
Naa Ocan Sytm Cente

3-iDig. CA 25250

ItgFIL E Copy

Technical Document 1837
June 1990

Advanced Numerical
Techniques of

0 Performance Evaluation
Volume I

University of Washington

ThECTE
DEC 28 1990,

Approved for public relesve: istribution Is unlmited.

The v~ew and conclusions contained In this report are
those of the contract ors and shoiild not be Interpreted
as represening the official polces, either expressed
or Implied, of the Navel Ocean Systems Center or the
U. S. Government.

g0 1L 16 00 A

NAVAL OCEAN SYSTEMS CENTER I
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. M. HILLYER U
Commander Technical Director I

ADMINISTRATIVE INFORMATION U
Contract N66001-87-D-0136 was carried out by University of Washington, Department of

Computer Sciences, Seattle, WA 98195, under the technical coordination of T. Sterrett, Computer
Systems Software and Technology Branch, Code 411, Naval Ocean Systems Center, San Diego, CA
92152-5000.

Released by Under authority of I
R. A. Wasilausky, Head A. G. Justice, Head
Computer Systems Software Information Processing and
and Technology Branch Displaying Division

F
I
U
I
I
I
I
I

FS!

SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 18(8). 713-732 (AUGUST 1988)

IPRESTO: A System for Object-oriented
Parallel Programming

BRIAN N. BERSHAD, EDWARD D. LAZOWSKA AND HENRY M. LEVY

Department of Computer Science, FR-35, University of Washington, Seattle 1A 98195,
USA.

I SMMRY

PRESTO is a programming system for writing object-oriented parallel programs in a multipro-
cessor environment. PRESTO provides the programmer with a set of pre-defined object types
that simplify the construction of parallel prograus. Examples of PRESTO objects are threads,
which provide fine-grained control over a program's execution, and synchronization objects,
which allow simuitaneously executing threads to co-ordinate their activities.

The goals of PRESTO are to provide a programming environment that makes it easy to express
concurrent algorithms, to do so efficiently, and to do so in a manner that invites extensions and
modifications. The first two goals, which are the focus of this paper, allow a programmer touse parallelism in a way that is naturally suited to the problem at hand, rather than being
constrained by the limitations of a particular underlying kernel or hardware architecture. The
third goal is touched upon but not emphasized in this paper.

PRESTO is written in C++; it currently runs on the Sequent shared-memory multiprocessor
on top of the Dynix operating system. In this paper we describe the system model, its applicability
to parallel programming, experiences with the initial implementation, and some early perform-
ance measurements.

KEY wowus Design Languages Measurement Performance Parallel computing Software parallelism
Speed-up Efficiency

VINTRODUCTION
PRESTO is a programming system for writing object-oriented parallel programs in a
multiprocessor environment. PRESTO consists of an object-oriented language (C+ + 1),
a library of basic tools constructed in this language, a run-time system providing
efficient support, and, most important but least tangible, a programming methodology.

Our first goal in designing and implementing PRESTO was to apply our experiences
in building distributed object-oriented systems2 ' ' to the world of multiprocessors. In
distributed systems, an object-oriented programming paradigm makes it easier to think
about and to express concurrent algorithms. Problem decomposition and run-time

synchronization details can be neatly described by an object model. Each object is
responsible for solving some small part of an overall problem, and each is responsible
for maintaining its own (and only its own) internal consistency. These are exactly the

qualities that are needed when building parallet applications fora multiprocessor.

0038-0644/88/080713-20510.00 Received 16 October 1987 I

(E) 1988 by John Wiley & Sons, Ltd. Revised 4 February 1988

D;G Avi i

IWlD~
I ~ 6

714 B. N. BERSHAD, E. D. LAZOWSKA AND H. M. LEVY

Our second goal was to provide efficient concurrency and synchronization mechan-
isms. The primitives provided by many existing parallel programming systems are so
expensive that they become the major factor in determining the structure of appli-
cations. (For example, one may be forced to design algorithms that use only as many I
threads of control as there are physical processors.) Our experience (and common
sense) suggested that the construction of parallel applications - a daunting task under
the best of circumstances - was made considerably more difficult by such constraints. £
PRESTO allows the programmer to use parallelism in the manner most natural to the
problem at hand, with minimal external performance constraints arising from an
underlying kernel or hardware architecture.

Our third goal was to provide an 'open' environment that could be used a- q 't, ikit'
for building eificient support tor a variety of 'models' of parallel programming. Most
parallel programming systems present themselves in terms of a fixed set of primitives
running on top of a closed run-time kernel. The primitives together with the kernel I
define a 'model' of parallel programming that, while pleasing to the implementor, may
not always be satisfactory to the application programmer. In PRESTO, it is possible
to redefine the behaviour of the lowest level system primitives. New constructs (and
thus new abstractions) for constructing parallel applications can be introduced quickly,
and without the level of overhead normally associated with a layered system.

This paper concentrates on describing PRESTO in terms of the first two goals: its
object-orientation and its performance, and the impact of these characteristics onI
parallel programming. The third goal, that of providing an open environment for
building parallel programming systems, is fully described in a companion paper.4 The
examples in this paper are drawn from what could be called the 'default' PRESTO I
programming model - a Mesa-like environment where threads, monitors and condition
variables define the basic primitives for the programmer.

The remainder of this paper discusses the implementation language for PRESTO
(C++), the use of objects in building parallel programs, a few of the default PRESTO
objects, the use of PRESTO on a multiprocessor and some preliminary performance
measurements. - i

PRESTO AND THE C++ PROGRAMMING LANGUAGE

PRESTO is implemented in C++. To quote from the C++ reference manual:

C+ + is a superset of the C programming language that retains the efficiency
and notational convenience of C, while providing facilities for type checking,
data abstraction, operator overloading and object-oriented programming. I

We chose C+ + for three reasons, each touched upon in the above quotation. First,
we wanted an object-oriented programming language. Secondly, C+ + is implemented
as a preprocessor to C, making it portable to any system with a C compiler. (Although I
PRESTO exists now on only one machine, we intend to port it to other multiprocessors
as they become available to us.) Thirdly, we wanted PRESTO to be widely used, and
C+ + is relatively easy to learn for C programmers.

Object-oriented programming in C+ + is made possible by the concept of a class.
A class is a user-defined data type allowing the programmer to specify an object in
terms of its data representation and operations. As an example, the class definition for
a simple stack of integers might appear as

21 I
I

PRESTO 715

H This is a comment.

class Stack {
/Private Data
int sLsize; // maximum size
int sLtsp; // current stack pointer
int *st-elements; // data
H Private Operations

- void sLgrowstacko; // make the stack larger
public:

H/ Public Operations
Stack (int maxsize) // CONSTRUCTOR

{ stsize = maxsize;

sLsp = 0;
sLelements = new int[st-size];

StackO H DESTRUCTOR
{ delete st-elements;}

int depth(H current depth
1 { return sLsp; }

virtual void (push(int newelement)
{ if (st-sp = sLsize)

II! sLgrowstack0; // ensure we have
H room

stelements[st.sp++] = newelement;

virtual int popN
{ if (deptho == 0) H nothing left?

else ERROR HANDLER HERE5 else
return sLelements[--st-spl;

Each instance of a Stack has its own private version of the class's variables. An object's
operations are shared by all instances of the object's class. The declarations in the
private section specify those parts of the class accessible only from within the operations
themselves. If another object creates a stack,

3 Stack S = new Stack(100); //Invoke the CONSTRUCTOR; maxsize = 100

then only the operations

S->push(x);
x = S->pop0;
sz = S->depthO;
delete S; /Invoke the DESTRUCTOR

can be performed on S. S's private operations and private data can be referenced from
within these public operations. The process of performing an operation is called an

£ 3I
!

716 B. N. BERSHAD, E. D. LAZOWSKA AND H. M. LEVY g
invocation.

The keyword virtual in the class definition indicates that push() and pop() can be
redefined by any classes that are defined as a sub-class of Stack. In C++, a sub-class
can be derived from a super-class, allowing classes to exist hierarchically. The sub- I
class's qualities are those it defines for itself, as well as those inherited from its super-
class. If a sub-class redefines any of its inherited virtual operations, the new definitions
take precedence. The sub-class satisfies the isa relation on its super-class. That is, if I
class SynchronizedStack is a sub-class of class Stack,

// Sub-class isa Super-class
class SynchronizedStack Stack {

//

//Serialize access to the stack

then an instance of class SynchronizedStack can be used anywhere an instance of class I
Stack is expected - SynchronizedStack isa Stack. A synchronized stack object can ensure
that concurrent operations on the private data defined in its super-class are serialized,
without having to redefine the implementation of those operations. A more complete
definition for SynchronizedStack appears later in this paper. I

An object's operations may also include constructor and destructor routines. These
are procedures that are called automatically when the object is created and deleted,
respectively, allowing the object to specify an initialization and termination sequence. a
New objects can be created on the call-stack by declaring them within a basic block,

statically by declaring them outside of any block, or on the heap, by using the new
operator. I

The definition for an operation can either be included in the class definition itself
or given elsewhere. To define the operation stgrowstack) separately from the declar-
ation, it is necessary to use the qualifying syntax '::'. 3

'/

H/ Class: :Operation qualifies Operation under Class 5
void H return type
Stack:: stgrowstackO //Class:: Operation

int j;
int newsize = st-size * 2; H double size
int *newstack = new intinewsize];
for (j = 0; j < st-size; j++) H copy old stack i

newstack[j] = st-stack[j]; /into new
st-size = newsize;
delete st-stack;
st-stack = newstack;I

(These programming segments are meant only to provide enough exposure to C++ I
so that the reader can understand the remaining examples in this paper. For complete

41 , I
I

3PRESTO 717

information, see Reference 1.)

C++ is an inherently sequential language. Unlike languages such as Emerald or
Modula2+, 5 C++ has no notion of concurrency or synchronization.

It would have been possible to extend the language in this direction by modifying
the compiler, but we felt that the language was sufficiently rich that our objectives
could be achieved without changing it. Furthermore, including knowledge about
concurrency and synchronization in the compiler would have seriously limited future
extensions to PRESTO itself (unless one were willing to again modify the compiler).

Available as part of the Standard C+ + distribution is a set of classes for defining
concurrent objects on a uniprocessor. These objects execute as co-routines, and they
are limited in terms of how they can be used. (For example, objects can only be
single-threaded and synchronize only with messages.) Making these objects work on a
multiprocessor would have been possible (and indeed has been done elsewhere') but
would have precluded us from realizing the goals of efficient primitives implemented
on an open system. We have used PRESTO to define classes that efficiently mimic the
behaviour of those provided as part of the C++ distribution, without assuming that
this behaviour is the 'PRESTO-definitive' mode of parallel programming.

Since PRESTO is written in C++, it is most naturally used with applications
written in that language. Although it is possible to use the system from other languages
(such as C or Pascal), many of PRESTO's concepts will be difficult and time-consuming
to express. For this reason, users are encouraged either to write completely in C+ +,
or to build application-specific interfaces between languages.

EXPLOITING THE OBJECT MODEL IN PARALLEL PROGRAMS

PRESTO provides the programmer with several classes useful for writing parallel

programs. These classes, and the environment in which they execute, help support
two of the major goals of PRESTO - efficient execution and comfortable abstractions
for expressing concurrency.

In PRESTO, all objects execute in a single address space shared by all processors,
allowing for fast inter-object communication and synchronization through shared stor-
age. The object model allows objects to exist in a 'safe' environment, making it
difficult (although not impossible) for objects to trounce one another haphazardly. In a
sequential object-oriented system, an object hides its data and its implementation. In
PRESTO, an object hides not only its data and its implementation, but also its
execution. That is, when a caller invokes an operation on an object, the caller is
unaware whether that operation executes sequentially or in parallel. The implementor
of an object determines the extent of parallelism that is appropriate to the object, much
as he/she decides what data structures best suit the needs of the object. Dealing with
concurrency in this manner simplifies the task of writing parallel programs.

The following sections describe the major classes used by PRESTO programs, and
discuss how their design addresses the goals of the system.

The thread class
Thread objects (threads) are the building blocks of PRESTO parallel programs. AsIm the basic unit of execution, threads consist conceptually of a program counter and a

stack of inocation records. There are two essential operations that can be performed

I5

!
718 B. N. BERSHAV, E. D. LAZOWSKA AND H. M. LEVY g
on a thread. A thread can be created, allowing the creator to specify the thread's
qualities, such as its name and maximum storage requirements. Once created, a thread
can be started executing some operation of some object, wherein it executes in parallel
with the starting thread. Start, in fact, is an operation defined for threads; parameters
include the object, the operation where the thread is to be started, and any parameters
expected by that operation. For example, g

Stack *S = new Stack(100);
H Create a new thread named "Pusher" having id TID.
Thread *t = new Thread(" Pusher", TID); 3
H Let t be responsible for pushing 43 onto the stack.
t->start(S, S->push, 43);

As noted earlier, PRESTO extends conventional object-oriented programming by
allowing an object to hide and control not only its data and its implementation, but
also its execution. The user of an object chooses between synchronous and asynchronous
invocations, and the implementor of an object chooses between sequential and parallel I
execution. Table I shows how these choices fit together, and how their combinations
affect the overall execution of a program.

An object cannot tell whether it is being invoked synchronously or asynchronously, I
and the user of an object cannot tell whether an invocation is being performed

sequentially or in parallel. For example, the user of a matrix object is probably not
concerned with --yhether the object implements multiplication by using hundreds of
parallel threads or a single thread executing over the whole problem. Only the ultimate
product is important. It is the responsibility of the matrix object to determine where,
when and how much parallelism is dictated by a given invocation of the multiply
operation. In cases such as this, synchronous invocation with parallel execution is most
appropriate. The following code segment shows how a parallel matrix multiplication
operation might be defined in PRESTO:

Table I. Control over execution 5
User of object (L) Implementor of object Effect

chooses (I) chooses

synchronous sequential U invokes rs operation. U blocks until I I
finishes, I runs single-threaded with V's thread.

synchronous parallel As above, only I creates multiple threads and
starts them executing its own operations. These
threads compute in parallel.

asynchronous sequential U creates a new thread and starts it executing
s operation. U continues, and I runs with the

single thread that U started within it. When I
returns, its thread is destroyed.

asynchronous parallel U creates a new thread and starts it executing

rs operation. U continues, while I creates
multiple threads and starts them executing I's
operations. I

6 1
I
!

mt~ meem;PRESTO 719

Iclass Matrix f

int ma-rows;
int ma..cols;Ivoid ma-dotproduct(int *el, Matrix *M, int i, int j)

{ ICompute the dot product of the i'th row
Iof "this" (in ma..elems) and
Ithe j'th column of M. Store in *el.

public:
Matrix(int rows, mnt coIlumns); IICONSTRUCT new matrix

mnt numcolumnso;
mnt numrowsO;-
Matrix Omultiply(Matrix *M); I multiple "this" by M
Iother operations...

ICreate a separate thread to compute each element in the
/product matrix in parallel.

Matrix*
Matrix:: multiply (Matrix *M)

Matrix *P = new Matrix(ma-rows, M->numcolumnsO); IIproduct
for (mnt I = 0; i< ma-rows); i ++)

for (int j = 0; j < M->'numcolumns()
Thread Ot = new Thread(" multiplier");
t->start(this, this-> ma-dotproduct,

&(P~iJ~hIJ, M, i. j), It arguments to operation

I ;NiAdtre unti; all thineads tria

I Alternatively, the insertion of a new enitry into a directory! object is a non-parallell
operation, best handled asynchronously by the object doing the Insertion, not by the
directory object itself. The insert invocation might appear as:

HI Create the directory
Directory Odir = new Directory(" my-di rectory");

HI Create a thread to do the insertion
Thread Ot = new Thread(" dir-inserter");I IH Start the thread doing the insertion of some file.
t->start(dir, dir->insert, someFileName. someFileContents);

IRun in parallel with the dir->insert routine.

IIts termination is transparent.

1 7

I
720 B. N. BERSHAD, E. D. LAZOWSKA AND H. M. LEVY

A thread may only be started once. It executes either until it terminates itself, or
until it returns from the operation in which it was started. A thread may join on
another thread, causing the joining thread to block until the joinee finishes. The joinec's
return value from the operation in which it started is returned to the joining thread 1
when it resumes.

Each thread has its own call-stack. Any objects declared on that call-stack are visible
only from within the thread to which the call-stack belongs. Objects requiring references I
from more than one thread must be heap allocated or static. If data is to be shared
between threads, then it should be declared as such within the object's definition.

The synchronization class
Although a thread can be executing in only one object at a time, it is possible to

have multiple threads executing within a single object simultaneously. In a multipro- I
cessor system, true concurrency can occur. To provide a controlled environment for
multi-threaded objects, PRESTO provides two basic classes of synchronization objects:
relinquishing and non-relinquishing locks. 5
Relinquishing locks

A thread executes until it is pre-empted, terminates or voluntarily relinquishes
the processor by performing an operation on a relinquishing object. The simplest
relinquishing objects are those defined by the class Lock. The two primary operations
on locks are lockO and unlockO. I

// I is a reference to a Lock (Lock* I)
l->lockO;

// critical code
I->unlockO;

Return from a lock() operation indicates that the caller holds the lock. A lock may be i
held by only one thread at a time. A thread trying to lock an already held lock
relinquishes the processor on which it is running, allowing another ready thread to
execute on that processor. The relinquishing thread is made ready for execution when
the lock becomes free.

Non-relinquishing locks

Hardware atomic locks serve as the basis for the non-relinquishing synchronization
object Spinlock. Spinlocks have a potential performance advantage over simple relinqu-
ishing locks. It is less expensive to acquire and release a non-relinquishing lock. I
Further, if the average waiting time is less than the time to relirquish and reacquire
a processor, non-relinquishing locks are more efficient.

As with simple relinquishing locks, there are two operations on spinlocks, lock() and
unlockO.

/ s is a reference to a Spinlock (Spinfock *s)
s->lock 0; //spin here if already locked

8 Ii
I,

PRESTO 721

I/ critical code
s->unlockO;

The thread that most recently locked the spinlock is the lock's owner. A thread
relinquishes ownership by unlocking the spinlock. A spinlock can have only one owner,
but unlike relinquishing locks, a thread trying to lock an owned spinlock consumes
CPU cycles polling the lock until it becomes free. If a thread trics to lock a spinlock
that it already owns, the thread will spin forever. The implementation of spinlocks
causes a thread to become non-pre-emptible once it acquires one.

More sophisticated synchronization classes

Monitors and condition variables

A!though straightforward and easy to understand, simple relinquishing locks can be
difficult to use and thus prone to misuse. A more refined relinquishing synchronization
mechanism is available through monitors and condition variables.* These work together
to provide Mesa-like synchronization semantics. 7- As noted in the introduction, we
view this as the 'default' PRESTO programming model, but we encourage users to
build (and share) support in PRESTO for other parallel programming models when
this is dictated by their applications.

In PRESTO, a section of critical code is surrounded by an entry and exit invocation
on a monitor object. If several operations must coexist within the same monitor, the
programmer is obligated explicitly to name the monitor within each operation. Although
there is no direct compile-time support for monitors, it is not necessary for the
programmer to make explicit calls to a monitor's entry and exit routines when writing
a monitored object. PRESTO provides a type MONITOR that can be used to guard
access to blocks of code:

//example of monitored block of code controlled by Monitor *m;
MONITOR ENTRY(m); // ENTRY is a nice sounding dummy variable

/ . code here
} /m is automatically released when ENTRY goes out of scope here

is equivalent to

m->entryO(;
// . code here

m->exitO

but is syntactically cleaner. Furthermore, the first form makes it impossible that the
programmer will forget to explicitly release the monitor, even if the code returns from

* Condition %ariables are reall\ condition ohjects, but the former tcrminolop is well-establishcd, and is therefore

retained

9

I
722 B. N. BERSHAD, E. D. LAZOWSKA AND H. M. LEVY

within the block. The constructor for a MONITOR object enters the named monitor,
and remembers it. When the MONITOR object goes out of scope (at the bottom of a
block), its destructor is automatically called. Within the destructor, the entered monitor
is exited. I

Only one thread can be active within a monitor at any one time. That thread is

called the monitor's owner. When a thread attempts to enter a monitor that is already
owned, the thread is blocked, relinquishing the processor on which the thread is
executing. Eventually, the owner will release the monitor, causing the least recently
executed thread waiting on the monitor to be resumed in an attempt to become the
owner.

A thread may wait on a condition variable. When a condition variable is created, it
must be bound to some monitor. The condition variable should only be used from
within that monitor. It is an error to do otherwise. A thread waiting on a condition
variable releases the associated monitor as it blocks. Another thread can signal the
condition variable, causing the condition variable's longest waiting thread eventually
to resume. The signaller continues to own the monitor until it waits or exits, so a
signalled thread, since it must reacquire the monitor, does not execute immediately
upon being signalled. A signal must be regarded merely as a hint that an acceptable
state had been reached at some prior point. When a waiting thread next runs again, it
should check that the condition on which it waited has remained satisfied since being
signalled. A thread may also broadcast on a condition variable, causing all threads i
waiting on that condition variable to be signalled.

The following example demonstrates monitored access to stacks. The class Synchron-
izedStack is defined as a sub-class of the Stack class presented earlier. Synchronized I
stacks have all the characteristics of their super-class, but guarantee that access to the
stak is atomic by redefining pop() and push() to require the posession of an exclusive
private monitor. Further, a thread trying to popo from an empty stack blocks, and
does not resume until the stack becomes non-empty.

// Sub-class isa Super-class
class SynchronizedStack Stack {

//Our own private data for synchronizing.

Monitor Os-monitor; // - for atomic access
Condition "s.condition; //- reads are blockingpublic:
i //Constructor to create a new stack
Stack(int sz)
:(sz) // Call CONSTRUCTOR of Super-class

{ I
s-monitor = new Monitor(' StackMonitor");
s.condition = new Condition(smonitor "StackCondition"):
I

void push(int newitem){
MONITOR ENTRY (s-monitor);

//Qualify to the super-class operation

10I

I
I

I
PRESTO 723

3 Stack: :push (newitem);
if (depthO == 1 {

// Signal if any could be waiting3s-condition-> signalO;

}
int popo

MONITOR ENTRY(s-monitor);
int topitem;

while (deptho == 0) {
s-condition->waitO;
// Consider the signal only as a hint.S//Must check depth again.

topitem = Stack: :popo;

return topitem;

3 Using-instances of this class, multiple threads can safely share the same stack. Further-
more, operations written to operate on the super-class Stack can just as easily operate3 on a SynchronizedStack.

Atomic integers

To address the common situation where one would like simply to update a counter
or some other integral value within an otherwise unsynchronized region of code,
PRESTO provides an atomic integer class. The class AtomicInt guarantees multiple-
reader, single-writer semantics for integers by automatically enclosing their reference
within a spinlock's lockO and unlockO. Atomiclnt supports the full complement of integer
operations (assignment, increment, decrement, etc.). An Atomiclnt can be used any-i where an integer is expected:

Atomiclnt a;
Atomiclnt b = 10;
int c = a;int d;

3// W/ock -> write lock; w.unlock -> write unlock

// rilock -> read lock; r.unlock -> read unlock

d = a++; - // wlock a, a++, d = a, w.unlock a

o + = c; // wlock b, increment b by c, w.unlock b

c = a + b; // rlock a, a' = a; r-unlock a;3/ rlock b; b' = b; r-unlock b;

| 11

I

I
724 B. N. BERSHAD, E. D. LAZOWSKA AND H. M. LEVY

/c =a' + b'

a = a + b; // rlock a; a' = a; r-unlock a;

// rlock b; b' = b; r-unlock b;
// wlock a; a = a' + b'; w.unlock a;

Atomic integers are an example of how the object-oriented programming model
meshes well with the needs of parallel programs. Instances of class AtomicInt are
responsible for ensuring their own synchronization and providing their own access
semantics in a parallel environment. Users of the class are insulated from the details
of the class's implementation, and are guaranteed of its correct operation.

SYSTEM ARCHITECTURE

PRESTO exists as a run-time library on Sequent Balance and Symmetry shared-
memory multiprocessors. (PRESTO will soon also be operational on the DEC SRC
Firefly, an experimental prototype multiprocessor workstation).

The Sequent's operating system is Dynix, a 4.2BSD UNIXI look-alike with support I
for shared memory. Dynix' ° provides support for writing parallel programs, but this
support is limited. The Dynix unit of execution is the UNIX process, an expensive
('heavyweight') and inflexible entity. Because the basic synchronization mechanisms I
are cumbersome to use, a 'parallel programming library' is provided. This library
restricts the 'threadedness' of a parallel program to the number of physical processors
in the system, prohibiting the design of algorithms that have hundreds (or even
thousands) of independent threads of execution. Even if the parallel programming u
library were redesigned to remove this restriction, the performance of the basic system
primitives would seriously limit the ways in which parallelism could be used. (We must
emphasize that these limitations are not unique to Dynix and the Sequent, and that I
on balance we are delighted with the Sequent system.)

The basic role of the PRESTO run-time system is to map user's threads onto physical
processors and to provide access to a global shares memory in which all objects reside.
In the case of a system like Dynix, PRESTO maps threads onto Dynix processes,
relying on the Dynix kernel to complete the mapping onto a physical processor.
Although there are two levels of indirection required, a Dynix process can be perma-
nently bound to a physical processor, so the second level of indirection is done only B
once. All details of the mappings are invisible to the PRESTO programmer.

The architecture of PRESTO adheres to the threaded object model described earlier.
The system maintains a single scheduler object. The scheduler object keeps track of I
all threads that are runnable but not yet running. A thread becomes runnable when
first started within an object, or when resumed by a synchronization object after
blocking. Each processor in the system is represented by a processor object. There
may be more processor objects than processors, but this is not the intention. One
scheduler thread runs within each processor object, and that thread's only activity is
to request runnable threads from the scheduler object. When a scheduler thread obtains
a runnable thread from the scheduler object, the scheduler thread stops, and the I
processor on which the scheduler thread was running begins running the now-runnable

t UNIX is a trademark of AT&T, Bell Laboratories. 3
12 £

i
I

I
PRESTO 725

! thread. When the newly-running thread blocks or terminates, the scheduler thread is
resumed and continues to check for more runnable threads.

Simultaneous requests to the scheduler object from multiple scheduler threads are
synchronized so that no thread can be scheduled on more than one processor at any
instant. However, a thread may execute on different processors at different times.
Migration occurs only if a thread is blocked and then resumed at some later time when
some other processor is idle. Scheduler threads are an exception to this - they never
migrate. A scheduler thread runs only on the processor for which it is scheduling.
Figure 1 illustrates how the scheduler object, procesor objects and physical CPUs are
related. Because these objects interact with one another only through their operations,
each can be easily replaced or modified without affecting the others. For example, the
scheduler object could be changed to maintain multiple priority queues for threads
rather than a single runnable queue. Since scheduler threads interact with the scheduler
only through a GetAThreadO operation, they would remain unaffected by the change.

The PRESTO scheduler eventually halts when there are no longer any runnable or
running threads. At this point, all existing synchronization objects are destroyed. If
any one of them indicates a waiting thread, the system declares deadlock and displays
the state of all interminably blocked threads. Because a thread waiting on a spinlock
is still technically executing, this very simple criterion for detecting deadlock fails if
one or more threads are waiting for a spinlock to become free. More sophisticated
halting semantics have been implemented through a redefinition of the scheduler. For
example, a message-based discrete event simulation scheduler has been built that
resolves deadlock arising from circular message dependencies when no threads areI runnable.

PROGRAM STRUCTURE

In PRESTO, a user's parallel program consists of a set of class definitions for objects
used in the program, and a set of implementation routines that define the operations
for each class. In addition, the programmer must provide one operation for a system
defined class called Main:

--.GM~rea Scheduler Object :.G4Trd

:.'G, MAhread

I, .

Prosor Objects

I igure 1. PRE~STO cmoet

1 13

I
I

726 B. N. BERSHAD, E. D. LAZOWSKA AND H. M. LEVY

H I
I/Programmer supplied
//

int I
Main: :main()
{

H Called once the system has started. There
// will be at least one thread started in this
// routine.

The programmer links his code with the PRESTO library and obtains an executable
program. The function main() required by the UNIX loader is already provided by the
library. This routine creates an object of class Main and starts at least one thread in
the operation Main: :main(for that object.

The programmer may also provide two other operations, Main::initO and Main: :done(.
Main: :inito, if provided, is called before the system begins executing; it can be used to
override certain system default parameters such as the number of processors to use.
Main: :done0, if provided, is called when there are no more runnable threads, allowing
PRESTO programs to clean up after themselves. Once running in Main::main0, the
system is under the control of the programmer. g

SOME EARLY PERFORMANCE FIGURES

This section presents early performance measurements for PRESTO. All figures rep-
resent measurements taken from a Sequent Balance 21000 with ten 32032 processors.
As a baseline, a processor can do a null procedure call and return in approximately
15 1Ls, and can execute a single iteration of a for-loop in 7 lis. 5
Program performance

Figure 2 illustrates the performance of PRESTO when running a matrix multipli-
cation algorithm over varying numbers of processors. The problem was decomposed
equally among as many threads as there were processors, and each thread ran indepen-
dently of the others. The two optimal curves are based on the performance of the
algorithm when run with n threads on n processors. These are clearly best-case I
examples, since the scheduling and synchronization costs imposed by the algorithm
are essential zero. Nevertheless, it shows that an optimal breakdown of an optimal
problem can yield nearly optimal results under PRESTO. An implementation of the I
same algorithm directly on top of Dynix performs identically. This is not surprising
since the processor speed is the same, and neither PRESTO nor Dynix are doing
anything to assist (or hinder) the computation.

A difference does exist between the optimal and measured curves, and this same
difference exists in the Dynix implementation of the same algorithm. It is primarily
attributable to the start-up costs of the program and of initializing the processors. The
matrices to be multiplied must first be initialized. Although data initialization could

14 1
I
I

I
728 B. N. BERSHAD, E. D. LAZOWSKA AND H. M. LEVY

550

i~~ ~~~~~ ~~~~~ ~ ~ 5o .. ----------- ------
Sa.I

E I processor

1 450 -......

S
C

d 4 0 07

S 350:! 2 p o e s r

T 3 0 0

d ". 3

T 120 s 4poesr

3 d 40

150 "' ";................ "..................... 7 8 p o e s r

I " 50 9
t4 processors
u 8

te 01.

0 40 80 120 160 200

Number Of Threads Used

Figure 3. latrix multiplication thread decomposition (200X200)

significant hardship. As noted, a key goal of PRESTO is to decrease the cost of
parallelism so that the problem structure, rather than the underlying system, can be
allowed to determine the way in which parallelism is used.

To demonstrate that this key goal was achieved, Figure 3 illustrates the performance
of the PRESTO matrix multiplication algorithm as the number of threads is allowed
to become very large (as many as 200 threads working on a 200X200 matrix). The
Figure demonstrates that fine granularity using many threads can be inexpensive with
PRESTO - an important advantage over many existing parallel programming systems.3In PRESTO, the cost of several hundred threads is not much more than the cost of
a few threads (except for the small cost of first scheduling each thread). Thus, in
PRESTO, threads can be used as a 'program structuring' tool.

An interesting characteristic of Figure 3 is the small hump at around 25 threads for
several of the curves. The hump is due to a decomposition of the problem inappropriate
to the number of processors used. Let E be the execution time of one thread on one
processor, n be the number of processors available and T be the number of threads
over which a computation is divided. Since E is the same for all threads, execution
essentially proceeds in lock-step. At each step, Tin threads complete, except that when
n is not a factor of T, it is not possible to evenly distribute the final T mod n threads3 over the n available processors. Consequently, the total computation time, t, is

S16
I
I

I
PRESTO 727

550 3.................

E

1 5 0 0
a

s 450..............s 4 50 s.... z........-

e

S
e350

0 30 0 4

n

C150

d

om
mP 100 d.ed
p
u [200x200] * [200x200]
t 50 ,

e measwrdopam, l ". ".... i........... oox o~ I
0 [• O•xiG] [100X100]

2 3 4 5 6 7 8 9

Number of Thrads (Processors)

Figure 2. Matrix multiplication speed-up

be done in parallel, the program-represented in Figure 2 does not do so. The data
initialization costs are reflected only in the measured curves, not in the optimal ones. -1

In addition to program initialization, PRESTO itself must be initialized. The time to

initialize and begin executing on nine processors is much greater than for a single
processor (the cost is roughly 55 ms per processor), but the total lifetime of the
computation is much shorter. Consequently, the percentage of time doing work unre-
lated to the multiplication algorithm increases with the number of processors, and this
appears as a break from the optimal curve when the total computation time gets very
small. For longer-running computations, the initialization effects disappear.

The cost of threads

In Figure 2, the matrix multiplication algorithm was designed so that the number
of threads was equal to the number of available processors. This is in some sense
'optimal' from a performance point of view.

In the case of matrix multiplication, designing an algorithm that is 'parametrized'
by the number of processors is straightforward. In other problem settings, though,
there may be a 'natural' decomposition of the problem into threads of control, and
'warping' this decomposition onto a specific number of processors may impose a

15 1I
I

!
PRESTO 729

[T] xEIn
When T is small and E is large (as it is with only 25 threads working on a 200x200
matrix), this 'tail effect' can be quite pronounced and manifests itself as the hump seen
in Figure 3. The hump is largest when T mod n is small, but non-zero. For example,
when n is eight, seven processors are wasted during the final phase of the computation
as only one thread remains to execute. With nine processors though, seven threads
execute during the final phase, leaving only two processors idle. As would be expected,
25 threads on five processors produces no hump.

This phenomenon of some processors idling while others work is called starL'ation.
When processors execute in lock-step, the amount of wasted processing time due to
starvation effects is Exn, where n. is the number of processors suffering from starvation.
Even when processors execute asynchronously, unless all threads terminate concur-
rently, there must come a time near the end of a computation when there are fewer
runnable threads than processors. Starvation can even become a factor when the-
'optimal' number of threads is used but some delay exists between the starting time of
the first thread and that of the last. Clearly, the negative impact of starvation diminishes
with decreasing E. For fixed size problems, E decreases with increasing T. If the
overhead due to a large T can be offset by preventing the degrading effects of
starvation, appreciable performance benefits can be realized through very fine grained
decomposition. PRESTO makes this possible.

Towards cheaper threads

The construction of a thread's call-stack is a significant contributor to thread creation
cost. To mitigate this in PRESTO, threads are reclaimed upon termination for possible
reuse. When the programmer requests a new Thread, the system checks if any reclaimed
threads are available. If so, a new thread is not created; the reclaimed one is reinitialized
and returned to the programmer. If not, a thread template is created and marked as
incomplete. The thread template can be manipulated in the same ways as a complete
thread. Eventually, the thread template will attempt to execute for the first time. When
this happens, the reclaim pool is checked again. Only if it is empty the second time is
an entirely new thread created and initialized with the values stored in the template.

This aggressive design, which is totally transparent to the programmer, significantly

Table 1. rhread creation and destruction costs

Threads created and Elapsed
Processors destroyed time (s)

1 100,000 44-0
2 100,000 28"2
3 - 100,000 21"6
4 100,000 18"1
5 100,000 15"8
6 100,000 14"0

100,000 12"8
8 100,000 11"8

I
17

730 B. N. BERSHAD, E. D. LAZOWSKA AND H. M. LEVY

reduces the cost of threads in situations where a number of threads are started I
simultaneously and run to termination without blocking: only as many call-stacks will
be allocated as there are processors. A peculiar side-effect is that it is difficult to talk
in a meaningful way about the 'cost of thread creation' in PRESTO, since this cost
depends upon the style of use.

Table II shows the time to create and destroy PRESTO threads when every thread
can be reclaimed. The table demonstrates two points. First, thread creation is relatively
inexpensive. For the single processor case, the average time to create and destroy a
thread is about 440 .Ls. Secondly, the rate at which threads can be created, while not
linear with the number of processors, is much better than constant. The non-linearity
arises because all threads originate from and return to a common pool, and access to I
this pool can be a bottleneck as locking must occur. Practically though, bursty periods
of thread creation are usually the result of a single thread co-ordinating the activities
of the new threads, so high contention is unlikely. I
The cost of synchronization

There are two types of synchronization costs in a parallel program: non-competitive
and competitive. A non-competitive cost is incurred whenever a thead accesses a
synchronization object and is able immediately to become its owner. The programmer
pays the competitive cost whenever a thread must wait for some other thread to
relinquish ownership, or when the thread blocks on a condition variable. The competi-
tive cost always includes, and is therefore greater than, the non-competitive cost. Table
III shows these costs for four different synchronization operations. Only the overhead
involved in actually blocking and unblocking a thread is reflected in these figures.

The top half of the table represents non-competitive synchronization overhead, and
the bottom, competitive. Lock-test, monitor-test, spin-test and atom-test show the
times required for threads to acquire and release a simple relinquishing lock, monitor,
spinlock and atomic integer, respectively. The 21 tus required to use a spinlock is due
to the slowness of the hardware atomic locks available on the Sequent. Since spinlocks
serve as the basis for all other synchronization primitives, their lack-lustre performance I
negatively influences the other timings. When atom-test is run with two processors, I

Table II. Synchronization costs

Elapsed Average

Benchmark Processors Threads Iterations time (s) time (ls)

lock-test I 1 1,000,000 94-9 94-9
Non- monitor-test 1 1 1,000,000 153 153 i
competitive spinLtest I 1 1,000,000 21.2 21-2

atorn-.test 1 1 1,000,000 25-7 25-7

lock-test 2 2 1,000,000 158-1 158-1 l
monitor-test 2 2 1,000,000 238.3 238-3

Competitive switch__test 1 2 100,000 123-9 1239
switch-test 2 2 100,000 73-1 731
atom-test 2 2 1,000,000 27.7 27.

1
18 a

I

PRESTO 731

3] the elapsed time increases slightly over the single-processor case. This is due to an
optimization for spinlocks (on which atomic integers are based) biased towards non-
competitive acquisition. When the optimization is removed, one processor performs no
better than two.

The time required for two threads to switch back and forth on a condition variable
is shown for both one and two processors in switch-test. Each thread enters the
monitor, signals a condition variable, and then waits on that condition variable,I relinquishing the monitor (and the processor on which it is running). Although only
one thread can be active in the monitor at any instant, two processors perform
substantially better than one. The reason is that the context switch times for the waiting

1 and signalled threads can be overlapped so that one thread can be switched in while
the other is being switched out. With a single processor, this is not possible.

* CONCLUSIONS
PRESTO is both a production system for use in writing everyday parallel programs

and a flexible research tool with which various scheduling, synchronization and granu-
larity issues can be explored.

The former goal is met by joining the classical notions of concurrent programming
with the powerful concepts of object-oriented design. Objects can be made completely
responsible for their own execution, as well as modification and presentation. This
relieves the user of an object from concern about potential misuse in a parallel
environment. By exploring the class mechanism of the language, programmers can
derive parallel, inherently safe objects (such as a synchronized stack) from simpler,I well-understood, sequential versions. A key point, emphasized in this paper, is that
the performance of PRESTO's primitives is sufficiently good that the 'natural' decompo-
sitions of problems, rather than artificial constraints imposed by the system, can beI the determining factor in the structure of parallel algorithms.

The utility of PRESTO as a research vehicle arises from its underlying structure.
A system component (the scheduler, a processor, even a thread) can be redefined
through inheritance without affecting the other components.

PRESTO is not a toy. It is the current system of choice for parallel programming
at the University of Washington. Certain applications have been built on top of the
'default' Mesa-like environment; for example, a parallel solution package for queueing3 network performance models. Other applications have customized certain aspects of
PRESTO, taking advantage of its 'open' design; a parallel Othello program involves a
new PRESTO scheduler; an instrumentation package for parallel programs involves
an extension of threads to include monitoring capabilities.

ACKNOWLEDGEMENTS

3 We would like to thank Kenneth Almquist, Tom Anderson, Jeff Chase, and David
Wagner for their user-view feed-back on the design and implementation of PRESTO.
They, along with Ellen Ratajak, Doug Comer, and the referees, provided many helpful
comments concerning this paper. Our work is supported by the U.S. National ScienceI Foundation (Grants No. CCR-8619663, CCR-8700106, and CCR-8703049), the Naval
Ocean Systems Center, US WEST Advanced Technologies, the Washington Tech-
nology Center, the USENIX Association, and Digital Equipment Corporation (the
Systems Research Center and the External Research Program).

119

i

I,

I
732 B. N. BERSHAD, E. D. LAZOWSKA AND H. M. LEVY

REFERENCES

1. B. Stroustrup, The C+ + Programming Language, Addison-Wesley, March 1986.
2. G. T. Almes, A. P. Black and E. D. Lazowska, 'The Eden system: a technical review', IEEE Trans.

Software Engineering, SE-11, 43-58 (1985).
3. E. Jul, H. Levy, N. Hutchinson and A. Black, 'Fine-grained mobility in the Emerald system', AC

TOCS, 6,(N) 109-133 (1988).
4. B. N. Bershad, E. D. Lazowska, H. M. Levy and D. Wagner, 'An open environment for building

parallel programming systems', Proc. ACM SIGPLAN Symposium on Parallel Programming: Experi-
ence with Applications, Languages and Systems, July 1988. !

5. Modula2+ Reference Manual, Digital Equipment Corporation, April 1986.

6. T. W. Doeppner Jr. and Alan J. Gebele, 'C+ + on a parallel machine', Report CS-87-26, Department
of Computer Science, Brown University, November 1987.

7. C. A. R. Hoare, 'Monitors: an operating system structuring concept', Communications of the ACM,
17, (10), 549-557 (1974).

8. B. W. Lampson and D. D. Redell, 'Experiences with processes and monitors in Mesa', Communications
of the ACM, 23, (2), 104-117 (1980).

9. J. G. Mitchell, W. Maybury and R. Sweet, 'MESA language manual'-.Technical Report CSL-79-3, I
Xerox Palo Alto Research Center, April 1979.

10. S. S. Thakkai, P. Gifford and G. Fielland, 'Balance: a shared memory multiprocessor', Proceedings,
2nd International Conference on Supercomputing, Santa Clara, May 1987. 5

2

I
a
I
I
I

20

I
I

Final Scientific and Technical Report
The Performance of Parallel Computer Systems, .

Delivery Order No. 0009, Contract No. N66001-87-D-013
Edward D. Lazowska and John Zahorjan

Department of Computer Science and Engineering
University of Washington

November 1989

This report is a summary of the research conducted under this project, which began on May 1 1988 and
concluded on September 30 1989.
Roughly 30 technical reports have been submitted to NOSC covering variou specific developments. In
this report, we will summarize each area of investigation, and we will include abstracts of the relevant
publications. Thus, the main purpose of this report is to provide perspective - to make it clear that the
large number of technical reports that we have previously submitted are in fact related to the pursuit of a
small number of major themes.

We note that in addition to NOSC, our research is sponsored by the National Science Foundation, Digital
Equipment Corporation, U S WEST Advanced Technologies, and the Washington Technology Center.

Motivation
The objective of our work is to develop tools and techniques that facilitate the production of high-
performance parallel programs for medium-scale shared-memory multiprocessors.
To motivate this work, we shall spend just a moment reviewing four central issues: the reasons for
studying parallel computing in general and medium-scale multiprocessing in particular, the potential
cost/performance benefits of medium-scale multiprocessing, the track record to date in achieving this
potential, and the complexities that make system design difficult in this environment.

High-performance computing is of critical importance. Parallel systems hold great promise for cost-
effectively providing this high performance. Medium-scale multiprocessing is a natural area for study,
because these systems are available today, and raise a host of difficult problems, most of which are
relevant to more advanced architectures as well.
The potential cost/performance benefits of medium-scale multiprocessing are indicated by the fact that
the DEC Systems Research Center, which designed and implemented the Firefly experimental prototype
multiprocessor workstations that we use in our research, estimates that the production cost of a five
processor workstation is only 15% greater than the production cost of a uniprocessor workstation that
uses the same technology. Thus, the Firefly, which is by no means an aggressive design, offers a
potential cost/performance advantage of greater than 4:1.
The challenge, of course, lies in achieving this potential. The "bread and butter" of Sequent Computer
Systems, manufacturer of the Symmetry and Balance multiprocessor systems (we use a 20-processor
Symmetry in our research), is customers who desire inexpensive sequential UNIX cycles, which the
Sequent systems deliver with great success. The small proportion of Sequent customers whose objective
is to run production parallel applications face much greater challenges. Sequent tells the story of
Teradyne, a company that sells circuit simulation software. Teradyne set out to parallelize its existing
software, with the objective of selling a turnkey "circuit simulation engine" based on an 8-processor
Sequent. After months of effort, Teradyne's engineers hit the "go" button only to discover that their
parallel simulator took twice as long to run on an 8-processor system as their sequential simulator had
taken on a uniprocessor. (The good news is that nearly linear speedup was achieved through extensive
"performance debugging"; the bad news is that this is by no means an isolated incident.)

As just one example of a complexity that makes the design of parallel systems difficult, consider the
choice between spinning (busy waiting) and blocking (relinquishing the processor) to wait for an event
The appropriate choice between spinning and blocking depends on the relationship of the expected spin
time to the context switch time. This choice is not always clear, and a mistake can have major

1 21

-2- 3
performance implications. For example, one field test release of the Sequent's DYNIX operating system 3
included the substitution of blocking for spinning in a single routine as a "performance enhancement".
Under high loads, this change in fact caused a severe performance degradation, something that was first
noticed by a Sequent competitor and used as the basis of an advertising campaign.

This brief motivation hopefully suffices to indicate the breadth, depth, and importance of the problem
area that we are tackling. Looking in a bit more detail, our technical objectives can be divided into six
categories, discussed in the sections that follow.

Operating system support for parallel computing

The goal of this research is to provide efficient primitives to support parallel computing, so that the
programmer can use parallelism in a manner dictated by the nature of the application rather than by the
cost of the primitives.

Zahojan, Lazowska, ana Eager have analytically examined lock acquisition strategies - in particular, the
tradeoffs between spin-waiting and blocking [Zahorjan, Lazowska & Eager 1988]. They have studied the
degradation of spin-waiting as the variability in lock holding times increases (this variability might be
due to multiprogramming or to data dependencies), and they have found relatively simple scheduling
rules that can avoid this degradation. They have also explored in more detail the interaction between I
scheduling discipline and spin overhead [Zahoran, Lazowska & Eager 1989].

Anderson, Lazowska, and Levy have experimentally examined data structure alternatives for thread
management [Anderson, Lazowska & Levy 1989] and algorithm alternatives for spin-waiting [Anderson I
1989]. With Bershad, they have provided a comprehensive overview of thread management [Anderson et
al. 1989].
Anderson, Bershad, Lazowska, and Levy have developed a highly-efficient protected procedure call
mechanism [Bershad et al. 1989]. The assertion is that using the network IPC or RPC mechanism for

cross-address-space calls on a single machine (as is done, e.g., in Mach, Topaz, and V) fails to "optimize
the common case", with significant performance and structure repercussions. Major improvements have
been attained.
McCann and Zahorjan are investigating scheduling strategies for multiprogrammed shared memory
parallel systems [Zahorjan & McCann-1989]. They have proposed a number of policies wherein the
system scheduler allocates processors to jobs and the application itself schedules threads on those
processors. An initial simple analysis of the policies has been performed and work is progressing on
more detailed simulations and eventual implementation of promising strategies on our Sequent
multiprocessor. I
Programming support for parallel and parallel/distributed computing
In this research we explore the software support that sits between the operating system and the 3
programmer, and that facilitates the development of high-performance parallel applications.

Bershad, Lazowska, and Levy developed Presto, an object-based "toolkit" for parallel programming
which is based on C++ [Bershad 1988; Bershad, Lazowska & Levy 1988; Bershad et al. 1988]. Presto I
attacks two key problems in parallel programming: the high cost of the primitives supporting parallelism
(discussed in the previous section), and the fact that most parallel programming systems present the
programmer with a rigid "model" of parallelism that may not be appropriate to the specific application
domain at hand. In Presto, the programmer first extends the base system to provide direct support for the I
application domain at hand, and then programs the specific application.

Chase, Amador, Lazowska, Levy, and Littlefield are developing Amber, which can be thought of as
"distributed Presto" [Chase et al. 1989]. The assertion is that networks of medium-scale multiprocessors I
will soon be commonplace, and that it will be desirable to program them as a single system, using
hardware coherence within each multiprocessor and software coherence (based on the Amber object
model) between them. Amber is being prototyped on our DEC SRC Firefly multiprocessor workstations.

I
22 I

-3-

Parallel discrete-event simulation

Parallel simulation is a natural application area for three reasons: simulation is widely used in other
aspects of our research, parallel simulation provides a realistic test of our system and programming
support for parallel computing, and parallel simulation is of intrinsic interest.
Wagner and Lazowska have designed and built Synapse, a system based on Presto that aggressively
exploits shared memory to speed up "conservative" parallel simulati6n [Wagner, Lazowska & Bershad
1989]. They have also examined the particular application domain of queueing network simulations, and
have discovered a number of successful optimizations [Wagner & Lazowska 1989]. Further details on
this work are contained in Wagner's Ph.D. dissertation [Wagner 1989].
While Wagner and Lazowska's exploration of parallel simulation is largely experimental, Lin, Baer, and
Lazowska have taken a more analytic approach to studying both conservative and optimistic parallel
simulation. In tle conservative realm, they began by examining the specific application domain of
multiprocessor cache coherence algorithm simulation. They derived a general technique and showed how
performance can be improved by tailoring this technique to specific cache coherence protocols [Lin, Baer
& Lazowska 1989; Lin, Lazowska & Baer 1989; Eggers, Lazowska & Lin 1989]. They have examined
the efficient parallel simulation of systems with no lookahead [Lin, Lazowska & Baer 1990], discovered
novel ways of exploiting lookahead when it does exist [Lin & Lazowska 1989c], and developed
techniques for deriving improved lookahead estimates in certain simulations [Lin, Lazowska & Baer
1989b]. In the optimistic realm, Lin and Lazowska have studied situations under which this approach
yields the optimal simulation [Lin & Lazowska 1990], have determined the optimal checkpoint interval
for optimistic simulation [Lin & Lazowska 1989a], and have developed improvements to the Time Warp
rollback mechanism [Ln & Lazowska 1989b].

Parallel performance analysis and performance tools

Of course, performance lies at the heart of everything that has been discussed thus far. However, we are
conducting both general and specific studies in the specific area of parallel system performance analysis.
Eager, Zahorjan, and Lazowska have attempted to determine appropriate abstractions for viewing parallel
software nmning on parallel hardware from the performance point of view [Eager, Zahorjan & Lazowska
1989]. The objective of this work is to develop a framework for building measurement tools and
modelling tools for parallel systems.
Several simple measurement tools have been constructed - by Anderson on the Sequent and by Bershad
on the Firefly. More work in this area remains to be done. The Quartz tool, recently developed,
represents a significantly novel approach to the instrumentation of parallel application programs for the
purpose of performance tuning [Anderson & Lazowska 1989].
The development of useful performance tools is driven by applications. Our work in parallel discrete-
event simulation is one such application. Another is an experimental study of parallel dynamic
programming [Almquist, Anderson & Lazowska 19891.

Design of parallel computer memory interconnects

Mizrahi, Baer, Lazowska, and Zahoijan have designed and analyzed an architecture called the Memory
Hierarchy Network, an interconnection network with memory at the nodes and data migration in response
to reference patterns [Mizrahi et al. 1989a, 1989b].
Vernon, Lazowska, and Zahorjan have developed highly efficient analytic tools for studying cache design
questions [Vernon, Lazowska & Zahojan 1988].

Distributed and heterogeneous computer systems
We maintain a strong interest in various issues related to distributed and heterogeneous computer
systems.
In the heterogeneous system domain, our major recent focus has been on file systems and remote
procedure call mechanisms. Pinkerton, Lazowska, Notkin, and Zahorjan have developed a design for a
hpterogeneous remote file system that offers a number of significant advantages over alternative designs,

23

-4-

in particular FTAM [Pinkerton et al. 1989]. Chung, Gosney, Lazowska, and Notkin have developed an I
extension to our previously-developed heterogeneous remote procedure call facility that provides a
multi-language capability [Chung et al. 1989a].

In the distributed system domain, Chung, Lazowska, Notkin, and Zahorjan have studied the performance I
implications of various design alternatives for remote procedure call stubs - for example, the choice
between compiled and interpreted stubs [Chutig et al. 1989b].

Neuman and Lazowska are exploring mechanisms to provide "customized views" of very large I
distributed systems [Neuman 1989]. This work begins from the observation that while each user needs
transparent access to the entirety of such a system, each user also needs to be able to easily construct a
view of the system that highlights those things that are relevant and suppresses those things that are not.
The approach being taken is called the "virtual system" approach; a file system prototype built using this
approach is currently under construction.

References I
[Almquist, Anderson & Lazowska 1989]

Kenneth Almquist, Richard J. Anderson, and Edward D. Lazowska. The Measured Performance of Parallel Dynamic
Programming Implementations. Proc. 1989 International Conference on Parallel Processing, August 1989. I

[Anderson 1989]
Thomas E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors. Proc. 1989
International Conference on Parallel Processing, August 1989. To appear, IEEE Transactions on Distributed and Parallel
systems. I

[Anderson et al. 19891
Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Thread Management for Shared-
Memory Multiprocessors. Technical Report 89-10-02, Department of Computer Science and Engineering, University of
Washington, October 1989. Submitted for publication.

[Anderson & Lazowska 1989]
Thomas E. Anderson and Edward D. Larowska. Quartz A Tool for Tuning Parallel Program Performance. Technical
Report 89-09-05, Department of Computer Science and Engineering, University of Washington, September 1989. Submitted I
for publication.

[Anderson, Lazowska & Levy 1989]
Thomas E. Anderson, Edward D. Lazow", and Henry M. Levy. The Performance Implications of Thread Management
Alternatives for Shared-Memory Multiprocessors. Proc. ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, May 1989; forwarded by the program committee as an award paper to to IEEE Transactions on

Computers, to appear.

[Bershad 1988]
Brian Bershad. Presto User's Guide. Technical Report 88-01-04, Department of Computer Science, University of
Washingt Januy 198.

[Bershad et al. 1989]
Brian N. Bersh4ad Thomas E. Anesoi Edward D. lazw"J and Henry M. Levy. Lightweight Remote Procedure Call. !
To appear, ACM Transactions on Computer Systems, February 1990; forwarded by the program committee as an award paper
to ACM Transactions on Computer Systems, to appear.

[Bershad, Lazowska & Levy 1988]
Brian N. Bershad, Edward D. Lanwska, and Henry M. Levy. PRESTO. A System for Object-Oriented Parallel
Prgamn. Software: Practice & Experience 18,8, August 1988, pp. 713-732.

[Bershad et aL 19881
Brian N. Bershad, Edward D. Lazowska, Henry M. Levy, and-David B. Wagner. An Open Environment for Building Parallel
Programming Systems. Proc. ACM SIGPLAN Symposium on Parallel Progromming: Experience with Applications, U
Languages, and Systems, July 1988.

[Chase et al. 1989]
Jeffrey S. Chase, Franz Amador, Edward D. Lazwska, Henry M. Levy, and Richard J. Littlefield. The Amber System:
Parallel Programming on a Network of Multiprocessors. To appear, Proc. 12th ArM Symposium on Operating Systems
Principles, December 1989.

[Chung et al. 1989a]
Sung K. Chung, Kimiko Gomey, Edward D. Lazowrka, and David Notkin. Multi-Language Support for Heterogeneous I
Remote Procedure Call. Technical Report 89-10-09, Department of Computer Science and Engineeri ng, University of

Washington, October 1989. Submitted for publication.

U

S-5-

3[Chung et al. 1989b]
Sung K. Chung, Edward D. Lazowska, David Notkin, and John Zahorjan. Performance Implications of Design Alternatives
for Remote Procedure Call Stubs. Proc. 9th International Conference on Distributed Computing Systems, June 1989.

I [Eager, Zahodjan & Lazowska 1989]
Derek L. Eager, John Zahorjan, and Edward D. Lazowska. Speedup Versus Efficiency in Parallel Systems. IEEE
Transactions on Computers, March 1989.

[Eggers, Lazowska & Lin 1989]
Susan J. Eggers, Edward D. Lazowska, and Yi-Bing Lin. Techniques for the Trace-Driven Simulation of CachePerformance. Invited for 1989 Winter Simulation Conference, December 1989.

[Lin, Lazowska & Baer 1989]
Yi-Bing Lin, Edward D. Lazowska, and Jean-Loup Baer. Parallel Trace-Driven Simulation of Multiprocessor CacheI Performance: Algorithms and Analysis. Invited chapter in Progress in Simulation, Ablex Publishing, 1989.

[Lin, Baer & Lazowska 1989]
Yi-Bing Lin, Jean-Loup Baer, and Edward D. Lazowska. Tailoring a Parallel Trace-Driven Simulation Technique to Specific
Multiprocessor Cache Coherence Protocols. Proc. 1989 Distributed Simulation Conference, March 1989.

[Lin & Lazowska 1990]
Yi-Bing Lin and Edward D. Lazowska. Optimality Considerations for Time Warp Parallel Simulation. To appear, Proc.
SCS Multiconference on Distributed Simulation, January 1990.

[Lin, Lazowska & Baer 1990]
Yi-Bing Lin, Edward D. Lazowska, and Jean-Loup Baer. Conservative Parallel Simulation for Systems with No Lookahead
Prediction. To appear, Proc. SCS Multiconference on Distributed Simulation, January 1990.

[Lin & Lazowska 1989a]

Yi-Bing Lin and Edward D. Lazowska. The Optimal Checkpoint Interval in Time Warp Parallel Simulation. Technical
Report 89-09-04, Department of Computer Science and Engineering, University of Washington, September 1989. Submitted
for publication.I [Lin & Lazowska 1989b]
Yi-Bing Lin and Edward D. Lazowska. A Study of Time-Warp Rollback Mechanisms. Technical Report 89-09-07,
Department of Computer Science and Engineering, University of Washington, September 1989. Submitted for publication.

[Lin & Lazowska 1989c]
Yi-Bing Lin and Edward D. Lazowska. Exploiting Lookahead in Parallel Simulation. Technical Report 89-10-06,Department of Computer Science and Engineering, University of Washington, October 1989. Submitted for publication.

[Mizrahi et al. 1989a]
Haim E. Mizrahi, Jean-Loup Baer, Edward D. Lazowska, and John Zahorjan. Introducing Memory into the Switch Elements
of Multiprocessor Interconnection Networks. Proc. 16th International Symposium on Computer Architecture, May 1989.

[Mizrahi et al. 1989b]
Haim E. Mizrahi, Jean-Loup Baer, Edward D. Lazowska, and John Zahorjan. Extending the Memory Hierarchy into
Multiprocessor Interconnection Networks: A Performance Analysis. Proc. 1989 International Conferercc on ParallelProcessing, August 1989.

[Neuman 1989]
B. Clifford Neuman. The Virtual System Model for Large Distributed Operating Systems. Tchnical Report 89-01-07,U Department of Computer Science University of Washington, April 1989.

[Pinkerton et al. 1989]
C. Brian Pinkerton, Edward D. Lazowska, David Notkin, and John Zahorjan. A Heterogeneous Distributed File System.
Technical Report 88-08-08, Department of Computer Science, University of Washington, August 1988, revised October
1989. Submitted for publication.

[Vernon, Lazowska & Zahojan 1988]
Mary K. Vernon, Edward D. Lazowska and John Zahorjan. An Efficient and Accurate Performance Analysis Technique for
Multiprocessor Snooping Cache Consistency Protocols. Proc. 15th International Symposium on Computer Architecture,I~w May 1988.

[Wagner 1989]
Conservative Parallel Discrete Event Simulation: Principles and Practice. Technical Report 89-09-03, Department of

1 Computer Science and Engineering, University of Washington, September 1989 (Ph.D. thesis).
[Wagner & Lazowska 1989]

David B. Wagner and Edward D. Lazowska. Parallel Simulation of Queueing Networks: Limitations and Potentials. Proc.
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, May 1989.

- [Wagner, Lazowska & Bershad 1989]
David B. Wagner, Edward D. Lazowska, and Brian N. Bershad. Techniques for Efficient Shared-Memory Parallel3 Simulation. Proc. 1989 Distributed Simulation Conference, March 1989.

325

-6-

[Zahorjan, Lazowska & Eager 198S] 3
John Zahortan, Edward D. Lazowska, and Derek L. Eager. Spinning Versus Blocking in Parallel Systems with Uncertainty.
Proc. International Symposium on Performance of Distributed and Parallel Systems, December 1988.

[Zahorian, Lazowska & Eager 1989] I
John Zahorjan, Edward D. Lazowska, and Derek L. Eager. The Effect of Scheduling Discipline on Spin Overhead in Shared
Memory Parallel Systems. Technical Report 89-07-03, Department of Computer Science and Engineering, University of
Washington, July 1989. Submitted for publication.

[Zahoijan & McCann 1989]
John Zahorjan and Cathy McCann. Processor Scheduling in Shared Memory Multiprocessors. Technical Report 89-09-17,
Department of Computer Science and Engineering, University of Washington, September 1989. Submitted for publication.

I
I

I
U
I
I
N
I
I
!
U
I

I
26

I
I
I

3 Programming Support for

* Parallel and Parallel/Distributed Computing

U

I
U
I
U

I 27

I
I

aThe PRESTO User's Manual

3 Brian N. Bershad

University of Washington
Department of Computer Science

Seattle, Washington 98195
(206) 545-2675

i January 1988

ABSTRACT

PRESTO is an environment for writing object-oriented parallel programs in the C++ pro-
gramming language. It makes few assumptions about the behavior of these programs and the
models of paralellism to which they adhere. This paper describes the basic PRESTO primitives

1I and provides examples of their use. A simple programming environment based on Mesa moni-
tors and threads is provided as part of the standard PRESTO distribution, but this may easily3- (and efficiently) be abandoned in preference to environments based on other models.

1. Introduction

PRESTO is an object-oriented parallel programming environment for shared-memory multiprocessors. The sys-
tem provides the programmer with a set of basic classes useful for writing parallel programs in the C++ program-
ming language. These include threads for concurrency, and locking mechanisms for synchronization. The structure
of these more primitive classes and the basic PRESTO run-time environment are sufficient for writing many types
of parallel programs. Nevertheless, the system is structured so that the programmer may extend, modify, or com-
pletely replace arbitrary pieces of the environmenL

This manual is divided into two parts. The first addresses the mechanics of writing PRESTO programs using
the structures provided by the system. Programming examples and short explanations about how the system works
are also given. The second part discusses in more depth the internals of PRESTO and how to modify the system to
meet the needs of specific applications. The reader is expected to have a good understanding of object-oriented pro-
gramming concepts in general, and the C++ programming language in particular. To help clarify explanations, class
definitions and code fragments are presented throughout this document A more thorough motivation for the sys-

tem, its structures, and its relationship to parallel programming in general can be found in [11 and [2].

1 2. Information For PRESTO Programmers

2.1. Parallel Programming On Top Of UNIX

A UNIX process provides a single thread of control within an address space. To the UNIX kernel, that process
is the smallest schedulable entity. Unfortunately, relying directly on heavyweight UNIX processes for building
parallel applications can be severely restrictive. Problems include the high cost of context switching, the limitedInumber of simultaneous threads possible, and difficulty in sharing many types of resources between UNIX
processes.

This work is supported by the National Science Foundation under Grants No. DCR-420945, CCR-8619663, and CCR-
8703049, and by granS from the Naval Ocean Systems Center, US WEST Advanced Technologies, the Washington Tech-
nology Center. the USENIX Association, and Digital Equipment Corporauion's Systems Research Center and External
Research Program.

29

I
-2- I

PRESTO works by considering UNIX processes as physical processors. When a PRESTO program begins,
some number of UNIX processes are created. A PRESTO thread can be scheduled to execute within any one of
these processes. Since all PRESTO objects live in a single address space, that address space can be shared amongst
all the UNIX processes, allowing a thread to move between UNIX processes. Although this structure is hidden
from the PRESTO programmer (who sees only threads and a single address space), understanding how the system
works can be useful during debugging. Further, understanding will make clearer the reasons for some of the
system's current limitations, which .will be discussed in this document as they arise in context. I

On true multiprocessors, PRESTO creates multiple UNIX processes in which to run threads. On uniprocessors,
all threads are scheduled within the context of a single UNIX process. Again though, this distinction is generally
transparent to the programmer who may construct applications without concern for the underlying processor struc- 3
ture.

2.2. C++ On A Sequent

C++ on the Sequent multiprocessor is almost identical to generic C++. The Sequent C compiler understands the
two storage class identifiers shared and private. Since the latter conflicts with a C++ keyword, they have
been changed for the C++ compiler to be sharedt and private_t 1. For example, 3

static shared t int x = 100; /I declare x to be static shared
extern privatet Thread* thisthread; // thisthreads is private to each processor

By default, the loader assumes that declarations not specifying the storage class are to be private and not sharedgU

across processors. Since all PRESTO objects live in a single, shared address space, there should be no connection
between a physical processor and an object. The programmer must either ensure that the -Y flag is given to the
loader (to change the default behavior), or explicitly declare all static objects as shared (sharedt). Both
methods are recommended as they ensure that the right thing always happens (the loader will complain if the I
storage class for an object is inconsistently declared). Failure to properly declare the storage class will cause
strange things to happen when a static object is referenced from more than one processor. The most common types
of PRESTO programming errors result from misusing the global shared memory. As a rule, PRESTO programs
should almost never use private objects since threads can migrate between processors. PRESTO programs written
on the Sequent can be recompiled directly on other machines, where the storage class specifiers are pre-processed
away. I
2.3. PRESTO Components

PRESTO consists of a run-time library and a set of header files that define system objects. The library is called
libpresto. a. All of the necessary header files can be pulled in by including only the file presto. h. These
files should probably be placed in /usr/local/lib/libpresto.a and /usr/include/presto. In
addition to the PRESTO library, Sequent programmers will also need to include Sequent's parallel programming
library dealing with the shared-memory structures on that machine. Eventually, PRESTO will provide its own I
memory management, eliminating the need for the Sequent library.

PRESTO relies heavily on inline expansions for simple, but frequently called functions (such as lock acquisi-
tion). These functions are defined within the PRESTO header files and are subject to change. Without inline func- I
tions, a change in the libraries only requires that user programs be relinked. In-line functions require that they be
recompiled as well. For this reason, programmers are encouraged to specify the complete header dependencies
within their makefiles. The following is a sample PRESTO makefile that takes care of creating these dependencies. 3

U

The appropriate diffs to efront are included in the appendix.

30 3

-3-

LIBS = /usr/local/lib/libpresto.a -lpps

MAKEFILE = Makefile

cc = cc3 CFLAGS = -g
LDFLAGS = -Y # if Sequent

SRCS = qs.c qsmain.c

OBJS = qs.o qsmain.o
PROG = qs

$(PROG) : $(OBJS) $(LIBS)

$(CC) $(CFLAGS) $(LDFLAGS) $(OBJS) $(LIBS) -o $(PROG)
*

Construct header dependencies

$depend: (CC) -M $(SRCS) I sort I uniq > makedep
cp $(MAKEFILE) $(MAKEFILE) .sav

ud -n 'l,/^# DO NOT DELETE THIS LINE/p' $(MAKEFILE).sav >$(MAKEFILE)

echo '# stuff after here goes away' >>$(MAKEFILE)

cat makedep >> $ (MAKEFILE)

echo '# DEPENDENCIES MUST END AT END OF FILE' >> $(MAKEFILE)

echo '# IF YOU PUT STUFF HERE IT WILL GO AWAY' >> $(MAKEFILE)

DO NOT DELETE THIS LINE
stuff after here goes away

The rules for making depend will update the makefile to properly reflect all header dependencies. It is important
to keep these up-to-date. The only other interesting point about the makefile is the definition of LDFLAGS for the
Sequent. The -Y will force static objects to be shared, with the exception of static class members. These need to
be explicitly declared as shared.

class AnyI static shared t int x;

1 2.4. Writing PRESTO Programs

A PRESTO program is essentially a C++ program having more than one thread of execution. A thread
represents a virtual processor. There may be many more threads than physical processors when executing a
PRESTO program. It is best to think of a thread as always executing in the context of one object or another. When
an object synchronously invokes another object, the invoking object's thread is borrowed by the other, wherein it
executes (possibly passing on to other objects) until it eventually returns. For consistency, global functions can be
considered member functions of some single anonymous global object.

All PRESTO programs have three phases: initialization, execution and termination. These phases are defined in
terms of member functions on the class Main, which is used to transform a program from a single-threaded UNIXI process into a multi-threaded PRESTO program.

class Main
int numprocessors; // # scheduling processors

int nummainthreads7; // # threads in Main::main()
int mainstacksizes; // how big each stack
int quantum; I/ scheduling quantum

int argc; // argc from main
char **argv; // argv from main
char **envp; // envp from main

public:

Main(int ac, char **av, char *ep);
-Main ();
int initf); // user provides any or all of
int main(; / init, main, done...

int doneo; //

31

I
-4- I

The programmer provides the implementation for the functions init 0 , main () and done (), much as
the UNIX programmer provides the implementation for the subprogram main () (which should not be provided in
a PRESTO program). The initializing Main: : init () is called in the context of a single-threaded UNIX pro-
gram by the PRESTO run-time system (PRTS). In it, the programmer can specify PRTS parameters or create alter-
native system objects. Main: :init () should return non-zero on failure, which will be passed through to
::exit 0. If the initialization does not fail, Main: :nuxrmainthreads will begin executing in
Main: :main (,running on top Main:: numprocessors processors. If not set by Main: :init (,thesys-
tem will default to having one thread on one processor. For sanity's sake, Main: : numprocessors is limited to

one fewer than the number of physical processors on the machine. When the system runs out of runnable threads, it
returns to a single-threaded UNIX mode and invokes Main: : done (). The programmer can use this function to I
perform any extra cleanup that might be necessary. The function's return value is passed on to : : exit (). The
PRTS provides default implementations for the three functions Main- :init 0, Main: .ain.,) and

Main: : done 0. These implementations do nothing, so the programmer who needs nothing can use them. 3
2.5. Basic Objects

The two main PRESTO classes for dealing with threads and synchronization are derived from the very basic
object Object.

// objects.h

class Object I
int a type; // object type 3
char *o_name; I/ object name

Object *o_next; // linked list next field

public:
Object(int type, char* name, Object* next = 0)
int typeo(

virtual void error(char* s), II all objects handle their own errors

char* name) }I
An instance of class Object has a name, type, an error handler, and the ability to "live" in an object queues (such as
class Oqueue). PRESTO defines several object types in the file objects .h. Users can define their own objects
having type values greater than OBJ END. The main reason for the type is to allow error checking when dealing I
with objects in different capacities. The error handler provides a convenient way to lay the blame on an object

when something goes wrong. The object can deal with the error in an appropriate manner. Most PRESTO objects

abort the program when an error occurs - simple, but effective. 3
2.6. Threads

Although a thread represents the computational power of a virtual processor, a thread itself is represented by a
normal C++ object. Creating and starting threads within an object's member functions are the most common opera-
tions.

// Abridged Thread interface. FILE threads.h
//
class Thread : public Object

Thread(char* name, int tid = 0, long ssiz - DEFSTACKSIZ, int musthavestack = 0);
-Threado);

int start(Objany obj, PFany pf, ...);

A thread has, among other things, a name, a thread id, and a stack. Creating a new thread is done with the standard 3
new operator.

Thread *t = new Thread("billy", 100, 10*ONEK);

will create a new thread by the name "billy" with an id of 100 and a stack size of 10k. Thread names and thread id's I
are currently not used for anything in the PRTS other than to identify an offending thread when an error occurs.
These values can be obtained using the operations char *name () and int tid 0. 5

32 3

-5-

cout < "t's name is " << t->name() << " and id is " << t->tido;

The minimum stack size is 1024 bytes, the largest is 1 megabyte, and the default is 16k. For simplicity, stack
sizes should be specified in increments of ONEK (or left to the default). The current implementation does no check-
ing for stack overflow, although it probably should. The last argument to the thread constructor should only be
given (as non zero) when a complete thread must be constructed. If a complete thread is not needed, the system
may perform certain storage optimizations in order to minimize the amount of new shared data that must be created.
These optimizations are discussed in detail in a later section.

A newly created thread is essentially a passive data objecL That is, it has everything a thread needs except
something to do. The operation start() enqueues a thread to begin executing within the member function of some
object.

Thread *t = new Thread("billy"); // defaults are sufficient
Matrix *m = new Matrix;
Matrix *n = new Matrix;

t->start ((Objany)m, (PFany)m->multiply, n);

3 is equivalent to the asynchronous invocation m->multiply (n) ;. S tart() returns immediately, after having
scheduled t for execution. A thread may only be started once or an error will occur. If the first argument to
start () is NULL, the thread will be started in the global function named in the second parameter.

3 extern int write(int fd, char* buf, int len);
Thread *t = new Thread("writer");

#define HW "Hello World"
t->start(0, (PFAny)write, fileno(stdout), HW, sizeof(HW));

Although C++ has a reasonably strict typing system, start 0 is essentially untyped since it can be used toI start a thread within any object's member function having any number of any type of parameters. The implementa-
tion of start () blindly copies its arguments onto the thread's stack without checking their types. Caveat Pro-
grammer.

The C++ compiler has its own ideas about what it means to take the address of a member function as is done
with the call to start (). Newer versions of the compiler support the concept of a pointer to a member function,
but not in the type-free way needed by PRESTO. These versions may emit the warning

"matrix.c", line 23: warning: address of bound function
(try Matrix ::* pointer type and &Matrix ::wait address)

The warninb can be ignored since the PRTS cnsures that the operation is invoked on the correct object. It's also a
good idea to always coerce the first two arguments of start 0 to their generic types (Objany and PFany) to
avoid compiler error type-checking messages that can sometimes arise.

The asynchronous nature of start () affects the styles of parameter passing that may be used in a started
function. Default and reference parameters will not work properly, although virtual and inline functions work fine.
Overloaded functions will also not work, since the compiler can not discern the types of the arguments to the func-
tion (or its return value) at compile time.

Disallowing reference parameters implies that all parameters (including pointers) are passed by value. Conse-
1w quently, the programmer should be careful that pointers reference objects residing in the global address space (static

or created by new) and do not point to objects on the stack of the thread that is starting the new thread. Failure to
abide by this may result in the passed pointer referencing garbage (consider the stack's behavior on an asynchro-

1 [nous invocation). Each of the following start () statements is erroneous.

3

U 33

I
-6- I

class Foo
public:

int use_poiter(int *x);

int usereference(int &x);
int use default(int x = -123);
int use_overload(int x);

int useoverload(float x); 3
Foo *f = new Foo;
Thread -t = new Thread("timmy");
t->start((Objany)f, (PFany)f->use any, &x); // poi-ter to stack variable

/-or*/ t->start((Objany)f, (PFany)f->usereference. x.: / rrce . rameter
/*or*/ t->start((Objany)f, (PFany)f->usedefault); /1 default parameter
/*or*/ t->start((Objany)f, (PFany)f->use overload,12); // overloaded function
/'or*/ t->start((Objany)f, (PFany)f->use overload, 8.5); // overloaded function

A thread begins executing on its own stack. The variable thisthread always refers to the thread referencing
it. For example, an object can query the name of the thread by which it is being animated.

cout << thisthread->name() << " - id == " << thisthread->tido; 3
When a thread returns from the function in which it was started, it will be reclaimed by the system. The program-
mer should be careful when referencing a thread after it has been started (garbage collection may cause the thread to
become something different). I

It is possible to wait on a thread's completion by expressing interest in the started function's return value after
the thread has been created, but before it has been started.

t->willjoin(); // preserve the return value I
t->start(anyobject, anyfunction, args); // go

// stuff here
Objany tval = t->joino; // wait here I

Obj any is a typedef for void* and can be used to name any four byte value. A thread may be joined by only one
other. If a thread terminates, but has been marked as "joinable" with will join (),the thread will not be garbage
collected until another thread joins with it. A thread may prematurely terminate itself2 with

thisthread->terminate (obj)

where obj is an optional (default NULL) parameter of type Objany. If thisthread has been marked as
joinable, the argument to terminate) is returned to the joining thread. The call to ter.minate) never
returns.

An object may start a thread within itself, as well as within other objects.

t = new Thread("self"); 3
t->start((OBjany)this, (PFany)this->func, argl, arg2);

Among other things, this allows objects to animate themselves. In particular, a self-threading object can take advan-
tage of static construction to form itself into an object that is always executing. The following example demon- I
strates this.

U

2 Threads may terminate themselves only. There is no support (yet) for terminating other threads. Stay tuned. 5
34 1

-7-

#include <stream.h>
#include "presto.n"
class Busy

char *n;
public:

Busy(char *name, int count)
n = name;

Thread *t = new Thread(n);
t->start ((Objany)this, (PFany) this->wait, count*1000);

int wait(int delay);
"Busy ()

cout << "BYE BYE from
" << n;

I:

intI Busy::wait(int delay)

while (delay-- > 0)
if (delay % 1000 == 0)

cout <- n << ":" << delay;
I

Main: :init ()

numprocessors = 3; run on three processors
return 0;

3- // STATIC CONSTRUCTORS
shared_t Busy busyone("jim", 25
sharedt Busy busytwo("fred", 40);
sharedt Busy busythree("isaac", 80);I
sharedt Busy busyfour("bill", 15);

The key point in this example is that it is not necessary to even provide an implementation for Main: :main (.
The declarations of the statics busyone through busyfour will cause the constructor for Busy to be invoked
even before the PRTS begins.

There are some limitations to what can be done inside constructors that are called during static initialization.
The order in which static constructors is called is not specified by the C++ language, so its possible for one static
constructor to reference another static object that has not yet been constructed. This will likely cause a segmenta-
tion fault. In addition, since the PRTS may not yet be initialized during a static constructor's execution, certain
operations are not guaranteed to work (or guaranteed not to work). Any operation that involves the scheduler (suchI as waiting on a condition variable) will cause a segmentation fault. The result of operations on thisthread are
also unsafe. Objects may query a global variable to determine the current state of the system,

// presto.h
extern sharedt int prestoState;
#define STATICCTOR 0 /* running static constructors */
#define MAIN INIT 1 /* inside Main::init() */
#define MAINMAIN 2 /* inside Main::main() */
#define MAINDONE 3 -/* inside Main::done() */
#define STATIC DTOR 4 /* inside static destructors */

or use the macro MULTITHREADED () to determine the legitimacy of certain operations.

12.6.1. Forking

Creating and starting a thread can be combined into a single fork operation applied to the current thread5- thisthread. For example,
Thread* t = thisthread->fork(NOJOIN, (Objany)this, (PFany)this->wait, count*1000);

is equivalent to the code in the last example of a Busy constructor. If the first argument to fork is WILLJOIN
then the return value can be used to join with the forked thread. It is not possible to fork on a thread other than

-- 35

I
-8-

thisthread.

2.7. Preemption 3
By seuing the Main: :quantum variable in Main: : init 0, PRESTO programs can take advantage of a

preemptive scheduler. A preemptive scheduler imposes slightly more overhead, but can provide a more realistic
mapping from virtual to physical processor. The quantum is specified in milliseconds. A quantum of zero implies
no preemption. As the quantum decreases, program throughput may also decrease due to the overhead of dealing
with many asynchronous scheduling interrupts. A quantum of 500 ms is reasonable, 100 is excessive, and 10 (the
minimum) is absurd.

A thread may mark itself as non-preemptable,

thisthread->nonpreemptable (;

or preemptable, 3
thisthread->preerrptable (;

to insulate itself from the preemptive scheduler. 3
2.8. Synchronization

Concurrent threads must be able to synchronize their actions. To allow this, PRESTO provides two basic types
of synchronization: non-relinquishing and relinquishing.

2.8.1. Spinlocks
Non-relinquishing synchronization relies on spinlocks to force a thread to busywait on an event (generally, the I

release of a critical section of code). Spinlocks can be constructed, locked, unlocked, and conditionally locked. The

following code fragment demonstrates how a spinlock might be used to control access to a shared critical region.

class MultiThreadedObject 3
Spinlock *sl;

public:
Mult iThreadObject (

{ sl = new Spinlock;) I
-Mul tiThreadOb jecto(

(delete sl; I
void entryPoint (; 3

void MultiThreadedObject: :entryPoint ()

sl->lock1) ;
// critical section

sl->unlock ;

if (sl->checklock)) I/ return zero lock acquired I
// critical section

sl->unlock) ;
else

// can not acquire lock. Take other action

When a thread holds a spinlock, that thread is not preemptable. A thread spinning, waiting for a lock, is preempt-
able though.3

3 The current Sequent implementation does not consider the acquisition of a hardware lock and the marking of a thread
as non-preemptable as an atomic event. To ensure correctness, a thread is marked as non-preemptable when it tries to ac-
quire the hardware lock, rather than waiting until the lock has actually been acquired. Thus, a thread spiring on a lock U
will not be preempted. To do otherwise would introduce the possibility that a thread, having acquired a lock but not yet
marked as non-preemptable, could be preempted. This can quickly lead to a deadlock situation. This problem will be fixed
on the Symmetry.

363

-9-

2.8.2. Relinquishing Synchronization

When the expected waiting time for entering a critical section is high, spinlocks make very ineffective use of theI- underlying processors. Generally, it is more appropriate to relinquish the processor and reschedule the waiting
thread when it would be allowed to enter the critical section. The three operations on threads that permit this are

// FILE: threads.h

class Thread ...

void swtcho;

void sleep(SynchroObject* so);I void wakeup(SynchroObject* so);

The first invokes the thread's lowest level scheduling primitive, relinquishing the processor to a system scheduling3thread. The scheduling thread then runs any other ready thread that can be found. A thread can only sleep or switch
out on itself. Trying to do otherwise raises an error on the thread.

Typically, threads don't just switch out. They go to sleep waiting for some event to occur, at which point they
are "woken up". The classes describing these events are inherited from the general class SynchroObject.

// FILE: synchro.h

class SynchroObject : public Object f
Spinlock *so-lock;
ThreadQUnlocked *so_waiting;

public:

SynchroObject(int t, char *name);ISynchroObjecto(
void remember(Thread* t); // remember thread blocking

Thread* recall(); // get blocked thread
virtual void error(char* s);
inline void locko); II spin on access to object
inline void unlocko;

ThreadQUnlocked *waitingQueue(;// return waiting queue

The base class Object allows SynchroObjects to be main-,'ited i., queues, IwvL. ,ikune, etc. (see objects.h). Syn-
chroObjects use a simple spinlock to control access to the object's data structures. To see why this is needed, con-
sider two threads trying to acquire a monitor at the same time. The so_waiting queue keeps track of all threads
waiting on a given SynchroObject.

2.8.3. Useful Synchronization Objects
SynchroObjects have no usage semantics. That is, a thread can not wait on a SynchroObject directly. They

exist as a base class for other relinquishing primitives that do have semantics. For example, a simple relinquishing

lock is defined in terms of the basic SynchroObject.

3 // synchro.h

class Lock : public SynchroObject
Thread *io owner; // who owns the lock

void lock2); // looping wait

public: Lock(char 'name);

-Lock ();
inline void lock(; // acquire

inline void unlock); I/ release
void error(char *s);

Thread *owner()3 {; i return loowner;
1;

A Lock is nothing more than a SynchroObject that has an owner (loowner) and some operations (lock()3 and unlocko).

i 37

-10-

U
Performance is the motivation for in-lining the lock function. On the Sequent, the speedup can be as much as

one-third. 4 On machines with better support for atomic locking (such as the Symmetry), the improvement due to
inline expansions will be less. Eventually, the more complicated inline functions will not be inlined.

Another point relating to inline functions is their inability to describe loops. A looping implementation of
Lock: :lock () would be written as:

void Lock::lock()

SynchroObject::locko); 1/ acquire base spinlock

while (loowner)

// update thisthread's state to reflect new waiting status I
remember(thisthread); // enqueue on SynchroObject

SynchroObject: :unlock();

thisthread->sleep(this); // go to sleep here

SynchroObject::lock(); // reacquire base spinlock

io owner = thisthread; // it's mine!

SynchroObject: :unlock) ;

but the C++ compiler balks at the while loop. To solve this, the lock implementation is broken into two parts: a
non-looping part which can be inlined, and a looping part that is called if the !ock is already held. The rationale is
that if the lock is already held, the overhead of an extra procedure call will be small compared to the waiting time of
the lock. This trick is used .', several places throughout the system.

ii.line
void Lock::lock()

SynchroObject: : lock () ;

if (lo owner == 0)

lo owner = thisthread;

SynchroObject: :unlock () ;
else

lock2 ();

where lock2 () simply implements the while loop in the first version of lock 0.

A thread can put only itself to sleep, but any thread can cause another thread to wakeup.

inline 3
void Lock::unlock()

SynchroObject: :lock ();
in owner = 0; 1
Thread *newowner = recall(); // find new lock owner
SynchroObject: :unlock(;
if (newowner)

newowner->wakeup((SynchroObject*)this);

Wakeup () ensures that the thread being awoken is indeed sleeping, and then enqueues it for running. It is an error
to wakeup a thread which is not sleeping. I

In addition to simple relinquishing locks, PRESTO also offers monitors and condition variables. Together, these
implement the Mesa synchronization semantics [4]. There is no compiler support for these objects, so it is not pos-
sible to declare an entire object or function as "monitored." This fact must be included in the definition. For each
function that should be guarded by a monitor, it is necessary to include the code marking the monitor's entry and
exit at the appropriate points. The following code replaces the spinlock in the MultiThreadedObject class above
with a monitor and adds a condition variable.

" A procedure call takes about 15plsecs. Acquiring and releasing the SynchroObject's spilock takes about 30p.secs.
An synchronization object that does nothing could take 4 51secs without inline expansion, but only 30 otherwise.

38

class MultiThreadedObject

Monitor *mtomon;

Condition *mtocond;

int mto ok;
public:

MultiThreadObject()

mto mon = new Monitor("mtomonitor");
mto cond = new Condition(m, "mto condition");
mtook = 0;

-MultiThreadObject (I

f delete mto mon; delete mtocond;

void entryPoint();

void MultiThreadedObject::entryPoint(

intomon->entry(;

// critical section

while (! mtook)

mto-cond->wait(;

II more critical section

if (mtook)

mtocond->signal (
rnto mron->exit()

A condition variable must be bound to a monitor. It is an error for a thread to operate on a condition variable if that
thread does not currently hold the associated monitor. Similarly, a thread may not exit a monitor (or release a lock)
that it does not hold. These run-time restrictions are necessary since the compiler does not enforce special scoping
checks for condition variables. There is an advantage to this though: condition variables and monitors may be
passed as arguments to functions.

Monitors can be created (new), destroyed (delete), entered, exited, queried for their owner, printed, and laid blame
upon.

class Monitor : public Lock

&ublic:

Monitor(char* name=0);
-Monitor();
inline void entry)

f Lock::lock);

inline void exit()
(Lock::uniock(;

Thread *owner()

(return Lock::owner(;
virtual void print(ostream& = cout);

// error function derived from Lock

Having to explicitly enter and exit each monitored critical section can be inconvenient and error-prone. To address
this, a syntactically sugared construct exists that allows a monitor to control access to a C++ bracketed scope. When
flow of control leaves that scope, the monitor is automatically released.

// FILE: synchro.h
class MONITOR i

Monitor *momon;

public:

MONITOR(Monitor *m)

- mo mon = m; m->entry(;MONITOR (C3 momon->exit(; C

39

-12-

I
Instances of class MONITOR should only be declared on the stack. Their only purpose is to take advantage of the
fact that an object's destructor is invoked automatically when that object goes out of scope. This relieves the pro-
grammer of the responsibility of having to explicitly exit a monitor. The monitored member function in the previ-
ous example can be rewritten as:

void MultiThreadedObject: :entryPoint ()

MONITOR ENTRY(mtomon); // ENTRY is a nice sounding dummy var

// critical section
while (! mtook)

mtocond->wait();
// mor- critical section

if (mto_ok)

mtocond->signal);

The operations on a condition varial,' are create, destroy, wait, signal, broadcast and error.

