
0

iIC

07:7

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FO)RCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DTICSELF-Cfc"r
JANO07

A HY'PERMEDIA IM1'PLEMENTATION FOR
REUSABLE SOFTWARE COMPONENT

REPRESENTATION

THESIS

Gary G. Worrall
Captain, USAF

AFIT/GCS/ENC/90D- 16

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90D-16

A HYPERMEDIA IMPLEMENTATION FOR REUSABLE

SOFTWARE COMPONENT REPRESENTATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

Gary G. Worrall, A.A.S., B.S.C.S.

Captain, USAF

December, 1990

Approved for public release; distribution unlimited

Preface

The purpose of this study was to investigate the use of hypertext to implement

the representation of reusable software components. Several representation meth-

ods have been proposed in the literature and several have been implemented in real

or, more typically, experimental systems. Hypermedia, with its capability to repre-

sent knowledge in a non-linear manner appears to offer benefits for a wide range of

potential software reusers.

Results from this and similar studies are important for libraries of reusable

software components to effectively meet the needs of potential users. Without a clear

understanding of the benefits and drawbacks of possible representation methods,

designers of software reuse libraries cannot be expected to create truly useful systems.

I am deeply indebted to my faculty advisor, Maj David Umphress, for his great

patience, gentle prodding, and willing assistance as I worked on this thesis. Thanks

also to my thesis committee members, Prof. Dan Reynolds and Maj Marty Stytz.

Finally, I wish to express my thanks and love to my wife, Andrea, and my sons,

Colin and Graham, for their love, support, and understanding during the trying

times when I was so wrapped up in this work that they were virtually ignored.

NTIS C777 & - -Gary G. Worrall

By
D- .t -.,----*

.tI

Table of Contents

Page

Preface......

Table of Contents.....

List of Figures v

List of Tables vil

Abstract. vill

I. Introduction. 1

1.1 Problem Statement. 1

1.2 Background. 2

1.3 A Framework 4

1.4 Scope. 9

1.5 Overview of This Thesis 9

II. Review of Previous Work 11

2.1 Domain Analysis. i1

2.2 Notations and Methodologies. 12

2.2.1 Indexing 14

2.2.2 Formal Specifications 20

2.2.3 Knowledge Engineering. 20

2.2.4 Hypermedia. 24

2.3 Component Collections 27

2.3.1 Ada components 27

2.3.2 Non-Ada Components 28

Page

111. A pproach . 30

3.1 The Component Collecticil. 30

3.1.1 Selection Criteria 30

3.1.2 Selection Results 31

3.1.3 Representation of Components. 32

3.2 The Hypermedia implementation 36

3.2.1 Classification. 37

3.2.2 Explanator. Text 39

3.2.3 Abstract Data Types. 41

3.2.4 Time and Space Complexity. 41

3.2.5 Component Locator 41

3.2.6 Browsing.. 42)

3.3 Summary. 44

IV. Summary, Conclusions, and Future Work. 46

4.1 Summary. 46

4.2 Conclusions 46

4.3 Recommendations for Future Work. 47

Appendix A. Knowledge Management System Overview 50

Appendix B. Sample Frames From RSCRS. 53

Bibliography. 81

Vita 85

iv

List of Figures

Figure Page

1. Central Idea of Reusable Software Engineering 3

2. Schematic for Draco 12

3. Semantic Net Example 22

4. Booch Classification Structure 33

5. Forms of Booch Components 34

6. RSCRS Organization 38

7. Information Web Example 40

8. Component Retrieval Time vs. Component Size 43

9. Classification Tree - Top Level Frame 54

10. Classification Tree - Second Level Frame 55

11. Classification Tree - Leaf Level Frame 56

12. Explanatory Text Frame 58

13. Abstract Data Type Frame 59

14. Time And Space Complexity Analysis Frame 60

15. Forms Frame 62

16. Forms Frame With Forms Selected 63

17. Component Location Frame 65

18. Browse Frame 66

19. Item Attributes Example 68

20. KMS Program Example 70

21. KMS Program Example (Continued) 71

22. KMS Program Example (Continued) 72

23. KMS Program Example (Continued) 73

24. KMS Program Example (Continued) 74

Figure Page

25. KMS Program Example (Continued) 75

26. KMS Program Example (Continued) 76

27. KMS Program Example (Continued) 77

28. KMS Program Example (Continued) 78

29. KMS Program Example (Continued) 79

30. KMS Program Example (Continued) 80

vi

List of Tables

Table Page

I. A Framework For Reusability Technologies 5

2. Representation System Levels 9

3. Typical "Locate Component(s)" Response Times 42

4. Typical Component Retrieval Times 44

vii

AFIT/GCS/ENG/90D-16

Abstract

This study investigated representation methods for software reuse. Hyperme-

dia was chosen as the implementation method to represent a collection of reusable

software components in a Reusable Software Component Representation System

(RSCRS). The hypermedia implementation organizes knowledge about the compo-

nent collection, and individual components, into a web of small information chunks

called frames.

The set of software components was represented within RSCRS using a hybrid

classification scheme composed of an enumerated part and a faceted part. The

enumerated part of the classification system enables the user to progress along a path

in a taxonomic tree, successively narrowing the scope of eligible components. Each

leaf node in this tree denotes a class of reusable software components, members of

which are distinguished by their time and space characteristics. These characteristics

are grouped into eleven facets, each of which is comprised of two, three, or four

elements known as forms.

Explicit links between frames establish a domain dependent means of traversing

the information net. Some of these links allow the user to progress directly through

the levels of the classification structure. Other links lead from the classification

structure frames to frames containing explanatory text for the terms used in the

classification. Additional links serve as cross-references between related topics.

A simple component locator is provided which utilizes information from the

user's frame selections to identify, and provide locating information for, a set of com-

ponents meeting the user's selection. To round out the RSCRS system, a component

source code browsing capability is provided for the selected components.

Viii

A HYPERMEDIA IMPLEMENTATION FOR REUSABLE

SOFTWARE COMPONENT REPRESENTATION

I. Introduction

Human progress has resulted from one generation building upon the suc-
cesses and failures of previous generations. In most fields of engineering,
practitioners follow standard models, and deviate from a standard prac-
tice only when the project at hand imposes a special requirement. When
software designers address a new project or a major upgrade, however,
the dominant practice is to begin anew, or at best, to focus only on
the prior experience of the immediate team of players. The result is a
proliferation of "unique" software that is functionally identical. This du-
plication includes not only code, but also design, test programs, data and
instrumentation, and maintenance. (Wald, 1987:353)

... we should stand on each other's shoulders rather than on each other's

feet ... (Wegner, 1983:33)

We would not retain a software engineer who designed, coded, tested, and

documented a new sine routine every time a new system required that

mathematical function; we would expect instead that a library function
would be reused. Yet we tolerate and even expect that more demanding
functions will be redeveloped in each new system. (Wald, 1987:353)

1.1 Problem Statement

The method used to represent reusable software components in software reuse

libraries is a key factor affecting the ease of use and effectiveness of such libraries.

I

An understanding of the diverse approaches available for implementing software

component representations will aid in the wise selection of component representation

methods and their implementations for software reuse projects.

1.2 Background

The demand for computer software is increasing faster than the software en-

gineering community's productivity. The cost to develop and support compi -r

software is a major factor affecting system acquisitions within the United States

Department of Defense (DOD).

Much newly developed software duplicates existing software. Horowitz and

Munson relate a study which "observed that 40-60 percent of actual program code

was repeated in more than one application" (Horowitz and Munson, 1984:478).

"... 60 percent of all business application designs and code are redundant and can

be standardized and reused" (Lanergan and Grasso, 1984:498). Jones mentions an

unpublished study which noted that about 75 percent of functions in commercial

banking and insurance applications were common ones that occurred in more than

one program (Jones, 1984:488). He reaches the tentative conclusion "that of all the

code written in 1983, probably less than 15 percent is unique, novel, and specific to

particular applications" (Jones, 1984:488).

This duplication of effort is costly productivity and reliability are not what

they could be. Most work in the area of software reuse is based on the assumption,

often implicit, that software reuse may provide the key opportunity to escape the

escalating lifecycle cost spiral by increasing the productivity of software developers,

reducing the costs of system development, improving the reliability of software sys-

tems, and reducing the requirements for software support (Booch, 1987:6; Margono

and Berard, 1987:63; Sommerville, 1989:353). Reuse can increase the software devel-

oper's capabilities by allowing him or her to generate equivalent or better products

with less work (Andersor, 1988:3). Reuse should reduce the number of components

2

to be specified, designed, implemented, and tested which should lead to a shorter

schedule and thus to reduced cost (Tracz, 1987:358). But, "the approach based on

reusable components has not been tested in practice although it appears to offer

advantages for both costs and system reliability" (Sommerville, 1989:7).

Despite the fact that software reuse is currently a very active research area, it is

not at all new. For example, code reuse was the main motivation for early subroutine

libraries: it is only recently that subroutint iibraries received their current emphasis

as program structuring concepts (Sommerville, 1989:352).

"Reusability is a general engineering principle whose importance derives from

the desire to avoid duplication and to capture commonality in undertaking classes

of inherently similar tasks" (Wegner, 1984:9). Modern software reuse can be viewed

"as analogical development, where a previous development from similar requirements

is transformed into a new development satisfying new constraints" (Perry, 1988:1).

In other words, software reuse is "the use of 'sequences' of software development

'solutions' from previous projects to 'solve' a current development" (Perry, 1988:1).

Figure 1 illustrates this view of software reuse.

CONSTRAINTS REQUIREMENTS

INFO RM ATIO N
ON THIS TASK PERFORM IMMEDIATE

SOFTWARE RESULTS

INFORMATION ENGINEERING INFORMATION
FROM PREVIOUS (SE) TASK USEFUL IN FUTURE
TASKS SE EFFORTS

Figure 1. Central Idea of Reusabe Software Engineering (Freeman, 1987:830)

3

Thus, software reuse is the use of previously acquired concepts and objects

in a new software development situation (Prieto-Diaz and Freeman, 1987:7). On

one level, the reuse of previously acquired concepts includes the reuse of ideas and

knowledge such as general software design principles for determining the size an.'

performance characteristics of a component. This is analogous to the reuse of con-

cepts in other engineering disciplines. For example, aeronautical engineers apply

standard design equations to determine the dimension and materials of a wing. On

a separate level, the reuse of objects encompasses the selection of an existing soft-

ware component to meet specifi,-d design criteria. This is analogous to the reuse

of objects in other engineering disciplines. For example, electrical and mechanical

engineers consult parts catalogs to identify the available parts which best fit the

design constraints.

Viewed in this manner, software reuse is much more than simple reuse of actual

code; it includes reusable design, various forms of specification systems, application

generators, and prototyping systems (Horowitz and Munson, 1984:477). "Any life-

cycle product falls within the scope of the reuse problem" but, "little is known about

the reuse of software other than code. Reuse, then, includes such lifecycle objects as:

concept documents, estimates, requirements, designs, code, test plans, maintenance

plans, and user documentation" (Frakes and Gandel, 1989:302).

1.3 A Framework

The foreword to the special software reuse issue of IEEE Transactions on Soft-

ware Engineering provides a framework for organizing the various approaches to

software reuse (Biggerstaff and Perlis, 1984). This framework appears in the litera-

ture again two and a half years later (Biggerstaff and Richter, 1987). The framework,

summarized in Table 1, divides the various approaches into two groups based upon

the nature of the components being reused.

4

Features Reusability approaches
Component reused Building blocks Patterns

Component nature Atomic and immutable Diffuse and malleable

Passive Active

Reuse principle Composition Generation

Emphasis Application Organization and Language-based Application Transformation

component composition principles generators systems

Typical systems Subroutine Object-oriented Very high~level Terminal-display Language

libraries languages formatters transformers

Pipe Problem-oriented File

architectures languages management

Table 1. A Framework For Reusability Technologies (Biggerstaff and Richter,
1987:42)

The first group, composition technologies, includes atomic, and relatively im-

mutable, passive building blocks which are used to derive new programs by applying

a few well-defined composition principles. Examples of these building blocks are

code skeletons, subroutines, functions, programs, and objects. Proponents of this

approach assume that systems are primarily composed of components which already

exist so the system development process becomes one of assembly rather than cre-

ation (Sommerville, 1989:7). Work in this group emphasizes two classes: application

component libraries themselves and principles of component organization and com-

position.

The other group, generation technologies, deals with reusable patterns as ac-

tive elements which generate the target programs. This group emphasizes three

classes: language-based systems, application generators, and transformation sys-

tems. Language-based systems achieve reuse via very high-level languages (VHLL)

and problem-oriented languages. Application generators include systems such as

terminal-display formatters and file managers. Transformation systems reuse ab-

stract programs by transforming the VHLL description of an abstract component to

the implementation language of its concrete counterpart, (Cheatham, 1984).

