

main (mnt argc, char **argv)

short *temp; /* integer representation of original data
float *timeReal; /* windowed overlapped signal data*/
float *signal;
float *timelmag; /* the imaginary portion of the data '
float *Phase;
float *spectroReal, *spectrolmag, *spectrogram;
float *hamWindow;
float *nj!wsoundl,*new sound2;

fla 7csn;I h oietbe*
float *csine; /* the csinte abl

size -t s len:
int i;

MALLOC(timeReal,2*T0T,float, "timeReal");
MALLOC(signal,TOT+NDELTAT/2,float,"signal");
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MALLOC(timelmag,NDELTA_-;T,float,"timelmag");
MALLOC (Phase,TOT, float, "Phase");
MALLOC (spectroReal, 2*TOT, float, "spectroReal");
MALLOC (spectrolrnag, 2*TOT, float, "spectrolmag");
MALLOC (spectrogram, TOT, float, "spectrogram");
MALLOC (hamWindow,N _DELTAT, float, "hamWindow");
MALLOC(new-soundl,TOT+N_DELTA_-T/2,float,'new 3oundi"):
MALLOC (new-sound2,TOT, float, "new soundi");
MALLOC (cosine, KTOTALDFS*NDELTAT, float, "cosine table");
MALLOC(sine,K_-TOTAL_-DFS*N DELTAT,float, "sine table");
mySound=[Sound net)];
newgound=[Sound new];
loopi (TOT)(
new_soundl(iI=O;
new_sound2[i]=O;

/* get sound data; timeReal has float rep. of sound *

get_data(&temp,argvl J;
I' copy and change integer sound samples to floats *
loopi (TOT)
signal(iI= (float)temp[iI;
printf("Accessed data!\n");
1" add AWGN to signal *

ifiatoi(argv[3]) 0)
add noise(signal,atof(argv[3]));
I' pad rest of signal with zeroes ~
for(i=TOT;i<TOT+NDELTA T/2;++i)(
signal [i)=0;
new_soundl[i]=0;

I' compute hamming window *
get window (hamWindow, atoi (argv [21));
/* This multiplies signal times window with 50% overlap *

/*~*******change ham-data to array processor routine on NeXT
loopiM (N TOTALDTS*2)(
ham -data (&signal [i*NDELTA_-T/2] ,hamWindow,
&timeReal~i*N_-DELTATI);
printf ("windowing pass no. %d\n",i);

loopi (N -DELTAT)
timelmag~i]-O:*
/* compute the dft of the windowed data *
DSPAPInit 0(;
loopi( (N TOTAI _DT*2)(
fft -wind -data(&timeReal[i*NDELTAT],
timelmag,
&spectroRealli*NDELTAT),
&spectrolmagti*NDELTA_T]);
printf(" spectrogram pass no. %d\n",i);

DSPAPFree ()
get phase (spectroReal, spectrolmag, Phase):
get spectrogram (spectroReal, speltroImag, spectrogram):
generate-tables (cosine, sine):
regenerate_sound(spectroReal,spectrolmag,new soundlnew-sound2,
cosine, sine):
hamNewdata(new-soundl,new-sound2,hamWindow,argv[l] ,atoi(argiv[2]);
write -output_files(temp,new_soundl,Phase,spectrogram,
hamWindow,argv[l),argv[2]):

".- there are any overfio%. ;.ata points truncate to + or- 32767 *

loopi (TOT)
temp~i]-(ABS(new_soundl[ifl>32767)?
((short) (new-soundl~i]/ABS(new-soundlli])*32767.O)):
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((short)new-soundl(i]);
I' get length of input file not counting null terminator ~
s -len-strlen(argv~l]);
/; start name of newsoundfile with "new-"
strcpy (newsoundfile, "new -");
strcat (newsoundfile,argv[2]);
I* concatenate input file name to "new -in newsoundfile!] *
strcat (newsoundfile,argv~l]); /* newsound[]-new-filename.snd ~
SNDWriteSoundfile (newsoundfile. convertStruct);
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Appendix C. Code for Reconstruction Algorithm from Short-Time Fourier

Spectrum

/************************* regenerate.m
Written by Rick Ricart, Capt, USAF */

/* This program reconstructs signals from the LIN output of gabor magnitudes */
/* This version is for overlapped coefficients *1/* * *..********** ************** **** ** ************************************* ****1*

#import <sound/soundh>
#import <dsp/arrayproc.h>
#import <math.h>
#import <mach.h>
#import <stdlib.h>
#import <stdio.h>
#import<objc/objc.h>
#import<soundkit/Sound.h>
#import<soundkit/soundkit.h>
Jimport<string.h>
#import<macros.h>

#define NDELTA T 256
#define KTOTALDFS 128
#define MTOTAL DTS 78
#define TOT NDELTA T*M TOTALDTS /* approximately one sec of sound */
#define TAU I /* exponential time constant */
#define PI 3.141592654
#define ABS(x) ((float)sqrt(((double)x)*((double)x)))

/* Global Variables */
id mySound;
SNDSoundStruct *soundStruct,*convertStruct;

char newsoundfile[801,newsignalfile(80];

/* Procedures and Functions */
void getsoundstruct();
void get data(;
void findenergy(;
void getreal_imago;
void write output_files(;
void generatetableso;
void regeneratesound();
void get window();
void hamNewdata(;
void outputnewSpect(;
/*These are needed for splines /
void spline(;
void splint(0;
float *vector);

main (int argc, char **argv)

FILE *fl;
float *new soundl,*newsound2;
short *temp; /* integer representation of reconstructed signal */
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float *spectroReal, *spectrolmag, *spectrogram;
float *new_spectrogram, *Phase;
float *hamWindow;
float *Cosine; /* the cosine table *
float *sine; /* the sine table *
int i,size;
size-t s-len;

MALLOC (spectroReal, 2'TOT, float, spectroReal");
MALLOC (spectrolmag, 2*TOT, float, "spectrolmag");
MALLOC (spectrogram, TOT, float, "spectrogram");
MALLOC (new -spectrogram, TOT, float, "new spectrogram");
MALLOC (Phase,TOT, float, "Phase");
MALLOC (hamWindow,N NDELTA_7, float, "hamWindow");
MALLOC(new - oundl,TOT+NDELTAT/2,float, "new soundi");
MALLOC (new _sound2, TOT, float, "new soundi");
MALLOC(cosine,K_-TOTAL_-DFS*NDELTAT,float,"cosine table");
MALLOC(sine,K_-TOTALOFS*N DELTA T,float. "sine table");
loopi (TOT)(
new_soundl[i]=O;
new_sound2 [il-C;

/* pad rest of signal with zeroes ~
for(i=TOT;i<TOT+N_-DELTAT/2;++i)
new_soundl~i]=O;
get Idata (spectrogram,new spectrogram,Phase,argvrl],argv[2],argv[3]);
/* find -energy(new-spectrogram);*/
get real imag(spectrogram,new_spectrogram,Phase,spectroReal,spectrolmag);
generate tables (cosine, sine);
regenerate_sound (spectroReal, spectrolmag,new_soundl,new-sound2,
cosine, sine);
1* compute hamming window *
get window (hamWindow);
ham_-Newdata (new-soundl,new-sound2,hamWindow,argvl);
mySound=(Sound new);
get-soundstruct (&temp);
size-soundStruct->dataSize:
/* clear old sound *
loopi (size)
temp [il-C;
loopi (TOT)
temp~i]=(ABS(new soundi [i])>32767)?
((short) (new soundli Ci]
ABS (new soundl(i]l*32767.O)):
((short)new_soundl[i]);
I' loopi (TOT)
tempfi]=(short) (cos (PI* (double) (2*20*i) /(double) N_-DELTAT)*1OOOO);*/
/* get length of input file not counting null terminator ~
s len-strlen(argv[31);
/; start name of newsoundfile and newsignalfile with "short-"
strcpy (newsoundfile, "short_-");
strcpy (newaignalfile, "short_ 7);
/* concatenate name of original sound file minus " Phase.dat" identifier *
strncat(newsoundfile,argv[3], (s_len-iC));
strncat(newsignalfile,argjv[3], (a-len-iC));
strcat (newsoundfile, ".snd");
strcat (newsignalfile, ".dat");
printf ("The new sound file is ts\n",newsoundfile);
SNDWriteSoundfile (newsoundfile, convertStruct):
/* open and write signal data to newsignalfile *
if ((fl - fopen(newaignalfile,"w")) - NULL)(

printf("\n*** Cannot can't create %s ****,newsignalfile);
exit (C)

loopi (TOT)
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fprintf(fl,"%f\n",new--soundl(i]);
fclose(fl);