// FILE: locks.h 3
class Condition : public SynchroObject

Monitor* comonitor; // bound monitor
public:

Condition(char* name=O); // unbound
Condition(Monitor* boundmon); // bound, no name
Condition(Monitor& boundmon);
Condition (Monitor* boundmon, char* name);
Condition(Monitor& boundmon, char* name);
Monitor* monitor()

(return comonitor;
int threadok() // is cond user legit

(return ((!comonitor) 1 // unbound is free4all

(thisthread r- co-monitor->owner());) }
-Condit ion C);

void signal(); // wakeup one
void broadcast(); // wakeup all
void wait(; // wait for signal (could pickup old) I
virtual void print (cstream& = cout);

Deleting a monitor or condition variable on which other threads are waiting raises an error on that monitor or condi- i
tion variable.

Because condition variables obey Mesa semantics, a signal or broadcast should only be considered as a hint that
some condition stronger than the monitor invariant had been established. The condition may ne longer hold. The
general form for condition variables is

while (condition_not-true)
condition->wait(); // relinquish the monitor

C; // reacquire the monitor

2.9. Debugging PRESTO Programs 5
For the most port, debugging PRESTO programs is similar to debugging normal C++ programs. The main

difference comt. ..bout in dealing with multiple threads. The present UNIX debuggers (adb, ddt, dbx) do not know
how to deal with multiple threads. Consequently, inspecting and controlling multiple threads must be done manu- U
ally. Although not difficult, it does require a bit of finesse. The situation is further complicated by the fact that the
existing UNIX debuggers understand only C, but not C++. 5 Nevertheless, debugging C++ programs with a C
debugger is not difficult and requires only a little experience. This section first describes the general concepts 3
5 The GNU debugger gdb works with the GNU version of C++. g++. The GNU softNare is not yet stable though, so it

is too early to tell if it is worth adopting in preference to the AT&T "official" version. 5

40 1

-13-I
needed to debug normal C++ programs, and then explains how the use the dbx debugger with multiple threads.

*2.9.1. Rules For Debugging C++ Programs

1 The C++ compiler is a true compiler that translates C++ code into C code, much as the C compiler translate C
into assembly language. By using the +i option to the compiler, one can view (and hence debug) the C code
directly. Without the +i option, the translator inserts the necessary #ine directives allowing the debugger to map
backwards from the C code to the C++ code. It is generally easier to debug the C++ code, but sometimes one
can only see what is really happening by looking at the C code. This is analogous to examining the assembler
output when the compiler doesn't seem to be doing what it's been asked. The library libpresto c. a con-
tains PRESTO routines compiled with the +i option.

2 There is a very regular translation from C++ names to the C names. A member M of a C++ class Q becomes a
C structure element QM. Example:Icase Foo

int x;

public:
Foo ();

f new Foo;

to reference f->x, one would use

f-> Foo x.

The same rule holds for member functions.

3 Constructors and destructors are renamed to _Ct or, _dtor. Example:

f = new Foo;
delete f;

translates into calls to Foo ctor and _Foodtor.

4 Static class members become global variables prepended by the name of the class. Example:

class Foo
static shared-t int ff;

translates into the declaration

sharedt int _Foo ff;

5 Stack variables (including function parameters) are prepended with an _auX_, where x is an integer equal to
the nesting depth of the variable's declaration. Function parameters are at depth 0. Example:

int somefunc int x)

int y;
y = i0;
* int z = 100;

translates into

int somefunc(auOx)
int au0_x;

int auly;
_aul_y = 10;
i au2 z = 100;

To see all the variables in use, use the dbx command "dump."

I 41

-14-

6 Every C++ class member function receives a hidden first argument _auothis which is a pinter to the
object for which the member function is defined. Example:

class Foc { 3
public:

int bar(int x);

int

Foo::bar(int x)

return x + 1;}I
translates into

inti
Foe-bar(_auOthis, _au0_x)

struct Foo * au0 this;
int au0 x;

return _auGx + 1;

To dump a whole struct, use print * auOthis and the element names will be displayed in their the C
form. U

7 Virtual functions are looked up in a table before calling. Each class Q having virtual functions has a hidden ele-
ment _Qvptr. During construction of an object of class Q, _Qvptr is initialized to point to a global table
Qvtb. This table contains the addresses of the virtual functions. When calling the ith lexically defined virtual U
function for a class, the ith entry in the table is used to find the actual function to call.

8 Overloaded functions are qualified by their argument type. Example:

overload int foo(int x); n
overload int foo(double y, int x);

produces declarations for functions

int fooo; // first function is named normally
int fooFD_UI); // function taking a double and an int

The pattern is straightforward and works the same way for member functions. 3
9 Member elements of a base class B are textually included in any classes derived from B. Example:

class Base
int x; 5

class Derived : Base

int y;

int x = sizeof(Derived);

will assign 8 to x. 3
2.9.2. Debugging Multiple Threads

A thread can loosely be defined as the combination of a program count (pc) and a stack pointer (sp). At every
point in the thread's execution, the pc has a value, and the sp has a current value. The pc's value corresponds to the I
next instruction to be executed by the thread, and the sp points to the bottom of the stack of call-frames representing
the thread's current execution state. The debugger understands only single-threaded programs and always responds
to queries using the current execution state; that represented by thisthread. 3

Examining a thread that is not running is possible by changing the debugger's idea about what is the current
state. For example, suppose its necessary to examine all threads blocked on a condition variable ondition
*cond. The condition variable is an instance of a SynchroObject, and so maintains a waiting queue. The dbx corn-
mand

... 42i

-15-

print *cond

will display the address of cond->_SynchroObject sowaiting. The queue is an instance of class
Oqueue, so it has a head, and each element in the queue is an instance of class Object. There are two ways to exam-
ine the queue. The first is to plod through the list manually from within dbx, looking at each objects, and then the
next. The other (simpler) way is to call on an object's print routines directly, passing it the "hidden" first argument
this.

call _Condition-print(cond->_SynchroObject-sowaiting, &cout)

The print function will display the state of the condition variable, and then invoke print on the waiting queue,
which will invoke print on each element in the waiting queue. All PRESTO objects can display themselves. If
the information displayed when an object is printed is not sufficient to answer a debugging query, then it is neces-
sary to poke at the object directly.

It is possible to view the stack of a blocked thread by changing the debugger's notion of the current frame to the
bottom-most frame of the blocked thread. For example, if _ault is a pointer to a thread in a PRESTO program,
that thread's stack can be examined by doing:

I dbx>set oldfp = Sfp
dbx>assign $fp = _aul_t->_tfp
dbx>where

dbx>dump
dbx>assign Sfp = oldfp

This simply stores the current frame pointer, installs a new one, dumps the stack, and then restores the old frame
pointer. A thread's t_fp field always refers back to the frame that should be loaded when the thread is next
involved in a context switch. So, if the thread is currently active, t_fp is the frame pointer for a switch-back
scheduling thread. If the thread is blocked, t_fp points to the blocked thread's last active frame.

It is not generally possible to single-step a blocked thread, since the thread isn't runnable. It should be possible
to force a context switch to any other thread waiting on the ready queue, but a reasonable interface allowing this
does not yet exist.

5 3. Customizing PRESTO
PRESTO can be customized to create any one of a number of parallel programming environments. The loose

structure of the system's components make this possible. There are five fundamental PRESTO objects: the
scheduler, the processor, the thread, the spinlock and the synchronization object. Figure I illustrates these objects in
terms of their inter-object relationships. From these five, the system supplies a basic parallel programming environ-
ment that includes

• a preemptive scheduler,
• the ability to create new threads of control,
* busywaiting synchronization based on hardware atomic locks, and3 • primitives allowing a thread to deschedule itself and be rescheduled by another.

343

-16-

reschedule [wakeup

rBlocked Threads

Busy Processors O

Figure 1- Presto Components r

Threads can be created, destroyed, put to sleep and awoken. A thread is put to sleep on a synchronization object,
which consists of a queue, a spinlock, and whatever other state is needed to implement the synchronization object's I
semantics. The synchronization objects provided by PRESTO have no semantics in the sense of P and V [31 or sig-
nal and wait. The spinlock is needed to guard the critical sections that describe a given synchronization object.
Deciding when to block and enqueue a thread that tries to pass through a synchronization object is not PRESTO's
responsibility. Synchronization policy belongs to the parallel programming model, not to PRESTO.

The scheduler maintains a pool of runnable threads. Threads enter the pool when they become ready, and pro-
cessors empty the pool when they become idle. The processor is an inherently active object, while the scheduler
and threads are inherently passive. The main body of the processor object supplied by PRESTO does

forever do
ask scheduler for the next ready thread
if a ready thread is available

ask the ready thread to run
else if there will never be a ready thread again

quit

When a processor asks a thread to run, the thread becomes active using the thread of the processor. Once active, the
thread is able to execute within any other object. The thread runs until it is preempted, goes to sleep on a synchron-iztion object, or terminates. After any of these actions, the processor object reactivates and continues looking for
ready threads. If a processor idles, finding nothing to do, and all other processors are idle, the system halts.

The basic technique for modifying PRESTO objects is

1. Define a new PRESTO object derived from the basic object to be modified.
2. Create a new instance of this object.
3. Inform the PRTS that this new instance should be used instead of the default provided by PRESTO.

For example, to create a new scheduler, one would define a new scheduling object

44 I

-17-

class NewScheduler: public Scheduler f
// differences described here

An instance of this object can then be created and bound to the name sched.

NewScheduler -sched = new Scheduler(/*Constructor arguments here*/);

The PRTS will instantiate its own scheduler after Main: : init) returns and if the PRESTO name sched is
unbound. Rebinding sched in routines other than Main: : init () will only work properly if the new scheduler
knows how to take control from the existing one.

Part of the PRESTO scheduler's job is to create process objects (class Process) and scheduling threads to ani-
mate those process object. Rather than invoking the new operator on those classes, the scheduler uses the proto-
typical thisthread and thisproc to obtain new instances.

Thread* t = thisthread->newthread(/*Constructor arguments here*/);
Process* p = thisproc->newprocess(/*Constructor arguments here*/);

The operators newthread () and newprocess () serve as virtual constructors for the process and thread class.
Assignment to thisthread and thisproc in Main: : init () forces the scheduler to use the virtual con-
structors for the type of class assigned. These are typically defined as:

Thread*
SomeKindOfThread::newthread(char* name, int tid, int stacksiz, int other)

return (Thread*)new SomeKindOfThread(name, tid, stacksiz, other);

where SomeKindafThread is derived from the basic class Thread.

I

I
I
I 4

-18- I
Appendix A - C++ Diffs For The Sequent

It is necessary to add the keywords private t and sharedt to the version of cfront nlnnirg on the
szquenL The following Jiffs shou!, be appL.d Lu the AT&T version ot C++ (Old) to generate a Sequent compatible
version (New). These diffs are also included on the distribution tape in the file C++. diffs sequent.

4
I
I
I
I
I
I
I
I
I
I
I
I
I
I

46 3

diff Old/cfront.h New/cfront.h
339a340, 343
> 4il-i~f ns32000

> b it bprivatet;
> bit b-shared-t;

> #endif

diff 01d,'lex.c New/lex.c

192al93, 197

> #ifdef ns32000
> new-key(I"shared-t", SHAREDT, TYPE);

> new_key('private-t", PRIVATET, TYPE);
> #endif
diff Old/norn.c Newt'norm.c
129a130, 133
>#ifdef ns32000

> case SHAREDT: b_shared_t =1; break;

> case PRIVATET: bprivate t =1; break;
> #endif ns32000

238a243, 249

> #ifdef ns32000
>/* not valid to try to save space on shared and private data types *

> if (b_private_t 1i b -shared-t)
> return this;

> #endif

I diff Old,'norm2.c New/norrs2.c
149a150, 153

> #ifdef ns32000
> case PRIVATET: bprivate t =1; break;

> enicase SHAREDT: b-shared-t =1; break;

> dif 1/rn~ e/rn

3
7
a38, 45I > #ifdef ns32000

> if (t i PRIVATET)
> ~putstring ("private")
> else if (t == SHAREDT)
> putstring("shared');
> else

> #endif* 51c59, 60U<
93al03, 107
> #ifdef ns32000

> if (b->b -shared-t) puttokCSHAREDT);
> if Cb->b-private-tC puttok(PRIVATET);

> #endif ns32000

7
01a

7
16, 717

7
06a723

7
08a

7
26

1 47

I
- 20 - I

References

i. Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. PRESTO: A System for Object-
Oriented Parallel Programming. Tehnical Repnrt 87-09-01, Department of Computer Science,
University of Washington, September 1987. Submitted for publication.

2. Brian N. Bershad, Edward D. Lazowska, Henry M. Levy, and David B. Wagner. An Open Environ-
ment for Building Parallel Programming Systems. Technical Report 88-01-03, Department of Com-
puter Science, University of Washington, January 1988. Submitted for publication.

3. E.W. Dijkstra. The Structure of the 'THE' Multiprogramming System. Communications of the ACM
11,5 (May 1968), pp. 341-346. I

4. B.W. Lampson and D.D. Redell. Experiences with Processes and Monitors in Mesa. Communica-
tions of the ACM 23,2 (February 1980), pp. 104-117.

I
I
I
I
I
I
I
I
I
I
I

48 3

I
I

I

An Open Environment for3 Building Parallel Programming Systems

Brian N. Bershad, Edward D. Lazowska,
Henry M. Levy and David B. Wagner

IDartnent of Computer Science
University of Washington

Technical Report 88-01-03
January 1988

II
I
I
U
U
U
I
U
I
I 49

An Open Environment for Building Parallel Programming Systems

Brian N. Bershad
Edward D. Lazowska

Henry M. Levy
David B. Wagner

Department of Computer Science
University of Washington

Seattle, WA 98195

January 1988

ABSTRACT

PRESTO is a set of tools for building parallel programming systems on shared-memory mul-
tiprocessors. PRESTO's goal is to provide a framework within which one can easily build
efficient support for any of a wide variety of "models" of parallel programming. PRESTO is
designed for easy modification and extension, not only at the level of the primitives and struc-
tures made available for the application programmer's use, but also at the level of the rim-time
kernel that supports parallel applications. PRESTO is implemented in the object-oriented
language C++ on a Sequent Balance 21000 and has been used in a number of applications that
are described in this paper.

1. Introduction

Most parallel programming systems present themselves in terms of a fixed set of primitives (e.g., send a mes-
sage, receive a message, acquire a monitor) running on top of a closed run-time kernel. The primitives together
with the kernel define a "model" of parallel programming that, while pleasing to the implementor, may not always
be satisfactory to the application programmer. Should incompatibility arise (e.g., due to the demands of a particular
application), the programmer must either find another system, or build one, or attempt to conform to the parallel
programming model supported by the available system. The first option may be impossible since there may not be
another system that runs on the given hardware. The second option, while possible, is likely to be prohibitively
expensive. This leaves only the third choice - shoehorning.

PRESTO addresses this dilemma. PRESTO is a set of tools for building parallel programming systems on
shared-memory multiprocessors. PRESTO's goal is to provide a framework within which one can easily build
efficient support for any of a wide variety of of parallel programming models. PRESTO has been used to emulate
existing models, and to create new ones. Among these are a Mesa-like environment, one providing ACTOR-like
futures, and one for writing parallel simulations. The ease with which support for new parallel programming para-
digms can be built using PRESTO allows the programmer to choose for him or herself the model of parallel compu-
tation that is most appropriate to a given problem. (Of course, support for various common models is intended to be
built once and then shared.) Figure 1 illustrates the relationship between PRESTO, the various paralle! program-
ming systems implemented in PRESTO (in heavy boxes), and the various applications implemented in each of these
parallel programming systems (in dashed boxes). Each of these systems is discussed in a later section.

Our work is supported by the National Science Foundation (Grams No. CCR-8619663, CCR-8703049. and CCR-
8700106). the Naval Ocean Systems Center, U S WEST Advanced Technologies, the Washington Technology Caer, the
USENIX Association, and Digital Equipment Corporation (the Systems Research Cnter and the External Research
Program).

* 51

I
-2-

I

I
I

Poker Programming Systems

!Programs
:0 I..........

Figure 1- PRESTO, Parallel Programming Systems, and Applications

PRESTO's "openness" - its ease of modification and extension - applies not only to the primitives and struc-
tures made available for the application programmer's use, but also to the lowest levels of the run-time kernel. I
Many implementors of new programming systems in PRESTO would not be concerned with the low-level details of
a multiprocessor environment such as scheduling, preemption, and processor control: they would take what
PRESTO gives them in thefe areas. However, if the characteristics of a new environment do require exceptional
handling in any of these low-level areas, changes are possible through exactly the same mechanisms used to cus-
tomize PRESTO at higher levels.

2. Achieving an Open System Through Object-Oriented Design

A parallel programming environment must deal with issues such as processor control, scheduling, concurrency,
and synchronization. PRESTO encapsulates each of these issues inside a default structure having a fixed interface.
Programming systems utilize these structures. Sometimes the basic structures serve the needs of a programming I
system, sometimes the structures need to be modified or extended in order to be useful, and sometimes the structures
must serve as a base for other, higher-level structures. PRESTO allows this degree of customization by employing
an object-oriented programming paradigm. 3

Objects are recognized as providing an effective means for structuring sequential software systems in terms of
components and interfaces. An object has a name, private data, and a set of interfaces that allow other objects to
view and manipulate it. The interfaces serve to contain and insulate an object's state, so that its own implementa-
tion is invisible to those who use it

In terms of PRESTO's goals, the most important aspect of an object-oriented environment is the ability to
redefine an object's behavior. As long as the object's interface remains unchanged, other objects in the system need
not be informed of the changes. This property allows the designer to modify the behavior of system objects.

As well as being an ideal vehicle on which to structure an open system such as PRESTO, objects are also a use-
ful abstraction for writing parallel programs. An object can maintain its own internal parallelism, and control any
concurrency imposed upon it by other objects [20]. We use these points to argue that PRESTO-derived program- I
ming systems should present object-oriented structures to their (application) programmers. In most cases, these sys-
tems have done so, although their have been exceptions.'

'Specifically. the Poker simulation envifmmem is programmed in C. a language that is definitely not object-oriented.

52

-3-

HYDRA [181 was the first system to adopt an object-oriented view to address the fact that the design of parallel
systems is as much an art as a science. Both HYDRA and PRESTO are open systems in recognition of the fact that
there is no "right" way to build a system for a parallel machine, that any system should have a lear separationI between mechanism and policy, and that strict hierarchical layering of system components limits flexibility. Unfor-
tunately, in a full-blown operating system such as HYDRA these principles must be balanced against real-world
issues such as protection, fairness and reliability. Consequently, much of the openness may be compromised. For
example, it is infeasible for an operating system to permit easy redefinition of the concepts of a processor, a lock, or
even a thread. These are the most basic components of an operating system, and allowing users the freedom to
change them could result in chaos. Indeed, there is no evidence in the literature suggesting that these types of
objects were ever redefined in HYDRA. PRESTO runs on top of existing operating systems, and provides full flexi-
bility in those areas that are critical to the construction of parallel applications.

3. The PRESTO System Structure

The most important aspect of PRESTO's design is its simplicity, both in concept and in implementation. The
conceptual simplicity allows programmers to quickly grasp the functions that the system does provide, while the
simplicity of the implementation allows them to introduce extensions without concern for subtle interactionsI between components.

There are five fundamental PRESTO objects: the scheduler, the processor, the thread, the spinlock, and the syn-
chronization object. From these, the system supplies a basic parallel programming system that includes:

I • a preemptive scheduler,
• the ability to create new threads of control,
• busy waiting synchronization based on hardware atomic locks, and
* primitives allowing a thread to deschedule itself and be rescheduled by another thread.

Threads are created, destroyed, put to sleep, and awakened. A thread is put to sleep ity a synchronization object,
which consists of a queue, a spinlock, and whatever other state is needed to implerzri the synchronization object's
semantics. The spinlock guards the critical sections that describe a given synchror ization object. The synchroniza-
tion objects provided by PRESTO have no semantics in the sense of P and V [5] or notify and wait [14]. PRESTO
interprets them merely as objects on which threads can be blocked, queued and resumed. The policies governing

Swhen to block are provided by more sophisticated synchronization objects derived from the basic ones provided by
PRESTO.

The scheduler maintains a pool of runnable threads. Threads enter the pool when they become ready, and pro-
cessors extract threads from the pool when they become idle. The main body of the processor object supplied by
PRESTO does

forever do
ask scheduler for the next ready thread
if a ready thread is available

request the ready thread to run3 else if there will never be a ready thread again
quit

When a processor requests that a thread run, the thread becomes active, using the power of the requesting processor.
Once active, the thread is able to execute within any other object. The thread runs until it is preempted, goes to
sleep on a synchronization object, or terminates. After any of these actions, the processor object reactivates and
continues looking for ready threads. If a processor idles, finding nothing to do, and all other processors are idle, the
system halts. Figure 2 illustrates the main PRESTO components "in action," highlighting the states of threads as
they progress through the system.

II
1 53

!I
-4-

ule rakeup

Idle Processors Sn-hr 10 I

PMC=M pommr r- WuI l Objct ock Blocked Threads

Busy Processors m

Figure 2- PRESTO Components

U
4. Techniques For Customizing PRESTOrs

There are three basic methods for customizing the PRESTO enviromiment: layered extension, differential exten-
sion, and lateral extension. The first is a property of all programming languages, the second of most object-oriented
languages, and the third of open systems such as PRESTO.

Layering allows the programmer to build new primitives through the composition of existing ones, There are I
three problems with layering. First, a layered system's performance can quickly degrade as layers are added.
Second, it may be difficult to express a new abstraction in terms of the existing ones. For example, consider the dis-
tinction between Hoare monitors [9] and Mesa monitors [14] . The stricter semantics of Hoare monitors makes I
them difficult to implement on a multiprocessor, and even more difficult (and costlier) if they must be implemented
on top of less stringent Mesa monitors. Finally, layering is only useful for describing the behavior of something
new; existing code cannot be affected. 3

Differential extension allows the programmer to exploit the hierarchical type system of an object-otiented pro-
gramming language having inheritance. New classes may be differentially specified in terms of existing ones. This
allows the programmer to construct classes similar to existing ones, while only specifying the changes in the 3
classes' behavior. Hierarchical extensions can be combined with layering, so that new or modified operations
invoke the primitive ones in the more basic class. Operations that are unchanged ae executed directly.

Lateral extension makes it possible to change the behavior of an object dynamically (the other extensions are
specified at compile-time) by affecting its relationships with other objects. For example, PRESTO provides a global I
scheduler object responsible for mapping runnable threads onto idle processors. The system's processor objects
interact with the scheduler object. By replacing the system's scheduler object with a different one, the progrn.mer
can radically affect the behavior of the system. Lateral extensions such as this allow the programmer to install I
changes at any level in the system.

Layered, differential, and lateral extensions can be combined to achieve new results with a minimum of coding
and effort. System components can be redefined differentially and installed laterally. When appropriate, the new I
version of an operation can be layered on top of existing ones. The programmer never changes the basic PRESTO
classes, but instead derives new ones from them. Instances of these newer classes are created, and then bound to the
names used by ofer objects so they can be referenced. For example, to force the scheduler to use priority schedul- 3
ing instead of the default first-come-first-served, the following would be done:

54I

U -5-

derive a class ThreadPriorityHeap from the system class ThreadPool
define the operations get and putfor a ThreadPrwrityHeap
create a new instance of ThreadPriorityHeap
inform the scheduler to replace its current thread pool w, h the

new ThreadPriorityHeap

When given a new thread pool, the scheduler moves all threads from the old pool into the new pool, allowing the
scheduling discipline to be changed dynamically. For large parallel applications that compute in phases, this flexi-
bility is important.

1 5. Exploiting PRESTO's Flexibility

To add concreteness to the preceding discussion, we will present three customizations of quite different styles
that have been implemented using PRESTO's open architecture. The first customization involves a redefinition ofIone of the system's most fundamental objects, the thread, in order to gather data about parallel program perfor-
mance. The second customization involves the construction of a number of higher-level general parallel program-
ming environments, each providing its own set of primitives and model of programming. The third customization
involves the construction of speciaized environments for building paralel programs in narrow application domains;
in partict, r, a PRESTO-based environment for writing parahlel discrete-event simulations. The characteristics of
these narrow-domain applications often require special handling at very low levels in order to obtain reasonable per-
formance; the simulation environment provides its own scheduler for handling situations that are particular to the
simulation world.

5.1. Building an Instrumented Execution Environment

Understanding how to improve a parallel application requires understanding its behavior. This, in turn, requires
the ability to observe the run-time characteristics of an application (either in real time, or in "play-back" mode).
Expecting the designers of a programming environment to include code for monitoring all the right things is unrea-
sonable. Redefinition allows the programmer to use the base system components while collecting data about their
behavior.

PRESTO objects '.ave been instrumented to permit the collection of data during an application's execution. The
instrumentation is implemented by creating, for each PRESTO system class, an instrumented version of that class.
For example, once an application has been written, a programmer might need to know the percentage of time that a
thread is blocked with respect to its total lifetime. This information is easily obtainable by deriving a new class
InstrumentedThread from the basic PRESTO class Thread. An InstrumentedThread redefines the two thread opera-
tions sleep and wakeup so that they adjust a timer before invoking the real sleep and wakeup operations in the super-
class class Thread.

System objects that create new instances of other system objects rely on a prototypical instance of the new
object to direct the creation. Part of the scheduler's responsibility, for instance, is to create one thread per processor
in the system. These threads busy themselves by looking for something to do, doing it, and then continuing looking.
The scheduler does not create these new threads directly; instead, it asks its own thread (since the scheduler must
be running, it must have a thread) to create a new instance of itself. By specifying the scheduler's prototypical
thread, the programmer can control the behavior of all other system threads. Were PRESTO to assume that threads
always looked the same, this would not be possible.

U 5.2. Building Various Parallel Programming Environments

A First Model

The first real applications built on top of PRESTO were implemented using a Mesa-like environment that can be
included when a PRESTO program is compiled. The environment simply provides threads (Mesa processes) that
can fork other threads, join on their results, --nd synchronize using the standard Mesa monitors and condition vari-
ables. In a sense, the environment is bland, but it is effective, and it was cheap to build. The entire implementation
required only about 200 lines of code when built using PRESTO.

Despite its wide appeal, Mesa's model of parallel programming is not without flaws. Threads have special
semantics apart from other program objects, and synchronization constraints must be made explicit by the

55

I
-6-

programmer. Nonetheless, we have used this programming model for a wide range of applications that include I
matrix multiplication, sorting, analysis of multi-class queueing networks, and a parallel Othello program.

Implementing Higher-Level Abstractions 3
The primary goal of any parallel programming environment is to help make it easier to write and reason about

parallel programs. To this end, there have been a large number of notable systems [1,6-8,10-13,191, each provid-
ing their designers' notions of the best possible environment for constructing parallel applications. Although each I
system is unique in its goals and implementation, each has had to address a similar set of key questions. By answer-
ing these questions differently, different models of parallel programming are realized. Rather than enumerating the
features of each system and discussing its (potential) implementation in PRESTO, we instead touch on some of the
key questions, discussing how they would be answered by PRESTO.

* Should dynamic creation of threads be allowed?

Concurrent Euclid and CSP do not support the dynamic creation of new threads. The basic process structure is
specified at compile time and never changes. Although thread creation in PRESTO is inherently dynamic, static
objects containing their own thread(s) of execution can be declared at compile time, and the freedom to create
new threads at run time can be denied.

Should objects and threads be disjoint or unified concepts?

Systems such as Smalltalk-80, Mesa, and Modula-2+ make a strong distinction between an object, which is
inherently passive, and a thread (or process), which is used to animate objects. Threads may not even be first
class objects. This dichotomy can be confusing to programmers, making it difficult to model problems and
enforce protection among objects. On the other hand, systems such as ConcurrentSmailtalk and Act 1 unify the
two notions. An object is a schedulable entity in these systems, and there is no conceptual gap between an
object and a thread - one cannot exist without the other.

PRESTO supports both models. Threads can be separate entities from the objects in which they execute, or
threads and objects can be unified by defining classes that thread themselves upon instantiation. The PRESTO-
derived class Task serves this function. Tasks execute autonomously, communicating with one another via
messages. The basic structure of a task is

forever do
m +- receiveMessage
decode m
execute the operation requested in m resulting in a new message m'
sendMessage m' to the sender of m I

A user's definition for an object derived from a Task has no main body. It just provides the operations that are
invoked by the task's thread upon receiving a message from another task. Synchronization within the object is
implicit in the serial processing of incoming messages.

Should object operations be asynchronous or synchronous?

Act 1 and Multilisp have only asynchronous object operations, while POOL-T is entirely synchronous. Con-
currentSmalltalk supports both. The advantage of having asynchronous operations is that it allows inter-object
parallelism to be naturally expressed; interacting objects proceed in parallel without programmer intervention.
Synchronous operations are easier to reason about, but require that the programmer create a new thread of exe-
cution to gain concurrency. I
Both synchronous and asynchronous operations can be realized using PRESTO. Synchronous operations essen-
tially come "for free" from from the underlying sequential programming model. An asynchronous operation
having no return value (or none of interest) is possible by creating a new thread and using it to request the opera- I
tion. Later synchronizing on an asynchronous operation requires extra handling.

In Multilisp and Act 1, an asynchronous operation is described by a future, which is an object whose value is
either "in progress" or "ready." If a future's value is referenced in an expression, the thread executing the I
expression is blocked until this value becomes ready. Using PRESTO as a base, a future is represented by an
instance of a class derived from the class Future. When a future is declared, a new thread is created, and the
computation represented by the future executes asynchronously to the thread running in the object holding the

56 3

-7-

i future's reference. This reference may be passed around freely. The thread computing the future terminates
with a return value that becomes the future's own value. Upon termination, the future has been reached, ant any
threads waiting on the future's value are resumed.I Should any parallel program try to use all of this?

PRESTO provides the basic tools with which to construct different types of parallel programming models.
While misuse (or abuse) of these tools can be discouraged, it cannot be prevented. Application builders will fail
to realize any model if they try to realize them all.

5.3. PSIM - An Environment For Parallel Simulation

I PSIM provides a message-oriented programming environment for writing parallel simulations of the type
described by Chandy and Misra [4] and Bryant [3]. A simulation is structured as a set of processes that communi-
cate by sending timestamped messages to one another. Each process is guaranteed to receive its messages in mono-
tonically increasing timestamp order. The PSIM environment's primary function is to guarantee this ordering,
Iguarant ewithout requiring that all processes run lockstep in simulation time. In this way, processes that do not have inter-
message dependencies can proceed in parallel.

3 The PSIM Abstractions

PSIM presents itself as a standalone support system for parallel simulations. Programmers are unaware that the
foundation on which PSIM implements its abstractions is provided by PRESTO. Instead of threads, spinlocks, and
synchronization objects, PSIM programs manipulate higher-level abstractions such as Logical Processes (LP), links
and messages. LPs communicate with one another by sending timestamped messages across links, which are one-

way communication channels guaranteeing that all messages are received in increasing timestamp order.

In the same way that synchronization semantics are absent from PRESTO synchronization objects, PSIM's LPs
don't simulate anything. Rather, they are a basic class from which more useful simulation processes can be derived.
An LP is an object with its own thread of control and its own private simulation clock. It can open links, and send
and receive messages on them. Every message includes the clock value of the source LP at the time the message is
sent. A clock advances in response to the messages that an LP receives, implying that clocks in different LPs can
progress at different rates. The main job of PSIM is to ensure that this variability is transparent to the LPs.

A message cannot be received on a link by an LP unless no other logically earlier message will arrive on any of
the LP's other links. This constraint causes LPs to block even though there may be pending messages on some of its
links.

Handling Deadlock

A PSIM simulation can deadlock if a cycle of empty links exists among a subset of LPs. If the subset is proper,
then the system is partially deadlocked and some LPs can continue to make progress. If it is complete, then all LPs
are blocked and nothing can proceed without external intervention. To recover from deadlock, the blocked LP with
the earliest pending input message is allowed to receive that message.

Part of the research associated with PSIM is the investigation of different methods of handling deadlock (partial
and full) in parallel distributed simulations. The structure of PRESTO and, in particular, of PRESTO's scheduler,
simplifies the mechanics of this research. When the scheduler concludes that there are no threads to be run (all LPs
are deadlocked), it invokes the operation halt on itself. PSIM defines a simulation scheduler that is exactly the same
as the PRESTO scheduler, except for its halting criteria. The simulation scheduler finds the set of all LPs that are
blocked but have unread messages on their links. If any exist, the scheduler starts the one with the earliest unread
message.

Dealing with deadlock only when the system halts does not solve the problem of partial deadlock. As long as a
simulation fully utilizes all of the physical processors in the system, a deadlocked subset of LPs does not affect a
parallel simulation's performance. Only when there are fewer non-deadlocked LPs than physical processors is the
simulation "in trouble."

The typical way of dealing with partial deadlock is to use low-priority threads that find, and break, the deadlock
when it occurs. A processor that can't find an LP to execute runs one of these threads instead. Although function-
ally correct, this solution incurs a scheduling and context-switch overhead. This overhead can be avoided, however,3 by changing the behavior of the low-level system components.

I 57

I
-8-

PRESTO encourages a solution in which the processors themselves solve the deadlock. When a processor
object requests a ready thread from the scheduler, the scheduler invokes the operation get on the pool of ready
threads. With this, the locus of control moves from the processor object to the scheduler object to the ready pool.
PSIM supplants the scheduler's ready pool with one of its own. A get operation on a PSIM ready pool that would
otherwise return nothing, instead scans the set of blocked LPs to determine which, if any, should be restarted. The
algorithms for making this determination are wholly enclosed within PSIM's own ready pool. The processor and
scheduler objects are essentially duped into breaking partial deadlock without their knowledge. I

PSIM and PRESTO together prove that efficiency and abstraction need not be incompatible. The difference
between a PRESTO thread and a PSIM LP is one of semantics, not performance. Similarly, links are built using the
basic thread primitives (sleep/wakeup), and are not constrained by an abstraction that obscures their goals. The I
combination of object-oriented programming with PRESTO's open system design allows a very high-level concept,
namely deadlock detection, to execute efficiently at a very low level. Currently, PSIM is serving as the implementa-
tion base-for another parallel programming environment, namely Poker [15].

6. The PRESTO Implementation

PRESTO is implemented in the object-oriented programming language C++ [161. The system runs on a Sequent
Balance 21000 shared-memory multiprocessor on top of the DYNIX [17] operating system, and on single-
processor DEC VAX machines running the ULTRIX operating system. The system should soon be operational on
the DEC SRC Firefly, an experimental prototype multiprocessor workstation.

Sequent's DYNIX is a UNIX-lookalike. The only way to achieve true multiprocessor parallelism is to create
multiple DYNIX processes, a fairly expensive task requiring about 55 msec2 . In contrast, a PRESTO thread on the
Sequent can be created and started in as little as 700 psecs. A large percentage of these times is spent acquiring the
atomic hardware locks needed to guarantee mutual exclusion in the various system components (about 30 Itsecs. per I
lock). We expect the Sequent implementation to speed up considerably when the new Symmetry hardware makes it

possible to acquire free locks in only a few psecs. It is encouraging that our design, which invites extension and
modification, has performance comparable to that of several other multiprocessor threads packages known to us.

In this paper we have concentrated on the way in which PRESTO's object orientation provides a framework
within which one can easily build efficient support for a wide variety of parallel programming models. PRESTO's
implementation and performance are described more fully in a companion paper [2].

7. Conclusions

PRESTO is not a toy. It is the current system of choice for parallel programming at the University of Washing-
ton.I

PRESTO began merely as an effort to address the high cost of the parallel programming constructs provided in
the DYNIX environment, where we found that our use of threads had to be governed by their overhead rather than
by the natural decomposition of our problems. PRESTO succeeded in this goal.

After a significant period of use, though, we have come to the conclusion that PRESTO's ability to be custom-
ized to provide efficient support for any of a wide variety of parallel programming models is of much greater impor-
tance. Correct and efficient parallel programs are notoriously hard to engineer. There is no one parallel program-
ming model that is right for all applications. The ability to construct an appropriate model using PRESTO makes
correct and efficient programs less difficult to achieve. 3
Acknowledgements

We'd like to thank Kenneth Almquist, Tom Anderson, Jeff Chase, Bjorn Freeman-Benson, Ellen Ratajak, Alan
Shaw, and Ken Whaley for their input on the system's design and implementation as well as their many helpful
comments on earlier drafts of this paper.

2 Some timings for other Sequent operations: execute one iteration of a for-loop: 4 JJScs.; make a prcedur call with
no arguments: 15 5.secs. 3

58

-9-

References

1. P. America, "POOL-T: A Parallel Object-Oriented Language," in Object-Oriented Concurrent Programming,
ed. i Tokoro, A. Yonezawa, MIT Press, Cambridge, Mass, 1987.

2. B.N. Bershad, ED. Lazowska, and H.M. Levy, "PRESTO: A System For Object-Oriented Parallel Program-
ruing," Technical Report TR 87-09-01, Department of Computer Science, University of Washington. (submitted
for publication), September 1987.

3. R.E. Bryant, "Simulation of Packet Communucafions Architecture Computer Systems," Technical Report MIT,
LCS, TR-188, Massachusets Institute of Technology, Laboratory for Computer Science, 1977.

4. K.M. Chandy and J. Misra, "Asynchronous Distributed Simulation Via A Sequence of Parallel Computations,"
Communications of the ACM, vol. 24, no. 11, pp. 198-206, ACM, November 1981.

5. E.W. Dijkstra, "The Structure of the 'THE'-Multiprogramming System," Communications of the ACM, vol. 11,
no. 5, pp. 341-346, ACM, 1968.

6. A. Goldberg and D. Robson, Smalitalk-80: The Language and its Implementation, Addison-Wesley, 1983.

7. R. Halstead, "Multilisp: A Language for Concurrent Symbolic Computation," ACM Transaction on Program-
ming Languages and Systems, October 1985.

8. C.A.R. Hoare, "Communicating Sequential Processes," Communications of the ACM, vol. 21, no. 11, pp. 666-
677, ACM, August 1978.

9. CAR. Hoare, "Monitors: An Operating System Structuring Concept," Communications of the ACM, vol. 17,
no. 10, pp. 549-557, ACM, October 1974.

10. R. Holt, "A Short Introduction To Concurrent Euclid," SIGPLAN Notices, voL 17, pp. 60-79, May 1982.

11. H. Lieberman, "Concurrent Object-Oriented Programming in Act 1," in Object-Oriented Concurrent Program-
ming, ed. M. Tokoro, A. Yonezawa, MIT Press, Cambridge, Mass, 1987.

12. Modu/a2+ Reference Manual, Digital Equipment Corporation, April 1986.

13. D.A. Mundie and D.A. Fisher, "Parallel Processing in Ada," IEEE Computer, pp. 20-25, August 1985.
14. B.W. Lampson, D.D. Redell, "Experiences with Processes and Monitors in Mesa," Communications of the

ACM, vol. 23, no. 2, pp. 104-117, ACM, February 1980.
- 15.L. Snyder, "Parallel Programming and th "oker Programming Environment," IEEE Computer, vol. 17, no. 7,

July 1984.

16. B. Stroustrup, The C++ Programming Language, Addison-Wesley, March 1986.

17. S.S. Thakkar, P. Gifford, and G. Fielland, "Balance: A Shared Memory Multiprocessor," Proceedings, 2nd
International Conference on Supercomputing, Santa Clara, May 1987.

18. W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, and F. Pollack, "HYDRA. The Kernel of a Multiprocessor
Operating System," Communications of the ACM, vol. 17, no. 6, pp. 337-345, ACM, June 1974.

19. Y. Yokote and M. Tokoro, "Concurrent Programming in ConcurrentSmalltalk," in Object-Oriented Concurrent
Programming, ed. M. Tokoro, A. Yonezawa, MIT Press, Cambridge, Mass, 1987.

20. A. Yonezawa and M. Tokoro, "Object-Oriented Concurrent Programming: An Introduction," in Object-
Oriented Concurrent Programming, ed. M. Tokoro, A. Yonezawa, MIT Press, Cambridge, Mass, 1987.

I
I
I
* 59

The Amber System: Parallel Programming
on a

Network of Multiprocessors

Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska,
Henry M. Levy, and Richard J. Littlefield

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

Abstract than the fastest mainframes at significantly lower cost,
and with greater flexibility.

This paper describes a programming system called Am.
ber that permits a single application program to use a Amber was designed to take advantage of this trend
homogeneous network of computers in a uniform way, by supporting the development of parallel applications
making the network appear to the application as an in- that use multiple machines in a network of shared-
tegrated multiprocessor. Amber is specifically designed memory multiprocessors. Amber provides a set of pro-
for high performance in the case where each node in the gramming facilities and abstractions that isolate the
network is a shared-memory multiprocessor. programmer from the low-level details of programming

Amber shows that support for loosely-coupled mul- in this environment. The abstractions are intended to
tiprocessing can be efficiently realized using an object- simplify communication, distribution, and parallelism,
based programming model. Amber programs execute while supporting a dynamic program structure that cani in a uniform network-wide object space, with mem- express and benefit from locality.
ory coherence maintained at the object level. Care-
ful data placement and consistency control are essen- Amber is based on a model of computation in which
tial for reducing communication overhead in a loosely- a collection of mobile objects distributed among nodes
coupled system. Amber programmers use object mi- in a network interact through location-independent in-
gration primitives to control the location of data and vocation. Amber objects are passive fine-grained enti-
processing. ties consisting of private data and a set of pubtlic op-

erations that can be locally or remotely invoked. The
active entities in the system are thread objects, which

1 Introduction possess processor state and a runtime stack and can
Sexecute on a CPU. A typical application might contain
Small-scale shared-memory multiprocessors are becom- many threads concurrently executing object operations
ing widely available in implementations ranging from on different processors in a node and on different nodes
single-user workstations to mini-supercomputers. The in the network. The threads in an Amber program exe-
proliferation of multiprocessors means that local area cute in a flat network-wide shared object space. Object
networks of these systems are likely to become corn- references can be transmitted across node boundaries
mon. This presents the opportunity to program a group and dereferenced on any node with consistent seman-
of these machines to work together on a single appli- tics, alowing programs to operate on distributed data
cation. For many applications, networks of small-scale uniform
multiprocessors will have greater performance potential

This material is based on work supported by the National Amber programs are written in an object-based sub-
Science Foundation (Grants CCR-8611390, CCR-8619663, CCR- set of the C++ programming language [Stroustrup 86],
a8700106, CCR-8907666,and CCR-8703049), the Naval Ocean supplemented with primitives for thread management
Systems Center, U S WEST Advanced Technologies, the Wash-
ington Technology Center, and Digital Equipment Corporation and object mobility. The system is composed of a
(the Systems Research Center, the External Research Program, preprocessor to C++ and a runtime kernel which is
and the Graduate Engineering Education Program). linked with the user's program. Amber is impleimented

on the Topaz operating system for the DEC Fire-
fly (Thacker et al. 88], a multiprocessor workstation
based on VAX microprocessors. Applications have been
executed on a group of eight Fireflies connected by a
10-megabit/second Ethernet.

I 61

I

I
1.1 Research Goals and Issues this approach at the University of Washington led to

the development of Emerald [Black et al. 87], a dis- U
Amber explores issues in parallel programming at both tributed programming language with support for fine-
the system level and the application level. At the grained object mobility. Amber's distribution model
system level, Amber explores the viability of using a and mobility primitives are derived from Emerald.
loosely-coupled network of small-scale multiprocessors
as a large-scale machine. This raises issues in schedul-
ing, virtual memory management, distribution, and co- In contrast to these other systems, the goal of Amber
herency. At the application level, Amber explores how is to execute a single application that performs a par-
to structure an application to benefit from the target allel computation, computes a result, and terminates.
architecture. Here we wish to understand the program- Amber does not support persistent objects, primitives
ming primitives needed to express both locality and for reliable distributed computing, or communication
parallelism. Overall, Amber assesses the appropriate- and cooperation between unrelated programs. In this
ness of the object-oriented programming model for solv- respect Amber is related to object-based systems for
ing problems at both levels, concurrent programming on tightly-coupled machines.

A major goal of the Amber project is to provide Amber is in fact a direct descendent of one such sys-
language-level support for concurrency and distribu- tem, Presto (Bershad et al. 88a], a C++-based run-
tion using an existing programming language and op- time package for building medium-grained parallel ap-
erating system. This reduces the development cost of plications on shared-memory multiprocessors. Amber's
the system and makes it more attractive to program- thread model and synchronization model follow those
mers. We were able to achieve this goal using the fa- of Presto.
cilities of the Topaz operating system and the C++
programming language. Topaz provides useful network Amber was developed to allow a network of ma-
services, support for threads, and remote procedure chines to be treated as a loosely-coupled multiproces- U
call (Birrell & Nelson 84]. The extensible class hierar- sor using a programming model based on distributed
chy of C++ enablcd us to implement Amber without objects. Recent systems with similar goals include
modifying the language or its compiler. Sloop [Lucco 87] and Orca (Bal & Tanenbaum 88].

Amber's programming model assumes that the user Amber differs from these systems in that its program-
will be aware of the network organization and will wish ming model and internal structure are designed to take
to take advantage of it to achieve maximum applica- advantage of shared-memory multiprocessors. Am-
tion speedup. This conflicts with the goal of network ber supports logical concurrency and true parallelism
transparency. The tension between uniformity and per- within each node as well as across nodes in the net-
formance is more pronounced in Amber than in other work. Concurrency within a mutable object is real-
distributed systems because high performance for par- ized by placing the object on a single node and clus-
allel applications is the primary purpose of the system. tering all threads manipulating the object onto that U
Good performance on a loosely-coupled multiprocessor node. This allows the consistency of the object's in-
demands careful attention to data placement in order ternal state to be efficiently managed by hardware-
to minimize remote references, which are three to four based synchronization primitives and memory coher-
orders of magnitude more expensive than local ones. ence protocols. This organization of Amber programs
Our view is that data placement should be under the into closely-cooperating clusters is similar to the task
control of the program rather than the runtime sys- force structure in Medusa [Ousterhout et al. 801 and
tem since the needs of different applications will vary StarOS [Jones et al. 79], but in Amber this clustering
widely. This compromises the uniformity of the pro- is determined at run time and can change dynamically
gramming model because it requires the programmer as the computation progresses.
to deal explicitly with location. Amber attempts to
strike a balance between uniformity and performance.
The programming model is designed to isolate areas Other researchers have investigated the use of a net- I
where the programmer must be concerned with loca- work as a loosely-coupled multiprocessor within the
tion, while providing means to tune program organiza- context of more traditional programming models. The
tion for efficient execution. Ivy system [Li 88] pioneered the use of network-wide

shared virtual memory for this purpose. This ap- I
1.2 Related Systems proach allows distributed applications to be written

using conventional programming techniques. Ivy main-
Object-based models have frequently been used for dis- tains memory coherence by using virtual memory hard-
tributed systems; examples include Hydra [Wulf 74], ware to implement page ownership schemes analogous
Clouds [Allchin & McKendry 83], Argus (Liskov 88], to hardware cache consistency protocols. One goal of
Eden (Almes et al. 85], and Cronus-[Schantz et al. 86]. Amber is to explore the relative merits of object-based
Systems such as Eden and Argus provide support for versus shared-memory models for maintaining memory
distributed objects at the programming language level coherence in a parallel and distributed environment.
using a special-purpose language. Experiments with This issue is discussed in Section 4.

62 I

I

2 The Programming Model 2.2 Synchronization Objects
Amber provides the programmer with a set of pre- Amber provides a flexible set of classes for controlling
Amber povieclsshes pogr wgithread, se o - access to data shared by multiple threads. The sys-
defined object classes for managing threads, synchro tern supports relinquishing and non-relinquishing locks.

nization, and distribution. Amber's abstractions are barrier synchronization, monitors and condition vari-
supplied by means of existing C++ language mecha- ables. Programmers can extend the class hierarchy to
nisms such as subclasses and dynamic object creation. define custom mechanisms for concurrency control us-
The programming model demonstrates that support for ing these primitive synchronization objects. The intent
concurrency and distribution can be integrated into a is that programmers will select an appropriate concur-
class-hierarchical language to produce a uniform sys- rency control scheme for each user object and encapsu-I tem with features that compose well. late the details of the synchronization within the class.

The use of an object-oriented language provides Amber's approach to synchronization differs from
other benefits. Object classes can hide not only the similar systems designed for networks of uniprocessors.
representation ofobjects but also the internal details of Most of these systems support monitored objects and
their execution, synchronization, and location. Other indivisible operations but no explicit lock primitives.
researchers have discovered similar benefits for imple- We believe that fine-grained synchronization using lock
menting features such as persistence and recovery prop- primitives is desirable when the nodes in the network
erties for objects [Herlihy & Wing 87]. Also, dynami- are multiprocessors. Fine-grained locking reduces con-
cally typed subclasses are a convenient vehicle for tai- tention and allows hardware-based spinlocks to be used
loring system behavior to meet the needs of a specific to reduce latency when appropriate. Lock objects have
application. These ideas are made more concrete in additional advantages in a distributed environment be-
the next few subsections, which present the details of cause they are mobile and can be remotely invoked to
Amber's programming model. enforce concurrency constraints involving multiple ob-

jects on different nodes.

2.3 Controlling Object Location
Amber's mechanisms for expressing concurrency are
derived from the thread facilities provided by Presto. In Amber, threads invoking operations on an object
Presto was designed to make the use of threads inex- move to the node where the object resides, so the di-
pensive, allowing the programmer to efficiently man- vision of computational load between the machines is
age more control streams than there are processors. In determined by the locations of the program's data ob-
Amber, threads have the advantage of allowing the pro- jects. Object location also has a significant effect on
grammer to maximize throughput by overlapping com- the network overhead incurred by the program. In gen-
putation with remote communication. eral, interacting objects should be co-located in order

Like other objects, threads can be created dynami- to avoid the cost of a remote procedure call on each
cally using the C++ new operator. The basic opera- invocation. This must be balanced with the need to
tions on threads are Start and Join. The Start primi- place objects so as to evenly distribute the computa-
tive starts a thread executing an operation on a spec- tional load between machines.
ified object. Join blocks the caller until the specified Amber programmers take advantage of locality by
thread terminates, returning the result from the oper- using migration primitives to control object placement
ation specified in the Start call. as the program executes. Objects can be moved even

Threads provide explicit support for concurrency, if they have active invocations: threads executing op-
in contrast to the implicit support provided by asyn- erations on a moving object are identified and moved
chronous object invocation mechanisms in languages with the object. Dynamic mobility is useful because
such as Sloop. Amber invocations are synchronous, some applications will need to reorganize object loca-
but threads can be used by either the invoking object or tions following different computational phases of a pro-
the invoked object to transparently provide asynchrony. gram, although static object placement is sufficient for
An invoked object can exploit parallelism transpar- many applications.
ently to its invoker by creating and starting additional Amber's mobility primitives are modeled after mo-
threads in response to an invocation. Alternatively, a bility in the Emerald system [Jul et al. 88]. An Am-
thread can execute an asynchronous invocation by cre- ber object can be moved with MoveTo and its location
ating another thread to perform the invocation, can be determined with Locate. Like Emerald, Am-

Amber's scheduler supports timeslicing and can be ber provides other mobility primitives that are useful
customized to use priority-based or adaptive policies for improving program performance. The programmer
tuned to the specific application. An application can can Attach an object to another object or Unattach
install a custom scheduling discipline at runtime by re- an attached object. The attachment primitives allow
placing the system scheduler object with a similar ob- a programmer to dynamically create structures of ob-
ject that supports the same interface but behaves dif- jects that move together and are always guaranteed
ferently [Bershad et al. 88b]. to be co-located. Amber also supports replication of

*63

I
readonly objects to reduce unnecessary communication of the implementation was straightforward if we used
overhead. Objects may be marked as immutable at direct virtual addresses as the basis for object nam- I
runtime, indicating that they will never again be mod- ing in the network, arranging each task's address space U
ified. Invoking Move To on an immutable object causes so that virtual addresses have the same meaning on
the object to be copied rather than moved. The attach- all nodes. The next few subsections describe our im-
ment and immutability mechanisms in Amber are more plementation for Amber, with an emphasis on how this
dynamic than in Emerald, where they are specified at global virtual address space is managed and how it sim-
compile time. plifies the implementation of the shared object space

Amber leaves all aspects of object location under abstraction. Section 3.5 presents additional problems
the direct control of the program. Data objects never caused by intranode parallelism, and Section 3.6 dis-
move unless the program explicitly moves them. Ob- cusses our use of the C++ language.
jects that are not explicitly designated as immutable
are never replicated, eliminating the complexity associ-
ated with keeping multiple copies of a writable object 3.1 The Global Address Space
consistent. This approach contrasts with other recent
experiments with language-level support for distributed Object references and other pointers are frequently
objects. The Orca language performs automatic object transmitted across the network in Amber. This hap-
placement and replication of mutable objects, but pro- pens when arguments to a remote invocation are passed
vides no primitives for explicit object migration. Sloop by reference, or an object containing embedded point-
includes advisory migration primitives, but the system ers moves from one node to another. Also, any thread
may override the programmer's decisions under certain executing an operation on a moving object will move •
conditions. Amber attempts to provide a model of shar- with the object and resume execution on the desti-
ing and location that is uniform, predictable, and sim- nation node, where it will continue to use addresses
ple to implement. Our assumption is that the best stored in its stack and registers. The transmitted ad-
policy for managing location is application-specific and dresses may be object references, program code ad-
is best left to the program or higher-level object place- dresses, pointers into static data such as string con-
ment software. stants, or back links in the stack. It follows that all

code and data items are visible to all nodes and may I
be referenced by any thread regardless of which node 3

3 Implementation Issues it is running on. The references must be resolvable on
all nodes with uniform semantics.

Amber programs execute as a set of cooperating Topaz One solution to this problem is to translate addresses
tasks distributed across the network, with one task whenever they cross node boundaries. This is the so-
on each participating node. The tasks are created lution used in Emerald (Jul et a. 88]. Such a scheme
at program startup using Topaz facilities for creating permits each node to do independent memory manage-
remote processes. Each task is an execution of the ment, which is useful for Emerald because it assumes a
same program image read from a distributed file sys- universe of long-lived objects created by multiple users.
tem. Topaz supports multiple threads of control in The problem with this approach is that it requires ex-
a single task and fast remote procedure call between tensive compiler support to aid in the address trans- 3
tasks [Schroeder & Burrows 89], facilities that are used lation. This is incompatible with our goal of using an
to implement Amber thread scheduling, object migra- existing widely-used language and compiler for Amber.
tion, and internode object invocation. Amber avoids the need for address translation by en-

The key implementation problem for Amber is the suring that addresses retain their meaning when trans- I
abstraction of a single network-wide object space with mitted across node boundaries. The global virtual
object mobility and transparent invocation of remote memory is implemented by arranging the virtual ad-
objects. The following subo-dinate issues must be ad- dress space of each participating Topaz task identically.
dressed in order to implement this model: Program code and statically initialized program data

are automatically replicated at the same addresses on
* naming, creating, and destroying objects all nodes because the tasks are activations of the same

* moving objects program imzge executed on homogeneous machines.
All dynamic objects (including thread objects and their 3

" trapping nonlocal invocations stacks) are assigned a distinct segment of the global
address space when they are created, and each object

" finding remote objects occupies this same virtual address range on any node U
" migrating threads for remote invocations that it visits during its lifetime. The segment of virtual

memory occupied by an object on one node is reserved
Our goal was to implement Amber's shared object ab- for that object on all other nodes.
straction within the confines of C++, using techniques Amber's memory organization requires that nodes
that perform little or no remote communication not di- use disjoint regions of the address space for heap al-
rectly requested by the program. We found that much locations of dynamic objects. The system must guar-

64

antee that two nodes do not attempt to allocate the 3.3 Locating Mobile Objects
same heap block, but it must do this without the ex-
pense of distributed agreement for each object alloca- When the kernel handles a trap on an invocation
tion. Each node is assigned a private region of the of a remote object, it retrieves a forwarding ad-
virtual address space at startup time for its local heap dress [Fowler 85] from the object's local descriptor.
allocations. Statically partitioning the entire address The forwarding address is left in an object's local de-
space in this way is limiting because objects are not al- scriptor when the object moves away from a node. The
located uniformly across nodes. For this reason, a large forwarding address may be out of date if the object
part of the address space is left unallocated at startup moves frequently. In this case the object's location can
and is handed out later by an address space server as be determined by following a chain of forwarding ad-
nodes exhaust their initial pool. The cost of extending dresses, since the object leaves a new forwarding sd-
the address space is not excessive because the regions dress on each node that it visits. It is costly to locate
are large enough (currently IM bytes) that extensions an object by following a forwarding chain, but this hap-
are needed relatively rarely for applications that are pens rarely because the object's last known location is
moderate in their use of memory. cached on all nodes along the chain so that the object

can be located quickly on subsequent references.
The situation is more complicated in the case of a

trap on an object with an uninitialized descriptor, in-
dicated by the presence of a null forwarding pointer.

3.2 Handling Remote References Each task has complete knowledge of the assignment of
heap regions to nodes because a reference to the node

Each Amber object is referenced by a virtual address that owns each heap region is obtained from the ad-
that is valid on any node, but the system must deter- dress space server when the region is first mapped by
mine whether or not an object is local when it is in- a task. This allows the system to use a heap object's
yoked. To provide this information, each object has an virtual address to identify the object's home node, the
object descriptor on every node that indicates whether node on which it was created. When a reference to an
or not the described object is locally resident. The de- object with an uninitialized descriptor is detected, the
scriptor may contain other information about the ob- kernel forwards the request to the object's home node.
ject, such as where to look for it if it is remote. Checks The home node can determine where the object resides
inserted by the preprocessor examine an object's local by following the chain of forwarding addresses.
descriptor on each invocation. If the descriptor indi-
cates that the object is remote, the invocation traps to 3.4 Object and Thread Migration
the Amber kernel and is handled by a remote procedure
call that moves the faulting thread to the node where The global virtual address space simplifies object mi-
the invoked object resides. gration because it avoids the need to translate ad-

dresses stored in the moving object. Furthermore, thereAn Amber object is implemented as a record, the is no need to allocate space on the target node for theobject since the address range that it will occupy is pre-of which is its representation (the data local to the ob- determined. Moving an object involves copying its con-
ject). The virtual address of an object is therefore the tents from the source node to the destination node and
address of its descriptor. When a new object is created updating its descriptors on both nodes. The implemen-
it is allocated from the heap on a particular node. The tation is complicated by the need to identify and move
descriptor for the object is initialized on that node to threads that are actively executing operations on the
indicate that the object is resident so that it can be object. These bound threads must migrate with the oh-
invoked. If a mutable object is moved, its descriptor ject in order to preserve the consistency of the object's
is changed to indicate that it is not resident, and a contents. This problem is discussed in Section 3.5.
forwarding address is inserted in the descriptor. Amber remote invocations are performed by simply

Objects and their descriptors are managed so that an moving the invoking thread to the remote node. In
uninitialized descriptor is detected and interpreted to principie this is no more complicated than any other ob-
mean that the object is remote. This eliminates the ex- ject mr"'.- The thread's control information and pieces
pense of initializing remote descriptors for a newly cre- of its st,.k are copied to the same address ranges on
ated object. An uninitialized descriptor is detected be- the remote node, the object descriptors are updated,
cause unwritten pages of virtual memory are zero-filled and the thread is added to the scheduling queue on the
by the Topaz operating system, and object descriptors remote node. Addresses in its processor registers and
are defined so that the resident flag is a one-valued stack will continue to be valid on the destination node.
bit. References to objects occupying heap blocks that In practice, thread migrations are handled slightly dif-
were previously deallocated and reused are also han- ferently from migrations of other objects in order to
dled correctly. This requires that the heap allocation optimize remote invocations made by the thread at the
algorithm be constrained so that heap blocks are never expense of invocations made on the thread object itselfdivided once they have been returned to the free pool. (e.g., a Join operation).

65

i

l
3.5 Object Mobility on Multiprocessors marked as non-resident but before the object's contents

have been copied to the remote node. i
Dynamic mobility is difficult to implement on multi- Local invocations are efficient with this scheme be-
processors because user threads may be attempting to cause they require no synchronization over the object
manipulate a moving object concurrently with the mo- descriptor, only a residency check consisting of a single
bility code running on another processor. This leads to VAX branch-on-bit-set instruction. Also, there is no
a number of implementation concerns that would not need to halt all activity on a node during a move oper-
arise on a uniprocessor. In uniprocessor object migra- ation; at worst it will be necessary to briefly interrupt
tion all threads on the node are implicitly suspended each processor. One problem is that some concurrency
while mobility code in the kernel is in control of the may be lost if the destination node is idle but the source
single processor, making it a simple matter to deter- node is busy, since suspended threads which are bound
mine which threads are bound to the moving object by to the object will not move to the destination node un-
examining their stacks. Furthermore, the system can til they are rescheduled on the source node. An added 1
preserve the atomicity of the invocation sequence by disadvantage is that the need to preempt all running 5
preempting threads only at safe points in their execu- threads causes the cost of mobility to increase as pro-
lion, avoiding a context switch between the residency cessors are added to a node. The assumptions behind
check and the completion of the stack modifications in- these tradeoffs are (1) object moves are much less fre- 1
dicating that an invocation is active. quent than object invocations, and (2) improvements in

On multiprocessor hardware the atomicity of descrip- processor speeds will make thread preemptions cheap
tor checks can no longer be guaranteed. In a naive im- relative to the network latency associated with a move
plementation a thread could check the descriptor and operation.
find that the object is local, but not actually com- I
plete the local invocation until after a move operation
on the object has been initiated by another processor. 3.6 Experience With C++
This race condition will always exist if the descriptor is I
checked before the stack modifications associated with Our choice of C++ was partly motivated by its avail-
thc invocation are made. An analogous race condition ability and its popularity with programmers. Another
can occur on returns: a thread could check that an advantage of C++ is that it is efficiently implemented
object is still resident before its return, only to have with a minimum of runtime support. Most other ben-
the object move after the check but before the actual efits of using C++ could have been obtained from any
control transfer. A related problem is that the set of object-oriented programming language with an exten-
active threads bound to a moving object is constantly sible class hierarchy and dynamic typing. 1
changing while the mobility code is running. In our Amber prototype, object descriptors are allo-

One approach to solving these problems is to lock the cated and managed by deriving all user classes from a
invocation sequence and maintain a data structure that single base class called Object whose private data items
records which threads are currently executing within include the descriptor. The constructor and destruc-
each object. This solution makes invocations expen- tor functions for the Object class maintain the descrip-
sive because of the need to synchronize and update the tot and ensure that object creation and deletion meet
data structure. Another approach is to freeze all ac- the requirements discussed in Section 3.3. Threads
tivity on the node during a move operation and exam- and synchronization objects are provided by introduc- 3
ine the stacks of all local threads to determine which ing new subclasses of Object. The mobility primitives
threads are bound to the moving object. This solu- are operations on instances of class Object. Amber's
Lion optimizes invocations but makes move operations distributed heap allocation is implemented by redefin- 1
complex and expensive. There are many gradations ing the runtinne library routines for the C++ operators
between these extremes. new and delete.

Amber makes invocation-time residency checks at One problem with C++ is that Amber's distribution
the start of each operation, after the invocation stack model depends on the regularity of an object-oriented i
frame is pushed but before any user code is executed. programming language. Amber assumes that a thread
Return-time checks are made immediately after the will never directly manipulate the internals of a remote
invocation frame that the thread is returning from object, since references to remote objects are recog-
has been popped. This guarantees that the executing nized and trapped only on invocations. Furthermore, 3
thread can be identified as bound to the object before all data items that may be referenced remotely must be
it actually checks the descriptor and enters the object. encapsulated in an object. The C++ language includes
Threads already bound to a moving object are han- many performance features that circumvent constraints 3
dled by an additional residency check that is made on normally associated with an object-oriented program-
each context switch into a preempted thread. Move op- ming model. Examples of such features are friends,
erations in Amber preempt and reschedule all threads public member elements, inline functions, unprotected
running on the source node, forcing them to make a structures, and the ability to include arbitrary C code 3
residency check before they continue. The preemptions s, ,he proliam. The",,. features can result in incor-
occur after the descriptor of the moving object has been rect program behavior if they are used improperly in

66 I
I

a distributed environment. Nevertheless, they present consistency of arbitrary bytes guaranteed across refer-
opportunities to optimize interactions between objects ences from multiple nodes. Coherence of the shared
tha* are known to reside on the same node. memory is maintained by memory managers on each

There are a number of situations in which co- node, which use page faults to detect shared accesses
residency guarantees make it possible to use these fea- and exchange coherency messages with other memory
tures safely. Co-residency can be explicitly requested managers [Li & Hudak 86]. Remote references are han-
using Amber's attachment primitives. Also, C++ died by moving or copying the referenced page to the
member objects (objects that are directly contained location of the faulting process. Distribution and load
within some other object) always move with their con- balancing are achieved by explicit process migration.
taining object and are theiefore co-resident with it. Co- Amber represents an alternative vision of uniform
residency guarantees can also be exploited to optimize and consistent memory in which the granularity of data
invocations of functions in base classes or invocations coherence is the object rather than the individual byte.
of objects allocated from a thread's stack. Intelligent These systems present the programmer with a network-
use of the performance features of C++ in situations wide object name space, with consistency maintained
where co-residency is assured can significantly improve by trapping invocations of remote objects. This mem-
program performance. For example, consider a multi- ory model is uniform in the sense that it is unnecessary
threaded object whose internal state is protected by a for the programmer to deal explicitly with the locations
non-relinquishing lock. If the lock is a member object of objects when they are invoked, but it is more restric-
of the protected object then it can be safely acquired tive than the shared virtual memory approach because

and released using fast inline function calls. it requires adherence to an object-oriented program-
i rming discipline.

4 Comparison with Shared Vir- unci n S p

tual Memory 4.1 Function Shipping
A major difference between Amber and Ivy is that

This section explores the relationships between page- Amber takes a function-shipping rather than a data-
oriented and object-oriented shared memory models. shipping approach to coherence. Instead of attempting
Both approaches offer uniformity relative to an RPC- to maintain the consistency of mutable objects across
based programming model, but they differ in other re- references from multiple nodes, each object is placed on
spects. The original motivation for an object-oriented a single node where access to it is controlled through
memory in Amber was that objects are a natural unit its operations. Function shipping is especially attrac-
for involving the programmer in data placement deci- tive when the nodes in the network are shared-memory
sions. In this section we shall argue that the object is multiprocessors because it clusters the threads referenc-
also a natural and efficient unit for maintaining coher- ing a given object onto the same node, where hardware-
ence of the global address space, and that object-level based synchronization and memory sharing can be used
coherence has a number of advantages over page-based to their fullest performance advantage. The program-
coherence. mer of a data-shipping system such as Ivy can obtain

The memory organization of a loosely-coupled sys- the same advantages through an appropriate use of ex-
tem is closely related to issues of consistency of the plicit process migration.
data shared by multiple nodes. At the hardware level Distributed synchronization is simple and efficient in
each node can address only its private physical mem- a function-shipping system. For example, Amber locks
ory. Coherence of these private memories is diffi- are objects which can be remotely invoked to synchro-
cult to maintain efficiently in a distributed environ- nize threads executing on different nodes. References to
ment. A similar problem is encountered by the de- a shared lock variable can cause a data-shipping system
signers of programming support for NUMA multipro- to thrash by repeatedly shuttling the page containing
cessors, where the varying costs of referencing different the lock variable between the nodes which are referenc-
areas of memory motivate the-use of caching, replica- ing it. Recent versions of Ivy have handled this problem
tion and data migration to improve program perfor- by deviating from the data-shipping model and access-

mance. NUMA programming systems such as PLAT- ing shared lock variables with remote procedure calls.
INUM [Cox & Fowler 89] make hidden data placement For a certain class of programs the behavior of the
and replication decisions while presenting the program- function-shipping approach is more predictable than
mer with a view of memory that is uniform and coher- that of the data-shipping approach. It is easy to pre-
ent at the byte level. This approach can work well dict the communication overhead incurred by an Am-
for NUMA multiprocessors because the cost of a poor ber program that utilizes static object placement or
placement decision is typically not very high. that moves objects at well-defined points. A similar

Similar shared memory models have been used to program for a data-shipping system can thrash when a
allow a network of machines to be programmed as a memory page is repeatedly referenced by processes on
loosely-coupled multiprocessor. In Ivy, distributed pro- different nodes. The Amber program can thrash when
cesses execute in a global virtual address space with a thread repeatedly invokes the same remote object,

U 67

I

I
but this effect is less dependent on the orders of events
and the timings of concurrent operations (except those Operation Latency ms)
involving explicit object moves). In such a program object create 0.18
the location of an object can be determined from the local invoke/return 0.012

program structure and is independent of which threads remote invoke/return 8.32
happen to be referencing the object at the moment. object move 12.43

thread start/join 1.33
4.2 Pages vs. Objects

The performance of a coherence policy is dependent Table 1: Latency of Amber Operations
upon the degree to which memory references made by I
the program are localized within the units used by the
system to maintain coherence. In a distributed object cost of the primitives for concurrency and distribution. i
system the granularity of coherence is the data object, a Table 1 presents some timings for basic Amber oper- 3
problem-oriented unit, whereas in shared memory sys- ations, as measured on Firefly workstations with four
tems it is the page, a unit that is dependent upon the CVAX processors available for running user threads.
hardware rather than the structure of the program. The latency of these operations is highly sensitive to

The performance of a page-based coherency scheme a number of factors, but the benchmarks that pro-
may suffer if the sizes of data items do not match well duced these timi igs attempt to measure the cost of
with the page size. If a remote data item is larger than a the operations in the most common case. For example,
page, an operation that accesses the item in its entirety the benchmarks assume that all moving objects and
will generate multiple page faults unless the process is threads will fit in a network packet, and that the des-
explicitly moved to the location of the data item. In tinations are found by following a forwarding chain for
Amber, the thread moves to the location of the data one hop. These tinings should be regarded as rough in-
item and the .peration executes with a single network dications of the cost of the operations under light load 3
transaction. Alternatively, the Amber programmer can conditions. Operations involving thread scheduling or
choose to migrate the objert. explicitly, making use of network communication are more expensive on t heav-
an efficient bulk transfer protocol. ily loaded system. a

If data items are smaller than a page, a page-based We expect that the CPU cost of these operations 3
coherency scheme incurs unnecessary communication will have less effect on program performance in the fu-
overhead when logically unrelated data items that hap- ture. As processors get faster the CPU overhead of
pen to reside in the same page are referenced repeat- using any distributed system becomes less significant, U
edly by multiple nodes. The programmer for such a and the performance of the system is dominated by
system must be aware of page sizes and boundaries network latency, which will remain roughly constant
to reduce this artificial sharing, just as programmers despite the advent of new high-throughput networks.
of current shared-memory multiprocessors need to be The performance of a distributed system is best evalu-
aware of cache line sizes in order to achieve the best per- ated not by the cost of basic network operations, but
formance. Pae-based systems can reduce these prob-. by the degree to which the system prevents unnecessary
lems by depending on the compiler to structure the network communication.
data appropriately. This structuring comes for free in Ian object-based system.

Another argument for object-level coherence is based 6 An Amber Application
on a hypothesis that the memory reference patterns of
object-oriented programs are more localized than simi- This section presents the structure and performance i
lar programs using more traditional models. The body of an Amber program that computes the steady-state
of an object operation can reference only the thread temperature over the interior of a square plate given
stack and the contents of the object itself, so an exe- the temperatures around the plate's boundary. The
cuting operation is likely to make a sequence of memory behavior of this system is governed by Laplace's equa- I
references local to the current object. In effect, there tion, which states that the value at each point is the
is knowledge implicit in the way the data area is di- average of the values of its neighbors. The algorithm
vided into objects that can be exploited to make the used is Red/Black Successive Over-Relaxation (SOR), I
coherence Algorithm more efficient. an iterative method that parallelizes well and is com-

monly used in practice [Ortega & Voigt 85]. This algo-
rithm can be understood by analogy to a checkerboard. 3

5 Cost of Amber Operations Each point of the problem grid corresponds to a square
on the checkerboard. During each iteration, all of the

The true test of Amber's performance is the behav- black points are updated first, followed by all of the red
ior of applications built with the system. Sectinn 6 points. After some number of iterations the computed
describes a simple application and discusses its per- values converge and the algorithm terminates. Black
formance. It is also useful, though, to measure the points have only red neighbors and vice versa, so each

68 I
I

Section Object 1 Section Object 2 Section Object 3

Computing Computing Computing
Threads Threads Threads

I0000 0000 0000

Thed Theas - :0 Thed

I

Figure 1: Structure of the Amber Red/Black SOR Implementation

I of the update phases is highly parallelizable. pends only on the size of the section and is not affected

The algorithm is partitioned for lorsely-coupled par- by the data contained there. Nevertheless, SOR is a
- allel execution by breaking the grid into sections and nontrivial algorithm which is typical of many iterative

distributing the sections among the nodes. Some parti- methods involving nearest-neighbor interactions. Per-
tionings are clearly inefficient. For example, placing the formance measurements for the program are shown in
entire grid in one object would result in unbalanced use Figures 2 and 3.
of the available processing power. Placing each point in Figure 2 plots measured speedup of the SOR program
a separate object would involve excessive communica- as the number of nodes and the number of processors
tion overhead. A more effective approach is to choose increases. For the purposes of this experiment, we se-

the partitioning so that one section object can be as- lected a specific problem with a grid size of 122 by 842
signed to each node. This balances the load and allows points. Most of the partitionings were into eight sec-
the values for an entire edge of a section to be trans- tion objects, except for the experiments involving three
ferred in a single invocation, and six nodes, which were run with partitionings of six

The Amber SOR program has several sets of threads section objects. A significant amount of remote com-
associated with each section object. One set of threads munication is required to solve this problem on mul-
computes the values for the section's points in parallel tiple nodes. Each point in this figure represents the
on each iteration. Another set of threads is respon- measured speedup for a particular experiment relative
sible for exchanging edge data with neighboring sec- to a sequential C++ implementation used as the base-
tions. The exchange of values for edge points of one line case. Each point is labeled to indicate the number
color is overlapped with the computation for points of of Firefly nodes used, and the number of processors per
the other color. After each iteration the nodes synchro- node. For example, the point labeled "4Nx2P" corre-

nize at a barrier to determine if convergence has been sponds to an experiment in which the eight sections of

reached. One additional thread per section is respon- the grid were distributed among four Fireflies (two per
sible for communicating with a single master thread Firefly) and two processors per Firefly were used (for a
regarding convergence. Figure I displays this structure total of eight processors). A number of conclusions can

for a decomposition with three sections. be drawn from Figure 2:
The SOR algorithm is well-suited to a loosely-

coupled multiprocessing model because the problem is 9 Good speedups are possible in this environment.
regular and static, which makes it easy to choose a par- The SOR program attains a speedup of 25 for the
titioning that balances the load evenly. The amount of 8Nx4P case - eight Firefly workstations, each con-
computing required per section on each iteration de- tributing four processors to the overall solution.

3 69

I

32-

28-3

24-

20-
$N4P5

Speedup / I

18 / 6NNx4P
"

a fl ' Il
betlwn data

12 'rMn~ and
12- 4Nx4P1

SO - I I II II I

8 8 uealal * 2 6 1
2NN2P

14NNdP

4 8 12 16 20 24 28 32
Total Processors

Figure 2: Measured Speedup for Amber Red/Black SOR Implementation

Significant performance benefit comes from struc- We were able to achieve good performance in our
turing the program so that transfers of edge data Amber SOR program for several reasons. A single net- I
are overlapped with computation over the interiors work exchange is required to transfer an entire row or
of sections. This is demonstrated by the different column of data between sections, regardless of how data
performance of the two 8Nx4P cases. This shows happens to be laid out in the address space. Second, I
the importance of overlapping communication and data transfers can be overlapped with computation by
computation in a loosely-coupled environment, running the respective threads in parallel. This re-

duces the effect of network latency. Third, computation I
" The overlapping of communication and computa- threads within a section can freely divide work among U

tion makes it possible to keep all processors busy themselves, without danger of causing network activity.
doing useful work even while communication is
taking place. The performance of this applica-
tion is not degraded significantly by the cost of We have not implemented this application under a
remote communication. This is demonstrated by system with a page-oriented distributed virtual mem-
the speedup of the Amber version, which is close to ory, so it is impossible to make exact comparisons with 3
the ideal speedup relative to the sequential version. such a system. Certainly a shared memory version I
Also, nearly identical speedups are achieved for all under a system such as Ivy would have required less
of the experiments involving a total of four proces- coding effort initially. The performance of the result-
sors (1Nx4P, 2Nx2P, 4NxlP). Similar results were ing program ultimately depends on how efficiently data I
obtained from the experiments with eight proces- can be shared between nodes. The methods for control- U
sors (2Nx4P, 4Nx2P). ling sharing and communication using Amber, with its

object-oriented distributed virtual memory, and using
To be fair, the ratio of computation to communi- a system with a page-oriented distributed virtual mem- I

cation for this program is a function of the grid size. ory, are quite different. Using a page-oriented system,
Even if communication is highly efficient, for suffi- the programmer would optimize data reference patterns
ciently small grids it will dominate computation and by laying out data structures and partitioning the work
limit speedup. For sufficiently large grids computa- so as to make each node reference different sections of I
tion will dominate and speedup will be good even if the linear address space. If two nodes write-share the

communication is relatively inefficient. Figure 3 shows same block of addresses, the virtual memory system
the effect of varying the problem size for the particular will thrash. It may not be obvious from the source
configuration of four nodes with four processors each code that this can happen. Also, the layout of the data 1
(4Nx4P in Figure 2). The horizontal axis in Figure 3 is in memory may incur the cost of multiple faults and
the number of points in the grid. The vertical axis gives multiple page transmission latencies to transfer edge
speedup relative to a sequential version of the program, data. With Amber the decomposition is addressed ex-
The point marked "X" corresponds to the 122 by 842 plicitly: the programmer has control over what data is
grid used in Figure 2. tranprorred and when.

70U |I

14 References

12 [Alichin & McKendry 83] Allchin, J. and McKendry,
M. Synchronization and recovery of ac-

10 tions. In Proceedings of the 2nd ACM Sym.
posium on Principles of Distributed Comput-
ing, pages 31-44, August 1983.

"6 [Alies et al. 85] Almes, G. T., Black, A. P., Lazowska,
E. D., and Noe, J. D. The Eden system:

4 A technical review. IEEE Transactions on
Software Engineering, SE-11(1):43-59, Jan-

2 uary 1985.
100000 200000 300000 [Bal & Tanenbaum 88] Bal, H. E. and Tanenbaum,No. of Points A. S. Distributed programming with shared

Figure 3: Effect of Varying SOR Problem Size (4Nx4P) data. In Proceedings of the International
Conference on Computer Languages, pages
82-91, October 1988.

7 Summary [Bershad et al. 88a] Bershad, B. N., Lazowska, E. D.,
Tand Levy, H. M. Presto: A system for
The Amber system permits a loosely-coupled network object-oriented parallel programming. Soft-
of multiprocessors to be viewed as an integrated sys- ware - Practice and Experience, 18(8), Au-
tern for executing a parallel application. This under- gust 1988.
lying hardware architecture is cost-effective for many
parallel applications. Processors can be added to a [Bershad et al. 88b] Bershad, B. N., Lazowska, E. D.,
computer system at small marginal cost, but packaging Levy, H. M., and Wagner, D. An open
constraints limit the practical size of a single system. environment for building parallel program-
Therefore programmers will want to build parallel pro- ming systems. In Proceedings of the ACMgrams that cross machine boundaries. SIGPLAN Symposium on Parallel Program.

With Amber we have shown that the distributed oh- ming Environments, Applications, and Lan-
ject model is useful for loosely-coupled multiprocess- guages, July 1988.

[ing as well as for distributed programming and dis-
tributed operating systems. Amber's object-oriented [Birrell & Nelson 84] Birrell, A. D. and .Nelson,
model strikes a balance between the ease of program- B. J. Implementing remote procedure calls.
ming afforded by a page-oriented distributed virtual ACM Transactons on Computer Systems,
memory and the performance benefits of explicit man- 2(1):39-59, February 1984.
agement of location. We have achieved a simple and ef- [Black et al. 87] Black, A., Hutchinson, N., Jul, E.,
ficient implementation using an existing programming Levy, H., and Carter, L. Distribution andlanguage and an existing operating system. Our appli- abstract types in Emerald. IEEE Transac-cation experience thus far indicates that the fundamen- ions on Software Engineering, 13(1), Jan-
tal goal of Amber - to allow the power of a network of uary 1987.
small-scale multiprocessors to be harnessed for a single
parallel application - has been achieved. (Cox & Fowler 89] Cox, A. L. and Fowler, R. 3. The

implementation of coherent memory ab-
straction on a NUMA multiprocessor: Ex-

8 Acknowledgements periences with PLATINUM. In Proceedings
of the 12th ACM Symposium on Operating

Norman Hutchinson and Eric Jul were involved in early Systems Principles, December 1989.
discussions of Amber's memory model. Guy Carpenter [Fowler 85] Fowler, R. J. Decentralized Object Find-
implemented several pieces of the Amber runtime sys- ing Using Forwarding Addresses. PhD dis-
tern. Brian Bershad and Jan Sanislo provided numer- sertation, University of Washington, Decem-
ous comments and helped with the operating system ber 1985. Department of Computer Science
and hardware of the Firefly. Reid Brown, Tom An- Technical Report 85-12-1.
derson, Jeff Bowden, and Ewan Tempero commented
on early versions of this paper. Hugh Lauer assisted (Herlihy & Wing 87] Herlihy, M. P. and Wing, J. M.
with final revisions. We would also like to thank the Avalon: Language support for reliable dis-
DEC Systems Research Center for providing the Firefly tributed systems. In IEEE Fault-Tolerant
workstations and the Topaz operating system software. Computing Symposium Digest, July 1987.

71

I
[Jones et al. 79] Jones, A. K., Chansler, R. J., [Thacker et al. 88] Thacker, C. P., Stewart, L. C., and

Durham, I., Schwans, K., and Vegdahl, S. R. Satterthwaite, Jr., E. H. Firefly: A multi-
StarOS, a multiprocessor operating system processor workstation. IEEE Transactions I
for the support of task forces. In Proceed- on Computers, 37(8):909-920, August 1988.
ings of the 7th A CM Symposium on Operat-
ing Systems Principles, pages 117-127, De- [Wulf74] Wulf, W. Hydra: The kernel of amultipro-
cember 1979. cessor operating system. Communications of 3

the ACM, 17(6):337-345, June 1974.
[Jul et al. 88] Jul, E., Levy, H., Hutchinson, N., and

Black, A. Fine-grained mobility in the Emer-
ald system. A CM Transactions on Computer I
Systems, 6(l):109-133, February 1988.

[Li & Hudak 86] Li, K. and Hudak, P. Memory coher-
Proceedings of the 5th A CM Symposium on

Principles of Distributed Computing, pages
229-239, August 1986.

[Li 86) Li, K. Shared Virtual Memory on Loosely
Coupled Multiprocessors. PhD disserta-
tion, Yale University, September 1986. I
YALEU/DCS/RR-492.

[Liskov 88] Liskov, B. Distributed programming in
Argus. Communications of the ACM, I
31(3):300-312, March 1988.

[Lucco 87] Lucco, S. E. Parallel programming in a
virtual object space. In Proceedings of the U
ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applica-
tions, pages 26-34, October 1987.

(Ortega & Voigt 85] Ortega, J. and Voigt, R. Solu-
tion of partial differential equations on vec-
tor and parallel computers. SIAM Review,
pages 149-240, 1985.

fOusterhout et al. 80] Ousterhout, J. K., Scelza, D. A.,
and Sindhu, P. S. Medusa: An experiment I
in distributed operating system structure.
Communications of the ACM, 23(2):92-105,
February 1980.

[Schantz et al. 86] Schantz, R. E., Thomas, R. H., and
Bono, G. The architecture of the Cronus
distributed operating system. In Proceedings
of the 6th International Conference on Dis.
tributed Computing Systems, pages 250-259,
May 1986.

(Schroeder & Burrows 891 Schroeder, M. D. and Bur- I
rows, M. Performance of Firefly RPC. In
Proceedings of the 12th ACM Symposium
on Operating Systems Principles, December U
1989.

[Stroustrup 86] Stroustrup, B. The C++ Programming
Language. Addison-Wesley, Reading, Mas- I
sachusetts, 1986.

72 1
I

I
I
I
I
I

Operating System Support for

1 Parallel Computing

I
I
I
I
U
I
I
I
I
I
I
3 73

I
I

I Spinning Versus Blocking in Parallel SystemsI with Uncertainty .

John Zahorjan and Edward D. Lazowska
Department of Computer Science

University of Washington

Derek L. Eager
Department of Computer Science

University of Waterloo

I February 1988

5 Abstract

In waiting for an event on a parallel machine, a thread of control may either spin (busy wait) or block
(relinquish the processor). The appropriate mechanism depends on the relationship of the expected spin
time to the context switch time on that machine.

If the programmer has accurate information about the behavior of an application, the choice between
spinning and blocking can be made relatively easily. This might be the case, for instance, when a parallelmachine is dedicated to a single, well understood application. However, in the presence of uncertainty,
the choice of mechanism is more difficult.

In this paper we examine the choice between spinning and blocking in environments characterized by
two kinds of uncertainty: multiprogramming, where the applications programmer does not have control
over which threads are running at any point in time, and data-dependent programs, where expected
running times can depend heavily on input data. We compare the loss incurred by spinning in these two
environments to that in systems running a single, "well-behaved' application. Our goal is to determine
how multiprogramming and data-dependent behavior affect expected spin time, and so complicate the job
of selecting the right mechanism.

We examine the base, multiprogrammed, and data-dependent environments for two different
situations: lock acquisition for mutual exclusion and for barrier synchronization. Using simple analytic
models we conclude that for the case of lock acquisition neither multiprogramming nor data-dependent
behavior significantly increase the expected spin time, and thus do not complicate the choice ofmechanism. However, for barrier synchronization both kinds of uncertainty lead to sharply increasedspin times, and thus must be taken into consideration when choosing between spinning and blocking.

5Index Terms - Multiprocessors, locking, performance, parallel software, parallel computing.

This matenal is based upon work supported by the National Science Foundation (Grants DCR-8352098,I CCR-8619663, and CCR-8703049), the Naval Ocean Systems Center, U S WEST Advar: d Technologies,
the Washington Technology Center, Digital Equipment Corporation (the External Research Program and the
Systems Research Center), and the Natural Sciences and Engineering Research Council of Canada. This
work was done while Eager was with the Department of Computational Science, University of Saskatchewan,
and while Zahorjan was on sabbatical leave at Laboratoire MASI, University Paris 6.
Authors' addresses: John Zahoran and Edward D. Lazowska, Department of Computer Science FR-35,
University of Washington, Seattle WA 98195; Derek L. Eager, Department of Computer Scienc University
of Waterloo, Waterloo, Ontario, Canada N2L 3GL.

I75

I
-2- I

1. Introduction
When a thread of control on a parallel machine must wait for some event before proceeding, it may be

reasonable for the thread to spin (or busy wait) - that is, to sit in a tight loop continuously checking for
the required condition. The time spent spinning is overhead, and since the processor is occupied and
cannot be allocated to another thread, the effective processing rate of the system is decreased. An
alternative to spinning is blocking - that is, relinquishing the processor. The context switch time required 1
to block also is overhead, so blocking too decreases the effective processing rate of the system.

The appropriate choice between spinning and blocking depends on the relationship of the expected
spin time to the context switch time. This choice is not always clear, and a mistake can have major 1
performance implications. For example, one field test release of the DYNIX operating system for the
Sequent multiprocessor [Beck et al. 19871 included the substitution of blocking for spinning in a single
routine as a "performance enhancement". Under high loads, this change in fact caused a severe
performance degradation, something that was first noticed by a Sequent competitor and used as the basis 1
of an advertising campaign [Rodgers 1986].

Although adaptive mechanisms are possible (see, for example, [Ousterhout 1982] and [Lo & Gligor
19871), the decision of whether to spin or to block is most often made statically at program creation time
by the programmer. In highly controlled environments where the programmer has accurate information
about the expected spin time, this decision may be straightforward. For example, when the parallel
machine is dedicated to a single application that uses locks for mutual exclusion, the programmer may I
know that a particular lock is held infrequently and for only a very few instructions. Spinning would be

the clear choice in this case. Similarly, parallel solutions of large numerical problems often are obtained
by partitioning the problem among a number of threads equal to the number of processors. Spinning is
the clear choice here, too, since there are no other threads that could run.

