
(V)
Lfl

DTIC
CT D A Low-Cost Part-Task Flight Training System:

D An Application of a Head Mounted Display

THESIS

David Anthony Dahn
Captain, USAF

AFIT/GCE/ENG/90D-01

I)

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

911 3 059

AFIT/GCE/ENG/90D-01

D

A Low-Cost Part-Task Flight Training System:
An Application of a Head Mounted Display

THESIS

David Anthony Dahn
Captain, USAF

AFIT/GCE/ENG/90D-01

Approved for public release; distribution uplimited

AFIT/GCE/ENG/90D-01

A Low-Cost Part-Task Flight Training System:

An Application of a Head Mounted Display

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering ac ihl -'-

David Anthony Dahn, B.S.

Captain, USAF

' - i

December, 1990

Approved for public release; distribution unlimited

I ;" !l., : r.,. ,.,

Preface

Numerous people deserve thanks for their special contributions, aid, and en-

couragement that made this thesis a success.

First and foremost, a grand thanks to my wife - Carla, and children - Andy

and Chelsey, for their love, patience and encouragement.

I thank my sponsors, the AFHRL Operations Training Division and the AAMRL

Human Engineering Division. Without their funding and equipment loans, this re-

search could not have been attempted. Special thanks to MSgt Kashmere and Mr

Don Jones, the two individuals at Williams AFB that finally got my host computer

system shipped!

Many thanks to Major Phil Amburn, my thesis advisor. When I needed driv-

ing, he was always able to provide guidance. I also extend special mention of my

thesis readers, Maj David Umphress and Maj Marty Stytz, for providing corrections

and useful advice for improving the document.

Special thanks to Capt Ed Williams who willingly shared his expertise when-

ever needed, even if it interrupted his research work. Ed, you are one of the few true

technical gurus. Ed helped resolve the hardware problems, installed UNIX on the

system, handled all system administrator tasks throughout the development, and

wrote the UNIX joystick driver and supporting library. His efforts allowed me to

focus on the application layer of the software developed under this thesis.

Finally, I want to thank Mr. Charlie Powers, Capt Dean Campbell, and Ms

Pam Young who took care of my urgent equipment and purchase requests. I also

extend thanks to AFIT/SC for arranging to fix the equipment that was broken in

transit from Williams AFB.

David Anthony Dahn

ii

Table of Contents

Page

Preface......

Table of Contents..........

List of Figures. vii

List of Tables Vill

Abstract ix

I. Introduction 1-1

1.1 Key Terms 1-1

1.2 Background 1-3

1.3 Thesis Statement 1-5

1.4 Scope 1-5

1.5 Assumptions. 1-7

1.6 General Approach. 1-7

1.7 Summary. 1-8

1.8 Thesis Overview 1-9

11. Literature Review. 2-1

2.1 Purposes of Flight Simulation 2-1

2.1.1 Pilot Training 2-1

2. 1.2 'RIesearch & Deveiopnt 2-4

2.2 Survey of Head Mounted Displays. 2-5

2.2.1 HMD Categories. 2-6

iii

Page

2.2.2 Related Work 2-7

2.3 Equipment Architecture 2-9

2.3.1 Texas Instruments 34010 2-10

2.3.2 Texas Instruments 34020 2-10

2.3.3 INMOS T 414 transputers 2-11

2.3.4 Intel 80860. 2-12

2.4 Summary 2-13

111. System Requirements. 3-1

3.1 General User Requirements 3-2

3.2 Specific Requirements 3-4

3.2.1 User Interface 3-4

3.2.2 Software 3-5

3.2.3 Hardware. 3-5

3.3 Summary. 3-6

IV. System Design and Implementation 4-1

4.1 Hardware. 4-1

4.1.1 Graphics Add-In Card Selection 4-1

4.1.2 Final Graphics Board Selection 4-7

4.2 Software 4-8

4.2.1 PHIGS PLUS Reference Model 4-9

4.3 Application Software Approach 4-13

4.4 Software Development Methodology. 4-17

4.5 Software Design Notes. 4-19

4.6 Summary 4-21

iv

Page

V. System Implementation 5-1

5.1 Project Goals 5-1

5.2 Capabilities Implemented 5-1

5.3 Capability Assessment 5-2

5.3.1 Final Simulator Test Results 5-3

5.4 Hardware Integration 5-8

5.5 Assessment 5-8

5.6 Conclusions 5-12

5.7 Recommendations 5-13

5.8 Summary 5-14

Appendix A. Dog's Object Description File Format A-1

A.1 General Format Description A-1

A.2 Detailed Format Description A-1

A.2.1 Part I: Branch Nodes A-1

A.2.2 Part II: Transformation List A-3

A.2.3 Part III: Geometry List A-4

Appendix B. Joystick Design and Functions Library B-1

B.1 Joystick Subsystem Description B-1

B.2 Joystick Device Driver B-2

B.3 Joystick Routines B-3

B.4 Joystick Functions Library B-4

B.5 Game Controller Driver Source Code B-6

Appendix C. Detailed Design Notes C-1

C.1 Graphical Reference Model Parameters C-1

C.2 Drawing Flight Geometry Objects C-1

C.2.1 Viewing Reference Model Emulation C-5

v

Page

C.3 Device Queueing- 7

C.4 Communications Software. C-9

Appendix D. Thesis System Integration D-1

D.1 Integration Problems D-2

Appendix E. Flight-PC Operating Instructions. E-1

E.1 Background. E-1

E.2 Command Line Options E-2

E.3 Operating Instructions. E-4

E.4 Notes E-7

Bibliography BIB-i

Vita. VITA-i

vi

List of Figures

Figure Page

2.1. Intel i860 Block Diagram 2-12

3.1. AFIT HMD II Design 3-3

4.1. PC Reality Processor Block Diagram 4-6

4.2. PHIGS Graphics Pipeline 4-10

4.3. Viewer Oriented Perspective View 4-12

5.1. Frame Rate VS Polygon Count. 5-5

A. 1. Plane State Bits A-2

B. 1. Joystick Control Register Bits. B-2

B.2. Raw Joystick Range. B-5

B.3. User Defined Joystick Range B-5

C. 1. View Parameters. C-7

E. 1. PC Cockpit Display. E-6

vii

List of Tables

Table Page

5.1. Object Polygon Count. 5-4

5.2. Total Polygons in Different Views. 5-5

5.3. Performance Test Results. 5-6

A. .1. Transformation Identification A-4

A.2. Geometry Section Identification A-4

A.3. Material Identification. A-5

A.4. Vertex Information Lines. A-6

E. 1. Command Line Options E-3

E.2. Keyboard and VFS Interface E-5

viii

AFIT/GCE/ENG/90D-01

Abstract

Computer Image Generators (CIG) driving high performance flight simulators

used in training pilots are expensive. This project investigated whether a small class

of these simulators that focus on task-specific training could be hosted using much

cheaper simulator systems. Effective training systems provide a wide visual field-

of-view through the use of tesselated CRTs or dome simulator projectors. These

display systems require graphics processing support from expensive CIGs with mul-

tiple graphics channels.

A promisir.g technology that could help reduce the costs of these flight sim-

ulators are head-mounted display (HMD) systems. Simple virtual world interfaces

using HMD technology rcquire only one graphics channel. With a single graphics

channel requirement, potential exists to use low cost CIGs.

To investigate the feasibility of using HMDs and CIGs in a low cost eart-task

trainer, we created a prototype system. Our approach was to build a virtual world

interface using a HMD to an existing flight simulator application. This allowed

a CIG with only one graphics channel to drive the display. To investigate which

class of computing platform was suitable for use as the CIG, a cooperative thesis

effort was launched to host the simulator on a mini-computer and micro-computer

platform. The appropriate CIG could then be determined through demonstration

and comparison between the systems.

We implemented the virtual world interface for the Silicon Graphics' Flight

program on an 80386/80387 PC-AT enhanced with a high performance graphics

engine and a Silicon Graphics IRIS 4D/85 GT. This project focused on the PC-AT

with a Real World Graphics Ltd. PC Reality board, containing two Intel i860 RISC

processors, as the graphics engine.

A software emulation library was built to transform the Silicon Graphics graph-

ix

ical reference model and function calls to the PC Reality PHIGS PLUS graphical

reference model and function calls. This emulation allowed a nearly seamless inter-

face to support porting the application program from the Silicon Graphics machine

to the PC.

A virtual world interface using the Air Force Institute of Technology's head-

mounted display II was implemented. Joysticks provided a throttle and stick inter-

face decoupling the user from the keyboard. This allowed a user to don the helmet

and fly the flight simulator as if he were the pilot of the aircraft simulator.

One focus was to determine whether the PC environment was mature enough

to support this approach. The specific question we tried to answer was whether the

flight simulator could be programmed on the PC using a classic workstation approach

(written in a high order language using a standard three dimensional graphical ref-

erence model). The measure of success was whether the simulator could provide

a frame update rate of 15 frames per second or better for Z-buffered, flat-shaded

polygons.

The results were short of the requirement. Our conclusion is that the price

performance ratio in terms of frames per second was better for the higher priced

mini-computer approach than the super-charged PC approach.

x

A Low-Cost Part-Task Flight Training System:

An Application of a Head Mounted Display

L Introduction

This research investigated using a head-mounted display (HMD) system as a

viewing device for a low-cost, part-task (or task specific) flight training system. The

head-mounted display provided a 3600 (full-vision) color view that could be used as

part of a low fidelity flight simulator. The user slips into an enclosed display system

that places him (or her) into a virtual world cockpit of a high performance fighter

aircraft. The 'pilot' flies the aircraft using joysticks connected as a throttle and stick.

One goal of this investigation was to determine whether a low-cost, single-

channel computer image generator (CIG) and HMD could provide a suitable full-

vision, part-task flight trainer. Another goal was to determine which class of com-

puter (mini or micro) could support the graphical output requirements.

This project focused on the micro-computer approach. The objective was to

determine whether a personal computer (PC) with a state-of-art-graphics engine,

was powerful enough to use as the single-channel CIG. Another objective was to

determine whether a workstaion approach1 to graphical programming could be used

on a current state-of-the-art PC platform.

1. 1 Key Terms

Part- Task: Flying skills can be broken down into parts called

tasks. For example, landing an aircraft, take-off, and formation flying all require

a set of loosely related tasks that are required flying skills. These tasks can be

1Software written in a high order language using a classic 3D graphics reference model.

1-1

further broken down into subcomponents called part-tasks. Part-tasks are usually

those tasks that need to be practiced until they become a reflex reaction for the pilot.

Good examplcs of part-task skills are aerial gunnery and a pilot's evasive maneuver

response to a radar warning receiver.

Virtual World: The virtual world is a three dimensional computer

graphics depiction of the world on a two dimensional screen. The user enters the

virtual world by entering a display device that encloses the user, totally replacing

everything he normally sees in the real world by computer generated imagery (CGI).

Full-dome simulators and head-mounted displays are two examples of virtual world

environments. The virtual world experience was expanded in recent years to include

other man-machine interfaces to meet the challenge issued by Ivan Sutherland in

1965 when describing what was meant by a 'virtual world'. "The screen is a window

through which one sees a virtual world. The challenge is to make that world look real,

act real, sound real, feel real"(43). These man-machine interface advancements have

included technologies such as a virtual glove that can be used to pick up "artificial"

(computer-generated) objects and move them to a new location; surround sound to

let a virtual world user hear sound from the direction of generation (for example, if

a pilot's wingman off his left wing talks, the pilot hears the sound in his left ear);

and tactile feedback where a pilot would feel compression on the body if the aircraft

accelerates or feel pressure on the end of a finger if a virtual button is pressed.

Full- Vision: Full-vision refers to a user's ability to see everything

around him. For our research, full-vision does not mean a CGI view is provided

for a person's full peripheral viewing ability, only that the user perceives he has a

sufficiently wide field-of-view to prevent restricted vision. R.E. Lambert identified

a 60 degree square field-of-view as an acceptable lower limit when using a HMD for

visual air combat(31:6). Full-vision also means a person can turn around and see

what is behind him without any special action on his part.

1-2

1.2 Background

The Air Force Human Resources Laboratory, Operations Training Division,

and the Armstrong Aerospace Medical Research Laboratory, Human Engineering

Division sponsored this thesis investigation. Both organizations are actively pursuing

the use of a head-mounted display for diverse Air Force applications.

The Air Force Human Resources Laboratory (AFHRL) is responsible for devel-

oping flight simulator systems to support flight training. AFHRL and the Naval Air

Development Center have presented evidence that shows pilots trained in flight sim-

ulators prior to actually entering an aircraft perform significantly better than those

that start in the cockpit(l, 8, 14, 28). The AFHRL has developed realistic dome

simulators using the Advanced Simulator for Pilot Training (ASPT) software. These

simulators provide realistic simulated flight dynamics for the specific aircraft being

flown. However, these simulators cost too much for widespread use. The AFHRL

is now looking at the possibility of conducting training, most likely part-task train-

ing, in lower-cost, lower-fidelity, full-vision simulators. The full-vision capability is

considered critical because of the intense visual activity experienced in air-to-air

combat(14:A40). The lower-fidelity approach is feasible because, as Hal Geltmacher

of the AFHRL writes:

The concept is based on the fact that only 130,000 visual resolution
elements or pixels can be observed by the eye at any instant in time.
This concept, coupled with the inability of the human to distinguish
intermittent visual occurrences if they occur at moderate rates (30 HZ),
leads to the conclusion that one should be able to generate a wide-field
high-resolution display with no more information processing requirement
than those of a conventional 525-line television system.(14:A42)

The Air Force Institute of Technology's third generation HMD, now under develop-

ment, may be able to provide sufficient resolution to support validating the premises

of this concept.

1-3

Armstrong Aerospace Medical Laboratory (AAMRL) is responsible for ad-

vanced technology human factors developments supporting the improvement of the

pilot/cockpit interface. AAMRL has an on-going research effort to develop a "su-

per cockpit." The basic idea behind the super cockpit is to provide the pilot with

virtual world displays on his helmet that would allow him to see a graphical de-

piction of what he would normally see in flight. Representations of the location of

Surface-to-Air Missile sights and their threat regions, even if they are beyond visual

range, could also be depicted. Another advantage AAMRL has identified for a vir-

tual cockpit is to let a pilot switch from one aircraft type to another with little or

no training. Aircraft today use electro-mechanical instruments and gauges located

in positions that are unique to each individual aircraft type. In a virtual cockpit,

the pilot could load his cockpit software during pre-flight and conceptually fly an

aircraft independent of its type. AAMRL has defined three major components of a

"super cockpit": first, a head or helmet-mounted display to provide the full-vision

virtual display system; second, a means to provide audio feedback to the pilot so he

can determine from which direction the sound was generated; and finally, a means

to provide tactile feedback to the pilot when he is pressing a button on a virtual

world panel. The principal component is the HMD. AAMRL is also interested in

other Air Force applications of HMDs that may significantly benefit or enhance a

users' ability to view or manipulate graphical data.

Two such applications are Command and Control and Mission Planning. The

application of a HMD in Command and Control would allow a planner to enter a

virtual world showing the battle field and all known defenses. This planner could

then feasibly move aircraft packages from one ingress point to another, or a jamming

platform from one point to another, and then study the effects to determine if there

are better force postures that could significantly improve the war-fighting ability. The

HMD could also support Mission Planning by allowing the pilot to fly a simulation

of hiE mission before ever entering the aircraft. The pilot could then identify any

1-4

additional items missed in the preliminary plan. Networking several low-cost HMD

simulators together would allow a strike team to fly their mission together. This

mission practice concept is expected to improve the pilot's survival rate during the

actual mission(1, 4, 17).

The Air Force Institute of Technology has been developing a virtual world

laboratory to support on-going research to extend the application of head-mounted

displays and other virtual world interfaces. To date, the Institute has developed

two generations of head-mounted displays(11, 38) and a supporting virtual world

environment(11). These displays were used to provide a mission replay capability

of RED FLAG exercise data(38) and a command and control application allowing a

pilot to pre-fly a mission defined in an Air Tasking Order(47).

1.3 Thesis Statement

A PC-AT with a graphics coprocessor and the Institute's HMD provide a low-

cost alternative to existing full-dome, task-specific training systems.

Existing full-vision simulators are expensive. The use of HMDs is a less expen-

sive alternative to full-dome simulator systems. Alternative HMD designs are now

being investigated by numerous research organizations. These research efforts have

focused on the feasibility of using the HMDs as an alternative to full-dome simula-

tors without focusing on the cost of the computer graphics image generator used to

create the virtual world images. We emphasize this focus through demonstration.

1.4 Scope

This research emphasized the design and development of a low-cost simulation

station based on a PC compatible computer and head mounted display. The research

investigated the creation of a simulation capability with a full 3600 field-of-view

through the use of head tracking and head-mounted displays. Commercially-available

computer graphics hardware provided the computer generated imagery.

1-5

To support this research the Institute's HMD was connected to an Intel 80386

based PC-AT, with a supplementary graphics engine, to provide a virtual world flight

simulator.

The flight simulator software was an adaptation of the Dog2 program. Dog

is an interactive flight simulator controlled by a keyboard and mouse with cockpit

displays and out-the-window scenery displayed on a monitor. The software is written

in C using the Silicon Graphics 3D graphical reference model.

The measure of success was to implement a virtual flight simulator that used a

HMD and throttle and stick interface that worked as well as the existing 2D display

and keyboard interface. However, instead of pressing a key to get a different view,

like off the left wing, the user just looks left. Rather than pressing 't' (for throttle)

to increase power, a throttle is used; and rather than using a computer mouse to

steer the aircraft, a joystick is used.

Many other related simulator issues were raised by this research but were not

included in this investigation. Some of these issues are:

" Could even lower cost platforms be used? Could lower speed or less powerful

graphics coprocessors be used to implement a comparable simulator? Could a

PC with a standard VGA card be used rather than a graphics coprocessor?

" Could a higher performance (better flight dynamics and more realistic out-the-

window scenery and in-cockpit displays) simulator have been used?

" What trade-offs concerning processing power versus simulator requirements

could be made to enhance performance?

" Is the HMD image fidelity sufficient for flight training?

* Could a better man-machine interface be developed?

2Dog is a copyright of Silicon Graphics Incorporated.

1-6

1.5 Assumptions

The following equipment was assumed:

1. A 20 MHZ 386 PC-AT with sufficient disk storage space, ethernet card, game

card, two joy sticks, a mouse, and a supplementary graphics engine capable

of rapidly displaying Gouraud shaded polygons in EIA RS-170 NTSC Color

System format.

2. The UNIX System V operating system, with software development extensions.

A 'C' language compiler, linker, loader was required.

3. Flight simulator software written in 'C' code was a requirement. Starting from

scratch was unrealistic given the time available.

4. A Polhemus 3Space Isotrak magnetic tracking device to track user head move-

ment. This assumption includes the supporting software required to operate

the device.

5. A cockpit mockup which would hold the equipment.

1.6 General Approach

This thesis invest.gation was a cooperative effort with Capt Phil Platt. Capt

Platt implemented a similar HMD part-task simulator on a more expensive Silicon

Graphics IRIS 4D/85 GT computer platform. He demonstrated the implementation

of a virtual world simulator on a medium cost graphics workstation, whereas I was

investigating whether a much lower cost approach to a HMD part-task simulator

could provide comparable performance.

The general approach for this thesis consisted of three major steps:

1. First, the literature search and equipment requirements (both software and

hardware) were identified. Through the information provided from the litera-

1-7

ture search I established requirements for the part-task simulator and identified

the specific niche this application could fill in supporting the Air Force mission.

2. Second, the equipment was integrated and the software tools installed on the

host machine. An 80386/80387 PC supplemented by a Real World Graphics

Ltd. PC Realitj3 graphics board was used. The PC Reality provided two

Intel i860s on a single PC board and a software graphics library for the C

programming language. The PC Reality board served as the graphics pipeline

with the only programmer interface being through calls to the graphics library.

The board provided a configurable frame buffer that supplied the required

NTSC signals for the head-mounted display.

3. Third, the part-task simulator software was then developed. This task con-

sisted of modifying the Silicon Graphics Dog software to include a different

cockpit display and run on a platform other than the Silicon Graphics 4D. A

software emulation library was written to translate function calls to the Sili-

con Graphics hardware graphics pipeline into library calls to the Real World

Graphics Ltd. graphics library. This Real World Graphics library was based on

the Programmer's Hierarchical Interactive Graphics System Plus Lumi~re Und

Surfaces (PHIGS PLUS or PHIGS+) standard. With the change in graphical

reference models, the goal was to have the emulation library handle all the

transformations from the Silicon Graphics Reference model to the PHIGS+

reference model.