5

The boundaries between these three classes are not very clear. Several systems

which obviously belong in this group exhibit characteristics of all three classes. Ex-

ample generation technology systems include the Constructor Function within the

Parts Engineering System (PES) of the Common Ada Missile Packages (CAMP)

(Anderson, 1988:3), the Draco system (Neighbors, 1984), and the TAMPR LISP to

FORTRAN program transformation system (Boyle and Muralidharan, 1984).

This thesis concentrates on the first group - code building blocks. Reusable

code components can be divided into three classes:

" plug compatible: these components can be used as-is. Assuming they are

guaranteed to perform as specified, they offer a quick way to begin assembling

a system. However, these components are specifically constructed to apply to

a particular object type.

" parameterized (generic): these components are derived from templates via

instantiation with specific parameter values. They offer more flexibility than

plug compatibles because they can be instantiated for different object types

needing similar functionality.

" adaptable: These components are not reusable as-is, but can either be adapted

or permit usable code to be abstracted from them. Thus they may save design

and coding time over building from scratch.

(Knapper, 1988:234)

Although reuse of logical components in any form seems to have obvious bene-

fit, some have argued that code reuse alone can never be cost effective (Sommerville,

1989:352). One of the clear successes in code reuse is the reuse of numerical compu-

tation routines. However, numerical computation is unique in several ways:

* The domain is very narrow, containing only a small number of data types.

This narrowness makes code reuse more manageable; because there are only a

few data types, these components have a higher probability of reuse.

6

" The domain is well understood, its mathematical framework having developed

over hundreds of years. Thus the investment required to create a library of

reusable code components is reduced. Since many people understand the do-

main, they may readily understand a component's function with only a brief

functional description.

" The underlying technology is quite static, growing and evolving very slowly.

Importantly, it evolves so existing parts of the technology remain unchanged

yielding upward compatibility of the technology. Thus, the component library

remains relatively stable, allowing the using organization to amortize its cost

over a longer period of time.

(Biggerstaff and Richter, 1987:44)

Reuse of software components appears to offer the potential for reduced de-

velopment costs, improved reliability, and ultimately lower lifecycle costs. But, a

number of impediments to effective software reuse exist: acquisition, technical, and

managerial (Cardow, 1989:564). One particularly crucial technical issue is the design

of software reuse libraries.

Two reasons why a programmer doesn't use someone else's code or design are:

" It is easier to write it oneself, then (sic) to try to locate it, figure
out what it does, and find out if it works ...

" There are no tools to help find components or compose a system
from the reusable pieces.

(Tracz, 1987:359)

Many researchers agree with this observation as evidenced by the following quota-

tions.

Frequently, software is not reused because the valuc of reusing software
is low and the feasibility of reuse is minimal ... if the retrieval and

7

specification of software components are not automated, the amount of
time required to locate reusable software increases greatly. If potentially

reusable software components cannot be located, retrieved, and reviewed
effectively, reuse is neither feasible nor valuable.

In short, there is strong support for the belief that to effectively promote
software reuse we must develop tools to aid in the process of locating
software components that are candidates for reuse. Such a tool must
provide the user with an effective means of indexing, searching, retrieving,
and reviewing software components. (Frakes and Nejmeh, 1987:381)

Thus,

" a software component can be effectively reused only if it includes a
large amount of information describing different aspects of the coni-
ponent, such as its behaviour, the problem it faces, the constraints
limiting its use and so on.

" a programmer will reuse a component developed by others only if the
time needed to properly instantiate it is less than the time required
to develop a new component from scratch.

Unfortunately the first principle is in conflict with the second, because
the information associated to the component often requires a lot of time
to be read and understood by the programmer. To solve this conflict,
the programmer must be supported through "intelligent" techniques in
understanding the information associated to a component. These tech-
niques should be able to present the additional information in a smart
way, not only as simple sequential text. (Ghisio and others, 1987:386)

A software reuse library functions primarily to enable the software developer

to locate appropriate software components for use in the developer's particular ap-

plication. As can be seen from the above quotations, ease of use and effectiveness

are essential to successful software component libraries. A key factor affecting ease

and effectiveness of reuse is the language chosen to describe the set of software com-

ponents. This descriptive language, which may be texual or graphical, is referred

to as a representation.

8

The reason that a representation is created is to allow operations on
the representation that would be more difficult or impossible on the rep-
resented object itself. It is much easier, for example, to sort a set of
bibliographic records according by author than to sort the same number
of books by author.

A representation system has three levels as shown in [Table 2]. The

Level Example

Presentation Graphical Tree
Representation Class Hierarchy
Implementation Paper Manual

Table 2. Representation System Levels

presentation is what the user of the system actually sees when using the
system. The representation is the logical model, and the lowest level is
the way the system is actually implemented where the implementation
might be a printed manual or an automated data base system of some
sort. A lower level in this scheme constrains the levels above it. (Frakes
and Gandel, 1989:303)

1.4 Scope

For this thesis effort, selected representation methods were applied, in a proto-

type Reusable Software Component Representation System (RSCRS), to an existing

library of reusable software components.

1.5 Overview of This Thesis

This chapter has presented a general discussion of software reuse. Chapter II

continues the discussion with a survey of the literature specifically addressing soft-

ware component representation, presentation, and implementation methods. Chap-

ter III then discusses the specific methods used in developing the RSCRS. Chapter IV

9

concludes this thesis with a summary of the work performed, the conclusions to be

drawn from this work, and recommendations for further research.

10

I. Rcview of Previous Work

This chapter provides a review of the literature pertaining specifically to rep-

resentation methods for reusable software components. The first section presents

the concept of domain analysis. The problem domain addressed by a collection

of software components has a direct impact on the appropriateness of the method

or methods used to represent the components. The second section presents the

notations and methodologies which have been proposed for software component rep-

resentation. These notations and methodologies are drawn from the fields of library

and information science, computer science, and discrete mathematics. The third sec-

tion presents a brief overview of some of the existing collections of reusable software

components.

2.1 Domain Analysis

The application domain is important to any discussion of software reuse. For

example, consider the database retrieval/process/report stereotype. This application

domain is ideally suited to application generators via control language, a concept

which has been very effective but has not spread widely to other domains. There

seem to be fewer obvious stereotypical situations in other domains, thus less scope

for application generators.

"Domain analysis is the process of deriving a domain model of a given software

system" (Frakes and Gandel, 1989:303). Although the suitability of application

generators may be limited, the domain analysis step is important for software reuse.

For example, domain analysis is the most important aspect of Draco, one of the

generation technology systems mentioned in Chapter 1.

In Draco, a specific problem domain is analyzed resulting in a new domain

language. This approach allows reuse of both analysis (the what) and design (the

11

PERFORM A DOMAIN-SPECIFIC P ARSY RER FOR X PRGRA IN , I
A DOMAIN -'----- LANGUAGE, X R T YP I T RF RXAC N E TO A

ANALYSIS [- TRANSFORMATION , LANGUAGE

SYSTEM TACTICS /

USER INTERACTS
PROGRAMWITH DRACO

Figure 2. Schematic for Draco (Horowitz and Munson, 1984:482)

how) information. This reuse is accomplished through source-to-source transforma-

tions, between domain languages, on objects and operations in the domain. Each

component, then, consists of one or more refinements, where each refinement is a

statement of the problem semantics in terms of one or more of the domain languages

known to Draco (Neighbors, 1984). Figure 2 presents the steps involved in the Draco

process.

In any reuse effort, domain analysis provides the knowledge necessary to de-

termine appropriate component classification and representation methods. For ex-

ample, the Common Ada Missile Packages (CAMP) project examined the tactical

air-launched missile domain. The results of the domain analysis were used to develop

a library of reusable components and a limited capability to derive new components

from existing components based on specifications (Anderson, 1988).

2.2 Notations and Methodologies

A comparison between software development and hardware development shows

that hardware developments use many existing components with the minority of

12

system components being specially built. If software component reuse becomes a

widespread reality, the main emphasis in programming will shift from program de-

velopment to component interconnection. This shift implies a need to develop new

notations and methodologies. These new notations would concentrate on describing

system structure in terms of its basic components and ignore the details of how the

components operate (Sommerville, 1989:310).

Issues to be considered when selecting a representation for reusable com-
ponents fall into three major categories: issues about the objects to be
represented, issues about the system of objects to be represented, and
issues about the representation itself (Frakes and Gandel, 1989:303).

When a component is reused, implications on and from the environment
must be known and considered during the instantiation process. Other
information like instancing constraints, component user manual and com-
ponent description must be supplied and used for a correct reuse of the
component. (Ghisio and others, 1987:386)

"... our methods for determining the definitions of components are weak, it is

difficult to describe a component to a user, and there are no tools to catalog, refine,

and compose components in an efficient manner" (Horowitz and Munson, 1984:481).

Careful selection of components is key to successful software reuse. Software

repositories or libraries provide a means of cataloging, storing, and accessing reusable

components. No standardized method exists for classifying, cataloguing, and retriev-

ing software components. To obtain maximum benefit from a software library it must

be readily accessible, easy to use, and oriented toward user requirements. The actual

storage and retrieval mechanism should be invisible to the user. For reuse to become

Lruly practical on a large scale, the cost to retrieve a component must be far less

than the cost to develop the equivalent component.

13

We must learn how to organize, index, describe, and reference software
components effectively. We believe that a system of "software component
folders" could be organized and indexed by conventional techniques for
indexing papers in the computer science literature, and that by having
each component in a software library in a form susceptible to parametric
variation and refinement, an effective solution to this problem could be
found. (Standish, 1984:496)

The techniques that can be provided to support information understand-
ing could be roughly divided into two classes:

1. techniques which handle the semantics of the additional information;

2. techniques which handle only the structure of the additional infor-
mation.

Both types of techniques are necessary to give a suitable support in com-
ponent understanding. (Ghisio and others, 1987:386)

2.2.1 Indexing. Indexes communicate knowledge to users about information

items through specialized indexing languages. An indexing language summarizes or

describes the subject or content of information items. An indexing language consists

of three parts. The first part is the terms (or elements) that make up the language.

The second part is the syntax (or rules for combining terms). The third part is the

semantics (or logical relationship between terms). (Frakes and Gandel, 1989:304-

305)

Indexing languages can be classified along a continuum where controlled vocab-

ularies and uncontrolled vocabularies are the endpoints of the continuum. Controlled

vocabularies are those vocabularies that limit the terms that can be selected, limit

the ways terms can be synthesized, or limit the semantic relationships between terms.

Uncontrolled vocabularies are those vocabularies that place little, if any, restraint

on term selection or synthesis, and do not limit the semantic relationships between

terms. (Frakes and Gandel, 1989:304-305)

14

2.2.1.1 Controlled Vocabularies.

The purpose of a controlled vocabulary is:

" To promote consistent representation of subject matter by indexes
and searches.

" To simplify comprehensive searching on a topic by linking together
items with related meanings.

Generally, terms for controlled vocabularies are derived usi: g a combi-
nation of two methods.

• Literary Warrant - index terms are derived from the examination
of the subject area.

" User Warrant - index terms are included if it is of interest to the
user population.

There are two major forms of controlled vocabularies - classed systems
and keyword systems. (Frakes and Gandel, 1989:305)

Classed Systems. The traditional library science method of cre-

ating a representation is known as indexing or classification. Classification is the

process of distinguishing components which possess a certain property or character-

istic from those that lack it and grouping components which have the property or

characteristic in common into a class or category. Classification "is concerned with

not only the relationship between things but also the relationship between classes of

things" (Frakes and Gandel, 1989:305). Classification schemes range along a contin-

uum with a strictly enumerative approach at one extreme and a completely faceted

approach at the other extreme.

There are two general types of classification schemes; enumerative and
faceted. Enumerative schemes take a subject area and divide it into
successively narrower classes listing all the elemental, superimposed, and
compound classes arranged in order of their hierarchical relationships.
This "listing" of all possible subjects is the major disadvantage of the
enumerative scheme [Buchanan 1979]. Any subject (class or subclass)

15

which does not appear in the schedule cannot be classified (located in
the collection).

