CENTER FOR SOFTWARE ENGINEERING
ADVANCED SOFTWARE TECHNOLOGY

Subject: Final Report - Real-Time Performance

Benchmarks for Ada

mi %55»
CIN: Co02 092LY 0001 00

24 MARCH 1989

DISTRIBUTION STATEMENT & 1

Aﬁproved for public release;
Zisliribntion Unnmited

Real-time Performance Benchmarks

For Ada

Contract Number: DAAA21-85-C-0238

Prepared For:

U.S. Army, CECOM

Advanced Software Technology

AMSEL-RD-SE-AST-SS-R

Ft. Monmouth, NJ 07703-5000

Prepared By:

Arvind Goel “Aocession For ”JZ—J

NTIS GRA%I
TAMSCO gﬁz TAB 0
145 WYCkOﬂ' Road Unannounced a _
Eatontown, NJ 07724 W
BYoo—o———— |
October, 1988. pistribution/

Avallability qugs
e -

!,wail’ and/oT
pist | Speclal

’\)

1.1
1.2
1.3

1.4

CONTENTS

. Inmoducdon

Real-time Embedded Syszems . .
Requirements of Real-time Systems .
Ada and Real-time Systems

1.3.1 Ada Runtime System

Scope of this Report . .
1.4.1 Testbed Hardware and Software .
1.4.2 Report Layout . .

Ada Benchmarking .

2.1

2.2
2.3

Benchmarking Approach . .
2.1.1 Measure Performance of [ndmdua.l Feamres .
2.1.2 Determining Runtime Syst>m Impiementation
2.1.3 Real-time Paradigms .

2.1.4 Composite Benchmarks

Benchmarking Techniques . .

Internal and External Documentanon

Microscopic Benchmarks

3.1

32
33

34

3.5

3.6

Benchmark Timing . .
3.1.1 Dual Loop Benchmarks

3.1.1.1 Isoladon of Features and Prevenung Code

Optimization
3.1.2 Measurement Accuracy .
3.1.3 Factors Affecting Benchmark Resulrs
3.14 Dual Loop Calibration Benchmarks .
Ada Features For Microscopic Bemhmarhng .
Tasking
3.3.1 Tasking Benchmarks .o .
33.1.1 Task Acnvauon/l‘emnnanon .
3.3.1.2 Task Synchronization
3.32 Remarks on Ada Tasking .
Memory Management . . .
34.1 SmgeMechannmsmAda o e e
34.1.1 Memory RequnementsofanAda
3.42 Dynamic Allocadon Benchmarks .
3.43 Remarks on Memory Management .
Excepdons . .
3.5.1 Exception Handhng Mechamsm
3.5.2 Exception Handling Tests . .
3.5.3 Remarks on Exception Handlmg
Chapter 13 Benchmarks . .

r—_ s et et
W~ OWOVWNOVOO ~ O W& W —

— o
~N OV

17
19
19
20
21
22
23
23
29

41
42

43

56
56
57
62
63

37

3.8

39

3.10

3.11

3.12

3.6.1 Pragma Pack

3.6.2 Unchecked_ Conversmn

3.6.3 Representation Clauses

Interrupt Handling . .

3.7.1 Implementation of thc Interrupt Hand.hng
Mechanism . . .

3.7.2 Interrupt Handling Tests

3.7.3 Remarks on Interrupt Handling

Clock Function and TYPE Duration .

3.8.1 Clock Tests

Numeric Computation .

39.1 Arithmetic for Time and Dura' on

3.9.2 Mathematical Computations

Subprogram Overhead

3.10.1 Factors Influencing Ovcrhead of Subprogram Calls .

3.10.2 Subprogram Overhead Tests . . .
3.10.2.1 Intra-Package Reference Tests

3.10.2.2 Intra-Package Tests with Pragma INLINE .

3.10.2.3 Inter-Package Reference Tests
3.10.2.4 Instantiations of Generic Code

Pragmas . .

3.11.1 Pragma SUPPRESS .

3.11.2 Pragma CONTROLLED

3.11.3 Pragma SHARED

3.11.4 Pragma PACK

3.11.5 Pragma INLINE .

3.11.6 Pragma PRIORITY

Input/Output

3.12.1 TEXT_IO

. Runtme Implementation Benchmarks

4.1

4.2
4.3
44
4.5
4.6

Tasking . .

4.1.1 Tasking Implemcntauon Benchmarks
4.1.2 Task Synchronization . . .
4.1.3 Tasking Priorides

Scheduling and Delay Statement .

Memory Management

Exceptions .

Interrupt Handling

Asynchronous I/O

. Real-Time Paradigms

5.1

Intermediary Tasks

5.1.1 Producer-Consumer

5.1.2 Buffer Task . . .

5.1.3 Use of a Buffer and Transponer

65
68
69
71

71
71
73
73
74
75
75
17
78
78
79
79
81
82
84
87
87
89
90
91
91
91
92
92

95

95

95
101
103
106
110
112
113
114

116
116
118
119
119

5.1.4 Use of a Buffer and Two Transporters 120
5153 UseofaRelay 12
5.2 Asynchronous Exceptions . . D V3
5.3 Selection of Highest Priority Chent S .
5.4 Monitor/Process Smucture 122
55 Mailbox L . 0 L L L 0L 0 .. o 124

6. Conclusions 125

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.
TABLE 5.
TABLE 6.
TABLE 7.
TABLE 8.
TABLE 9.
TABLE 10.
TABLE 11.
TABLE 12.
TABLE 13.
TABLE 14.
TABLE 15.
TABLE 16.
TABLE 17.
TABLE 18.
TABLE 19.
TABLE 20.

TABLE 21.
TABLE 22.

TABLE 23.

TABLE 24.
TABLE 25.

LIST OF TABLES

Task Activation/Termination Benchmarks .
Simple Rendezvous Benchmarks

Complex Rendezvous Benchmarks

More Rendezvous Benchmarks

Dynamic Allocation:Storage Allocated is Fixed
Dynamic Allocation:Storage Allocated is Variable
Dynamic Allocation with NEW Allocator .
NEW Allocator:No Storage Deallocation

NEW Allocatcr:Active Tasks=5

NEW Allocator:Active Tasks=10

Exception Raised and Handled in Block
Exception Raised and Handled One Level Above
More Exception Handling Benchmarks .
TASKING_ERROR Exception Benchmarks
Chapter 13 Benchmarks

CLOCK Function Tests

TIME and DURATION Mathematics

Numeric Computation Benchmarks .
Subprogram Overhead (Intra-Package) .

Subprogram Overhead (Inu'a-Package with Pragma
INLINE) . . .

Subprogram Overhead (Inter-Package)

Subprogram Overhead (Imra-Package with Generic
Instantiation) . e e e e e e

Subprogram Overhead (Intcr-Packagc with Genenic
Instantiation) . . e e e

Pragma Benchmarks

Input/Output Benchmarks .

-iv -

25
31
35
37
45
47
49
52
54
55
58
59

61

74
76
77
80

82
83

85
86
87

TABLE 26.
TABLE 27.
TABLE 28.
TABLE 29.
TABLE 30.

Tasking Implementation Benchmarks
Rendezvous Implementation Benchmarks
Scheduling and Delay Statement Dependencies
Memory Management Dependencies

Real-time Paradigms

Chapter 1: Introduction

~ This report develops a benchmarking capability for measuring the performance of
Ada compilers meant for real-time embedded systems. Cross-compiler users face
many tough trade-offs and additional project costs due to time lost developing
compiler work-arounds. The embedded programmer community is faced with trying
to use incomplete and somewhat unstable systems while trying to deliver efficient and
ultra-reliable code. For any given real-time embedded application, the best
performance predicator is the performance of the application software itself.
Software designers and programmers can be satisfied that an embedded application
meets its performance requirements ONLY after testing the final product. But due to
the rising costs of software development, users may want to use benchmarks to
determine the performance and suitability of a particular compilation system for their
real-time applications. The major focus in this report is on developing benchmarks to
measure runtime performance of Ada features important for real-time embedded
systems. /. ., ., -
A motivating factor in the development of Ada as the Department of Defense
standard language was the high cost of embedded system software development. The
principal goal of Ada is to provide a language supporting modern software engineering
principles to design and develop real-time embedded systems software. Ada is said to
be complete in the sense that it comprises a) the necessary features for the
manipulation of low-level entities like bits, characters, and addresses, b) features for
high-level abstraction, and c) features for parallelism. These features of Ada should
enable the development of a product to be

o more cost-effective,
e more maintainable over its lifetime,

 and more portable between different systems.

Infortunately, most of the curreni Ada implementations do noi allow the
development of embedded systems software reliably and without sacrificing
productivity and quality. A prime example is avionics software applications which
demand very fast processing, swift calculation of floating-point math, and compact
object code. Current Ada compiler implementations are unable to support these
demands due to several reasons, some of which are:

o they are written by software engineers with experience in large-system design,
o lack of operating system knowledge and real-time issues,
« more concern with passing the Ada Compiler Validation Capability Test suite,

« implementation and size of the Ada runtime system which differs widely from one
compiler to another. An examnle of inefficient runtime system implcmentation is
the bringing of complete runtime systems from the host computer to the target
without removing such items as disk controllers, screen drivers and other I/O
interfaces that may be unnecessary for most embedded systems.

The Ada Language Reference Manual (LRM) has a lot of implementation dependent
features that are of concern to real-time programmers. The large variance in
implementation options for a feature effect application program behavior and
efficiency (the list of the implementation dependent features is compiled in a
document "Catalog of Ada Runtime Implementation Dependencies” published by the
Ada Runtime Environment Working Group (ARTEWG) [4]). The implementation
dependencies are a clear signal that simply adopting the language as defined in the
LRM is not enough for real-time embedded systems. The performance and
implementation approach of various Ada language features and the runtime system
has to be benchmarked to assess an Ada compiler’s suitability for a real-time
embedded application. Some of the problems that arise in benchmarking Ada
compiler systems are:

o Ada benchmarking is much more complex from other languages because of the
powerful and sophisticated runtime system that supports Ada features such as
memory management, process scheduling and control, tasking, etc. and whose
implementation varies from one compiler system to another.

« Significant complications also arise in Ada in defining details of what is to be
measured and in achieving those measurements.

o Selecting a benchmarking technique that ensures the accuracy and relevance of the
benchmark results is non-trivial.

At this point. it will be useful to briefly describe the definition and requirements of
real-time systems in order to get a better understanding of the effort involved in
developing benchmarks for embedded systems.

1.1 Real-time Embedded Systems

A real-time embedded system constantly monitors, analyzes and responds to external
real world events in a time critical fashion. Embedded systems usually consist of
specialized hardware running dedicated application software at the heart of a real-
time control or data-processing system and the application software uses the entire
assets of the computational system to solve a problem. Also, embedded systems
usually have no operating system support and often consist of the minimum
configuration of CPU, memory and peripheral interfaces. Examples of embedded
systems are aircraft avionics systems, ship weapons control systems, and engine
control systems.

1.2 Requirements Of Real-time Systems

Real-time embedded systems have severe timing and memory constraints. In an
embedded application, the time taken to perform system functions such as process
initiation, process termination, and context switching is crucial. System start-up time
is also important as is the time taken to change operating modes, to reconfigure the
system after 2 partial failure, or to restart the system after a total failure. For a
programming language to be used effectively to program real-time embedded systems,
it should be able to support the following characteristics [13]:

Periodic tasks: Many physical processes controlled by embedded computers
require tasks to run periodically on a scheduled time basis. Given the need for
periodic tasks, a convenient and meaningful method of expressing timing behavior
should be provided.

Sporadic Tasks: are synchronous events (that arrive randomly) and must have
guaranteed response times. A sporadic task may arrive randomly. However, there
is a worst case (maximum) arrival rate and execution time that can be used to
guarantee the response to critical events.

Fault Tolerance: Software faults are design faults and are unanticipated unlike
hardware faults. The software should be able to recover gracefully from
unanticipated faults.

Distributed Systems: Many embedded computing systems depend on the
coordinated activity of a set of computing devices rather than a single computer.
Programming language semantics for managing the distribution of a program and
of time across a network of processors are necessary.

Time Abstraction: Timing is the most critical aspect of a real-time system. A
programming language should have abstractions for deadlines, time-out
exceptions, delay, and timed-accept consiructs. An embedded system must
provide specified amounts of computation within required time intervals.

Reconfiguration: is event-driven reconfiguration where a separate activity is
started at the beginning due to mission requirement changes. Such
reconfiguration are generally planned for at design time.

Resource Utilization: A programmer should be able to predict and ideally
explicitly control a program’s utilization of resources including memory and
execution time. Where there exist alternate ways of implementing an Ada
construct, a way should be provided for the programmer to obtain the translation
that best meets the needs of the application.

Concurrency: Real-time embedded applications are inherently parallel in nature.
The extensions of a model of concurrency into the programming language
therefore provides abstractions for use in the engineering of the software.

o Reliability: An embedded system may have to operate nonstop for an extended
period of time. Predictable exception handling for expected errors is required and
tolerance for unexpected errors is also desirable.

o Traceability: For debugging purposes, cxtensive knowledge of how each
programming language construct is transformed into machine code is required.

Languages for programming real-time embedded computer systems, in general,
require the ability to represent concurrent control of separate system components, the
structures needed to build extremely reliable systems, the ability to specify in real-time
when actions are to be performed, and the ability to interact with special purpose
hardware.

1.3 Ada and Real-time Systems

In traditional real-time systems, an executive running on the system was responsible
for making sure that the various timing and memory constraints were satisfied by
different parts of an application program. This executive was typically coded in
assembly language and was designed and tailored to meet the timing and memory
requirements of the application at hand. The executive used in a real-time application
could not be used in another application, and programmers had to typically write an
executive for each real-time application. The programmers also had complete control
over all actions and resource allocation.