1.7 Summary

This thesis extended the Institute's research into an interactive virtual world

environment using low-cost computing resources. This investigation was a natural

evolution of previous research conducted at the Air Force Institute of Technology's

Virtual World Graphics Laboratory(11, 27, 32, 38, 47).

3 Reality is a copyright of Real World Graphics Ltd.

1-8

To support the on-going research, a virtual world flight simulator prototype

was developed for a PC AT supplemented with a high performance graphics engine.

1.8 Thesis Overview

This thesis is composed of five chapters. The first chapter presented the Air

Force Institute of Technology's virtual world research goals and the evolving capa-

bilities of the Institute to accomplish research supporting those goals. The second

chapter contains a literature review identifying various needs for flight simulators.

Chapter two also contains background information on the state of head-mounted

display technology development and other areas of interest directly supporting the

development of the part-task simulator. Chapter three summarizes the requirements

defined during the developmental requirements analysis. Chapter four provides the

specific system design. Finally, chapter five discusses the actual implementation

followed by a subjective assessment of the utility and performance attained by the

low-cost flight simulator approach. Chapter five also contains conclusions for this

project and recommendations for future research.

1-9

II. Literature Review

There were three areas of interest which had to be researched before any sys-

tem design efforts could begin. These areas are 1) investigating the history of Air

Force interest in flight simulator development and the missions these flight simula-

tors satisfy, 2) conducting a survey of Head or Helmet Mounted Display systems and

3) researching low-cost alternatives for the architecture of flight simulator equipment.

2.1 Purposes of Flight Simulation

Flight simulators can provide significant contributions to two unrelated, but

crucial aspects of flying: Pilot Training and Research & Development of Aircraft

Systems. This review presents support for each aspect.

2.1.1 Pilot Training. Pilot training using flight training simulators signif-

icantly improves the pilot's performance in the cockpit(l, 17). Both Air Force

and Navy studies show significant improvements in specific flying tasks when pi-

lots have practiced that task in a flight simulator prior to actually climbing into the

aircraft(14, 28). Flying tasks are normally mastered more quickly and at a higher

skill-level if the subcomponents (part-task) of a flying task are broken down and

practiced separately or in a different order than normal(17:103).

Four additional benefits are derived from using flight simulators to conduct

flight training. The most significant benefit is the additional safety afforded the

pilot when practicing dangerous maneuvers. Aircraft emergencies, system failures,

and other potentially disastrous events can be practiced with no risk to the pilot

or the aircraft. Another benefit is the concentration of flying experience gained in

comparison to training in an actual aircraft. An hour of flying time in air combat

maneuvers may only allow three or four engagements, with each engagement only

lasting a couple of minutes. With a flight simulator, 20 or more engagements can

2-1

occur in the same hour. A third benefit is the ability to use flight simulators to

evaluate different training programs through repeatable training situations. Train-

ing instructors could compare different programs and identify the advantages and

disadvantages of each training curriculum. The most effective components could be

used to develop a best program. A fourth significant benefit is the low cost of oper-

ating a flight simulator in comparison to training the pilot in an actual aircraft in

flight(17, 49).

The benefits already outlined are noteworthy in their own merit, but the most

significant impact of the flight simulator may very well be the lives saved through

better pilot performance in actual combat.

Dr. Earl Alluisi, the former Chief Scientist at the Air Force Human Resources

Laboratory, presented a notional Combat Mission Trainer (CMT) impact analysis

based on data from:

" The U.S. Army Air Corp and German Luftwaffe during World War II

" U.S. allies such as Israel during the Israeli 6-day war

" Data from later U.S. combat engagements.

Dr Alluisi stated that

All the data show that the major losses in air combat occur during the
aircrews' first 8 to 10 missions. This occurs even though we know it
and therefore send the new aircrews on the easiest and least dangerous
missions at the beginning of their combat tours.

It seems safe to infer that the surviving aircrews have learned something
during those first 8 to 10 missions. Suppose we could train all aircrews
in the "something," whatever it is, before they went into combat. What
difference would it make?(1:36)

The implicatioa is that if we can allow all pilots to fly their combat mission in

a virtual world using a CMT, their chance of survival would be greatly

2-2

improved(4, 14, 17). The Navy has identified similar desires to let their pilots par-

ticipate in one-on-one visual gunnery practice, even if the practice becomes a game,

because the results have demonstrated significant improvements in gunnery accuracy

when simulator trained pilots flew their first missions(8).

The Naval Air Development Center identified specific training recommenda-

tions to develop "... a "ready room available" part-task trainer..." that trains a

pilot's reflex reaction to respond to a firing opportunity(8:3). The report focuses on

the belief that pilots can effectively learn flying skills that are more reactive - or

automatic - independent of the aircraft.

Based on the positive results of the military studies and the improved pilot

survival implications, Dr. Alluisi proposed the Air Force begin improving state-of-

the-art CMT's so they might grow into an ideal CMT. He defined the attributes of

an ideal CMT to be low-cost and portable. The CMT must be inexpensive so every

pilot could have one available and portable enough to fit in a helmet and store in

a briefcase. Dr. Alluisi's vision was that such a flight simulator " .. . would permit

each combat pilot "to fly" his mission in the CMT-simulated environment several

times before he even boarded his aircraft to fly the real mission"(1:18). He believed

that to be effective, the ". . .experience provided for the pilots in the CMT simulation

would be quite realistic relative to the actual mission that they would then fly in the

real world."

Both the Naval Air Development Center and the Air Force Human Resources

Laboratory clearly saw the need and advantages of a small and economical part-

task flight simulator. These inexpensive systems would allow placing several in

ready-rooms at the squadron level to enable pilots to practice (or play) air combat

maneuvers. This practice would refine their reflexive skills and possibly improve

their chances of survival.

The Air Force has since embarked on long term technology developments to

create an ideal Combat Mission Trainer. Dr Alluisi had presented a CMT devel-

2-3

opmental framework where he defined a three pronged approach. The three major

components of the ideal CMT are a data base collection system, an image generation

system, and a crew interface/display system.

The Human Resources Laboratory has pursued these objectives and developed

a good supporting system for the first two in the Advanced Simulator for Pilot Train-

ing (ASPT)(14). Many organizations are developing high resolution head-mounted

displays to tr and satisfy the crew interface/display system requirements(11, 18, 48).

Unfortunately, the Air Force Institute of Technology's second generation HMD(7:45)

does not have sufficient resolution to improve the crew interface/display beyond ex-

isting thresholds.

However, the Human Resources Laboratory recognizes that flight simulators

are very expensive. The Laboratory is now looking at lesser fidelity display systems

and investigating cheaper simulator systems. In addition, they are pursuing the

possibility of developing a "... pilot-centered network of low-cost, highly-specialized

simulators designed to train for large-scale combat missions"(14) 1 This lower cost

approach is the essence of the part-task simulator developed in this thesis effort.

2.1.2 Research & Development. The major impact of an economical full-

vision simulator is in significantly lowering the cost of designing new aircraft or

aircraft components. There is little argument that "engineering simulators have

allowed the military services and industry to cut costs, risks and development times

on new aircraft and other systems"(19:44). A writer for the Defense Daily identifies

the significant impact simulation has to Research & Development:

As a testament to the value of simulation, every major U.S. aircraft
manufacturer has constructed expensive computer simulation facilities
in order to design and test, in a real-time environment, how such things
as flight controls, guidance systems, flight and battle management and

'The large-scale combat mission is the many-on-many air combat engagement scenario.

2-4

mission avionics components would operate in an aircraft engaged in
high-stress combat maneuvers.(19)

One major message is clear, as budget pressures intensify, more and more

aircraft development agencies are finding the cost of full-dome simulators prohibitive

and are looking for other alternatives. Air Force Lt. Gen. Michael Loh, recent

Commander of the Aeronautical Systems Division, qualified that the issues of cost

have become more of a limiting factor than issues of simulator fidelity(19:50).

Mr. Ken Daida, simulation director at Northrop, envisions that "as a way

around the increasing costs of large, fixed simulation facilities" he could see the

advancement of technology such that simulation information is presented "... on the

visor of a helmet instead of in a 20-foot dome"(19:50).

2.2 Survey of Head Mounted Displays

Although we are not developing a HMD as part of this thesis, the advancement

of HMD technology is directly related to the fidelity of the simulation we are able

to present to a user. Therefore, this literature review includes a survey of HMD

technology developments. This review is intended to inform the reader of the state

of development of HMDs and not to provide recommendations or conclusions about

the advantages of any one design.

Head mounted displays can be characterized by the number of displays used

and how they present the images. There are three basic types; monocular, biocular,

and stereoscopic or binocular(48:5).

monocular These HMDs use one screen to present the image to the user. This

screen can be a sight or TV screen mounted in front of one eye.

biocular These HMDs display an image to b.th eyes. The viewing device can con-

sist of one large screen mounted in front of both the user's eyes. An alternative

design is to use two screens, one in front of each eye, and show an identical

2-5

image to each eye. The visual effect is the same as the single screen design.

This is the most predominate design in HMDs today, having been popularized

by VPL Research Inc..

binocular These HMDs use two screens, one in front of each eye, with a slightly

offset image presented to each eye to give a stereoscopic view(33:53). Although

the HMD design is similar to the two screen biocular HMDs, the supporting cir-

cuitry and software needed to maintain both images in focus and synchronized

is complex.

2.2.1 HMD Categories. HMD developments can be categorized into two basic

types; see-through and enclosed.

See-Through. Ivan Sutherland developed the first HMD at Har-

vard University as a see-through virtual world interface device(44:757). This HMD

used a pair of miniature CRTs that presented a virtual image that looked to be about

eighteen inches in front of the user's eyes. These images were superimposed over the

real world objects that a user could normally see before putting on the viewing device.

J.C. Chung presents an excellent overview of advancements in see-through technol-

ogy in their article "Exploring virtual worlds with head-mounted Displays"(7:42)

Enclosed. NASA Ames Researcu Center developed the first fully

enclosed HMD. Enclosed HMDs replace all items normally seen by a user with com-

puter generated imagery. This type of design precludes superimposing computer

generated imagery over a user's real-world surroundings(7:44). The enclosed designs

con be grouped into three common types:

* The most common enclosed HMD is a biocular design using liquid crystal

displays (LCDs). LCDs are fairly low resolution devices that can only support

low fidelity virtual world interfaces.

2-6

" Biocular or Binocular miniature CRT designs are next. These designs use

miniature CRTs to present the image to the user. The CRTs are normally

mounted above the head and the image is sent through prisms and mirrors for

user viewing. These designs normally use black and white or green displays,

but one current research effort to create a color design is being developed at

the Air Force Institute of Technology.

" Fiber Optic HMD (FOHMD) designs. The FOHMDs use a fiber optic bundle

to carry a high quality video image to the HMD viewing system. The pixel

resolution is a function of the number of fiber optic strands in the bundle. Suc-

cess in FOHMD has been achieved(18, 48); however, the designs are expensive.

Pixel drop-out is often a problem in these designs when a strand breaks. A

method has been developed that lessens the negative visual effect of these pixel

drop-outs and of the fiber structure itself by using prisms at each end of the

bundle(18:266).

2.2.2 Related Work. A number of HMD developments have been accom-

plished in both academia and industry. A review of the available literature is pre-

sented below:

Frederick Brooks presents a good introduction to the virtual world concept and

how to approach developing an interface to the virtual world(5, 6). He includes ob-

servations on 3-D interfaces and virtual world applications that have been researched

at the University of North Carolina at Chapel Hill over the past two decades. He

also provides some good insights into the general use of graphics.

The Air Force Institute of Technology's Virtual World Laboratory has devel-

oped two generations of biocular display systems based on Liquid Crystal Displays

and is currently trying to improve screen resolution by developing a third genera-

tion helmet based on miniature CRTs. Capt R. Rebo developed the AFIT's first

generation HMD (HMD-I) as a color biocular display system(38). Capt R. Filer im-

2-7

proved the HMD-I display in a redesigned HMD (HMD-II) that improved the image

quality, reduced the total system weight, and made the head mount more adjustable

and easier to wear(11). He also developed a 3D virtual environment software library

to support the HMD-II, joystick, CIS Dimension Six Force-Torque Ball, VPL Data-

glove, and a Polhemus 3-Space Tracker. Maj P. Amburn and Lt Col J. Mills are

now attempting to improve the screen resolution of previous designs by using CRTs

instead of LCD displays. Their design basically consists of three monochrome CRTs

mounted above the wearers head, each with a different colored phosphor. The CRTs

are aligned so that the individual images will be blended to create a full color image

projected to the user's eyes through mirrors and lenses.

R. Woodruff, D. Hubbard, and A. Shaw compare five different HMD config-

urations(48). The comparison was done in a flight simulator experiment to answer

questions about the effects of three different design criterion. Summarizing their re-

suits; 1) the closeness of optics to the eyes did not adversely affect pilot performance;

2) the boundary of a limited FOV display did not provide useful visual cues; and 3)

stereopsis did provide useful visual cues to pilots when flying at close distances to

other aircraft - like a tanker during refueling. The binocular view did not contribute

significant cues for flying tasks that didn't require close formation flying.

Capt Caroline Hanson presents a FOHMD design using an Area of Interest

(AOI) computer graphics generation method(18). AOI CIG systems provide higher

resolution and brightness, and more scene detail than conventional systems because

of the narrower FOV that is required for the high resolution inset. AOI is a CIG

method however, and not related to the physical design of the helmet. Capt Han-

son explains the design of a breadboard FOHMD system under sponsorship of the

Operations Training Division at Williams AFB.

Stephen Martin and Richard Hutchinson describe a design approach for a

stereoscopic HMD using miniature CRTs(33). They present a good set of HMD

design considerations with a description of each. Their primary design considera-

2-8

tions are field-of-view, resolution, binocular symmetries, exit pupil size, eye relief,

and eye accommodation. They present their approach to design and construction of

two different helmets. They also present useful comparisons of the characteristics of

miniature image sources and telescopic eyepieces.

Scott Fisher and others describe the Virtual Environment Display System,

a head-mounted, wide-angle, stereoscopic display system developed at the NASA

Ames Research Center(12). The unique feature of this system is that the virtual

interface includes voice and gesture interfaces and tactile interaction through flex-

sensing devices. The applications focused on telerobotics and telepresence control;

workstations for management of large-scale integrated information systems; and hu-

man factors research.

2.3 Equipment Architecture

The primary focus of this research was to host a virtual world interactive flight

simulator on a PC to investigate the capabilities of a low cost approach to part-

task training systems. To accommodate the demanding requirements of creating

real-time or near real-time simulator images that consist of hundreds of polygonal

descriptions, a special graphics coprocessor was required. This coprocessor would

be interfaced to an 8 M-Z Industry Standard Architecture (ISA) PC bus. Several

graphics coprocessor options were investigated. The options were categorized by the

type of host processor used to allow speed and feature comparisons of the coprocessor

boards. This section contains a market survey of the different coprocessor boards

and their features. Suitability analysis of each candidate board for use in this ?roject

is presented in Chapter 4.

One major criteria used in evaluating the boards considered in this investiga-

tion was whether a frame buffer providing NTSC signal output was available. The

AFIT virtual world environment only accepts RS-170A signals. Other critical crite-

ria included 1) programming language support; this project was being implemented

2-9

in C, 2) program development environment, and 3) compatibility with the methods

being used to develop the flight simulator code in the cooperative thesis effort.

The results are summarized below:

2.3.1 Texas Instruments 34010. The TMS34010 Graphics System Processor

is a 32-bit internal, 16-bit bus general purpose processor with graphics extensions.

The fastest processor cycle time is 130 ns. The 34010 off-loads the burden of screen

draws from the host CPU. Dramatic graphics performance improvements over stan-

dard 16-bit VGA interfaces have been achieved in supporting CAD/CAE and desk-

top publishing applications. The redraw time for complex images with clipping and

shading are still on the order of seconds(2).

The TMS34010 offers an assortment of graphic specific instructions and special

operations(46). The graphic specific instructions include single pixel manipulations,

line drawing instructions, pixel array manipulation (including pixel block copies),

and auxiliary instructions for clipping, trapezoid fills, and pixel evaluators. The

operation specific capabilities include windowing functions, logical operators for pixel

processing, transparency support, and plane masking.

2.3.2 Texas Instruments 34020. The TMS34020 Graphics System Processor

is a 32-bit internal, 32-bit bus general purpose microprocessor, optimized for graphic

display systems(25). This processor is a second generation graphics processor that

TI claims will provide up to 50 times faster performance over their first generation

TMS34010. The TMS34020 is object code upward compatible with the 34010.

A closely coupled floating-point processor, the TMS34082, operates at up to

40 million floating-point operations per second (MFLOPS) and provides floating

point support to the 34020. The 34082 implements a number of specific 2D and 3D

graphics math operations such as 3x3 convolution, 4x4 matrix operations, polygon

clipping, backface testing, and viewport scaling and conversion. The floating point

2-10

unit operations provide a variety of instructions suitable to support real time graphic

applications.

Like the 34010, the 34020 also offers an assortment of graphic specific instruc-

tions and special operations(45).

Although the 34020 has an impressive list of graphics support features, the

34082 FPU wasn't scheduled for release until March of 1990. Third party boards

offering PC ISA compatible graphics systems were not expected until much later.

2.3.3 INMOS T414 transputers. The primary concept behind a transputer

based system is to improve processing performance through a concurrent processing

architecture(23:4). This increases the number of instructions/cycle that can be exe-

cuted in any one cycle. INMOS states that the transputer directly implements the

process model of computing where "a process is an independent computation, with

its own program and data, which can communicate with other processes executing

at the same time. Communication is by message passing, using explicitly defined

channels" (23:6).

C is available as a product add-on for programming the transputers. How-

ever, the proprietary INMOS language occarn is required to use as a harness to

parallelize the independent C modules into concurrently running processes. A single

separately compiled C program executes as a single process in an environment of

occam channels(23:76).

The system configuration needed for a graphics intensive PC application would

consist of the IMS B004-2 PC add-in card with an external IMS B201-1 Rack holding

an IMS B007 graphics evaluation board.

The B004-2 is based on a single T414 transputer chip. The IMS T414 integrates

a 32-bit RISC processor, four standard transputer communications links, 2K bytes of

on-chip RAM, memory interface and peripheral interfacing on a single chip(24"3U).

The processor provides direct support for the occam model of concurrency allowing

2-11

the processor to share time between any number of concurrent processes. The PC

add-in board comes with 2 Mbyte dynamic RAM and an IMS C002 link adaptor for

connecting to other transputer boards.

The B007-1 transputer graphics evaluation board is a member of the family of

special purpose transputer evaluation boards provided by INMOS. The B007-1 is also

a T414 based system with a 512 by 512 frame buffer that can provide RGB output

to any color monitor with scan line frequencies between 20 and 50 KHz(23:106).

Occam support for this board consists of low-level graphics primitives for line and

polygon drawing and alphanumeric text generation.

2.3.4 Intel 80860. Where the transputer approach achieves its performance

gains through concurrency, the Intel i860 RISC processor achieves its gains through

pipelining with an architecture similar to that of the CRAY I supercomputer(30).

The i860 is made up of a RISC integer unit, separate multiply and add channels in

the floating point unit, and a graphics unit (see figure 2.1). The chip contains several

Intel i860

Graphics Integer FP Add
Unit ExecutionUnit FP Multiply

4 KByte 8 KByte
Instruction Data

Cache Cache

Figure 2.1. Intel i860 Block Diagram

wide information paths including a 64-bit external data bus, 32-bit external address

bus, 128-bit on-chip data bus from the data cache, three 64-bit on-chip data buses for

floating-point operands and a 64-bit on-chip instruction bus(15:86-87). The i860 has

a 1-Kbit instruction cache and 8-Kbyte data cache in each chip die. The pipelined ar-

chitecture allow simultaneous processing of a new single-precision integer operation

and floating point operation at each clock cycle. "The chip outperforms compet-

2-12

ing general-purpose solutions, such as MIPS Computer's R3000, Sun Microsystems'

SPARC, and Motorola's 88000 by about 50 percent"(42:33). A 33 MHz i860 can

be used as a front-end processor for a display system capable of calculating 40,000

Flat shaded polygons/second and 300,000 transformed vectors/second. By contrast,

chips competing with the i860 typically compute 20,000 shaded polygons/second and

100,000 to 150,000 transformed vectors/second(42:34).