The second type of classification scheme, faceted, is more of a building
block approach emphasizing subject analysis and synthesis [Chan 1981].
An analysis process is used to construct the classification schedule. Sub-
jects to be classified are analyzed and divided into their elemental terms
(e.g., things defined by only one characteristic). Only the elemental terms
and their relationships are listed in the faceted schedule. Recurring di-
visions are not repeated in each major class as they are in the enumer-
ated scheme. The elemental terms are listed separately for application
to all subjects as needed. Synthesis is then used to express a super-
imposed, complex, or compound class by assembling its elemental parts
from the facets according to the citation order. Since the analysis and
synthesis process plays such a major role, faceted systems are also called
analytico-synthetic classification in the literature [Chan 1981; Buchanan
1979; Vickery 1960]. (Ruble, 1987:50)

The major advantage of using enumerated classification systems is their
structure. The well defined hierarchical structure makes it easy for the
user to interpret the relationship among terms. Users can easily modify
their searches to be more specific or more general by moving down or up
the hierarchical tree. The disadvantage of this classification system is its
very strength. Its top down approach requires an exhaustive analysis of
the area for which it is developed. It is also a rigid structure that can
support only one view of the relationship between elements. This rigidity
makes it very hard to change an enumerated classification system without
restructuring the whole hierarchy - except when changes are made at
the bottom of the tree structure. (Frakes and Gaadel, 1989: 305)

The Library of Congress (LC) classification system is an enumerative scheme.

It consists of 21 major classes. LC has separate schedules for each class. Each of

these indexes are developed and published separately. Most research libraries in the

United States organize their collections according to LC. However, LC does not lend

itself to use in automated retrieval systems due the lack of a predictable basis for

subject analysis and the lack of a logical hierarchy. (Ruble, 1987:57-60)

"To overcome the rigidity of an enumerated classification system, a more flexi-

ble type of classed system - known as a faceted classification - evolved. The theory

16

of faceted classification was developed by Raganathan, an Indian mathematician and

librarian" (Frakes and Gandel, 1989:305).

Raganathan's Colon Classification (CC) was the first completely faceted library

classification scheme. It consists of five facets which are related to each other in

a fixed citation order. The five facets, in citation order, are Personality, Matter,

Energy, Space, and Time (PMEST). Each of these facets consists of elemental terms.

For example, Time may be subdivided as year, season, month, week, day, hour, etc.

A subject then is composed of elemental terms from each of the facets V;Sted in

citation order. (Frakes and Gandel, 1989:305-306; Ruble, 1987:62-64; Williams,

1965:123)

A major advantage of a faceted classification over a hierarchical scheme
is the freedom it gives the indexer to synthesize terms to express complex
concepts. All concepts do not have to be pre-determined at the time of
creating the classification system. Rather, the indexer can synthesize
terms from facets to create concepts as needed. A faceted scheme is
also easier to update and modify since you can change one facet without
affecting any others. (Frakes and Gandel, 1989:306)

Early work in classifying software applied enumerative approaches such as the

ACMI classification bcheme (Wood and Sommerville, 1988:199). Prieto-Diaz first

proposed use of a faceted classification scheme for software in his PhD disserta-

tion (Prieto-Diaz, 1985; Prieto-Diaz and Freeman, 1987 His scheme consists of

six facets: Function, Objects, Medium, System type, Functional area, and Setting

Ruble expanded upon Prieto-Diaz's work by implementing a faceted classificatlin

scheme and associated retrieval mechanism for software components (Ruble, 1987).

Ruble's scheme consists of 11 facets: Form, Activity, Focus, Location, Language,

Algorithm, Operating system, Hardware, Performance rate, Memory requirements,

and Precision. Faceted classifications have been shown to be easily expandable and

domain tailorable.

17

Keyword Systems. Perhaps the simplest method for representing

reusable software components is through the use of keywords. For example, the

REUsing Software Efficiently (REUSE) system is a menu-driven information retrieval

system which classifies each component into one of four classifications: template,

module, package, and program (Arnold and Stepoway, 1987). A menu of keywords

is used to add new components and search for existing components. The list of

keywords may change as obsolete components are deleted and new components are

added.

A thesaurus relates synonymous terms. A thesaurus, in the context of infor-

mation retrieval (IR) systems, is a controlled keyword list for describing the variety

of relationships between vocabulary terms by means of a series of alphabetical en-

tries, each of which is composed of a subject term, related terms, and associated role

indicators. In this context, a thesaurus is not simply a list of synonyms. Rather,

as information retrieval specialists adopted this term, they extended its meaning to

include both an alphabetical list of allowed terms and the semantic relationships

between the allowed terms. The semantic relationships between terms are identified

by role indicators such as:

" UF -use for

" RT - related term

" NT - narrower term

" BT - broader term

(Frakes and Gandel, 1989:307)

The REUSE system also provides for free-form information to be stored with

each software component. The REUSE system constructs and submits queries to the

underlying information retrieval system based oil user inputs. (Arnold and Stepoway,

1987)

18

A similar scheme is CATALOG, a

high performance information retrieval system designed to allow end
users to create, maintain, and search databases containing both for-
matted records, such as are typically found in DBMS, and unformatted
records, such as text, which most DBMS handle poorly ...

CATALOG features a database generator which assists users in setting
up databases, an interactive tool for creating, modifying, adding, and
deleting records, and a search interface with a menu driven mode for
novice users, and a command driven mode for expert users. The search
interface allows full boolean combinations of search terms and sets of re-
trieved records, and sophisticated partial term matching techniques such
as automatic stemming, and phonetic matching. (Frakes and Nejmeh,
1987:381)

Frakes and Nejmeh "built a small database of software modules using CAT-

ALOG. These modules were from SUPER, a system built at Bell Laboratories

for interactive reliability analysis. The information used to index these modules was

taken from the descriptive headers required of each module in the SUPER system"

(Frakes and Nejmeh, 1987:381).

2.2.1I.2 Uncontrolled Vocabularies.

In an uncontrolled vocabulary, no restriction is placed on what, terms can
be used to describe an item. Uncontrolled vocabulary terms can be drawn
from any source, but are usually drawn from the indexed objects them-
selves. Some potential advantages of using an uncontrolled vocabulary
are:

" Cost - Since the index terms are often drawn from the text of the
indexed objects, the indexing task can be highly automated. This
is usually much cheaper than human indexing.

" Specificity - Since terms are unrestricted, indexing terms can be
made as specific as possible.

(Frakes and Gandel, 1989:308)

19

The Reusable Software Library (RSL) uses free text indexing for Ada parts.

The functions, procedures, packages, and programs are indexed by free text terms

assigned by the programmer. These terms supplement a hierarchical classification.

(Burton and others, 1987)

2.2.2 Formal Specifications. Another suggested approach is to create for-

mal specifications for the desired components and then attempt to find a matching

specification in the library. Problems here include dealing with syntactical differ-

ences in semantically similar specifications (do they describe the same component?)

and determining close matches in two formal specifications (Wood and Sommerville,

1988:200).

Litvintchouk and Matsumoto specify components using Clear, an algebraic

specification language based on formal algebra. Their method applies category the-

ory, the branch of mathematics dealing with properties characterizing classes of

algebraic structures, to expressing the static semantics of systems. A category is

a class of objects together with a set of mappings (morphisms) defined for each

pair of objects in the category. The standard tool for reasoning about a category

is a diagram which is a directed graph whose nodes correspond to objects in the

category and whose edges correspond to morphisms in the category. Functors map

objects and morphisms in one category to objects and morphisms in another such

that morphism source, target, and the operations of identity and composition are

preserved. A component is defined by a theory which is a finite set of sorts (data

type identifiers) and operation symbols together with a finite set of axioms. Reuse

is accomplished through theory-building operations such as combine, enrich, and

derive. (Litvintchouk and Matsumoto, 1984)

2.2.3 Knowledge Engineering. Knowledge engineering creates a knowledge

representation using artificial intelligence (AI) techniques.

20

A central problem of IR has been how to represent the meaning of text
or other records in a way comprehensible to a computer. The knowl-
edge representation techniques used in Al systems offer promise in this
direction. (Frakes and Nejmeh, 1987:383)

Knowledge engineering representation methods are typically divided into three

classes: semantic nets, production rules, and frames.

[A] semantic net approach [has been used for] ... document representa-
tion, production rules have been used to create an intelligent thesaurus,
and natural language systems have been used to extract and formalize
the information in medical documents (Frakes and Nejmeh, 1987:383).

2.2.3.1 Semantic Nets. "A semantic net is a directed graph whose

nodes correspond to conceptual objects and whose arcs correspond to relationships

between those objects" (Frakes and Gandel, 1989:309). Figure 3 shows a simple

example of a semantic net representing sorting programs.

Semantic net representations suffer a serious practical problem. The processing

required to determine whether a given semantic net matches, or partially matches,

a library component representation can be extremely expensive. The comparison

problems are instances of the graph and subgraph isomorphism problems. The sub-

graph isomorphism problem has been shown to be NP-complete while the graph

isomorphism problem appears to be NP-complete but is still open (Garey and John-

son, 1979:202; Booch, 1987:342). Thus the time to perform the comparison, even

using the best known algorithms, increases at least exponentially with respect to the

number of nodes in the networks.

"No reuse systems based on semantic nets are described in the literature"

(Frakes and Gandel, 1989:309).

2.2.3.2 Production Rules. Production rules follow an "IF condition

THEN" structure where one or more attributes are tested against given values.

21

my-system

n . ._. bubblesort

used in implementation
faster than

AKO

written by

AO

Joe Bubblealoih

Figure 3. Semantic Net Example (Frakes and Gandel, 1989:309)

92

These production rules are typically stored in expert system knowledge bases. When

rule-based systems are used as a representation method, each software component

must be described by the attributes represented in the rule base. Several projects

have successfully employed rule-based expert systems for software reuse (Frakes and

Gandel, 1989:309-310).

One such system is the Modeling Expert System (MES), developed at AT&T

Bell Laboratories, which aids in generating models for new transmission equipment

by reusing models of existing equipment. The models are written in PL/I. The MES

itself is written in OPS5 and Franz LISP. Selected attributes of the desired model

fire the appropriate MES production rules which select existing models to be used

as base models. The selected base model is then modified with the help of scripts

written in the awk pattern-matching language under the UNIX operating system.

(Rosales and Mchrotra, 1988)

Q.2.3.3 Framrcs. A frame is a data structure consisting of slots and

fillers, where a slot is a location for a particular attribute and a filler is the value

of that attribute. A type of inferencing known as inheritance is usually used to

access the knowledge contained in frames. An "is a" (ISA) relationship between two

frames logically generates a resulting frame containing the slots and fillers of the

related frames. For example, a frame named CAR would encode certain information

common to all cars. Another frame named VW would have different slots and

fillers unique to Volkswagens. VW ISA CAR means that the VW frame inherits the

knowledge encoded in the CAR frame.

Several reuse projects have successfully used frames as their representational

method. One notable example is work done as part of the Eclipse project which is

now being continued in an ESPRIT-funded reuse project. ESPRIT is the European

Strategic Program for Research in Information Technology administered by the Com-

mission of the European Communities (Gibbs and others, 1987:4). The developers

23

of the Eclipse system used component descriptor frames which encode the semantics

of language as well as the syntax thus allowving retrieval of components using a more

natural language than previous retrieval languages. (Wood and Sommerville, 1988)

Another example is LaSSIE, "a prototype tool ... that uses a frame-based de-

scription language and classification inferences to facilitate a programmer's discovery

of the structure of a complex system. It also supports the retrieval of software for

possible reuse in a new development task" (Devanbu and others, 1989:110). The

LaSSIE knowledge base has four object types: OBJECT, ACTION, DOER, and

STATE. The relationships are captured by slot-filler relationships between OB-

JECTs, ACTIONs, and DOERs (Devanbu and others, 1989:111). Classification is

accomplished by building "explicit descriptions of the actions performed by different

parts of the system, then [using] formal inference to build a taxonomic hierarchy,

where all IS-A links are derived from the descriptions themselves" (Devanbu and

others, 1989:112).

2. .j IHypermcdia. Ghisio and associates "focussed on techniques based on

the information structure" (Ghisio and others, 1987:386). They identified

two useful techniques for structuring information:

* structuring through explanation levels;

" structuring through partial views.

The structuring through levels of explanation enables the user to read
only the descriptions he is interested in. The information is organized
in one or more levels, in a hierarchical way: the first level will contain
the main description whie the other levels contain references describing
aspects which could need further explanations.

The structuring through partial views enables the user to gather different
chunks of information related to the same topic. This technique is bascd
on the concept that the information could be decomposed in several in-
formation chunks; each chunk could then be linked to related chunks
through explicit connections. (Ghisio and others, 1987:386-387)

21

"A hypertext is a structure that allows a user to move from place to place in

a body of text via links" (Frakes and Gandel, 1989:311). A hypertext system can

be used to organize knowledge as a graph structure of frames. Such a "knowledge

graph" may be entered at different points and traversed in different ways depending

upon the experience of the user. Thus, hypertext can be viewed as a paradigm

of knowledge engineering which imposes a modular, interactive discipline on both

creators and users.