In Ada the executive is part of the language as the Ada runtime system. Real-time
programmers generally have no control on the design and implementation of the Ada
runtime system except for the fact that the runtime system satisfy the requirements
listed in the LRM. For example, the LRM states that a task will be suspended for at
least the time specified in a delay statement, but does not state when after expiration
of that delay is the task eligible for execution. This could be very critical in reai-time
embedded systems where tasks may have to be executed at a fixed time in order to
satisfy the timing constraints of the system. The ability of Ada to satisfy timing and
memory constraints of embedded real-time systems has to be demonstrated if Ada is
to be employed successfully in embedded systems.

1.3.1 Ada Runtime System

The Ada runtime system implements the code to support Ada semantics. It appears

as object code at execution time and provides many of the support functions previously
designed and written by embedded applications designers. In embedded systems, the
runtime system is responsible for dynamic memory management, interrupt
management, time management, exception management, rendezvous management,
task activations and terminations, I/O management and scheduling the various tasks
in the application program. For real-time systems, object code and the supporting
runtime system should be fast, compact and configurable. For some embedded
applications, it may be necessary to tailor and/or configure the runtime system so
that the user does not have to pay time and space performance penalties for features
of the language that are not used.

Many of the reasons that embedded systems designers may be dissatisfied with Ada
are related in some way to the current runtime system implementaticns as well as the
lack of certain features in the language:

« runtime system is too big and slow. It has a large number of implementation
dependent characteristics which present a) portability problems for embedded
applications and b) performance inconsistencies among validated compilers which
makes it difficult to select the appropriate Ada compiler for embedded
applications.

« high execution time overhead,
« lack of timing predictability,

« lack of control over resource management decisions that affect system timing and
reliability,

« no clear abstraction of time. The delay statement gives only a minimum delay, but
it is maximum delays that are of interest.

« 1o abstraction of configuration, e.g. for distributed systems,

« priority mechanism can allow priority inversion, e.g. a low-priority task running
during rendezvous with a high-priority task can lock out a medium-priority task.

Some of the problems identified can be circumvented by the implementation of the
proposals presented by ARTEWG [6], but others (for example, high execution time
overhead and runtime implementation dependencies) are compiler dependent and
need to be benchmarked.

1.4 Scope of this Report

To determine the suitability of Ada compiler systems for embedded applications, a
benchmarking effort has been undertaken by the Center for Software Engineering, Ft.
Monmouth, NJ. As part of this effort, existing benchmarks have been researched to

determine their suitability for determining the performance of real-time embedded
systems. Using the University of Michigan [1] benchmarks as the starting base,
existing benchmarks have been modified and new benchmarks developed to measure
the performance of Ada features important for real-time embedded systems. In
another effort undertaken by the Center for Software Engineering, a matrix which
ma} rea-time Ada features to benchmarks was developed [12). In the current effort,
this matrix has been used to develop additional benchmarks for those Ada
characteristics which have no benchmarks available. Some Ada features cannot be
benchmarked reliably and the reasons have been explained in the appropriate sections.
The scope of this benchmarking effort is to determine

« the runtime performance of Ada code on a bare target system,

o the runtime system implementations of various features of a particular Ada
compiler system,

o and the performance of commonly used Ada real-time paradigms that may be
programmed using macro constructs (a macro construct is defined as a set of Ada
statements that perform a well defined process e.g. semaphores [12]).

For this benchmarking effort, it is assumed that the runtime system is written for a
bare target and is fully responsible for runtime performance and efficiency. The
target is a uniprocessor and the problems of multi-processing and multiprogramming
systems are left to be dealt with elsewhere.

1.4.1 Testbed Hardware and Software

The hardware used for benchmarking was Sun 3/60 CPU running Sun Unix 4.2
Release 3.5, linked to a single 12.5 Mhz Motorola 6.)20 single board computer
enclosed in a multibus chasis. The setup can be summarized as follows:

Host: Sun 3/60, running Sun Unix 4.2 Release 3.5

Compiler: Verdix Ada Development System targeted to Motorola MC638020
targets, release 5.41

Target: GPC68020 (based on Motorola MC68020 microprocessor)
multibus-compatible computer board having 12.5 Mhz
MC68020 microprocessor, a MC68881 floating point
co-processor, and 2 megabyte of RAM.

The GPC68020 has two serial lines with one RS232 line and and one line which may
be configured as either RS232 or RS422. The second serial port was connected to the

SUN 3/60 serial port and used for downloading object code to the GPC68020
computer. The benchmarks were compiled on the SUN 3/60 workstation and then
downloaded to the bare target and executed via tools available from the compiler
vendor. The Verdix compiler cross-compilation system contained tools for compiling,
linking, downloading, and executing target programs. There was also a cross-debugger
that enabled debugging of programs running on the target. Command files to
compile, link, download and execute the benchmarks were written. The benchmarks
were compiled without the optimize option and the timings listed are for un-optimized
runs. The Verdix compiler has 9 levels of optimizations available and it is impossible
to compile with all of the optimization levels. The link phase included commands to
define the memory layout, e.g. program placement, stack and heap sizes, etc.

1.4.2 Report Layout

This report is divided into 6 chapters (including the current one). The second chapter
deals with the whole issue of Ada benchmarking. Methods of developing benchmarks
as well as timing issues are discussed.

Chapter 3 deals with microscopic benchmarks. Ada features important for real-time
systems are highlighted and benchmarks have been developed for those features.

Chapter 4 deals with runtime implementation dependencies benchmarks.
Chapter 5 discusses real-time paradigms that can be programmed in Ada.

Chapter 6 concludes with some thoughts about lessons learned and more work that
needs to be performed in the area of benchmarking.

Chapter 2: Ada Benchmarking

In the last year or so, Ada compiler technology has reached a state to justify their use
for time critical applications. Vendors are introducing Ada compiler systems which
generate code for bare targets such as the Intel iAPX88 family, Motorola 68000
family, and the MIL-STD-1750A microprocessors. As discussed in Chapter 1, cross-
compiler users face many tough trade-offs and additional project costs due to time lost
developing compiler work-arounds. Benchmarks have to be relied upon to select a
Ada compiler for developing embedded systems software. The use of inappropriate
benchmarks (that may be designed incorrectly and hence may provide false
information) to select an Ada compiler system can be downright crippling for an
embedded application. Also, factors such as complexity of Ada runtime performance,
interaction of language features, as well as differing requirements of different real-
time systems complicate the task of developing benchmarks that measure real-time
performance for all applications.

The use made of performance measurements depends on one’s purpose in conducting
benchmarks. The purpose may be to compare implementations for general maturity
or to determine which is most suitable for a particular application. In the first case,
evaluation of benchmarks will be implicitly based on assumptions about which
performance characteristics are indicative of maturity. In the second case, the
performance characteristics deemed most important will depend on the requirements
of the application. An implementation with a low score for a particular performance
characteristic may still be most appropriate for a given application. Ada
benchmarking can be approached in 4 ways:

o design benchmarks to measure execution speed of individual features of the
language,
« design benchmarks that determine implementation dependent attributes

o design benchmarks that measure the performance of commonly used real-time
Ada paradigms (that may be programmed using macro constructs).

o design composite benchmarks which include representative code from real-time
applications.

Before designing the benchmarks, it is important to define what is to be measured and
which approach is to be used to measure that feature. For example, before designing
microscopic benchmarks those features of Ada have been identified that are
important for real-time embedded applications and can be measured using the first
approach. For each of the microscopic features that have been defined, existing
benchmarks have been analyzed to determine if benchmarks are available that
measure that feature accurately and correctly. If the existing benchmarks have been
found to be deficient they have either been modified or new benchmarks have been
developed. Also, a very important step in any benchmarking effort is the
interpretation of the results produced by running the benchmarks. To help interpret

the results of the benchmarks, each benchmark is followed by a detailed discussion.

Performance characteristics considered important for a real-time embedded
application depend on the requirements of the application. For a class of real-time
embedded applications, it is possible to define the distinguishing characteristics of
such a system. A matrix can then be developed that maps these characteristics into
Ada features and then maps the Ada features into benchmarks [12]. The ultimate
goal of any benchmarking effort would be to have sets of benchmarks, where each set
evaluates an Ada compiler for a particular class of real-time applications. Each set
should include microscopic as well as composite benchmarks that are representative
code for that class of applications. Specific benchmarks that measure those Ada
features can then be extracted from the general set to form a set that evaluates a
compiler system for that particular class of real-time systems.

2.1 Benchmarking Approach

Benchmarks can be distinguished not only by the performance characteristic being
measured but also by the approach being used to measure that characteristic. As
discussed in the previous section, four distinct approaches are required to design
benchmarks to determine performance of Ada compiler systems. These approaches
are considered in the following sections.

2.1.1 Measure Performance Of Individual Features

This approach measures the execution speed of individual features of the language
and runtime system by isolating the feature to be measured to the finest extent
possible. Such benchmarks are useful in understanding the efficiency of a specific
feature of an Ada implementation. For example, a benchmark that measures the time
for a simple rendezvous can be run on two Ada compiler systems. Based on the
results, an application can choose one compiler system over the other. The advantage
of such an approach is performance evaluation without bias towards any application.
These tests are useful for bottleneck analysis in which a score for a given test must
exceed a stated threshold if an Ada implementation is to be considered suitable for an
application.

The problems with such an approach include determining and isolating the features of
the language and runtime system that are important for real-time embedded system
applications. Due to the complex nature of Ada, it is very difficult to determine which
features need to be benchmarked. Once the feature has been decided, isolating the

-10-

feature is another problem. This is due to the lack of precision in the translation of
source code to object code making the isolation of features difficult to achieve in
practice and more difficult to assume consistency from one implementation to
another. Also, this approach requires a significant number of tests and the numbers
produced have to be statistically evaluated to determine general performance.

The design of benchmarks intended to isolate features is often complicated by
unexpected interactions. Consider the assessment of task activation and heap
allocation time. Often measured separately, their interaction can be sigrificant and
complex, with significant variation between implementations. Storage allocation rules
are particularly vague within the language, so that a task activation could involve a
stack allocation, heap allocation or specific allocation from a pre-allocated storage
collection. Task allocation time will depend upon the implementation scheme and
possibly on the history of previous allocations at the time of activation. Feature
interactions can be static or dynamic. Examples of static interactions include:

e Code generated for storage allocation will require mter-task lockout if the
collection is shared by two or more tasks.

« Code generated for a FOR loop may depend on whether or not the loop is nested.

Examples of dynamic interactions include:

« Time for rendezvous can degrade with the number of eligible tasks due to the
search and sorting involved with prioritized dispatching.

o Time for dynamic allocation can depend on the state of storage management
following previous allocations due to the need to recover storage and efficiently
manage the available space.

The complexity of such interactions makes the task of isolating features in benchmark
construction more difficult. Benchmarks have been designed that take these complex
interactions into account and determine the effect on these interactions on the
performance of a feature.

2.1.2 Determining Runtime System Implementation

These benchmarks are concerned primarily with determining the implementation
characteristics of an Ada Runtime System. The scheduling algorithm, storage
allocation/deallocation algorithm, priority of rendezvous between two tasks without
explicit priorities are some of the many implementation dependent characteristics that
need to be known to determine if a compiler system is suitable for a particular real-
time embedded application. Some implementation dependencies cannot be
benchmarked and that information has to be obtained from the compiler vendor as

-11-

well as the documentation supplied by the vendor. A major effort in such benchmarks
involves interpreting the results obtained by running the benchmarks and drawing the
correct conclusions. A detailed description has been provided to help interpret the
results. The ARTEWG document "Catalog of Ada Runtime Implementation
Dependencies” [4] lists those Ada features that are implementation dependent. This
document has been consulted extensively in determining which implementation
dependencies need to be benchmarked for real-time embedded systems.

2.1.3 Real-time Paradigms

This approach also involves programming algorithms found in embedded systems. For
example, a situation in real-time systems may be a producer that monitors a sensor
and produces output asynchronously and sends it to a consumer. The producer task
cannot wait for a rendezvous with the consumer (who might be doing something else)
as the producer task might miss a sensor reading. To program this paradigm in Ada
requires three tasks: a producer task, a buffer task that receives input from the
producer task and sends the input to the third task:consumer task.

Macro constructs are defined as a set of Ada statements that perform a well defined
process e.g. semaphores, mailbox construct etc. For real-time embedded systems,
real-time paradigms can be identified and programmed in Ada using macro
constructs. These benchmarks can be run on Ada compiler implementations and
statistics gathered on their performance.

2.1.4 Composite Benchmarks

Rather than measuring individual features, this approach looks as much at the
interaction between features as to the performance of the features themselves. Good
examples of this approach involve the use of typical code segments from a given
application collected into a program whose overall performance is measured (like the
Ada Avionics Test Program Package developed by SofTech Inc.). The benchmarking
technique used to measure composite benchmarks is end-to-end where the measured
code is the entire program.

The advantage of this approach is that for a given application domain, running this
benchmark on different compiler implementations enables a straightforward selection.
Also there are no complex combinations of feature-by-feature evaluations to consider,
and no surprises stemming from an unenlightened evaluation.

-12-

The difficulty with composite assessments is their narrow scope of usefulness and their
bias towards the domain of applications from which the benchmarking code was
selected. Also, no single composite benchmark can capture all the information that
characterizes even a subset of the real-time applications domain.

There is room for compromise here. A benchmarking suite should consider
microscopic as well as composite benchmarks as well as some intermediate
assessments. Such intermediate assessments might look at typical real-time

programming paradigms.

The main thrust of the current task has been to benchmark micro constructs, real-
time paradigms, and to determine runtime system implementation. The area of
composite benchmarks has not been addressed and will be addressed in a follow-on
effort.