2.4 Summary

There is a need for a low-cost full-vision part-task flight simulator to support

pilot training and new aircraft or aircraft component research and development. A

very low-cost part-task trainer could be put in every squadron operations building(s)

and networked with other squadron's systems for pilots to practice combat flying

maneuvers. There is great potential for large dollar savings in both the training and

research & development worlds.

HMDs are characterized by their viewing interface (monocular, biocular, or

binocular) and categorized by their type (see-through or enclosed). The HMDs of

interest for our research are biocular enclosed helmets.

Powerful single chip graphics processors are coming of age. With the introduc-

tion of the Intel i860 and the TI TMS34020/34082, significant advancements in table

top graphics computing are achievable. Computer image generation capabilities will

continue to improve with the technological advancements in the Very Large Scale

Integrated (VLSI) chip technologies.

2-13

III. System Requirements

This chapter presents the requirements for the design and implementation of

the interactive virtual world flight simulator.

The basic requirement was to design and implement an interactive virtual world

flight simulator on a PC that could be connected to a network to allow a two-ship

simulator. The implementation of the flight simulator would follow a standard Air

Force software development approach. More specifically, the code would be written

in a high order language and use a classical 3D graphics reference model. Follow-on

studies would then determine whether a head-mounted display, coupled with a PC,

would provide a suitable platform for part-task flight training.

The high order language and graphical reference model requirements were es-

tablished to decouple the software approach from any single computer architecture.

This approach knowingly precludes taking a commercial flight simulator written in

assembly language - specifically for the PC, and using it as the foundation for this

research. From an Air Force perspective, the software developed for a portable

part-task trainer would be expected to have a life-cycle of 15 to 20 years. The im-

provements in desk-top computing technology is advancing a new generation every

five years. Software portability and the ability to support and enhance the software

using military resources are crucial aspects of any continuing research in software for

military systems.

The motivation for focusing on the portable software issue stems from the

high cost of software development and computing resources. Software designed and

developed for a particular platform costs more than software that has been previously

written and tested, then ported to other platforms. If machine dependent code

is allowed in the development of a portable part-task trainer, the Air Force will

find themselves unable to change computing platforms without incurring exorbitant

3-1

cost to redevelop the software. Other advantages of software reuse have been well

documented(3, 22, 41) and include many of the quality factors the Department of

Defense has been concerned about since the software crisis began(3:3). The most

viable Air Force approach to the problem is to have portable software, and use it

across new generations of computing hardware over the life-cycle of the software.

3.1 General User Requirements

The AFIT virtual environment display system (VEDS)(11) would be used for

the virtual world interface. VEDS provided the hardware and software foundation

for the HMD and Polhemus tracking system. The institute's HMD consists of two

Sony FDL-330 color TVs. The FDL-330 TV is a three component monitor system

with separate detachable power pack, tuner, and monitor sections(ll). The screens

are 2.7 inches diagonal with a 360 x 240 pixel grid. Since this was a color system, 3

pixels were combined to represent one color element for an effective resolution of 120

lines. The two TVs were butted together and mounted approximately 6 inches in

front of the viewers eyes. To accommodate the optical distortion from such a close

viewing range, a set of LEEP optics (designed by Eric Howlett, built by Pop-Optix

Labs) are used. These are the same optics used by NASA Ames in their virtual

environment display systems(12). The Sony monitors are too large to align with

the central axis of the LEEP optics so Fresnel press-on prisms bend the light from

the monitors to direct the light directly into the eyes as shown in Figure 3.1. The

Polhemus 3Space Isotrak magnetic tracking device consists of two sensors, one that

remains stationary and one that is attached to the viewer's head. The sensors consist

of three orthogonal magnetic coils. The stationary sensor transmits electromagnetic

pulses from each coil in turn. The signal strength is then sampled in the sensor

on the viewer's head. The resultant signal strength at the receiving coils is used to

determine the exact position and orientation of the user's head(9, 35).

The virtual laboratory equipment would be interconnected over a thick wire

3-2

Screens

MagnifyingLenses -- "

Fresnel r .I.. ~ vv
Prisms

Eyes

Figure 3.1. AFIT HMD II Design

ethernet running TCP-IP (Transmission Control Protocol - Internet Protocol). This

configuration dictated the basic network interconnect required for this flight simula-

tor.

Flight training requires a rapid picture update rate for real-time simulation.

A rate of 30 frames per second provides the appearance of smooth motion in an

animated sequence. Although an update rate of 30 frames/second is desirable, a

lesser rate would still support our investigation; and an update rate of 15 frames per

second was established as a goal.

This update rate requires a rapid graphics update capability from the host

computer system. The PC is based upon a general purpose processor with no en-

hancements or optimization for graphics. Additionally, RS-170A (or NTSC) output

is required for the institute's virtual environment; therefore, the PC's standard EGA

or VGA capability was insufficient to meet the requirement and would have to be

supplemented with a graphics coprocessing system.

3-3

3.2 Specific Requirements

A specific requirement of the project was to modify an existing flight simulator

hosted on a conventional 2D screen display with a keyboard and mouse interface to

the virtual environment without any loss of performance capabilities. This gener-

ated additional user interface requirements for displaying the cockpit controls and

out-the-window scenery as well as a new user control interface - the keyboard was

not an effective interface for a user wearing the enclosed display system. The new

display interfaces were required because the screen resolution of the AFIT HMD-II

is insufficient for displaying cockpit controls on one third of the display screen.

3.2.1 User Interface. The primary user interface for controlling the flight

simulator is through the joysticks. The aircraft functions that required interfacing

to the joystick included:

" Steering

" Throttle control

* Firing guns

" Firing missiles

" Firing rockets

" Rudder Control

" Spoiler Control

" Landing Gear Up and Down

" User Menu Activation and Selection

- Wingman's View

- Tower View

- Restart Game

3-4

3.2.2 Software. Three basic requirements for the software used on the plat-

form were established.

First, the UNIX operating system would be used rather than DOS or OS/2.

This decision was not based on any perceived deficiencies with the other options;

rather it was made to maintain compatibility with the operating system being used

in the cooperative thesis effort. The vast UNIX experience available at the institute

was also an influencing factor.

Second, the flight simulator code chosen as the starting point for this thesis

had to be compatible with the SGI 4D/85 GT (the other computer system purchased

for the cooperative thesis effort) and written in the C programming language. The

specific software language requirement was established because of the availability

of software development tools. Each vendor's UNIX operating system provides C

software development environments at little or no extra cost.

The major software development requirement established was to rehost the

flight simulator to the PC with minimal loss in functional capability. This require-

ment spawned the need to develop a functions interface library (emulation) from the

Silicon Graphics graphics library to the PC graphics engine. The flight simulator

could then be rehosted to the PC with little modification.

3.2.3 Hardware. The use of a low-cost CIG (Personal Computer) in contrast

to a mid-cost CIG (SGI 4D/85 GT) being used in the other half of the cooperative

thesis was the basis for the hardware platform selected. A fully functional flight

simulator executing on both machines could then serve as a common foundation for

system performance evaluations.

The specific UNIX operating system selected (ESIX System V - see appendix D)

ior the PC required the use of specific brands of equipment. UNIX device drivers

had to be available to drive all peripheral devices contained in the computer system.

These devices included major elements such as the ethernet card, VGA card, serial

3-5

and parallel ports, and any other device using the back-plane bus. The subsequent

equipment selections were based upon this operating system support. In addition to

the restrictions imposed by the available device drivers, ESIX System V required a

minimum of 4 MBytes of RAM and a 40 MByte hard disk.

The final system configuration was defined to be an 80386 PC platform with:

* 100 Megabyte or larger Hard Disk

* 5 Megabytes of memory

a 80387 floating point processor

* Graphics engine providing NTSC output

e Standard VGA driver for software development

* A VGA monitor

a An NTSC color monitor

* Ethernet card

* Multi-IO card with serial and parallel interfaces

* Joystick card

* 2 joysticks

3.3 Summary

Requirements were established to port an existing flight simulator program to

a PC platform. The PC would include a graphics processing unit and would be

running the UNIX operating system. An emulation of the Silicon Graphics IRIS

4D/85 graphics library would be developed to host the flight simulator code on the

new machine. A new user interface would be designed for the flight simulator because

a user wearing the HMD could not see the keyboard to adjust flight parameters.

3-6

IV. System Design and Implementation

This chapter covers the theory and rationale of design decisions made during

the development of the system. General hardware design considerations based on the

graphics engine selection are presented first. Following this, the basic theory behind

the Programmer's Hierarchical Interactive Graphics System PLUS (Plus Lumidre

Und Surfaces) (PHIGS PLUS or PHIGS+) graphical reference model is presented.

The software design approach and functional partitioning are then addressed. Im-

plementation problems that required design changes complete the system design

description.

4.1 Hardware

The computing platform for this thesis consisted of a Compaq 386/20', with an

80387 floating point coprocessor, 5 MBytes of memory, a 120 MByte hard disk, VGA

card and monitor, one serial port, and two game ports with joysticks. To support the

graphics update requirements and the RS-170A output requirement, the basic PC

configuration was enhanced with a Real World Graphics Ltd. PC Reality board using

two Intel i860 RISC processors. An additional 19 inch NTSC compatible monitor

vwas connected to the PC Reality board through SMB connectors on the back rib

of the add-in card. This facilitated the use of the 19 inch NTSC monitor for the

graphics output and the VGA monitor for development and debug.

The selection of the graphics add-in card merits some discussion to provide

specific conclusions reached during the graphics engine investigation.

4.1.1 Graphics Add-In Card Selection. As identified in chapter 2, several

capable processors exist that can be connected to an ISA (Industry Standard Ar-

chitecture) PC-AT bus. The objective was to choose an ISA compatible card that

1Operating at 20 MHz.

4-1

provided the RS-170A signals for the AFIT VEDS system while achieving the 15

frame/second update rate.

For RS-170A signal support there are various design solutions ranging from a

VGA-to-NTSC encoder board to the special purpose graphics processors.

The VGA-to-NTSC encoders available(16) offer graphics update rates deter-

mined by how fast the TMS34010 (on which the boards are based) can draw the

screen. VGA graphics monitors have suitable bandwidth to support real-time graph-

ics required for flight simulation. In fact the VGA standard horizontal scanning

frequency is 31.47 KHz, double the 15.734KHz of an NTSC monitor. The bottle-

neck lies in the ability of the processors in the PC to generate the image into the

frame buffer. Therefore, the standard PC using a VGA-to-NTSC encoder would not

provide screen updates fast enough to meet the 15 frames per second goal.

The alternative to the VGA-to-NTSC approach was to select a special purpose

graphics add-in card to speed the graphics display. There were several candidate chip

sets that could serve as the heart of a special purpose graphics card. The following

discussion provides the rationale for the selection or non-selection of a particular

chip set or add-in card.

4.1.1.1 TI TMS34010. The TMS34010 general purpose processor with

graphics enhancements has become the heart of a number of graphics add-in boards

that are supporting Computer Aided Design (CAD) processing systems. The 34010

based boards provide approximately 5 times the performance of existing 16-bit VGA

systems(46:45). This performance improvement is a significant enhancement to 2D

graphics applications, but is not sufficient for 3D graphics in real-time.

4.1.1.2 TI TMS34020. The TMS34020 was TI's answer to the 3D graph-

ics performance question. The TMS34020 coupled with the TMS34082 FPU should

4-2

provide sufficient speed to support real-time 3D graphics2 . The enhanced set of

graphics primitives built into the chips command set provide a rich graphics en-

vironment from which to work. Coupling the capabilities of this chip set with the

TMS34010 Graphics/Math Library provides a complete 3D graphics application sys-

tem. Unfortunately, the TMS34082 FPU was not projected to have production

units produced until 2nd Quarter 1990. Third Party development of graphics add-in

boards would lag behind that by about 6 months. This time schedule prevented the

TI TMS34020 from further consideration because the boards would not be ready in

time for this thesis effort.

4.1.1.3 INMOS Transputer. The Transputer technology offered addi-

tional speed because of its concurrent approach, but it also added a considerable

amount of complexity to the problem. Instead of just implementing a virtual flight

simulator, the problem domain would be expanded to include concurrent process-

ing hazards. Concurrent processing would force considerable restructuring of any

applications programs or libraries planned for use as the foundation for this devel-

opment. Transputers may provide a viable approach to the problem, but at a higher

complexity level and cost than other architecture alternatives.

4.1.1.4 Intel 80860. Intel Corporation's new RISC processor - the i860

looked like the answer to the graphics performance problem. Third party boards

were just entering the market and advertised impressive performance capabilities. I

elected to focus on the i860 based graphics boards available on the market in March

1990. There were three candidates, 1) Hauppage Computer Works, Inc. with an

80486 motherboard that accepted an i860 as a coprocessor, 2) ALACRON Inc. that

2One implementation of a 34020 based system was demonstrated at SIGGRAPH '90. The board
was the Daewoo Graphics & Imaging System with one 34020 and four 34082 (one to process each
quarter of the screen). This board was not capable of generating real-time graphics images at
30 frames per second. The vendor stated that all images shown at the conference were recorded
animation sequences and that the board was not capable of real time animation. Further review of
other vendors products is recommended before considering this board.

4-3

offered an i860 add-in card, 3) and Simulation Technologies who marketed an i860

add-in card for a U.K. firm - Real World Graphics Ltd.. I will explain the rationale

used to choose between the three.

Hauppage. The 80486 motherboard replacement approach looked

appealing. Hauppage advertised that a daughtercard frame buffer was available that

would be able to provide RS-170A signal output. After contacting Hauppage, I dis-

covered that the frame buffer was only in the planning stages and the marketing

people I spoke with had no idea when development would begin on this daughter-

card. Without an RS-170A output capability, the board would not help. Using a

VGA-to-NTSC encoder would slow down the graphics pipeline because of the slower

TMS34010. This approach was abandoned.

ALACRON. ALACRON offered an i860 add-in board compatible

with the ISA AT bus architecture. Their board consisted of one i860 but had no

frame buffer. The other major set-back for this approach was that the application

program would have to be developed from scratch to work on the i860. Algorithms

would have to be parallelized to take advantage of the chips separate integer and

floating point Arithmetic Logic Unit (ALU) pipelines. Another major set-back was

the cost of the Intel i860 development kit. The ALACRON board was reasonably

priced, but the development kit put us over budget.

Real World Graphics. The PC Reality board was Real World

Graphic's entry into the i860 market. They had been working on implementing a

single board CIG for some time, first with transputer technology, then with the Mo-

torola 88000 microprocessor, and finally migrated to the Intel i860 upon its release.

A significant advantage was expected to be from the PHIGS+ library provided with

the board. The application programmer could not develop any native i860 code and

was restricted to interfacing with the i860 through the PC Reality PHIGS+ library

4-4

calls. A variety of output interfaces from the on-board frame buffer were available

through specification to manufacturer, including the required RS-170A signals.

The graphics support reported by Simulation Technologies included:

" Provide rendering features that include Gouraud and Phong shading, antialias-

ing, shadowing, and texturing.

" Perform geometry and rendering algorithms in standard programming lan-

guages through the PHIGS+ graphics library.

" Offer improved performance through parallelism while hiding the parallelism

from the applications program. This approach would allow sequential programs

to run on the system without modification when additional processors were

added.

* Provide up to 10,000 Z-buffered polygons at 60 frames/second. The writ-

ten literature provided no claim as to whether this rate is for flat-shaded or

Gouraud-shaded polygons. Mr. George Keverian, vice-president of Simulation

Technologies - the U.S. subsidiary for selling the PC Reality boards, clarified

that the claim is for Gouraud-shaded polygons.

Real World Graphics has not yet met their performance goal. The S. Klein

Newsletter on Computer Graphics reports a fully configured system handles 6600

Gouraud shaded polygons at 30 frames/second(29).

The PC Reality board architecture is shown in Figure 4.1. The board con-

tains two Intel i860 processors, one acts as a preprocessor to the other. Standard

configurations contain 4 or 16 MBytes of on-board RAM with a 1 MByte frame

buffer memory. We opted for the lower priced 4 MByte option. The more memory

available, the more object structures could be stored in memory. The frame buffer

is configured as a 1K x 1K x 24 bit buffer with an additional 4 bits of overlay. The

displayable resolutions are configured by the manufacturer and include NTSC 640

4-5

64 bit Data Bus

PC-AT Bus

S2 KByte 16Timing!

1860

Dual Port iGeneratorStatic RAM!

Int 3.5 MByte VRAM

Fgr P RDual B k Interleaved1 4 2K x 1K z 24

48oP 6 7646 l a u +4 o e rp

4]rbl 4 4bit

bles ver ly

Rd Green Bue

4 MyteD64 Video Connector@

Video Out

Figure 4.1. PC Reality Processor Block Diagram

x 484 or PAL 768 x 576 interlaced, and up to 1024 x 768 non-interlaced resolution.

With the board configured for NTSC output, double buffering is the only method of

screen draw. Double buffering is the process of displaying one image from half the

frame buffer memory while drawing the next image to be displayed in the other half

of frame buffer memory, then swapping the newly drawn picture to the display. The

board has a 24-bit color look-up table (8 bits per color) enabling true color display

of 16.7 million colors.

4-6

4.1.2 Final Graphics Board Selection. The three best candidates of those

considered were the TI TMS34020/34080, Intel i860, and Transputer based systems.

The PC Reality Board based on the Intel 80860 processors was chosen because it

offered a system that met all the initial developmental requirements needed for the

prototype simulator.

The PC Reality represented a state-of-the-art graphics coprocessing system

that could provide the required RS-170A (NTSC) output signals. The board em-

ployed a pipelined architecture (similar to the CRAY I) that appeared to provide

enough power, in terms of drawing Gouraud-shaded polygons, to meet the real (or

near-real) time graphics requirements. The company had also advertised a robust

graphics library that was provided as the programmer's API. This meant that no

i860 code would have to be developed, nor would i860 to 80386 processor synchro-

nization or message passing be necessary. The concurrent processing problem was

not part of the developer's responsibility.

The TMS34020 based systems were not selected because of the non-availability

of the 34080 coprocessor. Development boards based on this architecture simply

weren't available at the start of this prototype development.

Transputer systems offer another possible solution to obtaining the real-time

processing power needed; however, they also require the programmer to work within

the concurrent processing paradigm. This is a more difficult environment then the

serial or pipelined architectures used in the sequential paradigms. Transputers had

a C language programming environment;however, each C program runs as a single

thread (sequential) program. To attain the concurrent software structure, each C

program must be tied together with the others through a concurrent harness using

the occam programming language. Since the plan was to port an existing flight

simulation program to the PC, the use of transputer technology meant that the

sequential programming model that the Silicon Graphic's Dog program used would

have to be changed to a concurrent model. This added complexity that was not

4-7

desirable for this prototype development.

4.2 Software

The PC Reality Board is supplied with a graphics library that provides the

Application Programmer interface (API) between the application programmer and

the underlying Reality Graphics Environment (RGE) functions implemented in i860

code. This graphics library interface provided benefits and disadvantages for the

application programmer, some of these will be discussed below.

The Reality API is modeled around the PHIGS+ standard and shares many,

but not all, of its features. The Reality library provides the application programmer

with functions for the building and displaying of 3D objects from basic graphical

primitives. Since the board was very new to the market (serial number 19) the

actual graphics library was still being developed by Real World Graphics with a new

library release occurring as late as November 1990, much too late to be used for this

project. This late release contained the 2D graphics functions and text functions that

were defined in the PHIGS standard and included in the developer's handbook(36)3 .

This late library release was to provide functions needed to use the advertised 4-bit

overlay plane. These missing functions prevented use of the 2D graphical function

calls used in Dog which spawned a new requirement to develop a cockpit using 3D

functions.

PHIGS is an International Standards Organization standard describing a graph-

ical reference model that provides functions for application modeling and three-

dimensional interactive computer graphics(21, 20). This standard has descended

from the CORE and GKS standards and it's functions closely resemble functions

from those graphics standards. The Real World Graphics implementation of the

PHIGS+ library did not implement all the functions defined by the PHIGS standard(26),

3The absence of the needed 2D and text functions was not known during the selection process
presented above.

4-8

those functions that were essential to this application but not implemented are iden-

tified.

4.2.1 PHIGS PLUS Reference Model. PHIGS defines methods for geometry

definition, display, and editing; PHIGS PLUS added higher quality 3D picture ren-

dering techniques (lighting, color and shading) and more sophisticated geometries

(tesselated surfaces) 4 .

All objects are hierarchically modeled into a static structure called the Central

Structure Store (CSS). The objects are defined in a modeling coordinate system that

is convenient to use to describe the object. Modeling transforms can then be applied

to move the components into proper position thus combining the different parts of

the picture together into a single world coordinate (WC) system.