In working with knowledge graphs it is conceptually useful to define individual

frames as objects of an abstract data type which may have some components and

operations for manipulating each of those components. Knowledge graphs in general,

and hypertexts in particular, have a domain-independent interconnection structure

and set of operations that facilitates several modes of graph traversal such as brows-

ing, retrieval, and reference. Such a domain-independent set of operations provides

the means to operate on graphs and frames, such as navigating the graph structure,

independently of the knowledge domain being considered. Each node (frame) has a

domain-dependent internal structure and may provide domain-dependent operations

or tools which know about, and can manipulate, objects of the particular knowledge

domains. (Wegner, 1983:41)

Miypermedia, an extension of hypertext, enables the same nonlinear movement

through other forms of information in addition to text. Hypermedia systems give the

user a tool to create smoothly integrated webs of information. Such an information

web consists of nodes, or elements, annotated with links which point to other nodes

in the web. Such link annotations may be placed anywhere in a node's contents and

can be made visible or invisible. -lypermedia systems also provide browsing tools

for navigating the structure of the information web and viewing the contents of the

nodes. (Biggerstaff, 1987:1-2; I3iggerstaff and Richter, 1987:43)

25

The single most important property provided ... is the connectivity pro-
vided through the annotation system. This translates into an important
change in the way information is retrieved and thereby, into a fundamen-
tally new way for the Software Engineer to operate with the design model
of the target system that he or she is intending to reuse. (Biggerstaff,
1987:6)

This concept has been used as a representation method for reusable software

components. Hypertext and hypermedia systems aid the user in understanding

a component by providing instant access to supporting information within a few

keystrokes or mouse button clicks. In addition to existing code, such supporting

information may include text descriptions, graphical diagrams, explanations of de-

sign decisions, and other design information. (Biggerstaff and Richter, 1987: 43-44).

Unlike other representations, hypermedia allows the user to be intimately involved

in the search for components. Thus, search is just part of the pattern of the user

interacting with the model of the component to be reused, navigating his or her way

through a complex space of information describing the component. (Biggerstaff,

1987:1)

The Student Engineering Environment for Reusable Software (Seer) at the

University of Maine (Latour and Johnson, 1988) uses a hypermedia-like approach

to representing the Booch components (Booch, 1987). The Seer user interface is a

windowing system with four types of windows:

" module class window: displays a button for each of the top-level
classes in the Booch taxonomy.

* class state window: displays a tree of buttons with the root of the
tree being the currently selected module class and the branches of
the tree being the factors in the Booch classification hierarchy sub-
ordinate to the selected module class. The buttons representing the
currently selected factors are highlighted on the screen.

* information web window: displays a graphical web of information
buttons about the currently selected module class and factors.

26

0 text/graphics window: displays the textual and graphical informa-
tion associated with the selected information web button.

The information ... differs in a small but critical way from the same
information presented in a printed document. The user has control over
the order in which he or she investigates that information. The user
can broadly sample each entity in the diagram first before investigating
any one entity in depth, or he or she can dive deeply into the details of
some entity. On such a depth first investigation, the user may come to a
point where references to unexplored branches of information will redirect
him or her back up the information graph. Hypermedia makes such
redirection easier than bouncing around in a linear document. It does
not however, relieve the developer of the responsibility to carefully and
thoughtfully organize the information. Hypermedia systems are helpful,
but not magic. (Biggerstaff, 1987:4)

2.3 Component Collections

Any discussion of reusable software component representation methods must

consider the components to be represented. Numerous collections of reusable soft-

ware components exist.

2.3.1 Ada components. Ada, the standard high-order programming language

for the DOD, is a modern programming language with several characteristics specifi-

cally designed to support development of large systems composed of reusable software

components. For example, Ada has a wide variety of program units (procedures,

packages, and tasks) each of which has a specification part that defines the inter-

faces available for interconnecting program units in composite systems and a body

which contains the implementation details of the program unit. Thus, Ada supports

the modern software engineering concept of information hiding. Ada's strong typing

rules constrain module interconnections and allow compile-time consistency checking

between the formal parameters defined in the specification and the actual parameters

established when the module is invoked. Parameterized templates, known as generic

27

program units, allow the common features of families of software components to be

captured by a single generic definition. Finally, Ada's program libraries and separate

compilation capability encourage reuse of program units. (Wegner, 1983:31)

Common collections of components written in Ada include:

" the Booch components, developed by Grady Booch (Booch, 1987) and dis-

tributed by Wizard Software. This collection consists of 501 components im-

plementing frequently needed structures and tools in a predominantly object-

oriented design approach.

• the Generic Reusable Ada Components for Engineering (GRACE) components,

distributed by EVB Software Engineering. These components are classified

using a modification of the taxonomy Booch developed for his components.

* the Common Ada Missile Packages (CAMP), developed by McDonnell Douglas

Astronautics Company under sponsorship of the Air Force Armament Labora-

tory. These packages are the result of an analysis of the tactical air-launched

missile domain.

* the Ada Software Repository (ASR), available through the SIMTEL20 com-

puter at White Sands Missile Range. This repository is a diverse collection of

systems, subsystems, and packages.

All of the Ada components mentioned above are available in both source and object

code form.

2.3.2 Non-Ada Components. Common collections of software code compo-

nents written in languages other than Ada include:

* The UNIX components consisting of utilities, pipes, and filters. These compo-

nents are written in the C programming language and are usually provided in

both source and object code forms on UNIX systems.

28

* The IMSL libraries of FORTRAN mathematical and statistical routines. These

routines are usually available only in object code form.

29

III. Approach

The first section of this chapter describes the process used to select the 7ompo-

nent collection for this study, the characteristics of the component collection, and the

classification scheme used to represent the components. The second section of this

chapter describes the hypertext approach used to implement the Reusable Software

Component Representation System (RSCRS).

3.1 The Component Collection

As mentioned in Section 1.2, little is known about reuse other than code.

Although reuse at higher levels (e.g., analysis, specification, or design) may, in the

long term, offer more significant benefits, reuse of code components appears to offer

the best near term advantages. Thus, this study concentrated on the representation

of reusable code components. Early in this research, a decision was made to utilize

an existing collection of reusable software components rather than to develop a new

collection. This decision was based on the fact that most existing collections contain

a larger number and wider variety of tested components than could be developed

within the available research time. In addition, it is reasonable to assume that an

existing collection would not have been specifically develop-d to easily fit into the

selected representation methods. Also, the focus of this research was on component

representation rather than component creation. Use of self-developed components

could have introduced author bias. Finally, most reusable software components in

production libraries will be represented in the system by someone other than the

author of the component, using representation methods which may not have been

anticipated by the author of the component during component development.

3.1.1 Selection Criteria. Several criteria were used to select the component

collection to be represented. First, to make this work widely applicable, the cor-

30

ponent collection had to be generally applicable across domains. Second, the com-

ponent collection had to be readily available in source code form. Availability of

source code should encourage reuse because a similar existing component could then

be modified if the exact component desired was not available. A third desirable

criteria was use of the Ada programming language due to its status as the standard

high-order prograi ning language within the Department of Defense and its increas-

ing use in ther government agencies and commercial enterprises both in the United

States and abroad. Fourth, an object-oriented component collection was desired as

... object-oriented design is the most promising technique now known for attaining

the goals of extendability and reusability"' (Meyer, 1987:51). Fifth, the components

had to be already tested. Reuse of untested components introduces considerable risk

into a software development effort, perhaps even enough to outweigh the potential

benefits of reuse.

3.1.2 Selection Results. The Booch components, a collection of 501 reusabl ,

Ada components created by Grady Booch and distributed by Wizard Software, were

selected for this research effort. This component collection met all of the selection

criteria outlined above. In addition, the components were specifically designed to

be reusable. Most of them are parameterized components implementing frequently

required structures and algorithms. Finally, Booch has written a textbook (Booch,

1987) which documents the design considerations of the components in some depth.

Other candidate component collections, mentioned in Chapter II, were con-

sidered. They were rejected because each failed to meet at least one of the criteria

established to select the component set. For example: the GRACE components were

rejected because they were not available at this institution, the CAMP components

were rejected because they are primarily applicable to a very specific problem do-

main, the ASR components were rejected because there is no verification testing

performed on coder submitted to the repository, the I 'NIX components were rejected

31

because they are not coded in Ada, and the IMSL components were rejected

because they are not coded in Ada and are not usually available as source code.

3.1.3 Representation of Components. The purpose of a software component

representation is to provide information to locate desired components and assess

their suitability for reuse in a given application without having to examine the code

itself. A hybrid classification scheme, textual descriptions, abstract data type (ADT)

descriptions, and time and space complexity information were used to represent the

components. The classification scheme provides a means for locating c ntially

useful components. Textual descriptions piovide easily read definitions of terms

and descriptions of components. ADT descriptions provide a clear understanding of

the operations exported by the components. Results of time and space complexity

analyses provide information about the components' requirements for computer pro-

cessing and storage resources. Thus, the RSCRS representation satisfies the stated

purpose of a software component representation.

Obviously, other representations could have been implemented. For example,

a different classification scheme could have been chosen or a rule- or frame-based

knowledge system could have been implemented. The chosen representation was

selected because of its compatibility with the hypermedia implementation discussed

in Section 3.2.

3.1.3.1 Classification Scheme. The representation method selected for

implementation was Booch's classification scheme (Booch, 1987). This classification

scheme conveniently matches the component collection. It appears to be reason-

ably extensible to other components. This classification scheme is a hybrid which

combines enumerated and faceted approaches. The enumerated portion of the classi-

fication scheme is a hierarchy that divides the component collection into successively

narrower classes. Figure 4 illustrates the hierarchical porton of the classification.

32

Reusable Software Component Reusable Software Component (Continued)
Structure Tool (Continued)

Monolithic Filter (Continued)
Ordered Output

Stack Pipe
String Sorting
Queue Total Ordering
Deque Internal
Ring Insertion

Unordered Straight
Map Binary
Set Shell
Bag Exchange

Polylithic Bubble
List Shaker
Tree Quick
Graph Radix

Tool Selection
Utility Straight

Primitive 11eap
Character External
String Natural Merge
Numeric Polyphase

Integer Partial Ordering
Floating Point Searching
Fixed Point Primitive

Calendar Sequential
Structure Ordered Sequential

List Binary
Tree Structure
Graph List

Resource Tree
Storage Manager Graph
Semaphore Pattern Matching
Monitor Simple

Filter Fast
Input Knuth-Morris-Pratt
Process Boyer-Moore

Translate Regular Expression
Expand
Compress

Figure 4. Booch Classification Structure

'33

Each of the lowest levels in the classification structure represents a class of compo-

nents.

The components in each of the classes are distinguished by their forms. The

forms represent the time and space properties of a component. Booch defines eleven

categories of forms which are identified in Figure 5. Not all categories of forms are

Concurrency Space Garbage Collection Iterator Export
Sequential Bounded Managed Iterator
Guarded Unbounded Unmanaged Noniterator
Concurrent Controlled
Multiple

Balking Priority Object Domain Cacheing
Balking Priority Simple Cached
Nonbalking Nonpriority Discrete Noncached

Link Degree Directedness
Single Binary Directed
Double Arbitrary Undirected

Figure 5. Forms of Booch Components

applicable to all components. It is convenient to view these categories of forms as a

faceted portion of the classification system because the forms do not have any type

of hierarchical relationships to each other. The forms, instead, provide faceted views

of the components.

The classification presented in Figures 4 and 5 is a superset of the taxonomy

Booch uses to name the components. His component naming taxonomy typically,

especially for the structure components, consists of the component class (a leaf node

of the classification tree) and the applicable forms for the component (for example,

Stack-SequentialBounded-Managed Iterator). His naming conventions for tools are

not quite so orderly, but the tool name always includes any applicable forms (for

example, Topological -SortBounded -Managed).

34

3.1.3.2 Textual Descriptions. Since many of the terms in the classifica-

tion scheme are somewhat specialized or uniquely defined, each term is defined and

explained within the RSCRS. These explanations are extracted from (Booch, 1987).

(Booch, 1987) is tutorial in nature. It provides the rationale for Booch's ap-

proach to reusable software component design and implementation. He views each

component as implementing some real-world abstraction. Thus, the text provides

an explanation of the mathematical structure of each abstraction, the outside and

inside views of the abstraction, and the design considerations from the perspectives

of utility and efficiency.