2.2 Benchmarking Techniques

This section discusses the overall program form and measurement techniques used in
the implementation of benchmarks. Benchmarking techniques are tied very closely to
the benchmarking approach being used. The following benchmarking techniques are
used very frequently in the design of benchmarks:

1. Dual loop method is used in the design of microscopic benchmarks. Two loops
are constructed, one with and one without the code to be measured. The loops
are iterated X number of times and then the difference between the start and
stop times for each loop is taken. Finally the difference between these two
differences divided by the number of iterations gives the execution time for a
feature.

2. Single program, End-to-End: In this technique the measured code is the entire
program. This is particularly appropriate for composite benchmarks where
feature isolation is not of concern.

3. Time Stamping and Object Labeling Within a Program: As a technique all
that is required here is the collection of clock times at particular points in the
program’s execution, or the collection of storage information or storage
addresses associated with particular objects within the program during its
execution. This information can then be analyzed later to determine processing
time or storage use. While it is a simple approach to measuring performance
characteristics, this technique requires that a suitable means can be found for
identifying the elements to be measured and that the measurement can be done
accurately enough.

-13-

4. Establishment of Timing/Storage-Use Patterns: Closely related to the
previous technique, this refers to the analysis of time stamping or object labeling
within a program. In this case the interest is not in the single measured result,
but rather in the pattern or the significance of differences identified as
indicators of implementation approach. For example, a history of task execution
times could be analyzed to deduce the task scheduling algorithm.

In addition to this classification based on the basis of program design, a broad
distinction needs to be made between the use of internal instrumentation and external
instrumentation.

2.3 Internal and External Instrumentation

Internal instrumentation refers to the use of Ada features to provide the measurement
desired, thus yielding a truly portable benchmark. External instrumentation requires
various additional measurement capabilities (e.g. various electronic instruments,
operating system commands, implementation specific runtime services) along with the
Ada program.

The basic measurements of interest in computer systems are time and space
utilization. Timing can be measured a) by either the standard Ada package
CALENDAR with its clock features, or through a custom developed clock package
which draw’s on the processor’s real-time or other clock capabilities and b) external
instrumentation employed in embedded systems debugging and test beds. The
problems with accessing the internal CLOCK are discussed later on in this report, but
some of them are:

« excessive time required for the clock function
« inconsistent time required for the clock function

« low resolution of the clock measurements.

Space utilization is a bit more difficult to measure, partly because it is difficalt to
specify what the essential data items are, but also because there is often not a good
way to get these measurements. The attributes of the language (SIZE and
"ADDRESS) can be used to prov1de one measurement service. An alternative
approach to measuring space utilization is a form of stress testing, in which processmg
with associated allocations is repeated until the exception STORAGE_ERROR is
raised. This could be used to determine the extent of storage available in different
situations. The stress test could be repeated with different data objects and program
units to provide a comparison of different usage patterns.

External instrumentation may offer greater accuracies or detailed measurements, but

-14-

it is necessarily unique to the one implementation and expensive to customize for each
system to be measured. Benchmarks relying on internal instrumentation on the other
hand are more portable and can be automated easily.

There are some measurements that require external instrumentation. If the dual loop
technique is not used to design a benchmark (e.g. time stamping is used) then a high-
resolution external clock may have to be used to provide greater accuracy. Also, times
attached to an external event require external instrumentation. Interrupt latency time
is defined as the time from interrupt occurrence to interrupt handier execution. There
is no difficulty in time stamping within the program the start of interrupt handler
execution, but some form of external instrumentation is necessary to accurately
schedule or capture the time of interrupt occurrence.

In this report, internal instrumentation has been used in the design of benchmarks.
This approach has been followed to make the benchmarks more portable and also to
enable comparison of the benchmark results more meaningful. Some benchmarks
need external instrumentation in order to get any meaningful results and these
benchmarks have been identified. Such benchmarks have to be tailored to the
particular hardware configuration and compiler system being used to perform the
measurement.

-15-

Chapter 3: Microscopic Benchmarks

Microscopic benchmarks are designed to measure the performance of individual
features of the Ada programming language. This chapter discusses two things in
detail: a) the methodology of designing such benchmarks, and b) the actual
benchmarks that have been developed for each Ada feature. Benchmarks have been
designed for all the major Ada language features that are important for real-time
embedded systems. Since optimizing compilers generate different code for the same
feature depending on the context in which the feature occurs, it has been attempted to
benchmark a particular feature under different scenarios. The results will demonstrate
the range of performance associated with a language feature.

Benchmarks that give false results about system timing and sizing for a real-time
embedded system application can have disastrous results. Hence, the importance of

designing benchmarks that:

« Isolate the feature that the benchmark is designed to measure
o Thwart compiler optimizations
« Provide sufficient accuracy

o Have repeatable results

cannot be emphasized more. In the following sections, we will discuss the techniques
used to design benchmarks that have the characteristics listed above. To determine
these techniques, existing benchmarks were researched. The benchmarks analyzed
included:

o The University of Michigan Benchmarks
« and Performance Issues Working Group [PTWG87] test suite.

After a detailed analysis of these suites, it was determined that the methodology
developed by the University of Michigan is best suited for benchmarking specific Ada
language and runtime features that are important for real-time embedded systems.
This suite addresses the issues that are of concern when designing benchmarks some
of which are : isolation of features, accuracy, and thwarting compiler optimizations. In
a separate paper [11], the PIWG benchmarks and the measurement techniques
adopted by the PIWG benchmarks have also been discussed. In the present effort,
the benchmarks are being designed for a dedicated embedded processor with real-
time clock service. Generally, there is no virtual memory paging or system daemons in
such an environment and hence there is no operating system interference. In a multi-
user, virtual memory system, other processes and the operating system interference
can easily distort the measurements.

-16 -

3.1 Benchmark Timing

This section discusses the strategy used for time measurements, the constraints placed
on test problems to permit them to be measured, the sources of measurement errors,
the steps taken to minimize errors and the error bounds.

For benchmarks that measure time values using the system function CLOCK, the
ideal design would be to determine the specific feature that needs to be measured and
perform that feature sandwiched between calls to the system CLOCK. The difference
in time is the execution time for that feature. For this measurement to be accurate,
the resolution of the CLOCK should be considerably less than the time required by
the operation to be measured. Generally, the system clock that is available to a
benchmark designer may be accurate to a tenth of a second and that is inadequate to
measure events in the millisecond and microsecond ranges. Measurement of time is
not an easy task and it leads to inaccuracies and misleading data. Some of the
problems that have to be overcome when accessing the internal CLOCK function
include:

1. Clock Precision: In designing portable benchmarks, one can only assume the
presence of the function CLOCK in the package CALENDAR. If the precision
of the CLOCK function is not very high it can cause errors in the timing
measurements. The precision of the CLOCK function is determined by
SYSTEM.TICK which is the basic clock period in seconds. This is the smallest
time period that can be measured by the CLOCK function. For a particular
host-target configuration, a more precise real-time clock can be acquired from a
vendor and this clock can be used for timing results. Calling this clock will
require a separate interface and this will result in making the benchmarks non-
portable. An imprecise clock can cause errors in benchmark timing
measurements. Generally the execution time of a Ada feature is much smaller
than SYSTEM.TICK.

2. Clock Overhead: Another problem is the inconsistent time required for the
CLOCK function. Some compiler implementation return an aggregate data
structure and this may require the calling of storage management functions.
This may result in inconsistent timing for the CLOCK function. A program is
used that calls upon the CLOCK function repeatedly. This measurement allows
an assessment of measurement stability and overhead.

3. Clock Jitter: Clock readings are subject to the usual statistical variations
associated with physical measurements and can be expected to show random
variations known as jitter.

To overcome these problems, a technique known as the dual loop technique is used to
measure the execution time for a specific feature.

-17 -

3.1.1 Dual loop Benchmarks

The strategy used in measuring the execution time for a specific feature is known as
the dual loop technique. In this techmque an operatlon is performed repetitively, and
the aggregate of multiple executions is timed. By performing the operation
repetitively, the time duration of a test is increased and the system clock can measure
this time precisely. In fact, this is done twice, once in a control loop without the
feature being measured, once in a test loop with the feature. Subtracting the
execution time of these two loops, and dividing by the number of executions yields a
calculated time for one execution of the feature. The dual loop technique solves a
number of problems that have been mentioned before.

1. By performing the operation repetitively the time duration of a test is increased
and the system clock can measure this test precisely. By increasing the number
of times the test problem is executed before accepting a measurement, the error
in each estimate can be reduced.

2. Clock jitter compensation is achieved by executing each measurement for a
minimum elapsed time. This time period is long enough so that the number of
clock ticks will average out the random jitter.

For the dual loop strategy to be successful, it is essential that the control loop and the
test loop (when executed without the feature being measured) should take identical
amounts of execution time. Also, the time taken in calling the CLOCK function
should remain constant. This assumption may always not be true and is discussed in
detail in later sections.

3.1.1.1 Isolation of Features and Preventing Code Optimization

A major problem in dual loop benchmarks is the isolation of the feature that has to be
measured. The benchmark should be designed such that the timing obtained after
subtracting the control loop from the test loop measures ONLY the performance of
the feature in question. Optimizations performed by a compiler can skew the
benchmark results even to the point of rendering them totally incorrect. These
optimizations (like removing code from test loops, eliminating subprogram calls,
constant folding etc.) are performed by the compiler even if the optimize option is not
specified at compile-time.

In dual loop benchmarks it is necessary to employ techniques that thwart
optimizations by a compiler. This can be done by hiding constant variables from view,
preventing simplification of loop constructs, and by arranging the order of compilation

-18-

for similar purposes.

L.

Eliminate Constants and Expressions in Loops: For the control loop, some
optimizing compilers may keep loop variables in registers (and not for the test
loop). This will make the timing measurements erroneous as the test loop will
b¢ slower itban it reaily is. To prevent this situation, the timing loop code
contains a call on an external procedure and the number of loop iterations is
controlled by external variables. Benchmarks have been designed such that
there are no constants or expressions in the loops whose times are being
measured.

Some compilers can generate different code for a construct depending on the
nesting level where the construction occurred. If FOR loops are used to control
the timing loops, a compiler might keep the innermost FOR loop index in a
register. The time it takes to enter a FOR loop will depend on the nesting level
of the FOR loops, because the nested loops must save and restore the registers
for the outer loops. To prevent compiler optimizations, a while statement is
used in both the control and test loops. The form of the while statement is:

while I < N loop

where I is the index variable and N is the iteration variable. A procedure is used
to increment the index variable. The body of this is defined in the body of a
separate library package. The iteration variable is defined and initialized in the
specification of the same library package. The body of this library package is
compiled separately from the package specification (with the body being
compiled after the benchmarking unit). The purpose of keeping iteration values
in variables (not constants), hiding the increment procedure in the body of the
library package and separate compilation was to prevent the removal of
benchmark loops by optimization.

Ensuring the Execution of the Feature being tested and preventing the
elimination of the control loop by the compiler: To prevent this from
happening, additional functions are inserted in the control and test loops and the
feature being measured is placed in a subprogram which is called from a library
unit.

The form of the test loop is:

-19-

T1:= CLOCK;

while I < N loop
control functions;
DO_SEPARATE PROC F; --fn F whose time is measured
INCREMENT(I)

end loop;

12:= CLOCK;

Tm:=T2-T1;

The form of the control loop is:

Ti:= CLOCK;

while I < N loop
control functions;
DO_SEPARATE PROC NULL;
INCREMENT(I)

end loop;

T2:= CLOCK;

Tm:=T2-TI1;

The bodies of the subprograms DO_SEPARATE PROC F and
DO_SEPARATE PROC NULL are compiled separately and after the
benchmarking unit. This prevents the compiler from removing anything from
the control and test loops.

3.1.2 Measurement Accuracy

Once a feature has been identified, the next part is writing benchmarks that
measure that feature accurately. In the University of Michigan report [1], it has
been proved that tie accuracy with which a feature can be measured depends on
SYSTEM.TICK divided by the number of iterations of the benchmark. Most of
the Michigan tests have a iteration count of 10000. If SYSTEM.TICK is 10
milliseconds, the accuracy of a measurement is within a microsecond. In the
benchmarks that we have designed, the desired accuracy can be specified by
adjusting the number of iterations.

3.1.3 Factors Affecting Benchmark Results

-20-

This section briefly describes the factors that may cause Ada benchmarks to
produce incorrect results. In a recent report published by the Software
Engineering Institute [2], and from previous efforts in running the University of
Michigan benchmarks on DDC-I Ada Compiler System (hosted and targeted
for the MicroVAX II), some negative results were encountered ir. running these
benchmarks. If the control loop is a subset of the test loop, then the timing
difference between the test loop and the control loop has to be positive. The
SEI report has discussed in great detail the reasons that might cause the
benchmarks to report negative results. Some the reasons that may cause
erroneous results are:

e placement of code into memory

o asymmetrical translation (where the sequence has fewer machine code
instructions)

system software effects

speed of main memory and use of cache memory

Processor design: pipelining, multi-processor and distributed architectures.

Hence before dual loop benchmarks are run on a system, it is necessary to verify
that the loop times are similar by coding identical loops in a procedure and
comparing their execution times (calibration tests). Tests have been provided
that measure the timing of identical loops. For systems with cache memory, it is
essential to ensure that both the control and test loops are aligned to cause the
same number of cache triggerings. A number of calibration tests that should be
run before the benchmarks are executed. If the calibration tests show
discrepancies, then this wiii require the examination of machine code and the
target hardware.