There are two levels of modeling transforms: local and global. The combi-

nation of these is applied to all object coordinates in the structure, with the local

transform being applied first. The composite modeling transform (global x local)

is inherited from parent structures allowing complex hierarchical transformations to

be constructed (21:37).

There are three levels of data structuring:

" Structure elements

" Structures

* Structure networks

Structure elements are the basic element of the modeling system. Each struc-

ture element can be an output primitive (geometry definition), attribute specification

(shading parameters, etc.), modeling transform (local and global), view index (to

4Reference (21) provides an excellent tutorial on the PHIGS and PHIGS PLUS graphical ref-
erence models. Readers desiring a more detailed description of the model should consult (20) for
ordering instructions.

4-9

Moe i Viewing l Renderingl
Transforms ransforms

3D Primitives
with Attributes

Attributes
Resolved

Figure 4.2. PHIGS Graphics Pipeline

change views), label (marks a position in a structure), name set (defining visibility

and highlights such as on a menu), pick identifier (e.g. picking a menu selection), or

an execute structure (executes another structure providing the method for arranging

structures into hierarchies).

A structure is a sequence of structure elements. Various structure definitions

can be combined into a single parent structure creating a structure network.

Structures can be edited changing any of the structure elements. The use

of labels is the easiest method of referencing into a structure by simply setting

the structure pointer to the name of the label '. By editing the local or global

transformation elements, the objects defined in the static structure store can be

moved.

After structures have been defined they can be posted to the CSS as an active

component and then drawn, which sends them through the PHIGS output pipeline

(Figure 4.2 illustrates the viewing pipeline). The pipeline consists of three stages:

1. Modeling transformations - applies modeling transforms (if any) which maps

from modeling coordinates to WC.

5 This is one of the features that doesn't work in the PC Reality PHIGS library version 3.2

4-10

2. Viewing transformations

(a) View orientation transformation - maps from WC to View Reference Co-

ordinates (VRC).

(b) View mapping transformation - generates the view and maps the VRC

to Normalized Projection Coordinates (NPC).

3. Rendering

(a) View clip - clip against planes of a cuboid viewing volume in NPC.

(b) Attribute resolution - color and shading.

The view orientation and view mapping transformations are both specified

as 4 x 4 homogeneous transformation matrices by the user. One note of caution,

the transformation matrices are designed to be multiplied by column matrices, not

row matrices. This ordering is the transpose of the Silicon Graphics transformation

matrix.

The software developed in support of this thesis utilizes a perspective view

mapping. Understanding the key components of the perspective view components

under the PHIGS standard is essential to utilizing this reference model. Figure 4.3

illustrates the key components for a viewer oriented perspective view.

The perspective view contains a Perspective Reference Point (PRP) or eye

point (position). Unlike the center of projection in the Core graphics system which

specifies the center of projection in world coordinates(13:281) the PRP is specified in

view reference coordinates (VRC). When specified at the origin (0,0,0), the PRP is

colocated with the View Reference Point (VRP). Figure 4.3 shows the VRP slightly

offset above the PRP only to illustrate the components. The VRP is specified in

world coordinates to define the origin of the right-handed VRC system in world

coordinate space. By changing the world coordinate position of the VRP, the origin

of the viewing volume is translated in world space. For a viewer centered view (such

4-11

........................... ... ' ' ' '

VB

VRPD

VRZmL ------ --------

'View Back
Front Plane Plane

PRP Plane

Figure 4.3. Viewer Oriented Perspective View

as that needed for a flight simulator), the PRP is defined to be at the origin of

the VRC system. The view reference point can then be set equal to the aircraft

(or pilot's) location to provide the correct position of the viewing volume in world

space. The VRP can also be located on or near an object of interest with the PRP

specified at some positive distance in z (0,0,z) for an object oriented perspective.

The programmer must specify a view up vector V and a normal vector N. The

positive normal points from the back plane to the PRP. The U vector is calculated

by the PHIGS graphics pipeline by crossing the V and N vectors (V X N). The

orientation of the viewing volume is specified by the definition of the V and N

vectors. By rotating these vectors opposite of an aircraft's roll, pitch, and yaw, the

correct orientation of the viewing volume is stipulated. The front plane defines the

front of the clipping volume, the back plane defines the back, the view plane must

lie between the front and back planes and represents the window into the graphics

world. Note that the front, view, and back plane distances (FPD, VPD, BPD) are

4-12

measured relative to the center of the VRC system along the negative z axis and

are specified in view reference coordinates. If the center of interest was between the

front plane and the view plane, the FPD would be positive and the VFD and BPD

negative values. Note in this case that the PRP cannot lie between the front and

back planes so the PRP would have to be specified at some positive z value greater

than the FPD.

The PHIGS workstation concept allows the binding of an application to the

specific machine dependent methods necessary to present a picture. This concept

allows the use of several different terminal types for one PHIGS implementation. The

PC Reality implementation is only valid for a single workstation type and does not

use this concept. The workstation identification number variable must still be passed

when making function calls, but none of the library functions utilize the variable.

Different workstations also provide different graphics regeneration capabilities

in a deferral mode. These capabilities can be exploited to give -;he user control

over the amount of delay that occurs between making changes to the picture and

the resultant output to the workstation. The PC Reality only offers one deferral

mode option - ASAP (As Soon As Possible). This immediately updates the picture

displayed on the workstation's screen.

4.3 Application Software Approach

The software project requirements were to implement a flight simulator on the

PC that could be networked to another flight simulator running on a Silicon Graphics

IRIS 4D/85 GT mini-computer. Silicon Graphics Inc. provides nv fc source code

for a networked flight simulator - Dog. This source code provided a foundation from

which we could begin work at a reasonable application layer to integrate a Virtual

World Interface.

On 23 July 1990, Mr Keith Seto, Technical Marketing Manager at Silicon

Graphics, gave verbal permission to use and modify the Dog software. This included

4-13

permission to rehost the software on a PC chassis running the UNIX operating

system. He prrmised written permission at some future date.

The Dog program is a collection of source code that has been built up from

a stand-alone flight simulator implementation called Flight. The software makes

extensive use of the Silicon Graphic's immediate mode graphics pipeline. In addition

to including the new graphics functions released with the SGI 4D architecture, the

program contains significant use of older functions that constituted the outdated

SGI IRIS 31XX graphics pipeline methods. The SGI 4D machines provide built-in

support for those older methods; however, they clearly identify that those methods

do not optimally exploit the graphics pipeline provided in the 4D architecture.

The task at hand was to develop a software emulation libary that would

emulate the function calls used within the Flight and Dog programs. This included

graphics functions for both the outdated IRIS 3130 and the newer 4D graphics

pipelines. Many of the graphics functions exploited hardware characteristics of the

SGI machines (hardware Z-buffer) and simply could not be emulated with the PCR

hardware or associated API library. These functions were commented out and when

the visual results were unacceptable, a work-around solution was devised.

The development started with four f,,'rly significant handicaps:

" The PC Reality API was an incomplete implementation of the PHIGS stan-

dard.

" PHIGS includes no ability to modify items at device coordinates.

" The PC Reality board did not provide the required RS-170A signals.

" Real World Graphics provided marginal documentation supporting their PC

Reality (PCR) board and API library.

Several features were missing in the first delivered version of the PCR library

(version 3.2). The most significant was the lack of any of tl - documented two-

4-14

dimensional functions. The 4-bit overlay planes had no library support which pre-

vented early development efforts to implement cockpit displays. There was also no

text support (either 2D or 3D), preventing instrument panels, status displays and

menus from being implemented. Several graphical primitive methods had also not

been implemented. These included:

* 2D and 3D line drawing capabilities. The Dng software made extensive use of

both 2D and 3D line drawing to draw grid lines and instrument displays.

" Points and markers. Again, these were needed to support the instrument

displays and point light sources.

* 3D hollow polygons.

The advanced shading methods (Phong) were in the User's Manual but not im-

plemented. The same applied to transparency and other surface property functions.

The library certainly appeared to resemble a Beta test implementation rather than

the high priced production quality support library we thought we had purchased.

Real World Graphics Ltd. incorrectly implemented the modeling pipeline in

the RGE (i860 code). Object transformations occur through specifying a local trans-

formation matrix and global transformation matrix. The local modeling transform

is applied first followed by the global transform resulting in a composite modeling

transform. The PCR library correctly implements the transformations of the local

transformation matrix by transforming the objects relative to the modeling coor-

dinate space. The incorrect implementation of the global transformation matrix

transforms objects relative to the VRC system rather than the world coordinate

system.

The PHIGS standard defines all graphics primitives at the object level. In

so doing, it does not allow for methuds that write directly to the screen in device

coordinates. This omission from the standard prevented me from implCmenting or

emulating the missing PHIGS functionality needed for a complete implementation

4-15

of the flight simulator. Flight uses numerous screen writes, in device coordinates,

for drawing the 2D cockpit and text messages. This difference in standards may

not have been a factor, but since the Reality graphics library didn't contain similar

functions at the object level", I was unable to determine if the omission was critical.

Regardless, a substitute cockpit had to be developed using the 3D function calls

available in Version 3.2 of the Reality graphics library.

Real World Graphics Ltd. had specified that their board output NTSC res-

olution as one of the output options. The claim was clarified through the United

States distributor, Simulation Technologies Inc., that the output included signal

compatibility with the RS-170A standard as well as screen resolution. However, at

the end of the development, I found that the signal from the Reality board was 30

Hz non-interlaced output; whereas, RS-170A is interlaced. The virtual environment

was completely implemented and only needed to have the signal output in com-

posite form (standard U.S. TV signal) to feed the signal to the LCD TVs in the

AFIT HMD II. Subsequent contact with Real World Graphics Ltd. indicated they

believed interlaced output was possible but they needed to research what changes

were required to implement the change. The change was supposed to be a change

to a firmware switch in the RGE that Real World believed could be made from the

Rinito function call in the graphics library. Real World Graphics Ltd. never replied

with the needed method to switch to interlaced mode; this ended the hope of using

a virtual environment with the flight simulator.

Finally, the documentation provided with the PCR board documented a num-

ber of functions that were not implemented in the PCR API library. The tutorials

provided with the manual had errors and required correction before they would exe-

cute. Even the hardware installation instructions were misleading. The instructions

were correct, but the board was shipped with the wrong base address set.

'These functions were not included in Version 3.2 of the Reality Graphics Library but have been
advertised for Version 4.0.

4-16

4.4 Software Development Methodology

A functional software development methodology was adopted for this applica-

tion development. Both the PCR API library and the flight simulator code were

written using the classic functional approach in the C programming language. Since

these two source programs were the foundation of the prototype development, the

natural transition to a derivative work was to also use the functional approach.

The modular decomposition of the emulation design was already defined by

the function descriptions in the SGI graphics library. The graphics library reference

manual(40) provided written specifications for all the required functions. Only those

functions used in the flight simulator software were emulated. These were isolated

by removing the SGI graphics library from the linker and having the linker identify

all the unresolved functions.

Simplifying the development methodology was important to the development

approach because of the complexity of the existing program being modified. The

Flight software consists of approximately 20,000 lines of C code with few comments.

The code was built by numerous programmers over the years which introduced vari-

ous coding styles and programming errors. Several of these errors have been encoun-

tered (and corrected) which is just a symptom that many more exist. Adding to

the complexity of the approach was the immature PCR API library. Several errors

encountered in the library logic prevented full use of all functions.

Every attempt was made to keep the software emulating the SGI graphics li-

brary loosely coupled by localizing variables as file global rather than program global

variables. However, because of the transformation from the SGI graphical reference

model to the PHIGS model, some program global variables were required to define

a common set that were essential to both graphical reference models. The globals

were limited to parameters defining the PHIGS view reference model, lighting at-

tributes, object attributes, and global indexing for the PCR on-board array storage.

Unfortunately, some control binding was introduced by the global indexing into the

4-17

PCR on-board arrays. These on-board arrays were used to hold modeling and view-

ing transforms for certain objects. The only means available to establish more than

one viewport on the screen was through the use of the PCR viewport parameters

array. In an effort to adhere to modern programming practices(3, 41), constructors

and selectors were implemented for often used global variables7 . By using construc-

tors and selectors, the programmer's interface to the underlying data structure was

buffered. Knowledge of the specific data structures needed by the PC Reality func-

tion calls were isolated to those few places where the actual function emulation was

implemented.

Another criteria used for the design of the graphics library emulation was

changeability. The objective of designing for changeability meant that modules were

not heavily impacted by changes. This design criteria was crucial because of the size

of the project. The principles of information hiding and localization of data objects

was used as the method to support changeability. By hiding the data structures

from the programmer, and localizing those variables that were common to just a

few functions, there was little impact to the program when local methods had to be

changed.

Both Kernighan and Ritchie C and ANSI (American National Standards In-

stitute) C syntax was allowed. The Free Software Foundation's GNU" C compiler

accepts both formats and was used as the project compiler. The advantage of this

approach was that more flexibility was allowed in reusing previously developed code.

A number of modules coded in ANSI format were available for reuse, without mod-

ification, from previous graphics renderers developed at the Institute. These ANSI

modules were used in the emulation software and integrated with the Flight software

coded in Kernighan and Ritchie syntax.

7 Constructors are functions that adLer the state of a data structure, a selector evaluates the state
of a data structure or returns the value of the data without altering the state of the structure.

"Glad it's Not UN*X project.

4-18

4.5 Software Design Notes

Two processing platforms were available within the computer system: the

80386 general purpose processor with 80387 floating point support and the PC Re-

ality board with two i860 processors. The PC Reality board was only available over

the 8 MHz ISA bus. This architectural break-out drove a software design decision

to partition the graphics emulation functions to exploit the 80386/80387 pair of

processors when convenient. The basic matrix support on the Silicon Graphics ma-

chines is a matrix stack. This stack contains all the transformations that are used

for transforming graphical object descriptions as well as the view and orientation

transformations. The PCR library does not use a matrix stack, rather it uses an

array of matrices only accessible through pointer indexing. I made the decision to

design a local matrix stack rather than use the matrix storage and indexing provided

on the PCR board for two reasons. First, the SGI library uses a matrix stack so by

having a matrix stack emulation, the transition from the SGI graphics system to the

PCR graphics system was more direct. Second, the PCR matrix storage was better

utilized to store local matrices t could be modified to move objects9.

To effectively use the PCR matrix storage capability, the matrix had to be

retrieved from the PCR board, transformations applied, and then shipped back over

the ISA bus to the PCR board. This looked to be a costly operation over an 8

MHz ISA bus. After designing and implementing the matrix stack, I received the

source code for the PCR API. Real World Graphics had made the same partition-

ing decision. All transformation functions are local functions executed on the host

computer's processor. There are no stated requirements from Real World Graph-

ics for 80387 floating point processor support on the host computer. Execution of

these transformations on a system containing only an 80386 would cause additional

degradation in speed performance.

'See Appendix C for the methods used and alternatives available.

4-19

For the Reality graphics system to correctly display object color, surface prop-

erties had to be specified for all objects. The fast graphics mode for the Reality

system is a Flat Shade mode. There is one documented and one undocumented

side effect when using the Flat Shade mode. First, only two lights can be specified.

Although the documentation doesn't prohibit making both light sources ambient,

the library didn't operate correctly when so specified. One light had to be ambient

and the other directional (infinite) to keep surface shading constant when the flight

simulator was flown upside down. Second, the undocumented side effect was that

only 16 calls to the function to set surface properties were effective in the Flat Shade

mode. When the 17th structure was posted to the CSS, the surface properties didn't

take effect and the object was not displayed in it's true color. This drove a work-

around in the way that the Silicon Graphics object descriptions were read into the

CSS. Instead of posting each independent object (structure), like a cockpit, wing,

building, etc., with a unique surface property 0 , a master object (structure network)

had to be created for the entire aircraft with only one surface property applied to

all child structures. The same approach was used to draw the mountains, runway,

infinite-world, and static elements of the 3D cockpit. Unfortunately, indicators for

flaps, spoilers, and landing gear were dynamic and could not be executed from the

structure network and then independently unposted from the CSS. To have indepen-

dent objects turn on or off as needed, they had to be posted to the CSS as a unique

structure. The visual effects were undesirable in that the indicators did not display

up in their true color; however, they did show up and were able to show the state of

the aircraft components.

Appendix C contains additional detailed notes on how the SGI 4D library was

emulated using PHIGS function calls. This appendix also describes what modifica-

tions were necessary to the flight simulator software to use this emulation library

and host the software on the PC platform.

10This feature is needed to specify the cockpit as transparent while the wing is metallic.

4-20

4.6 Summary

The Real World Graphics Ltd. PC Reality board, using two Intel 80860 RISC

processors in a pipelined architecture, was selected as the graphics engine for our

"state-of-the-art" PC. The graphics API accompanying the board was based on the

PHIGS PLUS standard; therefore, the library emulation had to transform the Flight

software from the SGI graphical reference model to the PHIGS PLUS graphical

reference model.

The PHIGS standard is the newest international graphics standard defining a

3D graphical reference model. Those parts of the reference model needed to program

the flight simulation were explained.

A functional programming approach using the sequential programming paradigm

was used for this project. Desirable software engineering principles were followed to

try and control the complexity of the programming task.

Actual design and implementation of the emulation library and porting of

the Flight software was complicated by specified, but missing functions in the early

version of the PC Reality graphics library. The lack of 2D and text functions spawned

a new requirement for a redesigned cockpit. Other errors in the Reality Graphical

Environment (i860 code) forced additional work-arounds for representing motion and

surface properties.

4-21

V. System Implementation

The Silicon Graphics' flight simulator Flight was ported to the PC; however, the

resultant frame rate fell far short of the goal. This chapter describes the implemented

systems capabilities and limitations, and provides conclusions and recommendations

resulting from this research.

5.1 Project Goals

The project goals were to build an SGI graphics library emulation, using this

emulation - port the flight simulator Dog to the PC platform with no loss in sim-

ulator functionality, build a virtual world interface to the simulator, and network

the simulator to the Silicon Graphics IRIS 4D/85 GT to fly a two-ship scenario.

The first three goals were achieved to the extent that the PC Reality API would

support. Evaluation of the flight simulator capabilities at this stage of development

showed that the host PC and PC Reality boards' capabilities to support the classic

3D graphics flight simulator were not sufficient to pursue the last goal.

5.2 Capabuttes Imptementd

An SGI graphics library emulation was written for those graphics library func-

tions used by the program. The emulation was restricted to only supporting 3D

filled polygons because no 2D, 3D line, and text functions were supported in the

PC Reality graphics library1 . We had no ability to implement the PHIGS functions

ourselves because we did not have an 80860 development environment available. The

flight simulator Flight' was successfully ported to the PC; however, the Flight cockpit

displays were not used because of the lack of 2D and text functions.

1These additional graphics capabilities were promised for a later release of the library.
2 Recall, Flight is a subset of the Dog software with the only difference between the two programs

being the network connections provided by the Dog program.

5-1

The virtual world interface work was started by interfacing joysticks to the

program for aircraft throttle and stick control as well as some program options

selection. A user menu was not implemented because of the missing text support.

The Polhemus sensor was interfaced to let the simulator view angle be controlled

by the user's head motion. The final interface to the HMD was not accomplished

because the PC Reality board could not provide interlaced display output.

At this point, program testing (described in section 5.3) showed such poor

performance that we determined that networking to the SGI 4D would provide little

additional value to the project. The network code had been compiled and executed,

but did not work correctly. The Flight software used a lower level UDP/IP (User

Datagram Protocol/Internet Protocol) programming interface than the transport

layer currently supported by ESIX. ESIX explicitly supports programming at the

transport layer of the Open Systems Interconnection model, but not at the network

level used by Flight. These network level functions are present in ESIX System V but

are undocumented. Some work would have been required to track the incompatibility

between the Silicon Graphics' use of UDP/IP and the proper ESIX approach. We

felt the time would be better spent developing the new 3D cockpit for the flight

simulator.

5.3 Capability Assessment

The 20 MHz Intel 80386 computer, enhanced with a graphics subsystem run-

ning two Intel 80860 RISC processors only provided a frame update rate of four

(4) frames per second, well below the 15 frame per second goal established for the

implementation.

Some timing tests were recorded for three different test program implementations.

All programs executed C code compiled with the GNU ANSI C compiler. This code

3The first two programs were not subsets of Flight. These programs used PC Reality graphics
library calls directly.

5-2

had a static view point and showed a runway with airport buildings. An aircraft (a

C150 Piper Cub consisting of 105 polygons) was shown taking off from the runway.