The information presented in RSCRS concentrates on the abstract properties

of the components, ignoring the details of how the components operate except when

understanding the inside view is necessary for proper use of the component.

3.1.3.3 Abstract Data Types.

An abstract data type describes a class of objects through the external
properties of these objects instead of their computer representation. More
precisely, an abstract data type is a class of objects characterized by
the operations available on them and the abstract properties of these
operations.

It turns out that abstract data types, which provide an excellent basis for
software specification, are also useful at the design and implementation
stage. In fact, they are essential to the object-oriented approach, and en-
able us to refine the definition of object-oriented design: Object-oriented
design is the construction of software systems as structured collections of
abstract data-type implementations. (Meyer, 1987:53)

Abstract data type (ADT) descriptions are provided in RSCRS for the structure

components. ADTs are not applicable to the tool components because the tool

components are not objects. Each ADT consists of the name of the structure class,

a short definition of the structure, the suffered operations provided by the class,

35

and the applicable forms. The operations are categorized as constructors, selectors,

iterators, and exceptions.

3.1.3.4 Time and Space Complexity. Time and space complexity may

be crucial in selecting the proper component when processing power or storage ca-

pacity is at a premium or when the software system performance requirements are

tight. Thus, the RSCRS includes the results of this type of "order-of" analysis. The

time and space complexity analysis results presented in the RSCRS were extracted

from (Booch, 1987).

3.2 The Hypermedia Implementation

As implied in Chapter II, hypermedia can be viewed as a means to present

underlying representation methods. For example, some frames in a hypermedia

environment could contain a semantic net representation while other frames could

contain a faceted classification while yet other frames could allow on-line browsing

of the source code for the component. Thus, hypermedia may provide the capability

to integrate multiple representations in a single presentation. Of course, each addi-

tional representation method implemented for a cernoncnt collection adds to the

development and maintenance costs of the collection.

The decision to implement RSCRS as a hypermedia-based system left two

alternatives for hardware systems to serve as host platforms. These alternatives

were personal computers (PCs) or the school's network of Sun workstations. The

Sun network was chosen for three reasons. First, not many PCs have enough disk

storage to hold the complete collection of Booch components in addition to their

existing requirements for mass storage space. Thus, stand-alone PCs are not good

candidates for hosting a library of reusable software components. Second, an Ada

compilation system is projected for installation on the Sun netwvork shortly after

this thesis effort is completed. A means to locate components for Ada software

36

developments would, thus, be a useful addition to the network. Third, tile only

means currently available at this school to locate these components is a simple,

text-oriented capability on one of the school's central computer systems.

The Knowledge Management System (KMS) by Knowledge Systems, a hyper-

media system supporting text and graphics presentation, was selected to serve as

the principal presentation vehicle for the prototype Reusable Software Component

Representation System (RSCRS). KMS allows the user to organize knowledge in

chunks called frames. Frames are grouped together into framesets. A frameset will

usually consist of frames containing related information. Appendix A describes the

features of IKMS.

KMS was selected by default as it ib the only hypermedia system installed oi

the selected computer system. RSCRS was the first sizable system implemented in

IKMS at this institution.

The following subsections describe how the representation information is pre-

sented within the hypermedia environment of RSCRS. Figure 6 illustrates the or-

ganization of the RSCRS representation. Appendix B presents a number of sample

IKMS frames from RSCRS.

3. 2.1 C'lassification. A frameset named BT. an acronym for Booch Taxon-

omv, was created in which the first frame contains an item for each of the choices

at the highest level in the classification hierarchy (i.e., "Structures" and "Tools").

Subsequent frames within the BT frameset contain items for the next lower level

in the classification hierarchy, based upon the item selected in the parent. frame.

Thus, a RSCRS user selecting the "Tools" item in the first frame is presented with

a frame containing the items "Utilities", "Filters", "Pipes", "Sorting", "Searching",

and "Pattern Matching".

The implementation of the faceted part of the classification system proved

somewhat challenging. Initially, a single frame, enunerating all of the coiponent

:37

BT ADT

Enumerated Abstract

Classification ________Data

BT~nfo Type

Explanatory

Text

Forms TSCA

Faceted Time and

Classification Space

Complexity

Display CompDisp

Component Component

Location Source

List Code

Figure 6. RSCRS Organization

38

forms without regard to the class of component actually being investigated, was

implemented. However, attempts to use that frame to locate the desired components

resulted in an unacceptable number of failed searches due to the fact that only certain

categories of forms are applicable to any given class of components. Any attempt to

locate a component by specifying an inappropriate form results in a failed search.

To remedy this problem, a KMS Action Language program was developed to

dvnamically create a frame containing items for only those forms applicable to the

component class being investigated by the RSCRS user. This approach resulted in

almost no failed searches. Ilowcver, because the KNIS Action Language is interpreted

rather than compiled, a short, but noticeable, delav occurs while the forms frame is

being created.

Au alternative approach would have been to create a separate forms frame for

each component class. This approach would have eliminated the delay due to creating

the frame dynamically. In retrospect, this approach would also have required fewer

frames to implement.

3.2 .2 Explanator7y Xt. Within the prototype representation system, an an-

notation link is associated with each term in the Booch classification. Selecting

an annotation link leads to an information frame containing text extracted from

(Booch, 1987) which defines the term an(provides related information. Within an

information frame, references to other terms are also provided annotation links to the

information frames for the other terms. Thus, a web of information is established.

Figure 7 provides a simple example of a hypothetical information web.

Navigation through the web is very simple. It is usually quite easy to backtrack

to a previously visited frame because KMS retains the sequence of frame traversals.

All of these information frames are contained in a frameset named BTInfo.

39

BT~nfo ADTIBTInfol

________.@Parent @More .@Parent

B2TSCA1 BTInfo2

.@Infoo

.Itemn B .@Info

Figure 7. Information Web Example

40

3.2.3 Abstract Data Types. The first information frame for each class of struc-

ture components contains a link to an abstract data type description of the compo-

nent class. All of the ADT descriptions for the structure components are contained

in a frameset named ADT. The tool component classes do not have abstract data

type descriptions associated with them as they are not objects in the strict sense.

3.2.4 Time and Space Complexity. The first information frame for each class

of structure components also contains a link to a table presenting the results of an

analysis of the time and space complexity of the component operations. All of the

time and space complexity analysis tables are contained in a frameset named TSCA.

For the tool components, the time and space complexity information is integrated

into the text of the components' information frames consistent with the approach in

(Booch, 1987). The time and space complexity information for the tool components

could have been put into separate tables to provide consistency in representation

throughout the system.

3.2.5 Component Locator. Booch's naming taxonomy is the basis for a prim-

itive component locating capability within RSCRS. The source code for each Booch

component is contained in two separate files, having rather cryptic UNIX file names.

A set of index files - one file per component class - was created which associates

the actual component name with its UNIX file name. The selected component class

and forms are used by a KMS Action Language program to generate a UNIX awk

program which examines the appropriate index file to locate the file name of the

desired component(s). After building the awk program file, the IKMS Action Lan-

guage program issues ("shells") the awk program to the operating system to be

run. Upon completion of the awk program, the KMS Action Language program

continues, building a frameset, named Display, which contains the component name,

specification file name, and body file name for each selected component.

41

Like KMS Action Language programs, awk programs are interpreted not com-

piled. Thus, the combination of the action language program, the shell command,

and the awk program rebult in an sometimes uncomfortable delay from the time the

user selects the "Locate Component(s)" item on the forms frame until the results

are displayed. The desire to reduce this delay was the factor which drove the use of

several index files instead of a single index file. Breaking the single index file into

smaller index files resulted in a much smaller search space to be examined by the

awk program.

Table 3 presents the response times (rounded to the nearest second) observed

between selection of the "Locate Component(s)" item on the Forms frame and the

subsequent display of the first Display frame. The response times in the table are

those observed, during a period of typical system load, for a sample of ten obser-

vations for randomly selected components. The sample mean response time for the

Locate function is 10.1 seconds with a sample standard deviation of 1.287 seconds.

Component Name Response Time (Seconds)
S tack _I ul tipleUnbounded 20 anagedNoniterator 12
S trin gGuardedUnbounded-Unmanagedterator 11

StringGuarded-Bounded-ManagedA :rator 9
QueueNonpriori tyNonbalking.SequentialUnboundedManagedlterator 11

Deque-Nonpriority-Ba~ng-VMultipleUnbounded-UnmanagedIterator I 1
Map-Simple-NoncachedGuardedUnbounded-Unmanaged.-Nonit erat or 11

Map.SimpleCached-M ultipleBounded-Managed.Noniterator 9
Bag-Simple..SequentiaL.UnboundedUnmanagedNoniterator 10

Bag-Simple-Sequential.Bounded.Managed-Noniterator 8
Output-Filter 9

Table 3. Typical "Locate Component(s)" Response Times

3.2.6 Browsing. The component classification, definition, design informa-

tion, abstract data type description, and time and space behavior provide much

42

of the information necessary to determine the suitability of a component for reuse in

a particular application. However, a complete understanding of the component can

only be achieved by also inspecting the actual source code. Thus, upon locating a

candidate component, the RSCRS user is given the opportunity to browse the source

code for the specification and/or body of the component. This capability is espe-

cially important when the selected component does not appear to completely satisfy

the user's requirements. Browsing can provide the knowledgeable user a quick way

to identify the scope of possible changes required to adapt the component to the

user's needs.

As shown in Table 4 and Figure 8, using a set of ten randomly selected com-

ponents, the larger the component source code file is, the longer RSCRS requires to

bring the file into a KMS frameset (named CompDisp) for browsing.

80 I

00 0042383-X+1 .1752-
r0 ~ e evat times'-----

4 0 - . .-- t r i v i --- e s -- --, " -

6 0 i -- --.. ; 2 i..... ...
U 50 - - --

00

400

30

10

0 I I | p

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
File Size (characters)

Figure 8. Component Retrieval Time vs. Component Size

43

For the very small component specification files this delay is not at all unac-

ceptable, but the delay can be quite annoying when a large file is retrieved. Again,

this is primarily a result of the fact that the KMS Action Language is interpreted

rather than compiled.

Component Name If Component Size FRetrieval Time
(Characters)

(Seconds)

Stack..Muhi ple-U nbou nded.Managed -Noni tea.or (Spec) 1033 8
Stack-M ul ti ple-U nbou nded_-Managed._Nonite.ato (Body) 6249 26
String-Gu&rdedUnboundedUnm.nged.tera.or (Spec) 4687 15
String-Guarded.UnboundedU..mngedJ.teator (Body) 16525 71

String-Gurded -Bounded-Managed ter..or (Spec) 4698 16

String-GuardedBounded._Managed-terator (Body) 15012 62
Qu .ee. Non priority-Nonbal king-Sequential T nbou nded -Managed Jt.r.to (Spec) 1247 7
Qe..e.-Nonpriori ly-Nobalking-Sequential-Unbounded Managediterator (Body) 5283 27

DequeNon priority -Balki ngl ultiple-Unbounded_U n..anagedJterator (Spec) 1866 9
Deque.Non priority -B.lking-M ultipleU nbou nded_U .. nmaagedJterator (Body) 9327 46
M ap.Si mple.Nocached-Guarded_U n bounded-Unman aged .Nonite.ato (Spec) 1702 9
Map -Simple-Noncached-G u ded-U nbou nded_U .nmanaged-Nonit.era.o (Body) 7748 38

Map-Simple-Cached-iultiple-BoundedManagedNoniterator (Spec) 2002 11
Map.Si mpleCached.-Multiple_-Bounded.M anaged -Non i te.ato (Body) 10204 44
Bag-Sirmpie lequenti &.UnboundedU.. .managcd.-Noni teato (Spec) 2050 8

Bag-Simple.Sequenial-Unbounded-U .managed-Noniterator (Body) 12336 58
Bag.Simple-Seque.ial -Bounded -Managed -Non .erator (Spec) 2344 9

Bag-Simple-Sequential-Bounded -Managed-Noni .erato (Body) 11860 48
Output-Filter (Spec) 341 3
Outpu..Filter (Body) 631 5

Table 4. Typical Component Retrieval Times

3.3 Summary

The RSCRS consolidates a large amount of diverse information about the com-

ponent collection in a system which enables the non-linear acquisition of the infor-

mation. Unlike a book, which presents the same informatioi in a linear manner,

the hypcrmedia-based representation allows users to choose the path or paths they

44

desire to obtain the information without being concerned about losing their place

in a chain of cross-references. This non-linearity provides a synergistic effect which

is not easy to obtain when examining the same information presented in linear text

form.

4,5

IV. Summary, Conclusions, and Future Work

4.1 Summary

Many methods have been proposed to represent reusable software components.