3.1.4 Dual Loop Calibration Benchmarks

The purpose of the dual loop calibration benchmarks (loop_verify.a) is to
determine if identically coded loops have identical execution times.

loop_verify.a: The benchmark design involves calling five functions executed in
succession. Each function returns a DURATION value. This value is the time
taken by a loop statement whose format is as follows:

-21-

START _TIME := CLOCK;
while OUTER _INDEX < OUTER _ITERATIONS loop
INNER INDEX = 0;
while INNER_INDEX < INNER_ITERATIONS loop
declare
begin
DO _NOTHING_IN_ OUT(DUMMY1);
end; --declare
INCREMENT(INNER_INDEX);
end loop;
INCREMENT(OUTER_INDEX);
end loop;
END _TIME := CLOCK;

The loop is executed (INNER ITERATIONS * OUTER_ITERATIONS)
times. The function calls are made in an arbitrary order to allow detection of
any effects relating to the total number of machine cycles as opposed to the
ordering of the loop routines. Each function call sequence is executed
TEST_REPETITIONS times and there are five total sequences.

The benchmark output consists of the loop timings for each of the five function
calls for each sequence. For each sequence run, the timings for the loops are
listed and this is repeated TEST REPETITIONS times. After the first
sequence has been run, the second sequence follows the same pattern as above
and is repeated TEST _REPETITIONS times.

The loop timings for each of the five function calls (irrespective of the sequence
in which the loops are called) should be identical with an error margin of not
more than 5% in the timing difference recorded. If the error margin for any
loop timing is more than 5%, then the cause for the difference has to be
investigated with the compiler vendor.

Verdix: The results of running this benchmark on the Verdix compiler indicated
that the timings of the loop varied from 30.2 microseconds to 31.1 microseconds.
Interpretation of Results:

1. For the Verdix compiler, the difference of the timing values obtained is
well within the 5% range of error. Hence, the dual loop technique can be
applied to the Verdix compiler.

3.2 Ada Features For Microscopic Benchmarking

To identify Ada language and runtime features important for embedded systems
applications is an extremely complex task. A list of Ada features whose
performance measurement is necessary for designers of real-time embedded
systems is presented below. Emphasis has been placed on Ada features used for
real-time programming rather than on Ada software engineering principles like
packages and generics.

o Tasking

o Memory management

o Exception handling

o Chapter 13 Benchmarks

o Interrupt Handling

o CLOCK overhead and Type Duration
o Numeric Computations

o Subprogram call overhead

o Pragmas
e Input/Output

Scheduling and delay statement is covered under Runtime implementation
dependencies. There are benchmarks for all the major Ada language features
that are important for real-time embedded systems. Since optimizing compilers
generate different code for the same feature depending on the context in which
the feature occurs, it has been attempted to benchmark a particular feature
under different scenarios. The results will demonstrate the range of
performance associated with a language feature. Examples include: subprogram
calling, task creation, activation, and termination, task rendezvous, exception
handling, 1/O, numeric processing etc.

33 Tasking

For Ada to fulfill its potential for embedded systems, its model of concurrency -
the tasking model - must be sufficiently fast to meet the timing needs of such
systems. There is a significant amount of necessary overhead involved with
tasking because status must be maintained for context switching, task
dependencies, task abortion and termination, and task communication and
synchronization.

Concern over efficiency and semantics of Ada tasking could force many

organizations using Ada to avoid the tasking facilities entirely, relying instead
on a separately written executive. Not only will this defeat the whole purpose of
Ada, but it will also produce inefficient code at the Ada source level, since Ada
tasking features could be better suited for programming real-time embedded
systems applications.

3.3.1 Tasking Benchmarks

Tasking overhead affects the efficiency of the system in both sizing and timing as
the Ada runtime system contains the code that implements the Ada tasking
features (entry calls, accepts, selects, etc.). The reason why benchmarking
tasking constructs is extremely important is the fact that the Ada Language
Reference Manual outlines the interface to the tasking system from an
applications program and a method of communication and synchronization
between tasks, but has left a large part of the implementation of that system
undefined. For real-time embedded systems, it is essential that the timing
overhead due to tasking constructs like task allocation, task
activation/termination, task switching, synchronization and rendezvous be
determined for a Ada compiler system’s suitability for a real-time embedded
application.

3.3.1.1 Task Activation/Termination

It is important to understand some of the activities that take place during task
activation. Unlike other languages such as Modula-2 and HAL/S, which require
the programmer to make explicit activation calls, Ada has a predefined
activation facility. Ada elaboration starts with packages "withed" by the main
procedure to find the leaves of the elaboration tree (lowest level unit with no
other "with" dependencies). When the elaboration facility finds the lowest unit it:

1. creates a task control block for each task object, getting the space from
the heap

2. creates task-stacks for each task body it elaborates, getting the space from
the heap

3. allows tasks to start executing when the begin statement of the parent unit
is reached. For task objects created from an access type, the elaboration
and activation occur when the task object is created.

This process is repeated until all *withed" packages are elaborated. Finally, the
tasks declared in the main program are activated. Task activation requires some
degree of synchronization with the parent unit, and some checks need to be
performed. The start and end of task activation have to be synchronized with
the parent unit or with the unit which causes the task activation. Furthermore,
due to the semantics of the abort statement, a check must be made to see if the
task has become abnormal.

The act of task termination, in general, requires some form of synchronization
with certain other tasks (in simple cases a task termination must coincide with
the termination of all dependent tasks). Typically the runtime system updates a
database of terminate dependencies each time the runtime scheduler is invoked.

Some points to note about task activation/termination benchmarks are:

1. The time to elaborate, activate and terminate a task is measured as one
value. The individual components of the measurements are too quick to
measure with the available CLOCK resolution.

2. An important criteria for tasking benchmarks is the STORAGE SIZE
used by the tasks that are elaborated. Some implementations may
implicitly deallocate the task storage space on return from a procedure or
on exit from a block statement (when the task object is declared in that
procedure or block statement). If task space is implicitly deallocated, the
number of iterations can be increased to get greater accuracy for task
activation/termination measurement. If task space is not deallocated on
return from a procedure or block statement, then the attribute
TASK _TYPE'STORAGE . SIZE can be changed such that the number of

iterations {and hence the number of tasks activaied aud aceuracy of the

measurement) can be increased. The number of iterations is coarsely
equal to the size of the heap space available divided by the
STORAGE_SIZE specified.

3. The default task stack size for the Verdix Ada compiler is 10240 bytes.
The Verdix Runtime System does not automatically deallocate objects
(both listed in the Verdix documentation as well as determined by the
benchmarks). Since the RAM available was 2 megabytes, this translates
to about 175 tasks (=> 175 iterations) that could be activated to get the
timing for task activation/termination. To get a better resolution for task
activation/termination timings, the STORAGE SIZE was reduced to
1000 bytes (via representation clause) and the number of 1terat10n thus
increased to 1000.

Table 1 lists the benchmarks that have been developed for Task
activation/termination.

TABLE 1
Task Activation/Termination Benchmarks
(Verdix Execution Time in milliseconds)

File Name | Benchmark Description Time
t00001.a Task type in main, object in block statement 48
t00001_1 Task object is declared directly in block statement | 4.8
t00001 2.a | Task type and object defined in package procedure | 4.8
t00001_3.a | Task type in package, object in package procedure | 4.8
t00001_4.a | Task type and object are declared in another task 48
t00002.2 Task type and array elaborated in a procedure 12.03
t00002_l.a | Task type in package, array in procedure 12.66
t00002_2.a | Task type in main, array in package procedure 12.04
t00003.a Task object is declared as part of record 49
t00004.a Task access type in main, task created via new 45
t00004_1.a | Task access type in block, task created via new 49
t00004_2.a | Task access type in main, array created via new 4.55
t00005.a Task object in block statement, idle tasks=1 48
t00005_1.a | Task object in block statement, idle tasks=5 48
t00005_2.a | Task object in block statement, idle tasks=10 49
t00005_3.a | Task object in block statement, idle tasks=20 49
t00006.a Task created via new allocator, idle tasks=1 45
t00006 1a | Task created via new allocater, idle tasks=5 4.5
t00006_2.a | Task created via new allocator, idle tasks=10 46
t00006_3.a | Task created via new allocator, idle tasks =20 4.6

33.1.1.1 BENCHMARK: Measure task activation and termination time
(without the new operator) where

o 100001.a: Task type is declared in the main program and task object is declared
in a block statement in the main program.
Entry into the block statement elaborates and activates the task object and
the block statement exits when the task terminates. '
Verdix: Task elaborate, activate, and terminate time is 4.8 mil’iseconds.

o 100001 _l.a: Task object is declared directly in a block statement. The task
object is declared directly and does not belong to any task type.
Entry into the block statement elaborates and activates the task object and
the block statement exits when the task terminates.

Verdix: Task elaborate, activate, and terminate time is 4.8 milliseconds.

o t00001 2.a: Tusk type and task object are defined in a procedure which is
declared in a package.
This procedure is called from the main program. Entry into the procedure
activates the task object and the procedure exits when the task terminates.
Verdix: Task elaborate, activate, and terminate time is 4.8 milliseconds.

« t00001_3.a: Task type is declared in a package and task object is declared in a
procedure.
Procedure is declared in the same package in which the task type is declared.
This procedure is called from the main program. Entry into the procedure
activates the task object and the procedure exits when the task terminates.
Verdix: Task elaborate, activate, and terminate time is 4.8 milliseconds.

o t00001 4.a: Task type and task object are declared in another task which is
declared in the main program.
This benchmark measures task activation and termination times for a task
which is declared in another task.
Verdix: Task elaborate, activate, and terminate time is 4.8 milliseconds.

Interpretation of results:

1. The activation and termination time of tasks for the various scenarios that
are described above determine if a real-time programmer should declare
tasks for time-critical modules in a) packages or in the main procedure, b)
in procedures that are repeatedly called by other procedures, or c) within
other tasks in the system.

2. The task activation/termination timings should be compared to the
timings obtained hy T‘l_!!'l_nﬂlg the benchmarks on other cngﬂer systems,

o2 Vil Veadva

3.3.1.1.2 BENCHMARK: Measure activation/termination time for a) an array
of tasks and b) task object declared as part of a record.

For array of tasks, the times recorded are of arrayLENGTH task
activations/terminations.

« 100002.a: Task type and array object are defined and elaborated in a procedure
which is declared in a package.
This procedure is called from the main program. Entry into the procedure
activates the array of tasks and the procedure exits when the tasks terminate.
The task STORAGE_SIZE may have to be reduced in order for a larger
array to be activated, thus increasing the measurement resolution.
Verdix: Task elaborate, activate, and terminate time is 12.03 milliseconds.

o 100002 l.a: Task type is defined in a package. Task array object are defined in
a procedure which is declared in the same package as the task type declaration.
Verdix: Task elaborate, activate, and terminate time is 12.66 milliseconds.

.27-

o t00002 2a: Task type is defined in the main program. Task array is defined
and used in a procedure declared in the main program.
Verdix: Task elaborate, activate, and terminate time is 12.04 milliseconds.

o t00003.a: Task object is declared as part of a record. Task and record type are
declared in the main program.
Verdix: Task elaborate, activate, and terminate time is 4.9 milliseconds.

Interpretation of results:

1. For the Verdix compiler, the average time for task activation/termination
for tasks declared in arrays is around 12.00 milliseconds, which is
significantly higher than the task activation/termination time (4.8
milliseconds) for tasks declared in the main program. This is due to the
fact that as each task in the array is elaborated, the task space for that task
is left intact till all tasks in the array have been elaborated. Storage
allocation times for tasks may deteriorate as more and more space has
been allocated.

2. Timings for task object declared in a record should be compatible with
simple task activation/ter.uination timings (Section 3.3.1.1.1). This is due
to the fact that the runtime system treats an Ada task object which is
declared as the component of a record the same as a task object declared
separately in the main program. For the Verdix compiler, the time for
task declared in a record is 4.9 milliseconds as compared to 4.8
milliseconds for tasks declared in the main program.

3.3.1.1.3 BENCHMARK: Measure the time to activate and terminate a task

P PN 4--
created via the new allocato

Since task access object does not cxist on exit from the block statement, the
t.ming measurzd includes both allocation and deallocation timings for the task
as well as task activation and termination times.

o t00004.a: Task type is declared in the main program, and task is created via the
new allocator in a block statement.
The task STORAGE_SIZE may have to be reduced in order for a larger
number of tasks to be created, thus increasing the measurement resolution.
Verdix: Task elaborate, activate, and terminate time for this scenario via the
new allocator is 4.5 milliseconds.

o t00004_1.a: Task type is declared in a block and task object is created via the
new allocator in the same block statement where the task was declared.
Verdix: Task elaborate, activate, and terminate time for this scenario via the
new allocator is 4.9 milliseconds.

o 100004_2.a: Task type is declared in the main program and an array of 1000
tasks is allocated in a block statement via the new statement.
Verdix: Task elaborate, activate, and terminate time for this scenario via the

new allocator is 4.55 milliseconds.

Interpretation of results:

1. The overhead associated with creating a task via the new operator can
increase significantly if space is not implicitly deallocated when a task
terminates upon exit from the block statement.

2. The Verdix compiler takes less time (4.5 milliseconds) for task
activation/termination timing via the new allocator as compared to task
objects declared in the main program (4.8 milliseconds).

3.3.1.1.4 BENCHMARK: Measure the time to activate and terminate a task
object declared in the declarative part of a block as the number of existing
active tasks keeps on increasing.