The objects in this program consisted of a sum of 260 flat-shaded polygons, all of

which were visible. An aircraft running down the runway was the tightest possible

looping construct that could show some form of animation. The program simply

calculated a new aircraft position and redrew all the objects. This program pro-

vided a frame update rate of 12 frames per second. The second program replaced

the C150 object with a detailed description of an F14 consisting of 1034 polygons.

The total polygons in the scene summed to 1217. This time, the update rate was

only 6 frames per second. The third configuration was a scaled down version of the

SGI Flight program showing only an out-the-window display of the runway, runway

buildings, mountains, and hills. This program had a total of 485 polygons and was

the configuration that provided the 4 frame per second update rate.

From these results, one can deduce that the system is both polygon limited4

and program limited'. The graphics subsystem with the two 80860 processors is

polygon limited because of the time required to traverse the PHIGS CSS and render

the object descriptions. This was demonstrated by the slow down in the second

test program with 1217 polygons from the first with only 260. The third program -

the flight simulator with 485 polygons in the CSS, only achieved a frame rate of 4

per second. This slow-down, when contrasted against the 6 frames/sec of program

two with 1217 polygons, can only be caused by the 80386/387 system being program

limited. This hypothesis is more fully demonstrated later when the final performance

measurements for the finished program are presented (see Table 5.3).

5.9.1 Final Simulator Test Results. After optimization, the finished program

had better performance than the initial tests demonstrated. Before summarizing the

"The maximum number of polygons that can be rendered by the PC Reality board before
significant slow-down occurs.

'The maximum number of instructions executed on the 80386/80387 processors before significant
slow-down occurs

5-3

results of the timing measurements, polygon counts for each object (Table 5.1) and

sum totals of the polygons contained in the test scenes (Table 5.2) are presented. This

will allow the reader to cross reference the timing performance with the approximate

number of polygons visible on the screen at any one time.

Table 5.1. Object Polygon Count

Object No. Polygons Object No. Polygons

F14D 1034 F16 186

C150 105 Buildings 34

Hills 302 Mountains 28

Runway 121 Cockpit 41

Infinite World 12

Timing measurements were recorded in several program configurations with a

variety of scenes to provide different polygon counts and PC program conditions.

Separate measurements were taken for the H U D view6 and cockpit view, with and

without the Polhemus sensor input. The wingman and tower views provided ad-

ditional polygons to be displayed in the scene without increasing the processing

requirements of the PC processors. These additional polygons allow the observation

of timing slow-downs contributed solely by the PC Reality board. Using the recorded

measurements (Table 5.3) and associated polygon counts, the hypothesis that the

PC Reality board is polygon limited can be verified. The plot in Figure 5.1 shows

that as more polygons are added to the CSS, the frame rate continues to decrease.

The timing measurements also confirm that the system is program limited.

When the cockpit is added, a significant slow-down occurs. This slow-down cannot

be attributed to the additional 41 polygons contained in the cockpit description

because we have a slower frame rate, with less polygons, than what was measured

"The HUD view Is an out-the-window only view with no instrumentation. The 4-bit overlay
plane of the PC Reality board was not accessible with Version 3.2 of the PC Reality graphics
library.

5-4

Table 5.2. Total Polygons in Different Views

View Hills No Hills

out-the-window 497 195

cockpit and

out-the-window 538 236

tower and Cockpit No Cockpit

wingman Hills No Hills Hills No Hills

C150 602 300 643 341

F14D 1531 1229 1572 1270

F16 683 381 724 422

12

10 without cockpit -B-
with cockpit -

8

Frames
per 6

Second

4

2

0 I I I I

0 200 400 600 800 1000 1200 1400 1600
Number of Polygons

Figure 5.1. Frame Rate VS Polygon Count

5-5

Table 5.3. Performance Test Results

A/C Cockpit Polhemus Winpa Tower HiIUmNo Hilk I Ruay

(fram/sec)

C150 on on - - 2.2 2.4 2.3

on - - - 4.1 4.5 4.3

- on - - 4.1 4.3 4.3

... . 5.4 10.3 7.4

on on on - 1.9 1.9 1.9

on on - on 2.1 2.2 2.2

on - on - 3.4 3.6 3.4

on - - on 3.6 3.8 3.6

- on on - 3.2 3.5 3.5

- on - on 4.2 4.3 4.3

- - on - 4.4 6.3 5.9

- - - on 6.5 7.0 6.5

F14D on on - - 2.2 2.3 2.2

on - - - 4.1 4.5 4.3

- on - - 4.2 4.4 4.4

... . 4.9 9.9 9.4

on on on - 1.3 1.3 1.3

on on - on 1.4 1.5 1.4

on - on - 1.8 1.9 1.8

on - - on 2.0 2.0 2.0

- on on - 1.9 2.0 1.5

- on - on 2.1 2.2 2.1

- - on - 2.2 2.6 2.2

- - - on 2.5 2.7 2.5

F16 on on - - 2.2 2.4 2.4

on - - - 4.0 4.5 4.3

- on - - 4.1 4.4 4.4

.- 4.9 9.8 8.4

on on on - 1.7 1.9 1.9

on on - on 2.0 2.1 2.1

on - on - 3.2 3.5 3.3

on - - on 3.5 3.7 3.5

- on on - 3.1 3.3 3.4

- on - on 3.9 4.0 3.9

- - on - 4.5 5.8 5.5

- - - on 5.7 6.5 6.2

5-6

for the out-the-window wingman view with the F16. The cockpit contains Y objects

that are updated every frame. The transformations for the objects are built using

the local matrix stack on the 80386/387 and then loaded into the matrix array

storage contained on the PC Reality board. Since we have not observed significant

slow-down caused by transferring data over the PC bus in other tests, the slow-

dwn must be occurring from the matrix multiplies executing on the PC processors.

Plots are shown when the program is in HUD mode, without a cockpit or cockpit

instrumentation, and with the cockpit. The plot with the cockpit shows that a

frame-rate, bias between corresponding polygon counts exist. This slow-down bias

has occurred because of the program limitation.

The PC system was also observed to be input/output (I/O) bound (limited).

The addition of the Polhemus sensor 7 significantly slowed the frame rate. As can be

observed from the timing measurements in Table 5.3, the Polhemus sensor interface

approximately halved the frame rate. The measurements show that a performance

penalty, approximately equal to that contributed by the cockpit, is present. When

both the cockpit and Polhemus are used, an additional linear slow-down occurs.

Processing of the Polhemus information only added three additional transformation

operations using the local stack. The resulting composite transformation matrix is

not passed separately to the PC Reality board but is composed with the existing

view matrix that is passed when the Polhemus is not used. From this, one can

conclude that the addition of the Polhemus causes a slow-down for reasons other

than numerical processing demands on the 80386/387. To further isolate the effects

of the Polhemus to the PC processors, note that the wingman and tower views did

not add additional slow-down when the Polhemus was active. This result occurred

because of the ?arallel structure of processing units (80860 and 80386/387). Use of

the Polhemus is a very I/O intensive process with messages constantly being passed

from the sensor to the PC. The PC reads the input buffer once each frame. Often

'Recall that the Polhemus sensor is used to track head motion for the virtual world interface.

;- 7

times, the buffer is not at the beginning of a message and the PC must read a second

time to receive a valid message. Since the processing demands of the Polhemus sensor

information does not add a significant numerical processing demand, the only logical

conclusion is that the system is I/O bound. The Silicon Graphics system used in

the cooperative thesis effort did not demonstrate similar slow-down when using the

Polhemus interface.

5.4 Hardware Integration

Hardware integration on the PC platform provides an additional argument

against the suitability of using PCs as a part-task simulator's CIG. PCs do not come

with a graphics engine suitable to the task; therefore, the platform must be built

using a third party board. This third party board will receive independent support

from the PC. This complicates the system integration and subsequent support struc-

ture for these platforms. Appendix D contains a summary of the system integration

difficulties encountered during this thesis.

5.5 Assessment

We cannot make the blanket claim that the PC is unsuitable for hosting flight

simulators. Companies like MicroSoft (Flight Simulator IV) and Spectrum Holobyte

(AT-Falcon) have certainly shown that some relatively good flight simulators can

be hosted on standard PC configurations. These programs are written in assembly

language and make extensive use of bit-block manipulations to achieve such good

visual performance. However, as we said from the beginning, software portability

across platforms was one focus of our research. Assembly language implementations

are platform specific and require major reprogramming efforts to port the application

to a different instruction set architecture or video interface.

The cost of high-end PC platforms enhanced with powerful graphics engines

are close to mini-computer prices of much greater performance capability. The PC

5-8

platform used for this research cost approximately $31,000 without discounts. This

breaks out as follows:

$ 7,000 20 MHz Compaq Deskpro/20 with 80387, 120MB hard
drive, 4MB memory, ethernet card, VGA card and color
monitor, 19 inch NTSC monitor.

$ 20,000 PC Reality board with 2 processors and 4MB of memory.

$ 3,300 PC Reality DOS or UNIX driver.

$ 800 ESIX System V operating systcn with software develop-
ment extensions, 2 user-license.

The Silicon Graphics IRIS 4D/85 GT costs approximately $50,000 without discounts.

I have shown that using a high-end PC as a CIG does not provide satisfactory

performance for the flight simulator. Flight simulators can be hosted on PCs, but

they require a great deal of custom programming in assembly language and are

not portable across platforms. The more generalized approach of programming the

flight simulator in a high order language using standard 3D graphics methods has

only been successfully demonstrated on the higher-priced mini-computer systems.

We have been able to clearly demonstrate the performance difference between a

PC with a state-of-the-art graphics engine and a Silicon Graphics 4D implementation

of the same flight simulator in side by side tests. The Silicon Graphics machine

provides a frame update rate of 15 - 20 frames per second for Z-buffered Gouraud-

shaded polygons. The PC was only able to achieve 10.3 frames per second for Z-

buffered Flat-shaded polygons in a scaled down version of the simulator (no cockpit

display). This gives us a price performance ratio of $2,500 per frame/sec for the

Silicon Graphics 4D versus $3,019 per frame/sec for the PC platform. That makes

the PC approach more costly per frame/sec than the seemingly more expensive

mini-computer approach.

One could argue that the higher performance Super Reality board with 4 Intel

i860's on-board would about double the performance of our system. This would

5-9

have achieved an approximate frame rate meeting our goal for the out-the-window

only view, but it would have also raised the price another $12,000. Even with this

price increase, one would argue that the price performance ratios are now close

enough to accept the PC approach8 . In time, Real World Graphics will improve

their support for the additional rendering attributes, and they have promised to

improve the throughput of the graphics pipeline.

The PC Reality board has the architecture to support fast graphical trans-

formations. The board handles all the object transformations, the view clip, and

display pipeline. Strangely, Real World Graphics chose not to use the i860s to per-

form all the transformation operations. The creation of the homogeneous modeling

transforms (i.e. rotate, scale, and translate) and the viewing transforms (i.e. eval-

uating the view and map transformation matrices) are done on the host computer.

Although these operations are small when contrasted with the number of multiplies

that occur when actually transforming an object description, they can cause unex-

pected processing bottlenecks. An example of one bottleneck is evident from the slow

down noted when the 3D cockpit code is executed (see Table 5.3). Unfortunately,

we do not have the tools to measure where most of the transformations are taking

place (where the processing bottleneck occurs). Even if we did, we had no means of

controlling where these transformations were occurring since we only had an 80386

development system, not an i860 development system.

An interesting theory called the wheel of reincarnation was presented by T.H.

Myer and Ivan Sutherland(34). Their theory was formulated as a result of their

development of a graphics display channel. What they found was that as more and

more functionality was added to a graphics coprocessor, the more it looked like a

general purpose processor. The more it looked liked a general purpose processor,

the more the user tended to use it as one. The added loading slowed the graphics

'Note that the Silicon Graphics system is displaying its graphical objects as Gouraud-shaded

versus our Flat-shaded objects.

5-10

coprocessor until another requirement for a fast coprocessor was established, thus

the wheel of reincarnation. One conclusion from their work was that

the display processor should be closely coupled with the parent computer,
that it should take its data from the main computer's core, and that the
user should have complete, bit-by-bit control over that data.(34)

The SGI graphics pipeline uses this principle and allows the original description

of the graphical data object to be modified in main memory and then sent into

the graphics pipeline during every frame displayed on the screen. This allows the

programmer to dynamically control the content of the data object description to

directly change its shape or attributes at any time. The object is then re-rendered

from main memory whenever it must be displayed. The SGI graphics library provides

a rich set of bit-level control mechanisms to control the object descriptions passing

through the graphics channel.

Contrasting that approach was the PC Reality system with its separate mem-

ory and constrained interface. The PHIGS graphics standard allows user defined

functions to be implemented at any level to enhance the functionality of individual

products. What the standard achieves is a required minimum functionality. Real

World Graphics' omission of bit-level control mechanisms for object descriptions and

separate storage memory was a hindrance to easily creating dynamic visual effects.

One example was turning on and off the backfacing polygons option to allow a vi-

sually appealing wingman view. The PC simulator was not able to achieve this

type of dynamic change because of the difficulty of having the 80386 edit static data

structures in an external memory. Although the PC Reality board contained 4 MB

of memory, the memory partitioning was not defined. The user memory available

to hold object descriptions in the CSS was not sufficient to load all of the standard

object descriptions uormally loaded with Flight. The PC Reality memory can hold

the structures for the infinite world, runway, buildings, hills, mountains, and one air-

5-11

craft F14D aircraft. When another large aircraft description is sent to the CSS (like

the F15), the PC Reality database overflows. All the object descriptions, local stack

storage, and executable program successfully function in the 5 MB of PC memory.

Myer and Sutherland suggest that the design of a dedicated graphics channel should

be based on using a common memory with the host processor. This ability to use a

common memory would have provided better programmer control over the CSS.

5.6 Conclusions

After working with the Flight software that was designed for a graphics co-

processor using a common memory with the host, and with the PC Reality board

that contained its own separate memory, I conclude, from an application program-

mer's point of view, that partitioning the system memory into internal and external

storage is not optimal. The common shared memory recommended by Myer and

Sutherland(34) is significantly easier to work with. With the separate memory ap-

proach, the objects had to be read into PC memory first, then preprocessed into

the correct CSS structure format. Once preprocessed, the structure or structure

networks were then sent to the PC Reality to be added to the CSS. This method

caused unnecessary program and memory inefficiency and took control of the data

structures away from the programmer. From an object oriented approach to pro-

gramming, this encapsulation of the data structure is desirable, but only when a

complete set of constructors and selectors are available.

Although I cannot say that PC's are inappropriate as CIGs for flight simulators,

a valid claim is that a PC using the PC Reality Board, configured with two i860s, and

using version 3.2 of the Reality Graphics Library is unsuitable. A fully functional

flight simulator modeled in the classic 3D graphics approach requires more processing

power than the 80386/387 host and PC Reality were able to provide. I am also not

willing to conclude that some PC configuration can never meet the performance

requirements, but a lot more effort must be expended to attain the same level of

5-12

performance obtained from workstations.

Mid-range mini-computers providing 16 - 20 MIPS continue to come down in

price. The high-end PCs continue to improve in performance and go up in price. At

this point in time, using a mini-computer is the only reasonable approach for hosting

a virtual world flight simulat-ir system that could be used as a part-task training

system.

5.7 Recommendations

My recommendations for follow-on research focus on identifying the lowest-cost

CIG that will provide a sufficient update rate to support creating a virtual world

part-task trainer.

I recommend discontinuing the use of the PC platform in future research.

The configuration used for this thesis is well suited as a fast renderer but has been

shown to be unsuitable for real-time applications. Real World Graphics' claims their

theoretical limits can support real-time applications, but the demonstrated limits

have identified that the board and it's associated graphics library are not mature

enough to meet the required performance needs. The existing board must have an 8

to 9-fold performance improvement to meet a 30 frames per second update rate for

the scaled down version of Flight-PC.

Other low-cost platforms exist that may provide a better performance capabil-

ity than the Real World Graphics PC Reality board and PC platform. Further work

should be directed to other low-end mini-computer systems that border on desktop

class systems. The new Sun SPARC 1+ stations have a networked flight simulator

that could provide a good foundation for a similar project to this. The NeXT color

computer systems are lower cost than the 'un SPARC, with comparable through-put

specified, but do not provide a flight simulator. Writing a virtual flight simulator for

the NeXT station may be one project that could be performed; creating a virtual

world interface for the flight simulator on the SPARC stations could be another.

5-13

Additional development work to network flight simulators together is recom-

mended. We had hoped to network the PC to the Silicon Graphics to demonstrate

one-one-one and two-ship flight formations. The goal was a little too ambitious for

the time allotted. Porting Flight to the PC proved to be far more difficult than ini-

tially estimated because of the change in graphical reference models. Extending the

interactive flight simulator work into a networked flight training system is the logical

next step. We had considered adopting the Army's Simulation Network (SIMNET 9)

protocol as the networking protocol. Continued work investigating and demonstrat-

ing the capability of the SIMNET protocol to support a high speed flight simulator

could provide a foundation for a possible inter-service simulator. Many skeptics have

stated that SIMNET protocols can't support high speed flight simulliions. There

appears to be no solid evidence that this is true. Demonstration of the capability

would clearly set the precedent for continued work.

5.8 Summary

A PC platform was integrated that provided a reasonable high-end processing

platform for hosting a flight simulator program. The PC was a 20 MHz 80386

AT with 80387 floating point support. This basic system was enhanced with a

Real World Graphics PC Reality board that was driven by two Intel 80860 RISC

processoi s.

We ported the flight simulator Flight hosted on a Silicon Graphics IRIS 4D/85

GT to the PC. This flight simulator is modeled using classic 3D graphics methods

and written in the high level programming language C.

An emulation was written for function calls from the SGI graphics library

to the Real World Graphics PHIGS-like graphics library. Hardware enhancements

available on the SGI machines, optimizing their graphics pipeline and input/output

9SIMNET is a networked Army tank simulator with many nodes simultaneously participating

5-14

device management, were unavailable on the PC forcing work-around solutions. The

solutions introduced some overhead processing into the emulation library.

A virtual world interface was built for the simulator. The interface consisted

of joysticks allowing throttle and stick control of the aircraft and a head position

tracking system to control the simulator view. A Polhemus sensor was used to allow

tracking the position and orientation of a user wearing the Air Force Institute of

Technology's second generation head-mounted display system.

Rehosting the flight simulator Dog to the PC platform used for this research

is not a viable approach for a low-cost part-task trainer. The best update rate

we were able to achieve was 10 frames per second from an out-the-window view

without the runway, buildings, or other terrain visible. We found that the program

was both polygon limited (how fast the PCR board could redraw the objects) and

program limited (how fast the 80386/387 could process the flight dynamics). The

end conclusion was that the visual results obtained from the PC implementation were

unsatisfactory. Mid-cost workstations providing 16-20 MIPS processor performance

provide a superior visual display and better price performance ratio than the PC

approach.

One contribution from this work was demonstrating that a transformation from

the Silicon Graphics graphical reference model to the PHIGS model can be done.

The transformation was not simple because of the hardware enhancements of the

SGI machine, but all needed functions could be emulated.

5-15

Appendix A. Dog's Object Description File Format

This appendix describes the object description file format used by the Silicon

Graphic's programs Dog and Flight. These object file definitions are used to store

the geometric descriptions of the aircraft, runway, buildings, hills, and mountains

seen in the program.

A.1 General Format Description

The object description files consist of three parts: 1) a branch list, 2) a trans-

formation list, and 3) an object geometry description or geometry list. Each part will

be described in detail in the detailed format description section.

Comments can be included in a description file. Comments are identified by

preceding a line with a # sign. Comments can be placed anywhere in a file ezcept

after a transformation value, geometry point, or vertex index line. Placing a comment

after one of these lines will cause the read routine to abort the program with a syntax

error message.

One of the best ways to gain a deeper understanding of the object file format

is to take a simple object description and walk through the code contained in the

file read.c in the flight/lib/libgobj directory.

A.2 Detailed Format Description

This section explains in detail the required format for each part of the file

format.

A.2.1 Part I: Branch Nodes. The branch nodes provide four pieces of infor-

mation: 1) the state of the object (object identification), 2) the mode of the object

(drawing attributes e.g. backface drawing on or off), 3) the number of transforma-

tions to apply to the object descriptions in this branch followed by a list of indexes

A-1

into the transformation list, and 4) the number of branches and leaves extending from

this node followed by a list of indexes into the branch or geometry lists.

The first line of this part contains an integer value identifying how many

branches are contained in the branch list. This value is used when parsing the

object description into memory. All branch node entries following this line consist

of three lines.