The choice between spinning and blocking is not so straightforward when the expected spin time
depends on run-time factors. How to make this choice in the presence of such uncertainty is the subject
of our paper.

We consider two typical situations in which threads must wait, requiring that either spinning or
blocking be employed. The first situation involves waiting because of competition among threads. Here
we assume a set of largely independent threads that use a lock to provide mutual exclusion when I
accessing some resource. When a thread wanting the resource finds the lock in use, it waits until the lock
L omes free. The-second situation involves waiting because of cooperation among threads. Here we
model a set of threads that attempt to synchronize at a barrier. Each thread reaching the synchronization
point (that is, the barrier) waits until all other threads have also reached the barrier.

Our "baseline case" is a controlled environment in which the choice between spinning and blocking is
straightforward: a single parallel application running on a dedicated multiprocessor with as many
processors as there are threads of control.

We consider the effect on this choice of two run-time dependencies. The first is multiprogramming.
As parallel architectures become more common, paralle! machines and parallel algorithms increasingly 5
will be the choice for general-purpose computing. Clearly, multiprogramming of user jobs is a
requirement in this environment. However, because the programmer does not have explicit control over
the scheduling decisions made on a multi-user multiprogrammed machine, it is impossible to know which
threads of a parallel application will be running at any particular time. Thus, the spin time can be highly
variable, depending on whether or not the thread that will eventually generate the event being waited for
is currently allocated a processor.

The second source of uncertainty that we consider is data-dependent software. Here we assume that
the thread that eventually will generate the awaited event sometimes completes quickly and sometimes
runs for a long time. Its behavior depends on its state and tl.e data with which it is presented, and so is
not predictable at the time that the application is coded. S

The goal of our work is to determine how spin time is affected by these two forms of uncertainty when
compared with the baseline case. If the expected spin time is roughly the same in all three situations, the
decision between spinning and blocking can be made as if the application were running in a well I
controlled environment. Since programmers are already dealing with this problem in that environment.

76 5

I
1 -3-

this would mean that no new special procedures are required. On the other hand, if the spin time can be
significantly lengthened in environments with uncertainty, the programmer's task is greatly more
difficult, since it will be necessary to estimate at program creation time parameters that become known
only at run time.

Our study is conducted using analytic models validated via simulation. We examine the degradation
-- arising from using spinning under uncertainty relative to that arising using spinning in a controlled

environment. We decided against constructing models of performance under blocking with which to
compare our spinning models. Information concerning the relative merits of spinning and blocking canI- be drawn from the spinning models alone, and the results obtained from models of this single type are
less sensitive to the precise modelling assumptions made, since any inaccuracies appear consistently.
Thus our performance comparisons (if perhaps not the absolute performance values) will be accurate.
(See, for example, [Dubois & Briggs 1982] as a contrast in the complexity and flexibility of modelling
approaches.)

In Section 2 we describe more precisely the models employed in our comparisons, and we outline
briefly the analytic approach. A more detailed discussion of the analysis is found in Appendix A. Section3 is a discussion of the results for waiting due to lock contention. Section 4 presents the results for
waiting due to barrier synchronization. Section 5 contains our conclusions.

* 2. The System Models

Clearly, a useful performance model must embody enough of the details of the system it represents so
that the model's behavior parallels that of the system. At the same time, "unnecessary detail" should be
avoided, and the model kept as simple as possible [Lazowska et al. 1984], for at least two reasons. First,
simplicity aids in understanding the interaction of the model parameters. A model with many parameters
implies an enormous parameter space and consequently a potentially unmanageable set of experiments
and results to explore the significance and interaction of those parameters. Second, a simple model is
usually more quickly analyzed than a complex one, and so eases the practical burden of running the
necessary experiments.

We have constructed two different but similar models, one for lock contention and the other for barrierI. synchronization. Each model accommodates the three environments (baseline, multiprogramming, and
data-dependence) in a natural way. This is important because our goal is to compare spin times between
environments, so consistency across those boundaries lends confidence that the comparison is valid.

Performance predictions for our models may be obtained by either simulation or numerical analytic
techniques. In fact, we have developed and run software for both approaches. However, all of the results
given here are taken from the analytic solutions. Simulation was used only for a sample set of cases with
the sole intention of verifying that the analytic software was functioning correctly. The analytic approach
is preferable to simulation in this application because the results it provides are exact equilibrium

performance measures (rather than stochastic estimates and confidence intervals) and because in general
the analytic software is able to obtain results much more quickly than the simulation software.

2.1. Lock Contention
Our lock contention model consists of P identical processors and J threads. We model explicitly the

contention for a single lock. Each thread is in one of three states: computing, spinning, and critical
section. A thread computes for an average of T time units between attempts to obtain the lock.' When a
thread requires the lock, if the lock is free the thread immediately acquires it. A thread holding the lock
uses it for an average of L time units, then releases it and returns to the computing state. If the lock is not
free when requested, the thread spins until the lock is released. If multiple threads are spinning when the
lock is released, one of these threads is chosen at random to acquire the lock next.

I In reality, this means that the thread occupies the processor for an average of T time units betwcen requests.

The thread may be performing useful work or spinning on anothcr lock or for some other reason during this
imc.

77

I
-4- U

For the baseline case of a controlled system, the model is exactly as described above with J = P, that
is, one thread per processor. This represents the situation in which the machine is dedicated to a single
application at a time, and thus presents the application programmer with the least amount of uncertainty I
regarding the behavior of the software.

A multiprogramming environment is reflected in the model in two ways. First, there are more threads
than processors (J > P), thus reflecting the fact that, in a multiprogramming environment, an application
might at times have more threads than it has been allocated processors. Note that it is most appropriate to
increase the number of threads rather than decrease the number of processors when deriving a
multiprogramming instance of the model from a baseline irtance, because the inherent degree of lock
contention is thereby kept constant (as this depends on the total instruction delivery rate as determined by
the number of processors, not on the number of threads), and thus any changes in performance can be
attributed solely to the effects of multiprogramming.

At any one time, P threads are scheduled (allocated processors) and I-P are unscheduled (without
processors). The second way in which multiprogramming must be reflected in the model is the
introduction of a scheduling rule that controls which threads fall into each category. We define a
parameter Q that represents the mean scheduling quantum. Each scheduled thread is allowed to use its I
processor for an average of Q time units before it is unscheduled. (The scheduling of threads on any
particular processor is independent of that on all other processors.) When a thread's quantum expires, its
processor is assigned at random to a currently unscheduled thread.

This random scheduling is the major simplification of our model, as the replacement policy in a real
system is more likely to be FCFS in nature. However, note the mean time that a thread remains
unscheduled between successive uses of a processor is identical under random and FCFS replacement, asis the mean amount of computing provided to each thread per time unit. Thus, intuitively we expect the Umean performance measures observed under the two scheduling disciplines to be similar.

The primary motivation for assuming random replacement is that it enormously simplifies the model
state space. In particular, our model has 2P(J-P) + 21 - P + 1 states while an identical model with FCFS
scheduling has more than 2 -P. This simplification not only allows results to be obtained more quickly,
but also permits the analysis of models with larger numbers of threads and processors than could be
examined otherwise.

To model data-dependent behavior we again let J equal P, that is, the model is not multiprogrammed
since we wish to isolate the particular effect of data-dependence. However, here we let the lock holding
time be highly variable. In particular, with probability 1-p a thread acquiring the lock releases it
instantly, and with probability p holds it for mean time L. This results in a mean holding time of L, just

P
as in the baseline case, but with much greater variance. p

2.2. Barrier Synchronization
The model of barrier synchronization is quite similar to the lock contention model. In the baseline

case there are P processors and I = P threads. Each thread is in one of two states: computing or I
spinning. A thread computes for an average of T time units before reaching the barrier. If not all other
threads have already reached the barrier, it begins to spin. When the last thread reaches the barrier, all
threads return to the computing state.

For the multiprogramming environment, we keep constant at P the number of threads involved in the
barrier, but add K additional threads. These threads are always in the compute state, but their presence on
the prucssors inteilres with the progress of the P "barrier threads". As previously, Q is the mean
scheduling quantum and random replacement among the J+K-P unscheduled threads is used as the
scheduling discipline.

It is important in this model that we keep the number of barrier threads the same as in the baseline
case. The mean time to reach a barrier increases naturally with the number of threads involved in the
synchronization. Since we are trying to isolate the effect of multiprogramming, it would not be suitable
to simplify the model further by having all P+K threads be involved in the barrier, as it would be difficult
to separate the increased spin time due to multiprogramming from that due to the increase in the number I

78

I

-5-

of barrier threads. (Note that this is in contrast to the lock contention situation, where the inherent lock
contention is determined not by the number of threads but by the instruction delivery rate as determined
by the number of processors.)

To reflect data-dependent behavior in the model, K is zero as in the baseline case (i.e., there are only
the J = P barrier threads), but there is much greater variance in the compute time required before a threadU reaches the barrier. With probability l-p, a thread computes for zero time units before reaching the
barrier, while with probability p it computes for an average of T time units. This maintains the averageaa p
compute time of T time units, as in the basf"'ine case, but greatly increases the variance.

A more detailed discussion of the analytic formalities of these models can be found in Appendix A.

2.3. Choosing Parameter Value Settings for the 'tiodel
A problem that must be confronted immediareiy in attempting to compare spin times among the three

environments (base, multiprogramming, and data-dependent behavior) is how to set the model
parameters. Unfortunately, there does not exist currently an extensive set of measurement data of real
systems on which to base the parameterization, nor even a compelling folklore about what range of values
are reasonable. We have therefore run a large number of experiments with parameters varying over a
wide range. The results presented here represent a subset of those experiments that we believe fairlyI represents the "typical" behavior of the systems.

There are two kinds of parameters that must be given values: those involving time (T, L, and Q) and
those involving size (P, J and K).

Considering first the parameters involving time, we have chosen to let the compute time T be the unit
of time against which all other time parameters are measured; that is, we have set T = 1.

In all of our experiments we let the lock holding time L vary over an extensive range, in particular
from 0.01 to 0.5. At the low end this represents extremely low lock contention, while at the high end it
represents saturation of the lock.

We have run our experiments with a number of widely differing values for the scheduling quantum Q.
Quantitatively, the results vary, sometimes significantly, with the value of Q. As might be expected,
larger values of Q result in greater amounts of spinning. (Note that since we do not charge for context
switches in our model, there is no performance penalty for smaller values of Q.) This is illustrated in
Figure 1, which shows the mean number of processors spinning as a function of Q and the number of
threads for a 5 processor system, in the lock contention situation. (The mea-i number of processors
spinning has the advantage of being easily computed from our models, as well as being directly indicative
of the mean spin time, and thus is shown in many of our graphs.) The increase in spinning with Q can be
attributed to an increase in the variance of the spin time, which results from more occasional but longer
lasting situations in which the thread being waited for (either the one holding the lock in the lock
contention case illustrated in Figure 1, or the last one to reach the barrier in the case of barrier
synchronization) is unscheduled. Note that this performance benefit for smaller scheduling quanta is
quite distinct from the benefit in a sequential system of allowing the rapid completion of short jobs.
While quantitatively our results depend on the specific value of Q chosen, the qualitative behavior is

similar in all cases. We have chosen Q = 1 for all results presented here. This choice was in part
motivated by the fact that the rate of increase in spin time with increasing values of Q (as illustrated in
Figure I for the lock contention case) drops dramatically as Q increases beyond 1.

Turning our attention to the parameters involving size, we chose P and J by running a set of test
experiments for the lock contention situation to determine how the behavior of the system depends on its
size. In these experiments J was set equal to P and T was varied (rather than being fixed at I as it is
elsewhere) so that the lock throughput (and thus the lock utilization) is nearly constant across all system
sizes. (See Appendix B for details.) This allows us to isolate the changes in mean spin time caused by
system size from those that would occur naturally because of increased lock contention in the larger
systems if T were held invariant.

Figure 2a shows the mean number of processors spinning as a function of system size and mean lock
holding time. Figure 2b is the same data normalized by the number of spinning processors in the 5

79

I
-6-

' I
S 3-

2 ,. 10 threads
-0- 20 threads2
4- 20 threads

C UC -0- 25 threads

0 6 8 10

quantum

Fig. 1: Effect of Quantum Size; 5 Processor System 3
processor system. For short duration locks the behavior of the systems is nearly independent of system
size (both in terms of the absolute difference in the spinning times, as shown in Figure 2a, and, somewhat
surprisingly, in terms of the relative difference, as shown in Figure 2b). For long duration locks, on the I
other hand, the number spinning is nearly linearly proportional to system size. Based on this observation,
we have chosen to present results for experiments with the two smallest system sizes, 5 and 10
processors, since these minimize the still considerable processing time required to run the experiments
but still represent a factor of two difference in system size. Based on the above observations, results for
larger systems for the lock contention situation can be safely extrapolated from those presented for the
smaller systems.

Parameters P and J for the barrier synchronization case were chosen to be consistent with the lock
contention results, that is, we again restricted P to 5 and 10 processors. In each model J is kept constant
at the number of processors, since this lets us easily compare the baseline and multiprogramming cases.
Finally, the number of other threads in the multiprogramming environment, K, was varied across an I
extensive range; we present selected results.

3. Results for Lock Contention 3
3.1. The Baseline Case

As noted previously, the baseline case represents the situation where the programmer has the greatest
information available at implementation time about expected spin times. We assume that the parallel I
machine is dedicated to a single application during its execution and that the application has been
partitioned to have precisely the same number of threads as there are processors. Thus, we model P
processors and J = P threads.

Performance measures for this baseline environment are used only for comparative purposes. The
mean number spinning for this case is contained in the data given in Figure 3, in the context of a
comparison with the multiprogramming case, which we discuss next.

3.2. Multiprogramming

We examine the effects of multiprogramming by comparing the mean number of spinning processors
under multiprogramming (i.e., when the number of threads exceeds the number of processors) to that in
the baseline case. We have run our experiments with J varying from P to 5P. The performance results
obtained are qualitatively similar, so we have extracted the results for J -= 2P for presentation here. 3

80 3

-'7-

10 -7-

. 6 5 processors

3 4 e 10 processors
-415 processors
Eprocessors

C4 25 processors

I
E 2

0.0 0.1 0.2 0.3 0.4 0.5

3 lock holding time

5,I -

3- 1 processors
a -0- 10 processors

-. 15 processors

2 -4 20 processors
1u, 25 processors

0

0.0 0.1 0.2 0.3 0.4 0.5

lock holding time

Fig. 2a/2b: Effect of System Size

It might appear at first that doubling the number of threads would result in increased lock contention,
and that any increase in the number of spinning processors would be a combination of this effect and the
effect of multiprogramming. As noted previously, though, lock contention is inherently dependent on the
number of processors, not the number of threads. Because the number of processors is kept constant, the
total instruction delivery rate, and so the total rate of lock requests and the resulting lock contention, also
are kept constant, with the exception of changes due solely to differing patterns of thread executions.
Thus, any change in system performance can be attributed solely to the introduction of
multiprogramming.

Figure 3 presents a comparison of the baseline and multiprogramming environments for 5 and 10
processor systems. When lock contention is low (represented here by short lock holding times) system
performance is not significantly affected by multiprogramming. Thus, in these environments the author
of parallel software can choose between spinning and blocking as though the application were to be run
standalone. However, at modest to high lock contention, multiprogramming causes a significant
degradation in performance. This effect is the result of the fact that the thread holding the lock is
occasionally unscheduled. In these instances other threads will spin for a scheduling quantum, a
considerable period of time.

I 81

-8-

I
10

8 I

&L 6 -- a 5, baseline
• 5, multiprog.

E -- 10, baseline4---
10, multiprog

E2

0 I -

0.0 0.1 0.2 0.3 0.4 0.5

lock holding time I
Fig. 3: Baseline Case and Multiprogramming; 5 and 10 Processor Systems

The above analysis has assumed that the scheduling discipline is oblivious to the internal behavior ofthe application software, that is, to the states of the threads involved in the scheduling decision. It mightbe possible to obtain better system performance if the scheduler had access to this information, since, forexample, the scheduler could then avoid unscheduling the thread that holds the lock. To accomplish this,the scheduler must rely on the application software (perhaps through the code implementing the languageprimitives supporting locking) to set a flag when it acquires a lock, because (for efficiency reasons) the
operating system is not involved in lock requests. However, this might have one or both of the following Iundesirable effects. First of all, if it required that an action on the flag be performed inside the criticalsection, it would increase by at least one instruction the lock holding time, which could be critical to
system performance [Dritz & Boyle 1987]. Second, an unscrupulous user might be able to modify hiscode so as to set this flag for all his threads in an attempt to obtain better service [Coffman & Kleinrock19681.

We have investigated the potential performance benefits that could be obtained if the scheduler hadknowledge of the state of the threads, i.e., whether they were computing, spinning, or holding the lock.We have investigated three policies that use this information. In Discipline A the scheduler neverunschedules a thread holding the lock. This eliminates the situation where threads are spinning uselesslywaiting for the lock to be released by an unscheduled thread. Discipline B allows the thread holding thelock to be unscheduled, but will not schedule a currently unscheduled spinning thread unless the lock isfree. This discipline has the same goal as the first, to reduce useless spinning, but it reduces the
motivation of a user to lie about the state of his threads. The final policy, Discipline C, combines both of
the previous modifications.

Figure 4 presents a sumnmary of the effects of these improved scheduling policies on systemperformance. As is readily seen, all three policies result in significant improvements in systemperformance, and nearly eradicate the performance penalty imposed by multiprogramming (cf. Figure 3).Discipline A is preferable to Discipline B, and yields performance almost as good as when both
modifications are combined.

Perhaps one of the less intuitive characteristics of Figure 4 is the shape of the curve for Discipline B. IFor low lock holding times (less than about 0. 1 in Figure 4b, for example), Discipline B yields
significantly worse performance than that of Disciplines A and C. The curve then exhibits a distinctchange in shape (at around a lock holding time of 0.1 in Figure 4b), and for larger lock holding timesquickly converges to the curves for Disciplines A and C. This shape can be (at least partially) explainedas follows. For low lock holding times, there are usually no or very few threads (either with or withoutprocessors) that are in the spinning state. Thus, Discipline B yields little improvement in performance in
this case. As the lock holding time increases, the average number of threads in the spinning state

82 I

U
I .9-

10

I 8
CO

I 6 -- oblivious

- A
E 4

CC

0.0 0.1 0.2 0.3 0.4 0.5

lock holding time

10"

IM 8
.5IC

6-a oblivious
-- AE B
-- C

I
E 2 2

0.0 0.1 0.2 0.3 0.4 0.5

lock holding time

I Fig. 4a/4b: Effect of Scheduling Policy; 5 and 10 Processors (cf. Fig. 3)

increases. With Discipline B, such threads tend to be kept unscheduled, diminishing the contention for
processors among the remaining threads. Therefore, although the lock holder fimay be context-switched
in discipline B, this becomes increasingly less likely (because of the absence of a suitable thread to switch
it with), and in any case the average time until that lock holder is rescheduled becomes very small, as the
lock holding time is increased. Thus, for large lock holding times, Discipline B closely corresponds to
Disciplines A and C.

All three improved policies also render the system nearly insensitive to the total number of threads in
terms of the mean number of processors spinning. Figure 5 illustrates this effect using Discipline A as an
example.

It is natural to ask in the multiprogramming context which of spinning and blocking is the preferable
waiting mechanism. To at least partially address this question, we have chosen to give an informal
threshold for context switch times as a function of the parameters of our model. This threshold is such
that context switch times less than the specified value should result in blocking being preferable to
spinning (within the assumptions of the model). Context switch times greater than the threshold value
may still result in blocking being preferable, although for context switch times much larger than the
threshold this is unlikely. Note that, in practice, context switch times depend heavily on the specific

I 83

-10-1

10-10-

18 3
0- 6 -a- 5 threads

-- 10 threads
• - 15 threads

E 4 -e- 20 threads
C 4- 25 threads 3
E 2-

0-- I
0.0 0.1 0.2 0.3 0.4 0.5

lock holding time I

10-

8
C

,o I
.S 6e- 10 threads-e- 20 threads

-w 30 threads
E 4 -- 40 threads

-w 50 threads

1 2

0.0 0.1 0.2 0.3 0.4 0.5

lock holding time

Fig. Sa/5b: Discipline A Performance vs. Number of Threads; 5 and 10 Processors 3
architecture and level of granularity of parallelism [Polychronopoulos & Kuck 1987]. For this reason,
and due to the abstract nature of our model, the threshold values we obtain are more useful as relative
values (when comparing the various scheduling disciplines) than as absolute values.

The threshold is computed using an approximation to the average spin time per initially unsuccessful
lock request, considering only those time intervals during which at least one unscheduled thread is in the
compute or critical section states.) We ignore spin time when there are no unscheduled threads in these
states because blocking is not useful in that case. Blocking is likely to be advantageous if the context
switch time is smaller than the threshold value, since blocking should result in a smaller amount of

wasted processor time in this case.I

2 The approximation assumes that the rate of initially unsuccessful lock requests is independent of the pres-

ence or absence of unscheduled non-spinning threads. Perhaps surprisingly, we found that the nature of the
results was insensitive not only to the use of this approximation (rather than an exact analysis), but also to the
precise way in which the threshold was defined (alternate dcfinitions gave equivalent results). 3

84 I

I
I -11-

Figures 6a and 6b present the threshold values for the four multiprogramming scheduling disciplines
in systems with 5 and 10 processors and twice the number of threads as processors. (The thresholds for
larger numbers of threads mimic the shape of the values given, although of course are larger in value.
The thresholds for the "oblivious" scheduling discipline and Discipline B are relatively sensitive to the
number of threads in the system, while those for Disciplines A and C are largely unaffected by that
parameter.) The threshold values decline for large lock holding times for some of the disciplines because
of the decreasing probability that any of the unscheduled threads have useful work to do.

V 6

£5

- 4 . oblivious

E -- AI i :

U 3

-- C

0.0 0.1 0.2 0.3 0.4 0.5

lock holding time

I 0 6! "5
CI5 4 loivious

2 3 A
3 C8

12
0.0 0.1 0.2 0.3 0.4 0.53lock holding time

Fig. 6a/6b: Context Switch Time Thresholds; 5 and 10 Processors

5 It is clear from Figure C mat there is a significant qualitative difference ;n the behavior of the various
multiprogramming scheduling disciplines. In particular, the disciplines that refuse to schedule a spinning
thread unless the lock is free (Disciplines B and C) greatly reduce the range of lock utilizations over
which blocking may be an appropriate waitnng mechanism. This is a characteristic that argues in favor of

scheduling disciplines that embody this feature.

-- 85

I12-

3.3. Data-Dependent Behavior
The final environment considered is that of data-dependent behavior. Recall that this is reflected in

our model by a parameter p. A thread acquirint; the lock releases it in zero time with probability l-p,
and with probability p holds it for mean time -. The case p = 1.0 corresponds exactly to the baseline

case. Figure 7 gives the ratio of the mean num~er of spinning processors for various values of p to the
mean number spinning when p = 1.0. We make three observations based on this data. First, variability
has the greatest effect when lock contention is low. In these cases the total amount of spinning is small in
any case, so despite the potentially large percentage increase the difference in spinning is small in
absolute terms. (The absolute amount of spinning occurring for the baseline case of p=1.0 can be found I
in Figure 2 for the 5 and 10 processor systems.) Second, quite high variability is required before any
significant effect is observed. In our data a p of 0.5 is required before even a factor of two difference
occurs. Finally, the behavior of the system as a function of data-dependence is nearly identical in the 5
and 10 processor systems. Thus, we conclude that the effect of data-dependent behavior is roughly
independent of system size.

10 I
c |
C

8

-U- p-1.00
E 6- -0 p-0.90

Cp-0.75
- p=0.50

E 0P.0.25

1P.O -10
2•-0- p00.50

0 gI !I3

0.0 0.1 0.2 0.3 0.4 0.5

lock
holding

time

8 -

E -0- P-.p0.9033
C - p=0.75

-0- p=0.10I

000 .1 0.2 o. 0.4 0.5

Fig. 7a17b: Data-Dependent Behavior; 5 and 10 Processors

86

U
13-

4. Barrier Synchronization

4.1. The Baseline Case
We now turn our attention from lock contention to barrier synchronization. Figure 8 shows how the

amount of spinning is affected by the number of threads involved in the barrier synchronization. Here we
have assumed that J = P, that is, that all threads have a processor dedicated to them. Under the

Jl1
assumptions of our model it is easily shown that the mean time to complete the barrier is I-

-31

COI I
2-

2 3 4 5 6 7 8 9 10

number of threads Involved In barrier

Fig. 8: Barrier Synchronization Baseline Case

Il 4.2. Multiprogramming

To reflect multiprogramming, the number of threads involved in the barrier synchronization is kept
constant at P, but K other threads are introduced that compete for processors. Figure 9a illustrates how

I the mean number of spinning processors is affected by the number of these "other threads" as a function
of system size. Clearly, the amount of spinning per processor per time unit decreases with additional
other threads because those threads never spin. Figure 9b shows how the amount of spinning per barrier
thread per barrier synchronization increases with the amount of competition for processors. It gives the
mean time required to achieve the barrier synchronization for various system sizes. There is a nearly
linear relationship between the number of other threads and the mean time to achieve the barrier.

Just as in the lock contention situation, it is natural to ask if system performance can be improved by
giving the scheduler some information about the internal state of the threads. For barrier contention, the
only information that seems useful is which threads are spinning. Then if a spinning thread happens to
be descheduled because its quantum has expired, it would seem to be beneficial not to reconsider
scheduling it again until the barrier had been reached by all other processors.

Figure 10 shows the ratio of the performance under this modified discipline to the performance
achieved under the "oblivious" discipline. It is not terribly surprising that the mean number of spinning
processors is reduced by this modification. What is surprising is that this gain in overall system
performance does not penalize the threads involved in the barrier. The explanation for this is that
spinning threads compete with those threads still working toward the barrier. Thus, a mechanism that
tends to eliminate the spinning threads helps the other threads achieve the barrier. This effect evidently
outweighs the disadvantage that under the modified discipline many more of the barrier threads are
unscheduled at the time the last thread reaches the barrier, and so at the time the threads begin working
toward the next barrier, than under the "oblivious" discipline. Note though, that under the modified
discipline, as with the oblivious discipline, the performance of the bamer threads still degrades
considerably with increasing numbers of other threads.

87

-14- U
12

8 .- 2 processors I
*" 4- 4 processors

6 4 processors
2 4 8 processors

4 -- 10 processors
-0- 16 processors

E22

0 2 4 6 8 10 1,2 1,4 16

number of other threads In system

20'

16

e.-2 processors
12- 4 processors

4.6 processors
0- 8 processors

8-4 10 processors
-0- 16 processors3

C 4
E

01
0 2 4 6 8 10 12 14 116

number of other threads In system

Fig. 9a/9b: Barrier Synchronization under Multiprogramming I
4.3. Data-Dependent Behavior

The threads involved in the barrier synchronization in the baseline case were "balanced", in the sense
that the amount of service each required before reaching the barrier was chosen from a single distribution.
To model data-dependent behavior we examine the effect of introducing imbalance. We do this by letting
some threads reach the barrier in zero time, while other threads take longer than the overall mean time.
Recall that parameter p is the probability that a thread requires a non-zero service time.

Figure I I shows how the amount of spinning is affected by the uncertainty in the thread execution

times. For each value of p, we have graphed the ratio of the fraction of time each processor spends doing

useful work against that value when p = 1.0. It is clear that variance can have a substantial effect on the

expected spin times of threads using bamer synchronization. Further, the magnitude of this effect
increases with the size of the parallel machine. Since we have experimented with quite modest system

sizes, one would expect that in real systems data-dependent behavior could be quite significant to the

performance of applications using barrier synchronization. I
88 3

1 -15-

1.0

2 0.8

- - 2 processors1-e- 4 processors
C 0.6 -, 6 processors
j-- 8 processors
E - 10 processors

4-0- 16 processors

0 2 4 10 12 14 16

number at other threads In system

.2 0.9
'C

S-m- 2 processors-J 4..4 processors
E= 0.8- " 4 6 processors

' 10 wocesr

0 0.6,
0 2 4 6 8 10 12 14 16

number of other threads In system

Fig. lOa/lOb: Normalized Performance of Modified Discipline (cf. Fig. 9)

5. Conclusions

We have used two analytic models to compare the amount of spinning that occurs in various
environments when threads either compete to obtain a lock or synchronize at a barrier. The purpose of
our comparison is to determine if the uncertainty in performance caused by multiprogramming or by
data-dependent behavior significantly increases the amount of spin time that occurs, and so complicates
the task of choosing an appropriate waiting mechanism.

We have found that for lock contention, neither source of uncertainty poses much danger, assuming
that the system scheduler has access to information concerning who holds the lock or who is spinning.
However, for barrier synchronization, the amount of spinning is quite sensitive to these forms of
uncertainty. 1hus, to corectly choose a waiting mechanism the programmer requires farl..e,,~ ai~~&anis eq.ire farl prcis
information about not only the behavior of his program but also about the load that will be placed on the
machine when his application is run. For this case, then, the programmer's task is considerably more
complicated in multiprogramming and/or data-dependent environments than in the case of the more
controlled environment of a dedicated machine and predictable running times.

89

-16- 1

10

as U
2 processors

0.- 4 processors
0 6 processors

1 4- 8 processors3
-- 10 processors

0.4

0 0.2

0.0 0.2 0.4 0.6 0.8 1 .0
p

Fig. 11: Normalized Data-Dependent Behavior

Acknowledgements

Partial support for this work was generously provided by Bell Communications Research, Boeing
Computer Services, Digital Equipment Corporation, Tektronix, Inc., the Xerox Corporation, and the I
Weyerhauser Company. The Centre National de la Recherche Scientifique, France, and Laboratoire
MASI, University of Paris 6, provided generous support and resources for Zahorjan for the year sabbatical
leave during which this work was performed. 3
References
[Beck et al. 19871

B. Beck, B. Kasten, and S. Thakkar. VLSI Assist for a Multiprocessor. Proc. 2nd International
Conference on Architectural Support for Programming Languages and Operating Systems (October
1987), pp. 10-20.

[Coffman & Kleinrock 1968]
Edward G. Coffman, Jr., and Leonard Kleinrock. Computer Scheduling Methods and their
Countermeasures. Proc. 1968 Spring Joint Computer Conference, pp. 11-21.

[Dritz & Boyle 19871
Kenneth W. Dritz and James M. Boyle. Beyond "Speedup": Performance Analysis of Parallel
Programs. Technical Report ANL-87-7, Mathematics and Computer Science Division, Argonne
National Laboratory, February 1987. I

[Dubois & Briggs 1982]
M. Dubois and F.A. Briggs. An Approximate Analytical Model for Asynchronous Processes in
Multiprocessors. Proc. 1982 International Conference on Parallel Processing, pp. 290-297.

[Eager et al. 19881
D.L. Eager, E.D. Lazowska, and J. Zahorjan. The Limited Performance Benefits of Migrating Active
Processes for Load Sharing. Proc. 1988 ACM SIGMETRICS Conference on Measurement and
Modelling of Computer Systems, May 1988.

[Kleinrock 1975]
L. Kleinrock. Queueing Systems. Volume I: Theory. John Wiley and Sons, 1975.

[Lazowska et al. 19841
E.D. Lazowska, 1. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative System Performance.
Computer System Analysis Using Queueing Network Models. Prentice-Hall, 1984. 3

90 m

I -17-

[Lipsky & Church 19771
L. Lipsky and ..D. Church. Applications of a Queueing Network Model for a Computer System.
Computing Surveys 9,3 (September 1977), pp. 205-222.

[Lo & Gligor 19871
S.-P. Lo and V.D. Gligor. A Comparative Analysis of Multiprocessor Scheduling Algorithms. Proc.
7th International Conference on Distributed Computing Systems (September 1987), pp. 356-363.

[Ousterhout 1982]
John K. Ousterhout. Scheduling Techniques for Concurrent Systems. Proc. 3rd International
Conference on Distributed Computing Systems (October 1982), pp. 22-30.

[Polychronopoulos & Kuck 1987]
C.D. Polychronopoulos and D.J. Kuck. Guided Self-Scheduling: A Practical Scheduling Scheme for
Parallel Supercomputers. IEEE Transactions on Computers C-36,12 (December 1987), pp. 1425-
1439.

[Rodgers 1986]IDavid P. Rodgers. Personal Communication. October 1986.
[Stewart 1978]

W.J. Stewart. A Comparison of Numerical Techniques in Markov Modelling. CACM 21,2 (February
1978), pp. 144-152.

Appendix A: Details of the Analysis of the Models
In this appendix we specify more precisely the models we have used and the analysis by which we

have obtained the results presented in the body of this paper. We describe only the model for the lock
acquisition situation. The model for barrier synchronization is similar.

We use a Markovian model to represent a system with P processors and i ? P threads. A state of the
system is given by a six-tuple (n1,n2,n31n4,n sn6). Here n1, n,2, and n3 are the number of threads
currently scheduled (that is, allocated processors) that hold the lock, are spinning, and are computing
respectively, and n4, n5 and n 6 are the corresponding counts of unscheduled threads in those three states.
Thus, there are a total of 2P(J-P)+2J-P+I states, of which J-P+1 are of the form
(O,,PIO,n ,J-P -n 5), P(J-P+1) are of the form (l,n 2,P-n --110,ns,J-P-ns), and (P+I)(J-P) are of the
form (,n 2,P -n 211,n 5 J-P -n 5--1).

A computing thread makes a lock acquisition attempt after an amount of service (i.e., time on a
processor) exponentially distributed with mean T. With probability p, a thread acquiring the lock

releases it after an exponential amount of service exponentially distributed with mean L. With

probability 1-p the lock is released in zero time. This is actually modelled by having "multi-step'
transitions in the Markov model, that is, transitions between states that imply the movement of more than
a single customer. Details on this follow when the state transition rates are defined.

Here only the "oblivious" multiprogramming scheduling discipline is considered. (The modifications
required for the other scheduling disciplines are straightforward.) Each thread allocated a processor is
descheduled after an amount of time exponentially distributed with mean Q. A currently descheduled
thread is chosen at random as a replacement.

The stead, state solution of this model is obtained by solving the state flow balance equations
[Kleinrock 1975]. It is difficult to give the flow balance equations in a compact form. We therefore write
down the same information in a different form, giving simply the rate of flow out of each state and the
state to which that flow enters.

Let S a (n 1,n 2,n 3 I n 4,ns,n6) be a state of the system. Let S, be obtained from S by subtacting 1 from
n,, S' be obtained by adding I to ni, and allow these operations to be applied repeatedly. For example,

52,6 = (n 1,n2+ln 3-1 1 n4,n5-l,n6+l). Then the flow out of state S is given by:

91

- 18- U

S => S 2 with rate (n t+n4) I3 T3

S > S 1 wi.h rate (1-n t-n4)..-p

S => (1,n 2-i,n3+iln 4,ns,n 6) with rate -- (1-p)'-p , 1 i<n2L

S =--> (O,OPIn 4,n 5,n6)with rate "13(1-P)"'

and, forJ >P,

Ini 3+6S => S' '" with rate - I 1<-ij-<3Q J-P1
We obtained the solution of the flow balance equations by the power method [Stewart 1978]. This is

an asymptotically exact iterative technique irvolving repeated multiplication of the current estimate of
the steady state probability vector with the transition matrix. We initialized the probability vector so that
all states had equal probabilities. We stopped the iteration when the sum of the absolute values of the
changes in the state probabilities in successive iterations was below a threshold of 0.00005. We use the
sum of the changes in all states rather than the maximum change in any one state because we found that
this latter measure lead to unreliable results. Our threshold value was determined to be adequate by
solving a number of test cases starting with relatively large thresholds and then repeatedly halving the
threshold and resolving. Comparing the results obtained each time the threshold was halved, we I
informally concluded that the results were reliable when halving the threshold did not produce an
appreciable change. We know of no problems with the accuracy of the solutions we have obtained using
this threshold, but we did observe that some models required a very large number of iterations to reach
convergence. This was typically the case when there were large differences in time scales in the model.
For instance, we ran some cases with T=l, Q=1 and L=0.001. These models often resulted in long
execution times.

Given the steady state probability vector provided by the power method, computing performance I
measures is straightforward. For instance, denoting the steady state probability of state S by P(S), the
mean number of spinning processors is given by n2P(S) I

all statw S

and the lock throughput rate is given by
nI

s" -P(s)
all slaw s L

One reservation that might be raised about our model is that all service time distributions are I
exponential. Indeed, the work by Dubois and Briggs [1982] presents a more complicated (and more
restrictive) model requiring a heuristic analysis with the sole purpose that lock holding times can be made
less variable than the exponential. We believe that exponentials are acceptable in our models for two I
reasons. First, as explained in the introduction, our results depend on comparing models all of which use
exronentials. Experience shows that in general these sorts of comparisons are highly robust to
inaccuracies such as the choice of service time distribution [Lipsky & Church 1977, Lazowska et al.
1984]. Second, in a similar model in the domain of load sharing [Eager et al. 19881 the specific effect of
the exponential distribution was explored and compared against results obtained from a deterministic
distribution. In that work, which was also based on the comparison of models, very little difference was
observed between the exponential and the deterministic set of models.

I

I

* ~-19-

Appendix B: Estimating Compute Times

In the set of test experiments that were ran to determine the effect of system size on its behavior
(described in Section 2.3), T was varied so that the lock throughput was nearly constant across all system
sizes. In this appendix, we briefly describe the manner in which this was done.

Because lock throughput depends on T, choosing the T required to exactly equalize lock throughputs
across system sizes requires iteration and its consequent high cost. We therefore chose to use a simpler
but effective approximate technique that does not require iteration. This approximation is obtained by
assuming that no lock contention will take place. Under this assumption lock throughput is given by

P PL
T+L , and so lock utilization is T+-

The procedure we followed was to solve the model with the chosen values of L and T for the 5
processor system and to note the resulting lock utilization U. For a P processor system we then solved
for the appropriate compute time Tp as

-- PLI Tp +L

Our assumption of no contention is clearly valid for low values of lock holding time, but it is not clear
how well it performs for larger values. We therefore monitored the lock throughput actually resulting
from our choices for the Tp. In no case did the lock throughput rate differ from that of the 5 processor
system by more than 10%.

I
U
I
I
I
I

I 93

U The Performance Implications of Thread Management Alternatives
for Shared-Memory Multiprocessors

3 T1homas E. Anderson, Edward D. Luzowska, and Henry M. Levy
Department of Computer Science

University of Wasthington
Seattle WA 98195

Abstract

UThreads ("lightweight" processes) have become a common element of new languages and operating systems. This paper examines the
pefoanc implications of several data struicture and algorim alternatives for thread management in sated-ammry multiprocessor.U Both experimental measurements and analytical model projections are presented.

For applications with hire-pained parallelim small diffatences in thread management are shown to have significant performance
impact often posing a tradleoff between throughput and latency. Per-processo data structures can be used to improve throughput, and in
some circumnstances to avoid locking. improving latency a well.

*The method used by processors; to queue for locks is alo shown to affect performance sign~ificantly. Normal methods of critical resource
waiting can substantially degrade performance with moderate numbers of waiting processors. We present an Ethernlet-style backoff algo-
rithm that largely eliminates this effect.

3 1. Introductlin programs. Ada [Mundie & Fisher 1985], CSP [Hoare 19781,

The purpose of this paper is to suy trformance iMpuiCa1- PRESTO) [Bershad et &L 1988a], Mesa [Lampson & Redell 1980],
tions of thread mlanagemenlt alternatives for shared-memory mul- Concurrent Euclid [Holt 1982], mod Emerald [Jul elt al. 1988] evi-

* dencesn. equal interest within the language community.

* in traditional operating systlems, a process, consisting of a siil On uniprocessors threads we used as a program strcturing aid

address space and a single thread of control within tha address or to overlap 1/O with processing. Thre metric of goodness for

- spiace is used to execute a program. Within the process, prga these thread management impliemtentations is imply processing
execution entails initializig and maiintaining a great deal of stt cost per thread creation or context switch. No locking is needed

information. Page tables, swap images, file descriptors outstandl- inside dhread routines, since only one routine can be executing at

ing I/O requests, and saved register values are all kept on a per- anY one time.I program, and thus per-process, basis. The sheer volume of this Programs on multiprocessor use threads to exploit parallelism.
information makes processes expensive to crealt eand maintain The speedup achievable by any given application depends on the

'flreads, or "lightweight processes, sensate the notion of exe- availability of dhreald management routines that provide low cost

cution from the rest of the definition of a process. A single dread failities diat wre not a serial botrmeneck. In Sequent's DYNIXE executes a portion of a program, cooperating with other threads operating system for example, applications must use normal

concurrently executing within the same address space. Like UNIX-lIke processes for parallelism [Sequenit 1988]. Since pro-

processes, every thread must have a separate program counter and ce5 creation in DYNIX takes over 25 milliseconds, only very

stack of activation records, describing t state of its execution. coarse-pramed parallelism can be exploited. As another example,

- However, much of what is normally kept on a e-rcc ai the Topaz kernel provides relatively inexpensive thread. creation

* can be maintained in common for all threads executing in a sile and synchrionization but die routines are protected by a single

* program with dramatic reductions in overhea~d. lock. (Thsicker et aL 198]. While this may be appropriate for
architectures with small numbers of processors, as the number of

Thread packages have become a comn eleet of new prcsosiree, ws& WI oudlmtpeusfr
* languages and operating systems for both uniproncessor and miii- pplcssos wfinc egai~ne rloc ldemlipedms .
* tiprocesso architectures. Mach [Accetza et al 1986], Topaz Ou wnith fxeinepine parael is roractra

[Thacker et al. 1988], Psyche [Scott elt al. 19U8], DYNIX packainitiall exienc iRSOn he m afigh-peefomanme diready
[Sequent 1988], and several extensions to UNIX [Bach & Buroff thatreles was th PereST o nlfoprcr ap llcationl ranembrry

* 1984; Edler et al. 19881 are examples of operating system ~ that raaeien th kerne only fora procsork llo tio and mem

* provide exlctspotfrcnurn rprle xcto f is anorder of magnitude performance advantage to using threads
instead of DYNIX processes for exploiting parallelism. DrawingI b m itaeal a baml an wam pupm by do Nuali- Scaai -dw on this experienice, we implemented a thread package that is, in

(OtiW N@. CCJ4EI9M3, CC3470309, ad OCR*5700l6), toi Naa turn, an order of magnitude faster than PRESTO. This basic
0t~ma Sy Camw, U S WEFT Adimd Taftactliqam, the Wuhsagtm package was then modified to implement each alternative we
Tecrdogyoma *a Di Eqtam CoePaiwla MWs SYdi wanted to explore.
Reumme CmAhs ad the Ensuvul Riueb Proa).-

One consequence of the speed of our basic dread package is
Peyrnissioi, to copv ' .ihout fee all or part of this material is Panted prvie tha small changes in the organization of data Structures And locks
that the copies are not made or distibuted for direct commercial advantag. have a significant impact on performance. Often the choice
the ACM copyright notice and the title of the publication and its date appar. involves a tradeoff between latenmcy and throuaghput. Per-
and notice s gien that copying is by perua.on of the Asa.1a,0, forI Computing Machtnrm To copy~ othewu. or to repuiblish. reqwres a fee and! processorr data structures can sometimes be used to avoid lorking,
or ipecific permission. however, improving latency and throughput at t sm time.

C 19 ACM M.9791-31t5-9/19/0003/0049 31150

49 Performance Evaluation Review Vol. 17 #1 May 1989I 95

Another consequence of the speed of out thread package is ha may rm faster by creating On tread, however, if at some future
its performance depends noticeably on the algorithm used to time them will be an idle processor that can be used to execute the
queue for locks. Earlier, we studied the relative performance of dread. This idea of creating parallelism for future use is very
spinning and blocking locks [Zahorjan et a. 19881. In general, a powerful. Unfortunately, in the above frmework, its space cost
thread that tries to acquire a lock that is already held can either is prohibitive. Each thread must be initially allocated a large
spin ("busy-waif) until the lock is released, or relinquish the pro- amount of space for its stack, since it is expensive to dynamically
cessor. However, within the thread management routines them- expand the space if the tread later runs out of it. In Table 2.1,
selves, spinning is the only option. Thus, blocking at user level the drad is allocated space for a stack when it is created, but the
may require spinning in dread management routines. Spinning space is largely wasted until the thread is actually sated. Using
has a cost both to the processor awaiting the lock and to proces- virtual memory could remove the need to allocate physical
sots doing useful work. The degradation of other processors memory to back the stack space until the thread begins to nun;
becomes substantial for moderate numbers of waiting processors, however, allocating extra virtual memory also is expensive.
especially for small critical sections. We present an Ethernet- An important optimization to Table 2.1, therefore, is to copy a
style backoff algorithd that lrely lii this effec thread's arguments into its control block when the thread is

The following sections describe these issues in more detail. In created. This way, the stack need not be allocated unil tread
Section 2 we present an abstraction of a thread package: its statup; the arguments an be copied from the control block to the
objects, resources, and operations. Section 3 outlines the sta- stack at that time. WorkCrews [Vandevoorde & Roberts 19881
tegies for thread management that we examined and presents and PRESTO [Bershad et a. 1988a] both take this approach.
measurements of their relatve performance. Section 4 compares Another impotant optimization is to store deallocated control
methods of queueing for locks. Section 5 combines these results blocks and stacks in free lists [Bershad et al. 19884. If these data
in an analytical model Section 6 summaiis our experiences. siicme were individually allocated out of the heap, thread over-

head would include the cost of finding a free block of the correct
2. An Abstract Thread Pac P size as well as possibly coalescing the block when it is returned to

As noted in Section 1, threads gain efficiency by separating the the heap. By using free lists, both allocation and deallocabon can
notion of execution from the res of the definition of a process. normally be simple list operations.
The data smuctures needed by each thread ar a program counter, We begin our study by assuming these opfimizations. For sim-
a stack, and a control block. (The control block contains state plicizy, we wil focus on t effect of thred managemen altema-
information needed for thread manageme. Through the control lives on the peeoffect of only a few ahred opertions: oea-
block. the thread can be put onto lists and other threads can syn- tion, startup, and finish. These operations manipulate each of the
chronize with it.) Another important data structre is the ready three shared data structre: the ready queue, the stack free list,
queue, which lists threads that are ready to run. Lampson and and the contol block free lisL Most of the discu- ,on applies as
Redell [19801 provide a good description of the functionality of a well to threads that block and resume.
uniprocessor thread package.

Thread operations are shown in Table 2.1. Creating a thread 3. Thred Management Alternatives
can be viewed as calling a procedure, except that the callee can In a parallel environm t, access to shared data structmes must
execute in parallel with the caller. In both cass, the caller be serialized to ensure consistency and correctness. Our dread
specifies a place to begin executing and some number of agu- package uses spin locks for this purpose: when a processor tries
merts. In fact, thread creation and startup is semantically to modify a data structure, it must first lock it to obtain exclusive
equivalent to an asynchronous procedure call. access; if some other processor already holds the lock. the proces-

Thread Creation sor loops until the lock is released.
Allocate and initialize a coo block, saving the initial PC.
Allocate a ak and copy in the thread's argument. Locking implies dual concerns of laency and thrfoughput
p lace sw thread on the ready queue. [Kumar & CGonalves 1977]. Latency is the cost of dread

MTrea Stainup management under the best case assumption of no contention for
Remove tead from ready queue ad bqin to excute it. locks. Throughput, on the other hand, is the rate at which threads

Thread Block (wait on blocking lock, condition variable, or message) can be cmate started, Wn finisbed when thrm is contetion. If
Save rvite values and PC on the dvad's tack. part of thread management must be done serially, then no matter
Pace thread on the condition queue for the eve, how many processors work on a problem, them will be someLook for a thread in the ready queue. ad start or nm it. maximum ra of thread creation.

Sipal a Blocked Thread
Remove Wed from the condition queue. There am several ways of defining latency, with different impli-
Place the thread on the ready queue. cations for differet types of applications. If an application keeps

Ibrad R all of its processors continually busy, for instance by creating
Remove thread from the ready queue. threads before they are needed, then any time spent in creating,
Reom Nlistem stating, or finishing a thread is time that could have been spent
Coatio executing it from the oved PC doing other useful work. When a thread finishes, however, if

Thra Fmisc there is no other work for the processor to do, the time spent deal-
Lookfoae the adyqueu anandd ctnoroei t. locating the thread's data stctes is tunmpoiriL Instead, therelevant issues include how much a creating processor is delayed,

Table 2.1: Thread operations since it has a tread to run, and how much time it takes for the
created thea to begin running on a processor.

As Table 2.1 shows, a program can create a thread even if there In the following subsections, we define five altesaive thed
is no idle processor available to run it Because the parallelism Inath fo rtwies susec i e seie fe altentive adrad
cannot be immediately exploited in this case, it might seem that rages and disadvantages of each tpproch. We then provideI
the overhead of tread cration should be avoided. The progm measurement and analytical comparisons of these alternatives.

50 Performance Evaluation Review Vol. 17 #1 May 1989

96

3.1. Single lock: central data structures protected by one lock the number of processors. An application using balanced local

The most obvious approach to thread management is to protect free lists will use no more than 0 (P xT) more space than one
all data structures under a single lock. Once the lock is acquired using a central list; the worst case occurs when one promessors
by a processor, the processor is assured that it can modify any free list is empty while all other free lists are almost full.

stored state. To perform a thread operation, a processor must first Thus, local free lists wade space for time. This tradeoff is prac-
acquire the lock, then do what is needed to the shared data, and tical for control blocks. Utilization of the pol lock is at most
finally release the lock when done. In this way, only a single lock 0 (PRIT), where R is the rate of thread creation on a single pro-
is needed per thread operation, but, since most of the thread cessor. To ensure that the pool lock is not a source of contention
management path is serialized, throughput is limited. In the typi- (which would inflate the overhead per free list access), we can set
cal scheme, idle processors loop checking the ready queue for the threshold T to be equal to P. Control blocks are relatively
work to do, causing uxless contention for the ready queue lock; small objects (in our implementation, roughly 100 bytes); pro-
however, this can be avoided if idle processors check that the vided P is not excessively large, using 100P bytes per processor
ready queue is not empty before acquiring the lock. (Ni and Wu is not onerous. If P is large, then a iree of pools could be used to
[19851 present a different approach.) limit the cost to balancing to 0 (P/log P) bytes per processor.

The tradeoff is not practical for stacks, however. Stacks we at
3.2. Multiple locks: central data structures protected by least two orders of magnitude larger than control blocks. Even if
separate locks sufficient memory were available, using that memory entails pro-

A somewhat more modular approach to locking is to separately cessing costs for initializing page tables and increased cache missI protect each data structure with its own lock [Lampson & Redell ratn that could easily overwhelm the advantage gained from
19801. Each operation on the data structure can then be sur- decreased locking. Instead, we use single element stack free lists.
rounded by a lock acquisition and release. For thread manage- In this way, stacks need be allocated from the global pool only
ment, this involves separately locking each enqueue and dequeue when a processor blocks a thread and then starts up a different
operation on the ready queue, stack free list, and control block thread, and deallocated only when a processor finishes a thread
free list, the three shared data structmres. and then resumes another thread.

There is a basic tradeoff between latency snd throughput in the
choice between using a single lock or multiple locks in protecting 34. Idle queue: a cental queue of idle processorsI shared data structures [Kumar & Gonsalves 1977]. Since less of None of the algorithms described so far exploit parallelism in
the total thread activity is in a critical section, and since it is split thread creation. The creating processor allocates and initializes
among several locks, the maximum rate of thread creation is the control block; when it is done, the starting processor allocates
higher with multiple locks than with a single lock. There is a cost and initializes the stack. The cost of thread creation could beI to this increased throughput, however' :jore lock accesses are reduced if some of the work was done by idle processors in paral-
needed, increasing latency. lel with the creating processor.

In additon to a central queue of threads, we can maintain a cen-
3.3. Local freelst: per-procesor free Usts without locks tral queue of idle processors. When there is a backlog of readyI One way of avoiding locking is to maintain as much state as threads, them is no point to atteptingarlel thread cmbon
possible locally, with each processor. If each processor maintains since all processors are already doing useful work. When a pro-
its own free lists of control blocks and stacks, these need not be cessor becomes idle and there is no baclIog, it pre-aLlocates a
locked, since only one processor will access them. As before, control block and stack, puts itself on the idle queue, and spins onI there is a single shared ready queue whose accesses are locked. a local flag waiting for work. Thread creation then dequeues the

The tradeoff between latency and throughput can be largely idle cesor, mitializes the pre-allocated control block and

avoided by using local free lists. Since fewer lock acquisitions stack, and sets that processor's flag, indicating that it now has a

are needed per thread, latency is lower than with multiple locks, thread that is ready to run. Instead of processors searching for

I yet since only accesses to the ready queue are serialized, work, work searches for proceors.
throughput is better. In fact, this approach does not alter the essentially sequential

Local free lists need to be balanced. Control blocks and stacks nature of thread creation. The idle processor must first queue

can migrate between free lists if the thread is created or started on itself before the creating processor can dequeue it which in win

I one processor and finished on another. Thus, one free list can be must set the flag before the idle processor can start running the
empty, requiring the processor to obtain more space from the thread. The critical path between the beginning of thread creation

heap, while another free list has many entries. In the worst case, and when the thread starts running is reduced by doing some of

some processors only create and start threads (allocate stru-tures), the work (allocating structures, acquiring a lock, enqueueing)

while other processors only finish them (deallocate structures). before the critical path begins. Since this adds complexity, and

Vithout balancino the deallocated structures are never re-used; a there is no benefit in the absence of idle processors, the effect is to
separate stack and control blck are needed for every t . In trade off reduced latency when there we idle processors forseprae sac an cntol lok ae eedd orevey hred.In increased latency when all processr ame busy. Maxim
contrast, with a centralized free list, only as many are needed as inroas ed l ya ceo are b u M a* there are active (created or started, but not finished) threads, throughput should be unchanged since two locked queue opera-

r aions we still needed per thread life cycle. Wagner et al. [1988]
It is inexpensive, however, to balance free lists by using a glo- describe a different way of using of idle processors to avoid work

bal pool and a threshold T on the maximum size of each list during blocking and resuming.U When the size of a free list reaches the threshold, half the list can
be returned to the global ,-'ol; when a free list empties, T/2 3.S. Local readyq: per-processor ready queues
entries can be removed from the pool. The global pool must be
locked, of course. For efficiency, it can be organized as a list of Once free ists wae made local, the ready or idle queue lock can
lists. The processing cost to balancing is thus one locked pool become seial bottleneck as the rate of thread crea198. or the
access amortized across at least T12 free list accesses. Let P be number of processors increases tDrirz & Boyle 1987]. One way

51 Performance Evaluation Review Vol. 17 #1 May1989

* 97

of increasing throughput is to divide the load an a single lock exception of the locking and context switching code, which was
a ee locks. An application of hi idea is to keep a programmued in assembler. Our Symmnetry has twenty Intel 336

ready q==u per Processor. In this way. enqueucing and dequeue- pilicessoms a shared bus, and a write-through cache coherency4 hras anocu i amlc.wih ah rotm siga if roocl[Lvel& hakr 9U.Th Smety a atie
fererit quale. There is again a aMadeoff betwen ItueY slid With microsecond resolution that was used for all measurements.

throughpu totecoc between using one or more ready queue. Table 3.1 contains times for sample Symmetry operation.

Unlike the case of control block free lists, unlocked local ready (ie.
queues Am inlefficient even ii' baanc ouhedgobl ~ Acquire and release a lock 5.6U

I wyqeea y 6etm5Omn. dre dlte processor cuht Procedure call with no arguments 3.6

ru si sm L prcsws qu while the global pool is tp2.
c w performance cmn be arbitraily bad inany scheme where a ItrtoIfnulo -

c- be idle indefinitely while there is even one ready Table 3.1: Runtlnse for Symmetry operatlous (measured)
___n mff other queue. In the worst case, P identical threads Fralmaueu relsswr wr tre" ufcn

on procesor de The and wba ld tha be -1 ic a lon a control blocks arid stacks were POalloctd for use by the bench-.
wih of cessor ize d Theuing wouldeim es. i~ oug mark. Ourl pupos was to measure the relative merts of eachI

o~ te cen's~zed ueung srateieS.alernafive rather than the efficiency of die underlying memory
one simple way of avoiding indefinite idling is to lock each Masnagemen. The cache was not warm-started, but we ran each

ready queue; each idle processor cza then wan the ready queues e hklognuhfrtisfectoboiensnfcn.
for wor&. beginning with its own [Dit & Boyle 1997]. If there is Fengumr 310 iterncipa pefor manff ce comernpi i sow
a ready dhread, M idle POCCUOr Wil CVM U fin it. PMC- diue ap s te bi a seends forance cmaagemnt astowsa
sors can queue created threds locally, since balancing is achieved the elpe tmt ind foah rea n "null" threadfrvy-

byingle PlocC intS. Thewrst tred Aor th approach is wheen amg numbers of processors Initially. P direads am created; each
single poesr crate c s aeneral treadyqeewud, sincet that poesr' uu recursively creates a thread then finishes, allowing that processor I

oulde po essrs uha eta d uu would, ecep thwseUm cm W o L A ts to start up one of the waiking threads. The tet trminaes when

ie pryOesr wvod hv owsetmcning fors Siuaio As for- each processortorneahpws has executed 1MIp threads. For the multiple
polewy cofs aoquenethiorseuahionrisdforeapo ceso. ready queue alternative, each newly created thread was added to a

dIfeachoosee as quey forelyh trea cwrea dydraon.tec random queue to avoid biasing the results with die effect of local-
If ech ueueis qualy lkelyto et anewread theadlatncy ity. This test is not, intended to be representative of a rea paral

is bad when the number of runnable threads is nam to the number program, but it does expose the tradeoffs among the alternatives.
Of Processors. There sim two cases. Consider the cost of schedul- (The one processor, case shows the latency for a singl thread in
ing a dhread onto a newly idle processor. If there are no ready microseconds when there is no contention for kocks.)I
threads, there is effectively n0ocost until anew thread is creaed.gu 32sow hineegrp:tereofheacean
If there are ready btst not running threads, mny time sp! finding a Ftrogu)fr ec allostenave, gadin, nite of threa pcrseton
thread to run could have been spent running that thread. This time truhu)frec lentvi nt f108prscod
is small when there am many ready threads, because t idle pro. Before exa-Wmng the relative, perfrance of t five &aa
cessor will find the thread After scanning only a few queues; whe tives, we note that each of tiem has quit good perfomnce.
there is only a single ready but not yet running thread the proces. Thread Am Only an order of magnitude m expensive UMa a
sor Will have to examine on average half of the queues in ord to Procedure call and 500 tin= less expensive than normal DYNI
find it. The cost of scheduling a newly created thread onto an idle process creation. Threads in PRESTO (Bershad et aL 1988a1 cotI
Processor is similar the thread will be found quickly if there are 600 pt5OO. on the same Symmetry hadware, an order of magnitudie
may idle Processors and more slowly if there are only a few, worse thanc Our threads although an order of magnitude better than

One reaso to have a one-to-one corresponadence between pro- Y roess
cessors and ready queues is to m~aiti locality. Presumably, while PRESTO.s speedup relative to DYNI is due to usingI
migrating A newly ac Or resumed thread has a cost, due to threads insitad Of processes, our speedup relative to PRESTO is
increased cache misses On the othe had, threads can only be due to attention to implementatin details. We implemnited
matained locally if there is a large backlog of ready threads PRESTO in C++; while this enhanced its ablty go be modified
[Eager et al. 19361. While there are some message passing appli- [Bershad et al. 19111b), its C++ was firs prig-processed int C,1
cations whare this holds, there is little reaso to crat= a new then compiled. TiUsmulted in much less efficient code than
thread if it will simply run on te sam processor tha creted could be achieved by direct coding in C. Another. factor is that we
In mny case, the cost of migration is certainly applica-specifi. stripped thread control blocks of all non-essential state, reducing

Ifmantinngloaltyisunmoran, hee atrdthfde Cost Of initialization dramatically. We did not remove func-I
between latency and throughput in choosing the number of queues terV witout sra acrifcige its l p gierformance.
[Ni & Wu 195. UP to some point, throughput is higher with tfa whotscicngtsprrmce

rem queues, but the number of queues that must be scne to Because our threads ae inexpensive, die chokce of alternatives
find work, and thus the latency, is also higher. We set the number has a larg relative impact on both latency ad throughput for
of queues equal to the number of processor for LU measurements. aplcain with fine-pined parallelism. Specificay:

3A. easremet rwtsAdding even a single lock acquisition into the thread manage-
3.6. Masureent rsultsment path can increase latency signifcantly Locking each ofI

TO validate our intuitions about the relative merit of the alter- the data structures Separately results in a much higher latency
Dative approaches, we implemented each on a Sequent Symmetry than locking LU data structures under the same lock. Using
Model A shared-memory multiprocessor. All code was witten in per-processor data structures to avoid locking is thus crucial to

C and compiled with Sequent's standard compiler, with th decreasing latency without sacrificing throughput.I

52 Performance Evaluation Review Vol. 17 #1 May 19B9

--98

tocol ou the Symmetry, bus contention is likely to be a problem
on any bus-stncured shared-memory system.

100_ _ In Figures 3.1 and 3.2 threads do no work except to creae other
threads. It is natural to ask whether the performance implications

so of the thread management alternatives would still be significant in
the presence of user-mode computing. Figure 3.3 graphs thread

- creation rate as a function of the number of processors, when the
- t amunt of user wort per thread vrages 300 pc, taken from a

Wca fro" uniform distribution. This is representative of applications with
4 0 CP QL"A fine-grained parallelism. Differences appear as the number of

. . local rad4yq prcessors increases.

1 3 S 7 9 11 50
nmber of pa

°r

Figumre 3.1: Prndpal results for thread management - elapsed 30. "" lock

time to create, star and finish IM null threads (measured) 1 lock ,s.

*20 -o- 0 QLMuu
IS 0W local reWyq

S10'

100-
l '

Ss 9 13 17

So- number of pmcasaors

so.* -0 ngle Wlam

-- muittle locks
I-- lc f , Figure 3.3: Rate of thread creation, 1000a of thrads per

• 'C ' Ke nuSm second, user work = 300 sec. (measured)
c - local rosayq

* 1-"20 Figure 3.4 graphs thread cost in pjsec. as a function of the
number of runnable threads (parallelism). When there are fewer
threads than processors, tread cost is taken to be the time to

3 " s 7 9 1 1 rete andstartrnninga new thrd. Thetime to finish a thread

number of pmceafa is UnIIpOrtant if the idling prcessor ha flO work to do. When
there are as many or more runnable threads as processors, the cost

Figure 3.2: Rate of thread creation, 1000s of threads per is the sum of the time to crea a thread plus the time to finish it

second (inverse of Figure 3.1) and start a new thread. This difference in the definition of cost
s nresults -i the jump in Figure 3.4 when the number of runnable

* Additional complexity results in a noticeable increase in threads reaches the number of processors. Note that the inead
latency. There are on the order of 100 instructions in the thread latency reported in Figure 3.1 with one processor corresponds
management path; adding even a few extra instructions impacts closely to the latency reported in Figure 3.4 when there are moreU performance. For example, the idle queue strategy checks for runnable threads than processors.
idle processors on thread creation. If the idle queue is always Thread cost was directly measured by taking timestamps before
empty, as in the measurements in Figun 3.1, it defaults to a nor- and after each thread was created and whenever a thread started or
real ready queue. Even this simple a check markedly W*Xft4U finished. Multiple creations were measured and averaged to

* the cost of threads. This implies that thread management rou-
tines in st be kept simple; enhancements that would otherwise tmprove accuracy. Creations and completions were synchrnzd
seem p ausible but add complexity are unlikely to , e to avoid measuring lock cesinncon.
there ;s lttle computation to save, and it is easv to swamp the Ai expected, an idle queue is faster when there are idle proces-

* savings with increased overhead. sor, but slower when there are more runnable threads than pro-

A large porion of the thread managemt path is locked, since cessors. Thread creation is faster if an idle processor can be used

little work is required beynd m npulation of shred sine to do work before the thread is created, but checking the idle
queue incurs overhead even if it is not used. Whether a particular

When all data is kept under a single lock, throughput is limited application will run faster with an idle que, e depends on how
by contention for this lock. However, even with local free Lists,
the lock on the ready queue limits throughput to only a few con- much time it spends in each case.
current thread operations. Only local ready queues can support The spike in the curve when using per-processor ready queues

high rates of thread cretion. shows that finding a ready thread among many queues is expen-

* When lock contention is not a problem the bandwidth of the sive when the parallelism of the application is near to the number

bus limits the thread creation rate. The throughput in Figure 3.2 of processors, but the expense fades when more ready dreads or

levels out for the local ready queue alternative, even though there more idle processors are available.

is no significant contention for locks. While the heavy bus One area of further research is to examine hybrid thread

demand per thread may be specific to the write-through cache pTo- management stratge to combine the advantages of some of ft

53 Performance Evaluation Review Vol. 17 #1 May1989

* 99

alteratives we have presented. For example, both central and idle processors. Noting that paut of the spike in Figure 3A is due
per-procesor ready queues coUIl1 be used, by placing oreaed to the difference in t measremrents when there am idle proce.-
dreads in a loca queue if the WAc on the centsal queue is busy. sors or not, Figures 3.A and 3.5 correspond well.
As another example, a creating processor could probe randomly to

a eta uu.Th rwakt n suhapproach i that cown-

plexity adds cost which my outweigh mny benefits. 1

4S '-

l m f~

i~alm"y 0.2

20 6 I'l 1 2'1 2's 31 Figure 3.5: Queues esamined vs. number of runnable threads,
mm~.r oi nmm~wu"" 13 processors (Equation 3.1)

The above analysis assumes that events occur one at a time.
Figure 3A: lAtency 4m&ec) vs. number of runnable threads, Since finding a ready tdread among a number of queues can take a

15 processors (msessured) non-trivial amount of time, it is reasonable to consider what hasp-
.3.7 Anayticl exlantionof Fgure3.4pens when another thread is c=OWe or mnother processor becomes 3
.3.7 Anlytcalexpanaionof ~mr 3Aidle during the inerm. Suppose mnothier thread is created before

We now derive a forula that explains in detail t spike fo h an Wdk processor finds one of the r ready threads. Lt C be the
per-processor ready queue alternative in Figure 3.4. Wbndn cost of finding a thread in this situation. If t new thread is t

mileproessos, e ned t knw te tie btwen th quue- one that is found, then C is no better than if the new dhread, had
at depoesosNene o nwtet etenteqee been there all along. If a different thread is found, then C is no
ing of a reay threa and the dequeueing of that dread by an idle worse than if Ute new head is ignored. In other words,
processor; when dimre as a backlog of ready threads, we nee so E (r+1,q)f~CS~E (rq). Similarly, if snotho= Process
know how long it takes a newly idle processor to Aind one. beome idle in the interim, provided r : 2 t combined cost

Let E(rq)be thexpected number of queues examined by a for both processors to find threads is E(rq)+E(r-1,q),
newly idle processor to find one of r ready dreads, which am ran- assuming t processors do not contend for t same queue,
domly distributed among q queues. Without lows of generality, independent of which processor finds a ready thread first.
let the queues be numbered from. 1 to q. let threads be numbered
from I to r, let i1 be t queue containing Oie j th dread, and let 4. Splnlock Management Alternativesdie idle processor begin searching with queue 1. Mic ile procC5*- If a processor finds a dread management lock busy, it must spin

beredl onempinqe Te number of wayu s ao pting loes nu wait for t lock to be released. Since my other work dUt proces- -
bert on-qeesy is q . IUnme fwy fptigrded rmiht do intead is also controlled by a lock the processor

intoq qeue isq des ot avetheoption of doing othe work while it is wating.

1~~) -;- m nun m of (i 1,i 2, - - - Attdie user leve, adtread does have achoiice between spinnn
E(q) j,. for a busy lock or blocking, relinquishing the processor to do use-

we cn spartel sumwhe eah i in he inium.Who ful work while die lock is busy. Since finding that work requires
We c searaelysumwhe eah i isdiemimm. hen access to thread management data strctures, however, blocking

rse thani one thread is at t miim, we count t value one at t user level may result in spinning in a dread routine.
in the sum for die least numbered dread. Thus, the value of i, is p wumhaahidncs.Poeordigueflok

coutedonl ifforallk <. i~ij an fo al k j, kjMY be slowed by processors that an nmerely waiting for a lock,.
1 I 1 due to bus contention. As a result. adding to t onmber of pro-

E(r,q)= + 1: Iz(q-a+lY-(q-ayjl(31 cessors executing an application may in fact slow it down byq I jai i (31 increasing t average number of spinning processors. Worse, the

By symmetry, Equation 3.1 also holds when thr w ompo more spinning processors. die more te processor holding the lock
cesorstha runabe dreads. Let r be the number of idle pro is slowed, increasing die effective size of the critical section,

cessors. let i1 be the queue currently scanned by die j di idle pro- eutn nee or.atn rcsos

cessor, and le newly created thread be put into queue 1. Then Here we evaluate three different approaches to spin-waiting.U
the processor that actually deque t thread will have to look
through E (r ,q) queues, after the thread is queued, to find it 4.1. Hardware description

Figure 3.5 graphs Equation 3.1 for 18 processors To compare On the Symnmetry Model A. each processor has its own cache;

to Figure 3A, die i-axis is the number of runeble deads, rath~er provided all of its memory references can be satisfied out of that
dthe number of ready but not finning dhreads or the number of cache, a processor's progress is independent of the activity of

54 Performance Evaluation Review Vol. 17 01 May'1989

100

other processors. Whenever a processo re ads data that is not in its corrspondingly delayed. Alter quiescence, the spinning prosc,-
cache, it must wait for the data to come from memory via the bus; son place no load on the bus, allowing the processor holding the
with a write-through protocol, a processor may also have to wait lock to progress nhindered. With longer critical sections, the i-
for writes to be sent to memory. In both cases, the processor's tial degradation is less significant. By contrast, spinning on the
progress can be slowed by bus contention. Xchgb instruction degrades bus performance evenly throughout

The Symmetry has a basic test-and-set instruction, xchgb the critical section.
(exchange byte), that atomically reads a memory location and
writes in a new value. The atomicity of the xchgb operation is 4A. Ethernet-style backoil
enforced by the bus: a copy of the memory location is brought The source of the difficulty is that there is a cost to attempting
into the processor's cache, modified there, and then written back to acquir the lock. A generic solution to problems of this sort is
to memory. Any requests for that memory location in the interim to have each processor estimate its likelihood of success, and only
are delayed until the processor is done modifying it [Lovett & try the lock when die probability is high. The estimate can be
Thakku 1988). made from experience. The more times a processor has tried and

The Sequent locking protocol is as follows: To lock, a proces- failed, the more likely it is that many process r e spinning for
sor exchanges in a 1. If the old value was a 0, it got the lock; if the lock. When the lock is released, then, instead of every proces-
the value was a 1, the lock was already held by someone else, and Scr rushing to try to get it, each wails a period of time dependent
the processor must try again. In either case, the value is I after- on the number of past failures. If the lock is still free aftr this
wards. The lock is released by exchanging in a 0; this alows period, then the probability of success is high enough to try the
some other processor to get a 0 back in exchange for a 1. There lock. We used this algorithm for our measurements in Section 3.
ar several potential protocols for spin-waiting, which we The analogy with Ethernet is revealing. In the Ethernet proso-
described below. col, a processor can start a network transmission in any time slot

da the nctwo1X is free (Metcaffe & BoW 19761. If two try to
4.2. Spin on xcsgb start transming in the same slot, both fail and must be retried

The simplest way to implement spin-waiting is for each proces- later. To avoid further collisions, the length of time before may-
sor to loop on the xchgb instruction until it succeeds. The draw- ing depends on the number of collision encomtered so far. In
back to this approach is that every xchgb instruction consumes our case, when a number of processors simultaneously try to
bus resources, whether or not it succeeds [Sequent 19881. A copy acquire a lock, one will succeed, but its progress will be slower
of the lock must be brought into the processor's cache; since the them if them were no collisions.
lock is written whether or not it is acquire any copy of the lock The downside to Ethernet-style protocols is that they ae unfair.
in mother cache is invalidated. As additional processors spin on A processor that has just arrived is more likely to acquire the lock
the lock, the holder of the lock is slowed both because the bus is (or network) than one who has been waiting, and failing, for some
busier and because to free the lock it must contend with atomic time. Spinning on a test-and-set instruction and spinning on a
operations of processors uselessly trying to acquire the lock. copy of the lock location ae both probabilistically fair, each spin-

ning processor has an equal likelihood of getting the lock, even
4.3. Spin on memory read though the possibility of indefinift starvation exists, Lec fai-

An alternative would be for each processor to try to acquire the ness is sometimes important to an application.
lock once; if this fails, the processor can spin reading the lock Another drawback of the backoff algorithm is that it takes
memory location. As long as the value is 1, the lock is still held. longer for a spinning procesor to acquire a newly free lock. The
Looping on a read is done in the cache, avoiding bus traffic, processor must check the lock value, delay, and check it again
When the lock is released, the cache copy will be invalidated; the before trying the lock. Once the lock is acquired, however, the
spinning processor will see the value change to 0, and can then try processor will proceed faster, relatively unimpaired by other spin-
to acquire the lock using an xchgb operation. Sequent's runtime ning Processors.
library uses this implementation (Sequent 19881. Even using this algorithm, there will be processor degradation

A problem arises when there we a number of processors waiting when there we large numbers of spinning processors. Wben the
for a small critical section. When the lock is freed, every spinning lock is released, every spinning processor encointers a cache
processor's copy is invalidated, causing each processor to miss in miss. After this initial miss, most processors delay locally until
turn. The first to try to acquire the lock succeeds. Any processor some other processor has acquired the lock. and then miss again
that reads the value before this occurs will see a 0 and will attempt to see that the lock has been acquired. With enough spinning pro-
tot acquire the lock (and fail); any processor that reads the value cessors the bus can be saturated with these misses, slowing down
afterwards will see a 1 and will return to looping in its cache. the processor executing in the critical section.
Unfortunately, each processor that does an unsuccessful xchgb These cache misses can be avoided. A processor can delay
operation invalidates all cache copies, forcing all processors that whenever it reads the lock value as busy. If the lock is not busy,
had seen a 1 to read miss again. After each such operation, virtu- the processor can immediately try to acquire it. Thus, spinning
ally every spinning processor must contend for the bus, some still processors miss their cache every time the delay period expirs,
waiting to do an xchgb and some waiting for a read miss. Eventu- rather than every time the lock is released. This is analogous to
ally, the last processor to have seen a 0 will attempt to acquire the the Ethernet notion of persistence (Metcalfe & Bogg 1976). A
lock and fail; each spinning processor can then mad miss and result of this variation is an even greater delay between when a
quiesce, looping in its cache c lock is released and when a spinning pncessr will acquire the

The performance of this algorithm, therefore, improves as the lock. Nevertheless, this type of spin-waiting may be appropriate
critical section gets longer, assuming that contention does not for systems without hardware-coherent private caches. In this
increase. After the lock is released and before quiescence, each case, spinning on a memory read until the lock is releasd is
spinning processor spends most of its time with a pending bus impractical sne each read consumes bus resources; backoff
request; any normal bus request during this time will be adapts the frequency of reads to the number of waiting processors.

I
55 Performance Evaluation Review Vol. 17 #1 May1989

I 101

WIdle most practica applications will not waste large numbers reason Inially, many processors wen queued for te lock; thisn
of processors, this can be a problem with idle processors polling a boad spumung processors to guess lInge delay tim As m
central ot distriuied ready queue. When a ready thread is proceuaors acquire the lock. there we fewer queued processors,
queued, if each idle processor rushes to acqu~ie the lock. bus and the delays become inappropriate.
satration Will MauL Even if each idle processor delays after
observing that a thread is queued, then make sure that it i still
queued, each idle processor will still perform a cache miss, hurt-
ing performance for large numbers of idle processors. go. ____________

If idle processors am kept on a queue, this problem does not I
occur. Each idle processor spins on a local flag. When a thread is 0
crested, only one processors flag is modified; every other proces-
so continues spinming without even a cache miss. The perfor-
mance advantage of having work look for processors instead of WO0 Wh4.

processor looking for work Will therefore be Mor impotant in 4
systems with Incg numbers of processors. This effect can be see
in Figure 3A; the cost of the central ready queue is higher when 0
thereare only a few remiable threads, since there am. -n idl I

PWcamspin-waiting for work to appear in the ready queue.0
1 3 £ 5 1 1 13

43S. Menarment reuit nuaner of prm0
Figure 4.1 shows the elapsed tim to incremn ad tes a shared

counter in a critical section 1 millio tins, for each method of Figure 41: Principal results for spin-waidnr. elapsed time
span-waifm~i. Each processorrxeculed . loop: wait for the lock. to Increment a shared counter to 1,00,000 (measured)

cent the counter. and release the lock. I spin-wating didS
not slow the processor holding the lock, the elapsed Uinit for
twenty processors would be no methan for one.

T1e magnitude of this effect is stiking. Both spinning on the
xchgb instruction and spinnig on the copy of the lock degradeI
proc essor performance badly for even a miodeate number of spin-
nin processors. For small critical sections, in either alternative, f 0
every spinning processor spends all of its tam doing cache read
misses or atomic xchgb operations, consiumng bus resources as x a.
fast as possible. By contrast, the backoff algorithm results in only O.0S4 -

slight degradation for less than ten spin-waiting processors.I

Figure 4.2 shows the effect of increasing the sine of the critical 04

section for each algorithm. In addition to incremeting a counter,
the critical section contained varying amonts of other work. We 0.24 ;then normalized the tim for the counter to be cooperatively mocre- 10 50 Ila I6 1
mented by eight processors by the tim for one processor. This USOM. in muinastw n
measures relative processor speed. Again, if spin-waiting did not
slow the processor holding the lock one processor would not be gu4.:Rltvp.oesrped11ic oIfaster than eigt, ad the relative processor speed would always pressr .s: Relatical promm se (peasrs tO1be equal to 1. As expected, spinning on mmory read degradesprcso)v.rtiamclesze(e ied

pfme less as the siue of the critcal section grows, whileI
spnigon the xchgb instruction degrades performance evenly
thogot the critical section.

To test the tradeoff between processor degradation and theI
delay in acquiring a newly released lock we masured the elapsed
tm for a number of processors to each incrent a shared
counter within a critical section. Once a processor acquired the 2 30-
lock and bumped the counter once, it was set to loop until all pro- -WW . r
cessors were done. This aes is indicative of the cost of using a Wn 4. r eW
lock for barrier synchronization. Figure 43 shows the elapsized o 0
dam divided by the number of processors, If ther is no processor

derdton or delay in acquiring the lock. the elapsed time toI
achieve the barrier should increase linearly with each additional

prcso;the normalized curve in Figure 4.3 should be fiat.1
1 3 5 7 9 I'I 13

Figure4.3 shows that for small numbers of processors, spnig nurnmw o pnmem

acquires the lock when it is released. As more processors an
added, however, this benfit is outweighed by the degradation of Figure 43: Normalized im (jumu. per procesear) to achieve
thie processor holding the lock. The backoff algorithm shows a barrier (measured)

s Imila curve to spinning on a mmoy read, but for a different

56 Performance Evaluation Review Vol. 17 #1 Mayl 989

102

Processors doing work are slowed proportional to the number of Our model is hierarchical. The low level model represents the
tines they access the bus. Thus, the mauls of dis testa depend effect of bus contention on processor speed. The high level model
somewhat on the content of the critical section. However, since repmenta the effect of lock Contention on throughput and
the purpose of a critical section is to serialize modifications to response tine. Since processor speed affects the amount of lock
shared data, its code is likely to be bus intenaive. Our measure- contention and the number of spinning processors affects bus con-
ments indicate that almost half of the bus service demand of tention and thus processor speed, we iterate between levels to con-
thread management is due to the critical section. Further, tiead vaegeace. We describe the two sub-models in more detail below.
management critical sections also tend to be small. For example,
enqueueing or dequeueing a ready thre4d in a critical section both Li. Modeling bus contentiom
take less than 10 fAec, roughly the same as for Figure 4.1. In the low level model, we represent each processor as a custo-
4A6. ImpUcadlon for other systems mer in a closed queueing network. The network has two service

centers: A queueing center for the bus and a delay center for non-
The Symmetry Model A has a write-through protocol when a bus activity. Each processor spends some of its time referencing

processor modifies a location, the value is written to memory and memory through the bus and thus contending with other proces-
all old copies of the location in other caches at invalidated, sm also using the bus, and some of its time processing out of its
There is a cost to spin-waiting, even in architectures with a write- cache, independent of the activity of other processors. Processor
back cache coherency protocol. In a write-back protocol, the speed is degraded by the percentage of time spent queueing, but
value is stored in the cache and later written to memory when the not in service, at the bus.
cache block is replaced. There are two major approaches to keep- local prce ,sing
ig other caches consistent with the new value: all old copies in
other caches can either be invalidated or updated with the new
value (distributed-write) [Archibald & Baer 1986].

In the case of an invalidation-based write-back protocol, the
spin-waiting alternatives have much the same effect as with
write-though. If processors spin on the atomic test-md-set c,,stomers = processors
operation, the valid copy of the lock bounces from cache to cache,
consuming bus resources. Provided mor than one processor is
spin-waiting, when one processor tries the lock, it invalidates bus
every other cache copy, requiring the lock value to be copied to Dlsam $.1: Low level model of bus contention
the cache of the next processor to try the lock. Spinning on a
memory read does not solve this problem, since the cache copy of This model is an approximation of the real bus mechanism,
a looping processor is still invalidated, resulting in a cache miss, which is considerably more complex (Lovett & Thakkar 19881.
by each successive processor trying to acquire the lock. The At moderate loads, our model will be pessimistic by predicting
Sequent Symmetry Model B, the successor to the architecture we more contention than is actually experienced. Because of the
used for our measurements, uses such a protocoL regularity of the time each processor spends computing between

The performance with distributed write-back is better, but it accesa to the bus, if two processors collide at the bus, they ae
does not eliminate the problem. When a processor performs an unlily to collide at their next visiL Our model assumes that
atomic operation, every cache with an old copy is updated with arrivals are more nearly independent.
the new value. If processors spin on the atomic operation. the bus There ae three components to bus u'litio. A processor can
can be saturated doing these updates. If processors spin on the be executing user code, thread management code, or spin-waiting,
memory read, however, each cache is kept up-to-dUte, eliminating each with different service demands on the bus. Given these ser-
the cascade of cache misses as each spinning processor tries to vice demands and the ratio of Ume each processor spends in each
acquire the lock. The rush of processors to try the lock when it is type of activity, we determine the aggregate service demands at
first released still results in some bus traffic for distributing each the bus and at the delay center and use these aggregate demands
update, but quiescence will occur faster. Since the backoff algo- to solve the modeL
rithm reduces the number of lock attempts, it reduces the bus load
due to spinning even further. Since it is difficult ID analytically determine the bus demand of

a section of code, we determine a portion of it inductively from
A hardware mechanism for queeing pesors without con- measurements. We provide each processor with its own copy of

suming bus resources would also solve this problem. In fact, the all data structures; we then run the code in parallel on each pro-
Symmetry has such a mechanism, but it is less than completely cessor. Since there is no shared data, there can be no contention
useful. While one processor is performing an atomic operation, for software resources; any delay experienced by a processor rela-
any other processor attempting to access that memory location is ive to when it is running the code by itself must be due to conten-
delayed before using the bus [Sequent 19881. Unfortunately, only tion for hariware resources, such as for memory or the bus. We
single instructions can be made atomic; it is rare in practice to be then match a curve from our model of the bus to the measured
abie wu complete a critical section in one instruction, curve and use the result as the service demand for that section of

code. The curves matched well in practice, deviating only at
5. Analydcal Results moderate loas, as expected.

We developed a queueing network model of our thread package Since bus contention may disproportionately impact the critical
to demonstrate that the combination of processor degradation due section execution time, affecting lock contention in the high level
to bus contention and the effect of lock contention can account for model, we used this approach sepaimliy for the critical section
our measurements. We uWse' the validated model tO MPJtC I.'= aud non-critical section code within thread managemeoL The
performance of our package under varying conditions. critical section code tus out to account for much of the bus

demand of thread management.

57 Performance Evaluation Review Vol. 17 #1 May1989

103

Even though it could affect bus usage, we did not include in our ion-locked proucssing
model the effect of diffeent numbers of processors on cache hit
ratios. When a processo writes a location, die Symmetry updates1
both mmory end that processor's cache. As a result, on a single:
processor. data that is both written and read will tend to stay in the
cache, avoiding cache misses. When multiple processors read and
write shared data, the cache copies of the data will be repeatedly C, toizcrs = processors
invalidalea a diffaeent processors update it, resuldtin in more
cache misses then in the sangle processr case. Our model there-
fore undaestinmates bus demand, making it optimistic, especially
as die bus nea's satration. reitdy queue lock

The bus demand of spinning processors was also determined U
inductively. P processor were set to run the critical section with Diagrm 52: High level model of lock contention for the
separate copies of the data structures; by the experiment described local freelst alternative
above, we know the bus service demand of these processor Q
processrs were set to run a shared copy of the critical section; distribution and the effect of lock queueing delay on that distribu-
one of these processors has the normal bus service demand, end tion at almost always applictiO-d edeL
Q- I pin-wait. By measuring the processor degradation of the Given the distribution, the model could be evaluated separtely
P copies, we can determine the aggregate bus demand of the for each population of theads; thee separte evaluations could
Q- 1 spinning processors. A two class model was used. one then be averaged. weighted by the proportion of time for that
clas representing procesors executing critical sections and one population. The population of the high level model should be the
representing spinning processors. Only the response time of the minimum between die number of Processors and the number of
processm executing the critical section is import threads, reflecting die number of active processors. The popula-

The bus demand, at least for the backoff algorithm, is | on of the low level model should be set similary, except that
with the number of processors. While there is no a prwn reason since idle processor consume bus resouz=6 a second class
for this, it intuitively makes sense. The effect of adding a spin- should be added to .. present them.
ning processor with the backoff algorithm is to add two cache This method of separate evaluations ignores the fact that lock
misses per exution of the critcal section. The bus demand of contention can only occur when the parallelism is ben cre-
other processors is relatively unaffected. While this invariance mented or decremented; we believe that any distortion introduced

would also hold for the spin on xchgb algorithm, it is less true by the adaptive nature of the mechanism will be outweighed by
when processors spin on memory reads, because the cascade of the effects of lock end bus contention. Ni and Wu (1985] also
cache misses is longer for every processor when more processors discuss da issue.
ae spinning. Note that the graphs in Section 4 could be used to
infer the bus demand of spinning processors. We did not choose 53. Comparison with measured results, and projections
this approach because there is a correlation between when the p Figure 5.1 compares our model results with our mcssL .mcnt 3
cessor holding the lock and when the processors spinning on th results previously reported in Figure 33. We modelled two alter-
lock use the bus. The curve for the backoff algorithm in Figure natives. per-processo ready queues (ocal radyq) and per- -
4.1, e.g., is similar to that of an optimistic asymptotic bound. processor free lists with a central ready queue (local frelist). Our

5.2. Modeling lock teto model agrees well with de mearements, within 5% except for
the central ready queue with IS processors. The model predicts 5

In the high level model, we represent each lock in de hread the shape of the curve, but is somewhat optimistic; this appears to
management path by a separate queueing center. processing time be due to underestimating the bus demand, which is important in
spent not holding a lock is modelled as a delay center. Service mining the effective sin of the critical section. he model
demands were diectly measured, then the pat of each service does capture de difference between the alternatives.I
demend due to bus accesses was inflated by the bus response tme
of the low level model. As in the low level model, each processor
is represented as a single customer in a closed clan. By solving
this model, we can determine the average amount of time each ___

processor spends spin-waiting for a lock versus executing thread

opestions or user code. This ratio is then used as en input to the
low level model. (Note that it is a simple mana to add queueing
centes if the application-level code does further locking.) j 30 ..-

If the time between thread operations is deterministic, our -.- NORM
model is pessimistic at moderate loads. As for the bu, if two pm- 20 we , Rmm

ceason collide at a lock, the effect of de=m processing " w " q'
tmsis to reduce the likelihood that they will collide at the next 1visit. Figure 3.2 shows this effect. The curves ae similar in

shape to asymptotic optimistic bounds, since die processing time 0
to do each thread operation is deterministic. Figure 3.3 does not
show this effect, since the user computation for each thread wa., i
randomly crosen from a uniform distribution.