This benchmark measures the degradation in task activation/termination time
as the number of tasks in the system increases. A task activation could involve a
stack allocation, heap allocation, or specific allocation from a pre-allocated
storage collection. As more and more tasks are created, task activation time
may increase due to the possible increase in storage allocation time.

o t00005.a : Number of existing active tasks = 1.
Verdix: Task elaborate, activate, and terminate time for this scenario is 4.8
milliseconds.

o t00005_1.a:Number of existing active tasks = 5.
Verdix: Task elaborate, activate, and terminate time for this scenario is 4.8
milliseconds.

o t00005_2.a:Number of existing active tasks = 10.
Verdix: Task eiaborate, activate, and terminate time for this scenario is 4.9
milliseconds.

o t00005_3.a:Number of existing active tasks = 20.
Verdix: Task elaborate, activate, and terminate time for this scenario is 4.9
milliseconds.

Interpretation of results

1. These timings are compared with the timing obtained in Section 3.3.1.1.1
(t00001.a) to determine degradation in task activation/termination timings
(if any) as the number of active tasks in the system increases. For the
Verdix compiler, task activation/termination time increases to 4.9
milliseconds from 4.8 milliseconds when the number of tasks that are
active is 10 or more.

3.3.1.1.5 BENCHMARK: Measure the time to activate and terminate a task
created via the new allocator in a block as the number of existing active tasks

-29.

keeps on increasing.

This benchmark measures the degradation in task activation/termination time
as the number of tasks in the system increases. Task allocation time will depend
on the implementation scheme and possibly on the history of previous
allocations at the time of activation. As more and more tasks are created, task
activation time may increase due to the possible increase in storage allocation
time.

o t00006.a : Number of existing active tasks = 1.
Verdix: Task elaborate, activate, and terminate time for this scenario via the
new allocator is 4.5 milliseconds.

o t00006_I.a:Number of existing active tasks = 5.
Verdix: Task elaborate, activate, and terminate time for this scenario via the
new allocator is 4.5 milliseconds.

o t00006 2.a:Number of existing active tasks = 10.
Verdix: Task elaborate, activate, and terminate time for this scenario via the
new allocator is 4.6 milliseconds.

o t00006_3.a:Number of existing active tasks = 20.
Verdix: Task elaborate, activate, and terminate time for this scenario via the
new allocator is 4.6 milliseconds.

Interpretation of results

1. These timings are compared with the timing obtained in Section 3.3.1.1.3
(t00004.a2) to determine degradation in task activation/termination timings
(if any) as the number of active tasks in the system increases. For the
Verdix compiler, task activation/termination time increases to 4.6
milliseconds from 4.5 milliseconds when the number of tasks that are
active is 10 or more.

3.3.1.2 Task Synchronization

In Ada, tasks communicate with each other via the rendezvous mechanism.
Rendezvous are effectively similar to procedure calls, yet they are much more
complex to implement, and therefore create a tremendous amount of overhead
for the runtime system. This overhead affects the efficiency of the system in
both sizing and timing. One task must always wait for the other to reach the
point of the rendezvous, the system must invoke the rendezvous when both tasks
are ready, and context switches are required between the tasks during
rendezvous. Priorities are not static during a rendezvous and this presents
additional overhead during execution time.

-30-

The calling task is suspended until the rendezvous is completed. The called task
then evaluates the statement in the range of the accept statement. Rendezvous
involves at least two context switches: one to the runtime system and then
another to the acceptor if it is ready to accept the rendezvous. Before control is
transferred to the acceptor of the rendezvous, additional overhead is involved in
checking if the acceptor is indeed ready to conduct the rendezvous. Because of
the timing constraints in a real-time embedded system, it is essential that the
rendezvous mechanism be as efficient as possible. Time for rendezvous can
degrade with the number of eligible tasks due to the search and sorting involved
with prioritized scheduling.

In a nutshell, task rendezvous involves:

o Passing rendezvous parameters which may involve both the task’s stacks or
the allocation of a separate area for passing large structures. Returned
rendezvous parameters may involve the copying of data from one task’s data
area to the other’s.

 Performing the appropriate constraint checking
e Determining the availability of space.

Table 2 lists the benchmarks for simple rendezvous.

-31-

TABLE 2
Simple Rendezvous Benchmarks (No Parameters P. ssed)
(Verdix Execution Time in microseconds)

File Name | Benchmark Description Time
r00001.a Procedure calls entry of task declared in main 358
r00001_l.a | Procedure calls entry in task created via new 356.8
r00001 2.a | Main calls entry in task decl in package 3552
r00002.a Main calls two entries in two tasks decl in package 3543
r00002_1.a | Main calls 10 entries in ten tasks decl in package 3539
r00002_2.a | Main calls 10 entries in one task decl in package 3526
r00003.a Main calls 1st entry in select, 2 entries decl 4127
r00003_1.a | Main calls last entry in select, 2 entries decl 436.8
r00003_2.a | Main calls 1st entry in select, 10 entries decl 4747
r00003_3.a | Main calls last entry in select, 10 entries decl 684.3
r00003_4.a | Main calls 6th entry in select, 10 entries decl 5810
r00003_5.a | Main calls 1st entry in select, 20 entries decl 3535
r00003_6.a | Main calls last entry in select, 20 entries decl 994.1
r00003 7.a | Main calls 11th entry in select, 20 entries decl 786.3
r00004.a Main calls 1st entry out of 2, 1st guard true next false 4143
r00004_l.a | Main calls last entry out of 2, st guard talse next true 456.7
r00004_2.a | Main calls 1st entry out of 20, 1st guard true rest false 563.6
r00004_3.a | Main calls last entry out of 20, last guard true rest false 1337.2
r00004 4.2 | Main calls 11th entry out of 20, 11th guard true rest false | 792.1
r00004_S.a | Main calls 11th entry out of 20, all guards true 786.3

3.3.1.2.1 BENCHMARK: Measure time for simple rendezvous

The simple rendezvous time gives a lower bound on the rendezvous time
because no extraneous units of execution are competing for the CPU. This
overhead is expected to occur each time two tasks are in a rendezvous and does
not include any execution time for the statements within the accept body.

« r00001.a: Procedure in main program calls an entry of task which is declared in
main program. The entry call is made with no parameters.
Verdix: Task rendezvous time for this scenario is is 358 microseconds.

e r00001_1.a: Procedure in main program calls an entry in a task, where the
access type is declared in a package. The task is allocated via the new operator
in a block statement in the main program. The entry call is made with no

-32-

parameters.
Verdix: Task rendezvous time for this scenario is is 356.8 microseconds.

e 00001 2.a: Main program calls an entry in another task where the task object
is declared in a library package. Entry call is made with no parameters.
Verdix: Task rendezvous time for this scenario is is 355.2 microseconds.

Interpretation of results:

1. Task rendezvous time for the various scenarios discussed above vary from
355 to 358 microseconds. This can be compared to rendezvous times
obtained by running the benchmarks on another compiler. Large task
rendezvous time may force real-time embedded system programmers not
to use task rendezvous in their software development phase or to use
another compiler whose rendezvous times are acceptable.

3.3.1.2.2 BENCHMARK: Measure time for simple rendezvous. More than one
entry is called to measure rendezvous time. These entries can all be in a single
task or single entries in multiple tasks.

The results of these tests will indicate if it is advantageous to have more tasks
with less entries or less tasks with more entries. Rendezvous times obtained can
be compared to rendezvous times obtained by benchmarks in Section 3.3.1.2.1.
These times should be compatible and any significant difference in these times
should be investigated further with the compiler vendor.

o r00002.a: Main procedure calls two entries in two tasks declared in a package.
The entry calls are made with no parameters. Each task has a single entry
declared.

This scenario is essentially the time for simple rendezvous with two entries in
two separate tasks.
Verdix: Task rendezvous time for this scenario is is 354.3 microseconds.

o r00002_1.a: Main procedure calls 10 entries in ten tasks declared in a package.
The entry calls are made with no parameters.
Verdix: Task rendezvous time for this scenario is is 353.9 microseconds.

o r00002_2.a: Main procedure calls 10 entries declared in a single task with no
parameters.
The entry calls are made one after the other and the accept statements are
also sequential and not in a select statement.
Verdix: Task rendezvous time for this scenario is is 352.6 microseconds.

Interpretation of results:

1. For the Verdix compiler, the timing for rendezvous is nearly the same for
the scenarios in which the main program calls ten entries in 10 different
tasks or the main program calls 10 entries in one task.

-33-

3.3.1.2.3 BENCHMARK: Measure the effect on the time required for a simple
rendezvous, where a procedure in the main program calls an entry in another
task with no parameters as the number of accept alternatives in the selective
wait increases.

The times measured by these tests determine the effect on entry call time as the
number of accept alternatives in a select statement increases. For some
implementations, time for a rendezvous may also be affected by the position of
the accept alternative in the select statement. Based on these tests, application
designers can choose to place the most time-critical accept statements in a
certain manner.

This benchmark is executed with the following scenarios:

e r00003.a (r00003_1.a): Main procedure calls first (last) entry in a select
statement. 2 entries declared with no parameters.
Verdix: Task rendezvous time for r00003.a (r00003 l.a) is 412.7 (436.8)
microseconds.

e 00003 2.a (r00003_3.a, r00003 4.a): Main procedure calls first (last, 6th)
entry in a select statement. 10 entries declared with no parameters.
Verdix: Task rendezvous time for r00003_2.a (r00003_3.a, r00003_4) is 474.7
(684.3, 581.0) microseconds.

o r00003 5.a (r00003_6.a, r00003_7.a): Main procedure calls first (last, 11th)
entry in a select statement : 20 entries declared with no parameters.

Verdix: Task rendezvous time for r00003_5.a (r00003_6.a, r00003_7) is 553.5
(994.1, 786.3) microseconds.

Inter; retation of results:

1. For the Verdix compiler, the measurements taken indicate that the more
the number of entries in a select statement, the more time it takes to
rendezvous with any entry in the select statement.

2. Also, for the Verdix compiler the later the position of the accept in the
select statement, the more time it takes for the rendezvous to complete.

3.3.1.2.4 BENCHMARK: Measure the effect of guards (on accept statements)
on rendezvous time, where the main program calls an entry in another task
(with no parameters) as the number of accept alternatives in the select
statement increases.

The times measured by these tests determine the affect on rendezvous time of
guard statements as the number of accept alternatives in a select statement
increases. For some implementations, rendezvous time may depend on the
number of open guard statements.

This benchmark is executed with the following scenarios:

o r00004.a (r00004_1.a): Main program calls first (last) entry in select statement.
2 entries are declared: first guard is true (false), next one is false (true).

Verdix: Task rendezvous time for r00004.a (r00004_l.a) is 414.3 (456.7)
microseconds. The task rendezvous time for the entry call made to the first
accept statement in the select statement when the first guard is true is 414.3
microseconds as compared to 412.7 microseconds without the guard
condition. The task rendezvous time for the entry call made to the last
accept statement in the select statement when the last guard is true is 456.7
microseconds as compared to 436.8 microseconds without the guard
condition.

r00004_2.a (r00004_3.a, r00004_4.a): Main program calls first (last, 11th) entry
in select statement. 20 entries are declared: first (last, 11th) guard is true, rest
false.

Verdix: Task i< idezvous time for r00004_2.a (r00004_3.a, r00004_4) is 563.6
(1337.2, 792.1) microseconds. The task Tendezvous time for the entry call
made to the first accept statement in the select statement when the first
guard is true is 563.6 microseconds as compared to 553.5 microseconds
without the guard condition. The task rendezvous time for the entry call
made to the last accept statement in the select statement when the last guard
is true is 1337.2 microseconds as compared to 994.1 microseconds without
the guard condition. The task rendezvous time for the entry call made to the
11th accept statement in the select statement when the 11th guard is true is
792.1 microseconds as compared to 786.3 microseconds without the guard
condition.

r00004_5.a: All guards are true and 11th entry is called.

Verdix: The task rendezvous time for the entry call made to the 11th accept
statement in the select statement when all guards are true is also 792.1
microseconds as compared to 786.3 microseconds without the guard
condition.

Interpretation of results:
Some conclusions that can be drawn about the Verdix compiler are as follows:

1.

There is non-trivial time involved in evaluating guards for the accept
statements. Rendezvous time with guards is more than rendezvous time
without guards.

The greater the number of guards in the select statement, and the later
the position of the accept statement in the select, the more time it is going
to take for the rendezvous.

Table 3 lists the benchmarks for complex rendezvous. For each benchmark, the
direction passed for the parameters, number and type of parameters, and the
size of the parameters is also listed in the table. For array parameters, the
column Size denotes the attribute LENGTH of the array.

-35.

TABLE 3
Complex Rendezvous Benchmarks
(Verdix Execution Time in microseconds)

File Direction | Type and Size Time
Name Passed Number Passed

r00005_i.a In Integer Array 1 376.5
r00005_o.a Out Integer Array 1 39.1
r00005_io.a In Out Integer Array 1 397.4
r00005_1ia | In Integer Array 1000 | 355.7
r00005_1 o.a { Out Integer Array 1000 | 3555
r00005_1 io.a | In Out Integer Array 1000 | 355.7
00005 2 ia | In Integer Array 10000 | 354.5
r00005_2 o.a | Out Integer Array 10000 | 3545
r00005_2_io.a | InOut Integer Array 10000 | 3545
r00005 3 ia | In 1 Integer 3549
r00005_3 o.a | Out 1 Integer 3546
r00005_3 io.a | InQut 1 Integer 3554
r00005 4 ia | In 10 Integers 3619
r00005_4 o.a | Out 10 Integers 367.6
r00005_4_io.a | In Out 10 Integers 376.4
r00005_ 5 ia | In 100 Integers 455.8
r00005_5 o.a | Out 100 Integers 546.0
r00005_5_io.a | In Out 100 Integers 5437

3.3.1.2.5 BENCHMARK: Measure the time required for a complex rendezvous,
where a procedure in the main program calls an entry in another task with
different type, number and mode of the parameters.