The work on this thesis resulted in creation of a prototype representation system to

serve as a testbed for further research on the subject. The prototype system, the

Reusable Software Component Representation System (RSCRS), is a system which

presents component representations within the framework of a hypermedia system.

This system provides as a tool for the students and faculty at this institution to learn

about the component collection, as well as locate and retrieve desired components.

Hypermedia, with its capability to provide multiple views into software com-

ponents appears to offer much promise as a vehicle for representing reusable software

components.

4.2 Conclusions

Creating a hypermedia representation for software components is a very labor-

intensive, time-consuming effort. To represent the complete collection of 501 Booch

components required over 320 man-hours of effort, not including the time required

to become familiar with the KMS hypermedia system itself.

Booch's component naming taxonomy (see Section 3.1.3.1) is not very useful for

representing software components. It is inconsistent in its conventions. On the other

hand, the hybrid classification structure implied by the presentation in (Booch, 1987)

proved quite amenable to implementation within a hypermedia environment. The

hierarchical portion of the classification was implemented in a very straight-forward

fashion because each branch in the classification hierarchy naturally corresponds to

a link in the hypermedia web structure. The faceted portion of the classification was

46

not quite so straight-forward to implement due to the lack of structural relationships

between the facets.

KMS as an implementation vehicle does not provide some of the functionality

which would make the system truly useful, not only for component representation,

but for any type of knowledge representation. The fact that links between frames

are not automatically adjusted when a frame name or frameset name is changed

or deleted proved very inconvenient when developing the RSCRS. As development

progressed and the desire arose to split a frameset into two, all references to the old

frame names for the frames which were moved had to be manually changed.

Although the prototype RSCRS offers a convenient method for locating desired

Booch components, the delays while waiting for the locate and retrieval programs to

complete their tasks can be somewhat annoying. The slow execution time for KMS

Action Language programs is annoying, at best, and a disincentive to using the sys-

tem. The lesson to be learned here is to understand, before beginning development,

the demands which will be placed on the underlying hypermedia system and find a

system which can meet those demands before proceeding with development.

4.3 Recommendations for Future Work

Because the task of actually representing the components is so time-consuming,

an automated aid to component representation would help make a representation

system more practical, by making it less manpower-intensive to create and maintain.

The explanatory text for an item in the current version of RSCRS is presented

as a sequence of frames. The granularity of this information is too large. Having

less information on each frame would result in a larger number of frames, but would

permit more accurate cross referencing between information items.

Addition of a specialized query capability would be very useful to save the

user from having to traverse the information network to find a specific piece of

information. KMS does provide limited capability to search a frameset for a specified

47

term. However, what is really needed is a means for the user to formulate arbitrarily

complex queries and have the system locate the desired information. A desirable

feature of such a query engine would be the capability to handle synonymous terms.

A related feature which could be very useful useful would be to provide the

capability to directly specify the naming taxonomy of a desired component. Such a

feature would relieve the knowledgeable user from having to traverse the classification

tree and forms frames in order to retrieve a known component.

Extracting the time and space complexity information for the tool components

from the explanatory text frames and putting the information into separate tables

would make the representation of structure and tool components more uniform. A

similar argument could be made for the information concerning operations exported

by the components. Although the tool components are not objects in the strict sense,

many of them are crafted to export composite operations applicable to a particular

class of structures. Thus, tables similar to the abstract data type tables for the

structure components could be created for the tool components.

The current RSCRS suffers the practical limitation of permitting only a single

user at a time to work in the Forms, Locate, and Display framesets. Adding the

capability for multiple concurrent users is a firm requirement before the system could

be declared ready for use in a real software production environment. One change

which would contribute to permitting multiple users would be to create static frames

to contain the forms for each component class instead of dynamically creating a single

forms frame. This would also require fewer frames than the programs which generate

the current forms frame.

Instead of storing the source code as separate files, it is possible to store the

source code in KMS frames. This would eliminate the long delays the current system

exhibits when retrieving the source code for a component. Since the source code

would already be in frames, retrieval time would be virtually instantaneous. Using

this approach, a component would have to be copied from its INMS frames into a

48

regular file in order to be used in a development effort. KMS provides the required

operations to support such an approach and automating the process would not be

difficult. Changing to this approach would also eliminate one of the areas of potential

conflict in a multiple concurrent user scenario. However, this approach would mean

that the only access to the components would be through KMS (using either RSCRS

or the domain independent KMS operations.)

RSCRS provides a suitable platform for comparing representation methods.

Several of the implementation problems one could expect to encounter in adding

additional representations to RSCRS have already been encountered and solved in

the current system. The next logical step is to implement additional representation

methods within RSCRS and then to perform an empirical study comparing the

various representation methods. This type of comparative study has not yet been

published. Such a study would be a welcome contribution to the field of software

component representation.

49

Appendix A. Knowledge Management System Overview

The Knowledge Management System (KMS) by Knowledge Systems is a dis-

tributed hypermedia system for text and graphics. It runs on Sun and Apollo work-

stations. Most of the information in this appendix, and more, may be found in the

documentation provided with KMS (Getting Started with KMS, 1988; Introduction

to KAIS, 1988; KMS Reference Manual, 1988; KAS Action Language Manual, 1988).

KMS allows the user to organize knowledge in chunks called frames. Frames are

grouped together into framesets. A frameset will usually consist of frames containing

related information.

To enter KMS on a Sun workstation, the user types krns at the system prompt

in a Sunview window. KMS will enlarge the Sunview window to occupy almost the

full screen. This large Sunview window will contain three KMS windows: one small

window across the top and two windows below. The top window is for messages from

EMS and user input to KMS. Each of the lower windows displays a IKMS frame with

a standard set of command items across the bottom of the window. Initially, the left

KMS window displays the user's home frame and the right EMS window displays

the top level KMS information frame. The KMS information frames provide on-line

access to all of the KMS documentation.

Items on a frame may be linked to other frames (not necessarily in the same

frameset). The frames and their links thus form an information network. KMS

provides a set of domain-independent operations for navigating through the network

of frames and manipulating items, frames, and framesets. These operations include

creating, clearing, and deleting frames; adding, modifying, and moving items on a

frame; establishing and removing links between frames; and navigating through the

network.

50

KMS remembers the links which have been traversed and provides a mecha-

nism (the Back command item) for revisiting frames in the reverse order from that

originally viewed. Occasionally, the user may want to go directly to a particular

frame that is not linked to the current frame. To do this, the user may click on

the Goto command item at the bottom of the frame and then type the name of the

desired frame.

Because the network of hypertext frames may be arbitrarily complex, an inex-

perienced KMS user might worry about getting lost or disoriented. This is not nearly

the problem it may initially appear to be as EIMS provides a number of ways to get

back to familiar territory in addition to the Back and Goto command items. The

Home command item returns the user to the home frame. Additionally, the creator

of a frame will often place an OParent item in the lower right corner of the frame.

Clicking on this item displays the logical parent frame (often the same frame that

the Back command item leads to).

Each item in a frame has attributes associated with it. Two important at-

tributes are Link and Actior The Link attribute designates the frame to display

when the item is selected. The existence of a link for an item is indicated by a o

preceding the item. The Action attribute designates a sequence of actions to be

performed when the item is selected. The existence of an action for an item is indi-

cated by a 9 preceding the item. IKMS includes a general-purpose, block-structured

programming language, the KMS Action Language, which gives access to all of the

functions provided by the system. The tMS Action Language allows the author

or user of an information web to automate sequences of actions. The EMS Action

Language is somewhat primitive in terms of the control constructs it provides. For

example, a single iteration construct (Repeat) is provided. There are no For, While,

or Until constructs.

Another example of the primitive nature of the KNMS Action language can be

found in its conditional constructs. There are no If-Then-Else or Case constructs

51

available, only an If. Thus, to perform an If-Then-Else requires two If statements;

the first to test for the condition, the second to test for the complement of the

condition. Additionally, because there are no expressions in the language, only a

single condition may be tested at a time. That is, compound conditions must be

decomposed into a sequence of several If statements.

Except for a sequence of items in a frame, all transfers of control are represented

by a text item linking to another frame. For example, to iterate a sequence of KMS

Action Language statements, they must be placed in a separate frame. At the

point in the calling sequence of actions where the loop is to be executed, an item

containing the Repeat statement must be linked to the frame to be iterated. The

logic to determine when the loop is complete must be placed at the appropriate

point in the sequence of iterated actions. An Exit statement placed at this location

terminates the loop and returns control to the calling frame. One benefit to this

approach is that both programs and users use the same mechanism to access the

referenced code.

In summary, KMS provides the ability to create arbitrarily complex databases

of hypermedia frames. It provides operati ns to manipulate the frames. It also pro-

vides the capability to automate sequences of events via the KMS Action Language.

Sample KMS frames from RSCRS are pictured in Appendix B.

Appendix B. Sample Frames From RSCRS

This appendix presents several sample frames from RSCRS. The first sequence

of frames, Figures 9 through 11, traverses one branch of the classification tree. Note

that each term on each of these frames contains a o CInfo item which the user may

select to obtain further information about the chosen term. Also, note the additional

o Q items in Figure 11 which cross-reference to related information frames.

53

Reusable Software Component Representation System (RSCRS)

The text for the explanatory annotation items (indicated by @Info) is taken
directly from the 1987 book, Software Components With Ada written by
Grady Booch and published by The Benjamin/Cummings Publishing
Company, Inc., at Menlo Park, California. Page references to the book are
given in parentheses following the explanatory item.

Reusable Software Components - @Info

" Structures o @Info

" Tools . @Ifo

Figure 9. Classification Tree - Top Level Frame

54

Reusable Software Components

Structures o@Info

"Monolithic *@Info

" Polylithic o @Info

-@Parent

Figure 10. Classification Tree -Second Level Frame

5.5

Structures

Polylithic o@Info @Utilities @Searching

* Usts . @Info

"*Trees o @Info

* Graphs o @Idlo

S@Parent

Figure 11. Classification Tree - Leaf Level Frame

56

The next frame, Figure 12, shows a sample explanatory text frame obtained

by the user's selection of a o ©Info item. This is followed by an abstract data type

frame, Figure 13, and a time and space complexity table, Figure 14. These frames

are obtained by selecting the appropriate items from the explanatory text frame.

57

Lists
" Abstract Data Type

" Time and Space Complexity Analysis

A list is a sequence of zero or more items in which items can be added and
removed from any position such that a strict linear ordering is maintained.
The type of the item is immaterial to the behavior of the list. We designate
the ordering of items in a list by linking one item to the next.

- @Link Info

If a list contains zero items, we consider it to be null. If a list is not null,
we call the first item the head of the list. The (possibly zero-length)
sequence of items following the head is called the tail of the list. Since the
tail itself is a sequence of items, the tail of a list is also a list. Because a list
may contain subsequences that are themselves lists, we consider a list to be
a polylithic component.

@Polylithic Info

We may denote a list of length n as:

il, i2, i3 . in

The head of this list is the item i1 and the tail is the list whose head is the
item i2 . Furthermore, since there exists a linear ordering of each item ii,
we note that ii precedes ii+1.

(pp. 71-72)

- @Parent

Figure 12. Explanatory Text Frame

58

List Abstract Data Type

DEFINITION A sequence of zero or more items

VALUES An ordered collection of items

CONSTANTS Null_List

Constructors Selectors Iterator Exceptions

Share Is-Shared Overflow

Copy Is-Equal ListIsNuU

OPERA'IONS Clear Length-Of NotAtHead

Construct IsNull

Set-Head Head-Of

SwapTail TailOf

PredecessorOf

Single/Double
FORMS

Unbounded/Bounded
(8)

Unmanaged/Managed/Controlled

(p. 7 8)

@Parent

Figure 13. Abstract.)ata TvIyc Framei

59).

List Time and Space Complexity Analysis

DIMENSION VALUE ALTERNATE VALUE

5(n) 0(n) 0(TheSize) for bounded forms

T(n) Share 001)

copy 0(n)

Clear 0(1) 0(n) for managed and
co-vo11ed forms

Construct 0(1)

SetHead 0(1)

SwapTail 0(l)

Is-Shared 0(1)

Is-Equal 0(Min(m,n)) 0(l) for bounded forms

Length-Of 0(n)

Is-Null 0(1)

HeadOf 001)

Tailof 001)

Predecessor_Of 0(l)

(p. 102)

@Parent

Figure 14. 'T'ine Arid Space Complexity Analysis Franie

Figure 15 shows a sample forms selection frame obtained by selecting one of

the leaf items in the classification tree. Figure 16 shows the same frame after the

forms selections have been made (indicated by bold face type).