Our model does not explicitly represent an application's distld- Figure 5.1: Comparisoa of analytic and measured results
bution of pralelism, although Figure 3.4 shows that this affects from Figure 3.3
performance. We chose not to include this in our model since the

58 Performance Evaluation Review Vol. 17 #1 May1989

104

Having validated our model, we used it to investigate the effect
of varying key parameters. Figure 5.2 shows throughput with 20
processors as a function of the amoiset of user computation per
thread. As we would expect. as an application uses finer-grained _______________

parallelism (smualler amounts of computatbon per thread), the cen-
trai lock on the ready queue becomes a bottleneck. For
sufficiently coarse-prained parallelism the performance of the
thread package ceases to matter. In the limit, even DYNIX
processes could te used.

41 k

SQO

0 i~uimber atPUSS

J 40 ftcca M'yq Flgure BA: Thread creaton rate vs. number of proceuors,
6. oncusinsuser work = 2 asec. (analytic)

20P T Threads have become a common element of new languages ad
0 ~operating systems. Efficient thread, management is critical to

0 200 400 600 S00 1000 achieving good performance from parallel appLicatin. We have
use of uew modecaptl studied the performance implications of several thread manae-

meot and locking alternatives. We showed that:

Figure S.2: Thread creation rate vs. Wasc. of user computation * It is possible to implement a fast thread package. Simplicity is
per thread, 20 processors, bus load = S% (analytic) crucial for this.

- For fine-paied parallelism small changes in data structure
Contention for the bus can also reduce the difference between ad locking have a lInge effect on both latency and througlipuL

the alternatives. Figure 5.3 shows throughput as a function of the -Per-ocsr data structures can be used to improvepercentage usage of the bus by each thread. As the bus usage throgput; if a resource is not scarc, localizing data can avoidincreases, the bus limits the throughput w..h local ready queues, locking, improving latency as well.
but it also limits the throughput with the central ready queue,
since bus contention inflates the critical section time. * Spin-waiting can delay not only the ptocessor waitinig for a

lock, but other processors, doing work. This appears to be
independent of the cache coherency protocol.

- An Ethernet-style backoff algorithm can reduce the cost of
so. spin-waiting.

* A simple queueing model can accurately predict the effect of a
00. combination of factors on the performance of shared-meninry

mul~rocessors.

40-41-k" OWA An ame of fuxture research is to determinie the extent to which
'U. __our results, developed in the context of thread maniagemnt sys-

tems, als apply to application prorms that expioit fioe-grained
j 20 parallelism on shared-memory multiprocessors.

~ 0 2Acknowledgements
0. 04r0- We would like to thank Dave Wagne for sugeing that a

b"s lows % of User COMPUMaIen Ethernet-style algorithm might solve the spin-waiting problem.

Referencew
Figure 53: Thread creation rate vs. bus load, (Accou atat. 19161
user work = 200 xsec, 20 processors (analytic) NI4 Accent, X. Baro. W. Bolosky, D. Golub. R. Rashid. A. Tevanian,

and MI. YonagMach: A New Kernl Foundation For UNIX Develop.
minL Proc. Siowmr 1986 USEIX Technical Coufence and jhabs.

On the other hand, the central ready queue lock can again limit :wim n 1986, pp. 93-112.
throughput even for more coarse ly-grained parallelism given a (Ajbibld a Baw 19861
sufficient number of processors- Figure 5SA shows the throughput J. Archibald and i.L Bae. Cache Coberuice Ptosocol: Evauatiom
as a function of the number of processors when threads each coin- Using a Multiprocessor Shnnlation Model. ACM Transoctioxf an Com-.
pute for 2 millisecods. T1w shorp dropoff for the central reay poser System. vol. 4,so. 4. Nov. 1916.
queue adterrnative shows the inherent instability of a system where (Bach & Buroff 19141

MI. Bach and S1. Buroff. Multipr- so fNOprt Systems.
spinning processors consume resources. A& elLbrtre e = U~[XOe

59 Performance Evaluation Review Vol. 178#1 May1 989I 105

Brian Erha , wrd Lazowaka, and Heny Levy. PRESTO: A Sya- D a ag. M) dLwka rmDhhd ebaqm o

£ wince. vol. 18, no. 8, Aug. 198f, pp 3. 714 *Ir IC fM M SIM
jlenhadcal. 1988b) ('-oijn tal. 19881

Brian Benshad Edward L.Azowabs Hnr Levy, and David Wagner. An i aojn dadLzwkadDrkEgr pnn a.
Opmn Environment for Building parailel Pigogrz ing System. Proc. John 3 inW Edard systemswit ancDerckEagr. IetaruetaVersu

AtMISIGPLA PPFALS 168,~. 19.Sgiesmr on the Perfornwe of Dirtibte oarol~k Sjursow, Norsh
(Dntz & Boyle 19871 Holland, Dec. 1988.

Kenneth W. Dritz and James M. Boyle. Beyond "Speedup": Parlor-
mance Analysis of Parallel Progrms. Technical Report ANL-J7-7.
Mathematics and Computer Science Division, Aronn National
L.aboratory, Feb. 1987.

Derek Eager. Edward Lazowaka, and Joam ZabovLn Adaptive Load

Sg~twre Enguwerina, vol. 12, no.5,. May 1986, pp. 662-675.

[Edlerat al. 19881I
Jan Filer, Jim iks and Edith Schonberg. Process Management for
Highy Parallel UISytm.Ultracomputer Note 8136, April 19U1.

[Hoaze 19781
CAjLL Hoare. Cowmunicating SeunilProcesses. Comwuaueatzons
of LwACM, vl.21,fno. 8,Aug. 99p 6664.67

(Holt 19821
Rt. Holt. A Shut Introduction to Concuffent Euclid SIGPLAN Notices,
vol. 17. May 1982, pp. 60-79.

(Jul at al. 19811
Eric Jul. Hwny Levy, Norman Hutchinsoni, and Andrew Black. ine-
Grained! Mobility in the Emerald System ACM Traaaactsoe an Com-
patr System, vol.6. no. 1, Feb. 1981, pp. 109-133.

[Kuinr A Gonsalves 1971
B. Kumar and Timothy Gonsalves. Modelling and Analysis of Distri-
buted Software Systems. Proc. 7th ACM Symposiwm on Operuaq Sys-
tam, Priscip~m, Dec. 1977, pp. 24.

Bf-La pon an D.D. Redell. Experiences with Processes an Moni-
tori n Men. Coeinwmicajiopeu of the ACM, vol. 23, no.2Z Feb. 1980,
pp. 104-117.

[Laz*WbOwaa L 19841
Edward Latowaka John 0~o~n . Scon Graham. and KessnethI
Sevik. Quantitative System wufomnce. Prentice-Hall, 1984.

[Lovett A Tbakkar 19881
Tom Lovent and Shreekant Thakkar The Symmetry Multiprocessor
System Proc. 1988 Internationa Conference oon Parailal Processing,
pp. 303-310.I

[Metcalfe & Boggs 1976]
Robert Metcalfe and David Boggs. Ethernet Distributed Packet
Switching for Local Compiler Networks. Coewuaicatwonu of She ACM.
vol. 19. no, 7, July 1976, pp. 395-404.

zMni A Fig e 195 10-
D.A. Mundie and D.A. Fisher. Parallel Proceseing in Ada. IEEE Cow,.

[NflA Wu 19851
Lionel Nli and Ozing-Fern Wus. Desip Trade-offa for Proces Sdaeel-I

un nTightly Coupled Multiprocessor Systems. Proc. 1985 Interm-
U~dlCoonference an Parallel Processing, pp. 63-7a~

[Scott at al. 1981
Michael Scott, Thomas LeBisac, and Brian Marsh. Dasig Rationale:I
for Psyche, a General Purpose Multiprocessor Operating System Proc.
1988 laer~anwi Conferece on Puwalk Procasing, August, 19U1.

(Sequent 19881
Sequent Computer Systems, Inc. Symmetry Technical Summary.

[Thacker a al. 1981
Charles Tacker, Lawrnce Stewart, and Edward Sattethwaile Jr.
Finlly. A Multiprocessor Worktation. IEEE Transactions on Comput-
ea, vol . 37. no. 8, Aug. 1988, pp 909-920.

[Vandevoorde & Roberts 19811
Mark Vandevoorde and Eric Roberts. WorkCrews: An Abstraction for

CzarolingPamlelsm.Digital Equipment Corporation Systems

60 perjormance Evusutjn Review Vol.178#1 May1 989

106

The Performance of Spin Lock Alternatives for Shared-Memory
Multiprocessors

Thomas E. Anderson

Department of Computer Science
University of Washington

Seattle, WA 98195
August 1989

Abstract

Most shared-memory multiprocessor architectures provide hardware support for making mutually
exclusive accesses to shared data structures. This support usually consists of instructions that atomically
read and then write a single memory location. These atomic instructions are used to manipulate locks;
when a processor is accessing a data structure, its lock is busy, and other processors needing access must
wait.

For small critical sections, spinning (or "busy-waiting") for a lock to be released is more efficient than
relinquishing the processor to do other work. Unfortunately, spin-waiting can slow other processors by
consuming communication b-ndwidth.

This paper examines the question: Are there efficient algorithms for software spin-waiting given
hardware support for atomic instructions, or are more complex kinds of hardware support needed for
performance?

We consider the performance of a number of software spin-waiting algorithms. Arbitration for control
of a lock is in many ways similar to arbitration for control of a network connecting a distributed system.
We apply several of the static and dynamic arbitration methods originally developed for networks to spin
locks.

We also propose a novel method for explicitly queueing spinning processors in software by assigning
each a unique sequence number when it arrives at the lock. Control of the lock can then be passed to the
next processor in line with minimal effect on other processors.

Finally, we examine the performance of several hardware solutions that reduce the cost of spin-
waiting.

Index Terms - multiprocessor, architecture, locking, performance, cache coherence

1. Introduction

Many shared-memory multiprocessors have been designed in the past few years. The Sequent
Symmetry [Lovett & Thakkar 1988], Alliant FX [Perron & Mundie 1986], and the BBN Butterfly [BBN
19851 are among the more commercially successful; research vehicles include the DEC SRC Firefly
[Thacker et al. 1988], Illinois Cedar [Gajski et al. 1983], IBM RP3 [Pfister et al. 1985], and the Wisconsin

This material is based on work supported by the National Science Foundation (Grants No. CCR-8619663,
CCR-8703049, and CCR-8700106), the Naval Ocean Systems Center, U S WEST Advanced Technologies,
the Washington Technology Center, and Digital Equipment Corporation (the Systems Research Center and
the External Research Program).

Author's address: Department of Computer Science FR-35, University of Washington, Seattle WA 98195;
(206) 543-2675; tov@cs.washington.edu.

107

-2- U
Multicube (Goodman & Woest 19881. 1

In shared-memory multiprocessors, each processor can directly address memory that can also be
addressed by all other processors. This uniform access mquires some method for ensuring mutual
exclusion: the logically atomic execution of operations (critical sections) on a shared data structure.
Consistency of the data structure is guaranteed by serializing the operations done on it.

Since pure software mutual exclusion is expensive [Lamport 1987], virtually all shared-memory
multiprocessors provide some form of hardware support for making mutually exclusive accesses to shared a
data structures. This support usually consists of instructions that atomically read and then write a single
memory location. All of the multiprocessors mentioned above support atomic instructions, although
some, most notably the Multicube, also provide other mechanisms [Goodman et al. 1989].

Atomic instructions serve two purposes. First, if the operations on the shared data are simple enough,
they can be encapsulated into single atomic instructions. (Herlihy [1988] discusses the computational
power of atomic instructions for building parallel algorithms.) Mutual exclusion is directly guaranteed in
hardware. If a number of processors simultaneously attempt to update the same location, each waits its
turn without returning control back to software.

A lock is needed for critical sections that take more than one instruction. Atomic instructions are used
to arbitrate between simultaneous attempts to acquire the lock, but if the lock is busy, waiting is done in I
software. When a lock is busy, the waiting process can either block, relinquishing the processor to do
other work, or spin ("busy-wait") until the lock is released. Even though spin-waiting wastes processor
cycles, it is useful in two situations: if the critical section is small, so that the expected wait is less than
the cost of bloclcng and resuming the process, or if no other work is available.

This paper examines the question: are there efficient algorithms for software spin-waiting for busy
locks given hardware support for atomic instructions, or are more complex kinds of hardware support
needed for performance? (Jayasimha [1987] and Agarwal and Cherian [19891 have looked at the related
issue of efficient spin-waiting for data dependencies.)

We show that the simple approaches to spin-waiting for busy locks have poor performance [Anderson I
et al. 1989]. Spinning processors can slow processors doing useful work, including the one holding the
lock, by consuming communication bandwidth. This performance penalty occurs if processors spin by
continuously trying to acquire the lock; it also occurs for small critical sections if processors spin reading I
the (cached) lock value and try to acquire the lock only when it is released.

We consider the performance of several software spin-waiting alternatives. Although the analogy is
not perfect, arbitration for control of a lock is in many ways similar to arbitration for permission to I
transmit on carrier-sense multiple-access (CSMA) networks. In both there is a cost when either zero or
more than one waiting processor attempts to acquire the resource. A number of arbitration mechanisms
have been proposed for CSMA networks, including statically assigned slots (BRAM [Chlamtac et al.
1979]), static delays (Aloha [Binder et al. 1975]), and dynamic backoff (Ethernet [Metcalfe & Boggs I
1976]); we discuss the performance of these methods when applied to spin-waiting.

We propose a novel method for explicitly queueing spinning processors. As processors arrive at a
lock, they each acquire a unique sequence number specifying the order that they will execute the critical i
section. When the lock is released, control can be directly passed to the next processor in line with no
further synchronization and minimal effect on other processors.

We also examine the performance of several hardware solutions. We propose an addition to snoop)
cache protocols that exploits the semantics of spin lock requests to obtain better performance.

The remainder of this paper discusses these issues in more detail. Section 2 outlines the range of
architectures that we will consider and how these systems commonly support mutual exclusion. Section I
3 analyzes the performance problems of simple software spin-waiting. Section 4 presents new software
alternatives; Section 5 considers hardware solutions. Section 6 summarizes our conclusions.

1
108

-3-

2. Range of Multiprocessor Architectures Considered
While spinning processors can slow busy processors on any multiprocessor where spin-waiting

consumes communication bandwidth, the precise performance of spin-waiting varies along several
architectural dimensions: how processors are connected to memory, whether or not each processor has a
hardware-managed coherent private cache, and if so, the coherence protocol. This paper will consider six
types of architectures from within this design space:
" multistage interconnection network without coherent private caches
" multistage interconnection network with invalidation-based cache coherence using remote directories
" bus without coherent private caches
" bus with snoopy write-through invalidation-based cache coherence
• bus with snoopy write-back invalidation-based cache coherence
* bus with snoopy distributed-write cache coherence

(We assume for all of these that processors block when making a read request to memory.) While there
are clearly some shared-memory architectures that are not represented in this list, these sample
architectures expose most of the interesting issues in the performance of spin-waiting.

2.1. Common hardware support for mutual exclusion

Most architectures support mutual exclusion by providing instructions that atomically read, modify,
and write memory. These atomic instructions are straightforward to implement. Conceptually, they
require four services that might need inter-processor communication: the read and write, some method of
arbitration between simultaneous requests, and some state that prevents further accesses from being
granted while the instruction is being executed. Most multiprocessors are able to collapse these services
into one or two bus or network transactions.

Multistage networks connect multiple processors to multiple memory modules. Memory requests are
forwarded through a series of switches to the correct memory module. When a value is read from
memory as part of an atomic instruction, any cached copies of the location (recorded in the directory
associated with the memory module) must be invalidated and subsequent accesses to that memory
module or at least to that location must be delayed (or refused and retried) while the new value is being
computed. To minimize this delay, the computation can be done remotely by an ALU attached to each
memory module. The Butterfly [BBN 19851 and RP3 [Pfister et al. 19851 implement this kind of remote
"fetch and op".

In single bus multiprocessors, the bus can be used for arbitration between simultaneous atomic
instructions. Before starting an atomic instruction, a processor acquires the bus and raises a line (the
atomic bus line). This line is held while the new memory value is being computed to prevent further
atomic requests from being started, but the bus can be released to allow other normal memory requests to
proceed. Waiting atomic requests delay and only re-arbitrate for the bus when the line is dropped.

In systems that do not cache shared data, the bus transaction used to acquire the atomic bus line can be
overlapped with the read request for the data. Similarly, with invalidation-based coherence [Archibald &
Baer 19861, even if the lock value is cached, acquiring the atomic bus line can be overlapped with the
signal to invalidate other cache copies. Note that normally the invalidation occurs even if the instruction
does not change the value of the location, because it is done before the instruction executes.

Write-back invalidation-based coherence avoids an extra bus transaction to write the data. In this
protocol, the new value is temporarily stored in the processor's cache. When another processor needs the
value (for instance, as part of an atomic instruction), it gets the value at the same time it invalidates the
first processor's copy.

With distributed-write write-back coherence, the initial read is usually not needed. Because copies in
all caches are updated instead of invalidated when a processor changes a memory value, the cache block
needed by an atomic instruction will often already be in the cache. In this case it would be wasteful of
bus cycles to piggy-back the arbitration mechanism for the atomic bus line on top of the arbitration for
the bus. For this reason, the Firefly, which implements distributed-write cache coherence, has a separate

109

-4-

arbitration mechanism for its atomic bus line [Thacker et Ll. 19,18]. A bus cycle is still usually needed at I
the end of the atomic instruction to update copies in other caches.

3. The Performance of Simple Approaches to Spin-Waiting i
Given atomic read-modify-write instructions, it is relatively straightforward to develop a correct spin

lock. For instance, each processor can execute an atomic test-and-set instruction to acquire the lock; this
irstructicn reads the old value of the lock and sets it to busy. It tho read returns that the lock was free, the
processor has the lock; if the lock was busy, the processor must try again. The lock is released by
(atomically) clearing the lock value.

It is more difficult to devise an efficient spin lock; this requires balancing several apparently opposing
concerns. Performance when there is contention for the lock depends on minimizing the communication
bandwidth used by spinning processors, since this can slow processors doing useful work; the deiay

between when a lock is released and when it is re-acquired by a spinning processor must also be
minimized, since no processor is executing the critical section during this time. This appears to pose a
tradeoff: the more frequently a processor tries to acquire a lock, the faster it will be acquired, b-,, the more
other processors will be disrupted.

Latency, the ume for a processor to acquire a lock in the absence of contention, is also important, for I
instance to applications with frequent locking, yet containing no bottleneck lock. A complex algorithm
that reduces the cost of spin-waiting could degrade overall performance if it takes longer to acquire the
lock when there is no contention. I

It might seem that *"e behavior of multiprocessors when there is contention for a spin lock is not
important. A highly parallel application wili by definition have no 1ock with significant amounts of
contention, since that would imply a sequential component. If an application has a lock that is a I
bottleneck, the best alternative would be to redesign the application's algorithms to eliminate the
contention. In no case does it make sense to add processors to an application if they end up only spin-
waiting.

There are, however, several situations where spin lock performance when there is contention is
important Poor contention perf',rmance may prevent an application with a heavily utilized lock from
reaching its peak performance, because the average number of spin-waiting processors will become non- i
trivial as the lock approaches saturation. Further, if processors arrive at a lock in a burst, queue lengths

can be temporarily long, resulting in bad short-term performance, without the lock being a long-term
bottleneck.

Alternately, it may not always be possible to tune a program to use the optimal number of processors
An operating system, for instance, has little control over the rate at which users make operating system
calls. At high load, locks that are normally not a problem could become sources of contention. Similarly,
on a multiprogrammed multiprocessor, a naive user can inadvertently ruin performance for all other users
by combining a bottleneck critical section, lots of processors, and an inefficient spin lock.

In this section, we analyze the performance of two simple spin-waiting algorithms; combined
measurement results are presented at the end of the section.

3.1. Spin on test-and-set

The simplest spin-waiting algorithm is for each processor to repeatedly execute a test-and-set l
instruction until it succeeds at acquiring the lock. Table 3.1 lists sample code for this approach. Not
surprisingly, the performance of spinning on test-and-set degrades badly as the number of spinning
processors increases. 5

Init lock := CLEAR;
Lock while (TestAndSet(lock) - BUSY) i
Unlock lock :- CLEAR;

Table 3.1: Spin on Test-and-Set I

110 1

-5-

T% factors cause this degradation. First, in order to release the lock, the lock holder must contend
with spinning p.-olssors for exclusive access to the lock location. Most multiprocessor architecrures
have no way of giving priority tu the clear request of the lock holder, re.iring it to wait behind test-and-
sets of spinning processors, even though these cannot succeed until the lock is released.

Further, on architectures where test-and-set requests share the same bus or network as normal memory
references, the requests of spinning processors can slow accesses to other locations by the lock holder or
by other busy processors. On multistage network architectures, spin-waiting can cause a "hot-spot",
delaying accesses to the memory module containing the lock location as well as to other modules [Pfister
& Norton 1985]. On bus-structured multiprocessors, each test-and-set consumes at least one bus
transaction, regardless of whether the lock value is changed; these can saturate the bus.

3.2. Spin on read (test-and-test-and-set)

Intuitively, cohcient caches should be able to reduce the cost of spin-waiting. Segall and Rudolph
[19841 propose that spinning processors loop reading the value of the lock, and only when the lock is free,
execute a test-and-set instruction; this eliminates the need to repeatedly test-and-set while the lock is held.
They call this spinning on test-and-test-and-set; code for it is listed in Table 3.2. (We assume that boolean
expressions are evaluated only if needed; the test-and-set is only executed if the lock is not busy.)

While the lock i busy, spinning is done in the cache without consuming bus or network cycles. When
the lock is released, each copy is updated to the new value (distributed-write) or invalidated, causing a
cache read miss that obtains the new valuc. The waiting processor sees the change in state and performs a
test-and-set; if someone acquired the lock in the interim, the processor can resume spinning in its cache

ILock while (lock - BUSY or TestAndSet(lock, - BUSY) I

Table 3.2: Spin on read (test-and-test-and-set)

When the critical section is small, however, spinning on a read has almost as much effect on busy
processors as spinning directly on a test-and-set instruction. The reason is that transient behavior can
dominate; when the lock is released and re-acquired by one of the waiting processors, it takes some time
for the remaining processors to r-sume looping in their caches. During this time, most spinning
processors have pending memory requests, delaying requests by busy processors during this interim. This
behavior is most pronounced for system's with invalidation-based cache coherence, but it also occurs with
distributed-write.

Suppose a number of processors are spinning reading the lock value in their caches. When the lock is
released, these cache copies will all be invalidated; each processor will then incur a read miss to fetch the
new value back into its cache. These read misses will be satisfied serially. Each processor to get the new
value will then try to execute a test-and-set; these requests must compete for the bus or memory module
with any remaining processors doing read misses.

The first processor to test-and-set will acquire the lock. Any processor who completed its read ,ni.s
before this, however, will have seen the lock as free, proceed to do a test-and-set itself, fail, and go back
to spinning reading the lock value. Unfortunately, each failing test-and-set instruction, because it is
treated as a memory write, invalidates all cache copies of the lock, forcing any processors that had
resumed spinning to miss again.

Thus, once the lock has been re-acquired, some processors have passed the harrier and have a pending
test-and-set request; the remainder have pending reads, trying to fill their cache after the original read
miss. (The number of pro'essors who have seen the lock as free will be worse on systems with
multistage n,.tworks, because of the greater distance between the processcrs and memory.) Each read
miss that is satisfied decreases the number of pending requests; that processor obtains a cache copy of the
lock and resumes looping. Each test-and-set request that is satisfied decreases the number processors
waiting to test-and-set; however, it also invalidates all existing cache copies of the lock, forcing those
processors that had been spinning in their cache to read miss again. After each test-and-set, every
processor but the one that did the test-and-set must contend for memory. Eventually, the last spinning

111

-6-

processor does a test-and-set, allowing every other spinning processor to do a read miss and then quiesce.

Before quiescence, each spinning processor spends most of its time contending for the bus or memory.
After quiescence, spinning processors consume no communication resources. Thus, a normal memory
request will be slowed dramatically if it occurs before quiescence and not at all if it occurs afterwards. I
For long critical sections, this initial slowdown is less significant, but for short critical sections, it
dominates performance.

Our discussion so far has assumed random arbitration among memory requests. It might seem that
spinning on a cache copy would perform well given fixed priority bus arbitration, as for instance on the
Firefly. When a lock is released, the highest priority processor will acquire the lock. Even if it takes
some time for the other processors to quiesce, the lock holder would not be slowed since it has higher
priority than the other processors. However, if the lock is released before quiescence, a low priority
processor with a pending test-and-set could acquire the lock before higher priority processors looping on
read. The lock holder might then be delayed by these higher priority processors. 3
3.3. Reasons for the poor performance of spin on read

There are several factors that cause the performance of spinning on a memory read to be worse than
expected. I
* There is a separation between detecting that the lock has been released and attempting to acquire it

with a test-and-set instruction. This separation allows more than one processor to notice that the lock
has been released, pass by that test, and proceed to try a test-and-set. Ideally, if one processor could I
notice the change and acquire the lock before any other processor committed to doing a test-and-set,
the performance would be better.

" Cache copies of the lock value are invalidated by a test-and-set instruction even if the value is not I
changed. If this were not the case, invalidations would occur only when the lock is released and then
again when it is re-acquired.

* Invalidation-based cache-coherence requires O(P) bus or network cycles to broadcast a value to P
waiting processors. This occurs despite the fact that, after an invalidation, they each request exactly
the same data.

While a solution to any of these three problems by itself would result in better performance, any single
solution would still require bus activity that grows linearly with the number of processors.

For example, distributed-write cache coherence eliminates invalidations; each processor directly
receives all updates to the lock value. All reads can therefore be done locally; only test-and-sets still I
require bus traffic. The Sequent Balance [Beck et al. 1987] and the Silicon Graphics 4D-MP [Baskett et
al. 1988] both use a separate bus for test-and-set variables for just this reason; the bus implements
distributed-write coherence to reduce bus traffic due to spin-waiting. Unfortunately, b adcasting updates
makes the separation between the test and the test-and-set worse: all processors receive the updated lock I
value at the same time, and all therefore proceed to try the test-and-set. The result is that P test-and-sets
must be performed before quies race. It is unclear whether either the Balance or the 4D-MP has special
hardware to avoid this problem.

3.4. Measurement results

To demonstrate the performance of simple spin-waiting, we implemented both approaches on a 3
Sequent Symmetry Model B shared-memory multiprocessor with 20 80386 (approximately 2 MIP)
processors. The Symmetry has a shared bus and write-back invalidation-based cache coherence; unlike
the Balance, test-and-set variables are handled on the same bus as normal memory references [Lovett &
Thakkar 19881. Acquiring and releasing a lock on the Symmetry normally takes 5.6 microseconds, less if
the cache block containing the lock is initially private to the locking processor.

Figure 3.1 is the principal performance comparison: the elapsed time for various number of processors
to cooperatively execute a critical section 1 million times, for the two alternatives. Each processor loops: a
wait for the lock, do the critical section once, release the lock, and delay for a time randomly selected
from a uniform distribution. The mean delay is equal to five times the size of the critical section. The
wait in the loop eliminates any locality effect: each iteration, the lock and the shared data accessed by the

112 £

-7-

70

60

6 50
(n
Z 40 - ideal

30. "- spin test&set

-0- spin on read
ig 20
LU

10

5 9 13 17
number of processors

Figure 3.1: Principal performance comparison: Elapsed time (sec.) to execute benchmark (measured)

Each processor loops I million / P times: acquire lock, do critical section, release lock, and compute.

critical section move between caches. The lock and shared data are placed so as to fall in separate cache
blocks.

This benchmark simulates the performance of an application with a small central critical section.
(Similar curves have been measured using a fixed delay between lock accesses.) It also shows spin lock
latency and performance with small and large amounts of contention. Ideally, performance initially
improves as processors are added, due to increased parallelism, but as the critical section becomes a
bottleneck, performance levels out. The ideal curve in Figure 3.1 is the time the test would have taken,
given free spin-waiting; this was determined by simulation from the time to execute the critical section
and the mean delay between lock accesses.

Figure 3.1 confirms our analysis. Performance degrades badly as processors spin on test-and-set;
spinning on a read is better, but it still has disappointing performance. As the critical section becomes a
bottleneck, the average number of spin-waiting processors increases, significantly slowing the processor
e'ecuting the critical section. As a result, peak ideal performance is never reached. Performance with
these alternatives is very sensitive to the exact number of processors given to an application; adding even
a few processors beyond where the lock saturates worsens overall performance considerably.

This behavior can be degenerative [Anderson et al. 1989]. Critical sections, since their purpose is to
manipulate shared data structures, typically have higher memory access rates than non-critical sections.
As a critical section becomes a bottleneck, the spinning processors slow the lock holder's execution, both
in absolute terms and relative to non-critical sections, making it more of a bottleneck, resulting in more
spinning processors.

As we noted, there is a difference in the effect on memory accesses before and after quiescence when
processors spin on a read. This two-phase behavior allows us to measure the time to quiesce on the
Symmetry. We construct a critical section whose behavior mirrors that of the bus, but in reverse. The
critical section begins by delaying for some amount of time without using the bus at all, then proceeds to
use the bus heavily before releasing the lock. If the initial delay is longer than the time to quiesce the
spinning processors, then the critical section will run as fast on P processors as on one. If the heavy bus
usage begins before quiescence, the critical section will run slower on P processors. We vary the length
of the initial delay to find this performance knee; in practice, this knee was quite sharp.

Figure 3.2 shows the results of this test. The time to quiesce grows steeply but linearly with the
number of processors. As a result, even a few spinning processors can adversely impact the execution
speed of a moderate-sized critical section.

113

-8-1

35-

30

25
U)

20-
E- quiesce time
Q 15

.9 10 1a
5

0 I
1 5 9 13 17

number of spinning processors 1
Figure 3.2: Time to quiesce, spin on read (jisec.)

4. New Software Alternatives

In this section, we first describe five software spin-waiting approaches, four based on CSMA network
protocols and one using explicit queueing, leaving until afterwards the presentation of their combined
measurement results. 3
4.1. Delay alternatives

We consider four ways of inserting delays into the spin-wait loop, defined by two dimensions: where
the delay is inserted and whether the size of the delay is set statically or dynamically. A delay can be I
inserted after the lock has been released or alternatively after every separate access to the lock; code for
these approaches is listed in Tables 4.1 and 4.2. Because processors first try to. acquire the lock before
delaying, lock latency is unaffected.

Lock while (lock = BUSY or TestAndSet(lock) - BUSY)begin

while (lock - BUSY) ;
Delay () ;

end;

Table 4.1: Delay After Spinner Notices Released Lock

Lock while (lock - BUSY or TestAndSet(lock) - BUSY) i
Delay (); -

Table 4.2: Delay Between Each Reference 3
4.1.1. Delay after spinning processor notices lock has been released

We can reduce the number of unsuccessful test-and-sets when spinning on a read by inserting a delay
between when a processor reads that the lock is released and when it commits to trying the test-and-set.
If some other processor acquires the lock during this delay, then the processor can resume spinning; if
not, then the processor can try the test-and-set, with a greater likelihood that the lock will be acquired. In
this way, the number of unsuccessful test-and-sets, and thus invalidations, can be reduced.

Each processor can be statically assigned a separate slot, or amount of time to delay, from 0 to P - 1,
where P is the number of processors. The spinning processor with the smallest assigned delay checks the 3

114 I

-9-

lock, sees that it is free, and acquires it. Processors with longer delays then time out, see that the lock is
busy (enduring another cache miss), and resume spinning. By statically assigning delays, we can ensure
that at most one processor times out at any instant. Chlamtac et al. [19791 propose a similar method to
arbitrate access to a CSMA network. (Slots can also be used to implement priority access to the critical
section, by assigning lower delays to higher priority processes.)

This algorithm performs well when there are many spinning processors. It is likely that some spinning
processor will have a short delay; when the lock is released, some processor will quickly re-acquire it.
When there is only one spinning processor, however, it is unlikely to have a short delay, leaving the lock
unacquired for a relatively long time, harming performance.

The number of slots can be varied to trade off performance between these two cases. When there are
few spinning processors, using fewer slots improves performance by reducing the time to pass control of
the lock to a waiting processor. When there are many spinning processors, using fewer slots worsens
performance since more than one processor would simultaneously time out and attempt to test-and-set,
requiring longer to quiesce.

By varying spinning behavior based on the number of waiting processors, we can have good
performance in both situations. Such an algorithm has already been devised for CSMA networks:
Ethernet's exponential backoff [Metcalfe & Boggs 1976]. In a CSMA network, each processor can detect
when the network is being used. When the network is unused, a processor can acquire the network by
beginning to transmit, but if another processor simultaneously begins transmitting ("collides"), they both
fail and must retry. The idea is for each processor to use the number of collisions it has experienced to
estimate the number of spinning processors.

Initially, an arriving processor assumes that there are no other processors waiting to use the network
and chooses a random delay with a small mean. Whenever it times out, tries to acquire the network and
fails because some other processor timed out at the same time, then, assuming random arrivals, there are
likely to be many more waiting processors that did not collide. Collisions are unlikely if the average
delay is at least half the number of spinning processors. In Ethernet, then, each processor doubles its
mean delay after each collision.

Analogously, a processor trying to acquire a spin lock could begin by assuming there were no other
waiting processors. Each time it times out, sees the lock is still free, tries to test-and-set and fails, it has
"collided" with at least one other processor. There are likely to be many other spinning processors it did
not collide with, and thus it should double its mean delay, up to some limit.

Although Ethernet's backoff has been shown to have good performance [Metcalfe & Boggs 1976], the
performance of backoff for spin locks will not be the same as for networks. In a network, a collision
aborts all processors; there is an equal cost to a collision among any number of processors as there is to an
empty slot. By contrast, a test-and-set collision allows one processor to proceed, and the cost depends on
how many processors collide. The more processors that try to acquire the lock and fail, the longer it will
take them to quiesce, and the more that other processors, including the lock holder, will be slowed.

In designing a backoff scheme for spin locks, there are a number of details that affect performance.IOur first implementation got most of these wrong.
" When a processor detects that the lock has been acquired, it should not increase (or decrease) its mean

delay. The fact that some other processor had a shorter delay does not imply much about how many
other spinning processors there are.

" There needs to be a maximum bound on the mean delay. Otherwise, if a processor backs off a number
of times and then becomes the only waiting processor, it will take a long time for it to acquire the
lock. This bound should be equal to the number of processors, so that backoff has the same
performance as statically assigned slots when there are many spinning processors.

" The initial delay of an arriving processor should be some fraction of its delay the last time at the lock.
In a CSMA network, an arriving processor can efficiently re-estimate the number of spinning
processors because collisions are not unduly costly. For spin locks, however, the learning curve can
be expensive. There is no more reason to assume initially that there are no other spinning processors
than that the number is related to past experience. For our measurements, we set the initial delay to be
half the previous delay. Note that in Table 4.1 if the lock is free when the processor arrives, it will

115

-10- 1

immediately acquire it; backoff is only used if the lock is initially busy. I
While the justification for backoff assumes random arrivals at the lock, it performs well compared to

using static slots even when this is not the case. If processors execute for a fixed amount of time between
lock accesses, they will tend to self-schedule so that either there is no contention for the lock or there are I
always the same number of spinning processors. In the latter case, backoff would increase the delays
until there were few collisions, and then the hysteresis would help maintain those delays.

Similarly, both backoff and static slots have performance problems when processors repeatedly arrive I
at a lock in a burst. The first time the lock is accessed, all processors choose a small delay, time out
together, and take a long time to quiesce. Eventually the mean delays are increased enough to avoid
collisions; this initial degradation is largely avoided the next iteration. Using static slots also avoids this I
initial performance degradation. However, since the number of waiting processors decreases as more
acquire the lock, both alternatives are finally left with processors with inappropriately long delays,
making it take longer to pass control of the lock.

Polling for the lock release is only practical for systems with per-processor coherent caches. On other
systems, processors would consume communication bandwidth if they were to spin reading memory
waiting for the lock to be released. Some multistage network multiprocessors with caches based on
remote directories limit the number of outstanding copies of a location in order to limit the size of the
directories [Agarwal et al. 1988]; if the number of spinning processors exceeds this number, spinning on a
read degenerates to spinning across the network.

Even for multiprocessors with snoopy or complete directory invalidation-based caches, using
exponential backoff or static slots solves only one of the problems with spinning on a memory read. Each
spinning processor still requires at least two cache read misses per execution of the critical section, one
when the lock is released and one when the lock is acquired. For sufficient numbers of spinning I
processors, this read miss activity can saturate the bus or network.

Exponential backoff after the lock is released does, however, provide scalable performance for
multiprocessors with distributed-write cache coherence. In these systems, each test-and-set requires a I
single bus cycle to broadcast the new value, independent of the number of spinning processors.
Exponential backoff, in turn, limits the number of unsuccessful test-and-sets.

4.1.2. Delay between each memory reference I
An alternative approach to reducing the cost of spin-waiting is to insert a delay between each memory

reference. This can be used on architectures without coherent caches or with invalidation-based
coherence to limit the communication bandwidth consumed by spinning processors. In the code in Table
4.2, we check if the lock is free before trying to test-and-set since we assume that a test-and-set
instruction consumes more bandwidth than a simple read.

The mean delay between each reference can be set statically or dynamically, analogous to the Aloha
[Binder et al. 1975] and Ethernet network protocols. Most of the tradeoffs outlined above apply to these
alternatives: more frequent polling improves performance when there are few spinning processors and
worsens performance when there are many. Exponential backoff can be used to dynamically. adapt to I
varying conditions.

Delaying between each reference poses special problems, however. For instance, the performance of
backoff is bad when there is a single spinning processor for a moderate-sized critical section. The I
processor will continue to back off the delay as long as the lock is held. When the lock is released, the
spinning processor will be in the midst of a long delay that must finish before it notices the change.

4.2. Queueing in shared memory

It might seem that shared memory could be used to store state to control the activity of spinning
processors. This is less easy than it appears. For instance, a shared counter could be used to directly keep
track of the number of spinning processors, instead of relying on a backoff algorithm to estimate that
number. Given atomic increment and decrement instructions, the apparent cost of maintaining this state
is the execution of two extra atomic instructions per critical section. However, each spinning processor
must read this data to compute its delay; on systems without distributed-write coherence, this would

116 1

-Il-

consume as much bandwidth as directly polling the lock.
Another approach would be to maintain an explicit queue of spinning processors. Each arriving

processor enqueues itself and then spins on a separate flag. When the processor finishes with the critical
section, it dequeues itself and sets the flag of the next processor in the queue. This approach can reduce
invalidations: if each processor's flag is kept in a separate cache block, then only one cache read miss is
needed to notify the next processor. Maintaining queues, however, is expensive; the enqueue and
dequeue operations must themselves be locked. (Even if there are atomic enqueue and dequeue
instructions, as on the VAX, these operations are likely to be slow since they must modify more than one
location.) The result is much worse performance for small critical sections. For instance, it would not be
reasonable to do this if the critical section itself was a queue operation.

We have developed a method of queueing spin-waiting processors that requires only a single atomic
operation per execution of the critical section. Each arriving processor does an atomic read-and-
increment to obtain a unique sequence number. When a processor finishes with the lock, it taps the
processor with the next highest sequence number; that processor now owns the lock. Since processors are
sequenced, no atomic read-modify-write instruction is needed to pass control of the lock. Table 4.3 lists
the code for this approach ("myPlace" is a location private to each processor). Sequent [Graunke 19881
has independently devised a similar algorithm.

Init flags[O] :- HASLOCK;
flags[l..P-1] :- MUSTWAIT;
queueLast := 0;

Lock myPlace :- ReadAndIncrement (queueLast);
while (flags[myPlace mod P] - MUSTWAIT)

flags[myPlace mod P] :- MUST WAIT;

Unlock flags[(myPlace + 1) mod P] := HAS LOCK;

Table 4.3: Queue Using Atomic Read-and-Increment

The best implementation varies somewhat among architectures. With distributed-write coherence,
processors can all spin on a single counter. To release the lock, a processor simply writes its sequence
number into the counter; each processor's cache is updated, directly notifying the next processor in line
with a single bus transaction.

With invalidation-based coherence, each processor should wait on a flag in a separate cache block.
Only two bus or network transactions (an invalidation and a read miss) are needed to signal the next
processor. Similarly, on a multistage network without coherent caches, each flag should be placed in a
separate memory module. Even though processors must poll to learn when it is their turn, there can be no
more than P such polling requests outstanding at a time among P x log P switches and P memory
modules.

This approach is less valuable in a system with a bus but no cache coherence. Processors must still
poll to find out if it is their turn; the bus can easily be swamped with this polling. To be effective, a delay
can be inserted between each poll that depends on how close the processor is to the front of the queue and
on how long it takes to execute the critical section. This indicates one way of using fewer than P separate
memory locations in Table 4.3: if a processor is farther from the front than the number of flags, it can poll
(rarely) to find out when it is close enough to spin on its own flag.

If an architecture does not support an atomic read-and-increment instruction, this operation can itself
be locked. Since the operation would take at most a few instructions, it would not normally become a
bottleneck except when used with the most trivial of critical sections. When processors arrive in a burst,
however, there can be short-term contention for this lock. In this case, one of the delay alternatives from
Section 4.1 should be chosen to minimize bus traffic. The tradeoffs are slightly different here; a delay in
passing control over the read-and-increment operation need not impact overall performance, provided
some backlog of spinning processors have already obtained a number. Interestingly, the Symmetry
supports an atomic increment but not an atomic read-and-increment instruction (the original value is not

117

-12-

saved).
Because a spinning processor automatically gets control of the critical section when its bit is set, the

time between when one processor finishes and the next processor starts executing the critical section is
reduced. In some sense, this exploits parallelism: the spinning processor does the time-consuming workI
of the atomic operation before the lock is released, decreasing the amount of serial work required to pass
control. Thus, throughput actually increases as a critical section becomes a bottleneck.

Unfortunately, queueing has some bad aspects. It increases lock latency. Each processor must
increment a counter, check a location, zero that location, and set another location; in the other methods,
when there is no contention, the first test-and-set acquires the lock. Thus, when there is contention,
queueing is better; when there is no contention, backoff or simple spin-waiting is better. 3

While processor preemption can yield bad spin-locking performance [Zahorjan et al. 1988], queueing
makes this problem more severe. Normally, if a process holding a lock is preempted, every process
spinning on that lock must wait for it to be re-scheduled. Good performance requires lock holders to not
be preempted. With queueing, however, preempting any spin-waiting process forces all behind it to wait I
if it reaches the front of the queue before being re-scheduled. This can cause lock-step behavior if a small
critical section is accessed frequently. When a process in line is preempted, other processes queue up
behind it; when it is re-scheduled, it uses the lock once, but may then have to wait when it re-accesses the I
lock for other processes that have been preempted in the interim. One way of avoiding this problem, if a
process can be notified before it is preempted, is for it to remove itself from the queue by notifying the
next process in line of that event (e.g., by setting a bit). I

Another problem with queueing is that it makes it more difficult to wait for multiple events. As the
number of processors increases, any centralized resource can become a bottleneck. One way of
increasing throughput is to divide control over a resource among several critical sections, so that a
spinning processor need access only one of the locks to get service. It is easy to see how delays could be
used in this case; each waiting processor could randomly poll a server, and if busy, delay before polling
another server. It is hard to see how queueing could be adapted, however, since a processor would only
be able to wait in one queue at a time.

4.3. Measurement results
We implemented the five software alternatives we have described on the Symmetry Model B with 20 3

processors. The static and dynamic delays varied from 0 to 15 microseconds; it takes approximately one
microsecond on the Symmetry to execute the test-and-set instruction. Since the Symmetry does not
support an atomic read-and-increment instruction, queueing uses an explicit lock (with backoff after each
memory reference) to access the sequence number.

Figure 4.1 is the principal performance comparison: spin-waiting overhead to execute the benchmark
used for Figure 3.1, as a function of the number of processors. To isolate the effect of spinning, we
subtract from the elapsed time to execute the benchmark the "ideal" curve, the time the test would have
taken given free spin-waiting. This leaves just the component due to spin-waiting overhead. We include
spin on read for comparison.

Figure 4.1 confirms our analysis. Although performance varies, all five methods described in this I
section have reasonable performance across the range of conditions. The one processor time reflects lock
latency; queueing has high latency, while all other alternatives have low latency. Queueing would have
better latency on systems with an atomic read-and-increment instruction. As the lock approaches I
saturation, the static delay alternatives have worse performance, because the delays are inappropriate for
small numbers of spinning processors. The performance of the backoff alternatives remains close to the
simple spin-waiting methods by adapting to the number of spinning processors.

When there are high numbers of spinning processors, backoff performs slightly worse than static
delays; some collisions are necessary to maintain appropriate delays. Queueing performs best in this case
by parallelizing the lock handoff. Across the entire spectrum, because of the Symmetry's invalidation- I
based coherence, delaying after each reference is slightly better than delaying after the lock is released.

To demonstrate the potential benefit of backoff relative to static delays, Figure 4.2 compares spin-
waiting overhead for the benchmark as a function of the number of static slots. As can be seen, small

118 a

-13-

20

1-0-
spin on read

U) static release
10 -- backoff rel.0)

-E static ref.
backoff ref.I '-' 5-- queue

I0
1 5 9 13 17

number of processors

Figure 4.1: Principal performance comparison:
Spin-waiting overhead (sec.) in executing the benchmark (measured)Il

Each processor loops I million / P times: acquire lock, do critical section, release lock, and compute.

20

I .-- spin on read
-" -'.- 1 slot
CO 10

CD -0- 4 slots
--E 16 slots

-~64 slots

1 5 9 13 17
number of processors

I Figure 4.2: Spin-waiting overhead (sec.) vs. number of slots

numbers of slots perform better when there are few spinning processors, while larger numbers of slots
perform better when there are many. This tradeoff becomes harsher as the maximum number of spinning
processors increases: 64 slots has much worse low load performance than direct spinning on read, yet that
number of slots might be necessary to avoid poor high load performance in systems with large numbers
of processors. Backoff avoids the tradeoff by performing well in both situations.

Figure 4.3 shows spin-waiting overhead when processors arrive at a spin lock at the same time. A
timestamp is taken before the processors are released from a barrier, each processor then acquires the lock
and bumps a counter; and another timestamp is taken when the last processor acquires the lock. As in
Figure 4.1, we subtract the time to execute this test given free spin-waiting. This result is then
normalized by the number of processors, to yield the average spin-waiting overhead per execution of the
critical section. For clarity, we omit the curves for static and dynamic delays after the lock is released, as

these are everywhere slightly worse than delaying between each reference.

119I.

- 14-1

20

E-'-" spin test&set
o 1-" spin on read
)-- static ref.

- -"="backoff ref. 5
E -"-queue

Z o 5
0

1 5 9 13 17
number of processors 3

Figure 4.3: Spin-waiting overhead in achieving barrier,
normalized by the number of processors (Isec. per processor)

The results in Figure 4.3 are similar to that of Figure 4. 1. Queeing has bad latency in the one
processor case. When two processors arrive together, using a static mean delay performs worst, but all
alternatives perform badly because of the initial contention. As the number of processors increases, the
behavior becomes similar to that of Figure 4. 1, except that queuing does not perform well with high
numbers of processors because it uses backoff to arbitrate for the lock protecting its sequence number.

5. Hardware Solutions 3
In this section, we consider hardware changes to improve spin lock performance. As for the software

alternatives, implementing solutions in hardware also poses tradeoffs. For example, the best cache
coherence mechanism for spin locks may not be the best for normal memory references; some systems,
such as the Balance and the 4D-MP, try to avoid this dilemma by using one bus with invalidation-based
coherence for normal requests and a separate one with distributed-write coherence for test-and-set
variables. Unfortunately, this duplication adds expense that is of little benefit to applications that do not I
spend significant amounts of time spin-waiting. Further, if this separate bus is slower than the normal
bus, as on the Balance, lock latency will suffer.

We consider the question of hardware solutions separately for multistage network and single bus
multiprocessors.

5.1. Multistage interconnection network multiprocessors

Combining networks, by providing parallel access to a single memory location [Pfister & Norton I
19851, can improve the performance of spinning directly on test-and-set. Requests to the same location
that arrive at the same network switch are combined and forwarded as a single request; the result is the
same as if the two requests were made sequentially at the memory module. For example, two test-and-set I
requests would result in one request being forwarded and one request returning immediately with the
value as set; no matter what the current value, only one will succeed if the two requests are made
sequentially. Similarly, a test-and-set and a clear (to release the lock) would be combined to forward the I
set, while the test-and-set request returns having acquired the lock.

Assuming the cycle time of the combining network is the same as a normal network, combining has
good performance for any number of spinning processors. When there is no or little contention, there is I
little combining, and performance is similar to normal spinning on test-and-set. As more processors
spin-wait, combining reduces congestion due to duplicate test-and-sets, and since the request to release
the lock is likely to be combined with a test-and-set at an earlier stage of the network, the time to pass
control of the lock would be reduced. However, since the complexity of combining switches is likely to

120 1

- 15-

increase their latency, better performance might be obtained by a normal network with backoff or
queueing.

Hardware queueing at the memory module, like software queueing, can eliminate polling across the
network; it can also speed passing control of the lock. For this, processors would issue explicit "enter"
and "exit" critical section instructions to the memory module, which would maintain queues of the
processors waiting for each lock. When a processor's "enter" request returns, it has the lock; no polling
across the network is necessary. With software queueing on a system with coherent caches, the processor
releasing the lock notifies the next processor by writing its flag; an invalidation followed by a read miss is
needed before the spinning processor can start executing the critical section. By specially handling
critical section requests, hardware queueing eliminates one network round trip to pass control of the lock.
Perhaps most importantly, lock latency is likely to be better with hardware than with software queueing;
even though hardware queueing increases complexity at the memory module, it reduces the number of
instructions needed to acquire the lock.

Goodman et al. [1989], albeit for a different architecture, have pro-posed using caches to hold queue
links. Their approach stores the name of the next processor in the queue directly in each processor's
cache; when the lock is released, the next processor can be notified without goinp through the original
memory module. To enhance flexibility, they have also proposed that control re.am to software after the
processor is put on the queue for a critical section; the processor is then separately notified by the
hardware when it gets to the front of the queue.

5.2. Single bus multiprocessors

One obvious solution to reducing the number of invalidations caused by spinning on a read would be
to invalidate only if the lock value changes. Before starting an atomic instruction, a processor would
acquire the bus and raise a line to to prevent other processors from accessing their potentially incorrect
cache copies. These copies would then be invalidated only if the value changes. Unfortunately, this
solves only one of the problems with spinning on a read. When the lock is released, there will still an
invalidation, a cache miss by each spinning processor, followed by some number of failing test-and-sets;
each of these consumes bus bandwidth. The time to quiesce is reduced but not eliminated. Unlike
software queueing or backoff, performance degrades as more processors spin.

Rather, we note that more intelligent snooping of bus activity can reduce the cost of spin-waiting. Ve
have already seen this in practice. If hardware keeps caches coheient, processors can spin on a cache
copy instead of repeatedly reading from memory. Similarly, invalidation-based coherence can result in a
cascade of read misses, which do not occur given write-broadcast coherence.

We will present two ways of improving performance by using infc, nation transmitted over the bus.
One eliminates duplicate read requests; the other eliminates redundant test-and-sets. Simple spin-waiting
is expensive because all spinning processors make bus requests to do the same thing, read or test-and-set,
at the same time. This fact can be used to advantage.

Read broadcast [Segall & Rudolph 1984; Karlin et al. 1986] can eliminate duplicate read miss
requests. Each processor's cache controller monitors the bus; if a read occurs corresponding to an invalid
block in its cache, it takes the data off the bus and sets the block to valid. Thus, whenever the cache
copies of spinning processors are invalidated, the first read will fill all caches. Some spinning processors,
however, will have already seen the cache as invalid and will be waiting at the bus to do the read; if a
controller with a pending read observes the bus grant a read on the same location to some other processor,
it should simply wait and take the data returning for that request. This eliminates the cascade of read
misses when spinning on a read, without implementing full distributed-write coherence.

By specially handling test-and-set requests in the cache and bus controllers, we can eliminate the need
for failing test-and-sets to use the bus. This way, processors can spin on test-and-set, acquiring the lock
quickly when it is free, without consuming bus bandwidth when the lock is busy. Provided that specially
handling test-and-sets does not increase the bus or cache cycle time, its performance would be better than
software backoff or queueing. Figure 4.1 shows that neither of these achieves ideal performance on the
Symmetry. As the critical section becomes a bottleneck, backoff performance degrades slightly because
of the overhead of computing random delays; the complexity of queueing similarly increases lock

121

-16- i

latency. I
The idea is to not commit to doing the test-and-set over the bus so long as there is the possibility that

it might fail (return that the lock is busy), and to return immediately without using the bus whenever the
test-and-set would fail if it were the next to execute.

When a processor issues a test-and-set request, it first checks the cache. If the lock is not in the cache
(because it was replaced or invalidated), a read miss occurs. Duplicate read misses can be eliminated
using read broadcast. Once the lock value is in the cache, the test-and-set can return immediately if the I
lock is busy. If the lock is free, the controller can then try to acquire the bus to get the mutual exclusion
needed by the atomic instruction.

While the controller is waiting for the bus, it must monitor the bus activity to determine if it should 3
continue waiting. With distributed-write coherence, if some other processor acquires the bus to do a test-
and-set, it will broadcast the new lock value, and all pending test-and-set requests can be aborted. If the
lock value is invalidated, the processor must convert the test-and-set request back to a read request to see
if the lock is now busy.

Typically, cache and bus controllers do not know the type of atomic instruction making a request,
since the ALU is responsible for performing the logic of the instruction. This information is needed for
the cache to be able to abort pending test-and-sets. When the cache returns control to the processor, the
processor can proceed as if it had exclusive access, whether or not the test-and-set actually acquired the
bus. In one case, it really has the exclusive access needed to acquire the lock; in the other, it can proceed
because its actions will be consistent with some serial ordering of atomic instructions.

6. Conclusions
In this paper, we have shown that simple methods of spin-waiting for mutually exclusive access to 3

shared data structures degrade overall performance as the number of spinning processors increases. We
have proposed and analyzed the performance of several hardware and software solutions to this problem.

For multiprocessors without special support for spin-waiting beyond implementing atomic I
instructions, we have shown that software queueing and a variant of Ethernet backoff have good
performance even for large numbers of spinning processors. Because it is simpler, backoff has better
performance when there is no contention for the lock; queueing, by parallelizing the lock handoff,
performs best when there are waiting processors.

We have also shown that performance can be further improved by specially handling spin lock
requests. On multiprocessors with multistage interconnection networks, explicit hardware queueing of
spin-waiting processors, whether at the memory module or in each cache, can reduce the time to pass
control of the lock to a waiting processor. On shared bus multiprocessors, failing test-and-sets can be
handled with no bus traffic given more intelligent snooping. Whether real workloads will have significant
enough amounts of spin-waiting to make such additional hardware support worthwhile remains an open
question.

Acknowledgments 3
The author would like to thank Mark Donner, Jim Goodman, Dave Keppel, Ed Lazowska, Dave

Wagner, John Zahojan, and the referees for helpful discussions of the issues presented in this paper.

References
[Agarwal et al. 19881

A. Agarwal, R. Simoni, J. Hennessey, and M. Horowitz. An Evaluation of Directory Schemes for
Cache Coherence. Proc. 15th International Symposium on Computer Architecture, pp. 280-289, June,
1988.

[Agarwal & Cherian 19891
A. Agarwal and M. Cherian. Adaptive Backoff Synchronization Techniques. Proc. 16th International
Symposium on Computer Architecture, pp. 396-406, June, 1989.

122 £

-17-

[Anderson et al. 1988]
T. E. Anderson, E. D. Lazowska, and H. M. Levy. The Performance Implications of Thread
Management Alternatives for Shared-Memory Multiprocessors. 1989 ACM SIGMETRICS and
Performance '89 Conference on Measurement and Modeling of Computer Systems, pp. 49-60, May
1989.

[Archibald & Baer 1986]
J. Archibald and J.-L. Baer. Cache Coherence Protocols: Evaluation Using a Multiprocessor
Simulation Model. ACM Transactions on Computer Systems, vol. 4, no. 4, Nov. 1986.

[Baskett et al. 1988]
F. Baskett, T. Jermoluk, and D. Solomon. The 4D-MP Graphics Superworkstation: Computing +
Graphics = 40 MIPS + 40 MFLOPS and 100000 Lighted Polygons per Second. IEEE Spring
COMPCON, pp. 468-471, 1988.

[BBN 1985]
BBN Laboratories. Butterfly Parallel Processor Overview. 1985.

[Beck et al. 1987]
B. Beck, B. Kasten, and S. Thakkar. VLSI Assist for a Multiprocessor. Proceedings of the Second
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-il), pp. 10-20, Oct. 1987.

I [Binder et al. 1975]
R. Binder, N. Abrahamson, F, Kuo, A. Okinawa, and D. Wax. Aloha Packet Broadcasting -- a
Retrospective. AFIPS Conference Proceedings, 1975.

[Chlamtac et al. 1979]
I. Chlamtac, W. Franta, and D. Levin. BRAM: The Broadcast Recognizing Access Method. IEEE
Transactions on Communication, vol. 27, pp. 1183-1190, Aug. 1987.

[Gajski et al. 19831
D. Gajski, D. Kuck, D. Lawrie, and A. Sameh. CEDAR -- A Large Scale Multiprocessor.
Proceedings of the 1983 International Conference on Parallel Processing, pp. 524-529, Aug. 1983.

[Goodman & Woest 1988]
J. Goodman and P. Woest. The Wisconsin Multicube: A New Large-Scale Cache-Coherent
Multiprocessor. Proceedings of the 15th Annual International Symposium on Computer Architecture,
pp. 442-431 , June 1988.

[Goodman et al. 19891
J. Goodman, M. Vernon, and P. Woest. A Set of Efficient Synchronization Primitives for a Large-
Scale Shared-Memory Multiprocessor. Proceedings of the Third International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-IlI), April 1989.

[Graunke 19881
G. Graunke. Personal communication. 1988.

[Herlihy 1988]
M. Herlihy. Impossibility and Universality Results for Wait-free Synchronization. Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed Computing, pp. 276-291, 1988.

[Jayasimha 19871
D. N. Jayasimha. Parallel Access to Synchronization Variables. Proceedings of the 1987
International Conference on Parallel Processing, pp. 97 - 100, Aug. 1987.

[Karlin et al. 1986]
A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive Snoopy Caching.
Proceedings of the 27th Annual Symposium on Foundations of Computer Science, pp. 244-254, Oct.
1986.

[Lamport 1987]
L. Lamport. A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer Systems, vol. 5,
no. 1, 1987.

123

-18- I

[Lovett & Thakkar 19881 5
T. Lovett and S. Thakkar. The Symmetry Multiprocessor System. Proceedings of the 1988
International Conference on Parallel Processing, pp. 303-310, Aug. 1988.

[Metcalfe & Boggs 1976] I
R. Metcalfe and D. Boggs. Ethernet: Distributed Packet Switching for Local Computer Networks.
Communications of the ACM, vol. 19, no. 7, pp. 395-404, July 1976.

[Pfister & Norton 1985]
G. Pfister an, V. Norton. "Hot-Spot" Contention and Combining in Multistage Interconnection
Networks. ACM Transactions on Computer Systems, vol. 3, no. 4, Oct. 198:. •

[Perron & Mundie 1986] I
R. Perron and C. Mundie. The Architecture of the Alliant FX/8 Computer. IEEE COMPCON, 1986.

[Pfister et al. 19851
G. Pfister, W. Brantley, D. George, S. Harvey, W. Kleinfelder, K. McAuliffe, E. Melton, V. Norton,
and J. Weise. The IBM Research Parallel Processor Prototype (RP3): Introduction and .,rchitecture.
Proceedings of the 1985 International Conference on Parallel Processing, August 1985.

[Segall & Rudolph 1984]
Z. Segall and L. Rudolph. Dynamic Decentralized Cache Schemes for an MIMD Parallel Processor.
Proceedings of the 1 th Annual International Symposium on Computer Architecture, June 1984, pp.
340-347. 5

[Sequent 1988]
Sequent Computer Systems, Inc. Symmetry Technical Summary 1988.

[Thacker et al. 1988]
C. Thacker, L. Stewart, and E. Satterthwaite Jr. Firefly: a Multipncessor Workstation. IEEE
Transactions on Computers, vol. 37, no. 8, pp. 909-920, Aug. 1988.

[Zahoran et al. 1988] 3
J. Zahorjan, E. Lazowska, and D. Eager. Spinning Versus Blocking in Parallel Systems with
Uncertainty. Proceedings of the International Seminar on the Performance of Distributed and
Parallel Systems, North Holland, Dec. 1988. 5

1
!
U
I
I
I
I

124

The Effect of Scheduling Discipline on Spin Overhead
in Shared Memory Parallel Systems

John Zahorjan and Edward D. Lazowska
Department of Computer Science and Engineering

Universit, of Washington

Derek L. Eager
Department of Computational Science

University of Saskatchewan

July 1989

Abstract

Spinning, or busy waiting, is commonly employed in parallel processors when threads of execution must
wait for some event, such as synchronization with another thread. Because spinning is purely overhead, it is
detrimental to both user response time and system throughput.

In this paper we study how spinning is affected by two environmental factors, multiprogramming and
data-dependent execution times, and how the choice of scheduling discipline can be used to reduce the
amount of spinning in each case. Both environmental factors increase the variation in delay until the awaited
event occurs. In the case of multiprogramming, the thread that will eventually generate the event must
compete with an uncertain nur'er of other threads for processors. In the case of data-dependent behavior,
the delay until the event occurs may depend strongly on the data presented at runtime.

We are interested in both the extent to which spin times increase over a simple baseline environment when
multiprogramming or data-dependency is introduced and how this increase can be reduced through
scheduling. The scheduling disciplines we examine are independent of the semantics of the parallel
applications. They are thus applicable to the parallel solution of a wide variety of problems and to alternative
approaches to solving an,, single problem independently of algorithm employcd.

Our rnalysis is conducted using simple, abstract models of parallel hardware and software. We investigate
two software models, one representing the archetypical construct of fork/join rendezvous and the other mutual
exclusion using a lock. Our hardware model is most naturally applied to shared memory multiprocessors,
since we assume that each thread is capable of running on many different processors during its execution with
negligible penalty. Both simulation and exact analytic techniques a! ' used to obtain performance results.

This material is based upon work supported by the National Science Foundation (Grants DCR-8352098,
CCR-8619663, and CCR-8703049), the Naval Ocean Systems Center, U S WEST Advanced Technologies,
the Washington Technology Center, Digital Equipment Corporation (the External Research Program and the
Systems Research Center), and the Natural Sciences and Engineering Research Council of Canada. A por-
tion of this work was done while Zahorjan was on sabbatical leave at Laboratoire MASI, University of Paris
VI.

Authors' addresses: John Zahojan and Edward D. Lazowska, Department of Computer Science and En-
gineering FR-35, University of Washington, Seattle, WA 98195; Derek L Eager, Department of Computa-
tional Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

125

-2- 3
1. INTRODUCTION 3

When a thread of control on a parallel machine must wait for some event before proceeding, it may be
reasonable for the thread to spin, that is, to sit in a tight loop continuously checking for the required
condition. The time spent spinning is overhead, and thus diminishes the effective processing rate of the
system.

While the primary factor ultimately limiting speedup in the solution of a particular problem is almost
certainly lack of sufficient parallelism in the algorithm implemented, spin overhead can also have a
significant effect [Gehringer et al. 1987, Zahorjan et al. 1988]. Further, unlike choice of algorithm, the
amount of spinning can be affected by policies implemented in shared software such as the operating system
or library routines. Thus, an understanding of how spinning is affected by alternative policy decisions is 3
needed by software designers.

In this paper we consider how the amount of spinning exhibited by a parallel job is affected by two
environmental influences, data-dependent behavior and multiprogramming, and how ill effects can be U
minimized by proper choice of software control policies. Because the policies we consider are generic, they

are applicable to a wide variety of applications and even to different approaches to parallelizing the same
application.

The dependence of thread times on input data is a natural characteristic of many applications. Because
data dependence leads to unequal thread execution times, it makes balancing of work among threads difficult.
This in turn leads to spinning as threads that finish "early" wait at synchronization points for the slower
threads to catch up.

The motivation for multiprogramming in shared memory parallel computers is much like that in sequential
systems: the desire to keep the processor(s) as usefully busy as possible. In a sequential system
multiprogramming allows the execution of one job to occupy the processor during periods when another job
is unable to make use of it, such as during 1/0 latency. In a parallel system, an individual job typically
exhibits an amount of parallelism that varies over time. Thus, in general no single application can make
constant use of all the processors in the system.

In estimating the effect of data-dependency and multiprogramming on spinning we begin by estimating
the baseline spin overhead, defined to be that occurring in a uniprogrammed system for a job w ii easily
predictable and homogeneous thread execution times. Because the system is uniprogrammed, the U
programmer knows in advance exactly how many physical processors will be available to his job, i.e., the
total number, and in an ideal case can evenly partition the work of the job into a number of threads equal to
the maximum physical parallelism. Thus, together our two assumptions of uniprogramming and predictable I
execution times represent in a rough sense the most favorable conditions under which spinning can be
employed.

To reflect multiprogramming in our model, we assume that the number of processors allocated to a job can 3
vary from run to run, and potentially even during a run. We assume that in response to this variability, each
job splits into a number of threads equal to the total number of physical processors, thus enabling it to take
advantage of any possible actual allocation of processors. On average, however, a single job will have fewer
processors available to it than it has threads. Intuitively, we expect the reduced availability of physical
processors to increase spin times.

To reflect data dependence, we smoothly increase the amount of variation among the execution times of
different threads. As the variation increases, the potential maximal time spent spinning for an event also
increases. Thus, in this case also intuitively we expect higher variation to lead to longer spin times.

It is clear that the amount of spinning realized by an application depends heavily on the precedence
relations among its component threads. Further, it is reasonable to assume that the extent of any increase in
spin overhead caused by environmental factors also depends on job structure. Because of this, we examine
two different basic precedence structures that are exhibited in a large number of realistic parallel applications.
The first involves spinning because of competition among threads. Here we assume a set of largely I
independent threads that use a lock to provide mutual exclusion when accessing some resource. When a
thread wanting the resource finds the lock in use, it spins until the lock becomes free. The second structure
involves spinning because of cooperation among threads. Here we model a set of threads that attempt to 3

126

-3-

synchronize at a barrier. Each thread reaching the synchronization point (that is, the barrier) spins until all
other threads have also reached the barrier.

The combination of the two workloads (locking and barrier synchronization) and three environments
(baseline, multiprogramming, and data-dependency) involved in our study defines a set of six models. Each
model is analyzed to obtain the amount of spin overhead that occurs. Some of the models admit exact
analytical solutions. This is the analysis method of choice because it allows quick solutions given specific
parameterizations of the model and because the analytic formulation of the solution can sometimes be used to
illuminate qualitative aspects of the system, such as asymptotic behavior or optimal parameterizations. in
some cases where it is not possible to obtain an analytical solution, an exact numerical procedure is given to
compute the solution. This provides exact results, but only on a case by case basis. Finally, if neither exact
approach can be applied, simulation is used to obtain estimates of performance.

Our results concerning how the environment affects the amount of spinning allow us to address the
following questions:

For the multiprogramming environment:

" How does the performance of a system in which all processor allocation and thread dispatching
decisions are made by the operating system compare with that of a system in which the operating
system handles only the former while the application handles the latter?

" How can software strategies for thread dispatching be used to reduce the amount of spin overhead?

" How likely is it that dynamic processor allocation strategies, those that may change the allocation to an
individual job during its lifetime, can be superior to static processor allocation policies?

For the data-dependency environment:

" For a fixed amount of data-dependence, how does the time required to achieve the barrier grow with the
number of threads involved?

" For a fixed number of threads, how does barrier time grow with data-dependency?

* How can software strategies employed in the applications program be used to reduce the amount of
spin overhead?

The work is also interesting because the models used make more realistic assumptions about the workload
than most previous works, which have assumed some form of exponentially distributed times for all
components of service.

In Section 2 we discuss in more detail the baseline models used in our study. Sections 3 and 4 present the
multiprogrammed and data-dependent environments respectively. There we investigate the issues involved in
defining appropriate models, and how the models are used to address the questions listed above. Section 5
contains our conclusions.

2. THE BASELINE MODELS

In this section we present the baseline models for the two workloads. As mentioned previously, the
baseline models are useful principally for the purpose of comparison with the multiprogrammed and data-
dependent environments considered subsequently.

2.1. Model Descriptions

The baseline model represents the ideal situation of a well-behaved job running in a controlled
environment. In particular, we assume that there is only a single job in the system and that the execution time
behaviors of its threads are very predictable.

127

-4- U

The baseline models for both workloads represent the hardware as a set of P identical processors and the
software (a single job) as a set of T = P statistically identical threads. The two workload models differ in the I
behavior of the T threads.

For the lock contention workload, each job computes for an exponentially distributed amount of time with
mean C and then attempts to capture the lock. The exponential distribution reflects variation in non-critical I
section work resulting from, for example, conditional execution outside of the critical section or non-
symmetric thread functions. I

When a computing thread requires the lock, if the lock is free the thread immediately captures it.
Otherwise, the thread spins until the lock is released. If multiple threads are spinning when the lock is
released, one of these threads is chosen at random to acquire the lock. The thread releasing the lock returns to
the compute phase. I

A thread obtaining the lock holds it for exactly L time units, and then releases it. This deterministic lock
holding time reasonably approximates a large number of applications using locks. For example, a ubiquitous
use of locks is to protect queues during enqueue and dequeue operations. These uses, and many others, are I
typified by very short lock holding times to perform a deterministic activity. Thus, lock holding times for an
important class of applications are essentially deterministic.

We make the assumption that the effective computation rate of all threads is unaffected by the number of
threads currently spinning. Anderson et al. [1989] have shown that naive implementations of spin locks can
lead to considerable memory bandwidth contention in a bus-based system, but that more careful
implementation of the lock mechanism can virtually eliminate this overhead. We expect the same sorts of
behavior in systems with more complicated memory connection networks.

The baseline model of the barrier synchronization workload is quite similar to the lock contention model.
Once again, there are P processors and T = P threads. Each thread is in one of two states: computing or
spinning. A thread computes for exactly C time units before reaching the barrier. If not all other threads U
have already reached the barrier (impossible for the baseline model but important in the two variations), it
begins to spin. When the last thread reaches the barrier, all threads return to the computing state.

The deterministic compute times in the baseline model reflect the fact that barrier synchronization is most
natural for software in which the thread execution times are very nearly equal. In the third variation of this
model, data-dependency, we relax this assumption.

2.2. Solution of the Baseline Models
In this subsection we discuss the techniques used to analyze the models just described. In later subsections

we discuss the performance measures obtained from the models and their implications. I
For the barrier synchronization workload, our assumption of deterministic compute times yields a model

whose analysis is trivial. In this idealistic case there is no spinning at all in the system and the barrier is
achieved after C time units.

In contrast, the lock contention workload model is somewhat more complicated. Here our assumptions
lead to the M/D/I/N model shown in Figure 1, where the infinite-server station represents the exponential
compute time of each thread, the single FCFS server represents the critical section code executed while the I
lock is held, and the queue of that server represents spinning threads.

This MID/1/N model was used previously to study lock contention by Dubois and Briggs [1982], who
developed an heuristic solution technique for it. Their approach requires the solution of a P th degree I
polynomial, and so involves an iteration. We have developed a new, non-iterative, approximate solution
based on Mean Value Analysis [Reiser and Lavenberg 1980] that takes constant time independent of the
model parameters [Zahorjan 1989]. Our initial investigations show this technique to be both faster and more
reliable than the earlier approximation.

Both heuristic solution approaches gain execution speed by sacrificing some amount of accuracy. Thus,
they are most appropriate when either a very large system is being studied or a large number of examples of
smaller systems need to be analyzed. For this study, we have paid the execution time penalty of an exact
analysis technique to obtain performance results for our examples. The approach we have used is applicable
to systems with up to about 125 processors. This limitation in size is not imposed by computational costs so

128 1

1-5-

ILi0

Figure I - The Baseline Lock Contention Model

Imuch as numerical stability: the solutions can be very sensitive to transition probabilities that involve large
powers of values near one and so are hard to calculate accurately.

The exact solution is found by examining the embedded Markov chain [Kleinrock 19751 defined by the
service time completion instants. The state of this embedded chain represents the number of lock contenders
that are left behind by a thread when it gives up the lock. Because we have deterministic lock holding times
and exponential inter-lock request times, it is a simple matter to compute the distribution of the number of
lock contenders that arrive during a lock service time, and so the transition rates among the states are easily
found. These transition rates induce an upper triangular state transition matrix, whose solution can be found
in time 0 (T 2).

The solution of the embedded chain yields the probabilities P (n), 0 n< T-1, that n contenders
remain just after a departure. These can be transformed into the equilibrium state probabilities Pqi .(n),

0_<n <T-l, in time 0 (T) using the general relation [Dallery 19881
P-,, x , O<_n <T- 1

Pdimmw (n .(n) ,Wa,(n) 0:n5-

where X(n) is the arrival rate of new lock requests when there are already n outstanding and X is the
equilibrium lock throughput rate. (The relationship is obtained by observing that the departure and arrival
instant distributions must be equal.) In our case, because inter-lock request times are exponential the arrival

T-n 1 The equilibrium distribution is completed usingirates X (n) are equal to Ti- -a. Te eulbim dsriuini"opee sn

T-1

P'quib,.,,(T) = I - IPqwu,&,i,t(n). From there, it is a simple matter to compute performance measures from

the equilibrium state distribution.

2.3. Results for Lock Contention Workload

We let C be the unit of time, that is, C is set equal to 1.0. The two remaining parameters, P and L, are
varied in all experiments to show their influence on performance.

Figures 2a and 2b show the amount of spinning that occurs in small (20 processor), medium (50
processor), and large (100 processor) baseline systems. The lock holding time L is chosen for each system
size to achieve the utilizations listed on the X-axes. Thus, for a fixed lock utilization a larger system has a
smaller lock holding time than a smaller system.

Figure 2a gives the mean number of processors spinning as a function of lock utilization. We note that the
absolute number spinning for fixed lock utilization is nearly independent of system size.

Figure 2b gives the fraction of the total processing power of the system that is consumed by spinning on

average, that is, each point of Figure 2a divided by the system size P. (This information can be interpreted

equivalently as the fraction of time each processor spins.) Here we see that the effects of high lock utilization
diminish with system size. For example, our largest system (100 processors) loses only 3% of its processing
power to spinning for a 90% busy lock while our smallest system (20 processors) loses 10%. Thus, there is

reason to expect that, for instance, a database system supporting a large number of users on a highly parallel

I129

-6-3

.S 4- F0.12u
CC
- U)..,

o ~00

4) -0- 100 Processors *0.06- -0-. 100 Processor
o2 =Q

10
-- 50 Processors .4-

4- 20 Processors 0 0.04 - 20 ProcessorE 1 o0o
E l 0 . • . "' . .3 Z 0.02

c IL

2 1 10% 25%/50V750 /90 0 /
10% 25% 50% 75% 90%

Lock Utilization Lock Utilization m

C=1 C=1

Figure 2a - Absolute Number Spinning Figure 2b - Fraction Spinning

processor and using small locking granules (and so having small lock holding times) would be less sensitive I
to lock contention than a smaller system supporting fewer users and using coarser granules (and so longer
lock holding times).

Perhaps more surprisingly, neither large nor small systems are severly handicapped by even a 90% busy
lock. Thus, it would appear that a lock must be an extreme bottleneck before its effects on system
performance become significant. 3
2.4. Results for the Barrier Synchronization Workload

Our baseline barrier synchronization workload model represents the ideal situation in %.,:ich all
computation can be parallelized and allocated perfectly evenly across any number of processors. As U
mentioned previously, this results in threads that naturally complete synchronously and so no spin overhead
occurs. In subsequent sections we examine the extent to which compromising the ideal situation degrades
performance. 5
3. THE MULTIPROGRAMMED SYSTEM

In the multiprogramming environment, we assume that any thread can run on any processor, and that 5
thread execution time is unaffected by processor selection. This assumption ignores some possible second
order effects, such as the cache related benefits of running a thread on the same processor each time it is
dispatched, but is basically accurate for shared memory machines such as the Sequent [Lovett & Thakkar
19881 in which all memory is at a uniform distance from all processors.1

To model a multiprogramming system, we must represent the policy implemented by the scheduler.
Choosing a scheduling policy is much more difficult in a parallel than a sequential system, and to date there is
not much data on which approaches might be preferable. One basic distinction that can be made among these
approaches is that between "thread based" and "job based" policies. In a thread based policy the scheduler
does not use information about which job an individual thread belongs to in deciding when to schedule it.
Thus, in the simplest case, the system maintains a single queue of all ready threads and serves them in round- I
robin fashion. This results in an allocation of processors to jobs that is proportional to the number of threads

'Note that one can view thread service time in our model as including a component to represent the average
overhead due to cache misses and invalidation traffic when a thread switches processors. A more detailed
study to compare fixed with changing execution site strategies should be possible using the same basic struc-
ture as our model. 3

130 3

-7-

I in each job. In contrast, job based schedulers use information about which job each thread belongs to. In the
simplest case, there is a queue of ready threads for each job, and processors circulate in a round-robin fashion
among the queues. Thus, each job receives the same rate of processor allocations independently of the
number of threads it contains.

In this paper we are concerned only with the job based policies. (An earlier paper [Zahorjan et al. 19881
considers thread based scheduling.) Despite this restriction, there are still a considerable number of possible
"basic approaches". Among these are:

Co-Scheduling [Ousterhout 19821
The central idea is to schedule processors in a way that guarantees that all threads of a job are in
service if any of them are. In the case of our model, where all jobs have exactly P threads, all P
processors are swapped from one job to another at scheduling instants.

Static Allocation
A job receives some number A !5 P of processors when it is initiated, and keeps that allocation
throughout its lifetime. This approach is simple, and has been used in distributed environments
[DeWitt et al. 1987] and proposed for use in parallel ones [Chen & Shin 1987].

Dynamic Allocation
The number of processors allocated to a job varies during the lifetime of that job.

We note that from the point of view of the implementation, the first two approaches are considerably
simpler than dynamic allocation. This is true because (a) even given information on the non-spin resource
usage of each thread, it might be hard for the operating system to decide when and how to reallocate
processors, (b) obtaining the resource usage information is problematic since to the operating system a
spinning thread and a computing thread look the same, and (c) some applications may be very sensitive to
changes in their processor allocation, so that the cost of a poor reallocation decision could be high. Further,
from the application's point of view there may not be much benefit to dynamic allocation, since it can be
shown (under somewhat simplified conditions) that a static allocation equal to the average number of
processors the application can use provides speedup no worse than one half that obtained if the application is
always provided as many processors as it can currently make use of [Eager et al. 1989]. Thus, he static
policies seem natural candidates for this initial study.

3.1. The Multiprogramming Models

As in the baseline model, our multiprogramming model considers explicitly only a single job of T=P
threads. The way in which we represent interference by other jobs for use of the P processors of the system
depends on the scheduling policy considered.

For Co-Scheduling, we assume that all P processors are cycled from job to job in a round-robin fashion.
Each job makes use of the processors for deterministic time Q, the quantum length. A cost S is incurred in
switching the processors from one job to another. The effective total number of jobs in the system is a
parameter varied in our experiments. Note that while Co-Scheduling is basically a processor allocation
mechanism, under the assumptions of our model no thread dispatching policy is needed since there are never
more threads than available processors while the job is running.

For all other scheduling policies examined, a single job is allocated a fixed number A < P processors. The
A processors are shared among the T threads of the job in a manner determined by the thread dispatching
policy.

There are basically two approaches to thread dispatching. In the first, the operating system provides this
function. This implies that the dispatching decisions are independent of the "state" of the threads (e.g.
whether the thread is spinning or performing useful work), since in general this information is not av,;:able to
the system. This approach is used in the Dynix [Lovett & Thakkar 1988] and Mach [Young et al. 1987]
operating systems.

131

-8- 1

The alternative approach is to have the application itself perform thread dispatching. The advantage here
is that thread state information is available and can be used in making decisions. This style of thread
scheduling is exhibited by the Presto system [Bershad et al. 1988].

We examine two variations of operating system based thread dispatching. Under the "OS" policy,
threads are served in a strict round-robin fashion, with all A processors being reallocated to new threads of the
same job after each (deterministic) quantum of length Q. There is a cost S for performing the reallocation.
The "Variable OS" policy is similar, but the length of a quantum is adjusted so that the amount of time each
thread spends without a processor is held constant regardless of how few processors have been allocated or
how many threads exist. Here, if W is the target amount of time a thread spends without a processor, we set

Q equal to W T- _A. (This is only an approximation in the case of our model because it ignores the context

switch time S, but the exact expression to achieve an average of W is cumbersome and is closely
approximated by the function above.) The Mach scheduler implements an adaptive Q policy of the same
nature. 3

We also consider two variations of application-based thread scheduling. In the first, "Application",
rotation of processors among threads is again based on quanta of length Q. However, when the quantum for a
processor expires, the application's thread dispatcher is free to make any choice for the next thread to run,
including the thread already running. (The cost to make this choice is always S independent of the decision.) I
In the case of our lock contention workload, the thread dispatcher never preempts a thread currently holding a
lock. In the case of the barrier synchronization workload, those threads with the largest remaining service
requirement are chosen for execution.

Under the last discipline that we consider, "Blocking", each thread runs until it reaches a synchronization
point where it cannot immediately continue. At that time, and that time only, it releases the processor to a
waiting thread. We consider this an application-based strategy because the decision whether to spin or block I
is typically made by the programmer.

3.2. Solution of the Multiprogramming Models 3
In our model, to obtain the performance of a Co-Scheduled system it suffices to obtain the performance of

a uniprogramming system and then "factor in" the context switch overhead and contention for processors
caused by other jobs. In particular, if a job requires time 7--,,o to complete in a uniprogrammed
environment, in a Co-Scheduling environment with a total of n jobs in the system it requires time

Zv,.w(n) = f Zn Q + s

where Q is the quantum length and S is the context switch cost.

To model the other scheduling policies, we simply evaluate a model containing a single job of T = P
threads running on a fixed number A < P of processors. Note that while this represents precisely the fixed I
allocation policies, it also represents in an approximate way systems employing dynamic policies. Here the
fixed allocation in our model reflects the overall average effect of the changing allocation of the real system.
Note also that in modelling the static policies there is no need to make assumptions about the composition of
the multiprogramming mix (for example, we need not assume that all jobs in the system are identical) nor
about the policy used for deciding how many processor to allocate to a job (since we examine the
performance for 1 ! A !5).

For the lock contention workload, the multiprogramming models are too complicated to admit exact
analysis. Further, they are sufficiently complicated that we have been unable to produce reliable analytic
approximations. Thus, we have used simulation to obtain performance estimates.

We have run our simulations using standard confidence interval estimation techniques. In all cases we I
have run the simulations until the width of the 90% confidence intervals are no more than 5% of the point
estimate for the mean value.

The analysis of the barrier synchronization workload model reduces to the analysis of the OS policy alone. I
The optimal application policy is to run those threads that have received the least service so far. This is
equivalent to using the FCFS thread dispatching policy employed by the OS discipline. Thus the Application
policy is identical to the OS policy. Similarly, the Blocking policy is identical to the OS policy when Q=C. I

132

"9-

I Thus, we can model the Blocking policy simply by this parameterization. We therefore restrict our attention
to the analysis of the OS policy.

In contrast to the locking workload model, the barrier synchronization workload model admits an exact
analytical solution. This is advantageous both because it allows solutions of specific examples to be obtained
efficiently and more importantly because the equations describing the solution make clear how performance is
affected by each model parameter.

The key to obtaining the solution is to observe that the barrier is achieved when the last thread obtains all
C units of processor service it requires and that under reasonable assumptions about round-robin scheduling
the last processor to complete service is the processor that is last to obtain its initial quantum of service.

Let the allocation of the A processors to a set of A threads during a quantum of length Q be called a
round. Reaching the barrier requires (in general) a number of rounds. Without loss of generality, label the
threads of the job so that threads I to A are those serviced in round 0 and the remaining threads are numbered
successively according to their position in the round-robin queue. This situation is depicted in Figure 3 for
the specific case of T=5, A=3, Q=l, and C=3.

Thread 234 5121

Round 0 1 2 3 4

Figure 3 - Round Allocation for 5 threads on 3 processors

At the end of round 0, threads 1 through A will have acquired some amount of time 0 _ q < Q of
computation towards the achievement of the current barrier. (This time q is accumulated at the end of the
quantum during which the previous barrier was achieved.) No other thread will have made any progress
toward the barrier. With these definitions, it is a simple matter to show that the following lemma holds:

Lemma:
If Q < C, the barrier is achieved when thread T completes its C units of computation. Otherwise, if
Q _> C, then if q < C the barrier is achieved when thread A completes and if q _ C the barrier is achieved
when thread T completes.

For simplicity of exposition, we consider only the case of Q < C and A < T, so that thread T determines the
completion time of the barrier. The modifications required for the remaining cases are easily obtained.

For Q <zC and A <t, it is clear that thread T completes during the C th round in which it isallocated a

processor, and that when it finishes during that round it will acquire time q = Q]-C time units towards

the next barrier. Examining Figure 3, it is clear that thread T acquires its nth quantum of service during

round _ 1, and so must finish during round Z r 1. Thus, the barrier begins at time q before

the end of round 0 and ends at time q before the ead of round Z. The time to achieve the barrier, B, is

therefore given by

B = q+ 1Z(Q+S)-q] =Z(Q+S)

where S is the context switch time required to reallocate the processors. From this we get that

Average Number Spinning = AQ+S -B

133

-10- 1

Average Number Context Switching = A S 3
and

Average Total Wasted = A - TC I
B

While these results have been obtained for the quantum-based policies, they can be applied to the Blocking
policy in our model by observing that this is equivalent to the Q=C quantum-based policy. U
3.3. Results for Lock Contention Workload

Figures 4a and 4b give basic results illustrating how the amount of spinning varies as a function of the 3
number of processors allocated to a job and the job size. We illustrate specific results only for a job size of
T=50 threads, but the results for other job sizes are similar. The scheduling quantum Q is set equal to 1.0,
which is also the mean inter-lock request time C. The lock holding time L is chosen so that the job would
result in 75% lock utilization if it were run on T processors. The scheduling overhead S is set to 0.01.
(Experiments with the model indicate that performance is affected linearly over a large range for S near 0.01,
but that its effect is small in all cases. This is examined in more detail in Figure 6.) The Variable OS results
are computed by setting parameter W of that policy equal to 1.0, solving for the effective quantum length as a
function of the number of processors allocated, and then analyzing the system using this modified Q.

The X-axis in Figure 4 represents A/T, that is, the ratio of the number of allocated processors to the
number of threads. The Y-axis in Figure 4a gives the average number of processors that are consumed by
overhead (the sum of spinning and context switching). For context switch times that are 1% of compute
times, the vast bulk of this overhead (more than 80% typically) is due to spinning. The Y-axis in Figure 4b
gives the fraction of the allocated processors consumed by overhead. If all jobs in the system were of the I
same type, this would also indicate the amount of overhead in the system as a whole.