Rendezvous time may depend on the size and type of the passed parameters
which may involve both the task stacks or the allocation of a separate area for
passing large structures. Returned rendezvous parameters may involve the
copying of data from one task’s data area to the other’s. Also the appropriate
constraint checking has to be done while passing the parameters. Increasing
rendezvous times for array parameters as the size of the array increases implies
that the implementation uses pass by copy instead of pass by reference.

The types and modes of the parameters are as follows:

o r00005_i.a (r00005_o.a, rO0005_io.a): Main calls an entry in another task with
Integer array of size 1 as parameter: mode in (out, in out).
Verdix: Rendezvous time for r00005_i.a (r00005_o.a, r00005_io.a) is 376.5

-36-

(399.1, 397.4) microseconds.

o 100005 1 _i.a (r00005_1_o.a, r00005_1 _io.a): Main calls an entry in another
task with Integer array of size 1000 as parameter: mode in (out, in out).

Verdix: Rendezvous time for r00005_1_i.a (r00005_1_o.a, r00005_1_io.a) is
355.7 (355.5, 355.7) microseconds.

o 100005 2 _i.a (r00005_2 o.a, r00005_2_io.a): Main calls an entry in another

task with Integer array of size 10000 as parameter: mode in (out, in out).

Verdix: Rendezvous time for r00005_2 i.a (r00005_2 o.a, r00005_2 io.a) is
354.5 (354.5, 354.5) microseconds.

o r00005_3 _i.a (r00005_3_o.a, r00005_3_io.a): Main calls an entry in another
task with one Integer parameter: mode in (owt, in out).

Verdix: Rendezvous time for r00005_3 i.a (r00005_3_o.a, r00005_3 io.a) is
354.9 (354.6, 355.4) microseconds.

o r00005 4 _i.a (r00005_4_o.a, r00005 4_io.a): Main calls an entry in another
task with 10 Integer parameters: mode in (out, in out).
Verdix: Rendezvous time for r00005_4_i.a (r00005_4_o.a, r00005_4_io.a) is
361.9 (367.6, 376.4) microseconds.

o r00005_5 _i.a (r00005 5 o.a, r00005_5_io.a): Main calls an entry in another
task with 100 Integer parameters: mode in (out, in out).

Verdix: Rendezvous time for r00005_5_i.a (r00005_5_o.a, r00005_5_io.a) is
455.8 (546.0, 543.7) microseconds.

Interpretation of results:

1. The measurements indicate that the rendezvous time for passing an
integer array of size 1 is significantly higher than rendezvous time for
integer arrays of size 1000 or more.

2. As far as integer parameters are concerned, the Verdix compiler uses pass
by copy (due to the fact that the time for rendezvous increases with the
increase in the number of integer parameiers). Also, the time for mode
out and in out parameters is more than the time required for parameters
of mode in. This is logical since the compiler has to copy back the change
in value that can occur with a variable of type out or in out.

Table 4 lists more rendezvous benchmarks. All parameters in these benchmarks
are passed with mode in out.

-37-

TABLE 4

More Rendezvous Benchmarks
(Verdix Execution Time in microseconds)

File Name Benchmark Description Time
r00006_1_l.a | 1st entry out of 2 called with 10 integers 4294
r00006_1 2.a | 1st entry out of 2 called with 100 integers 6925
r00006_2 l.a | Last entry out of 2 called with 10 integers 4540
r00006_2 2.a | Last entry out of 2 called with 100 integers 614.2
r00006_3_l.a | 1st entry out of 10 called with 10 integers 503.1
r00006_3 2.a | 1st entry out of 10 called with 100 integers 653.1
r00006_4_l.a | Last entry out of 10 called with 10 integers 692.7
r00006_4 _2.a | Last entry out of 10 called with 100 integers 944.6
r00006_5_l.a | 1st entry out of 20 called with 10 integers 5810
r00006_5 2.a | 1st eatry out of 20 called with 100 integers 730.7
r00006_6_1.a | Last entry out of 20 called with 10 integers 984.0
r00006_6 2.a | Last entry out of 20 called with 100 integers 1235.7
r00007.a Overhead due to terminate alternative 0.9
r00008.a Overhead of conditional entry call rendezvous complete 0.6
r00008_l.a Overhead of conditional entry call,rendezvous incomplete | 253
r00009.a Overhead of timed entry call rendezvous complete 9.7
r00009_l.a Overhead of timed entry call rendezvous incomplete 253
r00011.a Main calls an entry with 100 Integers,Idle tasks = 1 5300
r00011_la Main calls eatry with 100 Integers,Idle tasks = § 5299
r00011_2.a Main calls entry with 100 Integers,Idle tasks = 10 530.0
100011 3.a | Main calls entry with 100 Integers,Idle tasks = 20 5299

3.3.1.2.6 BENCHMARK: Measure the effect on time required for a complex
rendezvous, where the main program calls an entry in another task with
different type, number and mode of the parameters as the number of accept
alternatives in the select statement increase.

For some implementations, time for a rendezvous may be affected by the
position of the accept alternative in the select statement.

This benchmark is executed with the following scenarios:

« r00006 1 l.a (r00006 1 2.a): First entry out of 2 called with 10 (100)
integers:mode in out.
Verdix Rendezvous time for r00006_1_l.a (r00006_1 2.a) is 429.4 (692.5)

-38-

microseconds.

100006 2 1.a (r00006 2 2.a): Last entry out of 2 called with 10 (100)
integers:mode in out.
Verdix: Rendezvous time for r00006_2_l.a (r00006 2 2.a) is 454.0 (614.2)
microseconds.

o r00006_3_1.a (r00006 3 2.a): First entry called in a select statement with 10
(100) integers: 10 entries.

Verdix: Rendezvous time for r00006 3 1.a (r00006 3 2.a) is 503.1 (653.1)
microseconds.

o 00006 _4_1.a (r00006 4_2.a): Last entry called in a select statement with 10
(100) integers: 10 entries.

Verdix: Rendezvous time for r00006_4 1.a (r00006 4 2.a) is 692.7 (944.6)
microseconds.

o r00006_5 1.a (r00006 5 _2.a): First entry called in a select statement with 10
(100) integers: 20 entries.

Verdix: Rendezvous time for r00006_S_1.a (r00006_5_2.a) is 581.0 (730.7)
microseconds.

o r00006 6 _1.a (r00006 6 2.a): Last entry called in a select statement with 10
(100) integers: 20 entries.
Verdix: Rendezvous time for r00006_6_1.a (r00006_6 2.a) is 984.0 (1235.7)
microseconds.

Interpretation of results:

1. For the Verdix compiler, the time for rendezvous call to the last entry with
100 integer parameters (mode in out) increases from 614 microseconds (2
entries) to 944 microseconds (10 entries) to 1235 microseconds (20
entries). Thus, it can be deduced that time for rendezvous with integer
parameters increases linearly as the number of accept statements in the
select statement increases.

3.3.1.2.7 BENCHMARK: Measure the cost of using the terminate option in a
select statement.

A group of tasks (children of the same parent) can terminate by using the
terminate option of the select statement. If the overhead due to the terminate
option is high, then this option should not be used (especially if the selective wait
is inside a loop). _

r00007.a: To determine the cost of the terminate option in a select statement, a
server task uses a guarded terminate in its select statement. The select statement
was executed N times with the guard being false and N times with the guard being
true. The task does not terminate as a result of this select statement. Therefore the
additional time required when the terminate guard was true is the additional

-39-

overhead of the terminate option.
Verdix: The cost of using the terminate option in a select statement is 0.9
microseconds (Control:456.9, Test:457.8)

Interpretation of results

1. The cost of using the terminate option has an additional overhead of 0.9
microseconds each time the select statement is executed.

3.3.1.2.8 BENCHMARK: Measure the overhead due to a conditional entry call
when a) the rendezvous is completed (r00008.a) and b) the rendezvous is not
completed (r00008 1.a).

r00008.a, r00008 1.a: Two tasks are used: a calling task and a server task. To
measure the time when the rendezvous did not complete, the server task waited on
one entry while the calling task made attempts to call a different entry. To measure
the added overhead when the rendezvous did complete, a calling task using the
conditional and timed entry calls was compared to a calling task using simple entry
calls.

Verdix: Overhead due to conditional entry call when the rendezvous is
completed is 0.6 microseconds. Overhead due to conditional entry call when the
rendezvous is not completed is 25.3 microseconds.

Interpretation of results:

1. When one task wishes to call an entry in another task it has the option of
making the call if and only if the called task is ready to accept the call or
to wait until the caller is ready. The first of these two choices is a
conditional entry call. A conditional entry call where the rendezvous is not
completed was measured to take 25.3 microseconds. This is the time
required to execute the else statement in the select.

2. The overhead due to the else statement when the rendezvous is completed
is 0.9 microseconds. This is the runtime overhead of the else statement
when it is not executed as the rendezvous takes place. Obviously, this time
is much less than the time to execute the else statement (25.3
microseconds).

3. This overhead has to be considered whenever polling is used to establish
synchronization between tasks.

3.3.1.2.9 BENCHMARK: Measure the overhead due to a timed entry call when
a) the rendezvous is completed (700009.a) and b) the rendezvous is not
completed (r00009_l.a).

Like the conditional entry mechanism, the timed entry mechanism gives the
calling task a degree of control over the call to the task entry. A timed entry call
allows the calling task to specify how long it is willing to wait for the rendezvous

to start. If this time limit expires prior to the start of the rendezvous then the
call is canceled.

r00009.a, r00009 l.a: Two tasks are used: a calling task and a server task. To
measure the time when the rendezvous did not complete, the server task waited on
one entry while the calling task made attempts to call a different entry. For the
timed entry call a delay of 0.0 was used. To measure the added overhead when the
rendezvous did complete, a calling task using the timed entry calls was compared
to a calling task using simple entry calls.

Verdix: Overhead due to timed entry call when the rendezvous is completed is
9.7 microseconds. Overhead due to conditional entry call when the rendezvous
is not completed is 25.3 microseconds.

Interpretation of results:

1. A timed entry call incurs a measured overhead of 25.3 microseconds when
the delay expires, and 9.7 microseconds when the rendezvous takes place
before the delay expires.

3.3.1.2.9 BENCHMARK: Measure the effect on time required for a complex
rendezvous, where a procedure in the main program calls an entry as the
number of activated tasks in the system increases.

o r00011.a (r00011_1.a, r00011 2.a, r00011_3.a): Main program calls an entry in
another task with 100 Integer parameters: Idle tasks = 1 (5, 10, 20).
Verdix: Time for r0001l.a (r00011_l.a, r00011 2.a, r00011 3.a) is 530.0
(529.9, 530.0, 529.9) microseconds.

Interpretation of results:

1. Time for rendezvous can degrade with the number of eligible tasks due to
the search and sorting involved with prioritized dispatching. For the
Verdix compiler time for rendezvous remains the same for up to 20 idle
tasks.

3.3.2 Remarks on Ada Tasking

There are specific concerns in the real-time application community regarding
the semantics of the Ada tasking model and its potential implementation
overhead. Some areas of concern emerge as a result of this and other
benchmarking efforts [1). A brief discussion of some of these problems is
necessary to make the readers aware of the dilemma facing designers of real-
time embedded applications:

-41-

o In many Ada compilers, the performance of Ada tasking model is divorced
fom performance concerns. Ia real-time embedded systems, performance
is a critical part of the requirement. One should be able to predict the
response time of a system in Ada. While one does not want to return to the
cyclic executive with its attendant costs in code clarity and maintainability,
some way must be found of predicting realistically the response time of a
system engineered in Ada. Traditional approaches to real-time operating
systems have relied on precise timing and tight control over the sequence
and length of execution of individual system components. Ada tasking model
does not support this type of control.

o Rendezvous abstractions are inherently inefficient. In measurements that
have been done in this report, rendezvous time is at least 353 microseconds
which is not acceptable in many real-time systems. Most of the overhead
stems from all the queue operations needed to implement rendezvous.
Rendezvous times are generally about 30 times that of a procedure call
which is way too much for real-time embedded applications. Another source
of inefficiency is the generality of the tasking constructs, ie. the
requirements on entry calls, accepts, time outs or synchronous termination
of a set of tasks.

« For the translation of concurrency paradigms, an application may have to
use intermediate tasks with the risk of compromising real-time performance.
Also, the resulting code may not be very readable, for example when entry
families are used to simulate prioritized queues.

Some solutions that have been proposed in order to achieve tasking efficiency
include:

o Improved runtime implementation techniques that eliminate unused
functionality

« Implementation by the compiler of various task optimizations so that many
resource bound applications can use tasking in an efficient manner

« Proposals by the ARTEWG [6) so that a low-level of task control enables a
reai-time application sufficient degree of freedom.

3.4 Memory Management

Ada is the first high order language intended for mission critical, real-time
applications that requires dynamic memory allocation and deallocation. The
Ada language encompasses dynamic objects of unconstrained types, objects
of access types, workspaces of tasks, compiler generated temporary objects
for computation, and subprograms with locally defined data. Subprograms

-42-

can be called recursively, with more storage required at each level of
recursion. The amount of storage required in these circumstances cannot be
determined by static examination of a program and benchmarks must be

executed to determine the efficiency of an implementation’s storage
utilization.

The quality of a program’s runtime performance can depend greatly on the
flexibility and precision with which storage allocation decisions are made
(either by the programmer or, at runtime, by the runtime system). This
means that Ada benchmarks should test for performance characteristics
such as control over storage allocation. Control over storage allocation
includes the ability to allocate blocks of storage for specified purposes, the
ability to defer allocation until the amount of storage needed for each
purpose is known, and the ability to control the deallocation of storage.