61

Forms of List Components

*@Info

Selected forms will be indicated in Bold face.
To select/deselect a form, click on the form item.
Note: A maximum of one form may be selected from each category.

Space Garbage Collection
* @Info @Ino

" Bounded - Managed
" Unbounded , Unmanaged

- Controlled

Link
* @Info

* Single
* Double

* Locate Component(s)

o @Parent

Figure 15. Forms Frame

62

Forms of List Components

@Info

Selected forms will be indicated in Bold face.
To select/deselect a form, click on the form item.
Note: A maximum of one form may be selected from each category.

Space Garbage Collection
. @Info • @Info

-Bounded • Managed
. Unbounded - Unmanaged

. Controlled

Link
* @lnfo

* Single
* Double

* Locate Component(s)

o @Parent

Figure 16. Forms Frame With Forms Selected

63

Figure 17 shows the selected component location information. This frame is

displayed when the user selects the * Locate Component (s) item on the forms frame.

Figure 18 shows the frame displayed when the user selects the * Brouse Spec File

item on the component location frame.

64

Selected Components and Locations
UstSingleBounded-.Managed

" Browse Spec file: components/booch/VLISTSBM.a
" Browse Body file: componentslbooch/BLISTSBM.a

Located 1 component(s) matching request.

@Parent

Figuire 17. C~omponecnt Location Franiv

6;5

cotnponentsitooch/VLISTSMa
genenic

type Item is private;
TheSize : in Positive;

package List.SingleBounded-Managed is

type List is private;

NuJ.LList: constant List;

procedure Copy (Fromj'beList: in List;
To_TheList : in out List);

procedure Clear (Ile-List : in out List);
procedure Construct (TheItem : in Item;

AndTheList : in out List);
procedure Set-Head (Of.The-List : in out List;

ToTheItem : in Item);
procedure Swap-Tail (OLThe-List : in out List;

AndTheList : in out List);

function Is-Equal (Left : in List;
Right :in List) return Boolean;

function Lengh-Of (The-List: in List) return Natural;
function Is-Null (The-List: in List) return Boolean;
function Head 0 f (The-List: in List) return Item;
function Tail-Of (ThbeList: in List) return List;

Overflow :exception;
List_IsNull :exception;

private
type List is

record
Thbe_Head : Natural: - 0;

end record;
NuillList: constant List :- List'(IbeHead ->0);

end LisLSingleBoundedManaged;I

@Parent

Figure 18. Browse Frame (contents from lBoocli, I 9S,7:S.5- Sb)

66

Figure 19 shows the attributes of the Lists item on the Polylithic Structures

selection frame. As explained in Appendix A, items preceded by a * symbol will

execute an action when they are selected. Notice the Action attribute executes the

CompForms9 frame, Figure 20.

67

Structures

Polylithic @Info @Utilities @Searching

......... :@Info

* Tres @nfo Family: Times
Trees @Info Face: Roman

Size: 16
Spacing. 2

*Graphs o @InO width: 0
Thickness: I
Action: Set SS.Class List
Action: Set SS.File List
Action: Exec CompForms9 (List forms set up}

Figure 19. Item Attributes Example

68

The remaining figures, Figures 20 through 30 illustrate the use of the KMS Ac-

tion Language within RSCRS. These figures contain the frames which are processed

to generate the Forms frame applicable to List structures. Recall from Appendix A

that transfers of control are accomplished via links in the same way that frames

are traversed when viewing them. Notice that a link on a comment item (an item

enclosed in curly braces, { and J) effectively makes that item serve as a procedure

call. Also, the frame names which appear as comments are just that, comments. It

is the Link attribute of the item that determines which frame will be executed.

As a convenience to anyone trying to read the KMS Action Language frames in

RSCRS, all linked items are commented with the name of the frame being linked to.

This saves having to extract the attribute information simply to read the program.

69

(List forms set up}{ComnpForms9}

"{Begmn forms frame set up) {FormsSetupl}

"{Set up space) {SetForms3}

"{Set up garbage collection)>{SetForms;4}

{ Set up link) {SetForms I1I>

" {Finish forms frame setup> {FormsSetup3}

o@Parent

Figure 20. KMS Program Example

70

(Begin form frame set up) {FormsSetupl}

Messagel-n""

Messagel-n "lease wait -- creating forms frame"

CwrrentOpenFrame $FP.TaxonomyFrame

GetFrameName $FP.TaxonomyFrame $S.FrameNaxne

OpenFrame Forms 1 $FP.FonnsFrame False $B.OpenStatus

Set $B.CreateStatus True

Ifh~ot $B.OpenStatus CreateFrame Forms $FP.FormsFrame $B.CreateStatus

IfNot $B.CreateStatus MessageLn "Unable to create Forms frame"

lfNot $B.CreateStatus ExitAll

GetFrameName $FP.FormsFrame $S.FormsFrame

IfNotEqCase SS.FornisFrame Fornisl MessageLn "Frarms ane is not Formis -- Fix Fors frarnesct'

IfNotEqCase $S.FormsFrame Forms I Close Frame $FP.FormsFrame

Ifr~otEqCase $S.FonnsFrame Forms 1 ExitAll

ClearFrame $FP.FormsFrame

"{Create static text on forms frame) JFormsSetup2}

" {Set up coordinate variables) {CoordSetl})

F igure 21. KMS Program Example (Continued)

71

(Create static text on forms frame){FormsSetup2)

GetTitle $FP.FormsFrame $IP.Title

lfNotNull $IP.Title Removeftemnrornrame $FP.ForinsFrame $IP.Title

ConcatStr "Forms of " $S.Class " Components" $S.Title

CreateTitle $FP.FormnsFrame $S.Title $IP.Title

SetitemFace $IP.Tidle Bold

UpdateltemnRectangle $IP.Title

Createltemn $FP.FormnsFrame 36 54 $IP.Info "@Info"

SetltemLink $IP.Info BIno98

Createltemn $FP.Forn-sF-rne 72 90 SIP.Inst "Selected fornis will be indicated in Bold face."

Createltemn $FP.Fcr~msFrame 72 108 SIP.1=s2 'To selectldeselect a formn, click on the formt item."

Cmetetiem SFP.Fcmrltrame 72 126 SIP.tns3 "Noir A maximum of one form may be selcted from each category

0@Parent

Figure 22. 1KMS Program Example (Continued)

72

(Set up coordinate variables){CoordSetl)
{General forms)

Set $I.SequentialX 36
Set $I.SequentialY 234

Set $I.GuardedX 36
Set $I.GuardedY 252

Set $1.ConcurrentX 36
Set $L.ConcurrentY 270

Set $I.MultipleX 36
Set $I.Multip]eY 288

Set $I.BoundedX 162
Set $I.BoundedY 234

Set $I.UnboundedX 162
Set $1.UnboundedY 252

Set $I.ManagedX 288
Set $I.ManagedY 234

Set $I.UrnanagedX 288
Set $J.UnmanagedY 252

Set $I.ControlledX 288
Set $I.ControlledY 270

Set $I.IteratorX 432
Set $I.IteratorY 234

Set $I.NoniteratorX 432
Set $I.NoniteratorY 252

" {Set up coordinate vars for special monolithic forms) {CoordSet2)
(Set up coordinate vars for special polylithic fonns>{CoordSet3>

Figuire 23. K\NI S I'rogrilTi Ex anple (Corttiriiicr)

(3

(Set up coordinate vars; for special monolithic forms){CoordSet2)

Set $I.BalkingX 36
Set $I.BalkingY 414

Set $I.NonbalkingX 36
Set $I.NonbalkingY 432

Set $l.PriorityX 162
Set $1 PriorityY 414

Set $1.NonpriorityX 162
Set $I.NonpriorityY 432

Set $I.SinipleX 288
Set $1.SinipleY 414

Set $I.DiscreteX 288
Set $I.DiscreteY 432

Set $I.CachedX 432
Set $1.CachedY 414

Set $1.NoncachedX 432
Set $1.NoncachedY 432

- @Parent

Figure 24. K MS Programn Examiple (Continued)

74

{Set up coordinate vars for special polylithic forms}{CoordSet3}

Set $I.SingleX 162
Set $I.SingleY 594

Set $I.DoubleX 162
Set $I.DoubleY 612

Set $I.BinaryX 288
Set $I.BinaryY 594

Set $I.ArbitraryX 288
Set $1.ArbitraryY 612

Set $I.DirectedX 432
Set $I.DirectedY 594

Set $I.UndirectedX 432
Set $I.UndirectedY 612

o @Parent

Figure 25. KMS Program Example (Continued)

75

(Set up space}{Setforms3)

Createltern $FP.ForrnsFrarne 144 180 $IP.Form Space

Createltemn $FP.FormsFrarne 162 198 $IP.Formn "@Info"

SethemLink $IP.Form BTInfo 105

Createhter SFP.FomisFrame $I.BoundedX $L.BoundedY $rP.Forrn Bounded

Createhtem $FP.FormsFrame 0 0 $IIP.Actions 'Exec SelectS {Toggle Bounded)"

GetltemText $IP.Actions $TP.Action

SetltemAction $IP.Form $TP.Action

RemoveltemFromFrame $FP.For-tnsFrame $L.Actions

Createltem SFP.FormsFrame S1.UnboundedX SI UnboundedY SIP.Form Unbounded

Createltem $FP.FormsFrame 0 0 $IP.Actions 'Exec Select6 {Toggle Unbounded)"

GetltemText $IP.Actions $TP.Action

SetitemAction $IP.Formn $TP.Action

RemoveltemnFromFrame $FP.FormsFrame $IP.Actions

FI-gure- 26. IKMS Program Lxani)]cl((Contimued)

(6

(Set up garbage collection){Setfonrns4}

-{Set up managed/unmanaged garbage collection) {SetForni.5}

Createlten $FP.FonnsFranae $1.ControlledX $I.ControlledY $IP.Form Controlled

Createhtem $FP.FormsFranie 0 0 $IP.Actions 'Exec Select9 {Toggle Controlled)"

GetlternText $IP.Actions $TP.Action

SetltemnAction $IP.Form $TP.Action

RemnovelternFrornFraxne $FP.FormsFramne $IP.Actions

Figure 27. KMS Program Example (Continue(])

77

(Set up nmnaged/unmanaged garbage collection){Setforms5}

Createftem $FP.FormsFrame 270 180 $JP.Form "Garbage Collection"

CreateItem $FPRFormsFrame 288 198 $IP.Form "@Info"

SetltemLink $EP.Form BT~nfo 107

Createltem $FP.FormsFrame $I.ManagedX $I.ManagedY $IP.Form Managed

Createltem $FP.FormsFrame 0 0 $IP.Actions "Exec Select7 {Toggle Managed)"

GetlternText $IP.Actions $TP.Actioj

SetltemAction $IP.Form $TP.Action

RemoveltemFromFraxne $FP.FormnsFranie $IP.Actions

Createltem $FP.FormsFrame $L.UnmanagedX $I.UnmanagedY SIP.Fonn Urnanaged

Createltem $FP.FormnsFrame 0 0 $IP.Actions "Exec Select8 {Toggle Unmanaged)'

GetltemText $IP.Actions $TP.Action

SetltemAction $IP.Form $TP.Action

RemoveltemFromFrame $FP.FormsFrame $EP.Actions

@Parent

Figure 28. KMS Program Example (Continued)

78

(Set up Iink}{Setforxnsll}

Createltem SFP.FormsFrame 144 540 $IP.Formn Link

Createltem $FP.FormsFraxne 162 558 $IP.Form "@Info"

SethemLink $IP.Forrn BThIfoI2O

Createltem $FP.FonnsFrame $I.SingleX $I.SingleY $I.Forrn Single

Createltemn $FP.ForrnsFranie 0 0 $IP.Actions 'Exec Select20 (Toggle Single)"

GetltemnText $IP.Actions $TP.Action

SetltemAction $IP.Form $TP.Action

RemoveltemFromnFramne $FP.FormsFrame $IP.Actions

Createftem $FP.FormsFrame $I.DoubleX $I.DoubleY $JiP.Form Double

Createltemn $FP.FormsFranie 0(0$fP.AcUons "Exec Select2l (Toggle Double"

Getiteinext $IP.Actions $TP.Action

SetltemAction $IP.Form $TP.Action

Removeltem~romFrame $FP.FormsFrarne $IP.Actions

@Parent

Figure '29. KMS Program Example (Coiitlijued)

79

(Finish forms frame set upH(FormsSetup3}

Createltemn $FP.FornisFrarne 234 720 $IP.Form "Locate Component(s)"

ConcatStr "Set $S.ListFile " $S.File $S.Set

Createhtem $FP.FormsFrarne 0 0 $IP.Actions $S.Set

ConcatSir "Set 'PS.Class " $S.Class SS.Set

AddltemText $IP-Actions $S.Set

AddltemText $IP.Actions "Exec Locate I"

GetltemText $IP.Actions $TP.Action

SefitemAction $IP.Form $TP.Action

RemoveltemFromFrame $FP.FormsFrane $IP.Actions

Createltemn $FP.FormsFrame 488 767 $IP.Form "@Parent"

Setitem.Link $IP.Form $S.FrameName

SetltemSize $IP.Formn 14

UpdateltemRectangle $IP.Forni

CloseFramne $FP.FormsFrame

ClearMessage

Goto Forms I

Figure 30. KMS Program Example (Continued)

80

Bibliography

Anderson, Chris, Project Manager. "Software Reuse: A CAMP Project Update"
Paper presented at the AIAA Missile Science Conference, Monterey, Califor-
nia, 29 November - 1 December 1988.