void get soundatruct (3hort **temp)

int error,data_size,i;
BOOL edit;

in. r-(hr (hr iptond +ipton-dt~cto)
intPtr - (short * ((char * inpuSound + inouputSound)->dataLocation);

error = [zySound readSoundfile:"blank.snd"];
/* initialize mySound to infile's mySound object
soundStruct -[mySound soundStruct]:
data size = 3oundStruct->dataSize;
SNDAlloc(ficonvertStruct,data size,SNOFORATLINEAR16,SNDRATECODEC,
soundStruct->channelCount," 7);
SNDConvertSound (soundStruct, &convertStruct);
*temp= (short *) (convertStruct+convertStruct->dataLocation);
printf ("Leaving get soundstructo(\n");

void get -data (float *gaborMag, float *newgaboriag, float *gaborPhase,
char *infilel,char *infile2,char *infile3)

int i;
FILE *fl,*f2,*f3;

printf ("the three files are %s, %s, and %s\n", infilel, infile2, infile3),
if((fl -fopen(infilel,"r"))-=NULL){
printf("\n*** I can't read %s ***",infilel);
exit (1)

if((f2 -fopen(infile2,"r"))-=NULL){
printf("\n*** I can't read %s ***fl,infile2);
exit (1)

if((f3 = fopen(infile3,"r"))==NJLL)(
printf("\n*** I can't read %s ***",infile3);
exiat (1);

for i-0; (fscanf (fl, "%f", &gaborMag (i] ) =EOF) ;++i); / reading gaborMag *
for(i=0;(fscanf(f2,"%f",&new_gaborMag[i])!=EOF);++i);
for(i-0;(fscanf(f3,"%f",&gaborPhase[i])!=EOF);++i);

fclose (fi);
fclose (f2);
fclose (f3);
/* printf ("Leaving get_data\n");*/

void find energy(float *newgabor~ag)

int k,rr.,n:
float max,energy,threshold:

f* clear variable max
max-0.0;
/* set average threshold energy *
threshold-0. 05;
/* determine the max value in current time slice ~
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100pm( CMTOTALDTS*2)
loopk (K -TOTALOFS)
max- (new gaborMag (m*K -TOTALTDPS+k]>max)?
(new gaborMag[m*KTOTAL_DFS+k]) :max;
/* printf ("The max value is %7.4g\n",max);*/
/* divide by max value of new gaborMag[] *
loopm( (H TOTALDTS*2)
loopk (K TOTALDFS)
new _gabor~ag~m*K_TOTAL_DFS+k] /-max;
/* find the energy in each -l5msec. window *
100pm CM TOTALDTS*4)f
n=O;
energy=O.O;
loopk (K TOTALDFS/2)
if (new-gaborMag~m*K TOTALDFS/2+k] !O)(

energy +- new gaborMag[m*KTOTALDFS/2+k];

energy I- (float) n;
/* printf ("window %d--energy %".4g--survivors %d\n",m,energy,n) ;*/
/* if the energy is less than the threshold zero entire window *

if (energy<threshold)
loopk (KTOTAL_-DFS/2)
new_gaborMag~m*KTOTALDFS/2+k]=O;

/* multiply by max value of new_gaborMag[] *
100pm (M TOTALDTS*2)
loopk (K -TOTAL_-DFS)
new_gaborMag[m*K_TOTALDFS+k] *=max;

void get real_imag(float *gaborMag,float *new-gaborMag, float *gaborPhase,
float *gabor~eal, float *gaborlmag)

int m,k~i;
float *temp. *org,
/* the following are for spline, splint calls *

float *x -set,*y set,*y2,new-y;
float ans;

MALLOC(temp,TOT,float,"temp spect");
MALLOC(org,TOT,float. "temp spect");
/* Use new gaborMag (the truncated gabor coefficients) as an index *
/* Do this by zeroing out gaborMag(] components which correspond to ~
/zero components of new_gaborMag[] */

memcpy (org,gaborMag,TOT*sizeof (float));
loopm(M TOTALDTS*2)
loopk (K -TOTALOFS)
if((newgaborMagtm*KTOTALDFS+kl=O)11(k<O))
/* if(k>lOO)*/
gaborMag[m*KTOTALDFS+k]0O;
memcpy(temp ,gaborMag,TOTsizeof(float));
/* Fill in freq and phase components with spline interpolation *

/* x-set-vector(1,128);
yset-vector(1,128);
y2-vector (1, 128);
100pm (IdTOTALDTS*2)f

loopk (K -TOTALDFS)
if(gaborMagfm*K_TOTALDFS+k) !01 1k0=){

x_set~i]-(float)k;
yset [il-gaborMag~m*K_TOTALDFS+k];
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xsetfi+l)"127.0;

y set [i*11-0.O;
spline(x_set,y set~i,O.0,O.0,y2);
loopk(K_TOTALDFS)(
splint(x_set,y_set,y2,i, (float)k,&ians);
gaborMag [m*]K TOTALDFS+k] ans;

if(m--l9)

loopk(K_TOTALDFS){

printf("%5.3g %5.3g %5.3g\n",temp[m*KTOTALDFS+k],
gaborMag~m*K _TOTALDFS+k],

org(m*K_TOTALDFS+kfl;

/* Get real and imaginary values from magnitude and phase *

100pm (M TOTALDTS*2)

loopk(iK_TOTALDFS)( /* if Gaussian window *4 *

gaborReal[m*N_DELTA_-T+k]=4.0*gaborMag[m*K_-TOTAL_-DFS+k]*
(floatlcos ((double)gaborPhase(m*K_TOTALDFS+k]):
gaborlmag[m*N_DELTA_T+kl.4.O*gaborMag[m*K_-TOTAL-DFS+k]*

(float)sin((double)gaborPhase[m*KTOTALDFS+k]);

I" prinif ("Leaving get real imago\n");*/

void generate-tables (float *cosine,float *sine)

i k~m,n;
double temp;

/* create sine and cosine tables *

loopk(KTOTALDFS)

loopn (N DELTAT)(

cosine[k*NDELTAT+n]=(float) (cos(Pl*(double) (2*kn)

/(double)NDELTA TI);
sine~k*NDELTAT+n]=(float) (sin(PI"(double) (2*k*n)

/(double)NDELTAT));

/* printf ("Leaving generate_tableso\n");*/

void regenerate_sound(float *Real, float lImag,

float *new-soundi, float *new_sound2,

float *cosine, float *sine)

int i,k~m,n;

lcopm(MTOTALDTS){
/* printf ("regenerating time slice %d ...\n",m); *
loopk(KTOTALDFS)

loopi(NDELTATI
new_soundl[m*N_DELTA_-T+iJ+-

(Real[2*m*NDELTATek]*

cosine~k*NDELTAT+i]-

Imag[2*m*N DELTAT+kJ *

sine(k*N DELTAT+ij):

loopm(MTOTAL_-DTS)(
/* printf ("regenerating time slice %d ... \n",m); *
loopk (K_TOTAL -DFS)

loopi (N_DELTATI

new_sound2(m*N_DELTA_-T+il+-

(Real(((2*m)tl)*NDELTAT+klp

cosine~k*NDELTAT+iJ-
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Imag[((2*m)+l)*N DELTA T+kl*
sine~k*NDELTAT+iJ(;

/* printf ("Leaving generate-soundo\n");*/

void get-window(float *hamWjndow)

int n;
double time;

/* create Hamming window *
loopn (NDELTAT)

hamWindow~n]=(float) (O.54-O.46*
cos((double)PI*(double) (2*n)/(double) (NDELTAT-lfl);
/* printf ("Leaving get windowo\n"):*/

/change this to a dsp routine ~
void ham_-Newdata (float *new_soundl,float *new-sound2,

float *hamWindow,char *infile)

int k~m,n;

/* multiply every N_DELTA_T points of data by window *
loopm(MTOTALDTS)

loopn(N_DELTA_-T)

new_soundl(m*N_-DELTA_-T+n)-hamWindow~nJ:
/* mulitply every N_DELTAT points by window *

loopm(?4_TOTAL_-DTS)

loopn (NDELTAT)
new_sOund2tm*NDELTAT+n)*-hamWindow[n];
/* add the overlapped reconstructed data points/

loopm(MTOTALDTS)

loopn(NDELTAT)
new_soundl~m*N_-DELTA_-T+n+N_-DELTAT/2)+=

new_sound2[m*N_-DELTA_-T+nj;
/* look for overflow data points/

k-0;

loopn (TOT)
if(ABS (new-soundl[n])>32767.O)

k +=1;
printf("\nl found %d overflow data points processing %s\n",k,infile);
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Appendix D. Code for LIN Compression of W-H Spectra