The first line contains the state and mode of the object to be drawn separated

by a comma. Branch zero is the first branch and is always at the root of the tree to

be executed.

State Bits. The state bits identify the section or sections of the

object to be drawn and whether backfacing polygons are drawn. If the user wants to

cull backfacing polygons, bit 31 (or high order bit) of a long integer must be on. The

lower 16 bits of the state are usually masked to all l's since branch zero describes

all parts of the aircraft to be drawn. Therefore, the Branch 0 entry for backfacing

polygons being culled would read 0x8000fMff.

Subsequent branch state bits identify the part or parts of the geometry being

represented by the branch. The state bits are defined in the file object.h. Figure A.1

identifies the basic components of the plane state bits for describing aircraft parts.

MAINBODY Ox01
LANDINGGEAR 0x02
FAR 0x04
SHADOW 0x08
FARSHADOW 0xl0
THRUST 0x20

0 0 1 1 1 1 11

Figure A.1. Plane State Bits

A-2

To represent a complete aircraft body with landing gears the state bit would

read 0x3, or a combination of the MAINBODY and LANDINGGEAR.

Mode Bits. Mode bits are used to turn on or off drawing features

of the individual branches. Four modes exist: 1) backface culling, 2) transparency,

3) Z-masking and 4) color masking. Each of these modes can be turned on or off for a

particular object. For example, if a transparent cockpit is being drawn, the user may

wish to turn off the culling of backfacing options and turn on transparency. These

modes are effective for the immediate mode of drawing into the SGI graphics pipeline,

but ineffective for the PHIGS approach. For example, in the SGI machine when the

backfacing polygons culled option is turned off (show back facing polygons) and

transparency is turned on, backfacing polygons of objects falling behind the cockpit

will be seen. In the PHIGS approach they will not be seen because of the static

feature of object descriptions in the Central Structure Store. To dynamically turn

on the backfacing polygons in objects described in a PHIGS CSS, each object falling

behind the transparent object would have to be identified, the structure opened,

edited, closed and redrawn. Another approach would be to delete the structure from

the CSS, then reload the object with the new attributes. The Z and color masks are

specific to the SGI graphics hardware pipeline capabilities.

A.2.2 Part II: Transformation List. The first line of this part is an integer

value that lists the total number of entries in the transformation list.

The subsequent lines list the transformation type, followed by the required

transformation values for the rotate, scale, or translate that will take place. Com-

ments cannot be placed after the second or subsequent lines of this part.

For more detailed information about how the transformations are effected, see

the file draw.c in the libgobj directory.

A-3

Table A.l. Transformation Identification

ROTX 0

ROTY 1

ROTZ 2

TRANSLATE 3

SCALE 4

A.2.S Part III: Geometry List. Each geometry part, except the CDVGEOM,

consists of four items: 1) a section description identification, 2) a material or color

value, 3) the number of vertex points followed by the list of vertices, and 4) the

number of polygons followed by the list of indices into the vertex list. After these

four sections are explained, the CDVGEOM format is identified.

Line 1: Section Description Identification. The objects are drawn

into the SGI graphics pipeline using a variety of different methods depending on

whether the object is a filled polygonal object, flat or smooth shaded, or colored; or

a line or point object. The possible alternatives are shown in Table A.2.

Table A.2. Geometry Section Identification

SSECTION 5 Smooth Section

FSECTION 6 Flat Shaded Section

PSECTION 7 Planar Section

CSECTION 12 Colored Section

CLSGEOM 18 Colored Lighted Section

CDVGEOM 22 Colored Point

Line 2: Material or Color Value. Line 2 means different things

for the different geometry types. The meanings are broken out as follows:

For SSECTION, FSECTION, and PSECTION line two identifies the index

into a local materials table. The materials are defined in the file light.c in the Iibgobj

A-4

directory. The materials define the color and lighting attributes of the geometric

component. The allowable material values are listed in Table A.3.

Table A.3. Material Identification

MAT-SWAMP 1 MATGRAY11 15

MAT.PLANE 2 MAT-GRAY12 16

MAT-DIRT 3 MAT.THRUSTER 17

MATGRAY0 4 MAT.GLASS 18

MAT.GRAY1 5 MAT-PROP 19

MAT-GRAY2 6 MAT.BORANGE 20

MATGRAY3 7 MAT..BLIME 21

MATGRAY4 8 MAT..BTAN 22

MAT-GRAYS 9 MAT.BGRAY 23

MATGRAY6 10 MAT-PURPLE 24

MATGRAY7 11 MAT-LPURPLE 25

MAT.GRAYS 12 MAT.F14BLACK 50

MATGRAY9 13 MAT.F14YELLOW 51

MATGRAYiO 13 MAT-WHITE 52

For CSECTION and CLSGEOM, line 2 represents a packed hexadecimal rep-

resentation of the color to use when drawing the polygon. The packed color line is a

long integer that represents the alpha channel value (transparency), and green, blue

and red values. Hexadecimal representations for the value of each color desired are

represented in two hexadecimal digits for each color. The format of the packed long

integer looks like aaggbbrr with each color value representing a number betweer, 0

and 255. A bright red object would be described with the number 0x000000ff and a

bright blue object with 0xO0fF0000.

Line 3: Vertex List. For all geometry types except PSECTION

and CDVGEOM, line 3 is an integer value identifying the number of points to

follow. For PSECTION, line three is the single normal identified for the entire

planar structure description with, line 4 identifying the number of poiDts to follow.

A-5

Line 4+ lists the appropriate vertex information based on the type of the

geometry. Comments cannot follow these vertex data lines without causing a syntax

error when the program is reading the information. The SSECTION contain both

vertex point and normal coordinatus for each point specified. This is necessary for

proper shading. FSECTION through CLSGEOM types only include the vertex

point coordinates.

Line 5: Polygon List. Line 5 is an integer value identifying the

number of polygons in the polygon list.

Line 6+ lists different information based upon the geometry type. For SSEC-

TION, PSECTION, CSECTION and CLS.GEOM, these lines represent indices into

the vertex list forming a polygon. Each line represents one polygon. For the FSEC-

TION, only one polygon is needed for each polygon, so the normal coordinates

precede the vertex reference list.

Table A.4 summarizes the data types included in the vertex data lines and the

polygon list.

CDVGEOM. Line one identifies the geometry type. Line two

lists the number of points to follow. Line 3+ lists a packed color value for the

point and the vertex coordinates for the point. Line 4 identifies the number of point

structures, and line 5 gives the index into the points list. If a single point source is

drawn, the polygon structure value is one and the index into the list is zero.

Table A.4. Vertex Information Lines

SSECTION Points and Normals Vertex Reference List

FSECTION Points Normal& and Vertex Reference List

PSECTION Points Vertex Reference List

CSECTION Points Vertex Reference List

CLS-GEOM Points Vertex Referen,.e List

CDVGEOM Packed Color and Points Points Reference List

A-6

Appendix B. Joystick Design and Functions Library

The ESIX System V operating system did not provide a device driver for a

PC game controller card. After installing the UNIX operating system on the PC,

Capt Ed Williams wrote a device driver and an Application Programmer's Interface

(API) library for interfacing with the driver.

This section describes the joystick device driver and API design. Source code

for the joystick device driver is included at the end of this appendix. The game

controller board drives both joysticks through the same port.

We had to get additional documentation from ESIX's System V Release C

Relea. e Notes (we are using release D) to get the information needed to write the

device driver. The information required was contained in Appendix C of those release

notes.

B.1 Joystick Subsystem Description

We purchased two C&H Products Flight Sticks and an 8-bit game controller

card for the ISA bus. Each Flight Stick has a separate trim wheel that is intended

to be used as a throttle control in a single joystick system. This wheel is disabled

when two joysticks are connected to the port via a Y connector.

The joystick consists of two RC (Resistor/Capacitor) circuits; one at each axis.

These RC circuits utilize a potentiometer to establish the resistance value of the

circuit based on the position of the joystick handle. As the handle is moved around,

the potentiometers are adjusted which -hanges the decay time of the capacitive

charge in the RC circuit. This voltage decay is what the game controller detects and

provides as bits in a coitrol register. Unfortunately, the potentiometers have slightly

different ratings and are generally nonlinear which make the delay times nonlinear.

B-1

B.2 Joystick Device Driver

The system was configured to use two joysticks; therefore, the trim wheel was

not included in the design. If only one joystick is used, the trim wheel is reported

as the Y axis of the second joystick.

The driver had to accommodate very rapid access to allow reading the joystick

values without significantly slowing down the overall system operation. The flight

simulator's main loop had to execute every 50 ms to obtain a graphics update rate

of 30 frames per second. The actual time spent reading the joystick port had to be

a small percentage of that 50 ms.

The information provided by the game controller card is TTL (transistor to

transistor logic) compatible signals. When the RC voltage discharges to a level less

than 0.7 volts, the bit value in the control register drops to zero. If the voltage level

raises to above 2.7 volts, the bit value changes to one. The control bit assignments

are shown in Figure B.1.

B B A A BY BX AY AXivre
Top Trig Top Trig W .. .Y A. -ivre

Figure B.1. Joystick Control Register Bits

Capt Williams developed two different approaches to reading the port. The

first tried to stabilize the fluctuating instantaneous time values of the RC voltage

decay. Unfortunately, the read took approximately 30 to 40 ms per axis. After being

told of the 50 ms loop requirement, Capt Williams exploited the true power of the

C programming language and manipulated everything at the bit level. Through a

sequence of bitwise masks, XORs, and ORs, he was able to read the values of the

four potentiometers (two in each stick) and the button pushes in a total of 2 ms or

less.

B-2

The basic design of the joystick driver follows:

output any value to the port setting all timer flags to one
loop

read control registers
if any bits are zero record current loop count to determine time

and record which bits were zero
increment loop count
continue until all four joystick flag bits are zero

end loop
Make another read to get button pushes
invert button flags
shift right by 4-bits
Put buttons and axis values into buffer
return

Note that the button values will be a value between 0 - 24 depending on which

combination of joystick buttons are depressed when the buttons are read. Also, note

that the position outputs to the joystick control registers are in an inverted state

from a normal binary read or all ones when the value is zero. We are looking for a

voltage drop to indicate a joystick axis has been read; therefore the joystick axes bits

merely serve as flags to show that the RC circuits have decayed. The actual time of

the RC voltage time decay is registered by the loop counter, with each count being

approximately 10 hs.

The device driver is a standard UNIX System V device driver and requires the

same support files as any other device driver. These support files are gc.node, gc.dev,

and Master. The ESIX release notes have further information on installing device

drivers.

B.3 Joystick Routines

The low-level joystick routines include:

" A joystick initialization routine

" Joystick read routines

" Button read routines

B-3

9 A user calibration routine

An initialization routine opens the joystick device and puts the file descriptor

in the file local variable gcifd. The initialization routine is automatically called if

the programmer uses the calibrate-stick routine.

A read routine provides a scaled joystick position for both joysticks and a

composite decimal value that must be interpreted to determine which combination

of buttons was depressed. A series of macros have been defined for the most common

joystick button reads. One joystick read returns the five values (stick 0 x and y, stick

1 x and y, buttons value) in a structure with five members.

A user calibration routine is available which should be used during the initial

setup of an application program. Starting with stick zero (the left joystick) this

routine has the user strike the enter key when the stick is in the center position

registering the raw value (RC voltage decay time). The user then moves the stick

to the upper left and presses the top joystick button registering the raw values for

this corner. The joystick is then positioned in the lower right corner and the top

button is pressed again. This calibration operation is repeated for stick one (the

right joystick). These raw values are then translated and scaled depending on the

user defined joystick range variables.

B.4 Joystick Functions Library

Capt Williams designed several desirable features into the joystick API. These

included:

" Center oriented calibration

" User-defined coordinate system

" A center dead zone

" A jitter parameter

B-4

The raw values read from the joysticks did not provide a linear set of values

centered around the (0,0) position. Instead, the center position was offset somewhat

as shown in Figure B.2.

Figure B.2. Raw Joystick Range

Since all the functions of a flight simulator are center oriented, Capt Williams

developed a means to make the joystick range a user-definable range (such as from -

100 to +100 or 0 to 1000) and centered about the origin like that shown in Figure B.3.

-100, 100 100, 100

t.. + - dead zone
Ll J ±10

jitter
±3

Figure B.3. User Defined Joystick Range

The programmer definable center dead zone variable exists to help prevent

readings from a hand resting on the joystick in the center position and accidentally

B-5

pushing the stick slightly in any direction. A nominai dead zone of no more than

three is recommended for normal use.

The programmer definable jitter parameter also exists to help smooth out

instantaneous variations caused by slight differences in reading the RC voltage decay.

This jitter parameter always surrounds the current location of the joystick position.

A nominal jitter value of no more than one or two is recommended for normal use.

B.5 Game Controller Driver Source Code

Header File.

/.

* gc.h
*/

#define True (1 1)

#define False (o i)

* some definitions to include kernel info from system header files.
*/

#define KERNEL 1
#define defined.io 1
#define NOSTREAMS 1

* structure definition for the return data
*/

typedef struct

unsigned short a_x, ay.
b_x, by;

char buttons;

} STICK-DATA;

Source File.

* Copyright (c) 1990 Air Force Institute of Technology
* This is FREE software. NO WARRANTY.

B-6

* FILE : gc.c

* PROJECT : Virtual World Flight Simulator
* VERSION : 1.0

* DESCRIPTION: Device driver for the joystick game controller under
* ESIX System V operating system.
*

* FUNCTIONS:

* gc.read(dev)
* dummyo)

* DATE WRITTEN: 30 August 1990 by Ed Williams
* LAST MODIFIED:
* HISTORY:
* Log

#include <sys/types.h>
#include <sys/param.h>
#include <sys/dir.h>
#include <sys/signal.h>
#include <sys/errno.h>
#include <sys/user.h>

#include <sys/sysmacros.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/buf.h>
#include <sys/tty.h>

#include "gc.h"
#define BUTTON-MASK OxfO;

static unsigned tout = 500;
static char flag;

uummy ()
{
flag = 0;

}

/* ** * ** * * * ** ** **** ** * *** ** * ** **** ** * ** *** * **** * ** ** * **** ** **** ** * ** *** ** * ** **
* METHOD DAME: gc-read(dev)
* DESCRIPTION: Reads the control register bits and returns raw timing
* counts of the time it took for the joystick RC voltage to decay. Also
" reads the button bits, shifts them right 4-bits and returns the
* register value.
* PARAMETERS: STICK-DATA data; <The resulting data is output to the device>
* RETURNS: void
* GLOBAL VARIABLES USED:

B-7

* DATE WRITTEN: 30 Aug 90 by Ed Williams

* DATE MODIFIED:
* NOTES:

* HISTORY:

gc-read(dev)

devt dev;
{

STICK-DATA data;
register int s;

register unsigned bits. c;
unsigned stack [8];
register int i;

register unsigned j;

i = 0;

bits = OxO;
outb(0z201, 0);

s = spl7();
for(j = 0; j < tout kk bits; j++)
{
c = inb(Ox201) & OxOf;

if(c - bits)
{

stack[i++] = c - bits;
stack[i++] = j;
bits &= -(c - bits);

}
}

spix(s);

data.buttons = (-inb(Ox201) >> 4) & OxOf;

i -= 2;

while(i >= 0)
{

switch(stack [i])
{

case 1: data.a-x = stack[i+1]; break;

case 2: data.ay = stack[i+1]; break;
case 3: data.a-x = stack[i+1];

data.a-y = stack[i+l]; break;
case 4: data.b-z = stack[i+1]; break;
case 5: data.a-x = stack[i+1];

data.b-x = stack[i+1]; break;
case 6: data.ay = stack[i+1];

data.b-x = stack[i+1); break;
case 7: data.a-x = stack[i+i];

data.a.y = stack[i+1J;
data.b-x = stack[i+1]; break;

B-8

case 8: data.b.j = stack~i+1); break;
case 9: data.a~x = stack[i+l);

data.b.y = stack~i+l); break;
case 10: data.a-y = stack~i+1J;

data.b-.y = stack~i+1); break;
case II: data.a-.x = stack~i+l);

data.a.y = stack~i+1J;
data.b.y = stack~i+l); break;

case 12: data.b..z = stack[i+1);
data.b.y = stack~i+1J; break;

case 13: data.a-.x = stack~i+1);
data.b-x. = stack~i+i);
data.b-y = stack[i+1J; break;

case 14: data.a-.y = stack[i+l);
data.b.x = stack[i+l);
data.b-.y = stackti+1); break;

case 15: data.a-.x = stack~i+l];
data.a~y = stack[i+l);
data.b-.x = stack~i+lI;
data.b.j = stack~i+l); break;

i - 2;

copyoutCkdata, u.u-.base, sizeof(STICK_.DATA));
u.u..base += sizeofCSTICK-.DATA);
u.u-count - sizeofCSTICK..DATA);

B-9

Appendix C. Detailed Design Notes

This appendix presents specific methods used to emulate the more important

functions required to implement the flight simulator software. This information is

presented to document some of the design decisions and emulation rationale used

during this research. Hopefully this information will be useful to any follow-on

development using a similar platform.

C. 1 Graphical Reference Model Parameters

Modeling and viewing parameters are not common between the PHIGS graph-

ical reference model and the SGI graphical reference model. At times, two or more

SGI functions must be called before all the parameters are initialized for a single PCR

PHIGS function call. Because of these differences, I liberally used global variables for

the modeling attributes and viewing parameters used by the PCR implementation of

the PHIGS model. Some indexing methods also required distribution between more

than one SGI function thus qualifying them for global definition.

C.2 Drawing Flight Geometry Objects

A library of user defined routines are included with the Flight software. These

routines provide functions to read a geometry file into memory and then to send the

geometry description to the SGI graphics pipeline. These functions are included in

the library directory libgobj. The method used to read the geometry description into

memory was acceptable for our implementation. My focus was on how to extract the

geometry information from the data structure in memory, and put it into a static

structure description used by the PC Reality PHIGS Central Structure Store (CSS).

Each object entered into the CSS needed to be capable of accepting transformations

to allow independent motion (such as a plane landing on an airfield or landing gears

being raised). To facilitate this requirement, a pointer to a global and local transfor-

C-1

mation matrix which had been initialized to the identity matrix was inserted as the

first two elements of every structure. The PCR board has a table of transformation

matrices (G-49) stoeed in local memory. By reserving indexes into this table of matri-

ces for different types of objects (like aircraft, aircraft parts - wings and wheels, and

other objects) each object could be independently moved at a later time by modi-

fying the transformation matrix in the table. During a previous design approach, I

had inserted the matrices into the structure rather than just the pointers. In order

to move the objects, the structure had to be edited to replace the existing matrix

with a new one. This was a time consuming process and much less efficient than

the current implementation. The matrix index for the local transformation matrices

of aircraft are defined to be 0 through 9 and can be accessed through the #define

established for each aircraft. For example, the C150 is defined as 0 (zero) and is

also the index into the table of matrices that is the local transformation matrix for

the C150. The global transformation matrix index is accessed through the - craft

#define number + 10. A #define value has been set up for each aircraft that has

been put in objects.h by preceding the aircraft name with a G for global (i.e. #define

GC150 (C150 + 10)). For static objects like the buildings, runway, mountains, etc.,

the local matrix is OBJECTSIX and the global is GOBJEC rS_IX. When transforma-

tions are being done that do not affect any object, a NULLIX should be used. The

transformation methods (rotate (rot), scale, and translate) are tied to the table of

transformation matrices. If the position of the C150 needs to be updated, the global

variable transix must be set equal to C150, then call the transformations you want

to apply to the aircraft. As a safe programming practice, the transfix should be set

to the NULLIX when the object transformations are completed. For transforma-

tions that you do not want reflected in the table of matrices, set or leave the global

transix to the NULLIX. NULLIX is defined to be 50 which is off the end of the table

of matrices. An if statement captures any transfix > 49 and does not post it into

the table.

C-2

The SGI call to drawobjO works differently than how I was able to emulate the

function. A call to readobject() stores the geometric description of the aircraft with

any local transformations into SGI system memory. Each time through the main

loop of the flight simulator a call to drawobj0 is made for each object displayed in the

simulation. This call starts a traversal of the data structure redrawing the aircraft

into the graphics pipeline. Any modifications to the object or list of transformations

is traversed and executed as if it were the first time the object were being drawn.

This approach cannot be used when using the PHIGS CSS. On the PC, the object

structure is read into local PC memory using the readobj() call. This description is

then parsed and sent to a similar PHIGS hierarchical description in memory on the

PC Reality board. For each aircraft part, an independent structure is created. At

the beginning of each of the component structures a local transformation matrix is

inserted with any 1. ;al transformations that position the parts (such as the wheels).