Arnold, Susan P. and Stephen L. Stepoway. "The Reuse System: Cataloguing and
Retrieval of Reusable Software," COMPCON Spring 87 digest of papers. 376-
379. Washington, D.C.: Computer Society Press of the IEEE, 1987.

Biggerstaff, Ted J. Hypermedia as a Tool to Aid Large Scale Reuse. MCC Technical
Report Number STP-202-87. Austin, Texas: Microelectronics and Computer
Technology Corporation, July 1987.

Biggerstaff, Ted J. and Alan J. Perlis. "Foreword," IEEE Transactions on Software
Engineering, SE-1O: 474-477 (September 1984).

Biggerstaff, Ted and Charles Richter. "Reusability Framework, Assessment, and
Directions " IEEE Software, 4:41-49 (March 1987).

Booch, Grady. Software Components With Ada. Menlo Park, California: Ben-
jamin/Cummings Publishing Company, Inc., 1987.

Boyle, James M. and Monagur N. Muralidharan. "Program Reusability through
Program Transformation," IEEE Transactions on Software Engineering, SE-
10: 574-588 (September 1984).

Buchanan, B. Theory of Library Classification. New York: K. G. Saur Publishing,
Inc., 1979.

Burton, Bruce A. and others. "The Reusable Software Library," IEEE Software:
25-33 (July 1987).

Cardow, Capt James E. "Issues on Software Reuse," Proceedings of The IEEE 1989
National Aerospace and Electronics Conference NAECON 1989, 2. 564-570.
New York: IEEE Press, 1989.

Chan, L. M. Cataloging and Classification. New York: McGraw-Hill Book Company,
1981.

Cheatham, Thomas E., Jr. "Reusability Through Program Transformations," IEEE
Transactions on Software Engineering, SE-1O: 589-594 (September 1984).

81

Devanbu, Premkumar and others. "A Knowledge-Based Software Information Sys-
tem," Eleventh International Joint Conference on Artificial Intelligence Pro-
ceedings, 1. 110-115. San Mateo, California: Morgan Kaufmann Publishers,
Inc., 1989.

Frakes, W. B. and P. B. Gandel. "Representation Methods for Software Reuse,"
TRI-Ada '89 Conference Proceedings. 302-314. New York: Association for
Computing Machinery, 1989.

Frakes, W. B. and B. A. Nejmeh. "Software Reuse Through Information Retrieval,"
COMPCON Spring 87 digest of papers. 380-384. Washington, D.C.: Com-
puter Society Press of the IEEE, 1987.

Freeman, Peter. "A Conceptual Analysis of the Draco Approach to Construct-
ing Software Systems," IEEE Transactions on Software Engineering, SE-13:
830-850 (July 1987).

Garey, Michael R. and David S. Johnson. Computers and Intractability. San Fran-
cisco: W. H1. Freeman and Company, 1979.

Getting Started with KMS. Version 11. Knowledge Systems, Murrysville, Pennsyl-
vania, August 1988.

Ghisio, 0. and others. "An Extended Approach to Reusability," COMPCON Spring
87 digest of papers. 385-389. Washington, D.C.: Computer Society Press of
the IEEE, 1987.

Gibbs, Simon and others. "Muse: A Multimedia Filing System," IEEE Software,
4: 4-15 (March 1987).

Horowitz, Ellis and John B. Munson. "An Expansive View of Reusable Software,"
IEEE Transactions on Software Engineering, SE-1O: 477-487 (September
1984).

Introduction to KMS. Version 17. Knowledge Systems, Murrysville, Pennsylvania,
August 1988.

Jones, T. Capers. "Reusability in Programming: A Survey of the State of the Art,"
IEEE Transactions on Software Engineering, SE-IO: 488-494 (September
1984).

KMS Action Language Manual. Version 8. Knowledge Systems, Murrysville, Penn-
sylvania, November 1988.

KMS Reference Manual. Version 7. Knowledge Systems, Murrysville, Pennsylvania,
October 1988.

82

Knapper, Robert J. "An Introduction for the TRI-Ada Session on Reusabilicy,"
TRI-Ada '88 Conference Proceedings. 232-236. New York: Association for
Computing Machinery, 1988.

Lanergan, Robert G. and Charles A. Grasso. "Software Engineering with Reusable
Designs and Code," IEEE Transactions on Software Engineering, SE-ID:
498-501 (September 1984).

Latour, Larry and Elizabeth Johnson. "Seer: A Graphical Retrieval System for
Reusable Ada Software Modules," The Third International IEEE Conference
on Ada Applications and Environments proceedings. 105-113. Washington,
D.C.: Computer Society Press, 1988.

Litvintchouk, Steven D. and Allen S. Matsumoto. "Design of Ada Systems Yielding
Reusable Components: An Approach using Structured Algebraic Specifica-
tion," IEEE Transactions on Software Engineering, SE-ID: 544-551 (Septem-
ber 1984).

Margono, Johan and Edward V. Berard. "A Modified Booch's Taxonomy for Ada
Generic Data-Structure Components and Their Implementation," Ada Com-
ponents: Libraries and Tools (Proceedings of the Ada-Europe International
Conference Stockholm 26-28 May 87). 61-74. New York: Cambridge Univer-
sity Press, 1987.

Meyer, Bertrand. "Reusability: The Case for Object-Oriented Design," IEEE Soft-
ware, 4: 50-64 (March 1987).

Neighbors, James M. "The Draco Approach to Constructing Software from Reusable
Components," IEEE Transactions on Software Engineering, SE-i: 564-574
(September 1984).

Perry, J. M. Perspective on Software Reuse. Technical Report CMU/SEI-88-TR-22.
Pittsburgh: Software Engineering Institute, September 1988 (AD-A204399).

Prieto-Diaz, Rubdn. A Software Classification Scheme. PhD dissertation. University
of California, Irvine, California, 1985.

Prieto-Diaz, Ruben and Peter Freeman. "Classifying Software for Reusability,"
IEEE Software, 4: 6-16 (Januar, 1987).

Rosales, S. Roody and Prem K. Mehrotra. "MES: An Expert System for Reusing
Models of Transmission Equipment," Proceedings, The Fourth Conference on
Artificial Intelligence Applications. 109-113. Washington, D.C.: Computer
Society Press of the IEEE, 1988.

83

Ruble, Daniel Lee. A Classification Methodology and Retrieval Model to Sup-
port Software Reuse. PhD Dissertation. Texas A&M University, 1987 (AD-
A196541).

Sommerville, Ian. Software Engineering (Third Edition). New York: Addison-
Wesley Publishing Company, 1989.

Standish, T. A. "An Essay on Software Reuse," IEEE Transactions on Software
Engineering, SE-10: 496 (September 1984).

Tracz, Will. "Software Reuse: Motivators and Inhibitors," COMPCON Spring 87
digest of papers. 358-363. Washington, D.C.: Computer Society Press of the
IEEE, 1987.

Vickery, B. C. Faceted Classification: A Guide to Construction and Use of Special

Schemes. London: Aslib, 1960.

Wald, Elizabeth E. "Software Engineering -'ith Reusable Parts," COMPCON
Spring 87 digest of papers. 353-356. Washington, D.C.: Computer Society
Press of the IEEE, 1987.

Wegner, Peter. "Varieties of Reusability," Proceedings, ITT Workshop on Reusabil-
ity in Programming. 30-44. Stratford, Connecticut: ITT Programming, 1983.

Wegner, Peter. "Capital-inten ",e Technology and Reusability," IEEE Software, 1.
7-45 (July 1984).

Williams, William F. Principles of Automated Information Retrieval. Elmhurst,

Illinois: 0. A. Business Publications, Inc., 1965.

Wood, Murray and Ian Sommerville. "An Information Retrieval System for Sottware
Components," Software Engineering Journal, 3: 198-207 (September 1988).

84

Vita

Captain Gary Gerard Worrall was born to Joseph and Theresa Worrall on 10

June, 1953 in Bethesda, Maryland. He graduated from First Colonial High School

in Virginia Beach, Virginia in June 1971. He received an A.A.S. degree in Data Pro-

cessing from the Community College of the Air Force in April 1981 and a B.S.C.S.

in Computer Science from the University of South Florida in April 1984. He married

Andrea Katharine in July 1982. They have two sons, Colin and Graham. Cap-

tain Worrall enlisted in the United States Air Force in September 1976 and received

technical training as a computer programmer at Keesler AFB, Mississippi. He then

served as a Special Activity Computer Programming Specialist at Headquarters Tac-

tical Air Command, Langley AFB, Virginia from January 1977 to August 1981 when

he was selected for the Airman's Education and Commissioning Program. He re-

ceived his commission as an officer in the United States Air Force in August 1984.

He then served as Space Shuttle Launch Processing System Station Manager at Van-

denberg AF3, California until June 1987. His next assignment was as a Computer

Research Scientist at the Air Force Acquisition Logistics Center, Wright-Patterson

AFB, Ohio. He pursued his M.S. in Computer Science at the Air Force Institute of

Technology from May 1989 to December 1990. He may be contacted at the Human

Resources Laboratory, Wright-Patterson AFB, Ohio 45433.

Permanent address: 1651 Gulf Blvd. #1-23
Clearwater, FL 34630

85

REPORT DOCUMENTATION PAGE omAprve

1AGENCY US2 ONLY (Leive blak 2. REPORT DATE 3.REPORT TYPE AND DATES COVERED
I December 1990 I Master's Thesis

T!TLE AND SUBTITLE 5. FUNDING NUMBERS

A IIYPERMEDIA IMPLEMENTATION FOR REUSABLE SOFTWARE
It COM'VPONENT REPRESENTATION

AUT 1-101(S)

Gary G. Worrall, Capt, USAF

7. P O~~NGORCANIZAT:ON INAMIE(S) AND ADDRESS(ES) 8 EFRIGOGNZTO
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCS/ENG/90D-16

S . SP 0,R; N IM N I TOR 1N G AGENCY NAMCIS) AND ADDRESS(ES) 10. SPONSORING/IMONITORING
AGENCY REPORT NUMBER

11. SUPP'LEMENTAR1Y NOTES

02j 05 UT1ON 'AVA!LAS!L;TY STATEMIENT 12b. D ISTRIBUTiON CODE

Approved for public release; distribution unlimited

~I
113 $YSTRACT (aiun2Ow~~

This study investigated software component representation methods. H-ypermedia was chosen as thle imple-
mentation method to represent a collection of reusable software components. The hypermedia implemeintation
organizes koldeabout the component collection into a web of small information chunks called frames.

The set of software components was represented using a hybrid classification scheme composed of enumnerated
and faceted parts. The enumerated part enables the user to progress along a path in a taxonomnic tree, narrowig

the scope of eligible components. Each leaf node in this tree denotes a class of components, members of which
are distinguished by their time and space characteristics. These characteristic-,, known as forms, are grotiped
into eleven facets, each comprised of two to four elements.
Links between frames establish a means of traversing the information net. some of these links allow the wser
to progress directly through the levels of thle classification structure. Other links lead from the clasificnfion
structure frames to frames containing explanatory text for thle terms used in I-le classificationi. A\dditional links
cross- reference related topics.
A simple: compoiienj lor utilizes information from the frame selections to identify, andl provide locating
infr oi r e desired components. A component source code browsing capability is provided.

14. KRJECT TERIMS 15. NUMBER OF VAGES

Software Engineering, Computer Programs, Ada P ramnming Language, Software 91-

Component Representation, llypermedia, 16. PRICE COUZ

11. SECURITY CLASSIFICATION 18. SECURITY CLASSICATION M~ SECURITY CLASSIPCATION M0 ULINTAF*. CVA NR~
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED I UNCLASSIFIED UNCLASSIFIED)P