3.4.1 Storage Mechanisms in Ada

The memory management function of the Ada runtime system is responsible
for allocation and deallocation of storage at runtime. The design of the
runtime system affects the amount of storage used during subprogram calls,
task activation, and dynamic allocation of storage. If the system runs out of
storage, the memory management function raises the exception
STORAGE_ERROR.

There are two main schemes for dynamic memory management in an Ada
rurtime environment: stack and heap storage schemes.

1. Stack Structured Allocation Schemes: Stack storage is allocated for a
task as well as for a main program. Local variables of subprograms
and tasks are allocated on the stacks assigned to the task to which the
subprogram belongs. The memory management function of the
runtime system ailocates and deaiiocates space on the stack and
checks for stack overflow. Not only local variables are placed on the
stack, but administrative variables such as return addresses, lexical
parent pointers, dependent task counters, exception scope information,
etc. are included in the activation record of a subprogram. One
common attribute of objects stored on the stack is that their lifetimes
are nested. '

2. Heap Structured Allocation Schemes: Lifetimes of objects created by
Ada allocators cannot be determined at compile time and hence the
heap storage mechanism is used to allocate storage for objects created
by the new allocator. Storage overhead associated with dynamic
allocation may be incurred when an access type is declared and again

.43 .-

each time a variable is allocated. This allocation/deallocation of space
is managed by ihe memcry management function.

A recent article published in Ada Letters, "Mapping Ada onto Embedded
Systems:Memory Constraints” [14] has an extremely articulate discussion of
the memory requirements of an Ada program while executing on an
embedded target. That discussion is presented here for a better
understanding of the stack and heap issues.

34.1.1 Memory Requirements of an Ada Program

A hypothetical Ada memory model, ignoring the needs of the runtime
system, is discussed. There are often a few reserved locations set aside for
hardware purposes. Most computers dedicate location 0 for a reset interrupt
vector. Following locations may be dedicated for an interrupt vector table
followed by a small monitor program that can be used for host-to-target
downloading and debugging. The remaining memory can then be used for
the application code and the associated Ada runtime system.

The ROM area will hold the Ada application and runtime code, constants,
and initialization data. Following this is a DATA RAM for any global data
that the linker may choose to pre-allocate or pre-elaborate. Any objects that
exist for the lifetime of the entire program (static objects) can be pre-
allocated or pre-elaborated. In addition, there may be a separate area of
RAM for shared global memory, or memory mapped I/O devices. When
address clauses locating objects at absolute addresses are used, it is
important to place such objects in an area that the linker will not use for any
other objects. For example, to place objects at absolute locations within the
heap and stacks could be dangerous. Note that the ROM and RAM areas
do not have to be contiguous while heap and stack areas must be contiguous.

Remaining higher memory will then contain stack and heap areas. When
tasking is not present, an Ada program only requires a single heap for all
allocators and a single stack for all procedure/function subprogram calls.
The stack grows and shrinks as each subprogram is called, sequentially
executes, and then completcs With tasking, each task can proceed
independently as if it had its own CPU; therefore, each task needs its own
stack. Whenever a task calls a subprogram, the subprogram will make use of
the stack of the task that is calling it. Any subprograms subsequently called
by that subprogram also make use of the task provided stack. The
task_type’STORAGE_SIZE attribute is used to set aside storage space for
each task’s stack, typically called a task _stack. To figure out the minimum

size of the task stack, find out how many parameters and local variables are
used by cach subprogram chain that the task will ever call. For recursive
calls, scale up by the number of possible recursions. The size needed is
determined by the calling chain that uses the most stack space.

On a single CPU system, tasks will take turns executing. Because each task
will need its own stack, and because tasks need to be able to execute in any
order, each task stack will have to be allocated from a structure that
accounts for random accesses, i.e. the heap. Dynamic creation of tasks by
means of the new allocator is another reason for having task-stacks allocated
from the heap.The LRM defines an Ada main program as a procedure that
is invoked by an "environment task”, hence the stack for an environment task
could also come from the heap. However, an implementation may choose to
use the system stack for the "environment stack” workspace.

There is at least one more use for the heap. Whenever the runtime system
switches control from one task to the next, it must save most, if not all of the
hardware registers. In addition, the runtime system might want to store
miscellaneous information about a task (when it was last called, etc).
Typically, this information is stored in the heap in a structure called the task
control block.

34.2 Dynamic Memory Allocation Benchmarks

3.42.1 BENCHMARK: Measure time for allocating storage kmown at
compile time.

In the first type of test cases, time is measured to allocate and deallocate a
fixed amount of storage upon entering a subprogram or a declare block.
The objects are declared in subprogram or declare blocks. The size of the
objects is known ai compilation time, but space for the objects is aliocated
on the stack at runtime. Different types and sizes of objects are allocated (as
listed in Table 5). Times to allocate various numbers of types INTEGER
and ENUMERATION are measured as well as the times to allocate various
sizes of arrays, records, and STRINGs. The objective is to determine the
allocation overhead involved and if there is any difference in the overhead
based on the type of object allocated. Different types and sizes of objects
are allocated (as listed in Table 5). In Table 5, the column size of object for
STRINGs is specified as STRING'LENGTH, for integer arrays size of
object is specified as array’length, and for records the size of object is
specified as the number of fields in the record.

-45 .

TABLE §
Dynamic Allocation:Storage Allocated Is Fixed
(Verdix Execution Time in Microseconds)

File Type Number | Size of | Time
Name Declared Declared | Object

dd inl.a Integer 1 04
dd_in10.a Integer 10 04
dd_in100.a | Integer 100 0.4
dd stl.a String 1 1 04
dd st10.a String 1 10 04
dd st100.a | String 1 100 0.4
dd enla Enumeration 1 0.4
dd_en10.a Enumeration 10 0.4
dd_enl00.a | Enumeration 100 0.4
dd_arl.a Array of Integer 1 1 04
dd ar10.a Array of Integer 1 10 0.8
dd_ar100.a | Array of Integer 1 100 0.8
dd_arlk.a Array of Integer 1 1000 0.8
dd_arl0k.a | Array of Integer 1 10000 | 52
dd_ar100k.a | Array of Integer 1 100000 | 5.2
dd_rcl.a Record of Integer | 1 1 139
dd_rc10.a Record of Integer | 1 10 68.6
dd _rc100.a | Record of Integer | 1 100 678.5

o dd_inl.a (dd_inl0.a, dd_in100.a): Measure time to allocate and deallocate
1(10 1 00) mtegers upon 1 entering a subprogram.
Verdix: Time for dd inl.a (dd_inl0.a, dd_in100.a) is 04 (0.4, 0.4)
microseconds.

e dd_stl.a (dd_st10.a, dd_st100.a): Measure time to allocate and deallocate

strings of length 1 (10, 100) upon entering a subprogram.
Verdix: Time for dd stl.a (dd_st10.a, dd st100.a) is 0.4 (0.4, 0.4)
microseconds.

e dd enla (dd_enl0.a, dd enl00.a): Measure time to allocate and
deallocate 1 (10, 100) enumeration variables upon entermg a subprogram.
Verdix: Time for dd_enl.a (dd_enl0.a, dd_en100.2) is 0.4 (0.4, 0.4)
microseconds.

e dd_arl.a (dd_arl0.a dd_arl00.a, dd_arik.a dd_arlOk.a, dd_arl00Ok.a):
Measure time to allocate and deallocate an array of integer with 1 (10, 100,
1000, 10000, 100000) elements upon entering a subprogram.

Verdix: Time for dd_arl.a (dd_ar10.a, dd_ar100.a, dd_arlk.a, dd_arl0k.a,
dd_ar100k.a) is 0.4 (0.8, 0.8, 0.8, 5.2, 5.2) microseconds.

e dd_rcl.a (dd_rcl0.a, dd_rc100.a): Measure time to allocate and deallocate
an record with 1 (10, 100) integer fields upon entering a subprogram.
Verdix: Time for dd_rcl.a (dd_rc10.a, dd_rc100.a) is 13.9 (68.6, 678.5)
microseconds.

Interpretation of results:

1. For the Verdix Compiler, time required to allocate integer variables,
enumeration variables, strings and arrays of integers upon entering a
subprogram was small (a few microseconds).

2. The time to allocate records (with 1, 10 and 100 integers declared in
fields respectively) is substantially higher (13.9, 68.6, and 678.5
microseconds) than the time to allocate 1, 10 and 100 (0.4
microseconds) integer variables respectively. This may be due to the
fact that the compiler has to align records on word boundaries.

3.4.2.2 BENCHMARK: Measure Time for Allocating Variable Amount of
Storage

Variable storage allocation involves allocation of a variable amount of
storage when entering a subprogram or declare block. In this test case,
arrays of different dimensions bounded by variables are allocated and the
size of the objects is not known at compilation time. This test is designed to
determine if allocation time is dependent on size of the object. In particular,
it is expected that many compilers will allocate small objects on the stack
assigned to the task, and larger objects off the heap (which will typically take
a much longer time). Table 6 lists the sizes and types of the objects that are
allocated in these tests. In Table 6, the size of object column is the total
number of integer elements in each array.

-47-

TABLE 6
Dynamic Allocation:Storage Allocated Is Variable
(Verdix Execution Time in microseconds)

File Type Number | Size of | Time
Name Declared Declared | Object
dd_1d1a 1-D Dynamically Bounded Array | 1 1 15.2
dd_1d10.a | 1-D Dynamically Bounded Array | 1 10 152
dd 2dl.a | 2-D Dynamically Bounded Array | 1 1 262
dd_2d10.a | 2-D Dynamically Bounded Array | 1 100 262
dd 3dl.a | 3-D Dynamically Bounded Array | 1 1 36.6
dd 3d10.a | 3-D Dynamically Bounded Array 1 1000 36.6

e dd_ldl.a (dd_1d10.a): Measure time to allocate and deallocate a 1-
dimensional dynamically bounded array with 1 (10) integer elements upon
entering a subprogram.

Verdix: Time for dd_1d1.a (dd_1d10.a) is 15.2 (15.2) microseconds.

e dd 2dl.a (dd_2d10.a): Measure time to allocate and deallocate a 2-
dimensional dynamically bounded array with 1 (100) integer elements upon
entering a subprogram.

Verdix: Time for dd 2d1.a (dd 2d10.a) is 26.2 (26.2) microseconds.

e dd 3dl.a (dd_3d10.a): Measure time to allocate and deuallocate a 3-
dimensional dynamically bounded array with 1 (1000) integer elements
upon entering a subprogram.

Verdix: Time for dd_3d1.a (dd_3d10.a) is 36.6 (36.6) microseconds.

Interpretation of results:

1. The time required for dynamically bounded arrays varied
approximately as a linear function of the number of dimensions. All of
ilie ranges used in these tests were kept small in order to avoid other
storage effects, such as allocating from the heap for objects above
some size threshold.

3.4.2.3 Memory Allocation via the New Allocator.

In Ada, objects can be created dynamically using the new allocator. The new
allocator is used to allocate various objects of different sizes and types.
Allocation time of objects of type INTEGER, and ENUMERATION as
well as composite type objects of various sizes are measured. This test will
again show if allocation time is dependent on size (in the composite-type

object case). Also, based on these timing measurements real-time
programmers can decide whether to use the new allocator for object
elaboration or to declare the object as in fixed length case.

In these tests, the objects that have been allocated via the new allocator
have also been freed via Unchecked Deallocation before exiting the scope
in which the object was allocated. This was done to make the tests more
compatible with the tests in 3.4.2.1 and 3.4.2.2 (as in these tests the space
allocated upon entering the subprogram is automatically freed upon leaving
the subprogram). These tesis are the same as if executed with 0 idle tasks in
the system.

Table 7 lists the sizes and types of objects that are allocated in the tests with
the new allocator. In Table 7, cthe column size of object for strings is
STRING’LENGTH, for integer arrays size of object is array’length, and for
records the size of object is specified as the number of fields in the record.
The number of parameter allocated is 1 in Table 7.

-49.-

TABLE 7

Dynamic Allocation with NEW Allocator
(Verdix Execution Time in Microseconds)

File Type Size of | Time
Name Declared Object
dn_inl.a Integer 1 399
dn_enla Enumeration 1 59.9
dn stla String 1 599
dn st10.a | String 10 59.9
dn_st100.a | String 100 59.9
dn_arl.a Integer Array 1 59.9
dn_ar10.a | Integer Array 10 59.9
dn_ar100.a | Integer Array 100 59.9
dn_arlk.a | Integer Array 1000 59.9
dn rcla Record of Integer 1 759
dn _rcl0.a | Record of Integer 10 102.9
dn rc20.a | Record of Integer 20 2050
dn_rc50.a | Record of Integer 50 407.0
dn _rc100.a | Record of Integer 100 746.0
dn_1dl.a 1-D Dynamically Bounded Array | 1 98.9
dn_1d10.a | 1-D Dynamically Bounded Array | 10 98.9
dn_2dl.a 2-D Dynamically Bounded Array | 1 1140
dn_2d10.a | 2-D Dynamically Bounded Array | 100 114.0
dn_3d1.a 3-D Dynamically Bounded Array | 1 1279
dn_3d10.a | 3-D Dynamically Bounded Array | 1000 127.9

e dn_inl.a : Measure time to allocate and deallocate 1 integer variable upon
entering a subprogram via the new allocator.
Verdix: Time for dn_inl.a is 59.9 microseconds.

e dn_enl.a Measure time to allocate and deallocate 1 enumeration vanable
upon entering a subprogram via the new allocator.
Verdix: Time for dn_enl.a is 59.9 microseconds.

o dn_stl.a (dn_st10.a, dn_st100.a) :Measure time to allocate and deallocate
strings of length 1 (10, 100) upon entering a subprogram via the new
allocator.