-c6 _0.30 -
0 50

CSC

002 -- Vaial OS
3 3- Variable OS a

Aplio -*- Application
-2- Application 4 -5,- Block)2 4- Block 0.10 C
-0. Co-Scheduling C

0 ___ _ ,_ _, ___ ____; ,E"U 0.00 - • • •,

3 10% 30% 50% 70% 90% %3 5%7% %

Fraction Allocated Processor AJF Fraction Allocated Processors AfT

T=50, C=1, 0=1, S=0.01, Ulock=75% T=50, C=1, 0=1, S=0.01, Ulock=75%

Figure 4a - Absolute Number in Overhead Figure 4b - Fraction in Overhead

From Figure 4 it is clear that the two policies that preempt processors without regard to the state of the
thread currently running (the OS and Variable OS policies) suffer a significant performance penalty. For our I
locking workload, this penalty results from the preemption of a thread holding the lock. While this happens
only occasionally, it results in an avalanche of spinning. Because essentially all threads begin spinning before
the lock can be released again, the high contention period for lock access lasts several scheduling quanta, and
the probability that the lock is preempted remains abnormally high for quite some time.

1
134 I

I Figure 4 leads us to conclude that the application should perform thread scheduling. However, another
approach has been suggested. A spin lock technique that "nearly guarantees" that the thread holding the
lock is not de-scheduled has been proposed for use in the NYU Ultracomputer [Edler et al. 19881. However,
because the mechanism is only approximate, some of the degradation illustrated in Figure 4 will still take
place. Also, in general the condition under which one thread can inhibit the progress of others may be quite
complicated, so that embedding this scheduling function in the locking mechanism is not of general use.
Finally, Anderson et al. [1989] have shown that conventional spin lock techniques in bus-based parallel
machines can lead to serious bus loading. The solution to this problem involves creating an ordered queue of
threads waiting for the lock. While this approach solves the bus loading problem, it exacerbates the
scheduling problem. With this locking mechanism the ill effects noted in Figure 4 arise if any waiting thread
is preempted.

Figure 4 also indicates the Co-Scheduling performs somewhat worse than the application-based policies.
The reason for this is that Co-Scheduling runs all competitors for the lock at once, thus maximizing
contention for it. In contrast, the application-based approaches run only a subset of the competitors at any
one time, thus reducing the amount of spinning.

M 8-II
SCo 6'1o -0- Variable OS

.0

0 -*- Application
) .-9- Block

0 -a- Co-Scheduling

E
Z 0 0

0 2 4 6 8 1

Quantum Length 0

T=50, A=35, C=1, S=0.01, Ulock=75%

Figure 5 - Effect of Quantum Length

Figure 5 illustrates how performance is affected by the system choice of scheduling quantum, Q, for a job
with 50 threads and a base lock utilization of 75%. The scheduling policies that may preempt a thread in the
critical section behave very poorly as Q grows. In contrast, the other policies, which are relatively insensitive
to Q, exhibit the opposite behavior due to the effects of context switch overhead for small Q. The relative
insensitivity of these policies is highly desirable, since a real system will most likely exhibit a diversity of
workloads making it difficult to tune parameters to which jobs are highly sensitive.

Figure 6 shows how performance is affected by context switch overhead S for a job with T=50 threads
running on P=35 processors and parameterized so that lock utilization would be 75% if 50 processors were
provided. (The quantum size Q is set to 1.0 for the quantum-based disciplines.) It is straightforward to
interpret S as the efficiency with which a particular hardware and software system can perform this function.
Perhaps a more interesting interpretation, however, is to consider the small S systems to represent coarse
grained parallelism (parallelism at the level of individual procedures, for example) and the large S systems to
represent fine grained parallelism (e.g., performing loop iterations in parallel). The effect of context switch
overhead is nearly linear under all the policies. This is not surprising, since the context switch time under
each policy does not affect the rate at which context switches take place, just their duration. The Variable OS
policy shows the least sensitivity to context switch time because it has the longest effective quantum time for
this parameterization of the model.

135

-12- 5

.0 8-
S

O 6 -0- Variable OS
(-- Application

4- -- Block
- - Co-Scheduling 3

~i 2

E
I

z 0.
€ 0.00 0.05 0.10 0.15 0.20 0.25

Context Switch Time S I
T=50, A=35, C=1, 0=1, Ulock=75%

Figure 6 - Effect of Context Switch Overhead

3.4. Results for Barrier Synchronization Workload
Figure 7 presents the basic effect of the processor allocation A on the performance of a barrier

synchronization job. The results are stated as fractions of allocation consumed by overhead and apply to any
system size T. The compute time C and the quantum length Q are set to 1.0, and the context switch overheadS is set to 0.01. Note that for this parameterization the Blocking and OS policies all equivalent. (No UApplication policy distinct from the OS policy exists.)

0.50 5I-
> 0.40
0

0 0.30-

U0.20 -- OS/ Block

.- 2 -o- Co-Scheduling

. 0.10° I
U. 0.00 , • , ' ' , • , . • • , . • ,

20% 40% 60% 80% 100%

Fraction Allocated Processors A/T i
T=50, C=1, 0=1, S=0.01

Figure 7 - Effect of Allocation (Barrier Workload) I
The striking feature of Figure 7 is the non-monotone behavior of overhead with allocation. This is

explained by the nature of barrier synchronization. When the number of processors allocated divides equally
the number of threads consumed by the barrier (and Q equals C), spinning can be avoided entirely. However,
when the number of processors does not divide the number of threads, spinning must occur. Using the results
of the previous subsection it is easy to show that the worst performance is obtained when the job is allocated
T-1 processors, that is, one less than the number of threads it contains. For large system size T, fraction

2(I+S) of the processors are consumed by overhead under this allocation, or roughly half.

136 I

- 13-

Figure 7 argues that a system that dynamically changes the number of processors allocated to jobs runs the
risk of seriously degrading both system and user performance through the inappropriate usurping of even a
single processor. It is natural in many circumstances for a parallel program to divide work into a number of
pieces equal to the number of processors available to it. Once this is done, its response time and the efficient
use of its processors depend on its processor allocation. A system wishing to change the allocation of a job,
therefore, might be better off always halving the number of processors allocated rather than recapturing just
one. By halving the number, jobs that have forked into a number of pieces working toward a barrier are
guaranteed to always have an allocation that is a divisor of the number of branches in the fork, resulting in
high processor efficiency.

V 0.80-
0.50

60.60 0.40

oi a-W Co-Schedulinco 0 .40 -el- C o-S cheduling o 0.30-
00.40- 00.3

3 4- Block
- Block 0.20•

0.20 C
0 0.10

IA. U -.. LL

,- 0.00 T 0.00
0.0 0.5 1.0 1.5 2.0 0 0.0 0.5 1.0 1.5 2.0

Quantum Length 0 Quantum Length 0

T=50, A=45, C=1, S=0.01 T=50, A=25, C=1, S=0.01

Figure 8a - #Processors Doesn't Divide T Figure 8b - #Processors Divides T

Figure 8 shows how the quantum length affects performance. Because the processor allocation has such a
critical effect on performance, we show results both for an allocation that divides evenly the number of
threads (e.g., 25 processors and 50 threads) and a poor allocation (in particular, 45 processors and 50 threads).

Because the quantum length in this case does not equal the compute time C, there are three distinct classes
of scheduling disciplines to consider. One is the simple quantum-based policies, for example, the OS policy.
These suffer under long quantum lengths because their only means to relinquish the processor is a quantum
expiration. This causes completed threads to spin waiting for the barrier to be achieved while unfinished
threads are waiting in the ready queue.

The Blocking discipline avoids the problem just mentioned, and for that reason seems like the natural
policy to select when barrier synchronization is involved. However Figure 8 points out that in some
circumstances the quantum-based policy can give better performance. This occurs when the processor
allocation does not match the number of threads involved in the barrier. In this case using a small quantum
length allows the processors to be shared roughly equally among all threads, so that they all finish at about the
same time. Under the blocking policy, the threads originally allocated processors reach the barrier before any
other threads begin computing. In the worst case, if there is only one more thread than allocated processors,
all but one processor is wasted while this last thread is computing. Figures 7 and 8 together argue that a
system that dynamically adjusts processor allocations might need to choose a small quantum to protect itself
against poor allocation decisions.

The final policy, Co-Scheduling, seems to offer very good performance for this workload. (This is in fact
the kind of workload for which Co-Scheduling was originally proposed.) In a real system, however, Co-
Scheduling might perform much worse. The problem is that in general the number of threads involved in a
barrier might be less than the number of processors in the system. In this case, during each quantum in which
the machine is allocated to that job there are processors left idle. Ousterhout's original paper proposed a

137

-14-

number of approaches to addressing this problem, however none of them appear capable of eliminating the 3
effect. Thus, our model presents a perhaps unattainably optimistic bound on Co-Scheduling performance.

*u0.60 1I II

0.50-o!

OS I Block : #Processors Doesn't Divide T

0.30-

U.Z
0.20

£ 010 Co-Sched i!ing
U-

- OS / Block: #Processors Divides T
* 0.00 • " •i • I

0.00 0.05 0.10 C.15 0.20 0.25 0.30

Swap Overhead S

Figure 9 - Effect of Context Switch Overhead 3
Figure 9 shows how performance is affected by context switch time. Once again, the degradation is

basically linear. In the ,uantum-based policies the swap overhead is given by - and in the Blocking
S

policy by S
Q i

4. THE DATA-DEPENDENT SYSTEM

To study the effect of data-dependence, we modify our baseline model in a different manner. As in the
baseline model, we assume that the hardware is dedicated to a single job of T=P threads. However, we relax I
the assumption of deterministic lock holding times (for the lock contention workload) or determiniqtic
compute times (for the barrier synchronization workload). In particular, we allow these parameters to be
uniformly distributed from (1-f)M to (1+f)M. where M is the original deterministic time and f, 0-_f!1, is a I
parameter that reflects the amount of data-dependency. This method allows us to define a continuous
spectrum of models where the service times vary from deterministic to randomly selected between zero and
twice the mean. 3

There are a number of applications of our data-dependency model. For parallel systems supporting very
large granularity, such as the Sequent, this variation in service times may reflect actual data-dependency. The
assumptions made in our model apply most naturally to this type of system. Other interpretations of variation
in execution time may be more natural for other kinds of systems. For systems supporting medium to small
granularity, the service time variation reflects uncontrollable environmental influences on thread times such
as page faults and cache hits in 10 buffers. For fine granularity systems, such as those parallelizing individual
loops, the variation reflects differences due to conditional code or inability to perfectly distribute the work I
[Polychronopoulos & Kuck 19871.

4.1. Solution of the Data-dependent Models 3
The data-dependent model for the locking workload is an M/G/1/N system. It is t.us very similar to the

model for the baseline case (shown in Figure 1). The solution technique used is identical to that case, i.e., the
analysis of the embedded Markov chain given by task completion instants. The critical computation here is
the distribution of the number of arrivals that occur during a lock holding time given that there are n threads
in their computation phases at Lne beginning of the period. For a specific lock holding time of duration t, the
probability that exactly d threads will finish during the holding time is 3

138 1

- 15-

since each computing job makes a lock request after an independently selected exponential amount of time
with mean C. The transition probabilities are now found by integrating the lock holding time t over the
interval ((1-f)L,(+f)L).

To find the average number of spinning processors for the barrier synchronization workload, we start with
the observation that

C(1+1)

sn = E[amount of spinning I cycle length = x] Prob[cycle length = x] dx

E[cycle length]

Now from
P-1

E [amount of spinning I cycle length = x]= j (x-t)Prob[tlxldt
i=I t=T(1-f)

where Prob[tlxj is the probability density at t of the compute time of a thread that is not the slowest given
that the slowest thread has compute time x, and from

Prob[cycle length = xJ = P {xT(1-f]

where Prob[cycle length = x] is the probability density of the cycle length distribution at x, it is possible to
derive that

E[number spinning processors] = P (P - l)f
(P+ I)+(P -I)f

4.2. Results for Data-dependent Models
Figure 10 shows the number of spinning processors as a function of spread f for the lock contention

workload. Each line in the graph corresponds to different values of lock utilization obtained in the baseline
(0% spread) case. We give results for the specific case of a job of 50 threads, but the results for other job
sizes are very similar.

CM 3.0

0_ 2.5
(n)

0 2.0-

1.5 - Ulock =90%
-O Ulock =75%

t 1.0- p -- Ulock=50%
-,- Ulock = 25%

0.5

0.0 " I • " • • • " I: 0% 20% 40% 60% 80% 100%

Spread Factor f

T=50, C=1

Figure 10 - Effect of Variability in Lock Holding Times

139

-16-

The clear conclusion to be drawn from these results is that variation in lock holding times of the
magnitude we have considered is not a significant factor in the amount of spinning exhibited, regardless of the
overall lock utilization. For a 90% busy lock, there is less than a 5% difference between the maximum
amount of spinning (f =1) and the minimum (f =0). While the relative difference is greater for low lock
utilizations (as much as 30% for a 10% busy lock), the absolute amount of spinning there is negligible in any
case.

C . 0.4"-
40 0

Cnh

30 -- 100 Threads .- 100 Threads

-0. 50 Threads .- 20 Threads
S20 - 20 Threads 20.2-Q- 20-

°0.1 I

0 -.

I 0 '. 0.04 T
• 0 " "' "' ' " "0% 20%/40%6 0 %80% 00%0% 20%40%60%80%00% I

Spread Factor f Spread Percentage f

Figure 11a - Mean Number Spinning Figure l1b - Mean Fraction Spinning 1

The conclusion for the barrier synchronization workload is quite different, however. Figure 1 la gives the I
amount of spinning as a function of the spread f for jobs of 20, 50, and 100 threads. As can be seen,. the
absolute amount of spinning increases quickly with f for all system sizes. Figure 1 lb gives the fra-tion of
the total number of processors involved in spinning (or equivalently, the mean fraction of time each processor I
spends spinning) From this graph it is clear that the percentage degradation caused by variance in compute
times is nearly independent of problem size.

Our analytic results for the barrier synchronization model provide further insight into this situation. Recall
that the expected number of spinning processors is given by

P(P-1)f
(P +1)+(P-I)f

From this, it is easy to show that the maximum amount of spinning occurs at f =1, which agrees with our

intuition. Here the expected number of spinning processors is -, or roughly 50% of the total number of 1
processors for all but the smallest of systems.

For a fixed f we can examine the asymptotic behavior as the problem size grows, i.e., as P -4 -. In this

case, the total number of spinning processors approaches f- , so that the fraction of the system involved in 3casef

overhead goes to -f-. Figure 1 lh shows this asymptotic limit. Note that even a relatively small system of

20 threads closely approaches this worst case limit, and the 50 thread system has performance
indistinguishable from it. I
4.3. Using Finer Granularity to Reduce Spin Times for the Barrier Synchronization Workload

The results of the previous subsection indicate that even small variations in compute times can lead to
large increases in spin times for the barrier synchronization workload. A natural question is what can be done
to reduce this degradation in performance. 3

140 I

- 17-

In the case that the T threads each represent inherently sequential work, it appears that nothing can be
done to improve the situation. In this case, both the time to achieve the barrier and the total amount of
computation to be performed are dictated by the problem, and ;o consequently is the amount of spinning.

On the other hand, imagine that the workload exhibits a great deal of parallelism, and that many
independent tasks have been aggregated to form the T threads. This would be the case, for example, in
parallelizing a FOR loop consisting of L s nP tasks (where each task is an independent iteration). For n !51
this problem is identical to that just studied, and no reduction in spinning is possible. However, for n > 1 it
might be possible to reduce the time required to reach the barrier through "self-scheduling"
[Polychronopoulos & Kuck 1987]. In contrast to "static" scheduling policies that allocate all tasks to threads
at the onset of the computation, self-scheduling policies delay (part of) the allocation decision to runtime. For
example, each thread might initially be allocated one task, with the remaining tasks being put on a queue of
work yet to be assigned. Each time a thread finishes its current task it takes the next task off the work queue.
This dynamic allocation of work to threads helps reduce barrier times because all processors are kept busy as
long as there are any unstarted tasks.

We study two kinds of self-scheduling policies, fixed [Kruskal & Weiss 1985] and variable
[Polychronopoulos & Kuck 19871. Under the fixed policies, each thread takes k tasks off the queue at a time,

for some fixed k. (Note that the fixed self-scheduling policy with k=n is equivalent to the static scheduling
case studied in the previous section.) In general, smaller k provide better balancing of load (and so shorter
barrier times) but also result in higher overheads due to the cost of operations on and contention for the work
queue [Dritz & Boyle 1987].

The variable self-scheduling policy of Polychronopoulos and Kuck [1987] attempts to balance these two
effects. Here the threads initially take large numbers of tasks each visit to the queue, but near the end of tle

computation take small numbers. In particular, their scheme requires each thread to take [7" tasks, where r

is the number of tasks currently on the work queue.

Figures 12 and 13 present the results of simulations that compare these two approaches to scheduling. We
assume in all cases that each task has an execution time uniformly distributed between C(1-f) and C(1+f)
(and that C=l). Further, we assume that operations on the work queue are infinitely fast. (We present results
for non-negligible overhead subsequently.) These results, while optimistic of achievable performance, serve
to highlight the ability of each discipline to balance load in the face of variation in task service times.

6-

5

4 ,- k=1
,, -o- P&K
o -e- k=3

3-
C

=E 2 -t- ' " '"

0.0 0.2 0.4 0.6 0.8 1.0

Spread Factor f

50 Threads, 150 Tasks, Task Time = 1.0
Figure 12 - Effect of Partitioning Scheme

We consider first the robustness of the disciplines with respect to the variation in the task execution times,
as reflected through the parameterf. Figure 12 compares three policies in a system with 50 threads executing
a total of 150 tasks. The fixed policy with k=3 thus corresponds to pure static assignment: all tasks are

141

Figure 13a -Spread Factor f =1.01

0 10

.C 8
7 10 lOTasks

.2 6 4,50OTasks
5 0200 TasksI

F 4 0 STasks

0 1 2 3 4 5 630ak
Discipline

50 Threads, Task Time =1.03

Figure 13b - Spread Factor f =1.0
C
a .

1.8

I I 1.6
1.4 U 0 ak

13 150Tasks

S1.2 * 200 Tasks
UU ~~~~~~~ __ _ _ _ _ _ _ _ _ _250Tasks

a 300 Tasks

E Discipline

50 Threads, Task Time -1.0

Figure 13c -Spread Factor f =0.5
10

9

71
6 U 100 Tasks

.2 5 a 150 TasksI
E 9 200 Tasks

1--_ _ __ _ _ _ __ _ _ _ __ _ _ _ 2 250 Tasks
C a 300 Tasks30 1 2 Discipline 5 6 7

50 Threads, Task Time =1.0

Figure 13d -Spread Factor f =0.51

0 1.6

f. 1.4 10 lOTasks
0 1.3 13 150Tasks

1.2 0 200 Tasks
1.17* 250 Tasks

0 1 2 3 4 5 6 7 a300 TasksI
E Discipline

50 Threads, Task Time =1.03

142

-18-

assigned before any of them have executed. In this sense, it is a worst-case approach with respect to load
balancing. The k=1 policy on the other hand is the best-case with respect to load balancing. Finally, the
variable policy (marked "P & K" in the figure) is a compromise between the two.

Figure 12 corroborates the evidence of the previous section: barrier times are very sensitive to variation in
task execution times. However, note that the k=1 policy is much less sensitive than the other two. Further, it
appears that the impact of variation "tops out" for this policy, while both the variable scheme and the purely
static scheme show strongly rising barrier times at the limit of the variation possible under our model.

Figure 13 compares the static and self-scheduling policies for various problem sizes and amounts of
variation in task service times. There are 50 threads available in all cases. Figures 13a and 13b correspond to
the maximum variation case, f = 1.0. The former gives the absolute mean time required to achieve the barrier
while the latter shows the ratio of the barrier time to that occurring under "perfect balancing", i.e., the total
number of tasks divided by the number of threads (since each task has mean time 1.0). Figures 13c and 13d
are the corresponding results for spread f = 0.5. In each case the X-axis gives the parameter k of the fixed
self-scheduling policy indicating the number of tasks taken per visit to the work queue, except that at value 0
on the X-axis we plot the results for the variable self-scheduling policy of Polychronopoulos and Kuck. (For
k=n the fixed self-scheduling policy is equivalent to the purely static policy.)

We make a number of observations based on these results:

(a) The variable allocation scheme works relatively well.

In our examples the variable scheme achieves performance intermediate between that obtained for k =1 and
k=2. Since we are ignoring work queue contention here, an actual system should show even better relative
performance. In all cases we examined, the variable scheme achieved better performance than the fixed
scheme requiring an equal number of visits to the work queue.

(b) An improper choice of k for the fixed policies can greatly imbalance the load, independent of variation in
task execution times.

For example, in the case of k=2 with 150 tasks, the first 100 tasks are allocated equally among the threads,
but the remaining 50 tasks can be executed by at most 25 threads. Thus, this choice results in worse
performance than the purely static case, k=3, since the imbalance caused by an inappropriate group size

exceeds that caused by variation in task workloads.

We note that this effect is the same as that discussed in Section 3.3 where we observed that in a
multiprogramming system the number of processors allocated to a job should be a divisor of the number of
threads involved in a barrier.

(c) The effect of task service time variation decreases with increasing numbers of tasks.

3 In graphs 13b and 13d, larker numbers of tasks per thread lead to performance closer to the best possible
(modulo the "extraneous" results due to effect (b)). Further, the variation in performance due to choice of
k declines with increasing number of tasks. Thus, factoring in work queue overheads, we expect to use
larger k for larger problems.

This effect is easily explained by the central limit theorem, which says that the variation in the sum of n
independent random variables decreases with increasing n. Thus, as the ratio of tasks to threads increases,
the variation in individual task service times becomes less important.

Using a model similar to ours, Kruskal and Weiss [1985] concluded that the choice of k was not critical to
performance. It appears from our figures that their conclusion was based at least partially on observation
of only those cases for which n was substantial, thus muting the benefit of smaller k.

143

-19- U

We end this section with a brief examination of the effect of overhead in accessing the work queue. This
overhead has two components, the path length costs associated with obtaining work descriptors from the I
queue and possible wait time due to contention for access to a shared data structure. A number of researchers
have investigated the performance of alternative approaches to maintaining the work queue [Dritz & Boyle
1987, Anderson et al. 1989]. Approaches applicable to large numbers of processors naturally require that the
work queue be partitioned to allow concurrent access by more than one processor. We reflect these
approaches in our model by allowing concurrent access to the work queue. While this is slightly optimistic
(no approach can completely avoid competition while allowing access by any processor to any unfinished I
work), it is adequate for our purposes here. Finally, we note that the opposite extreme (assuming a naive
implementation of the work queue that allows sequential access only) makes the comparison of the static and
self-scheduling approaches very clear: self-scheduling is beneficial only if task granularity and variance in
task service times are very large.

9

I-I

8

OvrhadSU

7- M Dynamic
0 -- - 1 k=1

E '01* k=2
o 6 * StaticI

E- 5.
0.0 0.2 0.4 0.6 0.8 1.0

Overhead S5

50 Threads. 200 Tasks, Task Time = 1.0
Figure 14 - Effect of Queue Access Overhead S 3

Figure 14 shows the performance of the static and self-scheduling policies for a system containing 50
threads and 200 tasks. The tasks have service times uniformly distributed between 0.0 and 2.0 (i.e., f = 1.0).
We show the time required to achieve the barrier for overhead times from 0.0 to 1.0 (i.e., overhead times are
given as fractions of the mean task completion time). We assume that the initial assignment of tasks to
processors is performed without overhead, since this can be done statically. For instance, for the k=2 policy
each thread is assigned its initial two tasks without overhead. A total of 50 overhead periods are subsequently [
required to dequeue the 100 tasks remaining after the initial assignment.

The main conclusion evident from Figure 14 is that the variable self-scheduling policy is quite robust with
respect to overhead, in contrast to the fixed alternatives. The explanation for this lies in the fact that the I
variable policy behaves essentially as though it were a purely static policy applied to - threads with n tasksn

assigned to each thread, where n equals the total number of tasks divided by T. In other words, the behavior
of variable self-scheduling is controlled by the large initial assignments made to a fraction of its threads. For I
instance, in our example model with 50 threads and 200 tasks, thirteen threads are each given four tasks by
the initial assignment and typically one of these groups of four tasks is the critical path in performing the
barrier. This means that barrier completion time is controlled by a set of threads that do nearly no dynamic I
scheduling. This explains the insensitivity of the dynamic policy to overhead costs, as observed in Figure 14.
This observation also explains the relatively high sensitivity of the dynamic policy to variation in task service
time, as illustrated in Figure 12, as well as its performance relative to the k=l and k=n policies when
overhead is negligible (Figure 13).

I
144 I

-20-

5. CONCLUSIONS
We have examined how spin times in shared memory parallel systems are affected by two factors,

multiprogramming and variability in thread execution times, using two canonical workloads. In both cases
we have found that spin times, which represent overhead, can increase dramatically in some circumstances.
We have investigated software strategies that may be implemented either in the operating system or by the
user to reduce the sensitivity of the program to these effects.

In the specific case of multiprogramming, we have shown that decisions about how to allocate processors
to jobs and how to schedule the threads of a job on its processors must be made cooperatively. This implies
either the use of a global strategy that performs fixed allocation (i.e., does not change the allocation of
processors to a job once the job has begun executing) or the use of a dynamic allocation strategy that involves
a close alliance between the system's processor allocator and the application's thread scheduler. We have
noted that in the range of workloads and systems considered, there appears to be very little difference in mean
performance between synchronization via spinning and synchronization via blocking.

Our investigation of the effect of thread service time variability has demonstrated that the time required to
achieve a barrier is extremely sensitive to even small (and tightly bounded) variations in individual thread
completion times. In the case that the number of independent tasks to be performed exceeds the number ofIprocessors available, we have compared static scheduling of the tasks to both fixed and variable self-
scheduling policies. We have found that the variable self-scheduling policy provides good overall
performance and is by far the most robust with respect to overhead costs.

ACKNOWLEDGEMENTS

Partial support for this work was generously provided by Bell Communications Research, Boeing
- Computer Services, Digital Equipment Corporation, Tektronix, Inc., the Xerox Corporation, and the

Weyerhauser Company. The Centre National de la Recherche Scientifique, France, and Laboratoire MASI,
University of Paris VI, provided generous support and resources for Zahorjan for the year sabbatical leave
during which part of this work was performed.

REFERENCES

[Anderson 1989]
Thomas E. Anderson. The Performance Implications of Lock Management Alternatives for Shared-
Memory Multiprocessors. To appear, Proc. 1989 International Conference on Parallel Processing.

[Anderson et al. 19891
Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. The Performance Implications of
Thread Management Alternatives for Shared-Memory Multiprocessors. To appear, Proc. ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems (May 1989); forward by
the program committee to IEEE Trans. on Comp..

[Bershad et al. 1988]
Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. PRESTO: A System for Object-Oriented
Parallel Programming. Software: Practice & Experience 18,8 (August 1988), pp. 713-732.

[Chen & Shin 1987]
Processor Allocation in an N-Cube Multiprocessor Using Gray Codes, IEEE Trans. on Comp. C-36,12
(Dec. 1987).

[Dallery 1988] Yves Dallery, personal communication, Laboratoire MASI, Universite Pierre et Marie Curie,
Paris, France.

[DeWit et al. 1987]
David J. DeWitt, Raphael Finkel, and Marvin Solomon, The Crystal Multicomputer Design and
Implementation Experience, IEEE Trans. on Soft. Eng. SE-13, 8 (Aug. 1987).

I 145

I

-21- I

[Dritz & Boyle 1987] I
Kenneth W. Dritz and James M. Boyle. Beyond "Speedup": Performance Analysis of Parallel Programs.
Technical Report ANL-87-7, Mathematics and Computer Science Division, Argonne National Laboratory,
February 1987.

[Dubois & Briggs 19821
M. Dubois and F.A. Briggs. An Approximate Analytical Model for Asynchronous Processes in
Multiprocessors. Proc. 1982 International Conference on Parallel Processing, pp. 290-297.

[Eager et al. 1989]
Derek L. Eager, John Zahoijan, and Edward D. Lazowska. Speedup Versus Efficiency in Parallel
Systems. IEEE Trans. on Comp. C-38,3 (March 1989). I

[Edler et al. 1988]
Jan Edler, Jim Lipkis, and Edith Schonberg. Process Management for Highly Parallel UNIX Systems,
Ultracomputer Note #136, Courant Institute (April 1988).

[Gehringer et al. 1987]
Edward F. Gehringer, Daniel P. Siewiorek, and Zary Segall. Parallel Processing: The Cm* Experience,
Digital Press (1987).

[Kleinrock 1975]
L. Kleinrock. Queueing Systems: Volume I: Theory. John Wiley and Sons, 1975.

[Kruskal & Weiss 1985]
Allocating Independent Subtasks on Parallel Processors, IEEE Trans. on Soft. Eng. SE-11, 10 (Oct. 1985).

[Lovett & Thakkar 1988]
The Symmetry Multiprocessor System, Proc. 1988 Ind. Conf. on Par. Proc. (Aug. 1988). 3

[Ousterhout 1982]
John K. Ousterhout. Scheduling Techniques for Concurrent Systems. Proc. 3rd International Conference
on Distributed Computing Systems (October 1982), pp. 22-30. 3

[Polychronopoulos & Kuck 1987]
C.D. Polychronopoulos and D.J. Kuck. Guided Self-Scheduling: A Practical Scheduling Scheme for
Parallel Supercomputers. IEEE Trans. on Comp. C-36,12 (December 1987), pp. 1425-1439.

[Reiser & Lavenberg 1980]
M. Reiser and S.S. Lavenberg. Mean Value Analysis of Closed Multichain Queueing Networks, JACM
27, 2 (April 1980).

[Young et al. 1987]
Michael Young et al. The Duality of Memory and Communication in the Implementation of a
Multiprocessor Operating System, Proc. 1 1th ACM Symp. on Op. Sys. Prin. (Nov. 1987).

[Zahorjan et al. 1988]
John Zahoijan, Edward D. Lazowska, and Derek L. Eager. Spinning Versus Blocking in Parallel Systems
with Uncertainty. Proc. International Symposium on Performance of Distributed and Parallel Systems,
December

1988.

[Zahoran 1989]
The Efficient Computation of Lock Contention Times in Parallel Systems, In preparation. 3

I
I

146 I

I

7

I
I

I Thread Management for Shared-Memory

I Multiprocessors

Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy

Department of Computer Science and Engineering

University of Washington

Seattle WA 98195

September 30, 1989

I Abstract

Threads, or "lightweight processes," have become a common and necessary component of new

languages and operating systems. Threads allow the programmer or compiler to express, create,

and control parallel activities, contributing to the structure and performance of programs.

In this paper, we discuss the many alternatives that present themselves when designing a

support system for threads on a shared-memory multiprocessor. These alternatives influence the

ease, granularity, and performance of parallel programming. We conclude with a brief survey of

three contemporary thread management systems (Mach, Presto, and Multilisp), using them to

illustrate the issues raised in this paper.

Index Terns - thread, multiprocessor, operating system, parallel programming, performance

This material is based on work supported by the National Science Foundation (Grants CCR-8619663, CCR-

8700106, CCR-8703049, and CCR-8907666), the Naval Ocean Systems Center, the Washington Technology Center,

and Digital Equipment Corporation (the Systems Research Center and the External Research Program). Anderson

was supported by an IBM Graduate Fellowship, and Bershad by an AT&T Ph.D. Scholarship.

I
i 147

I
I

1 Introduction

Disciplined concurrent programming can improve the structure and performance of computer pro-

grams on both uniprocessor and multiprocessor systems. As a result, support for threads, or

"lightweight processes," has become a common element of new operating systems and program-

ming languages.

A thread is a sequential stream of instruction execution. A thread differs from the more tradi-

tional notion of a "heavyweight process" in that it separates the notion of execution from the other

state needed to run a program (e.g., an address space). A single thread executes a portion of a

program, while cooperating with other threads that are concurrently executing the same program.

Much of what is normally kept on a per-heavyweight-process basis can be maintained in common

for all threads in a single program, yielding dramatic reductions in the overhead and complexity of

a concurrent program.

Concurrent programming has a long history. The operation of programs that must handle

real-world concurrency (e.g., operating systems, database systems, and network file servers) can

be complex and difficult to understand. Dijkstra [Dijkstra 68 and Hoare [Hoare 74, Hoare 78]

showed that these programs can be simplified when structured as cooperating sequential threads 3
that communicate at discrete points within the program.

Multiprocessors offer an opportunity to use concurrency in parallel programs to improve perfor-

mance, as well as structure. Moderately increasing a uniprocessor's power can require substantial

additional design effort, as well as faster and more expensive hardware components. But, once

a mechanism for interprocessor ccmmunication has been added to a uniprocessor design, the sys-

tem's peak processing power can be increased by simply adding more processors. A shared-memory I
multiprocessor is one such design in which processors are connected by a bus to a common memory.

Multiprocessors lose their advantage if this processing power is not effectively utilized. If there I
are enough independent sequential jobs to keep all of the processors busy, then the potential of a

multiprocessor can be easily realized: each job can be placed on a separate processor. However, if

there are fewer jobs than processors, or if the goal is to execute single applications more quickly, I
then the machine's potential can only be achieved if individual programs can be parallelized in a

cost-effective manner. Three factors contribute to the cost of using parallelism in a program:

Thread Overhead: The work, in terms of processor cycles, required to create and control a thread

must be appreciably less than the work performed by that thread on behalf of the program.

Otherwise, it is more efficient to do the work sequentially, rather than use a separate thread

on another processor.

148 I

Communication Overhead: Again in terms of processor cycles, the cost of sharing information

between threads must be less than the cost of simply computing the information in the context

of each thread.

i Programming Overhead: A less tangible metric than the previous two, programming overhead

reflects the amount of human effort required to construct an efficient parallel program.

High overhead in any of these areas makes it hard to build efficient parallel programs. Costly

threads can only be used infrequently. Similarly, if arranging communication between threads is

slow, then the application must be structured so that little inter-thread communication is required.

Finally, if managing parallelism is tedious or difficult, then the programmer may find it wise to sac-

rifice some speedup for a simpler implementation. Few algorithms parallelize well when constrained
by high thread, communication, and programming costs, although many can flourish when these

costs are low.

Low overhead in these three areas is the responsibility of the thread management system, which3- bridges the gap between the physical processors (the suppliers of parallelism) and an application

(its consumer). In this paper, we discuss the issues that arise in designing a thread management

system to support low-overhead parallel programming for shared-memory multiprocessors. In the

next section, we describe the functionality found in thread management systems. Section 3 dis-

cusses a number of thread design issues. In Section 4, we survey three systems for shared-memory

multiprocessors, Mach [Tevanian et al. 87], Presto [Bershad et al. 88], and Multilisp [Halstead 85],

* focusing our attention on how they have addressed the issues raised in this paper.

1=2 Thread Management Concepts

2.1 Address Spaces, Threads, and Multiprocessing

An address space is the set of memory locations that can be generated and accessed directly by a

program. Address space limitations are enforced in hardware to prevent incorrect or malicious pro-I
grams in one address space from corrupting data structures in others. Threads provide concurrency

within a program, while address spaces provide failure isolation between programs. These are or-

thogonal concepts, but the interaction between thread management and address space management

defines the extent to which data sharing and multiprocessing are supported.

The simplest operating systems, generally those for older-style personal computers, support

only a single thread and a single address space per machine. A single address space is simpler andU faster since it allows all data in memory to be accessed uniformly. Separate address spn.es are

* 149

I
I

not needed on dedicated systems to protect against malicious users; software errors can crash the

system but at least are localized to one user, one machine. 3
Even single-user systems can have concurrency, however. More sophisticated systems, such as

Xerox's Pilot [Redell et al. 80], provide only one address space per machine, but support multiple

thi-ads within that single address space. Because any thread can access any memory location,

Pilot provides a compiler with strong type-checking to decrease the likelihood that one thread will

corrupt the data structures of another.

Other operating systems, such as UNIX, provide support for multiple address spaces per ma-

chine, but only one thread per address space. The combination of a UNIX address space with one

thread is called a UNIX process;, a process is used to execute a program. Since each process is

restricted from accessing data that belongs to other processes, many different programs can run at

the same time on one machine, with errors confined to the address space in which they occur. Pro-

cesses are able to cooperate by sending messages back and forth via the operating system. Passing

data through the operating system is slow, however; only parallel programs that require infrequent

communication can be written using threads in disjoint address spaces.

Instead of using messages to share data, processes running on a shared-memory multiprocessor

can communicate directly through the shared memory. Some UNIX systems allow memory regions

to be set up as shared between processes; any data in the shared region can be accessed by more

than one process without having to send a message by way of the operating system. The Sequent

Symmetry's DYNIX [Sequent 88] and Encore's UMAX [Encore 86] are operating systems that

provide support for multiprocessing based on shared memory between UNIX processes.

More sophisticated operating systems for shared-memory multiprocessors, such as CMU's Mach

and DEC SRC's Taos [Thacker et al. 88], support multiple address spaces and multiple threads

within each address space. Threads in the same address space communicate directly with one an-

other using shared memory; threads communicate across address space boundaries using messages.

The cost of creating new threads is significantly less than that of creating whole address spaces,

since threads in the same address space can share per-program resources. Figure 1 illustrates the

various ways in which threads and address spaces can be organized by an operating system.

2.2 Basic Thread Functionality 3
At its most basic level, a thread consists of a program counter (PC), a set of registers, and a stack

of procedure activation records containing variables local to each procedure. A thread also needs

a control block to hold state information used by the thread management system: a thread can

be running on a processor, ready-to-run but waiting for a processor to become available, blocked

150 I

0 000
one address space one address space

one thread multiple threads

II
0 0 000 000

multiple address spaces multiple address spaces
one thread per address space multiple threads per address space

Figure 1: Threads and address spaces

I waiting for some other thread to communicate with it, or finished. Threads that are ready-to-run

are kept on a ready-list until they a, , picked up by an idle processor for execution. There are four

basic thread operations:

Spawn: A thread can create or "spawn" another thread, providing a procedure and arguments to
be run in the context of a new thread. The spawning thread allocates and initializes the new

thread's control block and places the thread on the ready-list.

Block: When a thread needs to wait for an event, it may block (saving its PC and registers) and

* relinquish its processor to run another thread.

Unblock: Eventually, the event for which a blocked thread is waiting occurs. The blocked thread

is marked as ready-to-run and placed back on the ready-list.

Finish: When a thread completes (usually by returning from its initial procedure), its control

block and stack are deallocated, and its processor becomes available to run another thread.

When threads can communicate with one another through shared memory, synchronization

is necessary to ensure that threads don't interfere with each other and corrupt common data

structures. For example, if two threads each try to add an element to a doubly-linked list at the

same time, one or the other element may be lost, or the list could be left in an inconsistent state.

151

Ii
I

Locks can solve this problem by providing mutually exclusive access to a data structure or region

of code. A lock is acquired by a thread before it accesses a shared data structure; if the lock is held

by another thread, the requesting thread blocks until the lock is released. (The code that a thread

executes while holding a lock is called a critical section.) By serializing accesses, the programmer

can ensure that threads only see and modify a data structure when it is in a consistent state.

When a program's work is split among multiple threads, one thread may store a result read by

another thread. For correctness, the reading thread must block until the result has been written.

This data dependency is an example of a more general synchronization object, the condition vari-

able, which allows a thread to block until an arbitrary condition has been satisfied. The thread

that makes the condition true is responsible for unblocking the waiting thread.

One special form of a condition variable is a barrier, which is used to synchronize a set of threads

at a specific point in the program. In the case of a barrier, the arbitrary condition is "have all

threads reached the barrier?" If not, a thread blocks when it reaches the barrier. When the final I
thread reaches the barrier, it satisfies the condition and raises the barrier, unblocking the other

threads. I
If a thread needs to compute the result of a procedure in parallel, it can first spawn a thread

to execute the procedure. Later, when the result is needed, the thread can perform a join to wait

for the procedure to finish and return its result. In this case, the condition is "has a given thread

finished?" This technique is useful for increasing parallelism, since the synchronization between

the caller and the callee takes place when the procedure's result is needed, rather than when the

procedure is called.

Locks, barriers and condition variables can all be built using the basic block and unblock

operations. Alternatively, a thread can choose to spin-wait by repeatedly polling until an anticipated

event occurs, rather than relinquishing the processor to another thread by blocking. Although spin-

waiting wastes processor time, it can be an important performance optimization when the expected

waiting time is less then the time it takes to block and unblock a thread. For example, spin-waiting

is useful for guarding critical sections that contain only a few instructions.

2.3 Why Not UNIX Processes?

It might seem that UNIX processes could be used directly as threads for parallel programming.

Processes, like threads, can be spawned, blocked, unblocked and finished (in UNIX terms, fork,

pause, kill, and exit); given shared memory, processes can inexpensively share data with each

other.

Unfortunately, high overheads make the UNIX process interface ill-suited for many kinds of par- I

152 I

allel programming. Creating a new process As expensive since it entails initializing and maintaining

a great deal of state information. For instance, page tables, swap images and file descriptors are

all kept on a per-process basis. Threads can be more efficient to c -ate and manage than processes

since they share this state. Further, controlling a UNIX process, once started, is slow and cumber-

some because the operating system interface and implementation were not originally intended to

I support multiprocessing.

The difference in cost between UNIX processes and threads can be several orders of magnitude.

On the Sequent Symmetry, a shared-memory multiprocessor, it takes about twenty milliseconds

to spawn and terminate a "null" process. On the same hardware using a carefully implemented

thread management system, a "null" thread can be spawned and terminated in as few as thirty

microseconds, within an order of magnitude of the time to do a procedure call. Further, a context-

switch between processes on the Sequent takes about si hundred rn;croseconds, whereas a thread

context-switch takes about twenty. The high cost of UNIX processes pievents them from being

sed to reflect the inherent structure of Le concurrency in many applications.

3 Issues In Thread Management

This section considers the issues that arise in designing and implementing a thread management

system as they relate to the programmer, the operating system, and the performance of parallel

programs.

3.1 Programmer Issues

3.1.1 Programming Models

The flexibility to adapt to different programming models is an important attribute of thread sys-

tems. Parallelism can be expressed in many ways, each requiring a different interface to the thread

system and making different demands on the performance of the underlying implementation. At

the same time, a thread system that strives for generality in handling multiple models is likely to

be well-suited to none.

One general principle is that the programmer should choose the most restrictive form of synchro-

*ization that provides acceptable performance for the problem at hand. For coordinating access to

shared data, messages are a more restrictive, and for many kinds of parallel programs, more appro-

priate form of synchronization than locks and condition variables. Threads share information by

explicitly sending and receiving messages to one another, as if they were in separate address spaces,

except that the thread system uses shared memory to efficiently implement message-passing.

153

I
I

There are some cases where explicit control of concurrency may not be necessary for good

parallel performance. For instance, some programs can be structured around a Single Instruction

Multiple Data (SIMD) model of parallelism. With SIMD, each processor executes the same in-

struction in lockstep, but on different data locations. Because there is only one program counter,

the programmer need not explicitly synchronize the activity of different processors on shared data,

thus eliminating a major source of confusion and errors.

Perhaps the simplest programmer interface to the thread system is none at all: the compiler is

complete , responsible for detecting and exploiting parallelism in the application. The programmer

can then write in a sequential language; the compiler will make the transformation into a parallel

program. Nevertheless, the compiled program must still use some kind of underlying thread system,

even if the programmer does not. Of course, there are many kinds of parallelism that are difficult

for a compiler to detect, so automatic transformation has a limited range of use.

3.1.2 Language Support

Threads can be in tgrated into a programming language; they can exist outside the language as a I
set of subroutines that explicitly manage parallelism; or they can exist both within and outside the

language, with the compiler and programmer managing threads together.

Language support for threads is like language support for object-oriented programming or

garbage collection - it can be a mixed blessing. On one hand, the compiler can be made re- I
sponsible for common bookkeeping operations, reducing programming errors. For example, locks

can automatically be acquired and released when passing through critical sections. Further, the

types of the arguments passed to a spawned procedure can be checked against the expected types

for that procedure. This is difficult to do without compiler support.

On the other hand, language support for threads increases the complexity of the compiler, an

important factor if a multiprocessor is to support more than one programming language. Further,

the concurrency abstractions provided by a single parallel programming language may not do quite

what the programmer wants or needs, making it necessary to express solutions in ways that are

unnatural or inefficient.

A reasonable way of getting most of the benefits of language support without many of the

disadvantages is to define both a language and a procedural interface to the thread management

system. Common operations can be handled transparently by the compiler, but the programmer

can directly call the basic thread management routines when the standard language support proves

insufficient.

154 1

I
I

3.1.3 Granularity of Concurrency

The frequency with which a parallel program invokes thread management operations determines

its granularity. A fine-grained parallel program creates a large number of threads, or uses threads

that frequently block and unblock, or both. Thread management cost is the major obstacle to fine-

grained parallelism. For a parallel program to be efficient, the ratio of thread management overhead

to useful computation must be small. If thread management is expensive, then only coarse-grained

parallelism can be exploited.

More efficient threads allow programs to be finer-grained, which benefits both structure and

performance. First, a program can be written to match the structure of the problem at hand, rather

than the performance characteristics of the hardware on which the problem is being solved. Just

as a single-threaded environment on a uniprocessor can prevent the programmer from composing a

program to reflect the problem's logical concurrency, a coarse-grained environment can be similarly

restrictive. For example, in a parallel discrete-event simulation, physical objects in the simulated

system are most naturally represented by threads that simulate physical interactions by sending

messages back and forth to one another; this representation is not feasible if thread operations are

too expensive.

Performance is the other advantage of fine-grained parallelism. In general, the greater the length

of the ready-list, the more likely it is that a parallel program will be able to keep all of the available

processors busy. When a thread blocks, its processor can immediately run another thread provided

one is on the ready-list. With few threads though, as in a coarse-grained program, processors idle

while threads do I/O or synchronize with one another.

The performance of a fine-grained parallel program is less sensitive to changes in the number of

processors available to an application. For example, consider one phase of a coarse-grained parallel

program that does fifty CPU-minutes worth of work. If the program creates five threads on a five

processor machine, the phase finishes in just ten minutes. But, if the program runs with only four

processors, then the execution time of the phase doubles to twenty minutes: ten minutes with four

processors active followed by ten minutes with one processor active. (Preemptive scheduling, which

could be used to address this problem, has a number of serious drawbacks, which are discussed in

jSection 3.2.2.) If the program had originally been written to use fifty threads, rather than five, then

the phase could have finished in only thirteen minutes - a reasonable degradation in performance.

Of course, one could argue that the programmer erred in writing a program that was dependent

on having exactly five processors. The program should have been parameterized by the number

of processors available when it starts. But, even so, good performance can't be ensured if that

number can vary, as it can on a multiprogrammed multiprocessor. We consider further the issues

155

I
I

of multiprogramming in the next section.

3.2 Operating System Issues U

3.2.1 Multiprogramming

Multiprogramming on a uniprocessor improves system performance by taking advantage of the

natural concurrency between computation and I/O. While one program waits for an I/O request, m

the processor can be running some other program. Because the processor and I/O devices are kept

busy simultaneously, more jobs can be completed per unit time than if the system ran only one

program at a time.

A multiprogrammed multiprocessor has an analogous advantage. Ideally, periods of low par-

allelism in one job can be overlapped with periods of high parallelism in another job. Further,

multiprogramming allows the power of a multiprocessor to be used by a collection of simultane- 3
ously running jobs, none of which by itself has enough parallelism to fully utilize the multiprocessor.

3.2.2 Processor Scheduling I
Processor scheduling can be characterized by whether physical processors are assigned directly to

threads or are first assigned to jobs and then to threads within those jobs. The first approach,

called one-level scheduling, makes no distinction between threads in the same job and threads 3
in different jobs. Processors are shared across all runnable threads on the system so that all

threads make progress at relatively the same rate. In this case, threads from all jobs axe placed

on one ready-list that supplies all processors, as shown in Figure 2. Although this scheme makes

sense for a uniprocessor operating system, it has some unpleasant performance implications on a I
multiprocessor.

The most serious problem with one-level scheduling occurs when the number of runnable threads

exceeds the number of physical processors, because preemptive scheduling is necessary to allocate m

processor time to threads in a fair manner. With preemption, a processor can be taken away

from one thread and given to another at any time. In a sequential program, preemption has a 3
well-defined effect: the program goes from the running state to the not-running state as its one

thread is preempted. The effect of preemption on the performance of a sequential program is 3
also well-defined: if n CPU-intensive jobs are sharing one processor in a preemptive, round-robin

fashion, then each job receives I/nth the processor and is slowed down by a factor of n (modulo

the preemption and scheduling overhead).

For a parallel program, though, the effects of "untimely" processor preemption on performance

156 3

Processors,

Job A: thread 3

I Job C: thread 2

Job A: thread 5 Common threadI ready-list

Job B: thread 9

Job G: thread 4

Figure 2: One-level thread scheduling

can be more dramatic. In the previous section, we saw how a coarse-grained program can be

slowed down by a factor of two when the number of processors is decreased from five to four. That

program exemplified a problem that occurs more generally with preemption and barrier-based

synchronization. The program had an implicit barrier, which was the final instruction in the phase.

Until all threads reached that instruction, the program could not continue. When one processor

was removed, it took twice as long to reach the barrier because not all threads within the job could

3 make progress at an equal rate.

Preemptive multiprocessor scheduling also affects program performance when locks are used,5but for a different reason than with barriers. Suppose a thread holding a lock while in a critical

section is unexpectedly preempted by the operating system. The lock will remain held until the5 thread is rescheduled. As threads on other processors try to acquire the lock, they will find it held

and be forced to block. It is even possible that, as more threads block waiting for the lock to be

freed, the number of that job's runnable threads drops to zero and the application can make no

progress until the preempted thread is rescheduled. The overhead of this unnecessary blocking and

unblocking slows down the program's execution.

In the previous section, we saw how fine-grained parallelism can improve a program's perfor-

mance by increasing the chance that a processor will find another runnable thread when its current

thread blocks. Unfortunately, a fine-grained parallel program that "packs" the ready-list interacts

157

U
I

Processors

P3 p

bb D thread ![1 A- tbr -n l 3
Ih A thrpad .1

Job D: thread 12 Inh A: thrp;d 7

Job D: thread 9 Job A: thread 10

Job D: thread 5 Job-specific

Job D: thread 16 thread ready-lists

Figure 3: Two-level thread scheduling I
badly with the behavior of a one-level scheduler. In particular, when a program's thread blocks I
in the kernel on an I/O request, the parallelism of the program can only be maintained if the

kernel can schedule another of the program's threads in place of the one that blocked. This benefit, 5
though, comes at the cost of increased -remption activity and diminished overall performance.

The problems of one-level scheduling are addressed by two-level schedulers. With a two-level

scheduler, processors axe first assigned to a job, and then threads within that job are executed

only on the assigned processors. Each job has its own ready-list, which is used only by the job's

processors, as shown in Figure 3. Thread preemption may no longer be necessary with a two-level

scheduler since a preempted thread will only be replaced by another thread from the same job. 3
Further, for long intervals, a processor runs only threads from the same application, so the cost of

switching between threads is kept low.

In a two-level scheduling system, processors can be allocated to jobs either statically or dy-

namically. A static two-level scheduler never changes the number of processors given to a job from

its initial allocation; if some of those processors are needed by another job, the operating system

must preempt all of the job's processors. A dynamic scheduler can adapt the number of processors I
assigned to each job according to changing conditions.

Dynamic two-level scheduling can give better performance, because it overlaps periods of poor

parallelism in one job with periods of high paralielism in another. One difficulty with a dynamic I
scheduler is that it requires more information from an application describing the current processor

requirements. As a result, though, dynamic scheduling can also more easily handle changes in the

158 I

number of running jobs. For example, when a job finishes, its processors can be re-allocated to a

running job whose parallelism is increasing. To avoid the problems of one-level scheduling, though,

it is crucial that the operating system coordinate with each application when it needs to preempt

processors (e.g., to avoid preempting a processor when it would seriously affect performance). A

dynamic scheduler always has the option, when it needs processors and no application has any

available, of reverting to a static policy.

3.2.3 Kernel- vs. User-Level Thread Management

Processor scheduling controls the allocation of processors to jobs. The operating system must

be responsible for processor scheduling because processors are a hardware resource and shifting a

processor from one job to another involves updating per-processor address space hardware registers.

Spawning a thread so that it runs on an already allocated processor, however, does not require

modifying privileged state. Thus, thread management and scheduling within a job can be done

entirely by the application instead of by the operating system. In this case, thread management

operations can be implemented in an application-level library. The library creates virtual processors

using the operating system's processor scheduling interface, and schedules the application's threads

on top of these virtual processors.

Unlike processor allocation, where a single system-wide scheduling policy can be used, thread

scheduling policies benefit from being application-specific. Some applications perform well if their

threads are scheduled according to some fixed policy, such as first-in-first-',ut or last-in-first-out,

but others need to schedule threads according to fixed, or even dynamically changing priorities.

For example, consider a parallel simulation where each simulation object is represented by its own

thread. Different objects become sequential bottlenecks at different times in the simulation; the

amount of parallelism can be increased by preferentially scheduling these objects' threads.

It is difficult to provide sufficient thread scheduling flexibility with kernel-level threads. While

the kernel could define an interface that allows each application to select its thread scheduling

policy, it is unlikely that the system designer could foresee all possible application needs.

Thread management involves more than scheduling. A tradeoff exists between user- and kernel-

level thread management. A user-level implementation provides more flexibility and better perfor-

mance; implementing threads in the kernel guarantees a uniformity that eases the integration of

threads with system tools.

The downside of having many custom-built thread management systems is that there is no
"standard" thread. By implication, a kernel-level thread management system defines a single,

system-wide thread model that is used by all applications. Operating systems that support only

159

I
I

one thread model, like those that support only one programming language, can more easily provide

sophisticated utilities, such as debuggers and performance monitors. These utilities must rely on I
the abstraction and often the implementation of the thread model, and a single model makes it

easier to provide complete versions of these tools since their cost can be amortized over a large

number of applications. Peripheral support for multiple models is possible, but expensive.

A standard thread model also makes it possible for applications to use libraries, or "canned"

software utilities. In the same sense that a standard procedure calling sequence sacrifices speed for

the ability to call into separately compiled modules, a standard thread model allows one utility to

call into another since they both share the same synchronization and concurrency semantics.

It is important to point out that two-level scheduling does not imply that threads are imple- 5
mented at the application level; the job-specific ready queues shown in Figure 3 could be main-

tained either within the operating system or within the application. Also, a user-level thread

implementation does not imply two-level scheduling, even though threads are being scheduled by

the application. This implication only holds in the absence of multiprogramming, or in cases where

processors are explicitly allocated to jobs. For example, a user-level thread implementation built on

top of UNIX processes that share memory suffers from the same problems relating to preemption

and I/O as do one-level kernel threads because both are scheduled in a job-independent fashion.

3.3 Performance

The performance of thread operations determines the granularity of parallelism that an application

can effectively use. If thread operations are expensive, then applications that have inherently I
fine-grained parallelism must be re-structured (if that is even possible) to reduce the frequency of

those operations. As the cost of thread operations begins to approach that of a few procedure calls, 3
several issues become performance-critical that, for slower operations, would merely be second-order'

effects. 3
Simplicity in the thread system's implementation is crucial to performance [Anderson et al. 89].

There is a performance advantage to building multiple thread systems, each tuned for a single type 3
of application. Even simple features that are needed by only some applications, such as saving and

restoring all floating point registers on a context switch, will markedly affect the performance of 3
applications that do not need the functionality. Each context switch takes only tens of instructions;

a feature that adds even a few more instructions must have a large compensating advantage to be 5
worthwhile. For example, the ability to preemptively schedule threads within each job makes the

thread management system more sluggish at several levels, because preemption must be disabled

(and then reenabled) whenever scheduling decisions are being made. These scheduling decisions

160

I
U

are on the critical path of all thread management operations.5 Although kernel-level thread management simplifies the generation and maintenance of system

tools, it increases the baseline cost of all thread management operations. Just trapping to the

operating system can cost as much as the thread operation itself, making a kernel implementation

unattractive for high-performanc applications. Further, the generality that must be provided by a5kernel-level thread scheduler hurts the performance of those applications needing only basic service.

Kernel-level threads are less able to "cut corners" by exploiting application-specific knowledge.

With a user-level thread system, the thread management system can be stripped down to provide

exactly the functions needed by an application and no more. User-level thread operations also

avoid the cost of trapping to the kernel.

Other performance issues have less to do with what a thread system does, than with how

it goes about doing it. For example, using a centralized ready-list can limit performance forIapplications that have extremely fine-grained parallelism. The ready-list is a shared data structure

that must be locked to prevent it from being modified by multiple processors simultaneously. Even

if the ready-list critical sections consist only of simple enqueue and dequeue operations, they can

become a sequential bottleneck, since there is little other work involved in spawning/finishing- or£ blocking/unblocking a thread. An application for which thread overhead is twenty percent of the

total execution time, and half of that overhead is spent accessing the ready-list, then its maximum

3 speedup (the time of the parallel program on P processors divided by the time of the program on

one processor) is limited to ten.

5 The bottleneck at the ready-list can be relieved by giving each processor its own ready-list. In

this way, enqueueing and dequeueing of work can occur in parallel, with each processor using a3 different data structure. When a processor becomes idle, it checks its own list for work, and if that

list is empty, it scans other processors' lists so that the workload remains balanced.

Per-processor ready-lists have another nice attribute: threads can be preferentially scheduled

on the processor on which they last ran, thereby preserving cache state. Computer systems use

caches to take advantage of the principle of locality, which says that a thread's memory references

are directed to or near locations that have been recently referenced. By keeping references close

to the processor in fast cache memory, the average time to access a memory location can be kept

low. On a multiprocessor, a thread that has been re-scheduled on a different processor will initially

find fewer of its references in that processor's cache. For some applications, the cost of fetching5 these references can exceed the processing time of the thread operation that caused the thread to

migrate.3 The role of spin-waiting as an optimization technique changes in the presence of high-performance

3 161

I
I

Basic Mach Presto Multilisp

Spawn thread-create;thread-resume Thread::new; Thread::start (future...) I
Block thread-suspend Thread::sleep Touch unresolved future.

Unblock thread-resume Thread::wakeup When future is resolved. 3
Finish thread-terminate Thread::terminate Resolve this future.

Table 1: The Basic Operations of Thread Management Systems I
thread operations. If a thread needs to wait for an event, it can block, relinquishing its processor,

or spin-wait. A thread must spin-wait for low-level scheduler locks, but in application code a thread

should block instead of spin if the event is likely to take longer than the cost of the context switch. i
Even though context switches can be implemented efficiently, reducing the need to spin-wait, a

hidden cost is that context switches also reduce cache locality. I
4 Three Contemporary Thread Systems 3
We now outline three contemporary thread management systems for multiprocessors: Mach, Presto,

and Multilisp. The choices made in each system illustrate many of the thread management issues 5
raised in the previous section.

The thread management primitives for each of these systems are shown in Table 1. The table

is organized to indicate how the primitives in one system relate to those in the others, as well as

those provided by the basic thread interface outlined in Section 2.2. j
Mach is an operating system derived from and compatible with 4.3BSD UNIX, but including

extensions to support distributed and parallel programming. Mach supports multiple threads within 3
an address space. Its thread management functions are implemented in the Mach kernel. Since

Mach's underlying thread implementation is shared by all parallel programs, system services such 3
as debuggers and performance monitors can be economically provided.

Mach's scheduler uses a priority-based one-level scheduling discipline. Because Mach allocates

processors to threads in a job-independent fashion, a parallel program running on top of the Mach

thread primitives (or even a user-level thread management system based on those primitives) can

Isuffer from anomalous performance profiles due to ill-timed preemptive decisions made by the

one-level scheduling system.

Presto is a user-level thread management system implemented on top of Sequent's DYNIX

operating system. DYNIX provides a Presto program with a fixed nun'her of UNIX processes

that share memory. The Presto run-time system treats these processes as virtual processors and 3
162 1

schedules the user's threads among them. Presto's thread interface is nearly identical to Mach's.5 Presto is distinguished from most other thread systems in that it is structured for flexibility.

Presto is easy to adapt to application-specific needs because it presents a uniform object-orientedIinterface to threads, synchronization, and scheduling. The object-oriented design of Prestv encour-

ages multiple implementations of the thread management functions and so offers the flexibility to.5 efficiently accommodate differing parallel programming needs.

Presto has been tuned to perform well on a multiprocessor; it tries to avoid bottlenecks in

the thread management functions through the use of per-processor data structures. Presto does

not provide true two-level scheduling, even though the thread management functions (e.g., thread

scheduling) are implemented in an application library accessible to the user, DYNIX, the base oper-

ating system, schedules the underlying virtual processors (UNIX processes) any way that it chooses.

Although a Presto program can request that its virtual processors not be preempted, the operat-Iing system offers no solid guarantee. As a result, kernel preemption threatens the performance of

Presto programs in the same was as it does Mach programs.

Although Mach and Presto are implemented differently, the interfaces to each represents a

similar style of parallel programming in which the programmer is responsible for explicitly spawning

new threads of execution and for synchronizing their access to shared data. This style is not

accidental, but reflects the basic function of the underlying hardware - processors communicating

through shared memory. One criticism often made of this style is that it forces the programmer to

think about coordinating many concurrent activities, which can be a conceptually difficult task.

Multilisp demonstrates how thread support can be integrated into a programming language in

order to simplify writing parallel programs. In Multilisp, a multiprocessor extension to LISP, the

basic concurrency mechanism is the future, which is a reference to a data value that has not yet

been computed. The future operator can be included in any Multilisp expression to spawn a new

thread which computes the value of the expression in parallel. Once the value has been computed,

the future resolves to that value. In the meantime, any thread that tries to use the future's value

in an expression automatically blocks until the future is res& - _d. The language support provided

by Multilisp can be implemented on top of a system like Mach or Presto using locks and condition

variables.

With Multilisp, the programmer does not need to include any synchronization code beyond the

future operator; the Multilisp interpreter keeps track of which futures remain unresolved. By con-

trast, using the Mach or Presto thread primitives, the programmer must add calls to the appropriate

synchronization primitives wherever the data is needed. Multilisp, like Presto, uses per-processor

ready-lists to reduce contention in scheduling operations.

3163

I
I

5 Summary

This paper has examined some of the key issues in thread management for shared-memory multi- 1
processors.

Shared-memory multiprocessors are now commonplace in both commercial and research com-

puting. These systems can easily be used to increase throughput for multiprogrammed sequential i
jobs. However, their greatest potential - as yet not fully realized - is for accelerating the execution

of single, parallelized programs.

We have seen that traditional operating system processes are insufficient for expressing other I
than coarse-grained parallelism. A thread mechanism, constructed at the operating system level,

the user level, or both, can help to remedy this problem by reducing the cost of creating and

controlling parallelism.

As programmers make use of fi&...grained parallelism, the design and implementation of the i
thread management system becomes increasingly crucial. Modern thread management systems

must address the programmer interface, the operating system interface, and performance optimiza- I
tions; language support and scheduling techniques for multiprogra-mmed multiprocessors are two

areas that require further research. 3
References I
[Anderson et al. 89] Anderson, T. E., Lazowska, E. D., and Levy, H. M. The Performance Implica-

tions of Thread Management Alternatives for Shared Memory Multiprocessors. In 1989
A CM SIGMETRICS and Performance '89 Conference on Measurement and Modeling cf I
Computer Systems, pages 49-60, May 1989.

[Bershad et al. 88] Bershad, B., Lazowska, E., and Levy, H. PRESTO: A System for Object-
Oriented Parallel Programming. Software Practice and Experience, 18(8):713-732, Au- I
gust 1988.

[Dijkstra 68] Dijkstra, E. W. Cooperating Sequential Processes. In Programming Languages, pages
43-112. Academic Press, 1968. a

[Encore 86] Encore Computer Corporation. UMAX 4.2 Programmer's Reference Manual, 1986.
[Halstead 85] Halstead, R. Multiisp: A Language for Concurrent Symbolic Computation. ACM a

Transaction on Programming Languages and Systems, 7(4):501-538, October 1985.

[Hoare 74] Hoare, C. A. R. Monitors: An Operating System Structuring Concept. Communications f
of the ACM, 17(10):549-557, October 1974.

[Hoare 78] Hoare, C. A. R. Communicating Sequential Processes. Communications of the ACM,
21(8):666-677, August 1978. I

[Redell et al. 80] Redell, D. D., Dalal, Y. K., Horsley, T. R., Lauer, H. C., Lynch, W. C., McJones,
P. R., Murray, H. G., and Purcell, S. C. Pilot: An Operating System for a Personal
Computer. Communications of the ACM, 23(2):81-92, February 1980.

164 £

[Sequent 88] Sequent Computer Systems, Inc. Symmetry Technical Summary, 1988.
[Tevanian et al. 87] Tevanian, A., Rashid, R. F., Golub, D. B., Black, D. L., Cooper, E., and Young,

M. W. Mach Threads and the Unix Kernel: The Battle for Control. In Proceedings of
the 1987 USENIX Summer Conference, pages 185-197, 1987.

[Thacker et al. 881 Thacker, C. P., Stewart, L. C., and Satterthwaite, Jr., E. H. Firefly: A Multi-
processor Workstation. IEEE Transactions on Computers, 37(8):909-920, August 1988.

16

i

I
I

I
I

1 165

3 Lightweight Remote Procedure Call

Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy

- Department of Computer Science and Engineering
University of Washington

-- Seattle, WA 98195

Abstract ring semantics and large-grained protection model of
RPC. For the common case of same-machine communi-

Lightweight Remote Procedure Call (LRPC) is a corn- cation passing small, simple arguments, LRPC achieves
munication facility designed and optimized for commu- a factor of three performance improvement over more
nication between protection domains on the same ma- traditional approaches.
chine. The granularity of the protection mechanisms used

In contemporary small-kernel operating systems, ex- by an operating system has a significant impact on
isting RPC systems incur an unnecessarily high cost the system's design and use. Some operating sys-
when used for the type of communication that pre- tems [Mealy et al. 66, Ritchie & Thompson 74] have
dominates - between protection domains on the same large, monolithic kernels insulated from user programs

machine. This cost leads system designers to coalesce by simple hardware boundaries. Within the operating
weakly-related subsystems into the same protection do- system itself, though, there are no protection bound-
main, tradin- safety for performance. By reducing the aries. The lack of strong firewalls, combined with the
overhead of same-machine communication, LRPC en- size and complexity typical of a monolithic system,
courages both safety and performance. make these systems difficult to modify, debug and val-

LRPC combines the control transfer and communi- idate. Further, the shallowness of the protection hier-
cation model of capability systems with the program- archy (typically only two levels) makes the underlying
ming semantics and large-grained protection model of hardware directly vulnerable to a large mass of compli-
RPC. LRPC achieves a factor of three performance cated operating system software.
improvement over more traditional approaches based Capability systems supporting fine-grained protec-
on independent threads exchanging messages, reducing tion were suggested as a solution to the problems of
the cost of same-machine communication to nearly the large-kernel operating systems [Dennis & Van Horn 66].
lower bound imposed by conventional hardware. In a capability system, each fine-grained object exists

LRPC has been integrated into the Taos operating in its own protection domain, but all live within a single
system of the DEC SRC Firefly multiprocessor work- name or address space. A process in one domain can

station. act on an object in another only by making a protected
procedure call, transferring control to the second do-I main. Parameter passing is simplified by the existence

1 Introduction of a global name space containing all objects. Unfortu-
nately, many found it difficult to efficiently implement

This paper describes Lightweight Remote Procedure and program systems that had such fine-grained pro-
Call (LRPC), a communication facility designed and tection.
optimized for communication between protection do- In contrast to the fine-grained protection of cap&-
mains on the same machine. bility systems, some distributed computing environ-

LRPC combines the control transfer and communi- ments rely on relatively large-grained protection mech-
cation model of capability systems with the program- anisms: protection boundaries are defined by machine

This material is based on work supported by the National boundaries [Redell et al. 80]. Remote Procedure Call
Science Foundation (Grants CCR-8619663, CCR-8700106 and (RPC) [Birrell & Nelson 84] facilitates the placement
CCR-8703049), the Naval Ocean Systems Center, U S WEST of subsystems onto separate machines. Subsystems
Advanced Technologies, the Washington Technology Center, and

Digital Equipment Corporation (the Systems Rese.rch Center present themselves to one another in terms of inter-
and the External Research Program). Anderson wa supported faces implemented by servers. The absence of a global
by an IBM Graduate Fellowship Award, and Berashad was sup- address space is ameliorated by automatic stub genera-
ported by an AT&T Ph.D. Scholarship. tors and sophisticated run-time libraries that can trans-

fer arbitrarily complex arguments in messages. RPC is
a system structuring and programming style that has
become widely successful, enabling efficient and conve-
nient communication across machine boundaries.

Small-kernel operating systems have borrowed the

167

I

I
large-grained protection and programming models cutes the requested procedure in the server's do-
used in distributed computing environments and have main.
demonstrated these to be appropriate for managing U
subsystems, even those not primarily intended for re- e Simple data transfer: The parameter passing
mote operation (Rashid 86]. In these small-kernel sys- mechanism is similar to that used by procedure
tems, separate components of the operating system call. A shared argument stack, accessible to both
can be placed in disjoint domains (or address spaces), client and server, can often eliminate redundant I
with messages used for all inter-domain communica- data copying. i
tion. The advantages of this approach include modular
structure, easing system design, implementation, and Simple stubs: LRPC uses a simple model of con-
maintenance; failure isolation, enhancing debuggabil- trol and data transfer, facilitating the generation
ity and validation; and transparent access to network of highly optimized stubs.
services, aiding and encouraging distribution. @ Design for concurrency: LRPC avoids shared

in addition to the large-grained protection model of data structure bottlenecks and benefits from the
distributed computing systems, small-kernel operating speedup potential of a multiprocessor. 5
systems have adopted their control transfer and com-
munication models - independent threads exchanging We have demonstrated the viability of LRPC by im- 3
messages containing (potentially) large, structured val- plementing and integrating it into Taos, the operating
ues. In this paper, ihough, we show that most comn- system for the DEC SRC Firefly multiprocessor work-
munication traffic in operating systems is (1) between station [Thacker et al. 88]. The simplest cross-domain
domains on the same machine (cross-domain), rather call using LRPC takes 157 microseconds on a single 3
than between domains located on separate machines -C-VAX processor. By contrast, SRC RPC, the Fire-
(cross-machine), and (2) simple rather than complex. fly's native communication system [Schroeder & Bur-
Cross-domain communication dominates because oper- rows 89], takes 464 microseconds to do the same call;
ating systems - even those supporting distribution - though SRC RPC has been carefully streamlined and 3
localize processing and resources to achieve acceptable outperforms peer systems, it is a factor of three slower -
performance at reasonable cost for the most common than LRPC. The Firefly virtual memory and trap han-
requests. Most communication is simple because com- dling machinery limit the performance of a safe cross- 3
plex data structures are concealed behind abstract sys- domain procedure call to roughly 109 microseconds;
tem interfaces - communication tends to involve only LRPC adds only 48 microseconds of overhead to this
handles to these structures and small value parameters lower bound.
(booleans, integers, etc.). The remainder of this paper discusses LRPC in more 5

Although the conventional message-based approach detail. Section 2 describes the use and performance of n
can serve the communication needs of both local and RPC in existing systems, offering motivation for a more
remote subsystems, it violates a basic tenet of system lightweight approach. Section 3 describes the design
design by failing to isolate the common case (Lampson and implementation of LRPC. Section 4 discusses its 3
84]. A cross-domain procedure call can be consider- performance, and section 5 addresses sume of the con-
ably less complex than its cross-machine counterpart, cerns that arise when integrating LRPC into a serious
yet conventional RPC systems have not fully exploited operating system.
this fact. Instead, local communication is treated as
an instance of remote communication, and simple op-
erations are considered in the same class as complex 2 The Use and Performance of
ones.

Because the conventional approach has high over- RPC Systems
head, today's small-kernel operating systems have suf-
fered from a loss in performance or a deficiency in struc- In this section, using measurements from three con-
ture or both. Usually structure suffers most; logically temporary operating systems, we show that only a
separate entities are packaged together into a single do- small fraction of RPCs are traly remote, and that large
main, increasing its size and complexity. Such aggre- or complex parameters are rarely passed during non-
gation undermines the primary reasons for building a remote operations. We also show the disappointing
small-kernel operating system. The Lightweight Re- performance of cross-domain RPC in several systems. i
mote Procedure Call facility that we describe in this These results demonstrate that simple, cross-domain 3
paper arises from these observations, calls represent the common case and can be well-served

LRPC achieves a level of performance for cross- y optimization.
domain communication that is significantly better than I
conventional RPC systems while still retaining their 2.1 Frequency of Cross-Machine
qualities of safety and transparency. Four techniques Activitycontribute to the performance of LRPC:

We examined three operating systems to determine the
e Simple control transfer: The client's thread exe- relative frequency of cross-machine activity.

168 1
_ _ _ _ _ _ _ _I

I
e The V System Percentage of

In V [Cheriton 88], a highly decomposed system, Operating Operations That
only the basic message primitives (Send, Receive, System Cross Machine Boundaries
etc.) are accessed directly through kernel traps. V 3%
All other system functions are accessed by sending Taos 5.3%
messages to the appropriate server. Concern for Sun Unix+NFS 0.6%
efficiency, though, has forced the implementation
of many of these servers down into the kernel. Table 1: Frequency of Remote Activity3 In an instrumented version of the V system,
Williamson found that 97% of calls crossed pro- rather than cross-machine activity, will dominate. Be-
tection, but not machine, boundaries [Williamson cause a cross-machine RPC is slower than even a slow
89] Williamson's measurements include message cross-domain RPC, system builders have an incentive
traffic to kernel-resident servers, to avoid network communication. This incentive man-

" Taos ifests itself in the many different caching schemes used
g in distributed computing systems.

Taos, the Firefly operating system, is divided into

two major pieces A medium-sized privileged ker-

nel accessed through traps is responsible for thread 2.2 Parameter Size and Complexity
scheduling, virtual memory. and device access. AI second, multi-megabyte domain accessed through The second part of our RPC evaluation is an exami-

RPC implements the remaining pieces of the oper- nation of the size and complexity of cross-domain pro-

ating system (domain management, local and re- cedure calls. Our analysis considers both the dynamic

mote file systems, window management, network and static usage of SRC RPC as used by the Taos op-

I protocols, etc.). Taos does not cache remote files, erating system and its clients. The size and maturity

but each Firefly node is equipped with a small disk of the system make it a good candidate for study -

for storing local files to reduce the frequency of our version includes 28 RPC services defining 366 pro-

network operations. cedures involving over 1000 parameters.
WWe counted 1,487,105 cross-domain procedure calls
We measured activity on a Firefly multiprcessor during one four-day period. Although 112 different pro-
workstation connected to a network of other Fire- cedures were called, 95% of the calls were to ten pro-
flies and a remote file server. During one five-hour cedures, and 75% were to just three. None of the stubs
work period, we counted 344,888 local RPC calls, for these three were required to marshal complex ar-
but only 18,366 network RPCs. Cross-machine guments - byte copying was sufficient to transfer the
RPCs thus accounted for only 5.3% of all com- data between domains. I
munication activity. In the same four days, we also measured the num-

- UNIX+NFS ber of bytes transferred between domains during cross-
domain calls. Figure 1, a histogram and cumulative

In UNIX, a large-kernel operating system, all lo- distribution of this measure, shows that the most fre-
cal system functions are accessed through kernel quently occurring calls transfer fewer than 50 bytes,
traps. RPC is used only to access remote file and a majority transfer fewer than 200.

servers. Although a UNIX system call is not imple- Statically, we found that four out of five parame-
mented as a cross-domain RPC, in a mort: decom- ters were of fixed size known at compile time; sixty-five
posed operating system most calls would result in percent were four bytes or fewer. Two-thirds of all pro-
at least one such RPC. cedures passed only parameters of fixed size, and sixty

On a diskless Sun 3 workstation running Sun percent transferred 32 or fewer bytes. No data types

UNIX+NFS (Sandberg et al. 85], during a period were recursively defined so as to require recursive mar-
of four days we observed over 100 million operat- shaling (such as linked lists or binary trees). Recursive
ing system calls, but fewer than one million RPCs types were passed through RPC interfaces, but these
to file servert. Inexpensive system calls, encour- were marshaled by system library procedures, rather
aging frequent kernel interaction, and file caching, than by machine-generated code.
eliminating many calls to remote file servers, are These observations indicate that simple byte copying

together responsible for the relatively small num- is usually sufficient for transferring data across system
ber of cross-machine operations. interfaces, and that the majority of interface procedures

mo- -nly small amounts of data.
Table I summarizes our measurements of these three

systems. Our conclusion is that most rails go to tar- -SRC RPC maps domain-specific pointers into and out of

gets on the same node. While measurements of systems network-wide unique representations, enabling pointers to be
passed back and forth acrou an RPC interface. The mapping

taken under different workloads will demonstrate differ- is done by a simple table-lookup, and was necessary for two of
ent percentages, we believe that cross-domain activity, the top three procedures.

16)

I

300 _ 100%

2501

Number 200 Cof ~CumulativeI
of 150 Maximum Single 50% DistributionCalls 50Packet Call Dsrbto

(thousands) 100 Size (1448)

50
0 1 . 1 9 --- -0

50 200 500 750 1000 1450 1800

Total Argument/Result Bytes Transferred I
Figure 1: RPC Size Distribution

Others have noticed that most interprocess corn- terface to the underlying RPC system. The dis-
munication is simple, passing mainly small parame- tinction between cross-domain and cross-machine
ters [Cook 78, Cheriton 88, Karger 89], and some have calls is usually made transparent to the stubs by
suggested optimizations for this case. V, for exam- lower levels of the RPC system. This results in an
ple, uses a message protocol that has-b-TF60timized interface and execution path that are general but
for fixed-sized messages of 32 bytes. Karger describes infrequently needed. For example, it takes about U
compiler-driven techniques for passing parameters in 70 microseconds to execute the stubs for the Null
registers during cross-domain calls. These optimiza- procedure call in SRC RPC. Other systems have
tions, although sometimes effective, only partially ad- comparable times. 1
dress the performance problems of cross-domain com-
munication. Message buffer overhead: Messages need to be al-

located and passed between the client and server 3
2.3 The Performance of Cross-Domain domains. Cross-domain message transfer can in- 3

volve an intermediate copy through the k rnel, re-
RPC quiring four copy operations for any RPC (two on

In existing RPC systems, cross-domain calls are im- call, two on return). •
plemented in terms of the facilities required by cross-
machine ones. Even through extensive optimization, * Access Validation: The kernel needs to validate the
good cross-domain performance has been difficult to message sender on call and then again on return.
achieve. Consider the Null procedure call that takes no *
arguments, returns no values and does nothing: Message transfer: The sender must enqueue themessage, which must later be dequeued by the re-

PROCEDURE Null(); BEGIN RETURN EiD Nll1; ceiver. Flow-control of these queues is often nec-
essary. U

The theoretical minimum time to invoke Null() as

a cross-domain operation involves one procedure call, e Scheduling: Conventional RPC implementations
followed by a kernel trap and change of the proces- bridge the gap between abstract and concrete n
sor's virtual memory context on call, and then a trap threads. The programmer's view is one of a sin- K
and context change again on return. The difference be- gle, abstract thread crossing protection domains,
tween this theoretical minimum call time and the actual while the underlying control transfer mechanism
Null call time reflects the overhead of a particular RPC involves concrete threads fixed in their own domain 5
system. Table 2 shows this overhead for six systems. signalling one another at a rendezvous. This indi-
The data in Table 2 comes from measurements of our rection can be slow, as the scheduler must manip-
own and from published sources [Fitzgerald 86, Tzou ulate system data structures to block the client's £
& Anderson 88, van Renesse et al. 88]. concrete thread and then select one of the server's

The high overheads revealed by Table 2 can be at- for execution.
tributed to several aspects of conventional RPC:

Context switch: There must be a virtual mem- 3
o Stub overhead: Stubs provide a simple procedure ory context switch from the client's domain to the U

call abstraction, concealing from programs the in- server's on call, and then back again on return.

170 I

I

U
System Processor Null Null O verhead

(Theoretical (Actual)
AccentMinimum)

Accent PERQ 444 2300 1856
Taos Firefly C-VAX 109 464 355
Mach C-VAX 90 754 664
V 68020 170 730 560
Amoeba 68020 170 800 630
DASH 68020 170 1590 1420

Table 2: Cross-Domain Performance (times are in microseconds)

. Dispatch: A receiver thread in the server do- 3 The Design and Implementa-
main must interpret the message and dispatch a
thread to execute the call. If the receiver is self- tion of LRPCI dispatching, it must ensure that another thread
remains to collect messages that may arrive before The lack of good performance for cross-domain callsthe receiver finishes to prevent caller serialization, has encouraged system designers to coalesce cooperat-e ring subsystems into the same domain. Applications use

RPC to communicate with the operating system, en-
suring protection and failure isolation for users and the

RPC systems have optimized some of these steps in collective system. The subsystems themselves, though,
an effort to improve cross-domain pof t he grouped into a single protection domain for perfor-

ao.Muce. The mance reasons, are forced to rely exclusively on the thin
DASH system [Tzou & Anderson 88] eliminates an in- barriers provided by the programming environment for
termediate kernel copy by allocating messages out of protection from one another. LRPC solves, rather then

* a region specially mapped into both kernel and user circumvents, this performance problem in a. way that
domains. Mach [Jones & Rashid 86] and Taos rely does not sacrifice safety.
on handoff scheduling to bypass the general, slower The execution model of LRPC is borrowed from pro-
scheduling path; instead, if the two concrete threads tected procedure call. A call to a server procedure is
cooperating in a domain transfer are identifiable at the made by way of a kernel trap. The kernel validates
time of the transfer, a direct context switch can be the caller, creates a call linkage, and dispatches the
made. In line with handoff scheduling, some systems client's concrete thread directly to the server domain.
pass a few, small arguments in registers, thereby elim- The client provides the server with an argument stack
mnating buffer copying and management. 2 as well as its own concrete thread of execution. When

SRC RPC represents perhaps the most ambitious the called procedure completes, control and results re-
attempt to optimize traditional RPC for swift cross- turn through the kernel back to the point of the client's
domain operation. Unlike techniques used in other sys- call.
tems which provide safe communication between mu- The programming semantics and large-grained pro-
tually suspicious parties, SRC RPC trades safety for tection model of LRPC are borrowed from RPC.
increased performance. To reduce copying, message Servers execute in a private protection domain, and
buffers are globally shared across all domains. A single each exports one or more interfaces, making a specific
lock is mapped into all domains so that message buffers set of procedures available to other domains. A client
can be acquired and released without kernel involve- binds to a server interface before making the first call.
ment. Further, access validation is not performed on The server, by allowing the binding to occur, autho-
call and return, simplifying the critical transfer path. rizes the client to access the procedures defined by the

interface.
SRC RPC runs much faster than other RPC systems

implemented on comparable hardware. Nevertheless,
SRC RPC still incurs a large overhead due to its use 3.1 Binding
of heavyweight stubs and run-time support, dynamic At a conceptual level, LRPC binding and RPC binding
buffer management, multi-level dispatch, and interac- are similar. Servers export interfaces and clients bind
tion with global scheduling state. to those interfaces before using them. At a lower-level,

however, LRPC binding is quite different due to the
high degree of interaction and cooperation that is re-
quired of the client, server and kernel.

20ptimizations based on passing arguments in registers ex- A server module exports an interface through a clerk
hibit a performance discontinuity once the parameters overflow
the registers. The data in Figure 1 indicates that this can be a in the LRPC run-time library included in every domain.
frequent p- blrem. The clerk registers the interface with a name server and

171

I
awaits import requests from clients. A client binds to o ensures that no other thread is currently using that
a specific interface by making an import call via the A-stack/linkage pair
kernel. The importer waits while the kernel notifies a records the caller's return address and current
the server's waiting clerk, stack pointer in the linkage

The clerk enables the binding by replying to the ker- * pushes the linkage onto the top of a stack of link-
nel with a procedure descriptor list (PDL) that is main- ages kept in the thread's control block3

tained by the exporter of every interface. The PDL * finds an execution stack (E-stack) in the server's I
contains one procedure descriptor (PD) for each proce- domain

dure in the interface. The PD includes an entry ad- * updates the thread's user stack pointer to run off
dress in the server domain, the number of simultane- of the new E-stack

ous calls initially permitted to the procedure by the * reloads the processor's virtual memory registers S
client, and the size of the procedure's argument stack with those of the server domain
(A-stack) on which arguments and return values will be a performs an upcall [Clark 85] into the server's stub

placed during a call. For each PD, the kernel pair-wise at the address specified in the PD for the requested 5

allocates in the client and server domains a number procedure.

of A-stacks equal to the number of simultaneous calls Arguments are pushed onto the A-stack according to
allowed. These A-stacks are mapped read-write and the calling conventions of Modula2+ [Rovner et al. 85]. U
shared by both domains. Since the A-stack is mapped into the server's domain,

Procedures in the same interface having A-stacks of the server procedure can directly access the parame-
similar size can share A-stacks, reducing the storage ters as though it had been called directly. It's impor-
needs for interfaces with many procedures. The number tant to note that this optimization relies on a calling U
of simultaneous calls initially permitted to procedures convention that uses a separate argument pointer. In
that are sharing A-stacks is limited by the total number a language environment that required arguments to beof A-stacks being shared. This is only a soft limit, alnug niomn htrqie ruet ob
toughsands Sein 5. descris holy ian bt lii, passed on the E-stack, this optimization would not be
though, and Section 5.2 describes how it can be raised. possible.

The kernel also allocates a linkage record for each The server procedure returns through its own stub,
A-stack that is used to record a caller's return address which initiates the return domain transfer by trapping
and is accessible only to the kernel. The kernel lays out to the kernel. Unlike the call, which required presenta-
A-stacks and linkage records in memory in a way such tion and verification of the Binding Object, procedure I
that the correct linkage record can be quickly located identifier and A-stack, this information, contained at

given any address in the corresponding A-stack. the top of the linkage stack referenced by the thread's
After the binding has completed, the kernel returns control block, is implicit in the return. There is no need I

to the client a Binding Object. The Binding Object to verify the returning thread's right to transfer back
is the client's key for accessing the server's interface to the calling domain since it was granted at call time.
and must be presented to the kernel at each call. The Further, since the A-stack contains the procedure's re-
kernel can detect a forged Binding Object, so clients turn values, and the client specified the A-stack on call, l
cannot bypass the binding phase. In addition to the no explicit message needs to be passed back.
Binding Object, the client receives an A-stack list for If any parameters are passed by reference, the client
each procedure in the interface giving the size and lo- stub copies the referent onto the A-stack. The server 3
cation of the A-stacks that should be used for calls into stub creates a reference to the data and places the ref- 3
that procedure. erence on its private E-stack before invoking the server

procedure. The reference must be recreated to prevent

3.2 Calfir. the caller from passing in a bad address. The data, i
though, is not copied and remains on the A-stack.

Each procedure in an interface is represented by a stub Privately mapped E-stacks enable a thread to safely

in the client and server domains. A client makes an cross between domains. Conventional RPC systems

LRPC by calling into its stub procedure which is re- provide this safety by implication, deriving separate 5
sponsible for initiating the domain transfer. The stub stacks from separate threads. LRPC excises this level
manages the A-stacks allocated at bind time for that of indirection, dealing directly with less weighty stacks.
procedure as a LIFO queue. At call time, the stub A low-latency domain transfer path requires that E-

takes an A-stack off the queue, pushes the procedure's stack management incur little call-time overhead. One
arguments onto the A-stack, puts the address of the way to achieve this is to statically allocate E-stacks at
A-stack, the Binding Object and a procedure identifier bind time and to permanently associate each with an

into registers, and traps to the kernel. In the context A-stack. Unfortunately, E-stacks can be large (tens of i

of the client's thread, the kernel kilobytes) and must be managed conservatively; oth-
erwise a server's address space could be exhausted by

* verifies the Binding and procedure identifier just a few clients.

* verifies the A-stack and locates the corresponding 3The stack is necessary so that a thread can be involved in 3
linkage more than one cross-domain procedure call at a time.