/ ***~**************** *** COMPETE.C **************************/
WriLLcn by Rick Picart, Capt, USAF */

/* This program computes LIN competition of W-H frequency space *s
/* using the ERB and CB criteria. Call program as follow:

compete <filename> <0 or 1> <threshold>
/* where 0 signifies ERB and 1 CB.
/* Thresnold is any value, v such that 0<v< 1, (e.g., .009)
/* result filenames are automatically generated */

#include <math.h>
#include <stdio.h>
$include <macros.h>

#define FO 0.25
#define TAU 0.1
#define EPS 1.0
#define MAX 1.0
#define MIN 1.0
#define COMPGAIN 10.0
#define K TOTAL DFS 128
#define MTOTALDTS 70
#define SURVIVORS 50

Sdefine SQUARE(x) ((x)*(x))
#define SIGMOID(x) (SQUARE(x))/(SQUARE(x)+F0)

FILE outfileSOl,result[801;

typedef struct{
float input;
float activity;
float output;
int *competitors;
int numcompetitors:
)nodes;

float squash(float val, float oldmax, float oldmin, float newmax, float newmin)
I
float answer;

answer- ( ((val-oldmin) / (oldmax-oldmin) )(newmax-newmin) ) +newmin;
return answer;

void write output (float *gaborMag, char *infile,int size, int bw, char *thresh)

tILE Ofl,lfopen(i;
int k,m,n;

printf("Starting to output files\n");
/* start name of outfile with "ERB or CB" *
if(!bw)(
strcpy(outfile,"ERB");
/* outfile[3;-'\O';*/

else(
strcpy(outfile,"CB"),
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/* outfile[2]='\O' ;*/

strcat (outfile,thresh);
/* newsignalfile-new infile *

strcat (outfile. infile):
/* open and write signal data to signalfile ~
if ((fl - fopen(outfile,"w")) -= NULL)(

printf(-\n* Cannot can't create %s ***",outfile);
exit (0)

loop.(size)
fprintf(fl,"%f\n",gaborMag[n]);
fclos (fi).

void write-re3ult (float *gabor4ag, char *infile)

FILE *fl,*fopeno;
int k,m,n;

/* start name of outfile with "new-
strcpy(result, "result_");
/* newsignalfile=new infile ~
strcat (result, infile);

if ((fl = fopen(result,"w")) -=NULL)(
printf("\n*** Cannot can't create %s "*",result):
exit (0)

/'* loopm(MTOTALDTS) for nonovelapped coefficients ioop (M TOTAL DTS*2,for
overlapped coefficients/

loopm( (H TOTALDTS*2)f
fprintf(fl,"TIME %d: ",m);
loopk (KTOTAL_-DFS)
ifigaborMag[m*KTOTAL-DFS+kfl=0)
fprintf(fl,"!d,%5.2g ",k,gaborMag[m*< TOTAL_DFS+k]);
fprintf(fl,"\n");

fclose lfl);

void compute activity(nodes *n list,nodes *node)

float a,exc,inh;
int i:

a-node->activity;
inh=0;
exc-'node->output+node->input;
loopi (node->num -competitors)
inh+-n-listfnode->competitors~ifl .output;
node->activity-a+TAU*EPS* (-a+ (MAX-a) *exc.(MIN+a) *inh*COMPGAIN);

void compute_output (nodes *node, float thresh)

float a;

a-node->activity;
/* if(a<0)
node->Output-0;
else
if (a)=0&&a<=l)
node->out put-a;
else

134



node->output=l;*/
node->output-(a-thresh<0)?0: (SIGMOID(a-thresh));

void initializecompetitors(nodes *node,int index, int size, int bw)
f
int i,j,num,count;
char in string[8];

/* change these appropriately thru freq vals MUST BE AN EVEN NUMBER */
/* Make this a SWITCH statement */
if(!bw){ /* this does ERB competition */
if(index - 0)
printf("Doing ERB competition\n");
if(index<30) /* for ERB <40, CB<30 */
num=2; /* for ERB 2, CB 4 */
else
if(index<58) /* for ERB 58, CB 47 /
num=4; /* for ERB 4, CB 6 /
else
if(index<75) /* for ERB 75, CB 60 */

num=6; /* for ERB 6, CB 8 */
else
if(index<92) /* for ERB 91, CB 72 */
num=8; /* for ERB 8, CB 10 */
else
if(index<106) /* for ERB 106, CB 84 */
num=10; /* for ERB 10, CB 12 */
else
if(index<121) /* for ERB 121, CB 94 */
num=12; /* for ERB 12, CB 14 */
else
num=14; /* for ERB 14, CB 16 /

else{ /* this does CB competition /
if(index == 0)
printf("Doing CB competition.. .\n"):
if(index<30) /* for ERB <40, CB<30 */
num=4; /* for ERB 2, CB 4 */
el3e
if(index<47) /* for ERB 58, CB 47 */
num-6; /* for ERB 4, CB 6 */
else
if(index<60) /* for ERB 75, CB 60 */
num=8; /* for ERB 6, CB 8 /
else
if(index<72) /* for ERB 91, CB 72 */
num=10; /* for ERB 8, CB 10 */

else
if(index<84) /* for ERB 106, CB 84 */
num=12; /* for ERB 10, CB 12 */
else
if(index<94) /* for ERB 121, CB 94 */
num=14; /* for ERB 12, CB 14 */
else
num-16; /* for ERB 14, CB 16 */

node->numcompetitors-num;
MALLOC(node->competitors,num,int,"allocating numcompetitors");
/* competitors of index less than index of current node */
count=1;
loopi(num/2)
4f(index-i-l>-0)
node->competitors[il-index-i-1;
else(
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if (index-l-i+count--index)
count +-I;
node->competitors [i]-index-l-i+count;
couiit +=2;

/* competitors of index greater than index of current node *
count=l;
loopi (num/2)
if (index+1+i<-size-l)
node->competitors [i+num/2J -index+l+i;
else(
if (index+l+i-count-=jndex)
count +=l;
node->competitors [i+num/2]-index+l+i-count;
count +=2;

/ * ***********print statements ~ ~
/* printf ("the current node is %d and the competitors are: ",index);
loopi (num)
printf ("%d ", node->competitors [i));
printf("\n"),
printf ("Hit ENTER to continue");
gets (in_string);*I

main(int argc, char **argv)

float *array,*outarray,max,min,temp;
int i,j,k,l,size,time,count,index,tot;
size t s len;
nodes *n-list;
char in string[8];
FILE *fin,*fout;

I' open input file "
if((fin = fopen(argv~l],"r"))==NULL){
printf("\n*** I can't read %s ***",argv~il;
exilt (1);

/* for nonoverlapped gabor coefficients size=Y(_TOTAL_-DFS*MTOTALDTS,
for overlapped gabor coefficients size=F TOTALDFS*MTOTALDTS*2

printf("\n starting %s\n",argv[lfl;
print f ("Bandwidth %s, and threshold %sn", arg-v[2j, arg-v[31);
size-K_-TOTAL_-DFS*M_-TOTALDTS*2;
I" allocate memory */
MALLOC(array,size,float, "allocating array");
MALLOC(outarray,size,float."allocating outarray");
MALLOC(n -list,KTOTALDFS,nodes, "allocating n_list");
tot - 0;
/* copy values of input file into array *
for (i"0; (fscanf (fin, "%f", Larray [ii) 'EOF);i)
/* loopi (size)
array(i]=(arrayli]'-0) ?( (float) loglO( (double)array[i])):0;*
/* determines which nodes compete ~
loopiCK_TOTALO FS)
initialize_competitors(&n_listi,i,K_-TOTALDFS,atoi(argv[2])):
/* initialize total number of time increments for solving shunting equations
time=100;

I' This is the outer loop for each time slice. Within this loop, the max
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magnitude of the Gabor coefficients per time slice is determined and
all frequency components in that time slice are squashed between 1 and -1.
These values are then passed to the LIN and the activity and outputs
are determined for each node in the LIN. The result is then saved in
outarray[I

loopk(MTOTAL_-DTS*2){
/* clear variable max
max=0 .0;
/* determine the max value in current time slice *
loopiCK_-TOTALDES)
if(arraytk*KTOTAL_-DFS+i]>max)
max-array[k*K -TOTAL_-DFS+i];
printf("\nMax element is %f at time %d --- Starting squash ... \n",max,k);
/* squash all frequency components Of current time slice between 1 and -1 *
loopi(K_TOTAL_-DES)
array~k*K_TOTAL_-DFS+i]=squash(array~k*KTOTALDFS+i~max,0.0,1.0,0.0);
/* clear activity and output variables of all nodes *
loopi (K_TOTALDFS)(

n list~il.output=0.0;