Note that for aircraft parts, the local transformation matrices are inserted into the

structure itself rather than just an index into the table of matrices. This was done

because there are not enough matrices in the table to accommodate all unique parts.

The aircraft is then put together in the hierarchy of the CSS by creating a structure

network. A global structure element is created with the indices into the table of

matrices and then an RExecuteo call for each part of the aircraft. The only method

of changing the description is to delete the entire description and read in a new

description (a slow process) or to post changes by editing the static structure store

in PCR memory.

As a result of the static representation of the aircraft in PCR memory, the

drawobj() calls were moved out of the main loop of the flight simulation. They

were drawn as a preprocessing step prior to the main loop. Note that only local

modeling changes needed to be edited into the static structure stores (such as for

retracting wheels or sweeping wings). Positioning of the aircraft was done similar to

the methods used for the SGI graphics pipeline by transforming the aircraft position

C-3

from the origin to its current location and orientation in each pass of the loop.

These changes in position and orientation of the entire aircraft were achieved through

modifying the transformation table as described above.

To support drawing polygons into the CSS, an emulation of the SGI high-

performance drawing mode was required. The high-performance drawing mode pro-

vides the fastest means of drawing primitive graphical figures on a 4D series machine.

The old IRIS method of defining an object using makeobjo is still supported (39:2.35,

16.2) but is less eicient than the new high-performance mode routines. The new

mode defines points, lines, and polygons in terms of vertices. A point is a single ver-

tex, a line segment is two vertices identifying the end points, and a polygon is a set

of three or more vertices identifying the corners. To draw a graphical object in this

mode, a series of vertex subroutines must be used - surrounded by a pair of begin

and end subroutines marking the beginning and end of the object definition (39:2.2).

To emulate the SGI n3f() (normals) and v3f() (vertices) functions, different

array addressing schemes had to be implemented - one for the normals and one for

the vertices. n3f() update-s all subsequent normals for vertices sent to the graphi.s

pipeline so it can be used to update all the normals of a flat shaded polygon or set

each subsequent normal for a GOURAUD shaded polygon. v3f() sends the polygon

vertices directly to the graphics pipeline. Each of these functions have only one

parameter which is the address of the normal or vector array to send to the graphics

pipeline. This information has to be stored into a polygon array to be able to use

the PCR RConvexFiII 0 function. Since the array indexing is accomplished external

to the two functions, a local static variable was used to keep the array indexing

progress, one variable for each function. Several #define statements were developed

to accommodate correct incrementing and resetting of the static variables.

To write polygon descriptions into the CSS, I chose to use an incremental

RConvexFill() approach rather than the more eloquent RVertexRefList() approach be-

cause there is a 100 vertex limit on any one object definition (37:B.42). The flight

C-4

program has several objects that have more than 100 vertices defined. The RCon-

vexFill() approach parses vertex arrays into polygon definitions and then sends them

to the PC Reality memory as individual polygons. The RVertexRefList() approach

would have allowed direct use of the object reference definitions in the Dog object

definitions files.

The SGI lighting model requires three components to be able to perform a

lighting calculation: 1) a surface material, 2) a light source, and 3) a lighting model.

These are set by using the Imdef() and Imbind() functions (39:9.36 - 9.47). The Imdef()

function can define all three of the components in the SGI lighting calculation. The

definitions of the various components were stored in local arrays for use with PC

Reality function calls that partially implement the SGI functions. SGI methods

allow independent specification of ambient, diffuse, and specular color reflections

for materials whereas the PC Reality does not. The Imbindo function emulation

presented a challenge because the function can be used in the SGI graphics pipeline

at any time. Many of the comparable functions in the PC Rcality graphics pipeline

(such as setting object surface properties) could only be executed when a static CSS

structure was built. Careful use of the functions had to be observed to prevent

violating the PC Reality graphics pipeline rules.

C.2.1 Viewing Reference Model Emulation Flight only uses two graphics li-

brary function calls that effect the viewing parameters: viewport() and perspectiveo.

A third function emulation for lookat() was also developed to attempt a replacemei

for a custom Flight function named my-lookat). This last function is used for the

tower view.

viewport() defines the left, right, bottom, and top edges of the viewport, de-

fined in screen coordinates, as arguments to the function. We are restricted to NTSC

mode, thus the maximum screen coordinates are 640 X 484. To emlilate the view-

port() call in PHIGS, the parameters were normalized by dividing by the maximum

C-5

screen values. These values were then loaded into the first four positions of the

six position viewport array required by the PCR library function REvalViewMap-

Matrix30 . The last two positions of the array define the minimum and maximum

viewport limits in z and are loaded with the minimum (-1.0) and maximum (0.0) val-

ues in normalized projection coordinates (NPC). The other parameters required by

the function REvalViewMapMatrix3() are defined by the SGI function perspectiveo.

The PRP is defined by default as (0,0,0) - the . nater of the VRC system - for a

viewer oriented view. The PRP can be changed by directly assigning new values

to the global floating point array prp[]. REvalViewMapMatrix3() is called in both

the viewport() and perspective() function calls because of the distribution of the the

PHIGS required variables between the two functions. If viewporto is called before

perspective() default values established in global variables are used.

perspective() specifies a viewing pyramid into the world coordinate system. The

parameters define the field-of-view angle, in tenths of degrees, in the y direction; an

aspect ratio which determines the field-of-view in the x direction; and the ne.r

and far clipping planes specified in positive distances from the viewer. The PHIGS

viewing model allows more degrees of freedom than the SGI viewing model. To align

the two different models, some of the PHIGS degrees of freedom had to be fixed.

One of these was the view plane distance (VPD). This distance, in conjunction

with the PCR model's window coordinates, and front and back plane distances,

establish the shape of the perspective view volume. The correct VPD for Flight

was determined by testing images on the screen and adjusting the VPD until the

same perspective was achieved on the PC display as on the SGI display. The correct

VPD for Flight was -500.0. Note the distance is specified in negative distance rather

than positive distance. Both the SGI and the PCR PHIGS view reference models

use right-handed coordinate systems and both define the viewing volume down the

negative z axis1 . The near and far parameters of the perspective() function call are

'The viewing volume surrounds the -Z axis

C-6

specified in positive distances. The function emulation is accomplished by using

the parameters to establish the PCR PHIGS window parameters. These parameters

define the four comers of the view window located at the VPD from the viewer (see

figure 4.3). The sides of the viewing volume are defined by rays emanating from the

PRP and passing through the four corners of the view window. Figure C.1 illustrates

Window Corner

PRP -- t ° X---------- -zaxis

Figure C.1. View Parameters

that the dimensions of the window is a ratio of half the view window width in y to

the distance from the center of projection or PRP to the view plane. By fixing the

distance to the view plane, we can then control the width of the view plane with the

perspective() field-of-view and aspect parameters. The front and back plane distances

are the negative of the near and far plane specifications.

C.S Device Queueing

The SGI graphics library supports three classes of input devices: valuators,

buttons, and other devices. Valuators provide integer input from devices such as

the horizontal and vertical position of the mouse. Buttons return a boolean value

identifying whether they are pressed or not. Other devices include the keyboard key

presses or combination of key presses.

SGI provides two means for getting values from input devices: polling or queue-

ing. Polling gets a value from the device whereas queueing uses an event queue to

C-7

save changes in device values and other input events so the program can read them

later. Although both polling and queueing are used in Flight, only queueing affected

our emulation.

Devices that are queued act as asynchronous devices independent from the

user process. Whenever a device changes state, an entry is made in the event queue.

The user specifies which device will be queued in the event queue. Each entry into

the event queue includes the device number and a device value. Although the SGI

input queue can contain up to 101 events at the same time, the emulation limits the

queue to 64 events.

The SGI event queue allows the user to specify which devices to queue and

then allows only those devices to enter changes in state to the event queue. The

emulation of their event queue isn't quite as robust. The event queue emulation

restricts input devices to the keyboard. However, the programmer has the flexibility

for manually queueing events into the event queue. The event queue emulation

provides a qdevice 0 function only for library compatibility. The function serves

to initialize the emulation event queue. Other queueing functions provided in the

emulation include qenter(, qreset(, qtest0, and qread 0 . All functions but qread 0

work identical to the SGI functions. The SGI qread 0 will block until a device queues

- the emulation does not block. The rest of the SGI event queue functions were not

applicable to supporting Flight and were not implemented.

The event queue emulation is a circular queue reading inputs from the key-

board. Each time through the main loop in the Flight program, a call to qread 0 is

made which checks to see if there have been any keys depressed at the keyboard,

if there have, then it enters the device number and key value. Key values are not

equivalent to the same key values used by the SGI keyboard. Reference the include

file keys.h for specific key values assigned for the AT-386 keyboard definition.

Because the event queue emulation does not block, a simple change to the Flight

function wait-forinput() was required. The function now waits for a key depress and

C-8

throws away the value of the key.

C.4 Communications Software

Dog uses the User Datagram Protocol and Internet Protocol (UDP/IP) for

its network interface. This code uses much older function calls to implement the

protocols at the network layer irtc.d of the transport layer of the Open Systems

Interconnection (OSI) model2 . Although the older functions still exist in the ESIX

library, they are undocumented.

The UDP service provides a transport-level datagram service. ESIX reports

that this protocol is basically an unreliable service, with delivery and duplication

protection not guaranteed(10:2/4). Like the more common Transport Control Pro-

tocol (TCP), UDP is expected to work with the Internet Protocol. UDP assembles

a data unit and hands it to IP for transmission. There is no error provision and only

a one-way handshake is used. Invalid data units are checked with a passed checksum

with invalid units simply being discarded.

My attempt at using the existing network code failed. With the tools available,

I was able to collect enough information to surmise that the socket was not being

established correctly, in non-blocking mode, at the network layer. To implement

a network connection, the code would have to be rewritten from scratch using the

newer transport level calls documented in the ESIX documentation.

2For a description of the OSI model see the Network/STREAMS Programming Guide(!0:1/1).
3The Silicon Graphics documentation also supports only the newer transport level calls.

C-9

Appendix D. Thesis System Integration

Working within the fiscal constraints of this thesis, the system integration plan

consisted of obtaining parts and components from a number of different sources. The

system configuration was defined to be an 80386 PC platform with:

* 100 Megabyte or larger Hard Disk

* 5 Megabytes of memory

* Graphics engine providing NTSC output

9 Standard VGA driver for software development

e VGA monitor

* NTSC color monitor

e Ethernet card

* Multi-IO card with serial and parallel interfaces

9 Joystick card

* 2 joysticks

Trying to maintain compatibility with the cooperative thesis effort being de-

veloped on the Silicon Graphics IRIS 4D 85/GT, the operating system was defined

to be UNIX system V.

The basic PC platform with VGA monitor and a 19 inch NTSC monitor

was borrowed from the Human Resources Laboratory, Operations Training Divi-

sion (OTE) at Williams AFB. The machine they provided was a Compaq Deskpro

386/20 with 1 Megabyte of RAM, a multi-IO card with one serial and one parallel

port, and a 65 Megabyte Hard Disk.

A few components were borrowed from within the institute. These were a 120

Megabyte hard disk, an ethernet card, and a mouse.

D-1

The graphics engine was purchased from Simulation Technologies Inc. acting

as the United States sales agent for the United Kingdom's Real World Graphics

Ltd.. Real World Graphics Ltd. manufactures the board and developed the graphics

library interface to the underlying hardware.

The two joysticks and joystick card were purchased from a local vendor.

Finally, I purchased the ESIX System V operating system which is quite a

robust package with a low price tag (less than $1000).

Now all that remained was to integrate the parts and get a working system.

Integration would simply consist of plugging in all the required PC boards, load-

ing the ESIX system V operating system with their install programi and start my

development work.

D.1 Integration Problems

Many problems were encountered, these problems are identified only to high-

light the dangers of system integration. The lesson I hope to convey is that system

integration is an important, but difficult part of an application development; a part

that might be better left to a vendor.

The first difficulty started with the borrowed PC platform from Williams AFB.

A number of problems were encountered with this platform; most could have been

avoided if I had more knowledge about the non-standard configuration of Compaq

machines.

The basic computer platform selected for the development provided a num-

ber of problems. The system was a borrowed resource and as I learned through

experience, a non-standard platform.

The first problem encountered was difficulty getting the system shipped from

OTE. The point of contact (POC) at OTE wanted a formal letter from the School

of Engineering at AFIT identifying the transfer of equipment. This letter had to be

D-2

processed through headquarters (HQ) Air Force Systems Command (AFSC) which

then required inter-command coordination between AFSC and Air University (AU).

The result was that the system was requested in February 89, but did not leave

Williams AFB until July 89.

This delay required other needed parts to be ordered ad hoc from my guess of

what was required. Compaq Corp. technical services requires system users to deal

directly with authorized local dealers for technical questions or problems concerning

Compaq computers. The sales staff at the two authorized local dealers in Dayton

did not have comprehensive knowledge about Compaq systems. Each time I called

a dealer, the sales representative tried handling my technical question. Each time

I received advice, follow-up work showed the information to be erroneous. I did

not discover that these local dealers had more knowledgable service representatives

available until much later; unfortunately, the service representatives did not possess

all the information needed either.

The system was shipped from OTE after involving some new people, these

individuals distinguished themselves by getting the system into shipping channels

within a week and shipping it Air Logistics which got the system to me within

another week.

Unfortunately, the basic platform was damaged in transit. The high voltage

line in the VGA monitor and the 65 Megabyte hard disk were damaged. AFIT/SC

distinguished themselves by their outstanding support to get the system fixed. They

added the system hardware to their repair support contract. The VGA monitor was

picked up the day after it arrived and sent off for repair. The hard disk failures

were intermittent and we finally succumbed to the problem after about a week of

fighting with it. We sent the whole system out for repair through the AFIT support

subcontractor. The monitor came back repaired about 4 weeks after it was sent and

the computer came back about 6 weeks after it was sent. Unfortunately, the hard

disk was still working intermittently after repair and was not reliable enough to use.

D-3

I was not able to initially use the 120 Megabyte MFM (Modified Frequency

Modulation) Hard Disk that I had borrowed from AFIT/ENG. The Compaq uses

IDE (Integrated Device Electronics) disk drives and disk controllers. I had assumed

it used an MFM controller. This was one disadvantage of trying to guess a system's

configuration. I had asked OTE what size hard disk was in the machine but didn't

think to specifically ask what type of hard disk and controller was used. I wasn't

too concerned about the lack of disk space because ESIX system V provided Remote

File System (RFS) support to other system V units. The Silicon Graphics 4D had

plenty of disk space and was running system V unix. 1 didn't find out until late

August that Silicon Graphics only provides the Network File System (NFS) protocol

and not the RFS protocol - the hard disk size became an issue again.

With the 65 MB IDE drive still malfunctioning, and no way to use RFS sup-

port for additional disk space, I had to consider alternate hard disk configurations.

The most obvious solution was to just buy a new 100 MB (or larger) IDE hard

disk. Unfortunately, these cost in excess of $800. Our funds had already been de-

pleted. The lowest cost alternative was to disable the hard disk control portion of

the Compaq hard disk controller (leaving the controller to control the floppy disk)

and install an MFM hard disk (only) controller. The 120 MB disk could then be

installed solving all the storage problems. This was the option chosen. After buying

the card from a local Compaq vendor, we could not get it to work correctly in the

system. We eventually carried the system to the vendor and had them install the

card. Fortunately, the plan worked and we were able to install UNIX on the system.

The ethernet card borrowed from AFIT/ENG did not work out either. After

studying the ESIX system V release notes, I understood the severity of my oversight

in reading the sales literature. The sales literature had listed ESIX support for

numerous vendors. That list turned out to be an all inclusive list. The release

notes identified that only components from those vendors were supported and only

certain models of those vendors cquipment were supported. AFIT/ENG had three

D-4

different manufacturers ethernet cards that they could provide me, none of which

were supported by ESIX. Some more homework identified a Western Digital ethernet

card as the cheapest compatible card available. Good fortune arrived, as I was calling

to order the card, I saw an unused card on a table near the phone. I asked the owner

if I could borrow it and he was gracious.

The joysticks and driver card presented two problems. First, ESIX provided

no drivers for joystick cards. Fortunately, Capt Ed Williams (a UNIX expert) volun-

teered to write any required drivers needed. Second, August arrived and the joysticks

still had not arrived. The company we ordered the components from had sold out

to another national company and the order got lost somewhere. After three weeks

of follow-up we finally connected with the right person and an order was shipped.

We ordered two joysticks (throttle and stick) and one controller and received one

joystick and two controllers. The company gladly corrected their mistake, but it cost

another three weeks time to fix the error.

The PC Reality Board integration also caused problems. The board was

shipped with the default address set to 0240 hexadecimal (H) while the documen-

tation stated it was set to 0300H. We detected the incorrect addressing and set

jumpers to install the board. The board was first installed on a Zenith 248 system

under DOS while the Compaq was out for repair. After successfully integrating the

board on the Z-248 platform, I developed a viewit program to test the capabilities

of the Reality Graphics Library. After a working Compaq system was returned,

the board was installed to run under UNIX. Real World Graphics had provided a

generic UNIX driver to build into the kernel. Capt Ed Williams built the kernel but

had to patch the base address of the board in the Reality Graphics Environment

(RGE). Real World Graphics had established the base address as 200H instead of

0300H claiming their was a UNIX device driver at 0300H. There is no device driver

at 0300H, so using the Norton Utilities program - Norton Disk Doctor, the addresses

in the RGE were patched to 0300H. The dcfault values in the Reality 'Wiary API are

D-5

set to 0300H, had the 0200H addressing scheme been used,the base address of the

board would have needed to be reset by the software every time a program was ex-

ecuted. After successfully integrating the board and the driver, I attempted to port

the viewit program developed under DOS using an earlier version of their library.

The program didn't work. RGE version 3.2 required the use of an undocumented

command open reality-comms() before making the call to RGEOpenO. This undocu-

mented command was discovered by inspecting the source code in a demonstration

program pro-tided with the PC Reality UNIX driver.

September 1, 1990 marked the first day of having a full hardware platform

ready for serious software development. The myriad of hardware and integration

problems had seriously slipped the development schedule.

I strongly recommend that if a follow-on thesis is organized after the Compaq

system is returned to Williams AFB, a fully configured PC platform with the UNIX

operating system installed, be purchased from a local vendor. This will facilitate

local support if problems develop. The only integration issue remains with the PC

Reality board or any other graphics engine not supported by a single vendor.

D-6

Appendix E. Flight-PC Operating Instructions

Flight is the Silicon Graphics' flight simulator provided for their IRIS 3 and 4

architectures. Keith Seto, technical manager for Silicon Graphics Inc. (SGI), gave

special permission to port the flight simulator to a single PC system in support of

thesis work being conducted at the Air Force Institute of Technology. The flight

simulator was modified to use a virtual interface that consists of a head mounted

display for viewing and joysticks for aircraft control. This appendix provides a

brief description of the command line options and operating instructions for the PC

version of the Virtual Flight Simulator (VFS) derived from Flight.

E. 1 Background

The PC uses a state-of-the-art graphics coprocessor to drive the single graph-

ics channel of the VFS. This graphics engine was the PC Reality purchased from

a British Firm Real World Graphics Ltd. through their U.S. subsidiary Simulation

Technologies Inc.. The PC Reality is based on Intel's new RISC processor archi-

tecture - the 80860. The board uses two 80860s, one acts as a preprocessor to the

second processor. Accompanying the board was a graphics library based upon the

PHIGS PLUS standard. The library was a Beta version and lacked much of the

functionality defined by the complete standard. The functions that were available

supported building a Central Structure Store1 (CSS) and 3D concave filled poly-

gons. The missing functions2 forced several features of the program to be lost in the

translation.

Text and 2D functions were under development by Real World Graphics, but

not in time for our use in this prototype development. In addition to the missing func-

tions, several deficiencies were encountered with the Reality Graphics Environment

'An object database.
23D lines, 2D polygons and lines, Text, and overlay plane.

E-1

(RGE) which loads the board with the executable portion of the 80860 code3 . We

4found that the scan-line Z-buffer algorithm could not handle penetrating polygons

This deficiency explains why the user sees the skull and cross bones flickering on and

off when viewing the F14D or F15. The runway description was modified to pre-

vent that effect from occurring for all the lines and taxi-ways. The global modeling

transform was supposed to move structures relative to the world coordinate system.