172 1
I

I
Rather than statically allocating E-stacks, LRPC de- paths, such as those dealing with binding, exception

lays the A-stack/E-stack association until it is needed; handling, and call failure. Calls having complex or
that is, until a call is made with an A-stack not having heavyweight parameters - linked lists or data that
an associated E-stack. When this happens, the kernel must be made known to the garbage collector - are
checks if there is an E-stack already allocated in the handled with Modula2+ marshaling code. LRPC stubs
server domain, but currently unassociated with any A- become more like conventional RPC stubs as the over-
stack. If so, the kernel associates the E-stack with the head of dealing with the complicated data types in-
A-stack. Otherwise, the kernel allocates an E-stack out creases. This shift occurs at compile-time, eliminating
of the server domain and associates it with the A-stack. the need to make run-time decisions.
When the call returns, the E-stack and A-stack remain
associated with one another so that they might be used
together soon for another call (A-stacks are LIFO man- 3.4 LRPC on a Multiprocessor3 aged by the client). Whenever the supply of E-stacks The existence of shared-memory multiprocessors has
for a given server domain runs low, the kernel reclaims influenced the design of LRPC. Multiple processors can
those associated with A-stacks that have not been re- be used to achieve a higher call throughput and lower
cently used. call latency than is possible on a single processor.

LRPC increases throughput by minimizing the use of
3.3 Stub Generation shared data structures on the critical domain transfer

path. Each A-stack queue is guarded by its own lock,
Stubs bridge the gap between procedure call, the com- and queuing operations take less than 2% of the total
munication model used by the programmer, and do- call time. No other locking occurs, so there is little
main transfer, the execution model of LRPC. A proce- interference when calls occur simultaneously.
dure is represented by a call stub in the client's domain Multiple processors are used to reduce LRPC latency
and an entry stub in the server's. Every procedure de- by caching domain contexts on idle processors. As we
clared in an LRPC interface defines the terminus of a show in Section 4, the context switch that occurs during
three-layered communication protocol: end-to-end, de- an LRPC is responsible for a large part of the transfer
scribed by the calling conventions of the programming time. This time is due partly to the code required to
language and architecture; stub-to-stub, implemented update the hardware's virtual memory registers, and
by the stubs themselves; and domain-to-domain, im- partly to the extra memory fetches that occur as a
plemented by the kernel. result of invalidating the translation lookaside buffer

LRPC stubs blur the boundaries between the proto- (TLB).
col layers to reduce the cost of crossing between them, LRPC reduces context-switch overhead by caching
Server entry stubs are invoked directly by the kernel on domains on idle processors. When a call is made, the
a transfer; no intermediate message examination and kernel checks for a processor idling in the context of the
dispatch is required. The kernel primes E-stacks with server domain. If one is found, the kernel exchanges
the initial call frame expected by the server's proce- the processors of the calling and idling threads, placing
dure, enabling the server stub to branch to the first in- the calling thread on a processor where the context of
struction of the procedure. As a result, a simple LRPC the server domain is already loaded; the called server
needs only one formal procedure call (into the client procedure can then execute on that processor without
stub), and two returns (one out of the server procedure requiring a context switch. The idling thread continues
and one out of th, client stub). to idle, but on the client's original processor in the con-

The LRPC stub generator produces run-time stubs text of the client domain. On return from the server, aI in assembly language directly from Modula2+ defini- check is also made. If a processor is idling in the client
tion files. The use of assembly language is possible domain (likely for calls that return quickly), then the
because of the simplicity and stylized nature of LRPC processor exchange can be done again.
stubs, which consist mainly of move and trap instruc- If no idle domain can be found on call or return, then
tions. The LRPC stubs have shown a factor of four a single-processor context switch is done. For each do-
performance improvement over Modula2+ stubs cre- main, the kernel keeps a counter indicating the number
ated by the SRC RPC stub generator. of times that a processor idling in the context of that

Since the stubs are automatically generated, the only domain was needed but not found. The kernel uses
maintenance concerns arising from this use of assembly these counters to)rod idle processors to spin in do-
language are related to the portability of the stub gen- mains showing the most LRPC activity.
erator (the stubs themselves are not portable, but we The high cost of frequent domain crossing can also be
don't consider this to be an issue). Porting the stub reduced by using a TLB that includes a process tag. For
generator to work on a different machine architecture multiprocessors without such a tag, domain-caching
should be a straightforward task, although we have not can often achieve the same result for commonly called
yet had any reason to do so. servers. Even with a tagged TLB, a single-processor do-

The stub generator emits Modula2+ code for more main switch still requi. .s that hardware mapping reg-complicated, but less frequently traveled execution isters be modified on the critical transfer path; domain

173

Message Restricted Message
Operation LRPC Passing Passing
call (mutable A ABCE ADE

parameters)

call (immutable AE ABCE ADE
parameters)

return F BCF BF

Code Copy Operation U
A copy from client stack to message (or A-stack)
B copy from sender domain to kernel domain
C copy from kernel domain to receiver domain
D copy from sender/kernel space to receiver/kernel domain
E copy from message (or A-stack) into server stack
F copy from message (or A-stack) into client's results

Table 3: Copy Operations For LRPC Vs. Message-Based RPC I
caching does not. Finally, domain caching preserves a value's correctness semantics, and by combining the
per-processor locality across calls - a performance con- - copy into a check for the value's integrity.
siderLtion for systems having low tolerance for sudden In most procedure call conventions, the destination
shifts in locality, address for return values is specified by the caller. Dur-

Using idle processors to decrease operating system ing the return from an LRPC, the client stub copies
latency is not a new idea. Both Amoeba and Taos returned values from the A-stack into their final desti-
cache recently blocked threads on idle processors to re- nation. No added safety comes from first copying these
duce wakeup latency. LRPC generalizes this technique values out of the server's domain into the client's, either
by caching domains, rather than threads. In this way, directly or by way of the kernel.
any thread that needs to run in the context of an idle Parameter copying can also be avoided by recogniz-
domain can do so quickly, not just the thread that ran ing situations in which the actual value of the param-
there most recently. eter is unimportant to the server. This occurs when

parameters are processed by the server without inter-
3.5 Argument Copying pretation. For example, the Write procedure exported

by a file server takes an array of bytes to be written to
Consider the path taken by a procedure's argument disk. The array itself is not interpreted by the server,
during a traditional cross-domain RPC. An argument, which is made no more secure by an assurance that the
beginning with its placement on the stack of the client bytes won't change during the call. Copying is unnec-
stub, is copied 4 times - from the stub's stack to the essary in this case. These types of arguments can be
RPC message, from the message in the client's domain identified to the LRPC stub generator.
to one in the kernel's, from the message in the kernel's Finally, concern for type safety motivates explicit ar-
domain to one in the server's, and from the message gument copying in the stubs, rather than wholesale
to the server's stack. The same argument in an LRPC message copying in the kernel. In a strongly-typed lan- 3
can be copied only once: from the stack of the client guage, such as Modula2+, actual parameters must con- U
stub to the shared A-stack from which it can be used form to the types of the declared formals; for example,
by the server procedure. the Modula2+ type CARDINAL is restricted to the set

Pair-wise allocation of A-stacks enables LRPC to of positive integers - a negative value will result in a
copy parameters and return values only as many times run-time error when the value is used. A client could
as are necessary to ensure correct and safe operation. crash a server by passing it an unwanted negative value.
Protection from third-party domains is guaranteed by To protect itself, the server must check type-sensitive
the pair-wise allocation that provides a private channel values for conformancy before using them. Folding this
between the client and server. It is still possible for a check into the copy operation can result in less work
client or server to asynchronously change the values of than if the value is first copied by the message system
arguments in an A-stack once control has transferred and then later checked by the stubs. £
across domains. The copying done by message-based Table 3 shows how the use of A-stacks in LRPC
RPC prevents such changes, but often at a higher cost can affect the number of copying operations. For calls
than necessary. LRPC, by considering each argument where parameter immutability is important, and for
individually, avoids extra copy operations by taking ad- those where it isn't, we compare the behavior of LRPC
vantage of argument passing conventions, by exploiting against the traditional message-passing approach, and

174 3
I

I
Test Description LRPC/MP LRPC Taos
Null the Null cross-domain call 125 157 464
Add a procedure taking two 4-byte arguments

and returning one 4-byte argument 130 164 480
Bigln a procedure taking one 200-byte argument 173 192 539
BigInOut a procedure taking and then returning one

200-byte argument 219 227 636

Table 4: LRPC Performance of Four Tests (in microseconds)

against a more restricted form of message-passing used processor; it is roughly 3 times faster than SRC RPC,
in the DASH system. In the restricted form, all mes- which also uses only one processor.
sage buffers on the system are allocated from a spe- Table 5 shows a detailed cost breakdown for the se-
cially mapped region that enables the kernel to copy rial (1-processor) Null LRPC on a C-VAX. This table
messages directly from the sender's domain into the re- was produced from a combination of timing measure-
ceiver's, avoiding an intermediate kernel copy. ments and hand calculations of TLB misses. The code

In Table 3, we assume that the server places the re- to execute a Null LRPC consists of 120 instructions
suits directly into the reply message. If this isn't the that require 157 microseconds to execute. The column
case (i.e., messages are managed as a scarce resource), labeled "Minimum" in Table 5 is a timing breakdown
then one more copy from the server's results into the for the theoretically minimum cross-domain call (one
reply message is needed. Even when the immutabiL procedure call, two traps and two context switches).

ity of parameters is important, LRPC performs fewer The column labeled "LRPC Overhead" shows the ad-
copies (3) than either message passing (7) or restricted ditional time required to execute the call and return
message passing (5). operations described in Section 3.2 and is the cost of

For passing large values, copying concerns be- our implementation. For the Null call, approximately
come less important, since by-value semantics can be 18 microseconds are spent in the client stub and 3 in
achieved through virtual memory operations. But, for the server's. The remaining 27 microseconds of over-
the more common case of small- to medium-sized val- head are spent in the kernel, and go towards binding
ues, eliminating copy operations is crucial to good per- validation and linkage management. Most of this takes
formance when call latency is on the order of only 100 place during the call, as the return path is simpler.
instructions.

LRPC's A-stack/E-stack design offers both safety Operation Minimum LRPCand performance. While our implementation demon- Overhead

strates the performance of this design, the Firefly op- Modula2+ Procedure Call 7
erating system does not yet support pair-wise shared Two Kernel Traps 36
memory. Our current implementation places A-stacks Two Context Switches 66
in globally shared virtual memory. Since mapping is Stubs 21
done at bind time, an implementation using pair-wise Kernel Transfer 27
shared memory would have identical performance, but TOTAL 109 48
greater safety.

Table 5: Breakdown of Time (in microseconds) for Sin-

4 The Performance of LRPC gle Processor Null LRPC

To evaluate the performance of LRPC, we used the four Approximately 25% of the time used by the Null
tests shown in Table 4. These tests were run on the C- LRPC is due to TLB misses that occur during vir-

VAX Firefly using LRPC and Taos RPC. The Null call tual address translation. A context switch on a C-VAX

provides a baseline against which we can measure the requires the invalidation of the TLB, and each subse-

added overhead of LRPC. The procedures Add, BigIn, quent TLB miss increases the cost of a memory refer-

and BiglnOut represent calls having "typical" parame- ence by about .9 microseconds. Anticipating this, the

ter sizes. data structures and control sequences of LRPC were

Table 4 shows the results of these tests when per- designed to minimize TLB misses. Even so, we esti-

formed on a single node. The measurements were made mate that 43 TLB misses occur during the Null call.

by performing 100,000 cross-domain calls in a tight Section 3.4 stated that LRPC avoids locking shared
loop, computing the elapsed time, and then dividing data during call and return in order to remove con-
by 100,000. The table shows two times for LRPC. The tention on shared-memory multiprocessors. This is
first, listed as "LRPC/MP," uses the idle processor op- demonstrated by Figure 2, which shows call through-
timization described in Section 3.4. The second, shown put as a function of the number of processors simulta-
as "LRPC," executes the domain switch on a single neously making calls. Domain caching was disabled for

175

30000- compared to the overheads that are part of even the
LRPC Optimal most efficient network RPC implementation.

25000- LRPC Measured U
20000- 5.2 A-stacks - Size and Number

Calls Procedure Descriptor Lists are defined during the com-per 15000- pilation of an interface. The stub generator reads eachSecond interface and determines the number and size of the A-
10000" RPC Optimal stacks for each procedure. The number defaults to five,

5000 RPC Measured but can be overridden by the interface writer. When
the size of each of a procedure's arguments and return
values are known at compile time, the A-stack size can

0 ' ' ' be determined exactly. In the presence of variable sized I
0 1 2 3 4 arguments, though, the stub generator uses a default

Number of Processors size equal to the Ethernet packet size (this default also
can be overridden). Experience has shown, and Fig-

Figure 2: Call Throughput On a Multiprocessor ure 1 confirms, that RPC programmers strive to keep 3
the sizes of call and return parameters under this limit.

this experiment - each call required a context switch. Most existing RPC protocols are built on simple packet
A single processor can make about 6300 LRPCs per sec- exchange protocols, and multi-packet calls have perfor-
ond, but four processors can make over 23000 calls per mance problems. In cases where the arguments are too
second - a speedup of 3.7 and close to the maximum large to fit into the A-stack, the stubs transfer data in
that the Firefly is capable of delivering. These measure- a large out-of-band memory segment. Handling unex-
ments were made on a Firefly having four C-VAX pro- pectedly large parameters is complicated and relatively 3
cessors and one MicroVaxII I/O processor. Measure- expensive, but infrequent. 5
ments on a five processor MicroVaxIl Firefly showed a A-stacks in a single interface are allocated contigu-
speedup of 4.3 with 5 processors. ously at bind time to allow for quick validation during

In contrast, the throughput of SRC RPC levels off a call (a simple range check guarantees their integrity).
with two processors at about 4000 calls per second. If the number of pre-allocated A-stacks proves too few,
This limit is due to a global lock that is held during a the client can either wait for one to become avail-
large part of the RPC transfer path. For a machine like able (when an earlier call finishes), or allocate more.
the Firefly, a small scale shared-memory multiproces- Waiting is simple, but may not always be appropriate.
sor, a limiting factor of two is annoying, but not serious. When further allocation is necessary, it is unlikely that
On shared-memory machines with just a few dozen pro- space contiguous to the original A-stacks will be found,
cessors, though, contention on the critical control trans- but other space can be used. A-stacks in this space, U
fer path would have a greater performance impact. not in the primary contiguous region, will take slightly 5

more time to validate during a call.

5 The Uncommon Cases 5.3 Domain Termination I
In addition to working well in the common case, LRPC A domain can terminate at any time, for reasons such
must work acceptably in the less common ones. This as an unhandled exception or a user action (CTRL-C). 3
section describes several of these less common cases and When a domain terminates, all resources in its pos-
explains how they are dealt with by LRPC. This section session (virtual address space, open file descriptors,
does not enumerate all possible uncommon cases that threads, etc.) are reclaimed by the operating system. If
must be considered. Instead, by describing just a few, the terminating domain is a server handling an LRPC 3
we hope to emphasize that the common-case approach request, the call, completed or not, must return to the
taken by LRPC is flexible enough to accommodate the client domain. If the terminating domain is a client
uncommon cases gracefully. with a currently outstanding LRPC request to another

domain, the outstanding call, when finished, must not
5.1 Transparency and Cross-Machine be allowed to return to its originating domain.

Calls When a domain is terminated, each Binding Object
associated with that domain (either as client or server) 3

Deciding whether a call is cross-domain or cross- is revoked. This prevents any more out-calls from the
machine is made at the earliest possible moment - domain, and prevents other domains from making any
the first instruction of the stub. If the call is to a truly more in-calls. All threads executing within the domain
remote server (indicated by a bit in the Binding Ob- are then stopped, and a kernel collector scans all of 3
ject), then a branch is taken to a more conventional the domain's threads looking for any that had been U
RPC stub. The extra level of indirection is negligible running on behalf of an LRPC call; these threads are

176 1
I

I
restarted in the client with a call-failed exception. Fi- 7 Acknowledgements
nally, the collector scans all Binding Objects held by
the terminating domain and invalidates any active link- We would like to thank Guy Almes, David Ander-
age records. When a thread returns from an LRPC call, son, Andrew Birrell, Mike Burrows, Dave Cutler, Roy
it follows the stack of linkage records referenced by the Levin, Mark Lucovsky, Tim Mann, Brian Marsh, Rick
thread control block, returning to the domain specified Rashid, Dave Redell, Jan Sanislo, Mike Schroeder,
in the first valid linkage record. If any invalid linkage Shin-Yuan Tzou, and Steve Wood for discussing with
records are found on the way, a call-failed exception us the issues raised in this paper. We would also like
is raised in the caller. If the stack contains no valid to thank DEC SRC for building and supplying us with
linkage records, the thread is destroyed. the Firefly. It has been a challenge to improve on the

A terminating domain's outstanding threads are not excellent performance of SRC RPC, but one made eas-
forced to terminate synchronously with thr domain. ier by the Firefly's overall structure. One measure of
Doing so would require every server procedvre t pro- a system's design is how easily a significant piece of it
tect the integrity of its critical data structures from can be changed. We doubt that we could have imple-
external forces, since a mutating thread could be te mented LRPC as part of any other system as painlessly
minated at any time. More generally, LRPC has ,o as we did on the Firefly.
way to force a thread to return from an outstanding
call. Taos does have an alert mechanism which allows References
one thread to signal another, but the notified thread
may choose to ignore the alert. It is therefore possi- & Nelson Birrell, A. D. and B.J.
ble for one domain to "capture" another's thread and Ire lelso n Remo A.D.a d Ne ls.
hold it indefinitely. To address this problem, LRPC Implementing Remote Procedure Calls.
enables client domains to create a new thread whose ACM Transactons on Coputer Systems,
initial state is that of the original caplureAthread as if 2(1):39-59, February 1984.I it had just returned from the server procedure with a [Cheriton 88] Cheriton, D. R. The V Distributed
call-aborted exception. The captured thread continues System. Communications of the ACM,
executing in the server domain but is destroyed in the 31(3):314-333, March 1988.
kernel when released.

Traditional RPC does not have these problems be- [Clark 85] Clark, D. D. The Structuring of Systems Us-ing Upcalls. In Proceedings of the 10Oth A CM
cause the abstract thread seen by the programmer is Symposium on Operating Systems Princi-I provided by two concrete threads, one in each of the pies pg 17e-180, Dec em 1985.

client and server domains. Because premature domain ples, pages 171-180, December 1985.

and call termination are infrequent, LRPC hes adopted [Cook 78] Cook, D. The Evaluation of a Protection
a "special case" approach for dealing with them. System. PhD dissertation, Cambridge Uni-Iversity, Computer Laboratory, April 1978.

(Dennis & Van Horn 66] Dennis, J. B. and Van Horn,
E. C. Programming Semantics for Multipro-
grammed Computations. Communications

Summary of the ACM, 9(3):143-155, March 1966.

[Fitzgerald 86] Fitzgerald, R. P. A Performance Eval-
This paper has described the motivation, design, im- uation of the Integration of Virtual Mem-
plementation, and performance of LRPC, a commu- ory Management and Inter-Process Com-
nication facility that combines elements of capability mui ication in Accent. PhD dissertation,
and RPC systems. Our implementation on the Fire- Carnegie-Mellon University, October 1986.Ifly achieves performance that is close to the minimum
round-trip cost of transferring control between domains [Jones & Rashid 86] Jones, M. B. and Rashid, R. F.
on conventional hardware. Mach and Matchmaker: Kernel and Lan-

Saoaguage Support for Object-Oriented Dis-
LRPC adopts a common-case approach to commu- tributed Systems. In Proceedings of the

nication, exploiting, whenever possible, simple control Conference on Object-Oriented Program-
transfer, simple data transfer, simple stubs, and mul- ming Systems, Languages, and Applications,
tiprocessors. In so doing, LRPC performs well for the pages 67-77, October 1986.
majority of cross-domain procedure calls by avoiding
needless scheduling, excessive run-time indirection, un- [Karger 89] Karger, P. A. Using Registers to Optimize
necessary access validation, redundant copying, and Cross-Domain Call Performance. In Pro-
luck contention. LRPC, nonetheless, is safe and trans- ceedings of the Third Conference on Archi-
parent, and represents a viable communication alterna- tectural Support for Programming Languages

tive for small-kernel operating systems. and Operating Systems, April 1989.

1
177i

I
[Lampson 84] Lampson, B. W. Hints for Computer [Williamson 89] Williamson, C., January 1989. Per-

System Design. IEEE Software, 1(1): 11-28, sonal communication.
January 1984.

[Mealy et al. 66] Mealy, G., Witt, B., and Clark, W.
The Functional Structure of OS/360. IBM
Systems Journal, 5(1):3-51, 1966.

[Rashid 86] Rashid, R. F. From Rig to Accent to Mach:
The Evolution of a Network Operating Sys-
tem. In Proceeding of ACM/IEEE Corn-
puter Society Fall Joint Computer Confer-
ence, November 1986.

[Redell et al. 80] Redell, D. D., Dalal, Y. K., Horsley,
T. R., Lauer, H. C., Lynch, W. C., McJones,
P. R., Murray, H. G., and Purcell, S. C. Pi-
lot: An Operating System for a Personal
Computer. Communications of the ACM,
pages 81-92, February 1980.

[Ritchie & Thompson 74] Ritchie, D. and Thompson,
K. The Unix Time-Sharing System. Corn-
munications of the ACM, 17(7):365-375,
July 1974.

[Rovner et al. 85] Rovner, P., Levin, R., and Wick, J.
On Extending Modula-2 For Building Large,
Integrated Systems. Technical Report # 3,
Digital Equipment Corporation Systems Re-
search Center, Palo Alto, California, Jan- I
uary 1985.

fSandberg et al. 85) Sandberg, R., Goldberg, D.,
Steve Kleiman, D. W., and Lyon, B. De- n
sign and Implementation of the SUN Net-
work Filesystem. In Proceedings of the 1985
USENIX Summer Conference, pages 119-
130, 1985.

[Schroeder & Burrows 89] Schroeder, M. D. and Bur-
rows, M. Performance of Firefly RPC. In
Proceedings of the 12th ACM Symposium
on Operating Systems Principles, December
1989. To appear in ACM Transactions on
Computer Systems, February 1990. 3

(Thacker et al. 881 Thacker, C. P., Stewart, L. C., and
Satterthwaite, Jr., E. H. Firefly: A Multi-
processor Workstation. IEEE Transactions
on Computers, 37(8):909-920, August 1988.

[Tzou & Anderson 88] Tzou, S.-Y. and Anderson,
D. P. A Performance Evaluation of the
DASH Message-Passing System. Techni- I
cal Report UCB/CSD 88/452, Computer
Science Division, University of California,
Berkeley, October 1988. 3

(van Renesse et al. 88] van Renesse, R., van Staveren,
H., and Tanenbaum, A. S. Performance
of the World's Fastest Distributed Oper-ating System. Operating Systems Review,
22(4):25-34, October 1988.

178

I

Processor Scheduling in Shared Memory Multiprocessors

John Zahorjan and Cathy McCann

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

September 1989

Abstract

Existing work indicates that the commonly used "single queue of runnable tasks" approach to scheduling
shared memory multiprocessors can perform very poorly in a multiprogrammed environment. A more
promising approach is the class of "two-level schedulers" in which the operating system deals solely with
allocating processors to jobs while the individual jobs themselves perform task dispatching on those
processors.

In this paper we compare two basic varieties of two-level schedulers. Those of the first type, static, make
a single decision per job regarding the number of processors to allocate to it. Once the job has received its
allocation, it is guaranteed to have exactly that number of processors available to it whenever it is active.
Static schedulers are attractive to the system because of their low scheduling overhead and to the application
because they provide an unchanging environment that simplifies decisions such as how many parallel tasks to
fork.

The other class of two-level scheduler, dynamic, allows each job to acquire and release processors during
its execution. By responding to the varying parallelism of the jobs, the dynamic scheduler promises higher
processor utilizations at the cost of potentially greater scheduling overhead and more complicated application
level task control policies.

II Our results, obtained via simulation, highlight the tradeoffs between the static and dynamic approaches.
We investigate how the choice of policy is affected by the cost of switching a processor from one job to
another. We show that for a wide range of plausible overhead values, dynamic scheduling is superior to static
scheduling. Within the class of static schedulers, we show that, in most cases, a simple "run to completion"
scheme is preferable to a "co-scheduling" like round-robin approach. Finally, we investigate different
techniques for tuning the allocation decisions required by the dynamic policies and quantify their effects on
performance.

We believe our results are directly applicable to many existing shared memory parallel computers, which
for the most part currently employ a simple "single queue of tasks" extension of basic sequential machine
schedulers. We plan to validate our results in future work through implementation and experimentation on
such a system.

This material is based upon work supported by the National Science Foundation (Grants DCR-8352098,
CCR-8619663, and CCR-8703049), the Naval Ocean Systems Center, the Washington Technology Center,
and Digital Equipment Corporation (the External Research Program and the Systems Research Center).

Authors' addresses: Department of Computer Science and Engineering FR-35, University of Washington,
Seattle, WA 98195; zahorjan@cs.washington.edu, mccann@cs.washington.edu.

179

U

1. Introduction

In this paper we consider alternative strategies for scheduling parallel jobs on multiprogrammed, shared I
memory parallel computers. We assume that at any point in time each job is composed of one or more ready
tasks. The number of ready tasks, which we call the parallelism of the job, changes over time due to
synchronization constraints of the computation. Each ready task can be executed in parallel with the others if I
there is a processor available to it. Thus, the rate of progress of an individual job is determined both by its
parallelism and the number of processors that it has been allocated. The primary purpose of this paper is to
examine a number of alternative strategies for allocating processors to jobs when many parallel jobs are
competing for a fixed number of processors.

There are a number of architectural approaches to building parallel machines, and different scheduling
strategies are suited to each. In this paper we are concerned with the simplest and to date most widespread I
architecture, the medium-scale, shared memory, uniform memory access (UMA) machine. By "medium-
scale" we mean machines with a modest number of processors, say between 4 and 64. By ."shared memory"
we mean that any processor can reference any memory location, with the hardware providing the necessary
control to transfer the data. By "uniform memory access" we mean that the time required to access a
memory location does not depend on the identity of the processor making the access. 3

In practice, probably no machine fits the pure definitions given above. However, we intend our analysis to
apply to machines such as the Encore, the Sequent [Lovett & Thakkar 1988], the Cray MPs, the IBM 3090
MPs, and the DEC Firefly [Thacker et al. 1988]. The most significant deviation of these machines from our I
assumptions is that they all have some sort of processor local memory, in particular, either a hardware
managed cache or a user managed local store. Because some benefit may accrue from scheduling a job on a
processor where it has run previously (since the local memory there may still contain information useful to I
that job), these local memories complicate scheduling decisions. While it may be possible to exploit this
effect in tuning specific scheduling disciplines, for this class of parallel machine the more basic, unanswered

questions about the broad divisions among processor allocation strategies are of primary importance. I
We compare the performance of two fundamental approaches to processor allocation. In the first, static

allocation, the number of processors available to each job is fixed during its entire execution. In the 3
alternative approach, dynamic allocation, the number of processors allocated to a job may vary during
execution in a way that reflects its time varying parallelism.

While at first it may seem that the performance of dynamic schedulers should dominate that of static 3
schedulers, overhead is one reason that this may not be the case. Because dynamic schedulers tend to shift
processors more frequently from one job to another, and because this "context switch" can be quite
expensive, the overhead costs of dynamic scheduling can outweigh the benefits of reallocation. I

Lower overhead cost is not the only factor favoring static schedulers, though. From the system's
viewpoint, static schedulers are simpler to implement. From the job's viewpoint, knowing in advance the
exact allocation of processors that will be available at all times during its execution may allow it to run more U
efficiently. For example, consider the job of performing a parallel matrix multiply. The structure of the job is
given by the task graph shown in Figure 1. The sequential portion of the work, represented by task 0,
determines the granularity of the parallel work, which in this case means the number of elements of the result
matrix computed by each parallel task. Finer granularity, that is, more parallel tasks each of which performs
a smaller fraction of the total work, results in shorter execution times (modulo the effects of task dispatching

overhead) if there are sufficiently many processors available to run these tasks. On the other hand, consider
execution time if too few processors are available to the job. Suppose that work requiring total time 1 is

divided into nine equal pieces. If nine processors are available, the elapsed time of the computation is 1/9. 3
180 i

l
-2-

However, if only eight processors are available the elapsed time is doubled: eight of the nine tasks complete
in time 1/9, then the final task is finished in additional time 1/9. This significant increase in elapsed timeIhurts not only the individual job but also the system as a whole, since during the second 1/9 time unit seven
of the eight processors must either sit idle or suffer a context switch overhead. (While multiplexing the tasks
on the available processors would eliminate this "end effect", suspending and resuming tasks is generally tooI expensive to make this a viable approach. Note that the cost of suspending a task may greatly exceed that of
starting a new task, since in the former case considerable state information needs to be saved.)3 ecid on Oranularity To" 0

Perlotm Multiply

Wait for Completon

Figure 1 - Task Graph of Matrix Multiply

I This sensitivity of job performance to processor allocation supports our interest in static schedulers. It
also motivates a more basic assumption of this work, that both the operating system and the application are3 involved in making scheduling decisions. Under this "two-level" approach to scheduling, the operating
system is responsible for partitioning the processors among the jobs. Each job uses the processors currently
in its partition to execute some subset of its runnable tasks. An appropriate decision about which subset to

Srun, as well as which task to suspend when a processor is pre-empted, is thus left to the individual
applications, which are in the best position to understand the important synchronization relationships among
their tasks. At the same time, the operating system retains its traditional scheduling role, that of managing the3 allocation of resources among competing jobs.

In contrast to two-level scheduling, existing schedulers for shared memory UMA parallel machines (e.g,
Dynix [Lovett & Thakkar 19881 and Mach [Young et al. 1987]) typically maintain a sing[&queue of runnable
tasks with all processors in the system cycling among them in a round-robin fashion. This approach, which is
a straightforward extension of scheduling in single processor systems, can perform very poorly on parallel
jobs that synchronize [Ousterhout 1982, Zahorjan et al. 1988, 19891. Our goal is to find scheduling strategies
appropriate to parallel jobs.

Our interest in this work is both theoretical and practical. On the theoretic side, we would like to
understand the circumstances under which each of static and dynamic scheduling is preferable to the other,
and the magnitude of the performance differences exhibited. On the practical side, we are interested in
policies that can be implemented. (In fact, the results of this work are guiding an implementation effort to
modify the existing scheduler on our Sequent.) This means that the policies we consider are restricted to
those that one might reasonably expect to be implementable, and that our models contain characteristics, such
as overhead, that are important when scheduling real systems.

In the next section we define the system model and analysis approach that we have used, and in Section 3
detail the basic scheduling policies studied. In Section 4 we make a broad comparison of the performance of

the two basic scheduling strategies, static and dynamic, with emphasis on determining the influence of
processor allocation overhead on the choice between them. In Section 5 we examine the more promising
approach, dynamic scheduling, in greater depth in an attempt to "tune" the scheduler for better performance.
Finally, Section 6 presents a summary of our fonclusions.

181

I
-3-

2. Model Definition and Analysis

Because we are interested in the effects of changes to some relatively low level details of sc'eduling
policies, we have used simulation to obtain performance estimates. This has allowed us to make the
comparisons envisioned at the outset of this study as well as to follow paths not originally foreseen. The
simulator was implemented as a C++ program, the bulk of which is tailored to this particular applicaiion.

While in theory simulation allows almost any level of detail in the model, it is nonetheless advantageous
to make the model as simple as possible. This typically results in faster simulation execution times (a matter
of some concern), but more importantly aids in understanding the model results. n

There are two components to our model, the representation of the hardware and the representation of the
software. Our hardware model consists of P identical processors. In the examples shown later in this paper,
we let P =20, a reasonable value for machines of the kind we address. Qualitative results for other numbers of 1
processors are similar to those for P =20.

We assume that any ready task can obtain equivalent service from any processor. This implies a UMA
memory organization, as mentioned previously. We do not explicitly model either miin memory or 1/0. 1
While both can be significant factors in some parallel machines for some applications, ;n general the focus of
parallel computations is on processor cycles. Thus, for this initial study we do not deal explicitly with these
other factors.

We model processor allocation overhead, which we denote 0, as a tim- delay between the first moment an
eligible processor is available to satisfy an allocation request (either because of the generation of a new 3
request or the change in status of some processor) and the time the processor actually becomes available to
the job making the request. This delay represents a number of factors: the time required to run the scheduler
code, the time required to save the context (if necessary) of the process running on the processor, the time 1
required to load the new context, and the penalty associated with the expected low cache hit ratio during
initial execution of that process. in our model these is no penalty associated with releasing a processor, since
the time required to do so is either icorporated into the acquisition penalty just described (in the case that the I
processor is released to another job) or occurs when there is no immediate demand for the processor (in the
case that the processor is released to a system pool of free processors).

We model the software component of the system as a Poisson arrival stream of parallel jobs. While our
hardware model can be relatively simple, we decided that our model of these parallel jobs should be fairly
detailed. Thus, in contrast to using some aggregate measure of parallel behavior (e.g., the fraction of
sequeitial code [Amdahl 19671 or the average parallelism measure [Eager et al. 1989, Sevcik 19891), we 1
represent jobs explicitly by their task graphs. The motivation for this is that the comparison betweer static
and dynamic scheduling policies obviously depends on the nature of the jobs to be processed. if we hope to
obtain meaningful qtantitative results about the situations in which one policy outperforms the other, it seems
necessary to include the complex behavior of real jobs.

With this in mind, we have used three benchmark workload classes throughout this paper. Figure 2a 3
shows the task graph structure of a parallel Mean Value Analysis [Reiser & Lavenberg 1980, Almquist et al.
19891 solution package for product form queueing networks containing two classes of N customers each. (In
Figure 2a N equals 10.) We refer to such a job as an MVA(NN) job. We expect all the tasks in this
application to have identical mean execution times, since they perform an identical amount of work. Thus, if
a processor were always available for use when a task became runnable, the parallelism of the job would step
through the sequence 1, 2, 3, ... N, N+l, N, ..., 3, 2, 1 during its execution. This represents a very gradual 3
but, for larger N, significant change in parallelism over the life of the job We expect this characteristic to
favor dynamic scheduling, can adapt efficiently to the slowly changing processor demand.

I 8

I
-4-

*P
I°

Figure 2a - MVA(10,10) Job Figure 2b - Fork-Join(11) Job

We let the mean task service time of MVA(NN) jobs be the unit of time in the model, i.e., the mean task
service time is equal to 1.0. Although we expect each task to take time nearly equal to 1.0, in an actual
system there will be some variation in task execution times caused by, for instance, slightly different cache hit
ratios and contention for access to shared memory. To reflect this in the model, we choose task service times
independently and uniformly from 0.95 to 1.05.

In our examples we use two specific members of the MVA class of jobs. The first, MVA(2,2), has a
maximum parallelism of 3 and a mean total processor time of 9 The other, MVA(10,10), has a maximum
parallelism of 11 and mean total processor time of 121. Clearly, the smaller jobs have more nearly constant
parallelism and so we expect static scheduling to be more effective on them than on the larger ones.

The second benchmark application is the canonical Fork-Join (FJ) job, wh~ose task graph structure is
shown in Figure 2b. These jobs cycle between sequential phases and phases with K runnable tasks. Fork-
Join jobs arise naturally in jobs that exhibit "data parallelism", meaning those that apply the same
computation to a number of different data points. Many scientific computations over grids fall into this class,
as does the matrix multiply example of Figure 1. The repeated fork-join cycle in the job reflects the often
iterative nature of these computations.

3 In contrast to MVA jobs, FJ jobs exhibit abrupt changes in their parallelism during execution. To help
isolate the effects of job structure on the relative performance of differing scheduling disciplines, we
parameterize the FJ jobs in such a way that some of their important measures match those of the MVA jobs.3 In particular, we consider two different instances of the Fork-Join class. In each, task services times are
chosen as for the MVA class of jobs (i.e., independently and uniformly from 0.95 to 1.05). The first instance
of the FJ job class, denoted FJ(3), forks into 3 tasks after each sequential phase and repeats the fork-join cycle

2 times. This leads to a job with maximum parallelism 3 and mean total processor time 9, which match the
corresponding statistics for the MVA(2,2) jobs. For the second instance, FJ(11), each sequential phase is
followed by 11 parallel tasks and the cycle is repeated 10 times. This giver maximum parallelism 11 and

mean total processor time 121, identical to those measures for the MVA(10,10) jobs.

Because the FJ jobs vary their parallelism quite rapidly, we expect that they form a kind of stress test for
dynamic scheduling, whose natural tendency is to move processors from job to job in an attempt to track

these changes in parallelism. The potentially high rate of processor reallocation that results can lead to
significant context switch overhead, resulting in poor performance.3 The final job class, called Variable-Fork-Join (VFJ), has the same basic structure as the fork join jobs, that

is, repeated cycles of sequential followed by parallel phases. However, for this class we assume that while
the !otal work to be done during the parallel phase is fixed, the number of tasks forked to perform the work is3 determined at the end of the immediately preceding sequential phase. This allows the job, for instance, to

3 183

I
-5- U

divide the total work into a number of pieces that suits the number of processors available to it. In the case of
static scheduling, a VFJ job splits into as many tasks as it has processors. In the case of dynamic scheduling,
the job forks into a number of tasks equal to the number of processors already allocated to it plus the number I
it can begin acquiring immediately.

We do not charge any overhead in partitioning the total parallel phase work among the forked tasks in the
VFJ jobs. Thus, the mean execution time of each resulting task is equal to the total time of the parallel phase
divided by the number of tasks generated, and the variation among task execution times is small. (We once
again assume a uniform distribution from 5% below to 5% above the mean task execution time.) In general,
such a situation cannot be achieved in practice for two reasons: the inability to divide the load equally among
the tasks and contention for the queue of descriptors describing the work remaining to be accomplished
[Kruskal & Weiss 1985, Polychronopoulos & Kuck 1987]. The former results in mean task times that may
differ significantly from one task to the next while the latter inflates the total processor busy time required to
accomplish the work. Both these overheads are greater for larger numbers of forked tasks. Thus, our results
for this workload tend to be a little optimistic. i

The particular instances of the VFJ job class we study are the analogs of the Fork-Join jobs described
earlier. The smaller jobs, denoted VFJ(3), have two fork-join cycles requiring a total of 3 units of work
during each parallel phase. The larger jobs, denoted VJF(11), have twelve fork-join cycles with total work 11 I
during each parallel phase.

Minimum Maximum Average Total Minimum Elapsed 3
Workload Parallelism Parallelism Parallelism Processor Time Execution Time

MVA(2,2) 1 3 1.8 9 5
FJ(3) 1 3 1.8 9 5

VFJ(3) I P 3P /P+2 9 3 + 6/P
MVA(10,10) 1 11 5.8 121 21

FJ(11) 1 11 5.8 121 21 I
VFJ(11) 1 P 11P /(P+10) 121 11 + 110/P

Table 1 - Summary of Workload Characteristics 5
Table I gives some simple measures of the workloads used in this study: "Total Service Time" is the

sum of the mean task times. "Minimum Parallelism", "Maximum Parallelism", and "Average
Parallelism" are those measures under the assumptions that context switch overhead has zero cost, that all
task execution times are deterministic, and that all P processors are available to the job. (For the MVA and
FJ jobs we have assumed that P is greater than their maximum parallelisms, which is true of all the examples
we present.) "Minimum Elapsed Execution Time" is the elapsed time required to execute a job under these

same assumptions.

Because the magnitude of the processor allocation overhead has a major effect on the performance of
scheduling policies (dynamic has an advantage when overhead is very small, static when it is large), it is
important to set this parameter of the model appropriately. Unfortunately, determining a reasonable value is

quite difficult. Since the overhead cost is given as the ratio of the absolute processor allocation time to
absolute average task execution time, it depends on characteristics of both the parallel machine considered
and the individual application. Thus, as overhead will vary from system to system, and even from job to job i
on the same system, all our experiments are performed over a range of overhead values.

In an attempt to identify a reasonable range of values, we have measured overhead and task times on our

Sequent Symmetry. The time to switch a processor from one job to another is roughly 750 pisec. The

184 3

-6-

MVA(10,10) task time is about 75 psec. per service center in the queueing network being solved by MVA.
This translates to an overhead range of roughly 0.0 to no more than 2.0 time units for reasonable assumptions
about the size of the queueing network. (Remember that the time unit in the model is the execution time of a
single task.) We also measured the matrix multiply rate on the Sequent, as a representative application of the
FJ job structure. Each element of the matrix resulting from multiplying together two lOOxlO0 matrices
requires about 1525 jisec. Dividing the total work equally among 20 processors (the number on our Sequent)
r,- ults in tasks times of about 762,500 lpsec., or overhead times of nearly 0.0

Based on these measurements we have chosen to examine an overhead range of 0.0 to 2.0. We believe
that for most computations the range 0.0 to less than 1.0 is of most interest.

3. The Basic Policies

In this section we define more fully the scheduling disciplines examined in our initial comparison of the
static and dynamic approaches. As mentioned previously, we assume a "two-level scheduling" mechanism
where the processor allocation function is performed by the operating system and the task dispatching
function is performed by each job.

We discuss here the static and dynamic processor allocation policies studied. We do not attempt to
specify precisely how task dispatching is performed. (Graham [19661 has shown that the order in which tasks
are dispatched in our model can affect elapsed execution time by no more than a factor of 2-1/P when the job

runs with P processors.) However, we make the assumption that a task, once started, is run to completion1.
This is motivated by consideration of overhead, which renders round-robin execution of all runmnable tasks
(the natural alternative) impractical for many parallel applications. It also implies that tasks block (that is,
relinquish their processor to another task of the same job) rather than spin at synchronization points when
there are waiting runnable tasks. Fast thread packages [Bershad et al. 1988, Tucker & Gupta 1989, Birrell
19891 make such a blocking strategy practical, and previous modelling work has shown that the expected
performance of spinning and blocking in this case is quite similar [Zahorjan et al. 19891.

3.1. The Static Policies

We consider two specific implementations of static scheduling. In both cases the number of processors
allocated to a job is fixed by a single decision made at the onset of the job's execution. However, the two
policies differ in their mriner of controlling the set of runnable jobs.

Under the first static policy, called Run-To-Completion (RTC), once initiated each job is allowed to
continue execution uninterrupted until termination. When a job arrives to the system, if there are free
processors some number (potentially all) of them are allocated to it and it begins execution. If no processors
are available, the jobs waits for some currently executing job to finish. At that point, the processors released
by the completing job are allocated among all waiting jobs. (The method for deciding how many processors
to allocate each arriving job is described shortly.)

The alternative static policy, Round-Robin, is based on the notion off co-scheduling [Ousterhout 19821.
Round-Robin cycles all of the processors in a round-robin fashion among all jobs in the system. That is, at
the end of each scheduling quantum all P processors in the system are pre-empted from the set of currently
running jobs and given to a different set of jobs. Note that this is a static policy since a particular job is
allocated the same number of processors during each quantum that it runs.5 Round-robin execution can be incorporated into our model in an approximate way by breaking each task

into a sequence of smaUer tasks. The task dispatcher wiU then tend to circulate the processors among all the
onginal tasks in a fair manner.

185

U
-7- I

To complete the definitions of RTC and Round-Robin we must specify how each decides upon the number
of processors to allocate an arriving job. In the absence of a priori information about the job, this decision
must be made in a job independent way (although the decision could depend on recent system measurements, I
such as the average processor utilization or the current number of runnable jobs). As an example, RTC might
simply assign each job some fixed number of processors, or perhaps all processors that are available when the
job arrives, while Round-Robin might assign all processors to each job. I

Rather than pursue this approach we have assumed that each job provides an accurate characterization of
itself to the static scheduler when the job arrives. (One advantage of the dynamic scheduler, as we will see, is
that it has no need for this a priori information.) In practice, this is somewhat unrealistic both because users
may not know the characteristics (e.g., if job behavior is data dependent) and because the system cannot trust
users to truthfully represent their workload [Coffman & Kleinrock 1968]. However, by giving the benefit of
the doubt to the static policies we strengthen our confidence that dynamic scheduling will in practi. - be
preferable in those circumstances where it dominates in our model.

The characterizations of a job j used by the static schedulers are its total execution time, denoted T,(l), 3
and its speedup curve. The speedup of job j when allocated pj processors is denoted Sj(pj), and is given by
the ratio of T(1) to T1(p,), its elapsed execution time when run on p, processors. Intuitively, the speedup
curve represents the incremental benefit of allocating additional processors to a job.

From these input quantities we can derive two other measures of interest, the average and maximum
parallelisms. Average parallelism, denoted A1 , is defined as the average number of processors the job would
keep busy if it had an unbounded number of processors available to it. With this definition, Al is given by
Sj(-). Maximal parallelism, denoted M., is defined as the smallest number of processors for which the
speedup curve achieves its maximum value. 3
3.1.1. The RTC Policy

Given the quantities supplied by the job upon arrival, the RTC scheduler operates as follows: 3
RTC

Upon job arrival:

1. If there are idle processors, the job is allocated the lesser of the number of idle processors and the
job's maximum parallelism, M.

2. Otherwise, the job waits until processors become available.

Upon job completion:

3. Each of the processors released by the completed job is assigned in turn to that waiting job j whose 3
current assignment of processors p, is less than M, and for which the expected improvement in
elapsed execution time, T,(p,) - T1(p1 +l), is greatest. When all released processors have been
assigned, the processors are actually allocated to the jobs, which begin execution (after a processor 3
allocation overhead time).

In Appendix A we show that the greedy allocation of Step 3 provides minimal average response time over the
current set of jobs (i.e, ignoring any future arrivals or departures by jobs already in service, which cannot be I
predicted by the operating system in practice). By defining T,(O) to be very large, Step 3 implies that any
waiting job not yet assigned a processor will be assigned one before any other job is assigned more than one.

I
1.t6 I

I
-8-I

3.1.2. The Round-Robin Policy

To fully explain the strategy followed by the Round-Robin allocator we must first introduce a bit more
notation. Assume that each running job k has been assigned pk processors and has been placed in a
scheduling "slot". All jobs in any one slot run simultaneously. Processors ar assigned to slots on a5quantum-driven basis, with all P processors moving from slot to slot at each quantum expiry. Let there be a
total of N slots and for each slot n let F. M P - YPk be the total number of unallocated processors in that slot.

htA

The basic problem confronting the Round-Robin scheduler when a job arrives is whether to allocate it the F.
free processors in some existing slot n or to create a new slot and allocate it some larger number (up to P) of
processors. Creating a new slot allows the job to progress more quickly when its slot is scheduled, but, by
increasing the total number of slots, reduces the rate at which each slot is scheduled.

Unlike the RTC scheduler, whose objective function involves only the jobs currently being scheduled,
Round-Robin makes a global decision in assigning the new job to either an existing or a new slot since the
decision may affect the response times of all jobs in the system. Round-Robin's objective is to maximize the
total rate of delivery of useful computing in the system.

Let C m T Sk(pk) represent the current effective computing rate of the system. Ignoring the cost of
all jobs k

context switching, - gives the average number of processors usefully busy under the existing allocation.

The Round-Robin policy then is:

Round-Robin

Upon arrival of job j:5 1. Let slot max be the one with the most unallocated processors. Then if F,, is greater than or equal
to A,, the job's average parallelism, the job is allocated to slot max and is given Aj processors.5 2. Otherwise, if

iS(Fm) + C> S,(Min(P,A,)) + C
N N+1

the job is allocated F a, processors in slot max.

3. If allocating to a new slot, N+I, allocate the job Min (PAj) processors.

4. If job j is allocated to the slot currently in execution and that slot has processors not used at the
moment (see Step 6), begin executing j as long as the remaining time in the quantum exceeds the

context switch overhead time 0.

Upon the completion of a quantum for slot n:

5. If there have been any job completions during the quantum, calculate the new number of

unallocated processors F. in this slot. Scan the list of slots sequentially. If the number of allocated

processors in a scanned slot is less than F, combine that slot with slot n, update F,, and stop the
scan. (It is not possibie for two existing slots to be combined with n or those slots would already3 have been combined with each other.)

When scheduling slot n:

6. Allocate the F. unused processors to jobs in the immediately succeeding slot, giving multiple

processors to a single job in preference to fewer processors to many jobs. (The number of allocated

processors in the next slot must be greater than the F. or the two slots would have been combined

5 by Step 5.)

187

U
-9- U

The upper bound allocation imposed in Steps I and 3 is motivated by possible fulae amvais. Since the
current job achieves nearly optimal performance with allocation Aj [Eager et al. 1988] any idle processors in
excess of this number "are saved for future arrivals." We did not have to take this conservative approach I
under RTC because, as we shall see, RTC naturally reduces the allocation of processors below the maximum
parallelism of the jobs whenever there is a significant load on the system.

We note that fragmentation of allocation among the slots is a major problem with Round-Robin. Steps 4,
5, and 6 are all concerned with this effect. Our simulations indicate that the performance of Round-Robin is
significantly reduced if processors are allowed to go unused. The magnitude of this degradation was
surprising; we had originally formulated a simpler version of Round-Robin anticipating that it would perform
nearly as well as this more complicated scheme. However, the performance of the simpler approach was
unacceptable, being far inferior to both RTC and Dynamic under all parameterizations of the model.

3.1.3. Qualitative Comparison of RTC and Round-Robin

There are a number of qualitative distinctions between the Round-Robin and RTC approaches. Round- 3
Robin affords greater flexibility in making processor allocation decisions than RTC (since the sum of all
currently decided allocations can exceed the number of processors on the system), a factor that favors
Round-Robin. However, Round-Robin incurs more overhead because of the cost of quantum pre-emptions. I
This favors RTC. The round-robin aspect of Round-Robin is a better approximation to Shortest-Job-First
d3n RTC, a desirable attribute in minimizing response times, although the benefit of this is less pronouncod
in multiprocessor systems than in sequential machines [Sauer & Chandy 1979]. Whereas under Round-Robin 1
the delay between job arrival and the start of its execution is relatively short compared with that under RTC,
the subsequent delay until execution completes is relatively long.

While the qualitative differences between the two static policies are quite clear, the quantitative I
differences in their performance are not. This is one of the questions addressed in Section 4.

3.2. The Dynamic Policy I
In contrast to the two static schedulers, the Dynamic scheduler allows jobs to gain and release processors

during their executions. In particular, the job's task dispatcher can request additional processors whenever 3
they are needed, and the operating system processor allocator will attempt to meet these requests. The task
dispatcher can unilaterally release processors (to the operating system) at any time.

The basic operation of the policy is quite simple. To define it fully, we must specify the actions taken by
both the processor allocator in assigning processors to jobs and the decision procedure followed by the task
dispatchers in requesting and releasing processors:

Dynamic Processor Allocator

When a job requests one or more processors (including job arrival):

1. If there are idle processors, use them to satisfy the request. I
2. Otherwise, if the job making the request is a new arrival, allocate it a single processor by taking one

away from any job currently allocated two or more.

3. If any portion of the request cannot be satisfied, it remains outstanding until either a processor
becomes available for it or the task dispatcher rescinds it (e.g., if the job's parailelism decreases in
the interim). 3

Upon release of one or more processors (including job departure):

4. Scan the current queue of unsatisfied requests for processors. Assign a single processor to each job
in the list that currently has no processors (i.e., to all waiting new arrivals). After these jobs have

188 n

1 - 10-

m been assigned a processor, scan the list again, allocating the rest of the processors on a FCFS basis.

Steps 2 and 4 assure that newly arriving jobs receive a processor relatively promptly. We found this to be3 important to performance, an effect also noted by others [Majumdar & Eager 1988].

The application's task dispatcher is run after the completion of each task. While each job is free to
perform task dispatching (including making requests for and releasing processors) according to any policy it
chooses, for the initial comparisons of dynamic and static scheduling in Section 4 we assume that all jobs use
the following procedure:

3 Dynamic Task Dispatcher

During job execution, at instants that a processor finishes a job j task:

5. If there is a newly arrived job that has not yet received a processor and job j holds two or more
processors, the task dispatcher releases its processor.

6. Otherwise, let q, be the number of job j ready tasks waiting for processors. If q, 1 the task
dispatcher simply dequeues the task and starts its execution.

7. If q, > I the task dispatcher advertises that job j wants q,-I additional processors assigned to it and
then begins executing the first task in the queue.1 8. Finally, if q, = 0, the task dispatcher examines the information posted by other jobs to see if any of
them want additional processors. If so, it releases the processor. On the other hand, if qy = 0 but no
other job currently wants additional processors, the dispatcher sits in a loop examining the ready
queue for j and the processor request information posted by other jobs. If a task arrives to j's ready
queue before the any other jobs make processor requests, the task can begin executing without a
context switch penalty. (Otherwise, the processor is released.)

m- We note that the Dynamic policy as described is very "eager", meaning it gives up and acquires
processors as quickly as it can. Under some circumstances this can lead to significant context switch
overhead. In Section 5 we examine modifications to the Dynamic policy that reduce this overhead.

There is one additional consideration not addressed by the Dynamic policy as we have described it. In an
actual system one might expect users to take simple countermeasures [Coffman & Kleinrock 1968] to the
Dynamic policy by modifying the behavior of the task dispatcher (which is part of the application). For
example, the task dispatcher might ignore Step 8 (by never releasing processors) or might inflate the size of q,
in Step 7. Partially in anticipation of this problem the policy implemented in our simulator actually
incorporates a multi-level feedback priority mechanism. A job begins running at highest priority. The total
number of processor-seconds accumulated by the job is monitored, and as it crosses a set of parameterizable
thresholds the job drops in priority. A job at a lower priority may have its processors pre-empted for
allocation to a higher priority job. This has two effects. The first is to reduce the advantage of the
countermeasures listed above, since holding onto excess processors causes a job to drop in priority more
quickly. The second effect is to provide a better approximation to Shortest-Job-First (under the common
assumption that a job that has already run for a long time will most likely continue to run for a long time).

We have not used this feedback mechanism in the examples shown in the next section, as it did not lead to
changes in average response time. In those examples involving only one workload class this might be
attributed to the fact that this modification renders Dynamic less like Shortest-Job-First. (Since jobs have
nearly deterministic service requirements, a newly arriving job must have a greater remaining service
requirement than a job already in execution.) The failure to improve response times in the multiple class
examples is probably due to the same basic effect. If our job classes showed much more extreme differences
in execution time requirements, it is likely that some benefit would be realized.

189

4. Comparison of the Policies

In this section we compare the performance of the three schedulers, RTC, Round-Robin, and Dynamic.
All results were obtained by simulation. Eac- simulation was run for 15500 time units and statistics from the
initial 500 time unit interval were thrown out to reduce the effect of initial start-up. This run length produced
95% confidence intervals that were typically much less than one percent of the mean for the measures we

examined. I
All simulations were parameterized for a system with P=20 processors. The task service times were

chosen uniformly from 0.95 to 1.05. The quantum length for Round-Robin was chosen to so that the fraction 3
of time spent in overhead due to quantum expirations, O was 2.5%. This value, which was0 +quantum length'

arrived at through experimentation, represents a compromise between low overhead and reasonably short

quanta, and typically results in nearly minimal job response times.

In each experiment we varied the context switch overhead 0 from 0.0 to 2.0 time units. (Remember that a

time unit is defined to be the mean task execution time.) We note that there are two ways to interpret the 3
magnitude of the context switch time. In the first, one assumes that the workload is given, thus fixing the

absolute task service times, and our results indicate how fast context switching must be made (by a

combination of the hardware and kernel designers) for dynamic scheduling to be preferable to static

scheduling. The second interpretation is to assume that the system, and thus the context switch time, is fixed

and that we are deciding on the granularity of the job. Under this interpretation, an overhead of 0.0
corresponds to very coarse granularity and overhead 2.0 corresponds to very fine granularity. Then, if the 3
experiments indicate that dynamic scheduling is preferable to static for, say, 0 < 1.5, a job should either chose

a granularity that results in task times of at least 2/3 the actual context switch time or should take a I
countermeasure to the scheduler that causes it to allow the job an effectively constant allocation.

For simplicity in what follows we assume that the overhead costs of all disciplines are equal. In practice,

the differing complexities of the various schedulers would allow some to make decisions more quickly than

others. This can be taken into account in an informal way by comparing the performance of the static I
schedulers at overhead costs lower than those taken for the dynamic scheduler. However, we will see that the
performance of the static schedulers are relatively insensitive to overhead costs. Thus, even if the static

schedulers resulted in significantly lower overhead costs than those under the Dynamic policy, this would not

greatly change the conclusions we reach by assuming that the costs are equal.

The performance metric by which the schedulers are compared is mean job response time. However, we

have also extracted a number of other measurements from the simulations to help in drawing conclusions.
Among these are the mean fraction of time each processor spends in overhead, the mean fraction of time each
spends allocated to a job but unused, the mean number of processors allocated to each job, the mean time 3
between job arrival and the first acquisition of processors, and the mean time from start of execution to job

completion.

We compare the performance of the schedulers over different workload types and volumes. We set

workload volumes by adjusting job arrival rates to achieve a specified useful utilization of each processor. If

U is our target useful utilization, T(1) is the average total execution requirement of the jobs in the workload,

and there are P processors in the system, the arrival rate X is set by U = (X T(l))/P. For example, in a system U
with 20 processors, to achieve a target utilization of 75% with a workload consisting entirely of FJ(11) jobs,
the arrival rate is set to (20)(0.75)/121.

Because of the complexity of the system we are studying, we first examine the results of a set of single-

class experiments in an attempt to uncover the relationships among the schedulers. We follow this with an

examination of multiple-class models to see how the tradeoffs among the schedulers are affected. 3
190

1 12-

4.1. Single Class Comparisons

* In Figures 3a-3f we compare the schedulers on our six workloads. In each case, a Poisson arrival stream
* of a single workload is generated at a rate that produces an average useful processor utilization of 50%. Each

graph shows average response time as a function of context switch overhead.
Is0 10.0

140 OTC

10.0 O~ TC _________

130 - O I4_ _ _

* 11060.0

100 -0.

X90
40

60I000 05 10 1.5 .1.0 00 0.5 10 1.5 1.0

Scheduling Overhead Scheduling Overhecad3Figure 3a -Simulauon of MVA (22 Figure 3d.- Simulation of MVA (10.10)

140 RM"01

120 _ _ _- -
12.0 600

It
29 so

140 30010 e7 tO--OL 60

500 S05 uln 10 15 20 0.0 05 10 1 5 203ceuln Overhead SceuigOverhead

Fiue3b -Sumulauac of FJ (3) Figure 3e - Simulation of RF (1)

Base on tgooeuta ela seo te xeiet o hwnhrw ec h olwn

1 concl sio.03 191

-13- I
Static vs. Dynamic Scheduling:

1. Independently of workload (and overall system load), dynamic scheduling is best for small context switch
overheads.

This is as we expected. When context switching is cheap, Dynamic allows maximum utilization of the
processors by adapting allocation to instantaneous parallelism. However, when context switching is I
expensive, the cost of exploiting changes in parallelism sometimes outweighs the benefits.

2. The advantage of Dynamic at low context switch costs increases with larger and more rapid changes in
the parallelism exhibited by a workload.

In Figure 3, comparing the results of MVA(2,2) with MVA(10,10) and FJ(3) with FJ(11) we see that the
advantage of Dynamic over the static schedulers is nominal for the small jobs but significant for the larger
ones. (The behavior of the VFJ jobs is explained in point 6 below.) The reason for this is evident: the
smaller jobs exhibit little change in parallelism, so there is not much difference between the Dynamic and
static policies. On the other hand, the large jobs do change their parallelism considerably, and Dynamic is I
able to make better use of the processors over the lives of the jobs than the static policies.

Figure 3 also points out another effect: the threshold beyond which a static scheduler outperforms
Dynamic decreases with the rapidiY-o-ftictuation in parallelism. This is seem by comparing the FJ(1 1) I
with the MVA(10,10) jobs. Experiments with effective loads higher (75%) and lower (25%) than those of
the experiments shown in Figure 3 show very similar behavior. In fact, the values of the thresholds in the
experiments for each workload type are nearly independent of the system load. (See, for example, Figure I
4.)

3. The relative advantage offered by Dynamic increases with increasing load: the advantage offered at low 3
context switch costs is magnified and the disadvantage at high context switch costs diminished.

This effect is illustrated in Figure 4, which shows the performance of RTC, Round-Robin, and Dynamic
on the FJ(1 1) workload for system loads of 25%, 50%, and 75%. (Round-Robin produces response times
that are off the scale for the 75% load.)

00

900

800

'00

500- RTC. U.TM

.00 0 IOt'"M-0991. LI
O NAMMC,VU-19' %i

00 05 10 15 L0

Scheduling Overhead

Figure 4 - FJ(II) at 25%, 50%, and 75% Useful Utilization 3
At high system loads there are large penalties associated with even small reductions in the average number
of processors doing useful work. Both the static and Dynamic policies lose processing power to context
switch overhead. The static policies also suffer an additional problem, fragmentation in their allocations
caused either by a job holding processors it does not currently need or needing more processors than it has
been allocated at a time when there are idle processors in the system. Dynamic does not experience this 1
fragmentation. Thus, when context switch times are sufficiently small, Dynamic has a significant

192 m

-14-

advantage over the static alternatives at high load.

Conversely, when the system load is fairly light, making effective use of all the processors is not as
important. Thus, the static policies can afford to make large allocations. Under these conditions the
Dynamic policy suffers because a job receives no more processors than it would under the static
schedulers but experiences multiple context switches in acquiring them.

Round-Robin vs. RTC:

4. On the whole, RTC is preferable to Round-Robin for general purpose use.

Round-Robin yields response times lower than those of RTC only at medium loads, and even there the
advantages are quite modest. (Figure 3d is the maximum advantage we have observed.) On the other
hand, Round-Robin is unstable, producing very large response times in environments handled easily by
RTC. (See, for example, Figures 3b and 4.)

This behavior is explained by the decision procedures used by the two policies for allocating processors.3 In general, a static policy should assign many processors to a job when the system load is low and only a
few processors when load is high [Sevcik 1989]. Under RTC, the number of processors allocated to an
arriving job j is constrained by

I AllocationRTc < Min (M, # Idle (or Released) Processors)

Thus, RTC has the proper behavior. When load is light there are many idle processors, and RTC makes a5 maximal allocation. When load is heavy there are few idle processors and RTC reduces the allocation to
each job.

On the other hand, Round-Robin does not have this property. Its constraint on allocation is simply

AllocationR°td-R ° b < Aj

Thus, whenever the job is allocated to a new scheduling slot it it. given Aj processors, independently of the
system load. While jobs are discouraged from creating new slots by Round-Robin's allocation policy, this

must happen periodically. When it does, roughly arrivals are each allocated A, processors. The

I next single arrival may be allocated the remaining processors in the slot, and the arrival following that
triggers a new cycle of this behavior. Thus, when P is much larger than Aj, there is little reduction in
average allocation in response to load.

The difference in allocations made by RTC and Round-Robin is evident in the allocations each makes to
FJ(l 1) jobs when context switch cost is set to 1.0: RTC assigns an average of 9.19, 5.51, and 2.723 processors per job at system loads of 25%, 50%, and 75% respectively, whereas in the same circumstances
Round-Robin assigns 5.76, 5.41, and 4.98 processors perjob. We see that at low loads RTC assigns larger
allocations than Round-Robin, resulting in slightly better performance'. At medium loads the allocations
are nearly equal, and for this overhead value, so is performance. At high loads, however, Round-Robin's
allocation of nearly 5 processors per job means that each allocated processor is busy only about 60% of the
time. In contrast, under RTC allocated processors are usefully busy more than 80% of the time. (The
same effect accounts for Round-Robin's poor performance with small jobs at medium load.)

We have been unable to find an alternative allocation strategy for Round-Robin that modifies this behavior3 qualitatively and is still in the philosophy of this approach, that is, and still allows the sum of the

1 It is precisely because RTC adapts to load that it can afford a upper allocation bound of M, whereas

Round-Robin must adopt the more conservative bound of A,.

I I 193

-15- I
allocations to exceed the total number of processors in the system by an arbitrary amount. Thus, we
conclude that the comparisons made in this section represent fundamental properties of the philosophies of
the RTC and Round-Robin approaches in this environment. I

5. RTC shows surprising resilience to high loads.

We had expected that RTC would perform poorly as load increased because of the inefficiencies of a job
holding a fixed number of processors even during periods when it cannot make use of them all. However,
the tendency of RTC is to reduce allocations when there are many jobs in the system, so that when system
performance becomes bad the average allocation is decreased to a single processor, eliminating any I
inefficiency.

Figure 4 illustrates our observations about RTC. Here we see that response time under RTC increases by a
factor of about 1.5 in going from system load of 50% to 75% useful utilization. In contrast, the wait time I
in an MIMI queue doubles. Note also that the performance of RTC is nearly independent of overhead
cost regardless of system load.

FJ vs. VFJ Job Structure:

6. In general, but particularly under the Dynamic scheduler, the FJ workload performs as well or better than
the corresponding VFJ alternative. I
Under the static schedulers, FJ and VFJ perform comparably when the system load is light to medium, but
when system load is heavy the FJ structure is preferable, especially for small jobs. Under the Dynamic
policy, FJ and VFJ pert .,m comparably for small jobs, but FJ is considerably preferable for the large ones,
especially at medium to heavy loads.

When FJ is preferable to VFJ it is because the ability of the VFJ jobs to monopolize all the free processors 3
causes other jobs to make do with only a few. In the case of the Dynamic scheduler, when one VFJ job
holds many processors, other VFJ jobs arriving at their parallel phases will decide to partition their work
into only a few tasks each (since there are only a few processors currently available to run them). Once I
this partitioning is performed the job is committed to it until all work in that phase is completed.

In contrast, an FJ job splits into a constant number of pieces regardless of the current availability of

processors. This means that it can take advantage of processors released by other jobs after the fork is I
performed. It is this distinction that gives FJ an advantage over VFJ.

The same argument applies under the static policies at heavy load. When a small VFJ job arrives to the
system at a time when there are many available processors, it is allocated all of them. Subsequent arrivals
then find very few (if any) processors, and so are given small allocations. This results in a very unequal
partitioning of the processors among the jobs, something that leads to low processor efficiencies and so
poor performance. In contrast, an FJ job finding many free processors upon arrival takes only a limited
number of them. Thus, the processor allocation is more equal and the overall processor efficiency is
higher, resulting in better performance. 3
We note that in practice this comparison most likely favors FJ even more strongly than it does in our
model because of the optimistic assumptions we have made in defining the VJF workload. (See Section
2.)

4.2. Multiple Class Comparisons

We now turn our attention to the multiple class environment. We once again ran a set of experiments in
which the system load was varied from 25% to 75% useful utilization. In each experiment, all six workload
classes were given the same arrival rate. Thus, to achieve useful utilization of U we set the arrival rate X of

9+9+9+121+121+121each class byU -- 20
20

194

I I- 16-

Examination of the results of these multiple class experiments and comparisons with the single class
results lead us to the following conclusions:

1. In terms of average response time, Dynamic scheduling dominates static scheduling for almost all
overhead values considered.

Figure 5 shows response time averaged over all six workload types against context switch overhead for
arrival rates yielding 25%, 50%, and 75% useful utilization. (The results for Round-Robin at 75% load
are off the scale.) We see that Dynamic outperforms the static schedulers except for small differences at
large overheads under light and medium loads. Keeping in mind that overheads are much more likely
small than large, Dynamic seems the clear choice.

I _ 60.0,

500

* ~400__ _

300 .
0- M-7ft1~ d
0= - - - a DYN A m U.M

200 § 2 - - - ---"--- - " u.M

loo~oalt f0uXD= -7t

0o 0 .5 1o 1.5 2.0
Schedlung Ovatmed3 Figure S - Overall Response Times

We note also that the gain in advantage realized by Dynamic in moving from the single class to the
multiple class environment r-sults from a small decrease in response times under Dynamic ind a small
increase under the static schedulers. This is illustrated by Table 2, which gives individual class response
times in a multiple class system with overhead cost equal to 1.0. (The large decreases in response times3 for FJ(3) and VJF(3) under Round-Robin result from their extremely poor behavior in the single class
environment.)

Single Class Multiple Class
RTC R-R Dyn RTC R-R Dyn

MVA(2,2) 7.80 7.80 7.36 10.39 11.34 7.53
FJ(3) 9.76 39.60 9.34 11.56 14.00 9.24

VFJ(3) 12.18 19.00 11.10 11.10 12.51 9.32
MVA(1O,10) 41.71 37.03 29.16 48.81 40.48 28.33

FJ(I1) 59.08 52.32 51.28 59.34 49.15 39.37
VFJ(II) 59.02 51.24 68.62 60.49 49.97 67.24

3 Table 2 - Single vs. Multiple Class Environments at 50% Load

2. Dynamic performs increasingly well relative to the static policies as system load increases.3 We note from Figure 5 that benefit of Dynamic at low overhead costs increases with increasing loads and
that the penalty of dynamic at high overhead costs decreases to a negligible amount. Correspondingly, the
threshold in overhead cost below which Dynamic is superior to RTC increases with increasing system
load. The same trends also exist in terms of the performance of each individual class.

* 195

-17- I
3. There is no apparent benefit to the round-robin aspect of the Round-Robin policy.

The relationship of Round-Robin to RTC in the results of Figure 5 is identical to that evidenced in the
single class experiments. Thus, the anticipated benefit of Round-Robin's better approximaton of
Shortest-Job-First did not materialize.

4-3. Summary of Comparisons I
Looking over all the results of this section, it :s clear that:

A. RTC is the most robust policy with respect to context switch overhead (and thus with respect to I
application granularity).

B. While Round-Robin sometimes performs better than RTC, the benefit in these cases is small and
does not justify risking the performance penalty of Round-Robin that exists in many situations.

C. In contrast, the Dynamic policy offers occasionally large performance benefits over RTC and
exhibits a performance penalty only at very large overhead values. U

We reiterate that in the comparisons presented so far we have used a potentially quite optimistic
formulation of the static schedulers, which rely on detailed and accurate information about job runtime
characteristics being supplied at job arrival time. In contrast, we have studied only the simplest version of
Dynamic, one in which processors are released and requested immediately in response to changes in a job's
parallelism. It is natural to wonder whether the performance of Dynamic can be improved even further by
modifications that reduce the rate of processor reallocation. This question is the topic of the next section.

5. Improving the Dynamic Policy 3
The Dynamic policy defined in Section 4 makes processor requests and releases immediately in response

to changes in job parallelism. Intuition leads one to believe that this causes a high rate of processor
reallocations, and that consequently performance might be improved by taking a more conservative approach
to reallocation.

With this in mind, we have examined tvo approaches to improving the performance of the Dynamic

scheduler. The first, implemented in the system processor allocator, reduces the rate at which processors are I
acquired. It is a general mechanism that uses only simple measurements of a job's recent behavior, and is
otherwise independent of specific knowledge about the nature of the job. The second approach, implemented
in the application dependent task dispatcher, reduces the rate at which processors are released. Both I
approaches are discussed in more detail in the following subsections.

5.1. Reducing the Rate of Processor Acquisition I
The purpose of this modification is to re-duce the rate of "useless processor exchanges". A useless

exchange is either the release of a processor shortly after acquisition or the acquisition of a processor shortly
after release. Note that acquiring or releasing a number of processos in a short interval is not in itself an
indication of a poorly behaved job. For instance, the MVA workload class has a tendency to exhibit this
pattern even when it is running well. 3

We attempt to improve performance through modification of the processor allocator to reduce the rate of
changes in the jobs' allocations. For each job j we keep a damping factor. dj, whose initial value is 1.

Whenevet job j requests some number, p, of processors, the kernel attempts to allocate - processors

instead. We increase the value of d, whenever a useless exchange is detected, and gradually decrease d,
otherwise. The particular manner in which this is done is as follows:

196 3

I - 18-

1. For each job j keep a timestamp of the last time the job acquired a processor.

2. On each processor release by job j, compare the current time to the rimestamp for that job. If the
difference is less than a context switch overhead time, dj is set to the minimum of twice its current
value and P, the total number of processors in the system. If the difference is more than a context
switch time, d, is set to the greater of half its current value and 1.

We double and halve d,, rather than, say, adding and subtracting 1, in an attempt to allocate a number of
processors that divides nearly evenly the amount of work left to be done. This avoids the situation, for
instance, of an FJ(1 1) job having requested 10 processors (to bring it to a total of 11) and receiving only 9.
Under the assumption that the tasks are of equal size, the 10 processors the job then holds cannot complete
the work any faster than could the 6 processors obtained by allocating 10/2 additional processors, making this
an expensive allocation for the system that is of no marginal benefit to the individual job.

5.2. Reducing the Rate of Processor Release

We rely on the task dispatcher to make sensible decisions about the appropriate time to release processors.
Here we describe the modifications we have used for MVA, FJ, and VFJ jobs in an attempt to improve upon
the basic "immediate release" policy.

5.2.1. The MVA Customized Task Dispatcher

Because of variation in individual task execution times, not all tasks in an individual level of the MVA
computation complete at the same time. Because of synchronization constraints, there may be (short) periods
of low parallelism even during the expanding parallelism phase of the computation. Releasing processors at
these instants does not make sense (unless context switch overhead is extremely small), since they will be
needed again by the job almost immediately. Thus, we modify the processor release policy so that processors
are not released until the completion of the expanding parallelism phase of the MVA computation.

5.2.2. The FJ Customized Task Dispatcher

The cause of performance problems for the FJ workload is the policy for releasing processors during the
sequential phase of computation. At moderate to high loads any processor released by a job j is likely to be
quickly allocated to another job. When context switch overhead is large, more processing power is wasted in
giving up processors at the onset of the sequential phase than in keeping them idle until they are needed in the
next parallel phase.

We therefore modify the FJ task dispatcher so that it retains a parameterizable fraction of its maximal

processor need even during sequential phases. For instance, if an FJ(1 1) job retains at the 50% level it does
not release processors when it has 6 or less. If a job retains at the 100% level it never releases processors
(except at job completion).

5.2.3. The VFJ Customized Task Dispatcher

The VFJ task dispatcher is modified in a manner nearly identical to that just described for the FJ jobs. As
with the F1 task dispatcher, we define a parameter that restricts the number of processors the job will release.
When a VFJ job forks it dynamically determines the target number of processors it would like to run with (see

Section 2). The parameter of the dispatcher is a percentage that is multiplied (at each fork) by this target
processor allocation. The result determines the number of processors the job will retain through the next

sequential phase.

197

-19- I
For instance, suppose the parameter is 50% and at the end of a sequential phase the job holds 3 processors

and decides to ask for 5 more. Then it will hold 4 processors through the next sequential phase (assuming

that it has acquired at least one more before then).

3' 0

350

33 0

31 0

290--

Z5.0

: 2.3 0

11 DYNA

. 3
0.0 o1 t o 1. 0 .

Scheduling Overhead

Figure 6 - Average Class Response Times with Modified Disciplines

5.3. Performance Results

Figures 6 and 7 show typical results obtained from these modifications to the two components of the
scheduler. Figure 6 plots average job response time against context switch overhead for a multiple class
workload (equal arrival rates of all six workload types) offering a total load of 50% useful processor5

utilization. (Results for other loads are nearly identical.) Figure 7 shows the response time of two individual
classes in this multiclass environment. We plot results for the basic Dynamic policy (described in Section 3),
as well as a number of the scheduler modifications just described. Under "System Optimization" the kernel 3
processor allocator dampens changes in allocations (Section 5.1). However, jobs request and release
processors immediately in response to changes in their parallelism, as in the base case. Under "Retain 50%
& MVA" ("Retain 100% & MVA") the system processor allocator does not do any dampening, but the FJ
and VFJ jobs guard 50% (100%) of their target number of processors. In these cases the MVA jobs follow
the release policy described in Section 5.2.1. Finally, in "All Optimizations" we combine the System
Optimization with the Retain 50% & MVA policy.

340

32 0 Sao

198_ ___I60 051 I 0 . 0 0 .

Fiur A.- MV(O1)Wrla iue7 J)WrlAd

198

-20-

Based on the results of Figures 6 and 7, as well as those of other experiments, we come to the following

conclusions:

1. The Basic Dynamic discipline is the best alternative over the low end of context switch overheads.
This is not unexpected, as when context switch costs are near 0 the basic algorithm makes most efficient
use of the processors. We note that the range of context switch costs from 0.0 to no more than 1.0 are
probably the most reasonable to expect in well designed applications.

2. In general, the application specific modifications that reduce the rate at which processors are released are
the best alternatives at higher context switch costs.

Looking at the overall average response times, the application specific modifications are preferable to the
basic technique when overheads are greater than about 0.75. Examining each class individually, we see
that the application specific modifications are preferable to the basic approach over roughly this same
range.

The overhead cost beyond which it is beneficial to retain a processor even if it is not immediately needed
can be considorably shorter than the expected delay until the processor will be needed again by the job
currently holding it. This can be seen in Figure 7b for the FJ(l 1) jobs. The mean delay until a released
processor will be needed is at4,at-4O the task time of a sequential phase of service. However, retaining
processors begins to help for context switch times beyond 0.5.

* 3. Dampening the rate of allocations made by the system processor allocator is generally detrimental to
3. -~ performance.

Reducing the responsiveness of the system to processor allocation requests generally increases response
time (Figure 6). The improvement found in the MVA(10,10) job class (Figure 7a) is bought at the price of
a significant drop in performance for FJ(11) (Figure 7b): MVA(IO, 10) has more processors available to it
because FJ(l 1) is prevented from acquiring them quickly.

Combining the system level modification with the application specific modifications improves
performance only very slightly over the application specific modifications alone. Given the performance
risk involved if an FJ job, for instance, does not implement the application specific modifications,

Simplementation of the system level modification seems ill advised.

The major conclusion of this section then is that for most applications (those with granularity large enough
that context switch overhead is nearer 0.0 than 1.0) it does not make sense to increase the reaction time to
processor allocation requests and releases. Thus, we conclude that as a system policy, the basic Dynamic
scheme of Section 3 is the most suitable.

6. Conclusions
We have examined the performance of alternative two-level schedulers for medium scale, shared memory,

UMA parallel machines. We have compared optimistic versions of static schedulers with a straightforward
version of dynamic scheduling. From these comparisons we conclude that the Dynamic policy is the
approach of choice unless overhead costs are very large. Of the two static policies, Round-Robin is not
appropriate for general use on this class of machine since it improves upon the other static scheduler, Run-
To-Completion, in only very restricted circumstances and often exhibits unstable behavior.

We have examined a number of natural approaches to improving the performance of the basic Dynamic

scheduler. Each reduces the rate at which processor reallocations are made in an attempt to lower the context
switch costs of this policy. We tound that neither modifications to reduce the rate of processor acquisitions
nor those to reduce the rate of processor releases were of general benefit.

*199

I
-21- I

Finally, we have compared two Fork-Join job structures, one (FJ) that partitions the parallel portion of the
computation into a statically determined number of tasks and the other (VFJ) deciding on an appropriate
partitioning at each fork. We found that the performance of VFJ was in general inferior to that of FJ. I
Improving the performance of VFJ seems to require a partitioning policy that estimates both the number of
processors that will be available in the future and the future demand for those processors. Prospects for a
reliable procedure of this sort are not bright, and so we conclude that FJ is probably the preferable structure in I
moscinrcumstances.

References I
!Almquist et al. 19891

K. Almquist, RJ. Anderson, and E.D. Lazowska. The Measured Performance of Parallel Dynamic Programming
Implementations. Proc. 1989 Intl. Conf. on Par. Proc. (Aug. 1989).

[Amdahl 1967]
G.M. Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities. Proc. AFIPS 30
(1967).

[Bershad et al. 1988]
Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy, PRESTO: A System for Object-Oriented Parallel Programming.
Software: Practice & Experience 18,8 (August 1988), pp. 713-732.

[Birrell 1989)
A.D. Birrell. An Introduction to Programming with Threads. DEC System Research Center (Jan. 1989).

[Coffman & Kleinrock 1968]
Edward G. Coffman, Jr., and Leonard Kleinmock. Computer Scheduling Methods and their Countermeasures. Proc. 1968 Spring i
Joint Computer Conference, pp. 11-21.

[Eager et al. 1989]
Derek L. Eager, John Zaharan, and Edward D. Lazowska. Speedup Versus Efficiency in Parallel Systems. IEEE Tram. on
Comp. C-38,3 (March 1989).

[Graham 1966]
R.L. Graham. Bounds for Certain Multiprocessing Anomalies. BellSyst. Tech. J. 45 (1966).

[Kruskal & Weiss 1985] I
Allocating Independent Subtasks on Parallel Processors, IEEE Trans. on Soft. Eng. SE-II, 10 (Oct. 1985).

[Lovet & Thakkar 1988]
T. Lovett and S. Thakkar. The Symmetry Multiprocessor System. Proc. 1988 Intl. Conf. on Par. Proc. (Aug. 1988).

[Majumdar & Eager 1988]
S. Majumdar and D.L. Eager. Scheduling in Multiprogrammed Parallel Systems. Proc. 1988 ACM SIGMETRICS Conf. on Meas.
and Mod. of Comp. 5 ys. (May 1988).

[Ousterhout 1982]
1.K. Ousterhout. Scheduling Techniques for Concurrent Systems. Proc. 3rd International Conference on Distributed Computing
Systems (October 1982), pp. 22-30.

[Polychronopoulos & Kuck 1987]
C.D. Polychronopoulos and DJ. Kuck. Guided Self-Scheduling: A Practical Scheduling Scheme for Parallel Supercomputers.
IEEE Trans. on Comp. C-36,12 (December 1987), pp. 1425-1439.

[Reiser & Lavenberg 1980]
M. Reiser and S.S. Lavenberg. Mean Value Analysis of Closed Multichain Queueing Networks, JACM 27, 2 (April 1980).

[Sauer & Chandy 1979]
C.H. Sauer and K.M. Chandy. The Impact of Distributions and Disciplines on Multiple Processor Systems. CACM 22, 1 (Jan. U
1979), pp. 25-34.

[Sevcik 1989]
K.C. Sevcik. Characterizations of Parallelism in Applications and Their Use in Scheduling. Proc. 1989 ACM SIGMETRICS and
Performance '89 Intl. Conf. on Meas. and Mod. of Computer 5yftemns (May 1989).

[Thacker et al. 19881
C.P. Thacker, L.C. Stewart, and E.H. Satterthwaite, Jr. Firefly: A Multiprocessor Workstation. IEEE Trans. on Comp. 37, 8
(Aug. 1988), pp. 909-920.

200

-22-

(Tucker & Gupta 1989]
A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory Multiprocessors. Proc.
12th ACM Syrp. on Op. Sys. Princ. (Dec. 1989).

[Young et al. 1987]
M. Young et al. The Duality of memory and Communication in the Implementation of a Multiprocessor Operating System. Proc.
11th ACM Symp. on Op. Sys. Prin. (Nov. 1987).

[Zahojan et al. 1988]
J. Zahorjan, E.D. Lazowska, and D.L. Eager. Spinning Versus Blocking in Parallel Systems with Uncertainty. Proc.
International Symposium on Performance of Distributed and Parallel Systems, December 1988.

[Zahorjan et al. 1989]
J. ZahorJan, E.D. Lazowska, and D.L. Eager. The Effect of Scheduling Discipline on Spin Overhead in Shared Memory Parallel
Systems. University of Washington, Tech. Rpt. 89-07-03 (July 1989).

Appendix A

Let there be a total of P processors to be allocated among J jobs. Let T,(p) as the execution time of job jI J
with p processors, and define T,(0) = JT,(1). We assume that Tj(p) is convex in p, meaning that

i-1

T,(p) - T,(p+1) < T,(p-1) - T,(p) (Al)

for p > 1. This restriction is not unreasonable in practice, and allows a job to exhibit performance that at first
improves with increasing processor allocation and then crosses a threshold beyond which performance
degrades with increasing processor allocation.
Let B,(p) be the incremental benefit to job j of allocating it its pl processor. Thus, B,(p) = T,(p-I) - TJ(p)
forp >.

An allocation A is a vector (a ,a2, ',a 1) such that aj_>0, 1<jJV, and Faj=P. (We & not allow

allocations that assign no processors to a job when processors are available. Ien theory, one might delay a job
in this way in anticipation of making a larger allocation in the near future than is currently possible.) Let EA
be J times the average response time that results from allocation A, that is,I J

EA = 7,T (a,) (A2)
j=1

An allocation OPT is said to be optimal if EoP- : EA for every other allocation A.

Theorem.:
Under the definitions given above, the greedy allocation followed by RTC is optimal.

Proof:
We observe that for any allocation A

J I aj J
EA = IT,(a,) = -7,(p)+ r(o) (A3)

J=l ,1Il)j"

Thus, to minimize EA we should maximize the double sum on the right hand side, since the other portion
of the expression is independent of the allocation.
Imagine sorting the JP values B1(1),BI(2), "",B 1 (P),82(1), "',B 2(P), ,Bj(P) from largest to
smallest value. Call this list S. There must be such a sorted list for which Bj(p) appears before B,(p+l)
for 15j_5J and l:p rP since, by (Al) and the definition of B, Bj(p+l)!<B,(p) forp > 1.
Now imagine following the greedy policy, that is, handing out P processors to the J jobs one processor at
a time in a way that maximizes the benefit accrued by each processor allocated. This corresponds to
giving the pth processor to the job j identified by the pth element of S. Greedy makes this choice because
that benefit is at least as large as all the others. Further, because B,(n-l) precedes B (n) in 5, it must be
possible to hand the pth processor to the job identified by the pth element of W. Thus, the greedy
algorithm must make an optimal allocation.

201

-23 - I
Finally, we note that the greedy algorithm as defined will assign all P processors to jobs, and may therefore
be required to assign so many processors to a job that its performance actually degrades with each added
processor. A m3re reasonable scheme is for the system to retain processors for future arrivals if no current I
job can benefit from them. This is easily added to the greedy method and the proof by creating a dummy
J+Ist job such that Tji+(n)= 0 for O<n<_P. This job will be allocated processors by the greedy method in
preference to any allocation that actually hurts some other job's performance.

I
I
I
I
I
I
I
I
U
I
I

I
I

202

I
I
I

PaallPromneAayiIn
I

I Performance Tools

I
I

I0

Quartz: A Tool for Tuning Parallel Program Performance

Thomas E. Anderson and Edward D. Lazowska

Department of Computer Science and Engineering
University of Washington

Seattle WA 98195

September 1989

Abstract

Initial implementations of parallel programs typically yield disappointing performance. Tuning to
improve performance is thus a significant part of the parallel programming process. The effort required
to tune a parallel program, and the level of performance that eventually is achieved, both depend heavily
on the quality of the instrumentation that is available to the programmer.

This paper describes Quartz, a new tool for tuning parallel program performance on shared memory
multiprocessor. The philosophy underlying Quartz was inspired by that of the sequential UNIX tool
gprof, to appropriately direct the attention of the programmer by efficiently measuring just those factors
that are most responsible for performance and by relating these metrics to one another and to the structure
of the program. This philosophy is even more important in the parallel domain than in the sequential
domain, because of the dramatically greater number of possible metrics and the dramatically increased
complexity of program structures.

The principal metric of Quartz is the total processor time spent in each section of code along with the
number of other processors that are concurrently busy when that section of code is being executed. Tied
to the logical structure of the program, this correlation provides a "smoking gun" pointing towards those
areas of the program most responsible for poor performance. This information can be acquired efficiently
by checkpointing to memory the number of busy processors and the state of each processor, and then
statistically sampling these using a dedicated processor.

In addition to describing the design rationale, functionality, and implementation of Quartz, the paper
examines how Quartz would be used to solve a number of performance problems that have been reported
as being frequently encountered, and describes a case study in which Quartz was used to significantly
improve the performance of a CAD circuit verifier.

Index Terms - multiprocessor, performance, measurement, parallel programming, tuning

I This material is based on work supported by the National Science Foundation (Grants No. CCR-8619663,
CCR-8703049, and CCR-8700106), the Naval Ocean Systems Center, the Washington Technology Center.
Digital Equipment Corporation (the Systems Research Center and the External Research Program). and IBM
(a Graduate Fellowship).

Authors' address: Department of Computer Science and Engineering FR-35. University of Washington.
Seattle WA 98195; (206) 545-2675; lom/lazowskas.washingtonedu.