/* initialize input to all nodes *

loopi(K_TOTAL_-DFS)
n list[i] .input=array[k*K_-TOTALDFS+i];
/* compute the activity and output of all nodes in current time slice *
loopj (time){
loopi(K_TOTALDES)

loopi(K_TOTAL_-DES)
compute output(&n-listfi],atof(argv[3fl);

/* copy the result to outarray[] *
loopi (K_TOTAL_-DES)
outarraytk*K -TOTAL_-DFS+il=n_list~i] .output;
/**** print statements
/* loopi(KTOTALDFS){
printf ('Node: %d Array: %7.4f Input: %7.4f
Activity: %7.4f Output: %7.4f\n",
i,array[k*K_-TOTALDFS+i],n_list(i].input,
n list~i].activity,nlist~i.output);
printf ("Hit ENTER to continu~e");
gets(in_string);

count =0;
/* unsquash result ~
loopi(K_TOTAL_-DFS)(
temp-squash(outarray~k*K_TOTAL_DFS+iI,1.0,0.0,max,0);
if (temp<10.0)
outarray~k*K TOTALDES+il=0;
else(
outarray [k*KTOTALDFS+i]=temp;
Count +1l;

printf ("In time slice %d there were %d survivors\n",k, count);
if (countSURVIVORS)(
loopj ((count -- SURVIVORS))(
min-outarray~k*KTOTALDFS];
index-C;
printf(" Cutting %d survivors to %d\n",count,SURVIVORS);
loopi(K_TOTALDFS)(
if(outarray~kK_TOTAL_-DFS+i]<min)(
min-outarrayfk*K-TOTAL DFS+i];
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index-i;

outarrayk*KTOTALDFS+indexl=O;