Real World Graphics' incorrectly implemented this global transform in Version 3.2

of the library by moving objects relative to the View Reference Coordinate (VRC)

system rather than world coordinates. Thus, only the local modeling transform was

available to use for motion - this is why I didn't implement moving flaps and landing

gears. Component movement could have been accommodated, but for a prototype

development, wasn't considered essential. Another severe developmental detriment

was that I couldn't get the PC Reality graphics library's RLabel() to function cor-

rectiy. This prevented accessing the specific locations within a structure or structure

element contained in the CSS without knowing the explicit position of the element

relative to the start of the structure. Lacking a method to read the description from

the CSS', this task was impossible.

To use the program with the Polhemus sensor, the program flight.c must be

recompiled using the -DPOLHEMUS flag set in the Makefile, then relinked with the

rest of the programs. This is easily accomplished by uncommenting the flag in the

Makefile, executing the UNIX function touch on flight.c and executing make at the

command line prompt. When the Polhemus sensor is used, the sensor must be turned

on before executing flight.

E.2 Command Line Options

Flight has several command line options (summarized in Table E.1) that execute

3We did not have an 80860 development system to modify, correct, or enhance this code.
4 Silicon Graphics' object descriptions use many penetrating or coplanar polygons.
'No selector functions are included in the library.

E-2

the program using different features or capabilities. The standard Flight options that

are functional for this implementation and two new command switches are described.

Table E.1. Command Line Options

-h HUD Mode Full Screen out-the-window view with no instrumentation.

-2 Test Mode Keeps your gas tank full and weapons load full.

-a Anti-aliasing Mode Implements the PC Reality anti-aliasing mode - Very slow.

-g Gouraud Shading Implements the PC Reality Gouraud shading mode - RGE imple-

mentation does NOT correctly implement Gouraud shading.

As described in the Table E.1, the HUD mode does not contain any of the 2D

instrumentation contained in Flight executing on the Silicon Graphics. The HUD

instruments are drawn in an overlay plane on the SGI screen. The 4-bit overlay

plane for the PC Reality was inaccessible with RGE Version 3.2. Text and 2D

functions were absent also, so the PC screen rather than the high resolution RGB

monitor was used for essential text output .

The anti-alias mode works as advertised' but slows the system to approxi-

mately 1 frame/sec when using the wingman or tower views (see Section E.3 for

details on using these views.).

Gouraud shading is implemented incorrectly in the RGE code. Apparently a

global surface attribute is applied to all objects in the CSS thus projecting all objects

in their true color at full intensity. The objects look smuother due to wash-out rather

than prope. shading.

CAUTION: This program cannot be the first program executed after applying

power to the PC because of a bug in the Reality Graphics Environment, see the

Notes section for further details.

6See the Reality PC User's Guide, Issue No. 2.

E-3

E.3 Operating Instructions

Both a text display, standard VGA monitor connected to the PC or workstation

monitor connected over a network; and a non-interlaced, 30 Hz horizontal scan, high

resolution red, green, blue (RGB) monitor with a synchronization signal is required.

The graphical output uses NTSC resolution, not signals.

Initialization instructions, help, and report cards are all displayed on the text

terminal used with the PC. The PC is accessible through network connections and

can be flown with any kind of workstation connected, as long as the joysticks are

available'. Not all keyboards map to the same key codes as the AT-386 keyboard.

Some functionality may be lost when using different keyboards9 .

The simulator is flown through the use of the joysticks. The left stick (or

stick-0) controls the throttle, rudders, flaps, and spoilers. The right stick (or stickil)

steers the aircraft.

On-line instructions are available through the help screen. The help screen is

accessible through the keyboard and joysticks. To bring up help, press the 'h' key on

the keyboard or press the fire-button on the left stick and both buttons on the right

stick simultaneously. Table E.2 provides a summary of the operating instructions

for Flight-PC. Other keyboard commands used in the SGI version may also function

correctly for Flight-PC but have not been tested.

Flight characteristics do not function the same as in Flight-SGI. Wing stalls and

G-limits are not enforced and all the aircraft can pull outside loops. The collision

detection feature used by the Silicon Graphics systems is not available in the PC

version; thus, you can fly through hangars, hills, and mountains.

The PC cockpit display is shown in Figure E.1. Flaps indicators are blue

7NTSC resolution is 640 X 484.
'Most of the developmental test work was done with the joysticks positioned to either side of a

Sun3 connected to the PC via ethernet.
'Changing views to over the wings or behind the aircraft were inaccessible when using the Sun3

keyboard, all other functions worked correctly.

E-4

Table E.2. Keyboard and VFS Interface

s/a Thrust (+/-) stickO move +/- y axis

f/F Flaps(+/-) both-buttons_0 && stickO move +/- y axis

c/C Spoilers(+/-) both-buttons-l && stickO move +/- y axis

Rudders(R/L) both-buttons_0 && stickO move +/- x axis

t Track/Lock-on fire-button_0

w Fire Sidewinder top-button-l

q Fire Rockets top-button_0

e Fire Gun fire-button-l

r Detonate Missile

I Landing Gear both-top-buttons

v Autopilot both-buttons-l && top-button_0

R Restart End of Runway all-buttons

L Restart Landing Pattern

U Restart Random Flying

d Tower View

W Wing Man View

h Help fire.button_0 && both-buttons-l

ESC Quit

squares, with each square representing 100 of flaps applied. The spoilers indicator

are dark tan squares with each square representing 200 of spoilers applied. The

landing gear indicator is a single green square that represents that the landing gear

is in the down position. If your airspeed exceeds approximately 400 knots, the flaps

and landing gear will be ripped off and a single red square will be displayed at each

location.

The thrust indicator has a red bar that represents the thrust level. Hash

marks are provided for 25%, 50%, 75%, and 100% thrust. Thrust indicator bar up

is forward thrust and down is reverse thrust. Reverse thrust is only available when

on the ground.

E-5

Thrust r., ADI Climb

/ Rate

Airspeed Altitude

: D 1

Flaps Spoilers Landing Gear
Indicators Indicators Indicator

Figure E.1. PC Cockpit Display

The climb rate indicator has a red bar that represents a positive or negative

climb rate. The gauge is graduated with less movement near the top and bottom of

the gauge representing a much greater rate than movement near the middle. The

two hash marks represent + and - 400 fpm climb rate. To land without exploding

on impact, you must be descending at a rate less than 400 fpm. Flaps help reduce

the descent rate when you are close to -400 fpm.

The airspeed indicator arrows represent knots, hundreds of knots, and thou-

sands of knots of airspeed. The red arrow represents the thousands of knots, the

short black arrow - hundreds of knots, and the long black arrow - knots.

The altitude indicator represents hundreds of feet, thousands of feet, and tens

of thousand feet. The red arrow represents tens of thousands, the short black arrow

- thousands, and the long black arrow - hundreds.

The ADI uses a single rectangle over a blue circle to represent the horizon.

At certain transition points you can observe the ADI flipping around. This is an

unfortunate effect but also occurs on the Silicon Graphics machine; however, on the

E-6

SGI it occurs so rapidly that it is not distracting.

If you are using the wingman view and switch to the tower view, when you try

to switch back, the viewpoint is from the wingman's position but the aircraft is not

visible. You need to toggle the wingman switch 'W' twice so the aircraft is reposted

to the CSS and is visible.

E.-4 Notes

The Reality Graphics Environment does not behave correctly if Flight-PC is

executed as the first program after initial power is applied to the PC. The flaw is

within the RGE and causes processor 0 to not initialize. A work-around could have

been added to the program to correct the problem, but I determined that the ported

program should not be responsible for correcting external errors.

The problem is generated when the emulation for the SGI clear() function

is executed. The emulation unposts all structures contained in the CSS at the

current time. When the machine is first powered on, the RGE won't accept an

RUnPostStruct() or RUnPostAlIStructo function call until at least one structure has

been posted to the CSS at some time during the boards powered on history.

A test program named viewit is available that will post a valid structure. Flight-

PC will then execute at any time until the system is again powered off' ° . viewit needs

an object description, with optional directory path if necessary, to a Silicon Graphics

object description (with a '.d' suffix) or an AFIT geometry file (with a '.geom' suffix).

The object will be displayed on the screen. If using the PC keyboard, strike CTL-Z

to exit. If connected with a networked workstation, you can exit by pressing all

four joystick buttons simultaneously. Flight-PC can now be successfully executed.

Running any of the demonstration programs provided by Real World Graphics will

also post a structure to the CSS and allow correct operation. Their demonstration

1°since the PC is running UNIX, this should not be a common occurrence.

E-7

program flight 11 , available in the /usr/local/src/RGE1 2 directory, will work. To

execute the the Real World Graphics flight program, change to the $RGE/flight

directory and execute flight flight. A binary data file is loaded. When the message

Downloading flight.rdb . . . done appears, strike the return key to begin execution.

One more note of caution. After pressing the space bar after the help screen,

wait a few moments before selecting an aircraft type. After the help screen is dis-

played, the program continues reading any unread object descriptions. When disk

activity stops (which usually occurs after about 5 to 10 seconds) then select the

desired aircraft.

11Not to be confused with Flight for the Silicon Graphics or Flight-PC ported from the Silicon
Graphics.

"An environment variable RGE exists to allow the user to change to the directory by executing
cd SRGE.

E-8

Bibliography

1. Alluisi, Earl A. Image Generation/Display Conference II, 10-12 June 1981:
Closing Comments. Technical Report, Air Force Human Resources Laboratory,
1981. AFHRL-TP-81-28.

2. Apiki, Steve and others. "The Brains Behind the Graphics," BYTE Magazine,
14(12):178-198 (November 1989).

3. Booch, Grady. Software Components with Ada. Menlo Park, CA: The Ben-
jamin/Cummings Publishing, Inc., 1987.

4. Breglia, Denis R. "On-Board Computer Image Generator (CIG) Applications."
In 1984 IMAGE III Conference Proceedings, pages 431-437, 1984. DTIC AD-
P004 335.

5. Brooks, Frederick P. Grasping Reality Through Illusion, Interactive Graphics
Serving Science. Technical Report TR88-007, Department of Computer Science,
CB#3175, Sitterson Hall, Chapel Hill, NC 27599-3175: University of North
Carolina at Chapel Hill, March 1988.

6. Brooks, Frederick P. and others. "Project GROPE - Haptic Displays for Sci-
entific Visualization," Computer Graphics, 24:177-185 (August 1990). SIG-
GRAPH '90 Proceedings, August 6-10, Dallas TX.

7. Chung, J. C. and others. "Exploring Virtual Worlds with Head-Mounted Dis-
plays," SPIE, 1083:42-52 (1989).

8. Crumley, Lloyd M. Air-to-Air Gunnery; An Analysis of the Problem, of
Present Training, and Recommendations for an Improved F-14 Training Se-
quence. Phase Report NADC-75033-40, Naval Air Development Center, April
1975.

9. Ditlea, Steve. "Another World: Inside Artificial Reality," PC/Computing, pages
91-102 (November 1989).

10. ESIX Inc. ESIX System V Network/STREAMS Programming Guide, 1989.
MAN-00475-10.

11. Filer, Robert E. A 3-D Virtual Environment Display System. MS thesis, Air
Force Institute of Technology, 1989.

12. Fisher, Scott S. and others. "Virtual Environment Display System," Interactive
3-D Graphics, pages 77-82 (October 1986).

13. Foley, James D. and Andries Van Dam. Fundamentals of Interactive Com-
puter Graphics. Reading, Massachusetts: Addison-Wesley Publishing Com-
pany, 1984.

BIB-1

14. Geltmacher, Hal E. Recent Advances in Computer Image Generation Simu-
lation. Aviation, Space, and Environmental Medicine 59, Air Force Human
Resources Laboratory, Williams AFB, November 1988.

15. Grimes, Jack and others. "The Intel i860 64-Bit Processor: A General-Purpose
CPU with 3D Graphics Capabilities," IEEE Computer Graphics 8 Applications,
pages 85-94 (July 1989).

16. Grunin, Lori. "Putting Your PC on Tape," PC Magazine, 9(13):197-211 (July
1990).

17. Haber, Ralph Norman. "Flight Simulation," Scientific American, 255:96-103
(July 1986).

18. Hanson, Capt Caroline L. "Fiber Optic Helmet Mounted Display: A Cost
Effective Approach to Full Visual Flight Simulation." In Proceedings of the In-
terservice/Industry Training Equipment Conference (5th) Held at Washington,
DC, pages 262-268, November 1983. DTIC AD-P003 482.

19. Holzer, Robert. "Engineering Simulation: Reaching New Heights," Military
Forum, pages 44-50 (November/December 1989).

20. Howard, T.L.J. "An Annotated PHIGS Bibliography," Computer Graphics Fo-
rum, 8:262-265 (December 1989).

21. Howard, T.L.J. "PHIGS and PHIGS PLUS Tutorial." In Proceedings Euro-
graphics '90, June 1990.

22. Humphrey, Watts S. Managing the Software Process. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1989.

23. INMOS. The Transputer Family Product Information, June 1986. Distributor:
Arrow Electronics, Inc., Electronics Distribution Division, 3155 Northwoods
Parkway, Norcross, Georgia 30071; Phone: 404/449-8252.

24. INMOS. Transputer Reference Manual, January 1987. Distributor: Arrow
Electronics, Inc., Electronics Distribution Division, 3155 Northwoods Parkway,
Norcross, Georgia 30071; Phone: 404/449-8252.

25. Instruments, Texas, "TMS34020/34082 Graphics Products Preview Bulletin."
Preview Bulletin SPVT065, 1988.

26. International Standards Organization. Information Processing Systems - Com-
puter Graphics; Programmer's Hierarchical Graphics System (PHIGS); Part I:
Functional Description First Edition, March 1989. ISO Standard 952,2 PT I.

27. Kanko, Mark A. Geometric Modeling of Flight Information for Graphical Cock-
pit Display. MS thesis, Air Force Institute of Technology, 1987.

28. Kellogg, Robert S. and others. "Simulated A-10 Combat Environment." In The
Image II Conference Proceedings, pages 35-44, 1981. AFHRL-TR-81-48/DTIC
AD All 0226.

BIB-2

29. "Coup Scored with Reality." The S. Klein Newsletter on Computer Graphics,
August 1989. Special SIGGRAPH '89 Double Issue.

30. Kohn, Les and Neal Margulis. "Introducing the Intel i860 64-Bit Microproces-
sor," IEEE Micro, pages 15-30 (August 1989).

31. Lambert, R. E. and others. Onboard Simulation: A Newly Emerging Technology
and the Potential of the Helmet Mounted Display as an Embedded Training De-
vice. AIAA Flight Simulation Technology Conference, McDonnel Aircraft Com-
pany, McDonnell Douglas Corporation, and AFWAL/FIGX, Wright-Patterson
AFB, July 1985.

32. Lorimor, Gary K. Real- Time Display of Time Dependent Data Using a Head-
Mounted Display. MS thesis, Air Force Institute of Technology, 1988.

33. Martin, Stephen W. and Richard C. Hutchinson. Low Cost Design Alternatives
for Head Mounted Stereoscopic Displays. SPIE Three-Dimensional Visualiza-
tion and Display Technologies 1083, Naval Ocean Systems Center, 1989.

34. Myer, T. H. and I. E. Sutherland. "On the Design of Display Processors,"
Communications of the ACM, 11:410-414 (June 1968).

35. Polhemus Navigation Sciences Division, McDonnel Douglas Electronics Com-
pany, Cochester, Vermont. 3-Space User's Manual, January 1985.

36. Real World Graphics Ltd, 5 Blue Coat Ave, Hertford, Shire SG 141PB. REAL-
ITY PC User's Guide (Issue no. 2 Edition), 1990. US Distributor: Simulation
Technologies, 1201 Tulip Avenue, Williamstown, NJ 08094.

37. Real World Graphics Ltd, 5 Bluecoats Avenue; Hertford; Herts SG14 1PB;
England. REALITY PC User's Guide (No. 2 Edition), 1990.

38. Rebo, Robert Keith. A Helmet-Mounted Virtual Envrionment Display System.
MS thesis, Air Force Institute of Technology, 1988.

39. Silicon Graphics Computer Systems. IRIS-4D Series Graphics Library Pro-
gramming Guide.

40. Silicon Graphics Computer Systems. IRIS-4D Series Graphics Library Refer-
ence Manual.

41. Sommerville, Ian. Software Engineering. Reading, Massachusetts: Addison-
Wesley Publishing Company, 1989.

42. Stoner, Barbara. "The i860: A General-Purpose Solution for Radar Signal
Processing," Military & Aerospace Electronics, 1 (2):33-34 (February 1990).

43. Sutherland, Ivan E. "The Ultimate Display." In Proceedings of IFIP 65, Vol. 2,
pages 506-508, 582-583, 1965.

BIB-3

44. Sutherland, Ivan E. "A head-mounted three dimensional display." In 1968 Fall
Joint Computer Conference, AFIPS Conference proceedings, pages 757-764,
1968.

45. Texas Instruments, Market Communications Manager, P.O. Box 1443, MS 736,
Houston, Texas 77251-1443. TMSS4020 User's Guide, 1990. Customer Re-
sponse Center, (800) 232-3200.

46. "Texas Instruments TMS34010 Third Party Guide," January 1989. Third Edi-
tion.

47. Wardin, Charles L. Battle Management Visualization System. MS thesis, Air
Force Institute of Technology, 1989.

48. Woodruff, Robert R. and others. Advanced Simulator for Pilot Training and
Helmet-Mounted Visual Display Configuration Comparisons. Technical Report
AFHRL-TR-84-65/DTIC AD-A155 326, Air Force Human Resources Labora-
tory, Operations Training Division, May 1985.

49. Yan, Johnson K. Advances in Computer-Generated Imagery for Flight Simula-
tion. IEEE Computer Graphics & Applications 5, The Singer Company, August
1985.

BIB-4

Vita

Captain David A. Dahn Be

graduated from East High School in Phoenix. Following high school, his =l&ad i

the Air Force as a Morse Systems Operator and was assigned to the USAF Secuuity

Service (now USAF Electronic Security Command). He spent the next eg yos

with the Electronic Security Command serving four overseas assigumunts at PIT

Security Squadron, San Vito dei Normanni Air Station in Southern Italy, the 6Mth

Security Group, Shu Lin Kou Air Station, Taiwan; 6920th Electronic Security Grou,

Misawa AB, Japan; and finally the 6913th Electronic Security Squadron, a ground

mobile tactical intelligence unit, based at the United States Army's Flak Kaserne in

Augsburg, Germany, in 1980. He was selected for the Air Force's Airman's Educa.

tion and Commissioning Program (AECP) in 1982 and awarded an undergraduate

degree in Electrical Engineering from Arizona State University in 1985. David was

commissioned after completing the Officer's Training School and was assigned as a

computer engineer for the Mission Critical Computer Systems Branch, Eoginu

Division, for the Air Force Systems Command Armament Division (later renamed

the Munitions System Division) located at Eglin AFB, FL. He worked there until he

entered the Air Force Institute of Technology (AFIT) to work towards a Masters of

Science in Computer Engineering.

VITA,1

Form 4ppro.ed

REPORT DOCUMENTATION PAGE OMB No 0704-0188

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1990 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A Low-Cost Part-Task Flight Training System:
An Application of a Head Mounted Display

6. AUTHOR(S)

David A. Dahn, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCE/ENG/90D-01

9. SPONSORING MONITORiNG AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORiNG MONi'ONNG
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a DISTRIBUTION AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Approved for Public Release; Distribution Unlimited.

13. ABSTRACT Al~a;mum 200 words)

Abstract

Computer Image Generators (CIG) driving high performance flight simulators used in training pilots are
expensive. This project investigated whether a small class of these simulators that focus on taskr -oecific
training could be hosted using much cheaper simulator systems by using a virtual world interface. We
implemented the virtual world interface for the Silicon Graphics' Flight program on an 80386/80387 PC-AT
enhanced with a high performance graphics engine based on two Intel i860 RISC processors.

One goal was to determine whether the PC environment was mature enough to support our approach.
The specific question we tried to answer was whether the flight simulator could be programmed on the PC
using a classic workstation approach (written in a high order language using a standard three dimensional
graphical reference model). The measure of success was whether the simulator could provide a frame update
rate of 15 frames per second or better for Z-buffered, flat-shaded polygons.

The results were short of the requirement. Our conclusion is that the price performance ratio in terms
of frames per second was better for the higher priced mini-computer approach than the super-charged PC
approach.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Virtual World Environments, Head-Mounted Displays, Low-Cost Flight Simulation 118
16. PRICE CODE

17, SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NS% 7540-0'-280-5500 Ya-za'c " . . 8