I 205

I
-2-

1. Introduction I
The primary motivation behind building multiprocessors is to cost-effectively improve system

performance. Even moderately increasing a uniprocessor's power can require substantial additional I
design effort as well as faster, and thus more expensive, hardware components. By contrast, once a
scheme for interprocessor communication has been added to a uniprocessor design, the system's peak
processing power can be increased linearly simply by adding processors. The incremental cost per
pn'cessor has been reported to be as little as 15% of the initial system cost for small to moderate numbers
of processors [Thacker et al. 1988], and larger but still close to linear for greater numbers of processors
[BBN 1985; Pfister et al. 1985]. 1

Of course, multiprocessors lose their advantage if this processing power is not effectively utilized, and
while it is relatively easy to get good performance when there are multiple independent sequential job
streams, it can be difficult to achieve good performance from parallel applications. The literature
describes many attempts to parallelize algorithms and applications. (Burkhart and Millen [1989] survey
some of this experience.) Typically, an initial implementation results in disappointing performance, but
significant improvements can be obtained with subsequent effort. Sequent, for example, tells of a major
customer whose first attempt at parallelizing a "dusty deck" resulted in a program that, given 8
processors, executed only 50% as fast as the original sequential program. After considerable effort by
skilled engineers, nearly perfect speedup (a factor of nearly 8 on an 8 processor machine) was achieved
[Rodgers 1986].

A major factor contributing to the large amount of skilled effort typically required to achieve good
parallel program performance is the shortage of good performance analysis tools. In the absence of such
tools, performance problems must be identified through a combination of guesswork, folklore, and
application-specific instrumentation. The ibject of this paper is the design rationale, functionality,
implementation, and use of a new tool for tuning parallel program performance.

The philosonh, underlying our work is that an effective tool for tuning parallel program performance
must be based on a clear view of the causes of poor performance, and on a specific methodology for
improving that performance. By being selective about what it measures and presents, the tool can focus
the programmer's attention on the information needed to tune performance, eliding details about second-
order effects. Measurement efficiency also is improved by designing the tool to record just the important
behavior.

Selectivity is possible because, although parallel performance in general is much more complex than
sequential performance, experience (discussed in Section 3.2) suggests that poor parallel performance
typically arises from a relatively small number of factors. For applications whose performance is
dominated by periods of limited parallelism, the tool should identify those sections of code that account
for most of this time so that these sections can either be re-structured to increase concurrency or
optimized to reduce their impact on overall performance. Time spent spin- (or "busy"-) waiting must be
correctly represented, since spinning processors appear to be busy even though they are not computing
useful results. Finally, for applications with large amounts of real parallelism, performance can only be
improved by optimizing (but not further parallelizing) the code that executes for the greatest proportion of
time.

Based on these observations, we propose a new way to view parallel program performance on shared
memory multiprocessors. We focus on the total processor time devoted to each section of code,
subdivided according to the distribution of the number of other processors concurrently busy (as opposed
to idle or spin-waiting) when that section of code is being executed. Routines can be compared by
considering their processor time divided by the concurrent parallelism. This usually reflects their relative
importance to program performance: a rouaine tiat executes while no other processors are busy can be
responsible for a large percentage of the runtime of a program, even though it uses only a small fraction
of the total processor time. Furthermore, this measure indicates whether performance can be improved by
re-structuring to increase parallelism, or only by simple optimization.

206

-3-

We tie this measure to the logical structure of the program's procedures. Good engineering practice
demands that large programs, whether sequential or parallel, be structured using hierarchical abstractions
[Graham et al. 1982]. We report our performance measures for each procedure and for all the work done
on its behalf, either synchronously via a normal procedure call or asynchronously through parallelization.
The programmer can use this to walk through the hierarchy, focusing on just those procedures that, along
with their children, account for most of the poor performance. We expect that for parallel programs as for
sequential ones, a relatively small proportion of the code will be responsible for most of the runtime.

These measurements can be made efficiently on a shared memory multiprocessor by checkpointing to
memory the number of busy processors and the state of each processor, and then statistically sampling
this information using a dedicated processor.

We have developed a tool to test these ideas, called Quartz. Quartz was built by modifying an
application-level thread package similar to the one described in [Anderson et al. 1989]. Quartz uses only
the normal profiling support available on UNIX-like shared memory multiprocessors, it currently runs on
the Sequent Symmetry multiprocessor [Sequent 1988].

The remainder of the paper discusses these ideas in more detail. Section 2 examines existing
measurement tools for tuning program performance. Section 3 describes Quartz: its motivation, its
functionality, its applicability to a number of performance problems that have been reported as being
frequently encountered, and its implementation. Section 4 describes a case study in the use of Quartz to
improve the performance of a specific parallel application, a CAD circuit verifier. Section 5 considers the
implications of our work for the monitoring of sequential programs and non-shared-memory
multiprocessors. Section 6 summarizes our results.

2. Existing Tools for Tuning Program Performance

2.1. Tools for Sequential Programs

The philosophy underlying Quartz owes much to the experience of UNIX gprof [Graham et al. 1982],
a tool for tuning the performance of sequential programs running on uniprocessors.

Years of experience tuning sequential programs indicate that the major difficulty is focus: it is
relatively easy for the programmer to improve the processing time of a small section of code, but lots of
effort is commonly wasted in the wrong places - tweaking code that has only a small impact on overall
performance.

Gprof's solution is to highlight the "hot spots" of the program, and to do so in a way that exploits the
hierarchical structure of large programs. Gprof presents to the programmer the total processor time of
each procedure, including time spent on its behalf if it calls other routines. With this information, the
programmer can tune the program in a top-down fashion, focusing effort on those functions that have the
greatest impact on performance.

Gprof is relatively efficient. It periodically interrupts the program to sample the program counter,
thereby estimating the execution time of each procedure. While sampling produces only an estimate, the
approach is most accurate just where it needs to be: for those routines where the program spends most of
its time. Gprof also collects the call graph: who called whom how many times. This is done by using
compiler support that makes each procedure execute a monitoring routine during its prologue. Gprof then
computes its central metric, the processor time spent on a procedure's behalf, by making the assumption
that all calls to the same procedure take the same amount of time. Processing time is propagated bottom-
up from callee to caller according to the caller's proportion of the total calls.

Gprof seems so natural in retrospect that it is easy to forget the alternative approach taken by a number
of other tools: to (expensively) measure everything that could conceivably be of relevance to program
performance, and to report these measurements without concern for how they relate to each other or to the
structure of the program.

I 207

I
-4- I

Our goal for Quartz was to achieve a tool for tuning parallel program performance that is analogous to
gprof in that it efficiently measures exactly what is important, and relates these measurements to one
another and to the structure of the program. This philosophy is even more important in the parallel I
domain than in the sequential domain, because of the dramatically greater number of performance metrics
and the dramatically increased complexity of program structures. The next two sub-sections discuss, in
this context, existing approaches to tools for tuning parallel program performance. I
2.2. Non-Integrated Tools for Parallel Programs

Many useful measures of parallel program performance have been proposed. Each provides a view of U
some important aspect of program behavior. However, in many existing tools, their lack of integration
with each other and with program structure limits their usefulness.

Perhaps the simplest approach to parallel program measurement is to extend sequential UNIX gprof to
run on a multiprocessor. In place of processor time on one processor, multiprocessor gprof measures the
sum of the time spent on each processor [Aral & Gertner 1988]. Unfortunately, as we have noted, a
procedure's total processor time is not related in a simple way to parallel runtime. Something more than a l
straightforward adaptation of sequential UNIX gprof clearly is necessary.

Another common tool displays the number of busy processors across time by periodically sampling
the number of runnable processes. Assuming that all activity is due to the program in question, this
allows the programmer to see if there are periods of time when there is too little parallelism to keep all
the processors busy [Halstead 1986]. A significant shortcoming of tools like this is that it can be difficult
to relate the periods of poor parallelism to specific sections of code that can be changed. Further, the fact I
that some processors are not doing useful work can be concealed, since spin-waiting processors appear to
be busy.

The DEC SRC Firefly has a tool that measures the time spent waiting for each lock protecting a shared I
data structure [Thacker et al. 1988]. A lock ensures that threads manipulating the shared data structure
have mutually exclusive access to it. This serial execution can limit performance. By measuring the wait
time, the tool can determine which critical sections are the worst bottlenecks; these can then be re-
structured to increase parallelism. This information is useful, but long waits for a lock will not affect
performance if there is always other work to do during the wait, and monitoring a lock can increase the
length of time that the lock is held, creating "artificial bottlenecks" when monitoring is enabled. I

Quartz provides many of the same metrics as these tools, but correlates the metrics to one another and
to the structure of the program. For example, Quartz measures not only how many processors are busy,
but also which procedures execute during periods of low and high parallelism.

2.3. Trace-Based Tools for Parallel Programs

The issue of determining in advance exactly what information will be needed to tune the performance
of a parallel program can be finessed by recording a trace of every interprocessor synchronization event
with a timestamp of when the event occurred. The behavior of the program can be completely
reconstructed from such a trace [Fowler et al. 1988]. Arbitrary metrics (whether general or application-
specific) can be computed using a common interface to the trace data. Finally, the metrics obtained from
the trace can be integrated with each other and with the structure of the program.

One drawback to this approach is that both the collection and the post-processing of trace files is
expensive. For programs that perform frequent synchronization, the trace files can be prohibitively large.
Consider a program running on a hypothetical shared memory multiprocessor with 20 5-MIPS processors,
each of which on average performs a monitorable event (such as acquiring or releasing a spin lock) every
500 instructions, and where each event record is 10 bytes. If the program being monitored executes for
one minute, the trace file will be 100 megabytes. Similar estimates appear in [Malony et al. 1989] to
justify hardware support for recording traces.

208

-5-

Nevertheless, tools have been developed that collect trace data and post-process it into useful
measures. We argue later that the much of the information provided by these tools can be measured or
approximated more efficiently by sampling.

Monit [Kerola & Schwetman 1987], for example, uses a trace file to compute the behavior of higher-
level objects, such as the number of busy processors or the number of threads waiting to enter each
critical section. The behavior of each object is then plotted on a timeline. After identifying those phases
of execution with few busy processors, the programmer can visually correlate these phases to the
behavior of other objects (discovering, for example, that parallelism is low while a specific critical sectionShas a large number of waiting threads).

Although Monit's display is at a higher level than the raw trace data, it still can present a massive
amount of data to the programmer. Only a few timelines will fit on a screen at a time, but Monit provides
little help in identifying those containing information relevant to the measured lack of parallelism. As the
complexity of the application increases, so does the number of objects to monitor, making focusing more
importanL

IPS [Miller & Yang 1987] attempts both to guide the programmer to performance problems and to
provide useful statistics about those problems. Its central focusing metric is the time each process and
procedure spends executing the critical path. The critical path is the longest path through the task graph -
the series of seqiential pieces of code (that cannot be done in parallel because they communicate one to
the next) that takes the longest to execute. The elapsed execution time of the program can be reduced
only by shortening the length of the critical path.

One drawback to critical path analysis is its expense: it requires a complete trace of all interprocessor
communication. (To be fair, IPS was originally designed to measure programs running on local area
networks of uniprocessors. Because of the high latency and low bandwidth communication on these
systems, only programs with relatively infrequent synchronization can run efficiently. Under these
conditions, the size of the trace file would be manageable.) Yet critical path analysis is still just a
heuristic: there is no guarantee that reducing the critical path will actually reduce the execution time of
the program. There may be another path through the task graph with almost the same length that will be
unaffected by the change. Critical path analysis also does not indicate how to reduce a procedure's
completion time. One way is to reduce its sequential execution time. Another is to parillelize it. But
parallelization will only be of benefit if there are idle processors to exploit when the procedure runs.

3. Quartz: Its Functionality, Applicability, and Implementation

Our goals for a tool for tuning parallel program performance are:

- It should identify the sections of source code most responsible for poor performance.

-It should present its measurements hierarchically, to allow top-down tuning according to the logical
structure of the program.

- It should measure parallelism (properly representing spin-waiting as a loss of parallelism) and it
should tie this to the source code, identifying where re-structuring to increase parallelism is necessary
and where code optimization is appropriate.

- It should measure program behavior in sufficient detail to provide some insight into the type of re-
structuring that will work.

- It should do all this efficiently and without significantly affecting the behavior of the measured
program.

Quartz meets these criteria. Before describing it, we must define some terms. A thread (or
"lightweight process") is a sequential execution stream; it is the basic unit of parallel work. A thread
starts another thread by giving it a procedure to run; the initial thread continues in parallel with the
created thread. Thread creation is thus essentially an asynchronous procedure call. If threads are

209

-6- 1
implemented as part of an application library, they can be within an order of magnitude of the cost of a
procedure call [Anderson et al. 19891; they can thus be used for procedure-ievel parallelism.

Threads can synchronize with one another. One type of synchronization object is a lock. used to
ensure mutually exclusive access to a shared data structure. Another is a condition or barrier used to I
enforce a data dependency, as wher one thread reads data produced by some other thread. In both cases,
synchronization may cause the thread to wait, either because the lock is busy or because the data it
requires has not been produced. Since there may be more threads than processors, a waiting thread has a I
choice: either spi, intii the lock is free or the data is available, or block, relinquishing the processor to
run another thread. Thus, there is a difference between a program's effective parallelism, the number of
busy (not idle or spinning) processors, and its nominal parallelism, the number of mnnable threads, some
of which may be spinning. Our measurements refer to the activity of just the processors executing the
application, and not any processors concurrently executing other applications.

The remainder of this section is divided into three sub-sections. The first describes the functionality of I
Quartz: the specific metrics that it reports. The second shows how these metrics can be used to detect
and fix a number of performance problems that have been identified by others as commonly occurring.
The third provides an overview of the implementation of Quartz. A case study in which Quartz was used I
to tune a specific application is described in Section 4.

3.1. The Functionality of Quartz !
The principal measurement made by Quartz is each procedure's total processor time, subdivided

according to the distribution of the effective parallelism while it is executing. This measurement provides
the basis for comparing procedures according to their effect on overall performance. Quartz computes a
weighting factor for each procedure by dividing each level of effective parallelism into the corresponding
processor time value, and summing these ratios. To understand the rationale for this weighting factor,
consider a program with two functions, one that always executes sequentially when no other processors I
are busy and one that computes its result completely in parallel. If each function takes the same total
processor time, the sequential one requires a factor of P greater elapsed time (where P is the number of
processors) and will have a much greater impact on program performance. If the two functions take the I
same elapsed time, then the same percentage improvements in either will have equal impact on
performance. Further, knowing the concurrent effective parallelism while a routine executes is more
important than knowing the effective parallelism it generates: a serial routine that is always overlapped I
with other computation will have little affect on performance compared to a serial routine that always
executes by itself. Our weighting factor reflects these observations.

For each procedure, synchronization object, and thread, and for ue work done on its
behalf:

Processor 'me, split according to the distribution of the number of other processors I
concurrrntiy busy during the execution.
A weighted sum equal to the processor time divided by the number of concurrently
busy processors.
The elapsed time spent in each state (busy, spinning, blocked, or ready), along with
the distribution of the number of rnnable threads while it is in that state.

Table 1: Principal Performance Measurements in Quartz

To focus the programmer's attention on those areas of the program that have the greatest impact on
performance, we present a list of procedures sorted according to their weight plus the weight of the work
done on their behalf. This includes work done synchronously or asynchronously (via threads). The
program's main procedure, then, has a weight equal to the elapsed time of the program; the functions it

210 I

-7-

calls to do the work of the program divide that weight among them. Quartz's ordering is analogous to
what gprof does with processor time, except that Quartz uses a weighting function related to parallel
performance. In both Quartz and gprof, the programmer can trace performance top-down through the
program.

The weighting function indicates where improvements can be made. Quartz also provides information
about what can be done to improve performance. Part of this information comes from the measurement
of processor time by parallelism. This metric indicates whether performance can be improved by re-
structuring to increase effective parallelism, or only by simple optimization. Certainly, procedures that
always execute when all processors are busy will not benefit from further parallelism.

Given that re-structuring is necessary, an accounting of the elapsed time spent by a procedure can help
identify what kind of re-structuring is most likely to succeed. Quartz measures each procedure's elapsed
time spent busy, spinning, blocked, or ready to run, along with the distribution of the number of threads
that are available to run while the procedure is in each state. For example, if a procedure is busy
executing and there are few other busy processors, then the nominal parallelism indicates whether the
other processors are idle or spinning. If idle, then performance can be improved by parallelizing the
procedure (creating threads to do its work), provided this is possible. If spinning, then there is no benefit
to creating more threads. Similarly, threads that are blocked or spinning represent deferred work; if the
program were re-structured to reduce or eliminate waiting, then parallelism would increase.

Quartz makes the above measurements separately for each procedure, synchronization object, and
thread. Measurement based purely on procedures would ignore the fact that parallel performance can
depend more on the data object passed to a procedure than on the implementation of the procedure itself.
It is only mildly interesting to know the total time spent waiting at all barriers; it is much more useful to
know that some specific barrier accounted for most of that time. As a special case, the time spent
executing in a critical section is attributed to the lock on that critical section. (Quartz also measures
queue length distributions for synchronization objects.) Per-thmad information allows us to determine if
different threads executing the same procedure (on different data objects) have different performance.

By measuring synchronization objects and threads in the same way as procedures, we can present the
programmer a uniform focusing metric. All are sorted in the same list by their measured weight to
simplify tracing performance through the program. For example, if contention for a lock determines
performance, the lock object will have a high weight since its critical section is always executing while
few other processors are. (Spin time is factored out in computing weight.)

An important difference from gprof is that we explicitly measure the work done on behalf of a
procedure or lock object. Gprof explicitly measures only the work done within each procedure, making
the assumption that the processor time of its children is independent of who called them. Gprof uses the
call graph (who called whom, and how many times) to propagate processor times from callee to caller
according to the caller's percentage of the total calls to the callee. We cannot make a similar assumption.
The effective and nominal parallelism while a procedure executes depend not only on what that procedure
does, but also on the parallelism when it is called. Different calls to a low-level formatting routine might
have vastly different concurrent parallelism. Still, even though it is not useful for propagating our
measurements, Quartz does record the call graph (including calls to/from synchronization objects) to help
the programmer in tracing performance top-down through the program.

3.2. Detecting Frequently Encountered Performance Problems Using Quartz

In this section, we argue by example that Quartz is useful for detecting and fixing a number of
common parallel program performance problems. We asserted in Section 1 that although parallel
performance in general is much more complex than sequential performance, experience suggests that
poor parallel performance typically arises from a relatively small number of factors. One piece of
evidence for this is Table 2, which lists the performance problems most frequently encountered by three
'vendors" of parallel computing systems who participated in a working group concerned with "Sources of

211

-8-

Performance Degradation" at the NSFICMU Workshop on Performance-Efficient Parallel Programming I
in 1986. The key observation is that none of the problems involve subtle timing issues that might require
a complete trace of synchronization activity. I

Sequent
1. A problem decomposition that puts most of the work in one thread (e.g., the

optimizing phase of a concurrent compiler or a "busy" region in a ray-tracing I
algorithm), so that little real concurrency can be realized.

2. Memory thrashing due to a poor choice of operating system parameters.3
3. Excessive I/O that is not overlapped with computation.
4. A synchronous software structure, such as might arise from a very large

granularity, a producer-consumer relationship with a small number of buffers, or I
the use of an unnecessarily restrictive synchronization construct (e.g., barriers
where critical sections would suffice).

Harris I
1. Synchronization overhead.
2. Contention for shared variables, including counting semaphores, task queues, and

the "problem heap".
3. Starvation due to a small problem size.

CMU Warp
1. Excessive I/O that is not overlapped with computation.
2. Data dependencies in loops. I

Table 2: Frequently Encountered Performance Problems
(NSFICMU Workshop on Performance-Efficient Parallel Programming) 3

The first issue in tuning any parallel program is to identify which segments are responsible for the
poor performance. As with sequential programs, we would expect that of the large number of functions
in a parallel program, a relative few will be responsible for most of the program's runtime. By computing
a weight based on both processor time and parallelism, and by accounting for all of the activity done on
behalf of a function, Quartz allows the programmer to walk through the program hierarchy to find those
few functions. Once the general area of difficulty has been located, the approach to tuning depends on the I
situation:

3.2.1. Functional Decomposition I
Some computations have several functionally distinct parts, each assigned to a distinct processor. An

example of this is a pipelined compiler separate threads (and processors) execute the scanner, parser,
optimizer, and code generator, streaming results one to the next (Sequent #1 in Table 2). Performance
difficulties usually relate to load imbalance. If one phase has more work to do than the others, the others
must sit idle waiting for it. If the optimizer is the bottleneck, the scanner and parser will have to wait for
buffer space to forward their partial results, while the code generator must also periodically wait for
results to be completed.

Quartz would identify this problem: the thread executing the optimizer would have a longer execution
time, spend more time executing when few other processors are busy, and thus have a larger weight, than
the threads executing the other phases. Other tools would also handle this case. For example, a display
of processor activity across time would show that the processor executing the optimizer was always busy,
while the other processors sometimes wait. (Of course, many tools that display processor activity fail to

212 3

-9-

relate processors to procedures.) Similarly, a critical path analysis would show that the execution of the
optimizer constituted most of the critical path.

It is also easy with Quartz to identify the phase that is the secondary bottleneck - in the compiler
example, the one that would limit performance if the optimizer were improved. If the code generator ran
for almost as long as the optimizer, then it would be given slightly less weight, indicating that attention
should be focused on improving both phases. It is difficult to extract this information from a timeline,
since all phases but the optimizer periodically block. Critical path analysis only identifies the primary
bottleneck, so iteration would be required.

Another performance problem with pipelines is starvation (Harris #3). This occurs if the problem size
is small relative to the time for each phase to start streaming results. In this case, the later phases spend
much of the total time waiting to start; the earlier phases finish well before the program completes.
Quartz would show that each phase spends much of its elapsed time idle. (The weighting function would
highlight the first and last stages, since their work is the least overlapped with other stages.) A solution is
to reduce the time before each phase starts streaming its first results.

3.2.2. Data Decomposition

Some programs compute the same function on many pieces of data. These programs can be
parallelized by assigning different pieces of data to different processors. Unlike functional
decomposition, each processor executes the same function at the same time. Again, a frequent issue is
load balancing: the required computation may vary widely for different pieces of data. An example of
this is ray-tracing where part of the picture has the majority of the activity (Sequent #1); another is a fluid
dynamics computation where turbulence is concentrated in certain regions. In such situations,
performance is limited by the processor assigned to the data regions with the longest execution times.

Whether a different thread is used to run the function on each object, or on collections of objects,
Quartz will show if the execution times are balanced. If they are not, one of the threads will execute
while other processors are idle, and there will be long average queue lengths at the barrier that checks that
all threads have completed before continuing.

It can be difficult to relate the performance of a thread to the symbolic names of the data objects it
works on, particularly in conventional (non-object-oriented) languages. For instance, the procedure a
thread is to execute can be passed an index that only implicitly refers to the object it is to work on. As a
result, we rely on the programmer to make this connection by providing a symbolic name when each

thread is created. In an object-oriented language such as C++ we could extend Quartz not only to keep
track of the symbolic names of data objects passed to threads, but also to explicitly take measurements for
each procedure-data object pair, to allow both an object-oriented and a procedure-oriented view of
performance. We intend to port Quartz to Presto [Bershad et al. 1988], a C++ based parallel
programming system, to further explore this topic.

3.2.3. Synchronization

The need to synchronize the work of different processors can cause another class of performance
problems. For instance, execution time is increased by the overhead of parallelizing the job: distributing
work to various processors, serializing access to shared data structures, and enforcing data dependencies
(Harris #1). Even if the program is perfectly parallel, this time can dominate. Fortunately, it is easy to
measure. If there is a sequential version of the program, its functions will likely correspond to functions
in the parallel version, and the execution time of each function can be directly compared to determine the
effect of overhead. (The execution time added by monitoring must of course be factored out.)
Alternately, given measurements of the performance of the thread package, the number of calls to each
thread function, such as to create a thread or to acquire a lock, can be used to compute overhead.

213

-10-

Performance can also be affected by waiting for data dependencies to be satisfied (Warp #2; Sequent 1
#4) or for access to a busy critical section (Harris 02). Waiting threads represent deferred parallelism;
Quartz identifies this by measuring queue lengths and the average wait time (the total elapsed time spent
waiting divided by the number of accesses to that synchronization object). For example, if a loop data
dependency limits parallelism, there will be a long queue length at the point where the data dependency is
enforced. Note that two of the examples of contention cited in Table 2 are for locks within the thread
package; we measure contention for these locks in the same way that we measure locks in the application
code.

Even if there are many threads waiting on a synchronization object, the question of whether it makes
sense to re-structure the program to release that parallelism depends on whether the ,;me is spent spinning
or blocked, and on the nominal parallelism. When there are at least as many runnable threads as
processors, blocked threads have no impact on performance beyond the initial context switch. Re-
structuring to increase the number of ready threads does not help in this case. By contrast, spin-waiting
always wastes processing cycles, regardless of the number of runnable threads, but if there are excess
runnable threads then performance could be improved by blocking instead of spinning. 3

If re-structuring is necessary, the number of threads waiting at a lock can be decreased by any of:
reducing the number of accesses (from the call graph), thereby reducing contention; decreasing the size of
the critical section (its busy time); distributing accesses more evenly across time (if the queue length is 3
sometimes zero and sometimes very long); or modifying the protected data structure to allow parallel
accesses (for example, by giving each processor a separate copy).

Waiting for data dependencies can be reduced by computing the data earlier, or, if an overly restrictive 3
synchronization construct was used, by allowing the thread to continue temporarily without it. Fuzzy
barriers are a special case of the latter [Gupta 1989]. 1
3.2.4. Input/Output

The time spent doing I/O was mentioned twice in Table 2 (Sequent #2, Warp #1). If a program reads a
significant amount of data from an I/O device, then the reads should be overlapped with the computation; I
in other words, the reads should be started early so that they complete before the data is needed. The
natural style, however, is synchronous: when the data is referenced, start a disk read and wait until it
returns.

As a result of the operating system interface on the Sequent, the current implementation of Quartz
measures time spent doing I/ as processor time, attributed to the procedure that performs the I/O. If the
I/O is not overlapped, the time spent waiting in the kernel will be increased in weight because of the I
processors waiting for the I/O to finish. Given kernel support for threads, Quartz could monitor the kernel
disk queue as a normal synchronization object.

If a program spends a lot of time doing disk accesses, it may benefit from exploiting parallelism in the
disk sub-system. Tuning a program's use of parallel disks is in many ways similar to tuning its use of
parallel processors, although initial file placement is an issue as well. We expect that some of the
techniques we have described in this paper could be applied to this problem.

3.2.5. Limitations 3
We have designed Quartz to measure only those aspects of program behavior that are needed to detect

and fix frequently occurring parallel performance problems. The tradeoff is that Quartz therefore dces
not help with every performance problem that can occur in parallel applications. 5

When threads execute at the same time, Quartz weights each equally even though only one is on the
critical path. As an example, consider a program with a critical section that restricts parallelism. The
processor time spent executing outside of the critical section can appear important, even though reducing 3
or parallelizing it will have no effect on program's performance. Although this can seem anomalous,

214 1

Quartz's metric can help in this case by identifying code that may be a secondary bottleneck. Similarly,
Quartz does not measure thread scheduling decisions (although problems can sometimes be identified, for
instance, if a thread spends a long time waiting for a processor and then executes serially) or contention
for the bus or memory, even though these can affect performance.

3.3. The Implementation of Quartz

We have implemented Quartz on a Sequent Symmetry shared memory multiprocessor [Sequent 1988].
The Sequent runs DYNIX, a multiprocessor adaptation of UNIX. Since DYNIX processes are too
expensive to use directly as threads, we built our system by adding monitoring code to a thread package
similar to the one described in [Anderson et al. 1989]. That thread package works by creating a DYNIX
process for each processor, and then multiplexing threads onto the DYNIX processes. Our
implementation did not modify DYNIX or the C compiler, it used only the support they provide for
gprof.

Our implementation addresses the twin concerns of efficiency and accuracy. Because program tuning
is iterative and interactive, a tool's usability depends on the elapsed time from program compilation to
report production. Accuracy is trickier. Unlike sequential programs where the execution overhead due to
monitoring is easily factored out, a change to a parallel program can alter its behavior in subtle ways. For
instance, monitoring code that increases the time that a lock is held may increase the contention for the
lock. Analogously, instrumentation added outside of a critical section will cause a net decrease in the
contention for that critical section.

Our approach is to use statistical sampling by a dedicated processor. A set of processors executes the
program normally, maintaining their state in shared memory by special code executed during thread
operations and at procedure entry and exit. This state is then sampled by a dedicated processor that does
not participate in executing the program. We impose no synchronization beyond hardware interlocks
between the sampling processor and the other processors; rarely-accessed locks are used by the normally
executing processors in building the call graph. (We sample by means of a dedicated processor rather
than interrupts because interrupts cannot provide accurate correlations between processor state and
overall program state. On the Sequent, as with most multiprocessors, interrupts are fielded by each
processor asynchronously; by the time the program state is sampled, it may have changed in a way
affected by the fact that there was an interrupt. For example, if the interrupted processor is holding aI lock, the queue length at the lock will be greater than a purely random sample would indicate. Similarly,
measuring a procedure's execution time directly with timestamps does not allow us to correlate that time
to the number of busy processors.)

i The nominal and effective parallelism are maintained in centralized counters, updated when a thread is
added to the ready queue and when a processor becomes idle or starts or stops spinning. The counters are
maintained with atomic increment and decrement instructions, to avoid making access to them a
bottleneck. Most multiprocessors, including the Sequent, support such instructions.

In addition to the execution stack, we maintain a profile stack of monitored procedures for each thread.
This allows us to record both the time spent in a procedure and the time spent on behalf of the procedure.
The dedicated processor copies the number of busy and ready threads, copies the profile stack, and then
bumps the appropriate measurement record for each different procedure on the stack. (Recursive
procedures are counted only once.) While the stack may have changed between recording the number of
busy threads and copying the stack, reducing consistency, sampling itself is only an approximation. We
do not lock the profile stack to prevent changes from occurring; this would unnecessarily perturb the
execution of the program. Note that locking would be harder to avoid if we were to sample from the
execution stack since that would require tracing the chain of frame pointers.

The profile stacks are of fixed size, established at compile time. Overflows are caught, prevented, and
later reported to the programmer. We expect that overflows will occur only rarely, since we push a
procedure onto the stack only if the previous entry is different, eliminating immediately recursive calls,

3 215

-12- 1

the most common cause of arbitrarily deep stacks. This also has the effect of reducing the work of the I
sampling processor.

We use the normal compiler support provided for gprof. A monitoring routine is callcd in the
prologue of each profiled procedure. Exactly as gprof does, we use this routine to update the count of I
calls to the procedure from its caller, we also push the procedure onto the profile stack. Because the
compiler inserts only a prologue call, we manipulate the execution stack so that when the procedure
returns, it returns first to our code that pops the profile stack, and then to the caller procedure. This is a
bit inefficient, but easy to implement.

To simplify mapping from the entries on the profile stack to the measurement data for each procedure,
we assign each procedure a unique ID. The gprof monitoring routine is passed a pointer to a procedure-
specific location; this was originally used to count the number of calls to the procedure. After the
program has been linked, we modify the object file so that each procedure's location holds a unique ID;
this ID is what is pushed onto the stack and used to index the procedure's data record.

The synchronization routines in our thread library are specially modified. Each object has a data
record containing the call graph and execution time information. When the object is accessed, the call I
graph is updated and a pointer to the synchronization object is pushed; the pointer is popped when the

thread no longer must wait. Locks are handled as a special case. Normally, the procedure that acquires a
lock is the one that releases it, in which case we are safe to push the lock before it is accessed and pop it U
after it is released. This attributes the time spent waiting for and holding the lock to the lock object, and
only adds two instructions to the inside of the critical section: setting the state of the thread to no longer
spinning, and incrementing the number of busy processors.

When a thread is created, we copy the profile stack from the creating thread to the new thread. This
allows the sampling processor to attribute execution time across asynchronous procedure calls.

Our system does not currently provide for interactive control of which routines are to be profiled. This i
would be easy to add, but in truth, we doubt that it is the right approach. Aral and Germer [19881 argue
that gprof's overhead is too high to allow only compile-time control. They use this to motivate Parasight
a system for execution-time code modification and re-linking. But the overhead of gprof, and of our I
system, could be dramatically reduced with a small amount of compiler support. For example, most of
the time in gprof is spent building the call graph; it crawls up the execution stack to find the caller
address, hashes on it, checks the callee address, etc. A simpler method is to determine caller-callee pairs £
at compile time and to simply bump a statically allocated counter before each call. Calls made via
function pointers, a rarer case, could use the current, slower approach. 3
4. A Case Study: Using Quartz to Tune a CAD Circuit Verifier

We argued "abstractly" in Section 3.2 that Quartz is well-suited to detecting and fixing a spectrum of
parallel program performance problems that have been identified by others as commonly occurring. Of
course, the crucial question is whether Quartz is an effective tool in practice. In this section, we describe
our experience in using Quartz to tune an existing parallel application.

The application we tuned, called Verify [Ma et al. 1987], compares two different circuit I
implementations to determine whether they are functionally (Boolean) equivalent. It was written for a
dissertation to demonstrate that an existing production CAD program could be parallelized with good
speedup. The program has 2900 lines of C code, and was written for a Sequent Balance with twelve
processors. The circuits we used as inputs in our tests were combinational benchmarks for evaluating test
generation algorithms.

The initial speedup of Verify on our Sequent Symmetry was already good: 9.0 using 18 processors.
(Because no sequential version of the program was available, speedup was measured as the time to run
the program (including process creation and 1/0) on one processor divided by the time to run it on 18
processors.) Even ti .ugh neither of us was familiar with the program or with CAD algorithms in general,

216 £

-13-

over the course of several hours we were able to improve its performance by 40%. Its initial runtime on
one processor was 112 seconds; with our changes, the runtime dropped to 7.7 seconds on 18 processors.

Most of this improvement came within the first few minutes of using Quartz, demonstrating the utility
of our weighting function. For program verification purposes, Verify logged a trace of shared data
structures as they were created. This accounted for less than 2% of total processor time according to
gprof - an acceptable overhead. However, Quartz showed that this logging actually accounted for 25% of
the program's runtime, because it occurred during the sequential initialization phase of the program. The
importance of reflecting the program structure by reporting the work done on behalf of a procedure was
demonstrated here, since the time was split among several lower-level procedures called by the logging
function. When logging was removed, the program's speedup improved from 9.0 to 12.2.

When we re-profiled the modified program, Quartz showed that 10% of the program's runtime was
still spent in the sequential initialization phase. To reduce this, we read in and allocated data structures
for the two input circuits in parallel with each other and with the operating system process creation
needed to start the program running on all 18 processors. This improved performance somewhat to a
speedup of 12.7.

At this point, we stopped trying to further parallelize the program. Once a program's speedup is high,
further improvements become much more difficult. The routines responsible for the difference from ideal
speedup account for only a small fraction of the total program runtime; thus even radical improvements to
these routines can reduce overall runtime only slightly.

In our case, Quartz showed that over 80% of the program's runtime was now being spent executing
entirely in parallel. The remaining time was split between processor starvation during initialization and
termination. During initialization, Quartz showed that performance was limited by the fact that the input
files were not balanced (one circuit was a minimization of the other). During termination, the problem
was that some processors finished early and had to wait for the rest to finish; dividing the problem into
smaller size sub-problems might help this problem. Fixing these problems seemed to be more effort than
it was worth.

Instead, we noted that small changes in the routines that account for most of the parallel execution
time would have a large relative effect on runtime. Two routines accounted for over half the execution
time of the program, and we were able to improve program performance by another 12% with a few quick
tweaks to these routines. (These routines were already highly tuned from the original program.)

A major motivation behind Quartz is efficiency. We measured the overhead Quartz added to this
application. Quartz increased the runtime of Verify by roughly the same amount as gprof: about 70%.
Even though Quartz does more work than gprof on each procedure call and synchronization event, this is
made up for by off-loading sampling to a dedicated processor. Verify makes stringent demands on
Quartz: it generates roughly 9 million procedural and synchronization events (I million per second when
running on 18 processors). Even with 18 processors running, the dedicated sampling processor was able
to sample each processor's activity every 3 milliseconds.

Something that we did not expect was demonstrated by using Quartz on a real application: th-re is
less "performance locality" in parallel programs than in sequential ones. The top eight procedures
account for 95% of the elapsed time of Verify on one processor. With 18 processors, though, it takes over
20 procedures to reach the same 95% level. In retrospect, the reason is ob-i-Icu. The routines that
account for most of the time on one processor are parallelized and therefore account for much less of the
program's runtime on multiple processors; at the same time, routines that take only a small amount of
processor time can become important if they run sequentially.

217

-14-

5. Implications for Other Systems I
While we have implemented Quartz on a shared memory multiprocessor, our work has implications

for other systems. 5
On multiprocessors with distributed memory, such as the Intel Hypercube, a dedicated sampling

processor would not have efficient access to the necessary information. Explicit messages would have to
be used to update the counts of effective and nominal parallelism, as well as the procedures each I
processor was executing. A further problem is that programs on these systems are often explicitly written

to use a specific number of processors because of the need to explicitly control the communication
pattern; removing one for sampling might require re-writing the program. I

Alternative approaches also have significant drawbacks on such systems. In particular, recording and
post-processing a complete trace may already be impractical for some programs, and will become more
so as distributed memory multiprocessors support faster rates of interprocessor communication. I

Efficient sampling could be implemented given hardware support for stopping all processors at close
to the same time (i.e., by allowing a host computer to send parallel interrupts each processor). One of the
reasons for using a dedicated processor is that interrupting any single processor to do sampling can distort
Lihe behavior being measured. If all were stopped together, the sample could be taken from that snapshot
without measurement error. The sampling could be implemented efficiently by using the processing
power of the stopped processors. I

Absent hardware support, it may be possible to exploit the characteristics of parallel programs on
distributed memory multiprocessors. Because of the requirement that interprocessor communication be
explicitly programmed using messages, these systems are most commonly used for highly data-paraUel U
applications with regular communication patterns. For these types of programs, at any point during the
computation, each processor executes roughly the same section of code, although one may finish before
another. As a result, sampling the behavior of each individual processor, and not the global state, may
yield a sufficiently detailed picture of program performance.

The techniques used in Quartz also solve some problems with traditional approaches to tuning
sequential program performance. One limitation to gprof is that it cannot be used to tune the I
implementation of operating system kernel-level routines, since interrupt-driven sampling cannot
measure code that runs with interrupts disabled. By using a separate processor to do sampling, however,
we would be able to accurately measure kernel-level execution. Note that by avoiding synchronization £
between the executing processors, or between them and the sampling processor, the processor in the
kernel can execute the profiling code even if it holds the low level scheduler lock.

Similarly, by using a profile stack for sampling, we are able to account correctly for execution time I
spent out of the monitored address space. Because of the way gprof propagates execution time spent on
behalf of a procedure, it cannot accurately attribute time spent executing in non-profiled code, or in the
operating system on behalf of the program. However, a trend in the design of operating systems and large
applications is to decompose them into separate modules in different address spaces, so that hardware
protection mechanisms can be used for failure isolation. Much of the execution time of an editor, for
instance, might be spent in another address space responsible for updating the display. The performance
of the entire decomposed system could be measured by sampling profile stacks shared among all address
spaces.

Data-oriented measurement can be helpful for tuning sequential programs as well as parallel
programs. For some programs, knowing that a particular procedure accounts for a large proportion of the
processing time may not be as useful as knowing that a particular object is expensive. For example, there 3
is better resolution in a more finely tiled sphere, but it also costs more to draw. Gprof introduces a
systematic bias in measuring object-oriented program behavior because it assumes that a procedure call
always takes the same amount of time to execute (i.e., that the time does not depend on the data that is 3
passed). Quartz avoids this bias by propagating execution times explicitly. While we currently make

218 3

-15-

only limited measurements of data-oriented performance behavior, our design is extehsible to a more
thorough object-oriented implementation.

6. Conclusions

Achieving good performance from parallel applications is both crucial and challenging. We have
discussed the design rationale, functionality, implementation, and use of Quartz, a tool for tuning parallel
program performance on shared memory multiprocessors.

The philosophy underlying our work is that an effective tool for tuning parallel program performance
must be based on a clear view of the causes of poor performance, and on a specific methodology for
improving that performance. By being selective about what it measures and presents, Quartz can focus
the programmer's attention on the information needed to tune performance. Measurement efficiency also
results from designing the tool to record just the important behavior.

By correlating the execution of sections of code and the use of certain data objects with the concurrent
behavior of other processors, Quartz assists in identifying areas of the program where re-structuring is
necessary to improve performance, and in gaining insight into the types of re-structuring that will work.
Because Quartz organizes performance information according to the logical structure of the program, the
programmer can tune performance in a top-down fashion.

Acknowledgments
We would like to thank Hi-Keung Tony Ma for donating the application program we used for our case

study, and Brian Bershad, Henry Levy, and John Zahorjan for their extensive comments.

~References

[Anderson et al. 1989]
Thomas E. Anderson, Edward D. Lazowska, and Henry M. Le The Performance Implications of Thread
Management Alternatives for Shared Memory Multiprocessors. 189 ACM SIGMETRICS and Performance '89
Conference on Measurement and Modeling of Computer Systems, pp. 49-60, May 1989. To appear, IEEE
Transactions on Computers, December 1989.

[Aral & Gertner 19881
Ziya Aral and Ilya Gertner. Non-Intrusive and Interactive Profiling in Parasight. Proc. ACMISIGPLAN
PPEALS 1988, pp. 21-30.

[BBN 19851
BBN Laboratories. Butterfly Parallel Processor Overview. 1985.

[Bershad et al. 1988]
Brian Bershad, Edward Lazowska, and Henry Levy. Presto: A System for Object-Oriented Parallel
Programming. Software: Practice and Experience 18,8 (Aug. 1988), pp. 713-732.

[Burkhart & Millen 19891
H. Burkhart and R. Millen. Performance Measurement Tools in a Multiprocessor Environment. IEEE
Transactions on Computers 38,5 (May 1989), pp. 725-737.

[Carpenter 19871
RJ. Carpenter. Performance Measurement Instrumentation for Multiprocessor Systems. In High Performance
Computer Systems, ed. E. Gelenbe, North-Holland. pp. 81-92, 1987.

[Fowler et al. 19881
Robert J. Fowler, Thomas J. LeBlanc, and John M. Mellor-Crummey. An Integrated Approach to Parallel
Program Debugging and Performance Analysis on Large-Scale Multiprocessors. Proc. ACM SIGPLANISIGOPS
Workshop on Parallel and Distributed Debugging, May 1988.

[Graham et ai. 1982]
S.L. Graham, P.B. Kessler, and M.K. McKusick. Gprof: A Call Graph Execution Profiler. Proc. ACM
SIGPLAN Symposium on Compiler Construction, June 1982.

[Gupta 19891
R. Gupta. The Fuzzy Barrier A Mechanism for High Speed Synchronization of Processors. Proc. 3rd
International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS411), April 1989, pp. 54-63.

219

-16-

[Halstead 1986] U
R. Halstead, Jr. An Assessment of Multilisp: Lessons from Experience. International Journal of Parallel
Programming 15,6 (Dec. 1986).

[Kerola & Schwetman 19871
Teemu Kerola and Herb Schwetman. Moni" A Performance Monitoring Tool for Parallel and Pseudo-Parallel
Programs. Proc. 1987 ACM SIGMETRICS Conference, May 1987.

[Mact al. 1987]
H.T. Ma, S. Devadas, R. Wei, and A. Sangiovanni-Vincentelli. c Verification Algorithms and Their Parallel
Implementation. Proc. 24th Design Automation Conference, pp. 23-290, July 1987.

'Malony et al. 1989]
Allen Malony, Daniel Reed, James Arendt, Ruth Aydt, Dominique Grabas, and Brian Totty. An Integrated I
Performance Data Collection, Analysis, and Visualization System. To appear, Proc. 4th Conference on
Hypercubes. Concurrent Computers, and Applications, 1989.

[Miller & Yang 1987]
Barton P. Miller and C.-Q. Yang. IPS: An Interactive and Automatic Performance Measurement Tool for
Parallel and Distributed Programs. Proc. 7th International Conference on Distributed Computing Systems,
September 1987.

[Moeller-Nielsen & Staunstrup 19871 I
P. Moeller-Nielsen and J. Staunstrup. Problem-Heap: A Paradigm for Multiprocessor Algorithms. Parallel
Computing 4, North-Holland, 1987, pp. 63-74.

[Pfister et al. 1985]
G. Pfister, W. Brantley, D. George-.44arvey, W. Kleinfelder, K. McAuliffe, E. Melton, V. Norton, and J. I
Weise. The IBM Research Parallel Processor Prototype (RP3): Introduction and Architecture. Proc. 1985
International Conference on Parallel Processing.

(Rodgers 19861
David P. Rodgers. Personal communication.

[Segall & Rudolph 19851
Zary Segall and Larry Rudolph. PIE: A Programming and Instrumentation Environment for Parallel Processing.
IEEE Software 2,6 (November 1985).

[Sequent 1988]
Sequent Computer Systems, Inc. Symmetry Technical Summary.

[Thacker et al. 1988]
Charles Thacker, Lawrence Stewart, and Edward Satterthwaite Jr. Firefly- A Multiprocessor Workstation. U
IEEE Transactions on Computers 37,8 (Aug. 1988), pp. 909-920.

[Yang & Miller 19881
Cui-Qing Yang and Barton Miller. Critical Path Analysis for the Execution of Parallel and Distributed I
Programs. Proc. 9th International Conference on Distributed Computing Systems, June, 1988, pp. 366-373.

2
I
I
I
I
I

220 I

Speedup Versus Efficiency in Parallel Systems

DEREK L. EAGER, JOHN ZAHORJAN, AND EDWARD D. LAZOWSKA

Abstract - If a software system can be structured as a collection of largely independent subtasks, significant
reductions in elapsed time can be realized by executing these subtasks in parallel on multiple processors. This
effect, known as speedup, typically increases (up to some limit) with the number of processors dedicated to the
problem.

Along with an increase in speedup comes a decrease in efficiency: as more processors are devoted to the
execution of a software system, the total amount of processor idle time can be expected to increase, due to factors
such as contention, communication, and software structure.

This paper investigates the tradeoff between speedup and efficiency that is inherent to a software system. We
show the extent to which this tradeoff is determined by the average parallelism of the software system, as
contrasted to other, more detailed characterizations. We bound the extent to which both speedup and efficiency can
simultaneously be poor. we show that for any software system and any number of processors, the sum of the
average processor utilization (i.e., efficiency) and the attained fraction of the maximum possible speedup must
exceed one. We give bounds on speedup and efficiency, and on the incremental benefit and cost of allocating
additional processors. We give an explicit formulation, as well as bounds, for the location of the "knee" of the
execution time - efficiency profile, where the benefit per unit cost is maximized.

Index Terms - Parallel software, performance, parallel computing, parallel software structure, bounds on
performance, computer system performance analysis.

I. INTRODUCTION
Exploiting parallelism is an increasingly common approach to improving the performance of computer systems. In
terms of hardware, this typically means providing multiple, simultaneously active processors. In terms of software,
this typically means structuring a program as a set of largely independent subtasks.

In the sequential world the performance of a system usually can be adequately characterized in terms of the
instruction rate of the single processor and the execution time requirement of the software on a processor of unit rate
(which we refer to as its service demand). In the parallel world things are considerably more complex. In the
hardware domain we must be concerned not only with the instruction rate of a processor, but also with factors suchas the number of processors. In the software domain we must be concerned not only with service demands, but also
with factors such as the structure of the software.

In evaluating a parallel system two performance measures of particular interest are speedup and efficiency.
Speedup is defined for each number of processors n as the ratio of the elapsed time when executing a program on a
single processor (the single processor execution time) to the execution time when n processors are available. In the
notation that we shall use throughout this paper

S(n)= T
T.

Efficiency is defined as the average utilization of the n allocated processors. Ignoring 1/0, the efficiency of a single
processor system is 1. Speedup in this case is of course 1. In general, the relationship between efficiency and
speedup is given by:

This work was supported by the National Science Foundation (Grants No. DCR-8302383, DCR-8352098, CCR-8619663 and CCR-
8703049), the Natural Sciences and Engineering Research Council of Canada, the Naval Ocean Systems Center. U S WEST Advanced
Technologies, the Washington Technology Center, and Digital Equipment Corporation (the Systems Research Center and the External Research
Program).

Derek L. Eager is with the Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl; this work took
place while Eager was with the Department of Computational Science, University of Saskatchewan.

John Zahorjan and Edward D. Lazowska are with the Department of Computer Science, University of Washington, Seattle, WA 98195.

221

I
-2-

E (n) S(n)
n

If efficiency remains at 1 as processors are added we have linear speedup. (Technically, for speedup to be linear 3
requires only that S(n) = an for some constant c, O<ctl, but we will use the stricter definition a=1 throughout.)

This is the ideal case, as improvements in speedup can be obtained at no cost in efficiency. Linear speedup is not

achievable in general, because of contention for shared resources, the time required to communicate between

processors and between processes, and the inability to structure the software so that an arbitrary number of

processors can be kept usefully busy. Minsky and Papert noted evidence that the "typical" speedup has the form

S (n) = log n [15]; other studies have provided evidence that much larger "typical" speedups can be attained [12].

Although the idea of speeding up computations through parallelism has existed for more than a century [111,

general Durpose systems based on multiple (five or more) processors have only recently become common (e.g.,

commercial machines by Sequent, Encore, Alliant, and BBN, and limited-edition machines such as IBM's RP3 and

DEC's Firefly). The existence of such systems has stimulated widespread research activity: algorithms work I
concerned with parallel solutions in many problem domains, compiler work concerned with parallelizing code,

architecture work concerned with how best to interconnect processors, etc. Obviously, results in these areas play a

critical role in improving the speedup and efficiency properties of parallel systems.

This paper takes a more abstract view. Rather than studying specific implementations and implementation

problems, we study the tradeoff between speedup and efficiency that is inherent to a software system. Further, we

do not do this in the context of a specific software structure (e.g., as was done by Heidelberger and Trivedi [8] and

by Fayolle, King and Mitrani [51); instead, we derive relationships that can be very broadly applied. We are

interested both in fundamental issues concerning the properties of this tradeoff, and in practical issues that might

arise in considering specific software systems. Among the fundamental issues that we address are:

- To what extent is the speedup-efficiency tradeoff determined by the average parallelism of a software system, as I
contrasted to other, more detailed characterizations?

- How "bad" can speedup and efficiency simultaneously become?

- What is the nature of the "knee" of the execution time - efficiency profile, where the benefit (increase in

speedup) per unit cost (decrease in efficiency) is maximized? For example, what guarantees can be made
regarding speedup and efficiency values at the knee?

Among the practical issues related to specific software systems that we consider are:

- To achieve a given speedup, what efficiency penalty must be paid?

- What speedup advantage will result when increasing the number of processors by some factor, and what
efficiency penalty will accompany it?

- What number of processors yields the knee of the execution time - efficiency profile?

Our objective is to address these questions by obtaining bounds on performance - bounds expressed in terms of 3
the average parallelism measure of software structure. It should be clear that, given complete information regarding
a specific software structure, precise answers (rather than bounds) could be obtained for many of these questions.
There are two reasons, though, why bounds expressed in terms of one or a small number of parameters may be more

desirable than precise solutions that require complete information:

- It is unlikely in practice that complete information will be available. For most software systems, parallelism will
depend to some extent on the (unknown or varying) darn that would be supplied as inputs. The volume of

information required will in many cases be prohibitive. U
- It often is the case that bounds based on simple characterizations yield more insight than exact answers utilizing

complete information.

The results that we seek are in the spirit of the results of Chen [2], and, more widely known, in the spirit of
Amdahl's law, which states that if a fraction f of a computation is inherently sequential, then the speedup S (n) is

bounded above by [1]. (Precisely, f is defined to be the ratio of the service demand of sequential parts
+11b

n
of the computation to the service demand of the entire computation.) This is a simple upper bound on speedup that
is expressed in terms of a single-parameter characterization of the software (f) and a single-parameter

characterization of the hardware (n). It provides considerably more insight than more detailed alternatives, such as

"9"9")I

-3-

a table displaying exact speedup values computed for a number of specific software structures running on a number
of specific hardware structures.

In II we describe our models of parallel software and of its execution, and the average parallelism measure that
we use to characterize this software. Of special interest:
- We show that there are four equivalent definitions of average parallelism.
- We show that the number of available processors n and the average parallelism of the software structure A

provide complementary hardware and software upper bounds on speedup.
In III we develop lower bounds on speedup and efficiency in terms of n and A, and apply these bounds to

answer a number of the questions posed above. Specifically:
- We obtain lower bounds on the speedup and efficiency with n processors. These bounds apply to any work-

conserving scheduling discipline, and are the best obtainable bounds. (Theorem 1.)
- Restricting ourselves to the processor sharing scheduling discipline, we show that, although tighter bounds can

be obtained, they require information about the software structure in addition to the average parallelism.
(Theorem 2.)

- We show that for any work-conserving scheduling discipline, any software structure, and any number of
processors, the sum of the attained efficiency and the attained fraction of the maximum possible speedup must
always exceed 1. In other words, we show that a low efficiency is guaranteed to "buy" a high relative speedup.
(Corollary 1.1.)

- We bound efficiency in terms of the average parallelism and the speedup; .in other words, we determine the
efficiency penalty that must be paid to achieve some target speedup. (Corollary 1.2.)

- We show that average parallelism is a good characterization of the software structure. We do so in two ways.
First, we show that a specific speedup estimate derived from only n and A can be in error by at most 33%.
(Corollary 1.3.) Then, we show that only a slight improvement in our bounds can be achieved by using some
additional information, specifically the fraction of work that is inherently sequential. (Corollaries 2.1 and 2.2.)
In IV we consider the incremental cost/benefit of adding processors. For an increase from n to kn processors,

we obtain both upper and lower bounds on the increase in speedup and the decrease in efficiency. These bounds are
expressed in terms of k, n, and A. (Theorem 3.)

Finally, in V we study questions concerning the knee of the execution time - efficiency profile.
- We show that this profile has a unique knee, and obtain an exact expression for the number of processors that

attains this knee - an expression that requires complete information concerning the software structure (rather
than simply the average parallelism). (Theorem 4.)

- We show that when this number of processors is allocated, the attained speedup is at least 50% of the maximum
possible and the efficiency is at least 50%. (Theorem 5.)

- We obtain a bound for this "optimal" number of processors in terms of the average parallelism, A. (Theorem 6.)
- We show that when the number of available processors is equal to the average parallelism, the guarantees

regarding speedup and efficiency are identical to those at the knee. (Theorem 7.)

II. THE SYSTEM MODEL AND THE AVERAGE PARALLELISM MEASURE
In A we outline the graph model of parallel software that we will use, as well as our model of execution. The

former model reflects our goal of fundamental and generally applicable insights, and incorporates only those aspects
common to all parallel software systems. The latter model reflects, in addition, our focus on the parallelism inherent
to a software system, and makes an assumption of "ideal hardware". In B we describe the average parallelism
measure that we use to characterize software parallelism.

A. The System Model
We represent the software component of the system using a traditional graph model (e.g., [6]). In this model a

software system is represented by an acyclic directed graph. Each vertex of the graph corresponds to a "subtask" of
the software system. Each subtask has an associated processor service demand. Precedence constraints may exist
among the subtasks; for example, the initiation of a subtask may require data that is available only after the

223

I
-4- I

termination of some other subtask. These precedence constraints are modelled by the arcs of the graph: an arc from

vertex A to vertex B means that subtask B cannot begin execution until subtask A completes execution. (It would

be incorrect to think that a subtask in this model necessarily corresponds directly to a process or to some other I
operating system or programming language construct. Rather, a subtask corresponds to an "independent unit of

sequential work". A single process might be represented by several such units, for example, with the precedence

constraints representing synchronization requirements achieved by some communication primative.) Fig. 1

illustrates a software structure graph that might arise from an algorithm such as Quicksort; service demands appear

within the vertices.

4I I
I

Fig. 1. Graph representation of an example software system. 3
The hardware component of the system is modelled as some number n of identical processors, each of unit

speed. We assume that n is constant throughout the execution. In practice, n might be determined by either I
hardware or software. If the entire computer is devoted to a single task, the number of available processors is fixed
by the hardware. If the computer is multiprogrammed, the operating system may choose to allocate a fixed subset of
the processors to each task during its execution. Some of the questions that we consider in this paper are more

relevant in one of these contexts than in the other. For example, questions regaraing the knee of the execution time I
- efficiency profile are most relevant to the multiprogramming context, in which there is considerable freedom in

determining the number of processors allocated to each software system.

It is possible that at various points during execution the nuniber of runnable subtasks will exceed the number of I
available processors. A scheduling algorithm then is required to decide which subtasks should be run. Some of our
results will be established for any scheduling discipline that is work-conserving [9]. (A work-conserving discipline
is one that never leaves idle a subtask that is eligible for execution when there is a processor available.) Other I
results will consider a specific discipline, processor sharing. Under this discipline, if k subtasks are eligible for
execution and there are n available processors (n <k), each subtask receives service at a rate that is - times the rate

k
at which it would receive service if a processor were dedicated to it.

In closing this section, we should specifically discuss the representation of overheads in our execution model.
The principal focus of this paper is the influence of software structure on parallel program performance. Overheads
such as those due to interconnection network topologies, memory contention, and locking are of course another I
important influence on performance, but are not our principal focus. These overheads are represented by including
them in the service demands of the various subtasks in the graph. This is a common approach in computer system
performance analysis. The implicit assumption is that these overheads are fixed - that they do not vary with the

number of processors dedicated to the computation nor with the schedule used.

224

IJ

-5-

B. The Average Parallelism Measure

The graph representation of a parallel software system contains complete information about the parallelism
inherent in that system. We argued in I that this representation is too detailed to be practical or yield insight. We
seek a simpler characterization that still captures the essential behavior of the software.

An example of such a characterization is the one used by Amdahl [1]: the fraction f of a computation that is
inherently sequential. For our work, we have chosen to use a different, fairly common (e.g., [7]), and intuitively
appealing measure: average parallelism. Average parallelism can be rigorously defined in four equivalent ways:

A. the average number of processors that are busy during the execution time of the software system in question,
given an unbounded number of available processors;

B. the speedup, given an unbounded number of available processors;

C. the ratio of the total service required by the computation (the sum of the service demands of the subtasks) to the
length of a longest path in the subtask graph (the length of a path is the sum of the service demands of its
subtasks); and

D. the intersection point of the hardware bound and the software bound on speedup (these will be defined shortly).

The equivalence of these four definitions is not entirely obvious. Recall that speedup with n processors, S (n), is
defined as the ratio of the execution time when only a single processor is available to the execution time when n
processors are available. Since the former is equal to the total service demand, and the ratio of the total service
demand to the execution time gives the average number of busy processors, definition (B) is equivalent to definition
(A).

If an unbounded number of processors is available, the execution time of a software system is simply the total
service demand along some longest path. Hence, from the definition of speedup, definition (C) is equivalent to
definition (B).

There are two simple upper bounds on speedup. The hardware bound reflects the limitation imposed by the
hardware, and is given by the number n of available processors. This bound can be achieved only if all n
processors can be kept busy all of the time. The software bound reflects the limitation imposed by the software, and
is derived by noting that, no matter how many processors are available to a system, the execution time must be at
least as long as the length of a longest path. Hence, the speedup is at most the ratio of the total service demand to
the length of a longest path. The hardware and software bounds, and the actual speedup function, are depicted in
Fig. 2 for the example software system whose directed graph representation is shown in Fig. 1.

The intersection point of the hardware and software bounds on speedup is significant when additional
processors are allocated, it is certain that there is not enough parallelism in the software to keep all of the processors
busy all of the time. This intersection point is the point where n (the hardware bound) is identical to the ratio of the
total service demand to the length of the longest path (the software bound). Thus, definition (D) is equivalent to
definition (C), and all four definitions are now shown to be equivalent.

We note that the hardware and software bounds on speedup are analogous to (and have an identical form as) theAsymptotic Bound Analysis (ABA) bounds on system throughput in a queueing network model of a computer systemin which a number of identical, independent processes compete for service at a collection of system resources [4,
16]. There is a simple mapping between the two problem domains, with the number of independent processes in the
ABA model corresponding to the number of processors in our model, and the bottleneck service demand in the
ABA model corresponding to the length of a longest path in the directed graph representing the software system in
our model. A similar mapping was employed by Kumar and Gonsalves [13] for performance models of software
containing critical sections.

It is natural to ask how to determine the average parallelism of a particular software system. There are analytic
approaches (considering the graph representation of the system) and experimental approaches (running the software
with a sufficient number of processors). As with Amdahl's simple measure, though, the important issue is not howthe measure is determined, but rather that once it has been determined, it provides a succinct characterization of theinherent parallelism of the software system. As the remainder of this paper will show, there is a considerable

amount of information built into this measure.

225

I
-6-

3 1
2.5 3

speedupS 2

1

1 2 3 4 5 7 8
number of processor, n

software bownd ' hardware boW * actual speeuI

Fig. 2. Upper bounds and actual speedup for the graph in Fig. 1.

Ill. LOWER BOUNDS ON SPEEDUP AND EFFICIENCY, AND APPLICATIONS OF THESE BOUNDS

In II we showed the upper bounds on speedup that are established by hardware and by software. There are
corresponding upper bounds on efficiency, since the average processor utilization (efficiency) can be computed as I
the speedup divided by the number of available processors.

In this section we derive lower bounds on speedup and efficiency, and apply these bounds to a number of
questions regarding the speedup-efficiency tradeoff. I
A. Lower Bounds on Speedup and Efficiency
Theorem 1: Let A denote the average parallelism of a software structure, S (n) the speedup with n processors, and 3
E (n) the efficiency with n processors. For any work-conserving scheduling discipline

S(n) >_ ,3
and

n+A-1
and

E(n) >_ A
n+A -1

These bounds can be attained.

Proof: Because speedup and efficiency are related in a simple way, it suffices to show the speedup result. Consider
an arbitrary software structure with average parallelism A. Let T. denote the elapsed time of its execution given an
unlimited number of processors. It follows from the definition of average parallelism that the total processor busy
time accumulated during such an execution (summed over all n processors) is TA.

Now, suppose that this software structure is executed using n processors and some arbitrary work-conserving
scheduling discipline. Since the discipline is work-conserving, it follows that the total busy time (summed over all

processors) is, as before, T.A. The execution time is then given by TA + 1(n),where I(n) denotes the total idle 3
time (summed over all processors) that is accumulated during this execution. From the definition of speedup, noting

that the sequential execution time is T.A, we then have S (n) = nA
A+ 1(n)

T_

To establish the desired result, we only need to show that 1(n)!5 T.(n-l). To this end, define w(t) to be the
portion of the original software structure graph that has not completed execution at time t. (o(t) includes those tasks
that have not yet been initiated, and those tasks that have been initiated but not yet completed. The service demand

226 3

-7-

of each task in w(t) is its original service demand diminished by the amount of servicet (if any) already provided to
the task. (The precedence arcs in (oQt) are identical to those in the original graph.)

Define L (t) to be the length (i.e., the total service demand) of a longest path within ot). Note that the value of
L (t) varies from T_ (at the start of the execution) to zero (at the end of the execution). If, at some time t, L (t) is
not decreasing, there must be some task at the head of a longest path in cgt) that is not being executed. Since no
precedence constraints prevent the execution of such a task, and since the scheduling discipline is work-conserving,
it must be the case that there are no idle processors at time t. Thus, processors can be idle only during those periods
of time when L (t) is decreasing. Since L (t) decreases (linearly) for a total length of time T., and since at most
n-1 processors can be idle at any point in time, the total idle time 1(n) is at most T.(n-1), which establishes the
result.

We show that the speedup bound can be attained by means of an example. Consider First-Come-First-Served
scheduling, and a software system that consists of a subtask that, upon completion, enables kn+l additional
subtasks, where kn is some multiple of n that is greater than A. If we constrain the service times of each of the

kn+1-A
kn+I additional subtasks to be identical, the service time of the first subtask can be derived as T. and that

A-i kn

of each of the remaining subtasks as T.-. The speedup is then given by
kn A-I kn+1-A
(kn+l)T.- l+ T. kn

S(n) = kt - k
kn+l-A A-I

T. kn + (k+I)T. k

This reduces to the speedup given in the theorem.

.QED

Note that if n <<A, S(n)--n, and if n.>>A, S(n)--A. Fig. 3 adds the lower bound of this theorem to the upper
bounds displayed in Fig. 2. Bear in mind that the bounds of this theorem apply to any work-conserving scheduling
discipline. No matter how poorly designed such a discipline may be, or how baroque a software structure is
presented, the behavior of the software system can be no worse than the stated bounds. Furthermore, these are the

best such bounds obtainable, since for any choice of A and n there exists a choice of work-conserving discipline
and software structure such that the system performance is no better than that given by the bounds.

3

* 2.5

1.5

I 2 3 4 5 6 7 8
5_ number of processors, n

-- software " ha'dware - actual - lower bound5 bound bound spee d
Fig. 3. Lower bound added to Fig. 2.

I Because Theorem 1 is concerned with the worst case over the entire space of work-conserving disciplines, it is
possible that the bound does not give a reasonable indication of the performance to be expected of "rational"3 scheduling disciplines. Theorem 2 specializes the results to the case of processor sharing scheduling, an idealization

227

-8- I
of round robin scheduling. We find that, although a tighter bound can in fact be obtained, this requires not only that I
we consider a specific scheduling discipline, but also that we provide additional information about the software
structure, specifically, the maximum parallelism. l

Theorem 2: Let A denote the average parallelism, m. the maximum parallelism (the maximum number of
processors that are simultaneously busy when an unlimited number are available), S(n) the speedup with n
processors, and E (n) jhe efficiency with n process .With processor sharing scheduling3

S (n) min A_____
n+A-1- (n-/)(A-l) mI

and

E (n) min ['A13
Enn) _rinI -(n-1)(A-1)

n+A-1-I

These bounds can be attained. (The main function is necessary only to take care of the extreme case in which
n >m max.)

Proof: Consult the Appendix.

A key point is that if we have no information about the maximum parallelism, i.e., if the maximum parallelism can 3
be arbitrarily high, then these bounds reduce to those given in Theorem 1.

B. Applications I

1) How "Bad" Can Speedup and Efficiency Simultaneously Become?
Typically, as we make additional processors available to a software system, increases in speedup are obtained at

the expense of decreases in efficiency. It is natural to wonder if a low efficiency is guaranteed to "buy" a high
speedup, or whether a poor choice of scheduling discipline and/or an inappropriate number of available processors
might result in both low efficiency and low speedup. Corollary 1.1 offers reassurance in this regard. I

Corollary 1.1: For any work-conserving scheduling discipline, any software structure, and any number of
processors, the sum of the attained efficiency and the attained fraction of the maximum possible speedup must

always exceed 1, i.e., E (n) +.S(n) >1.3

S(n) n A Ths ~)+~),n +A >1Proof: FromTheorem 1, A >n) > n and E(n) >Thus, 2tS (n +A 1A' n+A-1 -n--A--i A- En> n+A_-- >1

QED

Thus, an average processor utilization (efficiency) of 20%, for example, implies an attained speedup of more than
80% of the maximum possible. 3
2) To Achieve a Given Speedup. What Efficiency Penalty Must be Paid?

Here, we wish to obtain bounds on efficiency, given that sufficient processors have been made available to attain 3
some target speedup S. (Clearly, S can be at most the maximum possible speedup, as given by the average
parallelism A.)

Corollary 1.2: For any non-sequential program structure (that is, any structure with A > 1) and any work-conserving l
scheduling discipline, E (n) > A -S (n)

A-1

Proof: From Theorem 1, S(n)>----, son < S(n)(A)_ and thus S(n) =E(n)A-S(n)
n-iA-1 A-S(n) n A-1

QED

I
228 3

i
-9-

Note that for small values of S, the efficiency penalty is guaranteed to be small. However, as S approaches the
maximum possible speedup A, the efficiency may, in the worst case, degrade linearly to arbitrarily low values. This
agrees with our intuition regarding the likely effect of trying to exploit all of the possible parallelism in a system by
dedicating large numbers of processors.

3) To What Extent is the Speedup-Efficiency Tradeoff Determined by Average Parallelism?

We address this issue by answering two related questions. First, how tightly can speedup be bounded using only
the average parallelism of a software system and the number of available processors? Second, how much additional
information regarding speedup is provided by knowledge of (i) the maximum parallelism, or (ii) the fraction of theI- total work that is inherently sequential? We consider only speedup, since efficiency is easily derived once the
speedup is known.

Fig. 3 illustrated, for a specific software structure, the actual speedup function S(n), the upper boundsI nA
established by software (A) and hardware (n), and the lower bound of Theorem 1 (). We will measure the

n+A-1
tightness" of these bounds in the general case by determining the maximum possible error in an estimate of the

speedup function that is computed by a particular averaging of the bounds.

Corollary 1.3: For any work-conserving scheduling discipline, the speedup estimate

min(n ,A)

--§(n) 2n+A -1
nA

min(n A) +
n+A-1

has a relative error of less than 33%, i.e., IS(n)-S(n)I <0.33.S(n)
Proof: It is straightforward to show that the relative error in this estimate is maximized when the true speedup
attains either the lower or the upper speedup bound. Therefore, the relative error is at most

nA
•min(n A.) + n

n +A-1

which is maximized at n =A and is thus strictly less than 33%.

QED

Thus, knowing only the average parallelism and the number of available processors, a speedup estimate can be3computed that is guaranteed to have a relative error of less than 33%.
This result indicates that at most a modest benefit can be had by considering measures of software parallelism

more detailed than average parallelism. Nonetheless, we will briefly examine two such measures that have a
reasonable likelihood of being known or reliably estimated in practice: the maximum parallelism and the fraction of
the total work that is inherently sequential. (Another reasonable characteristic to consider might be the fraction of
the total work that is accomplished with the (known) maximum parallelism. The additional benefit of this
information is, however, very similar in nature to that of the fraction of the total work that is inherently sequential,
and we do not treat it explicitly here. We consider other measures, such as the variance in parallelism or the
percentiles of parallelism, to be too detailed for practical use.)

Knowledge of the maximum parallelism can be used to tighten only the lower bound on speedup. The extent of
this improvement is illustrated in Theorem 2 for the processor sharing scheduling discipline. If m ,,. (the maximum
parallelism) is large, the benefit of knowing its value is minimal - one might just as well assume that it is
unbounded. If mm, is small, the speedup bound is considerably tightened. (Of course, m,. r. t be at least as
large as A.) For intermediate values, the benefit of knowing m is maximized when n is close to A, which
corresponds to the region of greatest uncertainty in speedup when only the average parallelism is known. For
example, suppose that n =A and that m,,.=kA for some integer k. Then knowledge of m . tightens (increases) the

speedup lower bound by a factor of approximately 2k
2k- 29

29

-10- I
Knowledge of the fraction f of work that is inherently sequential (recall that this is defined to be the ratio of the

serv'ce demand of the sequential pans of the computation to the total service demand of the computation) can be
used to tighten both the upper and the lower bounds on speedup. The extent of these improvements will be
illustrated for the processor sharing scheduling discipline, using the following two corollaries to Theorem 2. We
first consider the improvement in the lower bound.

Corollary 2.1: Let A denote the average parallelism, f the fraction of work that is inherently sequential, and S (n) 3
the speedup with n processors. With processor sharing scheduling and n >2

S(n _> nA

n+A-1 - (1-fA) 3
(fA will always be between 0 and 1.)

Proof: Consult the Appendix. 3
Comparing this bound to that given in Theorem 1 (or, equivalently, to that given in Theorem 2 when mrr, is
unknown), we note that for reasonably large n or A, knowledge of f provides negligible improvement in the
speedup lower bound.

We next consider the improvement in the upper bound presented in II, min(n A).

Corollary 2.2: Let A denote-the average parallelism, f the fraction of work that is inherently sequential, and S(n)
the speedup with n processors. With processor sharing scheduling

S(n) _< rmin(nl

Proof: Consult the Appendix.

(Note that the first term of this bound is identical to the bound given by Amdahl.)
Comparison with the bound from II shows that for small f, the improvement is negligible. As f approaches 1

the improvement increases, and, in fact, the new upper bound approaches the lower bound given by Theorem 1. For
fixed f and A, the improvement is maximized when n is closest to A, which corresponds to the region of greatest
uncertainty in speedup when only the average parallelism is known. I

In summary, the average parallelism of a software system does, to a considerable extent, determine the
associated speedup-efficiency tradeoff. Knowing only the average parallelism and the number of pocessors, a
speedup estimate can be derived that has a relative error of less than 33%. Knowledge of other system I
characteristics such as the maximum parallelism mn, or the fraction f of work that is inherently sequential is of
limited benefit: these measures yield useful information only when they indicate a severe constraint on parallelism,
for example, a large value of f or a small value of m . I

IV. INCREMENTAL COST AND BENEFIT OF ADDING PROCESSORS

In this section we study the cost (decreased efficiency) and benefit (increased speedup) that will result when
increasing by some factor the number of processors allocated to a software system. Theorem 3 addresses these
questions by providing bounds expressed in terms of average parallelism.

Theorem 3: With processor sharing scheduling, an increase in the number of processors from n to kn (n,k~l) U
affects speedup as follows:

max(l kA S (kn) k-i
(k-I)n+A S(n) kn-1

230 3

Correspondingly, efficiency is affected as follows:

ma1 -I A E(kn) 1 k-I

These bounds can be attained.

Proof: Consult the Appendix.

A number of observations can be made regarding these bounds. We first show that they are consistent with
earlier bounds, and then consider the insight that they provide regarding system behavior. Since the efficiency
bounds are so closely related to the speedup bounds, we discuss only the latter directly.

For n = 1, Theorem 3 provides bounds on speedup with k processors, since the factor by which speedup increases
is equal to the speedup itself. These bounds correspond exactly to those given in II (the upper bounds established by
hardware and by software) and in III (the lower bound of Theorem 1). Also, note that when k-4-0 (with fixed n,
A), the resulting speedup must be the maximum possible speedup, A, and that therefore the bounds on the change in
speedup can be used to bound the original speedup with n processors. The upper bound on the change in speedupn +A -1
reduces to in this case, and the lower bound reduces to max(l,-). Since A is the resulting speedup, the

n n
original speedup with n -processors is bounded below by nA and above by min(n ,A), again corresponding

exactly to the bounds given in II and III.

Consider now the system behavior as the number of processors is increased, for various initial numbers of
processors. For n and kn that are small relative to A, the lower bound on the factor by which speedup increases
guarantees a speedup close to linear in the number of processors. For example, with n =--, doubling the number of

processors will cause an increase in speedup of at least 80%. As n increases beyond A, the upper bound on the
factor by which speedup may increase approaches the lower bound of I quickly. For example, suppose that initially
we use A processors, and that A is large. If we then double the number of processors from A to 2A, speedup will
increase by at most 50%. If we double the number of processors again (from 2A to 4A), speedup will increase by at1
most 25%. in general, at the i -th doubling, speedup will increase by at most I x 100%.

As we have seen several times before, the greatest uncertainty arises when the number of processors is close to

the average parallelism A. For example, with n =3A (and large A), doubling the number of processors could
increase speedup by anywhere from 20% to 75%.

V. THE KNEE OF THE EXECUTION TIME - EFFICIENCY PROFILE
Profiles that plot a measure of "benefit" against a measure of "cost" arise naturally in many areas; for example,

the throughput-delay profile in computer-communication system design [10] and the lifetime curve in memory
management [3]. The concept of the knee of such a profile [31 (or, alternatively, the point of "maximum power"
[10]) is a fundamental one. The knee is the point where the benefit per unit cost is maximized, and, intuitively,represents an optimal system operating point.

In this section we investigate an important cost-benefit tradeoff in parallel systems: the execution time -
efficiency profile. There are two equivalent views that motivate this tradeoff. In the first of these, we viewefficiency as an indication of benefit (the higher the efficiency, the higher the benefit), and execution time as an
indication of cost (the higher the execution time, the higher the cost). The implied system objective is to achieve
efficient usage of each processor, while taking into account the cost to users in the form of increased task execution
times. Since efficiency is closely related to the "per-processor throughput", this view is analogous to that motivating
the throughput-delay profile in computer-communication network design.

The second, equivalent view has a somewhat different implied objective. Here, execution time is taken as anindication of benefit (the lower the execution time, the higher the benefit), and efficiency is taken as an indication of
cost (the lower the efficiency, the higher the cost). The implied objective is to achieve low task execution times,

while taking into account the "opportunity cost" of low efficiency. (In a multiprogramming environment, a low

231

-12-

efficiency implies that processors could have been more appropriately allocated to a different task.)
The execution time - efficiency profile, motivated by each of these views, is a graph in which execution time is

given on the y-axis and efficiency on the x-axis. Each point represents the combination of execution time and
efficiency achieved by some particular number of processors. The knee of the profile occurs where the ratio of

efficiency to execution time, (n) (T, is the execution time when n processors are allocated), is maximized. As
an example, Fig. 4 shows the profile for the software system whose graph representation and speedup function are I
given in Figs. 1 and 2, respectively. The knee is indicated by the arrow.

34-
32 nI
30-
28I

execution 26
time 24 n2

22-
20 n=3
18

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
efficiency

Fig. 4. Execution time - efficiency profile corresponding to Fig. 1. 3
It is important to be able to determine the number of processors that yields the knee. In a multiprogramming

environment, for example, this would represent the appropriate allocation of processors to each job. 3
In A we show how to find the location of the knee for an arbitrary software system, assuming complete

information about that system. Previously, the location of the knee had been found efficiently only for very regular
structures (e.g., [14]). Using our new formulation for the location of the knee, we show several properties regarding
speedup and efficiency that will hold if the number of processors allocated is the number that attains the knee. I

The approach in A requires complete information. In B we bound the location of the knee in terms of average
parallelism. Interestingly, the average parallelism itself is essentially at the midpoint of these bounds. Thus,
choosing to allocate a number of processors equal to the average parallelism measure is appropriate, in the sense
that it yields a point on the execution time - efficiency profile relatively close to the knee. We show several
properties regarding speedup and efficiency that will hold if the number of processors allocated is identical to the
average parallelism A, and compare these properties with those that hold at the knee.

A. The Exact Location of the Knee

In Theorem 4, we show that the execution time - efficiency profile for any software system must have a knee (a 1
point where the ratio of efficiency to execution time is maximized), we show that this knee must be unique, and we
give the location of the knee. Here, as in all of V, we assume processor sharing scheduling, and allow a nonintegral
number of processors n. (Results that allow a nonintegral number of processors are in some sense "more general"
than those for an integral number of processors. The nonintegral results can easily be specialized to integers. A
nonintegral number of processors can be viewed as resulting from the sharing of a processor between two jobs in a
multiprogrammed parallel environment.)

Theorem 4: Let p., denote the proportion of time that m processors are simultaneously busy when an unlimited
number are available, and let m ,, denote the maximum parallelism (the maximum number of processors that are
simultaneously busy when an unlimited number are available). Under the processor sharing discipline, the

232

-13-

execution time - efficiency profile for any software system has a unique knee. The number of processors that
E(n)

attains the knee, i.e., that maximizes E (n is given by

n - L I

T~T.

if this equation has a solution, and by the unique integer n satisfying

P.m P.M

n N-

otherwise.

Proof: Consult the Appendix.

As noted earlier, the knee of the execution time - efficiency profile intuitively represents a good system
operating point. We now consider wha tam-antees are possible. Measures of interest include the attained speedup
S(n) in comparison with the maximum achievable speedup S (m,.), the efficiency E(n), the utilization of the k-th

last processor for various values of k, and the utilization of the k-th additional processor for various values of k.
These last two quantities require some explanation (during which, for simplicity, we will assume an integral number

B of processors).
The utilization of the k -th last processor indicates whether or &.-)t the number n of available processors is too

large, and is defined as follows. Processors are numbered from 1 to n. If the number of subtasks s that are eligible
for execution at a particular instant is less than n, then only processors 1 to s are utilized (even if physically this
would require preempting a subtask executing on a higher numbered processor and re-scheduling it on a lower
numbered processor). Given this dispatching rule, the utilization of the k-th last processor is defined as the average
utilization of processor n-k+l. Note that all processors numbered from I to n-k must have utilizations greater
than or equal to this value, and that all processors numbered from n-k+2 to n must have utilizations that are less
than or equal to this value.

The utilization of the k -th additional processor indicates whether or not the number n of available processors is
large enough. As above, processors are numbered from 1 to n. Using the dispatching rule just described, the
utilization of the k -th additional processor is defined as the utilization of the n +k -th processor when the number of
available processors is increased to n +k. Note that this utilization will be less than or equal to that of all other
processors, in particular processors n +1 to n +k-1.

Let the number of processors that yields the knee be denoted by K. In Theorem 5 we give bounds on the
attained speedup in comparison with the maximum possible speedup, the efficiency, the utilization of the k -th last
processor, and the utilization of the k -th additional processor, for a number of available processors equal to K. For
these last two quantities we fix k to be 1 - we consider only the utilization of the last processor and the utilization of

a single additional processor.

I Theorem 5: Under the processor sharing discipline, when the number of available processors is equal to K
(achieving the knee of the execution time - efficiency profile), the attained speedup is at least 50% of the maximum
possible, the efficiency is at least 50o, the utilization of the last processor is at least 50%, and the utilization of a
single additional processor is no more than 50%. These bounds can be attained in the limit as A -*aa.

Proof: Consult the Appendix.

Intuitively, Theorem 5 shows that the conflicting goals of high efficiency and large speedup are being "perfectly

balanced" when we choose to operate at the knee of the execution time - efficiency profile. An efficiency of at least
50% is guaranteed, as is a speedup of at least 50% of the maximum possible. All of the current processors are
utilized at least 50%, but if another processor were introduced it would be utilized no more than 50%.

233

-14- I
B. Bounds on the Location of the Knee

The results of the previous section allow the location of the knee to be determined precisely, but require
complete information concerning the software system (in particular, the proportions p). We now bound the i
location of the knee in terms of average parallelism. These bounds indicate the close correspondence between the
average parallelism A and the knee location K.

Theorem 6: Under the processor sharing discipline, the number of processors K that yields the knee of the 3
execut-ion time - efficiency profile must satisfy

A<K 52A-1 2 - I
When integers, these bounds on K can be attained.

Proof: Consult the Appendix. i

Theorem 6 shows that the number of processors that yields the knee is at most a factor of two different from the
average parallelism. This suggests that it might be reasonable to use the average parallelism itself as an
approximation to the knee location. The reasonableness of this approximation depends on how the properties given I
in Theorem 5 are affected by using A rather than K processors. This concern is addressed in Theorem 7, where for
clarity we consider only integral A.

Theorem 7: Under the processor sharing discipline, when the number of available processors is chosen to equal the 3
average parallelism A, the attained speedup is at least 50% of the maximum possible, the efficiency is at least 50%,k

the utilization of the k -th last processor (k <A) is at least --- -, and the utilization of the k -th additional processor is

A -1 _

no more than . These bounds can be attained.A +k -1"

Proof: Consult the Appendix.

Theorem 7 shows that when the number of available processors is equal to the average parallelism, the
guarantees regarding speedup and efficiency are identical to those at the knee - speedup and efficiency each must
be within 50% of their maximum values. However, in contrast to the situation at the knee, there are no guarantees
as to whether the number of processors is actually somewhat too large (implying that nearly the same speedup could
be achieved with fewer processors), or somewhat too small (implying that increases in speedup could be achieved
with a slight increase in the number of processors).

VI. CONCLUSIONS

In 1967 Amdahl gave a simple bound on the speedup that could be obtained by parallel processing as a function
of the fraction of sequential code in a computation. This bound has proven useful in shaping our understanding of
parallel systems because it strikes a useful balance between simplicity and precision.

In this paper we have investigated the tradeoff between execution time speedup and processor efficiency that
arises from the inherent characteristics of parallel software systems. Like Amdahl, our goal is to find bounds on
performance that can be expressed as functions of simple measures of the parallel system, and that provide insight
into the behavior of these systems. Using average parallelism as our characterization, we have shown that speedup
and efficiency cannot simultaneously be low, regardless of scheduling discipline or software structure. This U
indicates that parallel software systems are "robust", in the sense that very poor, anomalous behavior cannot exist.
We have also shown that average parallelism provides a great deal of information about the system, in the sense that
incrementally more information allows one to tighten the performance bounds only marginally. 3

Finally, we have examined questions related to the construction and management of parallel systems. Our
results bound the efficiency cost and speedup benefit possible by altering the number of allocated processors. The
knee of the execution time - efficiency profile has been investigated, a concept with application to
multiprogrammed multiprocessors with static processor allocation. We use an explicit formulation of the kneelocation to show that this location is well approximated by the average parallelism, and to derive bounds on the
speedup and efficiency values that are attained at the knee. 3

234

II

- 15-

It is clear that for any particular problem, all measures of interest can be computed exactly (within our model)
from the full specification of the software structure gr-ph. Our intention has been to show formally that a vastly
simpler characterization of the software provides considerable information about how the system will behave, and to
use this characterization to develop simple relationships that enhance our understanding of the tradeoffs inherent in
the design and use of parallel systems.

ACKNOWLEDGEMENT

Jean-Loup Baer, Sue Owicki, Ken Sevcik, and two anonymous referees offered helpful comments on earlier
versions of this paper.

REFERENCES

[1] G.M. Amdahl, "Validity of the single processor approach to achieving large-scale computing capabilities,"
in Proc. AFIPS Vol. 30, pp. 483-485 1967.

[2] T.C. Chen, "Overlap and pipeline processing," in H. Stone, ed., Introduction to Computer Architecture,
SRA, pp. 375-431, 1975.

[3] P.J. Denning, "Working sets past and present," IEEE Trans. on Software Engineering SE-6,1, pp. 64-84,
1980.

[4] P.J. Denning and J.P. Buzen, "The operational analysis of queueing network models," Computing Surveys
10,3 pp. 225-261, 1978.

[51 G. Fayolle, P.J.B. King and I. Mitrani, "On the execution of programs by many processors," in Proc. 9th
International Symposium on Computer Performance Modeling, Measurement and Evaluation, pp. 217-228,
1983.

(6] R.L. Graham, "Bounds for certain multiprocessing anomalies," Bell System Technical Journal 45, pp.
1563-1581, 1966.

[7] J.R. Gurd, C.C. Kirkham and I. Watson, "The Manchester prototype dataflow computer," Communications
of the ACM 28,1, pp. 34-52, 1985.

[8] P. Heidelberger and K.S. Trivedi, "Queueing network models for parallel processing with asynchrnn-'js
tasks," IEEE Trans. on Computers C-31,1 1, pp. 399-U39, 1932.

[9] L. Kleinrock, Queueing Systems: Volume 2, Computer Applications. John Wiley & Sons, 1976.

[10] L. Kleinrock, "Power and deterministic rules of thumb for probabilistic problems in computer
communications," in Proc. International Conference on Communications, pp. 43.1.1-43.1.10, 1979.

[11] D.J. Kuck, "A survey of parallel machine organization and programming," ACM Computing Surveys 9,1,
pp. 29-59, 1977.

[12] DJ. Kuck, et al. "The effects of program restructuring, algorithm change and architecture choice on
program parallelism," in Proc. International Conference on Parallel Processing, pp. 129-138, 1984.

[13] B. Kumar and T.A. Gonsalves, "Modelling and analysis of distributed software systems," in Proc. 7th ACM
Symposium on Operating Systems Principles, pp. 2-8, 1979.

[14] K. C-Y. Kung, "Concurrency in parallel processing systems," UCLA CSD Report 840039, Computer
Science Department, University of California, Los Angeles, 1984.

[15] M. Minsky and S. Papert, "On some associative, parallel and analog computations," in E.J. Jacks, ed.,
Associative Information Technologies, Elsevier North Holland, New York, 1971.

[16] R.R. Muntz and J.W.-N. Wong, "Asymptotic properties of closed queueing network models," in Proc. 8th
Princeton Conference on Information Sciences and Systems, pp. 348-352, 1974.

235

-16-

APPENDIX
Theorem 2: Let A denote the average parallelism, m ,,. the maximum parallelism (the maximum number of
processors that are simultaneously busy when an unlimited number are available), S(n) the speedup with n
processors, and E (n) le efficiency with n processs. With processor sharing scheduling

S (n) :min A' ,U
n+A-l - (n-l)(A1

and[Ai

E(n) > min n AA
n n+A-I -(n-l)(A-1)

These bounds can be attained.