tot +-count;
printf ("Total now is %d\n*,tot);

~~~~ ~~~end of main loop **************/

Sprint statements
/* printf("ARRAY:\n"):
loopi (
printf("%3.2f *,array[i]);
printf ("\n");
printf("OUTPUT:\n");
loopi(I(_TOTALOPDS)
printf('%3.2f ",n listfi] .output),
printf("\n");
printf ("OtTAPRAY: \n-);
loopi (size)
printf("%3.?f ",outarray~i]);*/

write output (outarray,argv[l] ,size,atoi (argv[21)),argv[31);
printf ("The average no. of survivors per window is %5.3g, and RC=%5.3g\n",
(float)tot/(float) (2*MTOTAL._DTS),
(float) (2*MTOTALDTS*KTOTALDFS)/(float)tot);
/* write result (outarray,argv[l]) ;
fclose (fin);
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Appendix E. Code for Haar Wavelet Decomposition, Compression, and

Reconstruction

.************************ wavelet.m
Written by Rick Ricart, Capt, USAF */

/* This program computes the Haar wavelet decomposition,compression,
/* and reconstruction of a time signal

#import <sound/sound.h>
#import <math.h>
#import <dsp/arrayproc.h>
#import <mach.h>
#import <stdlib.h>
#import <stdio.h>
#import <objc/objc.h>
#import <soundkit/Sound.h>
#import <soundkit/so'ndkit.h>
#import <string.h>
#import <macros.h>

#define NDELTAT 256
#define KTOTALDFS 128
#define MTOTALDTS 31
#define TOT MTOTALDTS*NDELTA T /* approximately one sec of sound */
#define PI 3.141592654
#define LEVELS 8
#define MAX 1
#define MIN 1
#define COMPGAIN 10.0
#define FO 0.25
#define TAU 0.1
#define EPS 1.0

#define ABS(x) sqrt(pow(x,2.0))
*define ABS2(x) ((float)sqrt(((double)-)*((double)x)))
#define SQUARE(x) ((x)*(x))
#define SIGMOID(x) (SQUARE(x))/(SQUARE(x)+F0)

/* Global Variables */
id mySound, newSound;
SNDSoundStruct *soundStruct, *convertStruct, *shortStruct;

/* the filenames */
char newsoundfile[80],shortsoundfile[80];

void computetranso;
float compute_iproduct();

typedef struct grid element
struct gridelement *r ptr;
s'- uct grid element *Iptr;
s~ruct gridelement *rleg_ptr;
struct gridelement *lieg_ptr;
struct gridelement *up_ptr;
float iproduct_val,

139



float input;
float activity;
float output;
int type:
)grid-element;

typedef struct
grid-element *head, *current;
Ilist:

typedef sti,ct
float *wavelet;
wavelets;

/ ***************get data()*******************
I* This procedure opens and reads the signal values of a sound file *

void get data(short **temp,short **temp2,char *infile)

mnt error, data size,i;
BOOL edit;

inPtr = (short *)((char *)inputSound + inputSound->datatocation);
outPtr = (short *)((char *)*outputSound + (*outputSound)->dataLocation);

error = [mySound readSoundfile:infile];
/* initialize mySound to infile's mySound object *
soundStruct =[mySound soundStruct]:
[mySound isEditable];
data size -soundStrtuct->dataSize;
SNIDAlloc (&convert Stru ct, data -size.SNDFORMAT LINEAR_16,SNDRATECODEC,
soundStruct->channelCount,"");-
SNDAlloc(&shortStruct,data size,SNDFORMATLINEAR16,SNDRATECODEC,
soundStruct->channelCount,7.):
SNDConvertSound (soundStruct, &convertStruct);
SNDConvertSound (soundStruict, &shortStruct);
*temp- (short *) (convertStruct+convertStruct->dataLocation);
*temp2= (short *) (shortStruct+shortStruct->dataLocation);

list *makegrid()

list *temp:

MALLOC (temp,1, list, "Allocating list");
temp->head=NULL;
temp- >current-NULL;
/* printf("M.ade make-grid successfully\n"):*/
return temp:

void allocate-node(list *1, grid-element *node)

if(l->head--NULL){
l->head=node;
l->current-node;
node->l_ptr-node->rptr-NULL;

else(
node->lptr-l->current;
l->current->r_ptr-node;
1->current-node;

node->rlegytrnode->legptr=NLL;
node->upptr-NJLL;
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void allocate_grid-triad(list *1, grid-element *element)

grid-element *templ,*temp2;

I' printf("\nAllocatiig a triad\n");'/
/* allocate both legs '/
MALLOC(templ,l,grid -element, "allocating ileg");
MALLOC(temp2,l,grid-element, "allocating rieg");
tempi -ztype=0;
temp2->type=l;
element ->lleg-ptr-templ;
element->rlegyptr-temp2;
tempi ->rjptr-temp2:
temp2->lptr-templ;
templ->upptr-temp2->upptr-element;
if(element->l_ptr--NULLI Ielement->lyptr->rlegptr-NULL)
templ->lptr=NULL;
else
templ->lptr=element->l_ptr->rlegytr;
elemnent->lyPtr->rleg-ptr->r-ptr=templ:

temp2->rptr=NULL;
tempi ->rlegyptr-temp2->rleg ptr-templ ->llegptr-temp2->lleg-ptr-NULL;
1 ->current=element;
I' printf("allocated grid triad successfully\n");*/

void inner -loop(int level, list '1, grid-element 'element, wavelets 'wl,
float *signal,float *new signal,
int m, int points)

inn, elements;

elements=(int)pow (2.0, (double) (LEVELS-level));
if (level==0)
return;
else
if (element->r ptr==NULL)
points ~=elements;
/ * printf ("Moving up a level, moving element ptr up, and inner loop. \n"):'
return inner loop (--level,1, element=element->upptr,
wl,signal,new-signal,m,points);

else(
/* printf ("Moving element ptr right and allocating another triad\n");'/
points +-elements;
compute -trans (level, l,element-element->ryptr,wl, signal,
new-signal,m,points);

void regenerate signal(float 'new signal, wavelets *wl,int elements,
int points, int m, float meg)

mnt i;

loopi (elements)(
new -signal (m*N -DELTA T+i+points] +-w1->wavelet[i)*mag;
I. printf("%5.3g\n",newsignal~m*NDELTAT+i+points]);'/
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/ **************compute transo( **************

void compute trans(int level, list *1, grid-element *element, wavelets *w1,
float *signal, float *new-signal, int m, int points)

float top, left, right, epsilon:
int elements:

elements- (int)pow (2.0. (double) (LEVELS-level));
/* ONE */
allocate grid-triad(l, element);
/* TWO */

/***********ADDED THIS SECTION ****~~*

if (element->upyptr==NULL)(
top-compute iproduct (&wl (level] ,&signal (m*N _DELTAT+points] elements);
element->iproduct -val-top;
element->input=top;
regene rat e signal (new_signal, &wl (level),elements, points, m, top);

/* top-compute_iproduct (&wl[level],&signal[m*NDELTA T+points] ,elements) ;*/
top=element->iproduct -val;

element->iproduct val-top;
left=computeiproduct (&wl(level+l] ,&signal [m*N_DELTA T+points] ,elements/2);
element->lleg_ptr->iproduct -val=left;
element->l leg ptr->input=left;
right-computeiproduct (&wl [level+l],
&signalfm*N_-DELTAT+points+elements/2],elenents/2);
element->rleg-ptr->iproduct_val=right;
element->rlegptr->input=right;
/* printf("ip=%5.3g i-%5.3g lip=%5.3g li=%5.3g rip=%5.3g ri%S.3g\n\n*",
element->iproduct_val,element->input,
element->lleg-ptr->iproduct_val,element->llegptr->input,
element->rlegptr->iproduct -val,element->rleg ptr->input) ;*/

/ *444**4444*ADDED THIS SECTION ********/

regenerate signal (new_signal,&wl[level+l],
elements/2,points,m, left);
regenerate_signal (new signal,&wl[level+l],
elements/2,points+elements/2,m,right);

if (level==LEVELS-2)(
inner_loop(level,l,element,wl,signal,newsignal,m,points);

else
return compute-trans(++level,l,element=element->lleg ptr,wl,signal,
new -signal,m,points);

/ ~ ~ ~ ~ ~ ~get wavelets()**********4******
I' This procedure creates the wavelet function for each resolution used 4

void get wavelets(int level, wavelets *w)

int l~elements;
FILE *f1;

/* printf("\nCreating wavelo.-ts at resolution %d\n",level);*/
elements=(int)pow(2.0, (double) (LEVELS-level));
I' printf ("No. of elements is %d\n",elements);*/
MALLOC (w->wavelet, elements, float,'"allocating wavelets");

142



loopi (elements)(
if (l<elements/2)
w- >wavelet [11](float) sqrt ((pow (2.0, (double)lIeve1)fl
else
w- >wavelet[ 1]--(float)s3qrt ((pow (2.0, (double) level)));

/* loopl (elements)(
w->wave let (I]- (float) (sqrt (pow (2.0, (double) level)) *sqrt (2.0)*
sin (2.0*PI*pow (2.0. (double) level) *

(double)l/(double)N_DELTA_T));

if ( (fl - fopen (wavelet.dat", "a"))= NULL)
printf("\n*** Can't create %s ***","waveletdat");,
exit (0)

loopl (elements)
printf (%f\n",w->wavelet tlI)
fprintf(fl,"\n");
fclose(fl) .*/

/ ~~compute iproduct "" ''" /

/* This function produces the inner product of the signal
samples at a particular time shift and resolution*/

float compute iproduct (wavelets *w, float *signal, mnt elements)

mnt i;
float val;

val=0;
loopi (elements)
val +-w->wavelet~i]*signal[i);
val /=NDELTAT:
return val;

float squa- (float val, float oldmax, float oldmin, float newmax, float newmin)

float answer:

answer= ( ((val-oldmin) /(oldmax-oldmin) ) * (newmax-newmin' -lewmin;
return answer;

void compute activity(grid_element *element, mnt level,int t, mnt which)

float a,exc~inh;
char string[lO];
grid_element *left,*right;
int 1;

a-element->act ivity:
inh-0;
exc-element->output.ABS2 (element->input),
left-right-element:
if (level>which)
loopi (level/2)(
if (left->ltr!NULLH
left-left->l-ptr;
inh +=left->output;
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if (right->ryptr!=NULL)
right-right->ryptr;
inh +=right->output:

element ->act ivity~a+TA1*EPS* (-a+ (MAX-a) *ec (MIN+a) *inh*COMPGAIN);
/* printf('activity-%5.3g\n\n",element->activity);
printf ("Hit enter to continue");
gets (string) .*/

void compute output (grid element *element)

float a;

a-element ->act ivity:
/* if(a<C)
e lement->output=O;
else
if (a>=O&&a<=1)
element->output=a;
else
elernent->output=1; */
element->output=(a-.0009<O)?O: (SIGMOID(a-.0009));

main (mnt argc, char **argv)

short *temp,*temp2; /* integer representation of original data *
list *grid-list:
grid_element *node,*current-node,*top_node;
wavelets *wavelet-list;
mnt level,l,rn,n,i:
mnt tot -points, points,elements;
float S Ignal [TOT];
float newsignal [TOT], shortsignal [TOT]:
float max,min;
size t s len:
FILE *fl,*f2,*f3,*f4,*f5;
char string[lO];

mySound=[Sound new];
1' get signal, temp has integer representation of signal *
get_data (&temp, &temp2, argv[l] I);
printf ("Got data successfully! \n");
100pm (TOT)
signal [m]=(float)temp[m];
if ((f - fopen("signal. dat","w"))- NULL)
printf("\n*** Can't create %s ***","signal.dat");
exit (0)

100pm (TOT)

fprintf(fl,"%f\n",signal~m]);

grid_list-make grido;
MALLOC (node, MTOTALDTS, grid element,"allocating first node");
MALLOC(waveletI ist,LEVELS,wavelets, "allocating wavelet list");
loopi (LEVELS)
get wavelets(l,&wavelet_list(l]);
/* printf ("Going into main loop\n");/
100pm (M -TOTALDTS)(
allocate_node(grid list,&nodefm]);
/* printf("\ntime is %d going into compute_trans\n",m); *
level-0;
totyoints-0;
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compute trans(level~grid list,&node(m],wavelet-list,signal,
newsignal,m. totJpoint3);

printf ("starting 3quash\n*);
/*** This loop finds max at each time slice and uses Max to squash
100pm (M TOTALDTS)(
top node-&node Em);
current_node-top_node;
grid_list->current-top-node;
max-mi n-0;

/* this loop checks for max value in time slice ~
loop1 (LEVELS)(
points-0:
elements-(int)pow (2.0, (double) (LEVELS-l));
loopn (N -DELTA_-T/elements)j
if (current_node->input>max)
max-current -node->input;
if (current node->input<min)
mmn-current-node->input;
if (current-node->ryptr !=NULL){
current node-current-node-rytr;

if (grid_list->currint->llegptr NULL)
grid list->current=grid_list->current->lleg_ptr:
current-node-grid_list->current;

/* end of check max loop ~
if (max<ABS2 (min)
max=A.BS2 (min):
printf("Max-%f min=%f at time %d --- Starting squash ... \n,max, min, m);
/* this loop squashes all values between using max as old max ~
top_node-&node fin;
current -node=top_node:
arid_list->current-top_node:
loopl (LEVE-LS)(
points=0;
elements=(int)pow(2.0, (double) (LEVELS-l)):
loopn (N DELTAT/elements)(
current -node->input-squash (current_node->input,max--max.,l.0,-l.O);
/* printf("after squashing: iproduct=%5.3g input=%5.3g\n\n",
current node->iproduct val,current_node->input);
printf ("Press enter to-continue!"):
gets (string) ;*/
if (current -node->ryptr !-NULL)(
current-node-current-node->rJptr;

if (grid_list->current-lIlegptr ?-NULL)(
grid list->current-grid-list->curren..->llegptr;
current-node-grid list->current;

/* end Of squash loop/

printf ("end Of squash loop/n");

/~*********the following computes lateral inhibition A*****/

loopm(M _;TOTALIDTS)(
printf( (starting LIN of time %d\n",m);
loopi (50)(
top node-knode [in]
current-node-top_node;
grdls-crrn-o~oe
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loopi (LEVELS)(
elements-(int)pow (2.0, (double) (LEVELS--l));
loopn (N DELTAT/elements)(
compute activity (current node,1, i~atoi (argv[21));
if (current -node->r_ptr !- NULL)(
current-node-current-node->ryptr;

if (grid list->current->llegjptr !- NULL)j

grid-list->current-grid-list->current->llegyptr;
current-node-grid-list->current;

top_node-fnode [ml:
current-node-top_node:
grid Ilist->current-top_node;
loopi (LEVELS)(
elements-(int)pow (2.0, (double) (LEVELS-i));
loopn (NDELTA_-T/elements)(
compute output (current -node);
if (current -node->r_ptr !- NULL)(
current-node=current-node->rptr;

if(gridlist->current->lleg-ptr !=NULL)(
grid_list->current-grid_list->current->llegptr;
current_node-gridlist->current;

/ ************.end of lateral inhibition

the following regenerates signal from compressed grid * /

Ioopm(MTOTAL_-DTS){
top node=&node Em];
current_node-top node;
grid_list->current-top_node;
loopi (LEVELS)(
if(m==0&&il--0)(
printf("top-%5.3g lleg=%5.3g rleg-%5.3g\n",
current-node->iproduct-val, current_node->llegptr->iproduct-val.
current node->rlegjptr->iproduct val);
printf( newtop=%5.3g newlleg-%f5.3g newr~eg=%f.3g\n",
current-node->output,current node->lleg~ptr->output,
current-node->rlegptr->output);

points-0;
elements-(int)pow(2.0, (double) (LEVELS-l)),
loopn (N DELTAT/elements)f
if (current_node->output!-0)
regenerate signal(shortsignal,&wavelet -listil],
elements,points,m,current_node->iproduc -val);
else
regenerate signal (shortsignal, &vavelet list (1),
elements, points, m,0);
points +-elements;
if (current node->rptr !- NULL)(
current-node-current-node->rjptr;

if (grid-lit->currenit->llegptr !-NULL)f
grid_list->current-grid list->current-lleg_ptr;
current node-grid list->current;
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printf ("regenerated short signal\n");

/********the following outputs the grid and compressed grid Outputs
if ((f3 - fopen("grid.dat","w")) -- NULL)
printf("\n*** Can't create %s **,grid-dat");
exit (0)

if ( (f4 - fopen ("compressed. dat", "w"))- NULL)
printf("\n*** Can't create %s ***",*compressed.cjat");
exit (0)

loopm(M_-TOTALDTS){
top_node-anode (m];
current_node-top_node;
grid list->current-top node;
loopi (LEVELS)f
points=0;
elements-(int)pow(2.0, (double) (LEVELS-V));
loopn (N -DELTAT/elements) I
if (current node->output!=0)
fprintf (f4."%5.3g ",current_node->iproduct-val);
else
fprintf(f4,"%5.3g ",0);
fprintf(f3,"%5.3g ",current_node->iproduct-val);
if (current node->r~ptr !=NULL)(
current-node-current_node-rytr;

fprintf (f3, "\n"):
fprintf(f4,"\n");
if (grid_list->current->lleg-ptr !=NULL)(
grid list->current=grid-list->current-lIleg_ptr;
current~node-grid-list->current;

printf ("outputted grid and compressed grid data\n");

if ((f2 - fopen("new -signal.dat","w")) -- NULL)
printf("\n*** Can't create %s **,newsignal.dat");
ex*it (0)

100pm (TOT)
fprintf(f2, "%f\n",newsignal (ml);
if ((f5 - fopen("short signal.dat","w")) =- NULL)
printf(-\n*** Can't create %s ***","short_signal.dat");
ex it (0)

100pm (TOT)
fprintf (f5, "%f\n",3hortsignal (ml);

loopi (TOT)(
temp~i]- (short)newsignal[i];
temp2[i]-(short)shortsignal~i];

1" get length of input file not counting null terminator/
s -len-strlen(argvll)
I' start name of newsoundfile with "new-"
strcpy(newsoundfile,"new_");
I' start name of shortsoundfile with "short-"
strcpy(shortsoundfile,"shori_");
1' concatenate input file name to "new-" in newsoundfile(] *
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strcat (newsoundfile,argvfl]); 1* newsound[]flCw filename.snd */
/* concatenate input file name to "short " in sh~ortsoundfile[] *

strcat (shortsoundfile~arjv [1]); /* 3hortsound( ]short filename.snd *

SNDWriteSoundfile (newsoundfile, convertStruct):-
SNfWriteSoundfile (shortsoundfile. shortStruct);

fclose (fi);
fclose (f2);
fclose (f3);
fclose (f4);
fclose (f5);
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Appendix F. Code for Morlet Wavelet Decomposition, Compression, and

Reconstruction

***~****************** morlet wavelet.m
Written by Rick Ricart, Capt, USAF */

/* This program computes the Morlet wavelet decomposition,compression, */
/* and reconstruction of a time signal/***********************************.*************************************

#import <sound/sound.h>
#import <math.h>
#import <dsp/arrayproc.h>
#import <mach.h>
#import <stdlib.h>
#import <stdio.h>
#import <objc/objc.h>
#import <soundkit/Sound.h>
#import <soundkit/soundkit.h>
#import <string.h>
#import <macros.h>

#define NDELTA T 256
#define KTOTALDFS 128
#define MTOTALDTS 31
#define TOT MTOTALDTS*NDELTAT /* approximately one sec of sound */
#define PI 3.141592654
#define LEVELS 8
#define OVERLAP 2
#define MAX 1
#define MIN 1
#define COMPGAIN 10.0
#define FO 0.25
#define TAU 0.1
#define EPS 1.0

#define ABS(x) sqrt(pow(x,2.0))
#define ABS2(x) ((float)sqrt(((double)x)*((double)x)))
#define SQUARE(x) ((x)*(x))
#define SIGMOID(x) (SQUARE(x))/(SQUARE(x)+F0)

/" Global Variables */
id mySound, newSound;
SNDSoundStruct *soundStruct, *convertStruct, *shortStruct;

/" the filenames */
char newsoundfile[80],shortsoundfile[80];

void compute_transo;
float computeiproduct();

typedef struct grid-element
struct grid element *r_ptr;
struct grid element *1_ptr:
struct grid-element *rleg_ptr;
struct grid element *llegptr;
struct grid element *up_ptr;
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float iproduct-val:
float input;
float activity;
float output;
mnt type;
) grid-element;

typedef struct
grid-element *head, *current;

list;

typedef struct{
float *wavelet;
Iwavelets;

/ ***************get_datao(

/* This procedure opens and reads the signal values of a sound file *

void get data(short **temp,short **temp2,char *infile)

int error, data-size,i;
BOOL edit;-

inPtr = (short *)((char )inputSound + inputSound->dataLocation):
outPtr - (short *)((char ~)*OutputSound + (*outputSound)->dataLocation);

error = [mySounJi readSoundfile:infile);
/* initialize myoound to infile's mySound object *
soundStruct =[mySound soundStruct];
(nySound isEditable];
data size = soundStruct->dataSize;
SNDAlloc(&convertStruct,data -size,SNDE'ORMATLINEAR_16,SNDRATECODE,
soundStruct->channelCount,"");-
SNDAlloc(fishortStruct,data -sizeSNDFORM'ATLINEAR-lE,SNDRATECODEC,
soundStruct->channelCount,"");
SNDConvertSound (soundStruct, &convertStruct);
SNDConvert Sound (soundStruct, &shortStruct);
*temp= (short *) (convertStruct~convertStruct->dataLocation);
*temp2- (short *) (shortStruct+shortStruct->dataLocation);

list *makegrid()

list *temP;

MALLOC (temp. ,list, "Allocating list");
temp->head-NULL:
temp->current-NULL;
/* printf ("Made make grid successfully\n");*/
return temp;

void allocate-node(list *I, grid-element *node)

if(l->head==NULL)(
1 ->head=node;
l->current=node;
node-> lptr=node->rptr=NULL;

else(
node->lyptr-l -current;
l->current->rytr-node;
l->current-node:

node->rlegyptr-node->llegptr-NULL;
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node->upjptr-NULL;

void allocate_grid triad (list *1, grid-element *element)

grid-element *templ,*tenp2:

/* printf("\nAllocating a triad\n");*/
/* allocate both legs */
MALLOC (templ,l,grid -element, "allocating lleg");
MALLOC (temp2,l,grid element. "allocating rleg");

teinp2->ty, e=l;
elezent->llegyptr-templ;
element->rlegyptr-temp2:
templ->rptr-temp2;
temp2->lyptr-templ;
temp ->up-ptrtemp2->uppt-element;
if(eleinent->l_ptr==NULL) )element->lyptr->rleg_ptr-=NULL)
templ->l_ptr-NULL;
elsef
templ->1_ptr-element->lptr->rlegptr;
element->lyptr->rlegptr->r_ptr-temp1;

temp2->r_ptr-NULL;
templ->rlegptr-teinp2->rlegptr'templ->llegptrtemp2->lleg-ptr-NULL;
1->current-elenent;
/* printf ("allocated grid triad successfully\n'):*/

void regene rates signa. (float *new-signal, wavelets *wl,int elements,
int points, mnt m, float mag)

mnt i,tot;

if (OVERLAP!=O)
tot-elements*2*OVERLAP;
else
tot-elements;
loopi (tot)
new_signal[mt?4_DELTA_-T+i+points-tot/2] +=wl->wavelet~il*mag;
/* printf("%5.3g\n",new_signal~in*NDELTAT+i+points]);*/

void inner_loop(int level, list *1, grid-element *elemnent, wavelets *wl,
float *signal,float *new-signal,
int m, mnt points)

int elements;

eleinents-(int)pow(2.O, (double) (LEVELS-level));
if(level-=O)
return;
else
if ~eleient->rptr--NULL)(
points --elements;
/* printf ("Moving up a level, moving element ptr up, and inner loop. \n");"
return inner_loop(--level, l,element-element->upptr,
wl,signal~new-signal,in,points):

else(
/* printf ("Moving element ptr right and allocating another triad\n");*/
points +-elements;
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compute_trans (level,1, element-element->rptr, wi,signal,
new_signal,m,points);

/ ~**~**********compute_transo(

void compute Ytrans(int level, list *1, grid element *element, wavelets *wl
float *signal,float *new_signal, int m, int points)

float top,left,right,epsilon;
int elements;

elements=(int)pow (2.0. (double) (LEVELS-level)):
/* ONE */
allocate_grid-triad(l, element);
/* TWO */

/***********ADDED THIS SECTION **********

if (element->upyptr==NULL)(
top=compute_iproduct(&wl[level] ,&signal (m*N DELTAT+points] ,elements);
element->iproduct -val-top:
element->input=top;
regenerate signal(new_signal,&wl[level],elements,points,m,top);

/* top=compute_iproduct (&wl[level] ,&signal [m*N_DELTAT+points],elements) ;*/
top=element->iproduct val;

element->iproduct_val-top;
left=computeiproduct (&wlflevel+l],&signal [m*N_DELTAT+points],elements/2);
element->lleg_ptr->iproduct_val=left;
e lement->llegptr->input=left;
right-compute -iproduct (&wl (level+l],
&signal(m*N_DELTA -T+points+elements/2] ,elements/2);
element ->rleg-ptr->iproductval=right;
element->rlegptr->inputright;
/* printf("ip=%5.3g i-%5.3g lip=%5.3g li=%5.3g rip=%5.3g ri%5.3g\n\n",
element->iproduct val, element->input,
element-lIlegptr>iproduct -val,element->llegptr-input,
element->rlegptr-iproduct -val,element->rlegptr->input) ;*/