Proof: In an execution of a software system using processor sharing and n processors, subtasks are executed in the
same groupings as in an execution with an unbounded number of processors. The only difference is that the length i
of those periods during which the number m of executing subtasks exceeds n is inflated by a factor of -. This

n

observation yields the following expression for the execution time under processor sharing, where p. denotes the
proportion of time that m processors are simultaneously busy when an unlimited number are available.

T.=T_. + m (1)
SM09+1 nI

I
To establish the bound on speedup (from which the bound on efficiency directly follows), we first show that the

above expression attains its maximum value when p 1 and p._ are the only non-zero proportions, under the
constraint of a fixed average parallelism A. For suppose that pk> 0 for some k such that l<k <mn,.. We can reduce

m ax-k k-I
pk to zero, increase p I by Ph and increase p,.. by Pk - while keeping A fixed and ensuring that

the proportions still sum to one. It is easily verified that this change does not decrease the value of equation (1):
note that

m max-k k-i mmax
for mmax>n>-k, Ph m 1 k +Pkmm-1 PT

mmax-k k-I m num k

form >k >n, Ph +P: >Pkmr-- ,.ax-I n n•

m V-k k-iforn nma>_k, Ph P > P
mM- m -i - P

Hence, equation (1) attains its maximum value when p i and p,,, are the only non-zero proportions. , -

From the constraints p I + P._ = 1 and p I + p._m . = A, p I and p._ can be derived as and

A- respectively. Substitution in equation (1) yields, after simplification I
M max- 1 1

T. T_1 I A-1 n-i A-II n n mI
if a <m max, and T. otherwise. From the definition of speedup, and the fact that the execution time with only a
single processor is T..A, this establishes the desired result.

I
236

-17-

The above proof also shows that the bounds can be attained: we need only consider a software system in which
some portion is sequential, and the remainder has a fixed parallelism m nm.

QED

Corollary 2.1: Let A denote the average parallelism, f the fraction of work that is inherently sequential, and S (n)
the speedup with n processors. With processor sharing scheduling and n >2

S(n) > n+A-1 - (1-fA)

(fA will always be between 0 and 1.)
Proof. For the processor sharing discipline, the execution time T. is given by equation (1). Note that, in our

notation, f- TIA - A

Using equation (1), it is straightforward to show that T. attains its maximum value when p2 and p._ (mm,> 2)
are the only other non-zero proportions, under the constraint of fixed P I and A. For suppose that p* >0 for some k

m -k k-2
such that 2<k<m,,. We can reduce pk to zero, increase P2 by pk Mmax-- , and increase p, by Pk mmax-2

while keeping p I and A fixed and ensuring that the proportions still sum to one. It is easily verified that this change
does not decrease the value of equation (1), hence T. attains its maximum value when P2 and p, are the only
other non-zero proportions.

From the constraints p1+p2+p ,._. 1 and pl+p22 +p,_mm==A, p,_ and P2 can be derived as
(A-i)- (1-p 1) and(m .- 1)(1-p 1)- (A-1) respectively. Assuming that n>2, substitution in equation (1)

In - 2 anndm - 2 euo
yields, after simplification

T. T_ (A-i)- (l-pl) n-2 (A-))-(-pj)
11n n M max 2

if n <m ,,, and T. otherwise. This yields

S(n) > n
n +A -'-(l-p

1)

which is equivalent to

n+A-l -(1-fA)

i QED

Corollary 2.2: Let A denote the average parallelism, f the fraction of work that is inherently sequential, and S(n)
the speedup with n processors. With processor sharing scheduling

S(n)!m _in(n ,A)
1 +f (n-l)

Proof: For simplicity we will restrict our attention to integral A. (The bound actually is unnecessarily weak for
non-integral A, but the possible improvement is so minor for reasonably large A that we ignore it.) We similarly

assume that -p is integral. It is then straightforward to show that equation (1) is minimized when p 1 and p A-.,
1 -P-p

are the only non-zero proportions, under the constraint of fixed A and p 1. The resulting speedup can then be shown
to be min(.A), or min(n A).

P l+ -(n -) I +f(n-1)

A
QED

237

-18-

Theorem 3: With processor sharing scheduling, an increase in the number of processors from n to kn (n,k>_l)

affects speedup as follows:
max(1, kA < S(kn) < min(I+(Al1) k l J) (2) 1

(k-1)n +A - S(n) -kn

Correspondingly, efficiency is affected as follows:

max(- I A)5min(+ (A -1) k. 1)k (k-l)n+A E(n) k kn-1

These bounds can be attained.

Proof: The claims regarding the change in efficiency follow directly from those regarding the change in speedup,
since efficiency (average processor utilization) is just speedup divided by the number of processors. Therefore, only
the claims regarding the change in speedup will be considered.

An increase in the number or processors from n to kn increases speedup by a factor equal to

EP, + EPM,-I
S(kn) 'n= ,,-4+ n

S (n) kA m
ZPM + I .

It is easy to show that this expression is no less than 1 and no more than k. Thus, it is only necessary to consider the
second lower bound and the first upper bound in expression (2). Noting that the second lower bound i- effective
only for n <A, and that the first upper bound is effective only for kn >A, we need only consider these two bounds for I
n <.A and kn >A,. respectively.

We can restrict attention to those cases in which all of the proportions Pi for n +1 <_.kn -1 are zero. For supposekn -i
that some pi in this range is greater than zero. We can reduce pi to zero, increase p,, by pi I- , and increase pI,i-n-

by pi , while keeping A fixed and ensuring that the proportions still sum to one. It is easily verified that the
value of expression (3) is not affected by this change. I

If all pi for i>kn are also zero, the speedup does not change with the increase in the number of processors, and
the theorem holds. Assume, therefore, that the pi for n+l.iS/kn-1 are zero, but that there is at least one p, for i _kn
that is greater than zero. The following expression is then equivalent to expression (3) I

~p mP'.p
,n=I 1m

2, PMM
S(kn) -
S(n) (4)

kn

M=kR

Expreaiion (4) is minimized when the ratio of sums in this expression is maximized. Under the assumption that
n <A, we apply a technical lemma, stated and proved as Lemma 3.1 below, with 1=n and j=kn-n, to show that the

ratio of sums is bounded above by "-In" Thus, for n <A
1 1

I I
A-n n < S(kn)

1 1 S(n)
A-n kn

Simplification yields the second lower bound in (2), establishing the desired lower bound on the change in speedup. I
238

- 19-

For n >A, the lower bound is attained by any software system that does not attain a parallelism of greater than n
during its execution. For n <A, it can be easily checked that the bound is attained in the limit as m .-- >- by a
software system whose execution consists of two phases; one during which its parallelism is n, and a second during
which its parallelism is m.

Expression (4) is maximized when the ratio of sums in the expression is minimized. Assuming that kn >A,kn -A .Tu
Lemma 3.1 applied with !=n and j=kn-n shows that the ratio of sums is bounded below by kn (A -1). Thus

kn-A I
kn (A-1) n > S(kn)
kn-A + I - S(n)

kn (A - 1) kn

Simplification yields the first upper bound in (2), establishing the desired upper bound on the change in speedup.
For kn <_A, the upper bound is attained by a software system with constant parallelism A. For kn >A, it can be

easily checked that the bound is attained by a software system whose execution consists of two phases; one during
which execution is sequential, and one during which the parallelism is equal to kn.

QED

Lemma 3.1: For any positive integers Ij such thatpj=O for l <i <1+j,

1p.1I .=

A-1 m,I, p'.

for I <A, andIi P
MMI > l +j-A

M_, (I+j)(A-1)
I_ pflm

for 1+j >A.

Proof. To establish the upper bound on the ratio of sums, note that, for l <A,

~P.mA 1 p, pIm=1 M=l

The upper bound then results from the fact that p.<1.

To establish the lower bound on the ratio of sums, it must be shown that the ratio of sums is minimized when p i
and p., 1 are the only non-zero proportions (given that pi=O for 1 <i<1+j). This can be shown in two steps. First, it
can be shown that the value of the ratio is not increased when the proportions pi for l<i!l are reduced to zero by
increasing p I and p1 ,1 (while keeping A fixed, and ensuring that the proportions still sum to one). Second, it can be
shown that the value of the ratio is not increased when the proportions pi for i >1+j are reduced to zero by
correspondingly increasing PLtj and decreasing p 1 . (This is possible since l+j>A.) Solving for P I and ot+j in
terms of A yields the stated lower bound.

QED

Theorem 4: Let p, denote the proportion of time that m processors are simultaneously busy when an unlimited
number are available, and let m .. denote the maximum parallelism (the maximum number of processors that are
simultaneously busy when an unlimited number are available). Under the processor sharing discipline, the
execution time - efficiency profile for any software system has a unique knee. The number of processors that

239

-20-
E(n),. I

attains the knee, i.e., that maximizes - , is given by

n = l lJ (5)

M=P I
if this equation has a solution; otherwise, it is given by the unique integer n satisfying

5 n < m-' (6)
R-i

Proof: A knee of the execution time - efficiency profile occurs at a point at which the ratio of efficiency (average

processor utilization) to execution time is maximized. Since E(n) S(n) T I E(n) is

T. nT,, - n. . I
equivalent to minimizing '-nT.. By equation (1), this is equivalent to minimizing the following function of n:

L^J 1 m- I
-'n F p. + - p,.m (7)

,m=1 n m=Lnj+I

Note that function (7) is a continuous function of n that tends to infinity for n -- * and also for n --)0, and that is
equal to 1 for n =1. Hence, function (7) has a minimum, showing existence of the knee. I

To show uniqueness, it is first necessary to define the derivative of function (7). At nonintegral points, the
standard definition applies. At integral points, we define the derivative to be the right derivative. Note that at
nonintegral points the derivative is a continuous function, but that at the integral points there may be discontinuities. I

Uniqueness is then shown in two steps. First, we show that there is at most a single nonintegral point at which
the derivative of function (7) is zero, and that this point, should it exist, is a minimum of function (7). Second, we
show that there is at most a single integral point at which the derivative changes sign, and that this point, should itexist, is a minimum of function (7). Since it is easy to see that both points cannot exist simultaneously, these two
facts are sufficient to show uniqueness.

The derivative of function (7) is given by 5
LJ I M--

E P 2n'E I Pm2 n n-- =, "= LnJ+l

which is zero at each point n satisfying

, p ,,m
pn= lAJ+1

= (8) I
Since the left-hand side of this equation is a strictly increasing function of n, while the right-hand side is a
nonincreasing function of n, the equation can have at most one solution. Therefore, there is at most a single point at
which the derivative of function (7) is zero. It is straightforward to verify that the second derivative of function (7)
is positive at this point. (If the point is an integer, the second derivative is defined as the right second derivative.) If
the point is nonintegral, this implies that the point must be a minimum of function (7).

Now, suppose that there is an integer n at which the derivative of function (7) changes sign. If the sign changes
from positive to negative, it must be the case that

I -1 I in- I
2-- n , .: P. 2 n ,P m > 0

rn-IA

I
240 I

I
-21 -

and

,,-n- 2n_,. . Pm 50

implying that

n-I

PmI~M =1
and

P8 -

n_<A

I rn1

These last two relations can be satisfied simultaneously only if both are equalities. In this case, however, it is easy
to verify that the derivative must be positive over the interval (n,n+l), in contradiction to our assumption that the3derivative changes sign from positive to negative at n.

If there is an integer n at which the derivative of function (7) changes sign, the sign must therefore change from
negative to positive, yielding

I 18-1 1 Mt_717 1 - -n Y Pm <50
2'4i1 2n n

and

.Ip' P,- > n ' - t0

These relations imply that

7p,.m
n -I (9)

and

PM
m =8+(I0

From relation (10), it follows that

P,m

n + 1 > PI

Since the right-hand side of relation (9) is a nonincreasing function of n, this last relation implies that no integer
larger than n can satisfy relation (9). Similarly, it can be shown that no integer smaller than n can satisfy relation
(10). Therefore, there must be at most one integer at which the derivative of function (7) changes sign, and this sign3 change must be from negative to positive, implying that the point is a minimum of function (7).

* 241

-22- I
We have now shown that there exists a unique knee. The location of the knee was determined in the proof of

uniqueness (equation (8) for a nonintegral knee, and relations (9) and (10) for an integral knee), and matches that
given in the theorem statement. (Note that if equation (5) has an integral solution, this solution also satisfies relation

(6).)
QED

Theorem 5: Under the processor sharing discipline, when the number of available processors is equal to K m

(achieving the knee of the execution time - efficiency profile), the attained speedup is at least 50% of the maximum
possible, the efficiency is at least 50%, the utilization of the last processor is at least 50%, and the utilization of a
single additional processor is no more than 50%. These bounds can be attained in the limit as A -oc. I
Proof: Consider first the attained speedup. The execution time with K processors is given by

" + - K
LKJ

Since, from equation (5) and relation (6), K > LJp,.m, it follows that the execution time with K processors
,,,- tJ+1

can be at most 2T.. Therefore, the attained speedup with K processors is at least equal to 50% of the maximum
possible speedup. It is straightforward to verify that this bound is attained in the limit as A -*00 by a software
system whose execution consists of two phases; a first phase during which execution is sequential, and a second

phase during which the parallelism is equal to A 2 (for integer A). (Note that K tends to A in this case.)

Since efficiency is the average processor utilization, if we can show that the utilization of the last processor is at
least 50%, then this will also show that the efficiency is at least 50%. The utilization of the last processor is given
by

m

f, lP K " = p

Since, from equation (5) and relation (6), I
Spmm

_ rKl-t

=ml

the utilization of the last processor is at least 5096. This bound can be attained in the limit as A e, since, in fact, it
is possible for the efficiency as well to drop to 50% in the limit. This occurs for a software system of the same
structure as that which attains the lower bound on speedup, as described earlier.

The utilization of a single additional processor is the final quantity of interest. Since K< LKJ+I, this utilization
is bounded above by

mLKJ+iKM,=[I ['K j
"- m tKJ

rLKJ+I K n

Since, from equation (5) and relation (6),

K> T' LKJ+1
LKJ

242

-23-

the utilization of a single additional processor is bounded above by 50%. This bound is attained in the limit as
A -+i by a software system of the same structure as that which attains the lower bound on speedup, as described
earlier.I
QED

Theorem 6: Under the processor sharing discipline, the number of processors K that yields the knee of the
execution time - efficiency profile must satisfy

A- <K _2A-1 (11)

When integers, these bounds on K can be attained.

Proof: Equation (5) and relation (6) yield

P pm "I- ,

,=KJ+1 <K < . =FJ (12)

Lemma 3.1 with 1= LKJ andj=l implies, for LKJ<A, that

A - LKJ < 'n2 LKJl

m =

The same lemma with 1= [K]-I and j=1 implies, for rK] > A, that

,,,.rKl <_r__(A-r,<l-, r]-A
I ,.

In conjunction with relation (12), these last two relations imply that

A- LKJ_K
for LKJ <A and

K K(A -1)fKF-A

for rKl > A, which in turn yields (with the same constraints on K),

and A-K 5K
and

K < K(A-I)
K-A

Simplification yields the bounds given in relation (11).

For - -an integer, it is straightforward to verify that the lower bound on K is attained in the limit as m n=---o by
2A

a software system whose execution consists of two phases; one in which the parallelism is -, and a second in
2'

which the parallelism is mm. For 2A-1 an integer, the upper bound on K is attained by a software system whose
execution consists of two phases; one in which execution is sequential, and a second in which the parallelism is
2A -1.

QED

243

-24- I
Theorem 7: Under the processor sharing discipline, when the number of available processors is chosen to equal the
average parallelism A, the attained speedup is at least 50% of the maximum possible, the efficiency is at least 50%,

the utilization of the k -th last pr=zessor (" <A) is at least and the utilization of the k -th additional processor is
A-1

no more than - These bounds can be attained.A +k -1"1

Proof: We assume that A is integral here. The claims regarding speedup and efficiency follow from Theorem 1
(III) with n substituted for by A. Only the claims regarding the utilizations of the k -th last and the k -th additional

processors need be considered further.

The utilization of the k -th last processor is given by
A-1 n M

m=A-k+ m-A

•A

A-1 -

P .+ IP'm
It is straightforward to show that the value of this expression does not increase when p, for A -k <j <A is reduced to
zero by correspondingly increasing PA-k and PA. Therefore, the utilization of the k-th last processor is bounded
below by

A
A-k

-I +

1
APm M

1
1

k A

Simplification produces the desired result.

It is straightforward to verify that the lower bound on the utilization of the k -th last processor is attained in the
limit as m,-4-o by a software system whose execution consists of two phases; one in which the parallelism is
A-k, and a second in which the parallelism is m,,..

The utilization of the k -th additional processor is given by

P. A +k
A+k1mA +k I
M-I m+k

which is equal toI

A~k-I A +k

Pm

AA +k

Lemma 3.1 applied with l=A +k-1 and j=l yields an upper bound on this latter expression of

244

-25-

A +k
k + _

(A+k)(A-1) A4'

Simplification produces the desired result.
It is straightforward to verify that the upper bound on the utilization of the k -th additional processor is attained

by a software system whose execution consists of two phases; one in which execution is sequential, and a second in
which the parallelism is A +k.

QED

I
I
I
I
I
I
I
I
I
I
I
I
I

~245

I
I
I

U The Measured Performance of
Parallel Dynamic Programming Implementations

Kenneth Almquist Richard J. Anderson
Edward D. Lazowska*

* Department of Computer Science
University of Washington

Seattle, WA 98195

January 9, 1989I
* Abstract

One focus of our overall program of research is to understand in detail the per-
formance of algorithms on shared memory parallel machines. In this paper we study
four approaches to parallel dynamic programming. By means of careful measurements,
we determine how well dynamic programming can be parallelized, and we identify the
bottlenecks that stand in the way of achieving the goal of linear speedup.

Keywords: parallel computing, dynamic programming, speedup

I 1 Introduction

One focus of our overall program of research is to understand in detail the performance of
algorithms on shared memory parallel machines. By means of careful measurements, we are
exploring how well certain classes of algorithms can be parallelized, and we are identifying
the bottlenecks that stand in the way of achieving the goal of linear speedup.

Our approach is to take an algorithm and develop several different parallel implemen-
tations of it. We then take detailed timings of each implementation to attempt to gain a

complete understanding of performance. We currently have two different parallel machines
available for our experiments: a 20-processor Sequent Symmetry and a number of 5-processor

*Our work is supported by the National Science Foundation (Grants No. CCR-8619663, CCR-8657562,
and CCR-8703049), the Naval Ocean Systems Center, U S WEST Advanced Technologies, the Washington
Technology Center, and Digital Equipment Corporation (the Systems Research Center and the External
Research Program).

247

I

DEC SRC Firefly prototype workstations. Each of these systems provides hardware cache
coherence by means of snooping on a shared bus.

In this paper we consider dynamic programming algorithms. Dynamic programming is
an important technique with a wide range of applications. We consider the class of dynamic I
programming algorithms that involve the computation of the entries of a k-dimensional array
where the array locations can be ordered in such a way that the value at each location is a
function of locations that have already been computed. In practice it usually turns out that
the values of can be computed in a very natural order.

We consider two problems that can be solved by dynamic programming and give several
parallel implementations for each problem. Our implementation techniques are applicable to
other dynamic programming problems of two or more dimensions. The two problems that
we consider are to find the longest common substring of a pair of strings, and to compute
the solution of a multiple-class queueing network performance model.

1.1 The Longest Common Substring (LCS) Problem I
The longest common substring (LCS) problem is: given a pair of strings A and B, find a string
C of maximum length that is a substring of both A and B. By substring, we mean a copy of
a string with some of the characters removed. Formally, the string xIx 2 ... x,, is a substring
of yjy2..y, if there exist i1 < i2... < i, such that xi = Yi,,X 2 = y, 2 ,..,Xm = Yi,. The
problem has many applications, including the study of the structure of proteins [Kru83].

The standard sequential algorithm [WF74] for finding the LCS of strings aja 2 .. a,, and
bb 2 ... bm constructs an n x m matrix A where Aij gives the length of the LCS of the strings
aa2... ai and bib2 ... bj. The values of the matrix A can be computed by the following
formula:

Aom {max(A,.j-,A,-A1) if a, 0 bj; 3
max(A ,,, Aj..j, 1 + Ai.._,,.) if ai = bj.

It is straightforward to implement the computation of the matrix A with a pair of nested
loops, yielding an O(nm) algorithm. It is not difficult to recover the LCS from the matrix
A.

1.2 Solving Multiple-Class Queueing Network Models (QNM)

A queueing network model (QNM) contains a set of service centers and a set of customers 3
which travel around the network obtaining service at the various centers. If multiple cus-
tomers try to obtain service at the same center simultaneously, customers are queued.
The problem is t- compute performance measures such as utilizations, throughputs, queue
lengths, and response times, given input parameters consisting of workload intensities (the
arrival rate or average population of customers) and service demands (the total service re-
quired by a customer at each resource during that customer's life in the system). The
solution algorithm that we parallelized is limited to queueing networks in which the amount

I248

I

I of service that a Lustomer requires at a service center is exponentially distributed and in
which the actions of a customer (choice of which service center to visit next, amount of
service required at a service center) are independent of the actions of any other customer.
Customers are grouped into classes, with all the customers in the same class having identical
behavior. Customers circulate through the network forever, never entering it or leaving it.

To calculate the performance measures for customers of a particular class, it is necessary
to know the queue lengths in the same network with one customer of that class removed from
the network. For example, the test case used to generate most of the data for this paper
had four classes of twelve customers each, which can be represented as (12, 12, 12, 12). To
solve this network, it is necessary to know the solution of the same network with populations
(11, 12,12,12), (12, 11, 12,12), (12, 12,11,12), and (12,12,12, 11).

It should be noted that there are heuristics that can rapidly produce approximate so-
lutions to a multiple-class model. The algorithm described here, which produces an exact
sclltion, is still of interest because no useful error bounds have been shown for the results
produced by these heuristics.

The QNM problem and the LCS problem give us two very different types of grid based
dynamic programming algorithms. The QNM problem naturally gives rise to higher dimen-
sional problems 'ince the number of dimensions is given by the number of classes. The
multidimensional version of the LCS problem is not of as much intei. '. A bigger difference
between the two problems is that the computation of each grid point for the QNM problem
involves a moderate amount of work, while the computation done in the LCS problem is
very simple. (For further information on queueing network models, see [LZGS84].)

1.3 Parallelizing Dynamic Programming

3 In order to implement dynamic programming in parallel, we must identify units of work
that can be performed independently. One way to look for independent units of work is to
examine the task graph. For concreteness, we describe the two-dimensional case, but it is
straightforward to generalize the ideas to higher dimensions. If T, is the task of computing
Ai, then Tij cannot be performed until after T,,j- 1 and Tjj have been performed. This
is represented in a graph by directed edges (Ti-Ij, Ti,j) and (Ti,j-,1, Tj). We say that T' is

a predecessor of T if there is a directed edge (T', T). A task T can be executed when all
of its predecessors have been executed. A task graph algorithm is parallelized by finding
subsets of the tasks that can be executed simultaneously. Figure 1 shows the task graph for
dynamic programming. We define the k-th diagonal, Dk, to be the set of all tasks Tij such

that i + j = k. The key observation is that all the tasks in Dk can be executed in parallel.
(There is a natural generalization to the case of greater than two dimensions.) This idea
has led to a number of parallel and systolic algorithms for dynamic programming [PU84],
[EW87], [LW85]. The algorithms generally solve an n x n problem with n processors in 0(n)
time. In the next section we describe our implementations in more detail.

249

I

Result - i
I
I
I
I

<-- Start

Figure 1: Task Graph I

2 Implementation Strategies

In this section we motivate and sketch each of the four implementations of dynamic pro- I
gramming that we study in this paper. (One of the interesting aspects of our work is simply
to demonstrate by implementation that there are at least four significantly different, viable
approaches to implemening parallel dynamic programming.)

" Diagonal: The idea behind the Diagonal method is to compute all of the entries on
a diagonal in a single phase. For an n x n matrix, there are 2n - 2 phases, with
the k-th phase computing all of the entries in diagonal Dk (defined above). Since
all of the computations in Dk are independent, they can be done in parallel. The
implementation distributes the tasks on a diagonal among the processors so that each
processor computes the same number of entries (except that some processors will be
short one task if the number of processors does not divide the number of tasks). When
a processor completes its tasks it waits at a barrier until all the processors have finished
the current phase; then the processors proceed to the next phase.

" Pipeline: The Pipeline method can be viewed as an attempt to directly parallelize
the sequential algorithm, which computes the rows of the resulting matrix in order. If
we have p processors available, we can perform the computation on the first p rows by I
staggering the starting times on each row. If the i-th processor starts on row i at time
i, the values it needs from the preceding row will have been computed by processor
i - 1. When a processor finishes a row, it can go on to start the next untouched row.
This method turns out to be exactly the same as the Diagonal method when there are
n processors. I
In attempting to get a practical implementation of this method, one important issue
is to make sure that the rows remain synchronized - that the processor on row i doess

250 I

I
I
I

Figure 2: Partitioned Task Graph

not catch up to the processor on row i - 1. One way to do this is to use a set of locks,
so that a processor locks a column to prevent the next processor from catching up to
that column. For the implementation on the LCS problem-, the processors were given
offsets of n/p instead of just 1. This reduced the numb: of locks required to keep the
pipeline synchronized. The drawback was that there is a greater startup time for the
pipeline to get full.

The QNM implementation did not use any explicit locks. Instead, the entries in the
array containing the results were initialized to -1 so that if a processor read a value
that had not yet been computed it would read a negative value - a clear signal, because
computed queue lengths can never be less than zero. Before using a value, a processor
would loop until the value became non-negative.

eTask Graph: The previous two methods use a static assignment of work to processors;
the assignment is determined in advance and does not depend upon actual execution
rates. A different style is to dynamically assign work to processors. One way to do this
is to have a central controller which passes out pieces of work to the processors. When
a processor finishes a job, it makes a call to the controller to request a new task. The
controller keeps track of the precedence of the jobs, so that a job is not scheduled until
after its predecessors have been completed. In our implementations, the controller was
a subroutine with a single lock on a shared list data structure.

In the QNM problem, two variations of this approach were tried, one in which the
controller scheduled the tasks in first in first out (FIFO) order and one in which the
controller scheduled tasks in last in first out (LIFO) order. For the LCS problem, only
a FIFO order was used.

In the LCS problem, the individual tasks are very small (they consist of a few array
references, an increment, and some comparisons) so it would not make sense to sched-

251

I
I

ule each task with the scheduling routine, since the cost of the scheduling would far
exceed the cost of the computation. The solution is to make each task a larger unit of
work. This can be done by partitioning the original set of tasks into larger groups and
making each group a supertask. Figure 2 illustrates partitioning a 6 x 6 task graph into
9 supertasks. If the task graph for dynamic programming is partitioned into squares,
it turns out that the task graph for the supertasks has roughly the same precedence
structure as the original task graph. The LCS solution was implemented by partition-
ing the graph into supertasks, and having a scheduling routine assign supertasks to
processors.

* Synchronization-Free: The three preceding methods, while different in many re-
spects, are similar in that each identifies concurrently executable components of the
sequential algorithm and uses some form of synchronization to coordinate the proces-
sors. Our final implementation represents Pu entirely different approach: we avoid all
synchronization. The cost of this is that certain values may be computed multiple R

times. The benefit is that synchronization overhead is eliminated.

The method is based upon a recursive definition of the problem. To solve a particular
node N, the method recursively solves any unsolved predecessors, and then solves N. I
The key observation is that if several processors solve the same node, correctness isn't
compromised. 3
Three variations of this method were implemented, all for the QNM problem. They
differ in how the processors select nodes for evaluation. (The objective, of course, is
to minimize redundant computation without resorting to explicit synchronization.) In
the first variation th, processors used a pseudo-random number generator to decide
which predecessor of the current node to evaluate first. (The remaining predecessors

were evaluated in order following the first.) In the second variation, random chcice was
again used to select the initial predecessor, but nodes that were being worked on by
other processors (detected by means of a flag) were skipped, and rev'-ted in a second
pass if their (recursive) solution had not yet been completed at that time. In the final
approach a precomputed table, indexed by the processor number and the index of the
diagonal of the graph that contains the node, was used to select the predecessor to i
work on first; the table was computed using a greedy heuristic which attempted to
maximize the distance between the processors on a given diagonal of the graph the
first time they reached that diagonal.

3 Methodology

We performed a large collection of timings on each of the implementations. We discuss our
methodology in this section, summarize our results in the next section, and analyze these
results in a third section.

I
252 I

U
I

I The input data for the LCS problem involvei randomly generated strings over a three-
letter alphabet. The input data for the QNM problem involved several large computer system
models.

On the Sequent Symmetry, timings were done using a microsecond timing facility that
is built into the machine. This made it possible to get very accurate timings with virtuallyIno overhead. On the Firefly, timings were done using a counter which the operating system
increments every clock interrupt (approximately every two milliseconds). This counter was
mapped into user address space, so the overhead of accessing it was low.

All of the results that we report in the tables in the following section are for the Sequent.
'he results on the two systems were fairly similar, and the Sequent, having more processors
than the Firefly, allowed a more interesting space to be explored. Differences between the
results on the two systems are noted in the text.

In reporting speedup, an "honest" figure for the speedup of a parallel implementation
running with p processors is computed as the ratio of the runtime of a good sequential
implementation to the runtime of the parallel implementation. Table 1 reports these "honest"
speedups for three LCS implementations. In Table 2 we report the actual times (in seconds)
that these implementations took with one processor, and then we give "relative" speedups
in which the numerator is the runtime of the parallel implementation running with one
processor rather than the runtime of a good sequential implementation. Analogously, Table
3 reports "honest" speedups for the QNM problem, while Tables 4 and 5 report "relative"
speedups.

The advantage of "relative" speedups arises from the fact that our principal objective is
to study the sources of performance degradation as the number of processors increases, and
these are easier to spot using the "relative" measure.

4 Description of Results

Table 1 gives "honest" speedups for the dynamic programming implementations for the LCS
problem. The speedups are for 1, 2, 4, 8, and 16 processors using strings of length 200 and
length 1000.

One observation is that the speedup for each implementation is substantially better on
the longer strings than on the shorter strings. The reason is that the units of work that each
processor was given were much larger, so that the overheads in dividing the problem were
amortized over more parallel work. The timings for the smaller strings give some very useful
information on the bottlenecks that we encountered.

Table 1 shows that Diagonal method was the worst of the three parallel LCS imple-
mentations. Table 2 gives the actual times for each method. We can see that Diagonal
method takes longer than the other methods with a single processor; we can also see that
the Pipeline and Task Graph methods are comparable to the good sequential implementa-
tion when running on a single processor. Table 2 also gives relative speedups. The Diagonal

253

II

I

string length 200 string length 1000

processors 1 2 4 8 16 1 2 4 8 16

Diagonal 0.78 1.59 2.73 4.00 4.16 0.84 1.69 3.28 5.98 9.38
Pipeline 0.96 1.70 3.07 5.00 7.04 0.97 1.80 3.47 6.72 12.18

Task 0.97 1.83 3.24 5.04 6.07 0.99 1.95 3.79 7.16 12.71

Table 1: "Honest" Speedups for the LCS Implementations 3
string length 200 string length 1000

time speedups time speedups

processors 1 2 4 8 16 1 2 4 8 16

Sequential 0.703 17.56
Diagonal 0.808 1.84 3.14 4.61 4.78 20.78 2.00 3.88 7.08 11.07

Pipeline 0.730 1.77 3.19 5.20 7.30 18.13 1.86 3.59 6.94 12.59

Task 0.726 1.90 3.35 5.21 6.26 17.77 1.98 3.83 7.25 12.87

Table 2: "Relative" Speedups for the LCS Implementations

processors 1 2 4 8 12 16

Task (FIFO) 0.80 1.56 3.04 5.88 8.30 9.08

Task (LIFO) 0.80 1.57 3.08 6.03 8.77 10.69

Pipeline 0.89 1.78 3.46 6.84 10.11 12.36
Synch.-Free 0.90 1.79 3.54 6.97 10.38 13.34 I

Table 3: "Honest" Speedups for the QNM Implementations

time speedups

processors 1 2 4 8 12 16

Sequential 12.88 _

Task (FIFO) 16.15 1.95 3.80 7.37 10.40 11.37

Task (LIFO) 16.15 1.97 3.86 7.56 10.99 13.39 1
Pipeline 14.42 1.99 3.87 7.65 11.31 13.82

Synch.-Free 14.39 2.00 3.95 7.79 11.58 14.90

Table 4: "Relative" Speedups for the QNM Implementations

254 I

I

I

time speedups

processors 1 2 3 4 5 6 8 12 16

Sequential 10.10
Pipeline 11.29 1.98 2.96 3.90 4.87 5.72 7.69 11.21 14.83

Synch.-Free 11.39 1.99 3.00 3.56 4.84 5.55 5.70 9.33 9.27

I Table 5: "Relative" QNM Speedups, 200 x 200 Customers

method achieves good relative speedups when the number of processors is small compared3m to the size of the problem, but the speedup deteriorates rapidly as the number of processors

is increased. The poor single processor performance combined with poor relative speedups

_ when the number of processors is large accounts for the poor overall speedups shown in
-- Table 1.

The Task Graph method is slightly superior to the Pipeline method, both in terms of theIbase time with one processor and in terms of the relative speedups.
For the Task Graph method, a decision needs to be made as to how many tasks are to be

used. If too few tasks are used then there is insufficient parallelism, while if too many tasks
are used, the overhead of the task scheduling gets too large. The figures we report are for

the number of tasks that gave the best running time. For example, for strings of size 1000,
the number of tasks for 2 processors was 324 and the number of tasks for 16 processors was1 4096. The optimal number of tasks has not been determined, but it clearly increases with

both string size and number of processors.
The speedups for the QNM problem are shown in Tables 3 and 4. All speedups are for

a problem with four classes, each of which has a population of twelve. For the Pipeline and
Synchronization-Free methods we have presented results for a problem with two classes, each
with a population of 200, in Table 5.

We do not include results for the first two variations of the Synchronization-Free method.

On the Firefly, the first variation (which randomly selected the predecessor to evaluate first)

obtained a relative speedup of only 3.53 with 4 processors. For the second variation (which

also used random selection but deferred processing nodes which were being worked on by

other processors and came back to them later) the speedups were better, but still sufficiently3poor that there appeared to be little benefit to porting the code to the Sequent. Therefore,
we only implemented the final variation on the Sequent, and show the speedups for that

variation here.

From the sequential timings, we see that the Task Graph method has the highest cost

in the single processor case. On the Sequent, the Pipeline and the Synchronization-Free

methods have approximately the same cost in the single processor case. (On the Firefly

(which uses a different compiler) the Synchronization-Free method took about 10% longer

than the Pipeline method, which made all the honest speedups for the Synchronization-Free

2
255I

U
I

method worse than those for the Pipeline method on that machine.)
On the four-class test case, the best speedups, both relative and absolute, were obtained

by the Synchronization-Free method, followed by the Pipeline method, the Task Graph
method using LIFO scheduling, and the Task Graph method using FIFO scheduling, in that I
order. This ordering applies to both the Firefly and the Sequent. The speedups for the
Pipeline method are close to linear until the number of processors exceeds 13 (the length of
an edge of the grid in the test case). Table 5 shows that on a test case with longer edges
this effect disappears (although there is still a significant slowdown with 16 processors which
we will see is due to bus loading). The Synchronization-Free method performed badly on 3
the two-class test case with more than a few processors due to duplicate work. The curve
representing duplicate work was fairly smooth except for an exceptionally high point when
the number of processors was set to 4; the path selection heuristic performed particularly 3
badly in this situation.

In all of our experiments, our parallel programs have had a specific number of processors
dedicated to them. There are several reasons why this might not be possible in a general I
setting. First, some multiprocessor operating systems (including the one on the Firefly) don't
guarantee dedicated processors to the user. We were able to obtain timings by ensuring that
little else was running during our tests, but a practical implementation of an algorithm I
under such an operating system must be prepared to work without dedicated processors.
Second, using dedicated processors requires that at least one processor be left unused by
the application, so that background operating system processes will have a processor to run
on. On the Firefly, with five processors, this means that 20% of the processing power of the
machine will not be available to the application. Typically the operating system will use •
only a relatively small portion of the processor dedicated to it.

To test the effect of competition for the processors, we took a series of measurements on
the Firefly using Watchtool, a performance monitor that consumes about half a CPU. The I
Synchronization-Free method and the Task Graph (FIFO scheduling) method were able to
take advantage of the additional processing power available when allowed to compete for the
fifth processor rather than being restricted to four processors, achieving relative speedups I
of 4.56 and 4.21, respectively. The Pipeline method, on the other hand, ran slower when
allowed to compete for the fifth processor (a relative speedup of 3.17, vs. a relative speedup
of 3.54 when running on four processors). The Diagonal method was not included in this
test, but it would also perform badly when not run on dedicated processors because it uses
barrier synchronization. 3
5 Analysis of Results 3
There are many different sources of slowdown that parallel algorithms may face. A study
such as this in which a collection of implementations are examined allows us to see quite a
few of these effects and to assess their impact in practice. (We note that studies of this type

2
256

I

I
I

I were pioneered by Staunstrup [MS87], who experimentally investigated a large number of
"problem heap" (divide-and-conquer) algorithms.) We divide the sources of slowdown that3 we witnessed into seven categories:

* Parallel Overhead: This refers to the extra work that is done so that the algorithm
can be run in parallel. For example, in some cases a different control structure is used
in the parallel version of an algorithm as opposed to the sequential one. We classify
anything that makes the parallel algorithm run slower on one processor as parallel3 overhead. All the other types of overhead we consider keep the parallel algorithm from
achieving a linear speedup even after the cost of converting to the parallel algorithm
has been paid.

e Synchronization and Control Locking: This is the cost of maintaining the parallel
control. This can be divided into two components, the actual cost of the parallel3primitives and the time processes spend idling while waiting for other processes. The
primitives that we use for control are spin locks and barriers. Both of these entail
certain costs even if no processors are required to wait at the synchronization point.
On the Sequent the cost of using a lock (with no contention) is approximately the same
as a procedure call and the cost of a barrier is approximately three times the cost of a
procedure call. The cost of a barrier also rises with the number of processors that are
used. In addition to the cost of the primitives, there are synchronization costs incurred
in waiting for all processors to reach a synchronization point. In the simple case where
all processors execut 3ome code and then wait at a barrier, the cost is determined
by the slowest of the processors. A processor can take longer due to spending more
time executing code, due either to an imperfect division of work or because the data3 requires more work. A processor can also be slowed by the hardware or the operating
system. For example, the processor could be interrupted to take on another process,

* or to service a timing interrupt.

9 Critical Sections: A critical section is a segment of code which for some reason
can only by executed by a single processor. The cost of a critical section is that

processors experience delay waiting to execute the code. A critical section can be a
serious bottleneck if there are a large number of processors that need to execute it.

* Starvation: If the algorithm does not provide sufficient parallelism then some of the
processors must idle. Starvation often occurs at the start or end of a program when it
is gearing up or winding down. A particularly severe case occurs when there is some
inherently sequential code, so that all but one processor is idle.

* Cache Locality: If several processors are accessing shared data, the data may have
to be moved between several caches, while in the single processor case, the data would
stay within a single cache allowing faster access. It is often difficult to measure the

i actual amount of slowdown that this introduces.

257I

I
!

" Memory Contention: A slowdown can be introduced if the rate of memory accesses 3
by the processors is greater than the system can handle. The degree to which this is
a problem varies dramatically from machine to machine. As with cache locality, the
effects of this are hard to measure. We therefore measure the other causes of slowdown i
and assume that memory contention accounts for what we cannot measure. We would
much prefer to measure memory contention directly, but we can gain some confidence
in our inferences about memory contention by comparing them against our qualitative
knowledge of the bus traffic generated by the program.

" Extra Work: There are some parallel algorithms that perform more work than their i
sequential counterparts. This extra work may be because some computations are done
several times, or it may be because the parallel algorithm is just not as efficient as the
sequential one.

For completeness, we list one other important source of slowdown of parallel programs,
which was not significant in this study but which has shown up in others.

* Data Locking: This is the cost that is incurred to make sure that shared data is
accessed correctly. It includes both the actual cost of locks and the time spent waiting I
for a lock to become available.

Having listed the causes of slowdown, we now discuss how they arose in each of the 3
implementations.

5.1 The Diagonal Method I
The Diagonal method was the slowest approach for the LCS problem running on a single
processor. It exhibited a significant amount of parallel overhead. Nearly half of this overhead
(42% for strings of length 200 and 51% for strings of length 1000) was due to stepping along
the diagonals rather than along the rows. The remainder of the parallel overhead was due
to the cost of scheduling.

The Diagonal method also failed to achieve linear speedup. The main problem was the
cost of synchronization. The inner loop of the Diagonal method was divided between the i
processors. When work was begun on a given diagonal, each processor would do its share of
the work and then wait at a barrier which no processor could pass until all the processors
reached the barrier. The processors did not always reach the barrier at the same time. This I
was partially because it was not possible to give all the processors the same amount of work
unless the number of tasks was a multiple of the number of processors. Furthermore, as we
will see in the discussion of the Pipeline method, even if all the processors are given the
same amount of work they will not necessarily complete it at the same time because the
processors do not all function at exactly the same speed.

Another reason that the Diagonal method failed to achieve linear speedup is that the
barrier synchronization code must be executed by each processor a fixed number of times,

258 I

3

processors 2 4 8 16
12 x 12 x 12 x 12 customers 0.3% 1.7% 2.2% 11

200 x 200 customers 0.4% 1.2% 1.9% 2.0%

I Table 6: Slowdown due to Blocking in the Pipeline Method (QNM Problem)

3 regardless of how many processors there are. Thus the barrier operation behaves like an

inherently sequential piece of code which cannot be sped up regardless of the number of

* processors.

5.2 The Pipeline Method

I The Pipeline methcd was implemented for both the LCS problem and the QNM problem.

It does have some overhead that was introduced in the parallelization, but less than the

Diagonal method. The Pipeline method traverses the matrix in row order. However, each
time a processor starts on a new row, it makes a procedure call to find out which row to use,

which introduces some overhead. Additional overhead is introduced by the code to maintain

synchronization.

There are four reasons why the Pipeline method did not produce linear speedup: syn-
chronization, bus traffic, starvation, and the cost of advancing to the next row. We discuss

3each of these in turn.
If all the processors made progress at the same rate, processors should never block at

synchronization points and the slowdown due to synchronization should be minimal. In

practice, the processors do not make progress at the same rate, for reasons that include

differences in clock speed, differences in cache hit ratios, and interference due to operating

system activity. Table 6 shows the slowdown attributable to synchronization on the Sequent.
Synchronization accounted for a bit over half of the slowdown observed for 8 or fewer pro-

cessors. The slowdown for 16 processors on the first test was very large because the number3 of processors was greater than the length of an edge of the array (13), forcing blocking even

if all the processors ran at the same speed. A second cause of slowdown was contention

for the memory bus. In the Pipeline method, different processors work on adjacent rows,Iso that processors will always be fetching values which are in the caches of other proces-

sors, producing bus traffic. Bus traffic accounted for most of the slowdown not caused by
synchronization. In the 200 x 200 QNM problem, bus contention accounted for 80% of the

slowdown observed.
The Pipeline method suffers from some starvation when waiting for the pipeline to fill

up initially. In the LCS problem, the processing of each row is staggered by a large amount

to reduce the synchronization costs, but this increases the amount of starvation. It can be

shown that starvation increases the run time by a factor of p/2n. If the number of processors

I
259I

!
I

does not divide the number of rows, there can also be starvation which can increase the run
time by a factor of as much as (p - 1)/n in the two dimensional case.

A final cause of slowdown with more than two dimensions is the cost of selecting the
next row. The program must compute the population of the first element of the row. With I
a larger number of processors average number of classes whose population differs between
successive rows selected by a processor will increase slightly. The effect of this on speedup
turns out to be negligible.

5.3 The Task Graph Method I
The Task Graph method for the LCS problem performed roughly as well as the Pipeline
method, but the sources of siowdown were somewhat different. The actual tasks processed I
were k x k submatrices, so there was little overhead associated with the approach. How-
ever, there was an overhead introduced in scheduling and manipulating the tasks. For 16
processors on strings of length 1000 the best performance was observed using 4096 tasks. I
The processing of the tasks slowed the method down by approximately 3%. The advantage
of the Task Graph method is that the units of work can be larger, so that synchronization
does not play as major a role in the slowdown. The disadvantage of the Task Graph method
is that there is starvation both at the start and the end of execution. If t2 tasks are used,
then it can be shown that starvation introduces a slowdown of a factor of p2/t 2 . In the 3
example above this is a 6% slowdown. The choice of the number of tasks to use is based
on a tradeoff between the work of processing tasks and the amount of starvation. When the
number of tasks is too large, the method fails miserably. This is because the task scheduling i
routine is a critical section. If the tasks are sufficiently large, then the critical section is not
a bottleneck. However, if the tasks are so small that the time to get through the critical
section is more than p times the time to execute a task, the resulting bottleneck severely I
restricts performance. Thus, the critical section limits the number of processors that can be
used to solve the problem; at a certain point, there is no gain in applying extra processors.

The Task Graph implementation of the QNM problem did not group tasks together into I
supertasks, which limited the effectiveness of the method. The cost of maintaining the work
list made this method slower than the others for one processor. The lock on the work list also 3
made speedup poor. With 16 processors and FIFO scheduling, two thirds of the slowdown
was due to time spend waiting for the scheduler lock. Even after adjusting the speedup
figures to exclude the time waiting for the lock, we still observed a large slowdown. We 3
believe that this is due to high bus traffic. Bus traffic should be relatively high with the
Task Graph method because the assignment of tasks to processors is effectively random.
Thus a processor working on a given task is unlikely to have performed the predecessors of I
that task, so the values computed by the tasks predecessors will have to be fetched from
memory or from other processor's caches. Using supertasks would decrease the bus traffic
by causing a collection of related tasks to be performed by the same processor.

Scheduling work in LIFO order rather than in FIFO order resulted in a significant per-

I
260 I

I formance improvement. It increased the speed of operations on the work list slightly since
stack operations are slightly faster than queue operations. The LIFO approach was only
5 milliseconds faster than the FIFO approach in the single processor case, but in the 16
processor case the time spent waiting for the lock on the work list decreased by a factor of
2.5.U
5.4 The Synchronization-Free Method

IThe Synchronization-Free method performed very well in those situations where the amount
of duplicate work that was performed was held to a small proportion of the total processing.
This method exhibited a certain amount of parallel overhead. It had no synchronization

_ costs. There were still effects due to bus loading, but these were smaller than with the
other methods, presumably because the amount of communication between processors was
relatively small. On the Firefly we observed superlinear speedup with two to four processors.
We believe that this is due to caching effects - when a processor gets a cache miss it may
be able to fetch the value from the cache of another processor rather than going to memory.
Duplicate work was a major problem if the processors acted randomly. On the other hand,
precomputinw the initial paths worked well with the 12 x 12 x 12 x 12 test case. In the 200 x 200
test case it performed well only if the number of processors was small. We conclude that the
Synchronization-Free method requires that the potential parallelism be much greater than
the number of processors, since otherwise the cost of duplicate work is going to be too high.

*6 Conclusions

3 This paper has had two goals: to demonstrate through implementation that there are a
number of viable parallel implementations of dynamic programming, and to understand the
sources of degradation in these programs.IThe Diagonal method was clearly the worst of the methods because of the parallel over-
head and because of its use of barrier synchronization, which caused its performance to
deteriorate rapidly as the number of processors increased and the task size became small.

-- The Pipeline and Task Graph methods both performed well. On the LCS problem the
Task Graph method performed somewhat better when the problem size was large. We
believe that this is because the Task Graph method worked with square supertasks, while
the Pipeline method was limited to rectangles of width one in this implementation. On the
QNM problem, where the implementation did not allow either the Task Graph method or the3Pipeline method to group tasks into supertasks, the Pipeline method was clearly superior.
The Task Graph mcthod required some tuning to get the task sizes right, which makes it less
attractive. For problems with more than two dimensions, the Pipeline method is less general

I than the Task Graph method because the Pipeline method deteriorates when given more
processors than the length of a row in the matrix. The pipeline method also deteriorated3- badly when dedicated processors were not provided.

261

I
I

The Synchronization-Free method performed well when there was enough excess paral- I
lelism to hold the amount of duplicate work down. It deteriorated significantly on the two
dimensional problem, which failed to supply enough parallelism to avoid lots of duplicate
wq .k with more than three processors. Our results provide a demonstration that this method
outperforms approaches which use synchronization calls to avoid duplicate work when there
is sufficient excess parallelism to support this approach. An area for future research is to 3
evaluate synchronization free parallelizations of other algorithms.

In summary, three of the four methods we implemented for parallelizing dynamic pro-
gramming turned out to be quite attractive. Our analysis in Section 5 provides an under- -
standing of the four methods, and more generally of the types of bottlenecks to look for
when developing other parallel algorithms. i

References

[EW87] E. Edmiston and R.A. Wagner. Parallelization of the dynamic programming algo-
rithm for comparison of sequences. In Int. Conf. on Parallel Processing, pages 78-
80, 1987.

[Kru83] J.B. Kruskal. An overview of sequence comparison. In D. Sankoff and J.B.
Kruskal, editors, Time Warps, String Edits, and Macro-Molecules: The Theory 3
and Practice of String Editing, pages 1-44, 1983.

[LW85] G. Li and B.W. Wah. Systolic processing for dynamic programming problems. In 3
Int. Conf. on Parallel Processing, pages 434-441, 1985.

[LZGS84] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative System 3
Performance. Prentice Hall, 1984.

[MS87] P. Moller-Nielsen and J. Staunstrup. Problem-heap: a paradigm for multiproces- -
sor algorithms. Parallel Computing, 4:63-73, 1987.

[PU84] C.H. Papadimitriou and J.D. Ullman. A communication-time tradeoff. In 25th
Symposium on Foundations of Computer Science, pages 84-88, 1984.

[WF74] R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal I
of the A CM, 21(1):168-173, January 1974.

I
I
I

262 I

IThe Use of Approximations in
* Production Performance Evaluation Software

John Zahorjan and Edward D. Lazowska
Department of Computer Science

University of Washington

Kenneth C. Sevcik
Computer Systems Research Institute

University of Toronto

August 1986

Abstract

Queueing network technology has become widely used in computer system performance analysis and
capacity planning. The popularity of this approach is the result of the combination of speed, accuracy,
and convenience that it affords.

Because separable queueing networks, which form the basis for most modelling software, do not
provide a sufficiently rich set of model constructs, there has been considerable research on approximate
analysis techniques for models with non-separable features, e.g., priority scheduling and memory
constraints. Similarly, because even separable networks are intractable when there are many classes,
efficient approximate analysis techniques have been developed for them.

In this paper we outline a number of problems that arise in using these approximate analysis
techniques in software intended for production use as a capacity planning tool. There are two major
lessons from our experience as the developers and maintainers of a widely-used software package: the
interaction of several approximations can lead to problems not encountered when using the
approximations in isolation, and the dynamics of approximations (their sensitivity to small changes in
parameter values) can be more important than their average or worst case errors.

CR Categories and Subject Descriptors: C.4 [Performance of Systems]: Modeling techniques; D.2.0
[Software Engineering]: General; D.4.8 [Operating Systems]: Performance - Modeling and prediction,
Operational analysis; 1.6.4 [Simulation and Modeling]: Model Validation and Analysis.

General Terms: Performance
Additional Key Words and Phrases: computer system performance analysis; performance modeling
software

This material is based upon work supported by the National Science Foundation under Grants DCR-8302383
and DCR-8352098, and by the Natural Sciences and Engineering Research Council of Canada under Grant
A9654.
Authors' addresses: John Zahojn and Edward D. Lazowka, Department of Computer Science FR-35,
University of Washington, Seattle, WA 98195; Kenneth C. Sevcik, Computer Systems Research Institute,
University of Toronto, Toronto, Ontario Canada M5S lA4.

263

-2- 1
1. Introduction I

Queueing network technology has been widely adopted as a capacity planning tool. Considerable
work has been done on developing the techniques that have made this possible, and on examining the I
accuracy and efficiency of these techniques. Much of this work has been done "in the laboratory", by
researchers concerned more with the abstract goal of extending the technology than with the practical use
of the technology to solve real problems. At the same time, software products based on this technology,
such as BEST/I [BGS 19861 and MAP [QSP 1986], are in regular use, and considerable experience has
been accumulated regarding the requirements for such tools. In this paper we report on some of these
requirements, based on our observations as the developers and maintainers of the MAP software. These
observations should be of value to practitioners attempting to construct useful software tools from the I
abstract techniques, and to researchers interested in solving problems of practical concern.

MAP has been in use on a daily basis by 50-100 users for a number of years. MAP is based entirely
on approximate analysis techniques. At the lowest level is an approximate mean value analysis (MVA) I
solver that handles separable and some forms of non-separable models. Above this routine are a number
of other routines that transform more complicated non-separable models into models of the sort solvable
at the lowest level. Many of these techniques are based on material presented in [Lazowska et al. 1984].

One of the reasons for using approximate analysis techniques exclusively is flexibility. MAP models
may contain a large number of separable and non-separable features. For instance, a model can include
open and closed workloads, priority scheduling, memory contention, channel contention, and portions of
time during which a job class is "non-dispatchable". Combinations of these features are required by our
users in their roles as capacity planners. MAP imposes no "artificial" restrictions on the types of models
that can be constructed from these components. For instance, any type of workload (batch, terminal, or
transaction) can be subject to a memory limitation; any center can be used to represent a CPU, and there
can be any number of these centers in a model; any number of centers can be priority scheduled; while
there is currently a limit of 32 job classes, any class can be either open or closed independently of the
others, and there is no restriction on the maximum allowable populations of the closed classes. Using m
approximate analysis techniques at all levels of the software aids in providing this very uniform
accommodation of model features. It is important in what follows to keep in mind that there is essentially
no component of MAP that calculates an exact solution. This fact has a strong influence on the
techniques that can be employed in the tool, and on the types of problems encountered in constructing
and using it.

The purpose of this paper is to illustrate the differences in emphasis between research in queueing 3
network technology and the application of that technology in practice. There are two broad themes to the
material:
- The interaction of approximate analysis techniques can lead to behavior not revealed by the

examination of each technique in isolation.
- The most common measure of the accuracy of approximate analysis techniques, average error, is not a

sufficient characterization of behavior, and in fact may be less important than other characterizations. 3
For the most pan we limit ourselves here to identifying problems. The solutions to these problems are
not obvious, and it would certainly not be possible to investigate them all in this paper. The discussion is
grouped into four sections. The first considers models for which the user has an intuitive notion of what
the "exact" solution must be, and so places a tight requirement on the software. The second considers the
dynamics of approximations, that is, how the performance estimates change with small modifications of
the input parameter values. The third explores the interactions of two or more approximate analysis
techniques employed in the analysis of a single model. The fourth discusses problems of convergence, 3
which are ubiquitous because of the widespread use of iteration in approximate analysis techniques.

I
I

264

I

-3-

2. The Need for "Exact" Solutions

There are many situations in which the user has a good idea about how the model should behave.
Sometimes this means that he knows the exact solution of the model, but more often it means that he
knows some relationship among the output performance measures that must hold. (For example, he
might know that the response times of two classes must be equal without knowing what this response
time should be.) It is important that the software produce the expected results in these cases. Even smalldeviations can cause the user to lose confidence in the overall approach, despite the fact that these errorsmay be well within what one's reasonable expectations should be about obtainable accuracy.

2.1. Priority Scheduling - The Null Process
Occasionally a user will introduce into a model a null process, that is, a low priority process that dnes

nothing but consume CPU service. In the model this is usually represented as a single batch type
customer with service demands of zero everywhere but at the CPU center. While the user does not know
what the exact throughput of this customer should be, he does know that it should consume all CPU
cycles not consumed by higher priority customers, that is, that the total CPU utilization should be 100%.

Unfortunately, techniques based on the "most accurate" priority modelling approximation [Bryant et
al. 1984] do not produce this result1. (The "shadow-CPU technique" [Sevcik 1977] does have the correct
bebivior, but is less reliable overall, and so is not necessarily the approach of choice.) The problem here
is easily seen by examining the form of the MVA residence time equation

D (I + Q,,)
R= ,,

where R is the residence time at the CPU of the null process, D is its service demand there, Q, is a queue
length that depends on the specific priority approximation, but in general represents the arrival instant
queue of equal and greater priority customers, and 0,, also depends on the specific approximation but
represents roughly the utilization of the CPU by higher priority customers while a low priority customer
is in the CPU queue. Since there is a single null process, its throughput (by Little's law) is -, and so its

I 1 I - 0U R

utilization is I x D = (' + This quantity should equal I - U,,, the idleness of the CPU with respect

to the higher priority customers at equilibrium. It is only a coincidence if this actually occurs.
The solution to this problem is not clear. A brief examination of an exact expression for the response

time at a priority center under the assumption that arrivals of all classes are Poisson illustrates the
complexity of the problem, though. For a preemptive priority center the residence time per visit of a class
j customer, Rj, is given by

Rj = Sj

+ (average arrival queue of class c customers) x S,
all ckwan c #.lP (CAP (U)

+Rj 1. (average interrupt rate of class c) x S,
I all ckwur c &..

P(€)>P(j)

where P (c) indicates the priority of class c and Sc is the mean service time per visit of a class c customer
at the priority center. Approximations for preemptive priority essentially make convenient assumptions

1Bryant et al. do not say how to build an efficient priority approximation when using an approximate analysis
technique for separable models as a base. The difficulty is that performance measures for only a single
population level are obtained by the base approximation, while the Bryant et al. technique requires
performance measures for a potentially large number of distinct populations. Thus, an adaptation of their
technique has been employed in MAP. Eager [1986] has looked at this problem independently, and has
developed a different technique.

263

-4- 1
about the second and third terms of this expression. For instance, shadow CPU assumes that the average I
arrival instant queue length of all higher priority classes is zero, and that the interrupt rate is equal to the
equilibrium throughput. The Bryant et al. [1984] technique assumes that the arrival instant queue lengths
are the equilibrium queue lengths, and that the interrupt rate is given by the equilibrium throughputs I
when the population of each higher priority class is reduced by its equilibrium mean queue length at the
priority center with the full population.

Neither of these assumptions is valid for all models, and there does not appear to be any simple set of 3
assumptions that can give accurate answers in all cases. The difficulty in the null process model is in
estimating the arrival instant queue length. The equilibrium mean queue lengths can be much too large,
because the arrival of the null process is not a random event. In fact, it is clear that at the instant the null
process completes a burst of service there cannot be any higher priority customers present, since the null
process would not be in service otherwise. Thus, if one thinks of the null process as making many visits
of a small service requirement each (this assumption is useful in formulating an approximation because
the service times of all classes can be assumed to be equal), all but the initial visit to the priority center
find it free of high priority customers.

In summary, in the null process case the user has a very strong intuition concerning the solution that
should be provided by the software, but the problem is sufficiently complicated that it is difficult for the i
software to comply, and even more difficult to do so efficiently.

2.. Symmetric Priority Distributions 3
MAP allows the user to specify a distribution of priority levels to be associated with each class. This

distribution indicates the fraction of the total service demand at each priority center that is obtained at
each possible priority level. For instance, class A might receive 35% of its service at the CPU at priority I
level 15 and the remaining 65% at priority level 4. (In general, any number of levels is allowed for each
class.)

In this case, like the previous one, the user does not know what the exact solution of the model should
be, but he does know that a model consisting of two identical classes and a single, priority scheduled
center should give identical results for both classes. This property is not hard to guarantee, and falls out
of almost any reasonably implemented approximate MVA approach. However, the user also expects that
the result of the priority distribution model should be equivalent to that obtained if the priority scheduling I
were replaced with processor sharing (PS). This property is much more difficult to ensure.

The cause of the trouble here is similar to that in the null process case - the MVA residence time
equations do not guarantee that the required property will be observed. Thus, again, it is merely a I
coincidence if the software obtains the expected solution.

2.3. Equivalent Open and Closed Models 3
Suppose the user creates a model with a single open class and obtains its solution, and then converts it

to an "equivalent" closed model by changing the open class to a closed class with a very large number of
customers and introducing a "request generator" consisting of a FCFS server with service time equal to I
the inverse of the open class arrival rate. The user expects that the solution of this model should be
identical to that of the open model.

For simple, separable models this does not require any special treatment in the software. The solution3
obtained by the Bard-Schweitzer approximation [Bard 1979; Schweitzer 19791, for instance, will be
asymptotically identical to the exact solution of the open model (which is easily computed by the
software). However, let us assume that there is some complicating aspect of the model that either makes
it non-separable or requires the use of more sophisticated separable model approximations than Bard-
Schweitzer. For instance, suppose some center in the model is a multiprocessor with priority scheduling.
This requires a solution approach such as modification of the residence time equation. The simplest way
to implement this approximation is to consolidate the code for open and closed classes, that is, to consider I
an open class to be a closed class with an infinite population. This makes it possible to write the
residence time equation for the open classes in a manner identical to that used for the closed classes. For
instance, taking this approach in a separable network (for illustrative purposes) the residence time I

266

* -5-

equation for the open class would be

R =D (I+ N-Q)
N

-D (I+ Q) (1)

since we have assumed an infinite population (N =*). This equation is more convenient than the one
usually used

R= D (2)

where U is the center utilization, since there is no longer any need to distinguish between open and closed
classes.

This approach works fine almost all the time. Even for complicated approximations, starting with this
form for the residence time equation leads to simpler code, and guarantees that equivalent open and
closed models will produce the same performance measures. However, there is a catch. At high
utilizations approximation (1) is unable to reach convergence in a reasonable number of steps. The
problem is quite simple. Before equation (1) can be applied, we must have some estimate for the queue
length Q. Using equation (1), new queue length estimates are computed as Q +-X xR = U(I+Q). Thus,
for utilizations near 1.0 the queue length can grow by only about one customer per iteration. However, at
utilizations near 1.0 the converged queue length is very large. Thus, the iterative scheme required by (1)
fails to approach Zhe true solution given by (2) in a reasonable number of iterations.

In summary, we are forced by numerical considerations to use modifications based on equation (2) as
approximations in mixed models. This complicates the requirement to provide identical results for
equivalent open and closed classes, since the closed class results must be obtained using equation (1).

* 2.4. Models with Memory Constraints
A common way to reflect the effect of memory is to impose a limit on the number of simultaneously

memory resident customers. This feature is employed by a large number of our users, and is often
necessary to obtain validated models.

The standard approach to modelling memory constraints is through decomposition [Brandwajn 1974;
Lazowska & Zahorjan 1982; Brandwajn 19821. The central subsystem is solved in isolation for each
possible population of the class of interest, and the throughputs obtained are used to parameterize a flow
equivalent service center. A model containing just the class of interest and the flow equivalent center is
then analyzed to obtain network performance measures.

Two problems arise with this approach. The first comes about when the user examines the effect of
increasing the amount of memory, and thus increases the limit on the number of memory resident
customers. At some point as this limit is increased, the model should produce results identical to those
obtained when the memory constraint is removed entirely. The decomposition approach will not yield
this behavior in general, though, for two reasons. The first is that, for reasons of efficiency, the
decomposition can be performed only approximately in multiple class, networks. Thus, the
decomposition solution with a large multiprogramming limit will differ from the "exact" solution
obtained when the limit is removed. The second reason for the deviation is that the load dependent rates
are only approximations, since an approximate analysis technique is used to solve the model. Thus, even
in the single class case where an exact decomposition is feasible (for large memory constraints), the
model solution will vary slightly from the exact values.

The second problem with the decomposition approach is somewhat more easily handled. It arises
because the performance measures for the various classes are obtained from the solutions of separate
models (one for each class) generated by the decom v, .ition. These solutions may not represent in the
aggregate a feasible solution. The most obvious exan.eie of this involves the utilization measure. The
performance estimates for the total utilization of a device, obtained by summing the utilizations of the
classes, may exceed 100% when decomposition is employed.

3 267

-6- U
3. The Dynamics of Approximations I

In assessing approximate analysis techniques for non-separable queueing models, researchers have
typically used mean (and perhaps maximum) error as the measure of quality. The error measures are
computed on a set of test cases selected either randomly or systematically to induce maximum stress, but
in either case each test network is considered independently of the others.

In practice, the average error of a technique may not be as important as how that technique reacts to 3
small changes in the input parameters. As mentioned previously, the normal user of this technology is
greatly disturbed by any unexpected behavior, to the extent that all confidence may be lost in a tool that in
fact provides a maximum error of less than 20%. The conclusion we draw is that a technique with 10%
mean error that behaves consistently with intuition is preferable to a technique with 5% mean error that
occasionally delivers a counter-intuitive result. It is important to note that that this is not merely a matter
of psychology. Relative changes in performance measures predicted by queueing network models are
often acknowledged to be more reliable than the absolute performance estimates [Lipsky & Church 1977;
Lazowska et al. 19841. Thus, a change in the "wrorb6" direction in response to the modification of an
input parameter is quite disturbing. I
3.1. Memory Modelling

Returning to the case of a model with a limit on the number of simultaneously memory resident
customers, consider the implementation of the decomposition solution approach [Lazowska & Zahordan
1982; Brandwajn 1982] in a tool based on approximate mean value analysis. Unlike exact MVA, which
provides throughputs for all smaller populations in solving the model for population N, approximate
MVA provides performance measures at only the full population N (or perhaps a few adjacent
populations if some variant of Linearizer [Chandy & Neuse 19821 is used). Thus, to get all the required
throughputs in a straightforward way requires N solutions of the model, where N is the
multiprogramming limit. Because this can be quite expensive, techniques to reduce the number of
solutions may be employed. Zahorjan and Lazowska [1984] suggest an interpolation scheme that
requires only a constant number of solutions regardless of the multiprogramming limit. Their approach is
to solve at a single "small" population and at a single "large" population and to find the parameters of a
perfectly balanced network that would interpolate those two points. The throughputs of that balanced l
network, for which there is a simple closed form expression, are then used as approximations for the
remaining throughputs.

This interpolation approach and its variants provide quite good average accuracy and speed. However, 3
even though the average accuracy is acceptable, the dynamics of the approximation are not. In particular,
if the population constraint is so large that some resource in the central subsystem is saturated, then the
interpolation has a natural tendency to predict that response times will increase if the population
constraint is made slightly larger. The reason for this is easily seen by examining the throughput function
estimates for two different population constraints. The problem is that when the population constraint is
so large that the central subsystem is saturated, the "large population" throughput used in the interpolation
scheme does not increase with increasing population constraint. Thus, increasing the constraint results in I
an interpolation between identical throughputs, but over a larger population interval. The throughput
estimates for intermediate populations are therefore slightly lower than those obtained when the
interpolation is performed for a slightly smaller population constraint. Figure 1 gives an example of this I
effect. It shows the throughput estimates obtained by interpolating through the "exact" throughputs for
populations 1 and 8 and for populations 1 and 10, under the assumption that the high population
throughputs are the same.

One way to avoid this anomalous behavior is to increase the number of points through which the
interpolation takes place. However, this must be done so that the interpolation points for nopulation
constraint N are a subset of those for population constraint P when N <P. This can lead to techniques
whose cost is proportional to N, which may be prohibitively expensive for large models.

There is an additional source of poor dynamic behavior in the memory modelling approximation.
Once so much memory has been added that there is no contention for it, the software should provide
results identical to those obtained if the memory constraint is removed entirely. The transition from the

268 n

4.5 -7-

1 43.5 " ...

1 3 *Populations I and 8

Throughput 2 5
SExtimaLe Populations I and I0

2 ...

I /

11 -

0.5-
0 1 2 3 4 5 6 7 a 9 10 11

Population

Figure 1 - Throughput Interpolation

memory modelling approximation to the solution obtained with the constraint removed causes a smalldiscontinuity in performance measures. This discontinuity, which may be either positive or negative in
sign, is typically quite small, but even a small jump with the wrong sign can be quite disturbing.

32. Load Dependent Servers
In a software tool based on approximate MVA, special provision must be made to accommodate load

dependent service centers, such as multiprocessors. A simple technique for doing so was suggested by
Neuse and Chandy 11981]. It involves a mean value assumption that represents a load dependent server
by a fixed rate server with a rate equal to that experienced when the server is experiencing its mean queue
length. Because the mean queue length is in general not an integer, but the load dependent service rates

I are specified only for integer populations, an interpolation scheme must be used.
The simplest scheme is to perform a linear interpolation between the rates at the integer populations

surrounding the mean population. (This was what Chandy and Neuse recommended specifically.) This
technique gives acceptable results in the cases of most interest, namely those with service rates that
increase smoothly as a function of load. Thus, from an accuracy standpoint this approach should be
acceptable. However, the interpolation scheme has the unfortunate property that altering the service rate
for a population that is not the floor or ceiling of the average population will not cause any change at allin performance measures. While the user may only expect a very small change for "reasonable"
alterations to the rate function, he is typically disturbed if no change is experienced.

In this case there are relatively simple extensions to the interpolation scheme that give the desired
property. (An interpolation that uses all the rates is required.) However, these approaches require greater
execution time, and can complicate efforts to provide other desirable properties in the software, and so
cannot be justified on the basis of accuracy alone. Once again, it is the counter-intuitive change (or lack
thereof in this case) that is important, not the average accuracy.

4. Interactions Among Approximations

A flexible software tool for capacity planning allows the representation of many system characteristics
that require approximate analysis. For example, it is typical to allow mixed models (both open and
closed classes) with multiprocessors, memory limitations, priority scheduling, and some form of complex
1/0 subsystem. While the published research provides approaches to modelling each of these
characteristics, sufficient consideration has not been given to the problems encountered in combining two
or more approximations. In this section we discuss a few of the difficulties we have encountered.

269

-8- I
4.1. Approximate MVA and Memory Modelling

It is difficult in general to obtain accurate performance measures for models that are near saturation,
especially for models containing open classes. When some resource is nearly fully utilized, very small
errors in throughput (and thus utilization) can cause very large errors in response time. (This is easily
seen by noting that the response time curve of a single queue is asymptotically vertical as the server
approaches full utilization.) It is not impossible for an error of 1% in throughput to cause an error of I
1000% in response time!

There also are situations in which small errors can have their effects magnified through other
approximations. For example, the memory modelling approximation relies on throughput estimates I
conditioned on a fixed number of customers of some class being memory resident. These throughput
estimates are obtained by representing the class of interest as a batch type class with the desired
population and using approximate MVA to analyze the resulting model. The throughputs thus obtained
will have some small error; for instance, they may all be low by a small amount. When the high level
model of the memory approximation is applied, these slightly low throughputs can result in a large
overestimate of response time. Even worse, if the memory is anywhere near saturated, the underestimate
of throughputs causes apparent saturation to occur at lower arrival rates than it should. This can be quite I
noticeable, especially if the user is validating against an existing system in which he knows memory is
not saturated.

4.2. Memory Modelling and Priority Scheduling
Consider once again a model with memory constraints. As noted earlier, the accepted approach to

modelling this situation is through decomposition. Sauer [1981] showed experimentally that this I
approach gives good results.

Now consider a model in which there is priority scheduling at a heavily utilized service center, say the
CPU. Suppose there are two open classes. The high priority class has an arrival rate of 1.0 and uses 75%
of the CPU. The low priority class has an arrival rate of 0.1, uses 10% of the CPU, and has a memory
constraint of one customer.

The standard decomposition approach for modelling memory will determine mean throughputs for all
possible populations of the low priority class in the central subsystem, and will use these to parameterize
a high level model consisting of the open class and a single load dependent center representing the central
subsystem. In this case there is only the population of one to be considered, and since that one customer
spends all its time at the CPU its response time is 4.0 (since the high priority class leaves the CPU idleonly 25% of the time).

Now consider using this output rate to parameterize the high level model. That model is equivalent to
a single fixed rate queue with arrival rate 0.1 and service rate 0.25. Thus, the response time prediction is
6.67. The exact solution of the priority model, however, is 26.67 (see for instance [Kleinrock 1976]).

Why did the decomposition approach fail in this case when it is generally accepted that the
requirements for accurate decomposition exist in the memory modelling situation? The answer seems to
be the fact that the central subsystem is priority scheduled. This causes the low priority class response
times to be highly variable from visit to visit, much more so than if the CPU were scheduled using
processor sharing, for instance. This high variability means that using an M/M/I queue as the high level I
model is incorrect, in this case to a significant degree.

4.3. Structuring the Implementation

Aesthetically, the cleanest approach to combining approximations is layering. This is the approach

advocated, for instance, by Lazowska et al. [1984]. As an example, consider a model containing a
complicated 1/0 subsystem and a priority scheduled CPU. An I/O subsystem approximation can be used
to transform the model containing the I/O path components into one containing only the CPU and disk U
devices, and then any of the standard priority modelling approximations can be applied to that model to
represent the priority scheduling.

In practice, there are two problems with the layered approach. The first is a standard concern with any
layered implementation: performance. Especially with iterative approximations, there are significant

270 I

-9-

overheads associated with passing information between layers and with iterating to convergence at the
lower level when the higher level is not yet near convergence.

A second problem with the layered approach is that it can very much complicate the job of developing
useful approximations. For instance, consider the approximations used for priority scheduling and for
multiple processors (as discussed earlier). Because both approximations are concerned with the effective
instruction delivery rate of the CPU, it is in fact much more difficult to construct two independent
approximations that can be used in any combination than it is to combine the approximations in one
routine. In particular, ensuring that the modelling software behaves in an intuitively consistent manner is
much more difficult if independent, layered approximations are employed than if a more unified
approached is taken.

3. 5. Problems with Convergence

5.1. Memory Modelling
While folklore tells us that the standard MVA based approximate analysis techniques always converge

quickly (there is some formal work that demonstrates this for certain restricted models [Eager & Sevcik
1984]), we have experienced some problems caused by failure to achieve convergence. Perhaps the most
important of these was encountered in the memory modelling approximation. There we must obtain
throughputs of the model with the population of one class varying from 1 to some fixed limit N. Because
we are working with a package based on approximate MVA, this appears to require N separate solutions,
which can be quite slow.

In Section 3.1 we mentioned the use of interpolation to reduce the amount of work required. Another
approach is to generate all N solutions in one call to the lowest level routine (the one implementing the
MVA approximation). The potential advantage of this is that the solution of the model with n-1
customers can be used as the initial guess for the solution with n customers. Because the insertion of a
single customer should not affect in any discontinuous way the overall behavior of model, one would
expect that each successive solution would require only a few iterations, and thus that the overall cost of
obtaining N solutions would be some small constant times N, as contrasted to a relatively large constant
times N if using the standard initialization of distributing the customers equally among the devices.

Because this approach promises to be fast and is guaranteed to resolve the problem mentioned in
Section 3 regarding counter-intuitive behavior, it was one of the first attempts we made in implementing
the memory approximation. In practice, though, the time svings we had hoped to obtain were not
realized. While a more intensive examination would be required to determine the cause of the
inadequacy with certainty, what was clear from our experiments was that on some occasions, large errors
in performance estimates were due to the failure of the model to reach a solution near convergence for the
larger population values in a sequence. The reason was that the stopping criterion prematurely indicated
convergence, that is, starting with a "reasonable" initial guess seemed to fool the approximation into
thinking convergence had been achieved when in fact we might still be relatively far from the solution.
Over the N solutions these errors would compound, so that the throughputs obtained for population N
(which are often the most critical to the evaluation of the overall response time) could be substantially in
error.

The apparent "fix" to this non-convergence problem is to r- 4uce the magnitude of the stopping
criterion E, thus causing the approximation to iterate longer. However, this negates the original
motivation for the approach, namely execution time efficiency. On the whole, then, some interpolation
based scheme seems the most promising.

5.2. Anomalous Models

In the previous subsection we indicated that a sequence of very sin "ar models might be difficult to
solve accurately. It also is possible to encounter models for which it is difficult to compute solutions
using approximate analysis techniques at all. For :nstance, consider a closed, single class model with a
large customer population and two queueing-type servi,-e centers. The service demand at one center is a

271

- 10-

very small amount larger than that at the other. This model can be shown to have very poor convergence
properties [Zahorjan et al. 19861, requiring hundreds of iterations before the estimate of the solution is
within a few percent of the actual convergence point.

Unfortunately, exactly this model is sometimes encountered in practice. Suppose that a user
constructs a model with a single open class, and that the bottleneck center is near saturation. Knowing
that open classes tend to overestimate response times in this case, the user converts the model to an I
"equivalent" model with a single closed class, introducing an artificial FCFS center to control the "arrival

rate" of this closed class. (The FCFS center has service demand where X was the arrival rate of the

original open class.) This is exactly the case just described. Since the model was near saturation, the

bottleneck center must have a service demand slightly smaller than , and the user is likely to introduce

a closed class with a large population in substituting for the open class.
Fortunately, there are approaches that provide good behavior even for these difficult models. Some of

these approaches are described by Zahojan et al. [19861.

5.3. Nested Iterations

Suppose that the implementation contains at least two layers of approximations, both of which are
iterative. There is a design question to be answered in the implementation which arises because of the I
interactions of the approximations, namely, should the lower level approximation iterate to convergence
between steps of the higher level approximation, or should it (more nearly) take a single step for each
higher level step? 3

While this problem has not been systematically studied in general, a careful look has been taken
[Zahorjan et al. 19861 at the question applied to the levels of iterative solutions that take place in
approximate MVA solutions based on Linearizer [Chandy & Neuse 1982]. In that case there is a "core"
routine that is applied to solve the model at the full population and at each population obtained by
removing one customer in turn from each closed class. We found that in roughly 25% of the cases, taking
only a single step of the low level iteration for each step of the high level iteration resulted in non-
convergence. In contrast, the algorithm always converged when the low level iteration proceeded to I
convergence between steps of the high level iteration. Thus, the latter approach seems far preferable in
practice.

6. Summary

Perhaps the highest level summary of the information we have tried to convey is that building a
production computer system analysis tool fcr use by average (rather than sophisticated) people involves
much more than simply implementing a collection of the approximate analysis techniques that have
appeared in the literature. There are a number of reasons for this: U
- In attempting to allow the analysis of models with multiple non-separable characteristics, it is

sometimes the case that there is no published technique that is directly applicable. Most
approximations are formulated by introducing a single non-separable characteristic into an otherwise I
separable model. The task is more complicated when the remainder of the model is non-separable to
start.

- The error behavior of some approximations in combination may be worse than expected. For the most I
part the error evaluation of approximations has been performed in isolation, that is, the only aspect of
the model requiring an approximate analysis was the one for which the algorithm was specifically
designed. In production tools, however, combinations of approximations are routinely employed, and
understanding the causes of the errors they exhibit is more complicated.

- The mean and maximum error behavior of approximate analysis techniques may not be as important
as the dynamic behavior of the techniques, that is, how they react to small changes in the input
parameters. We have presented a number of instances where an approximation provided reasonably
accurate results, but demonstrated incorrect dynamic behavior and so was unacceptable in practice.

272 I

-11-

- The interactions among approximate analysis techniques is important in designing the software. This
in turn affects the efficiency of the tool, and the convergence properties of the approximations.
There do not seem to be any easy solutions to these problems. In developing a production

performance evaluation package based on queueing network modelling technology one is confronted with
the conflicting goals of accuracy and efficiency. To be useful, an appropriate balance must be struck
between them. In the world of capacity planning with which we deal primarily, this balance often favors
efficiency over accuracy. One must keep firmly in mind that workload characterizations and projections
have very large inherent inaccuracies, and that the value of the tool lies in the analyst's ability to examine
a large number of scenarios in a modest amount of time.

Despite the necessary emphasis on efficiency in construction and evaluation of the models, we have at
times been attempted to buy some increased reliability and accuracy at the expense of some execution
efficiency. This has not turned out to be a very profitable attitude though, for two reasons.

The first is that the kinds of problems we have experienced with the use of approximations do not
seem to be overcome by better approximations, but at best the likelihood that the problems will be
experienced is reduced. In this sense the problem is not "solved", it is simply made less urgent. To really
overcome the problems, so that the software exhibits no irrational behavior at all, it is our guess that
something approaching exact solutions are required. In part this is due to the complex interaction of the
various approximations - even a small error in a specific approximation can be magnified by these
interactions. Thus, a useful, complex approximation seems to require an amount of computation nearly
that of the exact solution. It appears to us that anything much shy of this is more trouble than it is worth.

The second reason that using using more complicated approximations does not seem a generally
useful approach is the requirement to provide a consistent modelling interface to the user, one free of
artificial restrictions on the use of the available constructs. We have found that it is combinatorially
harder to construct software built of many complex approximations than an equal number of relatively
simple ones. This complexity impacts not only the software development effort, but also the accuracy of
the resulting package. As just mentioned, the interaction of approximations is important to overall
accuracy, and it is very difficult indeed to understand how many complicated techniques affect each
other. This effect is so pronounced that we have in fact repeatedly discarded complex approximations
after implementation in favor of simpler ones because of these problems.

Finally, it is worth pointing out that because of the simple interface provided the user with which to
describe his model, the implementor has available to him significant flexibility in designing
approximations. In particular, for the interface to be useful, it cannot require that the user provide a great
deal of detailed parameterization. Therefore, most problems are not completely specified - some aspects
of the model must be "filled in" by assumptions provided by the implementor. For instance, in providing
a priority scheduling heuristic the implementor must make assumptions about the time per visit of each
priority level, since the user of the software provides only the total service time requirement at the
priority center. In this case, it is often convenient for the implementor to assume that every priority level
has the same time per visit, but that priority levels may differ in the total number of visits made.
Alternatively, it might be useful to assume that each priority level makes exactly one visit. (Although
this is of course a less realistic assumption, it does have some advantages in designing an approximate
analysis technique.)

Despite this modicum of leeway in deciding what the "true" solution of the model should be, there do
not seem to be any easy solutions to the sorts of problems outlined in this paper. For the most part it
seems that they are very difficult to address formally. For instance, realizing that the dynamic behavior of
an approximation may be more important than its mean error is a matter of definition of objectives, and
so would not be amenable to formal derivation. It requires experience with the use of the tool to come to
this realization.

While the other problems, those involving the accuracy of approximations and the effects of their
interactions, might in principle be tackled by formal techniques (either analytic or controlled
experimental results), the scarcity of such results to date is an indication of the difficulty of doing so.
Again, it seems that the most viable method of exploration is empirical evidence gained through the
extensive use of implementations. This paper has outlined some of the problems that might be attacked

273

-12-

using this approach. I

References I
[BGS 1986]

BGS Systems, Inc. BEST1 Reference Manual. BGS Systems, Inc., Waltham MA, 1986.

[Bard 1979)
Y. Bard. Some Extensions to Multiclass Queueing Network Analysis. In M. Arato, A. Butrimenko
and E. Gelenbe, eds., Performance of Computer Systems, North-Holland, 1979.

[Brandwajn 1974]
A. Brandwajn. A Model of a Time-Sharing System Solved Using Equivalence and Decomposition.
Acta Informatica 4,1 (1974), pp. 11-47.

[Brandwajn 1982]
A. Brandwajn. Fast Approximate Solution of Multiprogramming Models. Proc. ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, 1982, pp. 141-149. 1

[Bryant et al. 1984]
R.M. Bryant, A.E. Krzesinski, M.S. Lakshmi, and K.M. Chandy. The MVA Priority Approximation.
ACM Transactions on Computer Systems 2,4 (1984), pp. 335-359.

[Chandy & Neuse 1982]
K.M. Chandy and D. Neuse. Linearizer: A Heuristic Algorithm for Queueing Network Models of
Computing Systems. Communications of the ACM 25,2 (February 1982), pp. 126-133.

[Eager 1986]
D.L. Eager. The AMVA Priority Approximation. Submitted for publication.

[Eager & Sevcik 19841
D.L. Eager and K.C. Sevcik. An Analysis of an Approximation Algorithm for Queueing Networks.
Performance Evaluation 4 (1984), pp. 275-284.

[Kleinrock 1976] 3
L. Kleinrock. Queueing Systems: Volume ii, Computer Applications. John Wiley & Sons, 1976.

[Lazowska & Zahorjan 19821
E.D. Lazowska and J. Zahojan. Multiple Class Memory Constrained Queueing Networks. Proc.
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, 1982, pp. 130-
140.

[Lazowska et al. 1984]
E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative System Performance:
Computer System Analysis Using Queueing Network Models. Prentice-Hall, 1984.

[Lipsky & Church 1977]
L. Lipsky and J.D. Church. Applications of a Queueing Network Model for a Computer System.
ACM Computing Surveys 9,3 (September 1973), pp. 205-222.

[Neuse & Chandy 1981]
D. Neuse and K.M. Chandy. A Heuristic Algorithm for Queueing Network Models of Computer
Systems. Report TR-CHAN-81-02, Univ. of Texas at Austin (March 1981).

198('
Quantitative System Performance, Inc. MAP Reference Manual. Quantitative System Performance,
Inc., Seattle WA, 1986.

[Sauer 19811
C.H. Sauer. Approximate Solution of Queueing Networks with Simultaneous Resource Possession.
IBM J. Res. Develop. 25,6 (November 1981), pp. 894-903.

I
274

-13-

I [Schweitzer 1979]
P. Schweitzer. Approximate Analysis of Multiclass Closed Networks of Queues. Proc. International
Conference on Stochastic Control and Optimization, 1979.

[Sevcik 1977]
K.C. Sevcik. Priority Scheduling Disciplines in Queueing Network Models of Computer Systems. In
Information Processing 77, ed. B. Gilchrist, North-Holland (1977), pp. 565-570.

I [Zahorjan & Lazowska 1984]
J. Zahorjan and E.D. Lazowsk;7. incorporating Load Dependent Servers In Approximate Mean Value
Analysis. Proc. ACM SIGM~FT;:ICS Conference on Measurement and Modeling of Computer
Systems, 1984.

[Zahorjan et al. 1986]
J. Zahorjan, D.L. Eager, and H. Swei'!am. Accuracy, Speed, and Convergence of Approximate Mean
Value Analysis. Technical Report 86-08-07, Department of Computer Science, University of

I Washington, August 1986.

IU
I
U
I

I
I
I
I
I

3 275

REPORT DOCUMENTATION PAGE OBNo 0704-OI8

PubdWc mprO bfrdn for m oaion of hfkton Is tmo wo amre 1 hm .seanee. tniudtn9 Ut. mt. 1w wteg manpan~. gee c&Wng eting dita ouc. galle.Ing and
mainta~nOg medala needed. and comtlding end ramrMng nno*oSe bmenel era cow d pw &ftm CoIeIIon llon. Inl gl
suggeatona fr rducWfIn I dn o Wmhngon I edq Swvei=~l. De*eM~nfmnamnOpf wftSmRpm tl2lS6t~ua Dee , O gV y. Suls 10 aI~n. VA m2=430
and to the Off" fce gww OW Budge. Paperworkc Reudo P7 48 . Wm go. DC 2M60.

1 AGENCY USE ONLY ILeetw b 2. REPORT DATE 3. REPORT iYPE AND DATES COVERED

I June 1990
Final

4.TITLE AND SUBTITLE 6. FUDN NUMBERS

ADVANCED NUMERICAL TECHNIQUES OF PERFORMANCE EVALUATIONVOLUME IC:N 00-7D 13

AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) S. PERFORMING ORGANIZATION
REPOR NUMBER

University of Washington

Department of Computer Sciences
Seattle, WA 98195

9 SPONSORING JMONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORINGMC)ORING

AGENCY REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000 NOSC TD 1837

1 . SUPPLEMENTARY NOTES

12A DISTRIBIUTION/AVARIMBIUrY STATEMENT 12 DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13 ABSTRACT (NAewm, 200 wade)

This two volume document provides various advanced numerical techniques used in performance evaluation.

14. S BJECT TERMS 15. NUMBER OF PAGES

performance evaluation 271
16. PRICE COE

I?. SECUTttfY CUUASTGION 18. SECURITY Ct.ASSIFICATMO 19. SICF CLASS11FICATION 2D. UJMT'IION OF ABSTRaACTOF REPORT OF TMIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 754001 -M05800 I~bende form 29W