~~~ ~ADDED THIS SECTION*********/
regenerate signal (new_signal,&wl~level+l],
elements/2,points,m. left);
regenerate signal (new_signal,&wl~level+l].
elements/2,points+elements/2,m, right):

if (level==LEVELS-2)(
ir~ier loop(level,1, element,wl, signal, new signal,m,points);

else
return compute_trans(++level,l,element=element->llegytr,wl,signal,
new -signal,m,points);

/ *ft*i~f**~fta*******get-wavelets()

/* This procedure creates the wavelet function for each resolution used *

void get wavelets(int level, wavelets *w, wavelets *iw)

jot l,elements,tot;
double time~ofnega,cc;
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FILE *fl,*f2;

/* These are Monlet wavelet parameters *
printf("\nCreating wavelets at resolution %d\n",,level);
elements= (int) pow (2.0, (double) (LEVELS-level));
if (OVERLAP!=0)
tot=elements*2*OVERLAP;
else
tot=elements;
/* printf ("No. of elements is %d\n",elements);*/
MALLOC(w->wavelet,tot,float, "allocating wavelets");
MALLOC(iw->wavelet,tot,float, "allocating wavelets");
omega=PI*sqrt(2.0/log(2.0);
cc=exp(-pow(omega,2.0)/2.0);
loopi (tot)(
time=pow (2. 0, (double) level) * (double) (l-tot/2) /(double) NDELTAT;
w->wavelet[l]-(float) ((005 (omega*time)-cc)*
exp (-PI*pow (time. 2.0)) *

sqrt ((pow (2.0, (double) level))));
iw->wavelet[l]=(float) ((sin(omega*time)-cc)*

e:.:p(-PIpow(time,2.0) )*
sqrt((pow(2.0, (double)level))));

if ((ft = fopen("rwavelet.dat","a")) ==NULL)
printf("\n*** Can't create %s ***",'rwavelet.dat");
ex :it (0)

loopl (tot)
fprintf(fl,"%f\n",w->wavelet~l]);
fprintf(fj, "\n");
fclose (fi);
if ((f2 = fopen("iwavelet.dat","a")) ==NULL)
printf("\n*** Can't create %s -"*,"iwavelet.dat");
e:-- t (0)

ioopt (tot)
fprintf (f2, "%f\n", iw->wavelet [1]);
fprintf (f2, "\n");
fclose (f2);

f ~ compute iprodut
/* This function produces the inner product of the signal
samples at a particular time shift and resolution*/

float rompute iproduct (wavelets *w, float *signal, int elements)

mnt i,tot;
float val;

val 0;
i f (OVERLAP! =0)
tot'elements*2*OVERLAP;
else
tot=elements;
loopi (tot)
vat +=w->.waveletfi1*signalti-tot/2J:
val /=NDELTAT;
return val;

float squash(float vat, float oldmax, float oldmin, float newmax, float newmin)
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float answer;

answer- (val-oldmin) / (oldmax-oldmin) )*(newmax-newmin) ) +newmin;
return answer;

void compute activity (grid element *element, int level, int t, int which)

float a,exc,inh;
char string[lO];
grid_element *left,*right;
i 1;

a=element->activity;
inh=O;
e c=element->output+element->input;
left=right=element;
if (level>which)
loop1 (level/2)(
if (left->lptr!=NULL)(
left=left->lptr;
inh +=left->output;

if(right->rptr!=NULL)j
right=right->rptr;
inh +=right->output;

element->activity=a+TAJ*EPS* (-a+ (MAX-a) *exc-(MIN+a) *inh*COMPGAIN),
/* printf("activity=%5.3g\ri\n",element->activity),

printf ("Hit enter to continue");
gets (string) ; *

void compute output (grid element *element)

float a;

a=element->activity;
/* if(a<O)
el ement->output-0;
else
if (a>=O&&a<=1)

element->output=a;

else
element->output=l; '/

element->output=(a-.0009<O)?O: (SIGM~OID(a-.0OO9));

main (mnt argc, char **argv)

short *temp,*temp2; /* integer representation of original data *
list *rgrid list, tigrid_list;
grid_element *node,*current_node,*top_node;
grid_element *inode,*icurrent Inode,*itop node; /* added this ~
wavelets *wavelet_list, *iwavelet-list; /*added iwavelet list *

mnt level,l,m,n,i;
int tot points. points,elements;
float signal[TOT+OVERLAP*2*N_-DELTAT);
float newsignal(TOT+OVERLAP*2*NDELTAT];
float shortsignalTOT+OVERLAP*2*NDELTAT);
float max,min~energy totlenerjy trunc;
size t s_ len;
FILE *fl,*f2,*f3,*f4,*f5;
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char string[l0];

rySound=[Sound new);
/* get signal, temp has integer representation of signal *
get_data (&temp, Itemp2, argv [1]);
printf ("Got data successfully! \n");
100pm (TOT)
signal tm+OVERLAP*N_DELTA_-T].(float)temp(m);
if ((fl - fopen("sigjnal.dat*,"w")) -= NULL)
prmntf("\n*** Can't create %s "*","signal-dat");
exit (0)

loopm (TOT)
fprintf(fl,"%f\n",Signaltm+OVERLAP*NDELTATI);
rgrid_list-make_grido;
igrid_list-make_grido;
MALLOC(node,M_-TOTALDTS,grid-element, "allocating first layer real nodes"):
MALLOC(inode,M_-TOTAL_-DTS,grid-element,"allocating first layer imag node");
MALLOC (wavelet-list, LEVELS, wavelets, "allocating real wavelet list");
MALLOC(iwavelet list,LEVELS,wavelets, "allocating imag wavelet list");
loopi (LEVELS)
get -wavelets(l,&wavelet_list[l],&iwavelet-list~l]);
printf ("Going into main loop\n"):
I' This loop produces the inner products of the real part of the wavelet *
loopm (M TOTALOTS)f
allocate_node(rgrid -list,&node[m]);
/* printf("\ntime is %d going into compute_trans\n".m); *
level=0;
tot points"0;
compute -trans(level,rgrid-list, &node [ml ,wavelet-list,
&signal[OVE-RLAP*NDELTAT],&newsignal[OVERLA.P*NDELTAT],
m,tot points);

/* This loop produces the inner products of the imag. part of the wavelet *
loopm(M TOTALDTS)(
allocate_node(igrid-list,&inoderml):
level=0;
tot points-0;
compute -trans(level,igrid-list,&inode[m],iwavelet-list,
&signal[OVEP.LAP*NDELTATI,&newsignal[OVERIAP*N_DELTAT,
m,tot-points);

printf ("starting squash\n");
/*** This loop finds max at each time slice and uses max to squash****
100pm( (N TOTAL_-DTS)(
top node=&node(in];
itop_node=&inode [m];
current_node=top node;
icurrentn ode-top -node;
rgrid_list->current-top_node;
igrid_list->current-itop_node;
max 0;
loop1 (LEVELS)
points-0;
elements=(int)pow(2.0, (double) (LEVELS-l));
loopn(NDELTA_-T/elements){
if ((current node->input=
(float) sqrt (pow ((double) current -node->input, 2.0) +
pow ((double) icurrent node->input, 2.0))) >max)
max-current -node->input;
if (current node->ryptr != NULL)(
current-node-current-node->rjptr;
icurrent-node-icurrent_node->rptr;
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if(rgrid-list->current->llegyptr != NULL)l
rgrid -list->cirrent-srgrid-list->current->llegytr;

grdt-current- ii it->current >lgpr
current_node-igrid-list->current;

printf("Max-%f min=%f at time %d --- Starting squash ... \n~max,min,m);
top_node-&node Cm];
current_node-top~node;
rgrid -list->current-top_node;
loopl (LEVELS)i
points=0;
eleznents=(int)pow (2.0, (double) (LEVELS-lI);
loopn (N DELTAT/elements)f
current-node->input-squash (Current_node->input,max, 0,1.0,0);
if (current node->rptr !- NULL)(
current_node=current_node->ryptr;

if(rgrid -list->current->llegyptr !=NULL)(
rgrid list->current-rgrid -list->current->llegptr;
current_node=rgrid-list->current;

printf("end of squash loop\n");

~~ the following computes lateral inhibition
100pm (N TOTAL_-DTS){
printf(";\nstarting LIN at time %d\n",m)
loopi (50)(
top node=Gnode (i];
current 7node=top_node;
rgrid -list->current-top_node;
I oopl (LEVELS)
elernents=(int)pow (2.0, (double) (LEVELS-l));
loopn (N DELTAT/elements)(
compute activity(current -node,l,i,atoi(argv[2]));
if (current -node->ryptr !=NULL){
Current-node=current_node->ryptr;

if (rgrid -list->current-ll1egptr != NULL)f
rgrid_list->current=rgrid list-current-ll1egptr;
current_node=rgrid-list->current;

top node=&node [i];
current_node-top_node;
rgrid_list->current-top_node;
loopi (LEVELS)
elements- (int) pow (2. 0, (double) (LEVELS-' );
loopn (N DELTAT/elenents)(
compute output (Current -node);
if (current node-)ryptr !- NULLI{
current-nodie-current-node->rptr;

if(rgrid -list->current->llegyptr !- NULL)(
rgrid~list-> current-rgrid -list->current->llegyptr;
current-node-rgrid list->current;
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/*************end of lateral inhibition ***************

/~~~~** the following energy normalizes *******/

printf ("\nstarting energy normalization\n",m);
loopm(M _TOTALDTS){
top_node-6node (m);
itop_node-&inode [ml;
current_node-top_node:
icurrent-node-top node:
rgrid-list->current-top node;
igrid -list->current-itop node;
/~fi nd the total energy and truncated energy at each r'~solution ~
loopl (LEVELS)(
elements- (int)pow(2.O, (double) (LEVELS-I));
loopn (N -DELTA_-T/elements)f
energy -tot 4- (float)pow((double)current_node->input,2.O);
if (current -node->output!=O)
energy_trunc +- (float)pow( (double)current node->input,2.O);

if (current-node->rptr !=NULL)
current -node-current_node->rptr;

current_node=rgrid -list->current:
/*multiply both the real and imag coefficients by the energy change *

loopn (NDELTA_-T/elements)(
current_node->iproduct -val *- energy tot/energy trunc:

icurrent_node->iproduct val *= energy tot/energy trunc;
if (current-node->rptr NULL)(
current_node=current-node->rjptr;
icurrent-nodeicurrent-node->r_ptr;

if(rgridlist->current->llegyptr != NULL)(
rgrid-list->current-rgrid-list->current-4Ieg_ptr;
igrid_list->current-igrid -list->current->llegptr;
current_node=rgrid-list->current;
icurrent_node=igrid_list->current;

/ n~**********end of energy normalization **************

I"'" "''"the following regenerates signal from compressed grid ****

printf("\nstarting to regenerate signals\n");
100pm (M TOTAL DTS)(

top node=Snode [ml;
itop_node-&inode[m);
current_node-top node:
icurrent_node-top_node;
rgrid list->current-top node;
igrid list->current-itop node;
loopl (LEVELS)f
points-O;
elements-(int)pow(2.O, (double) (LEVELS-l));
loopn( (II DELTA_-T/elenents)(
if (current_node->output !=O)
regenerate_signal (&shortsignal [OVERLAP*NDELTAT],
&wavelet list(l],
elements~point3,M,current 7node->iproductval),
regenerate_signal (&shorts Ignal [OVERLAP*NDELTAT],

elements,points,m,icurrent_node->iproduct_val):

else(
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regenerate-signal (&shortsignal [OVERLAP*NDELTATJ,
&wavelet_listfi],
elements,point3,m,0);
regenerate_signal (&shortsignal [OVERLAP*N DELTA T),
&iwavelet_list(l],
elements,points,m,0);

points +-elements;
if (current -node->ryPtr !- NULL){
current -node-current_node->rptr:
icurrent-node-icurrent-node->rytr;

if(rgrid -list->current->llegptr !- NULL)(
rgrid-list->current-rgrid-list->current->llegyptr;
igrid-list->current-igrid-list->current->llegptr:
current -node-rgrid-lit->current;
icurrent_node-igrid-list->current;

printf ("regenerated short signal\n");

/********the following outputs the grid and compressed grid outputs
if ( (f 3 = fopen ("grid. dat", "w") ) -= NULL)
printf("\n*** Can't create %s ***","griddat");
ex. it (0)

i f ( (f4 =fopen ("compressed. dat", "w"))= NULL)
printf('\n*** Can't create %s "*","compressed.dat");
ex-it (0)

100pm (M TOTALDTS)(
top_node=&node[ml;
current-node=top node;
rgrid_list->current=top node:
loopi (LEVELS)f
points=0;
elements= (intlpow (2.0, (double) (LEVELS-lI);
loopn(N_-DELTA_-T/elements)(
if (current_node->output!-0) /*change this if *
fprintf(f4,"%5.3g ",current-node->input);
else
fprintf(f4,"%5.3g ",0);
fprintf(f3,"%5.3g ",current_node->input);
if(curret -noe rytr !- NULL)(
current-node-currentnode->rptr;

fprintf(f3."\n");
fprintf (M4 "\n");
if(rgrid_list->current->llegjptr !- NULL)(
rgrid-list->current=rgrid-list->current->llegyptr:
current-node-rgrid-list->current;

printf ("outputted grid and compressed grid data\n");

if ((f2 = fopen("new signal.dat","w")) -- NULL)
printf("\n*** Can't create %s ****,"new signal.dat");
e, it (0)

100pm (TOT)
fprintf (f2, "%f\n", newsignal [m+OVERLIV*NDELTA TI);
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if ((f5 - foperi("3hort_signal.dat","w")) -- NULL)(
prinif("\n*** Can't create %3 ***"S"hort signal.dat");
exit (0)

loopm (TOT)
fprintf(f5,"%f\n",3hortsignal[m+OVERLAP*NDELTAT]);

loopi (TOT)(
temp[i]-(ahort)newaignal~i+OVERLAP*N -DELTAT];
temp2[i]-(short)shortsignal~i+OVERLAP*N_DELTAT;

/* get length of input file not counting null terminator ~
s len-sirlen (argv El]);
1* start name of neWsoundfile w~ith "new-"
strcpy (newsoundfile, "new_"),
/* start name of shortsoundfile with "short -"*
strcpy (shortsoundfile,"3hort_");
/* concatenate input file name to "new -in newsoundfile[3
strcat(newsoundfile~argv[1]); I" newsound[]-new_filename.snd "
/* concatenate input file name to "short " in shortsoundfilel]*
strcat(shortsoundfile,argv[ll); /* shortsound[]=short-filename.snd *
SNtWriteSoundfile (newsoundfile, convertStruct) ;
SNDWriteSoundfile (shortsoundfile, shortStruct);

fclose(fl);
fclose(f2);
fclose (f3);
fclose (f4);
fclose (f5);
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