Verdix: Time for dn_stl.a (dn_st10.a, dn st100.a) is 59.9 (59.9, 59.9)

-50-

microseconds.

e dn_arl.a (dn_arl0.a, dn_arl00.a, dn_arlk.a): Measure time to allocate and
deallocate an array of integer with 1 (10, 100, 1000) elements upon entering
a subprogram via the new allocator.

Verdix: Time for dn_arl.a (dn_ar10.a, dn_ar100.a, dn_arlk.a) is 59.9
(59.9, 59.9, 59.9) microseconds.

e dn_rcl.a (dn_rcl0.a, dn_rc20.a, dn_rc50.a, dn_rc100.a): Measure time to
allocate and deallocate a record with 1 (10, 20, 50, 100) integer fields upon
entering a subprogram via the new allocator.

Verdix: Time for dn _rcl.a (dn_rc10.a, dn_rc20.a, dn_rc50.a, dn_rc100.a)
is 75.9 (102.9, 205.0, 407.0, 746.0) microseconds.

e dn_ldl.a (dn_ld10.a): Measure time to allocate and deallocate a I-
dimensional dynamically bounded array with 1 (10) integer elements upon
entering a subprogram via the new allocator.

Verdix: Time for dn_1d1.a (dn_1d10.a) is 98.9 (98.9) microseconds.

e dn 2dl.a (dn_2d10.a): Measure time to allocate and deallocate a 2-
dimensional dynamically bounded array with 1 (100) integer elements upon
entering a subprogram via the new allocator.

Verdix: Time for dn_2d1.a (dn_2d10.a) is 114.0 (114.0) microseconds.

e dn_3dl.a (dn_3d10.a): Measure time to allocate and deallocate a 3-
dimensional dynamically bounded array with 1 (1000) integer elements

upon entering a subprogram via the new allocator.
Verdix: Time for dn_3d1l.a (dn_3d10.a) is 127.9 (127.9) microseconds.

Interpretation of results:

1. Comparing these measurements with those of the previous two
sections gives application programmers an idea to the relative
efficiencies of the various methods of storage allocation.

2. For the Verdix compiler, the time for dynamically bounded arrays
increases linearly as the number of dimensions.

3. For the Verdix compiler, time for allocating integer records increases
as the size of the record increases. In fact, the time for allocating a
record of 100 integers is 746 microseconds as compared to 59.9
microseconds for allocating an integer array of size 1000. Hence, for
the Verdix compiler, allocation of records takes a much longer time
than allocation of arrays, integer variables, strings, and dynamically
bounded arrays.

3.4.2.4 BENCHMARK: Determine the effect on time required for dynamic
memory allocation when memory is continuously allocated without being
freed via Unchecked Deallocation in the scope where the memory was

-51-

allocated.

If memory is allocated in a loop via the new allocator and the memory that is
allocated is not freed via Unchecked Deallocation, then the time required
for dynamic memory allocation can be affected as more space is allocated.
This is due to the fact that time for dynamic allocation can depend on the
state of storage management following previous allocations due to the need
to recover storage and efficiently manage the available space. The tests in
the previous section (3423) had memory freed via
Unchecked Deallocation in the same scope where the memory was
allocated. Hence, the timing measured in each loop was the time to allocate
as well as deallocate memory. In this Section, memory that is allocated
remains allocated after each timing loop is finished.

The tests and results are listed in Table 8. In Table 8, the column size of
object for strings is STRING’LENGTH, for integer arrays size of object is
array’length, and for records the size of object is specified as the number of
fields in the record.

-52-

TABLE 8

NEW Allocator:No Storage Deallocation

(Verdix Execution Time in microseconds)

File Type Number | Size of | Time
Name Declared Declared | Object
dn_inl.a Integer 1 1 519
dn_enla Enumeration 1 1 519
dn stla String 1 1 50.9
dn_st10.a | String 1 10 50.9
dn_st100.a | String 1 100 51.0
dn_arla Integer Array 1 1 309
dn_ar10.a | Integer Array 1 10 509
dn_ar100.a | Integer Array 1 100 50.9
dn_arlkaa | Integer Array 1 1000 Storage_Error
dn _rcla Record of Integer 1 1 65.0
dn_rcl0.a Record of Integer 1 10 127.0
dn_rc20.a | Record of Integer 1 20 193.7
dn_rc50.a | Record of Integer 1 50 398.0
dn rc10C | Record of Integer 1 100 | 73690
dn_1dla 1-D Dynamically Bounded Array | 1 1 879
dn_1d10.a | 1-D Dynamically Bounded Array | 1 10 88.0
dn_2d1.a 2-D Dynamically Bounded Array | 1 1 103.0
dn_2d10.a | 2-D Dynamically Bounded Array | 1 100 103.0
dn 3dla 3-D Dynamically Bounded Array | 1 1 1159
dn_3d10.a | 3-D Dynamicaily Bounded Array | 1 1000 Storage_Error

e dn inl.a : Measure time to allocate 1

subprogram via the new allocator.
Verdix: Time for dn_inl.a is 51.9 microseconds.

integer variable upon entering a

o dn_enl.a Measure fime to allocate 1 enumeration variable upon entering a
subprogram via the new allocator.
Verdix: Time for dn_enl.a is 51.9 microseconds.

o dn_stl.a (dn_stl0.a, dn_st100.a) :Measure time to allocate strings of length

1 (10, 100) upor: entering a subprogram via the new allocator.

Verdix: Time for dn stla (dn st10.a, dn st100.a) is 50.9 (509, 51.9)
microseconds.

-53-

e dn_arl.a (dn_arl0.a, dn_ar100.a, dn_arlk.a): Measure time to allocate an
array of integer with 1 (10, 100, 1000) elements upon entering a subprogram
via the new allocator.

Verdix: Time for dn_arla (dn_arl0.a, dn_ar100.a, dn_arlka) is 50.9
(50.9, 50.9, raised STORAGE _ERROR) microseconds.

e dn_rcl.a (dn_rcl0.a, dn_rc20.a, dn_rc50.a, dn_rc100.a): Measure time to
allocate a record with T (10, 20, 50, 100) integer fields upon entering a
subprogram via the new allocator.

Verdix: Time for dn_rcl.a (dn_rc10.a, dn_rc20.a, dn_rc50.a, dn_rc100.a)
is 65.0 (127.0, 193.7, 398.0, 736.0) microseconds.

e dn_Ildl.a (dn_ld10.a): Measure time to allocate a I-dimensional
dynamically bounded array with 1 (10) integer elements upon entering a
subprogram via the new allocator.

Verdix: Time for dn_1d1.a (dn_1d10.a) is 87.9 (88.0) microseconds.

e dn 2dla (dn_2d10.a): Measure time to allocate a 2-dimensional
dynamically bounded array with 1 (100) integer elements upon entering a
subprogram via the new allocator. '

Verdix: Time for dn_2d1.a (dn_2d10.a) is 103.0 (103.0) microseconds.

e dn 3dl.a (dn_3d10.a): Measure time to allocate a 3-dimensional
dynamically bounded array with 1 (1000) integer elements upon entering a
subprogram via the new allocator.

Verdixx Time for dn 3dla (dn 3d10.a) is 1159 (raised
STORAGE_ERROR) microseconds.

Interpretation of results:

1. In real-time embedded applications that typically run for long periods
of time without allocated memory being freed, time for dynamic
memory allocation can be effected as more and more space is
allocated. For the Verdix compiler, time for memory allocation is not
effected as more and more memory is allocated (without being freed
by the application program).

2. For Verdix compiler, allocation of integer arrays of size 1000 and 3
dimensional arrays of size 1000 raised STORAGE _ERROR as the
target ran out of RAM. This is due to the fact that memory allocated
is not being freed and therefore, the measurements in this case exclude
the time to free the memory that is being allocated. Hence, the
timings listed in Table 8 are less than the timings listed in Table 7.

3.4.2.5 Memory Allocation via the New Allocator when there are active
tasks in the system.

There are two scenarios:

-54-

Number of active tasks in the system = 5.

Table 9 lists the results. In Table 9, the column size of object for
STRINGs is STRING'LENGTH, for integer arrays size of object is
array’length, and for records the size of object is specified as the
number of fields in the record.

TABLE 9
NEW Allocator:Active Tasks = 5§
(Verdix Execution Time in Microseconds)

File Type Number | Sizeof | Time
Name Declared Declared | Object

dn st100.a | String 1 100 59.0
dn_arlk.a | Integer Array 1 1000 589
dn_rci00.a | Record of Integer 1 100 746.9
dn_1d10.a | 1-D Dynamically Bounded Array | 1 10 104.0
1
1

dn 2d10.a | 2-D Dynamically Bounded Array 100 121.0
dn 3d10.a | 3-D Dynamically Bounded Array 1000 1379

o dn_stl100.a :Measure time to allocate and deallocate strings of length
100 upon entering a subprogram via the new allocator.
Verdix: Time for dn_st100.a is 59.0 microseconds.

o dn_arlka : Measure time to allocate and deallocate an array of
integer with 1000 elements upon entering a subprogram via the new
allocator.

Verdix: Time for dn_arlk.a is 58.9 microseconds.

e dn_rcl00.a : Measure time to allocate and deallocate a record with
100 integer fields upon entering a subprogram via the new allocator.
Verdix: Time for dn_rc100.a is 746.0 microseconds.

e dn_Id10.a : Measure time to allocate and deallocate a 1-dimensional
dynamically bounded array with 10 integer elements upon entering a
subprogram via the new allocator.

Verdix: Time for dn_1d10.a is 104.0 microseconds.

e dn_2d10.a : Measure time to allocate and deallocate a 2-dimensional
dynamically bounded array with 100 integer elements upon entering
a subprogram via the new allocator.

Verdix: Time for dn_2d10.a is 121.0 microseconds.

e dn_3d10.a : Measure time to allocate and deallocate a 3-dimensional
dynamically bounded array with 1000 integer elements upon entering
a subprogram via the new allocator.

Verdix: Time for dn_3d10.a is 137.9 microseconds.

-55-

Number of active tasks in the system = 10. Table 10 lists the results.
In Table 10, the column size of object for strings is
STRING’LENGTH, for integer arrays size of object is array’length,
and for records the size of object is specified as the number of fields in
the record.

TABLE 10
NEW Allocator:Active Tasks = 10
(Verdix Execution Time in Microseconds)

File Type Number | Size of | Time
Name Declared Declared | Object
dn_st100.a | String 1 100 59.0
dn_arlk.a | Integer Array 1 | 1000 59.0
dn_rc100.a | Record of Integer 1 100 746.9
dn_1d10.a | 1-D Dynamically Bounded Array | 1 10 1029
dn _2d10.a | 2-D Dynamically Bounded Array | 1 100 1210
dn _3d10.a | 3-D Dynamically Bounded Array | 1 1000 139.0

o dn_st100.a :Measure time to allocate and deallocate strings of length
100 upon entering a subprogram via the new allocator.
Verdix: Time for dn_st100.a is 59.0 microseconds.

e dn_arlka : Measure time to allocate and deallocate an array of
integer with 1000 elements upon entering a subprogram via the new
allocator.

Verdix: Time for dn_arlk.a is 59.0 microseconds.

» dn_rc100.a : Measure time to allocate and deallocate a record with
100 integer fields upon entering a subprogram via the new allocator.
Verdix: Time for dn_rc100.a is 746.9 microseconds.

e dn_Id10.a : Measure time to allocate and deallocate a 1-dimensional
dynamically bounded array with 10 integer elemenis upon entering a
subprogram via the new allocator.

Verdix: Time for dn_1d10.a is 102.9 microseconds.

e dn_2d10.a : Measure time to allocate and deallocate a 2-dimensional
dynamically bounded array with 100 integer elements upon entering
a subprogram via the new allocator.

Verdix: Time for dn_2d10.a is 121.0 microseconds.

e dn_3d10.a : Measure time to allocate and deallocate a 3-dimensional
dynamically bounded array with 1000 integer elements upon entering
a subprogram via the new allocator.

- 56 -

Verdix: Time for dn_3d10.a is 139.0 microseconds.

Interpretation of results:

1. Tables 9 and 10 show negligible impact of existing tasks in the system
on the time for memory allocation/deallocation.

3.43 Remarks on Memory Management

Since time and space are at a premium in real-time embedded systems, it is
essential that the dynamic memory allocation and deallocation be as efficient
as possible. Real-time programmers need to know the maximum time to
allocate and deallocate storage for a particular Ada compiler in order to
ensure that performance requirements will be met for their application.

3.5 Exceptions

Real-time embedded systems should be able to handle unexpected errors at
runtime. Unexpected errors could have disastrous consequences if not
handled properly. Many real-time systems operate for long periods of time
in stand alone mode and there is a need for efficient and extensive error-
handling for such systems. If exceptions raised during runtime are not
detected, the entire situation may have to be reconstructed in real-time to
determine the cause of the error. It may not always be possible to
reconstruct the exact situation in real-time. The Ada exception handling
mechanism provides 2 means by which errors can be detected and handled
without catastrophic results.

3.5.1 Exception Handling Mechanism

The exception management function of the Ada runtime system is invoked
when an exception is to be raised. It searches for the matching handler in
the current frame. If a handler is found, control is transferred to that
bandler. Otherwise, the exception is propagated by raising the exception at

-57.-

the point where the current frame was invoked. This is done after the
exception management function simulates the "orderly return” of the frame
that is thus completed.

If no handler is found for a exception that has been raised, then the
exception management function invokes the task termination function of the
runtime system to terminate the task or the main program in which the
exception was raised. The exception management function is also
responsible for raising exceptions that occur

e during a rendezvous. This exception is also raised in the rendezvous
partner task.

o during task elaboration.

3.5.2 Exception Handling Tests

Four types of exception handling routines are interesting since they
represent different ways in which exceptions are raised:
NUMERIC _ERROR, CONSTRAINT _ERROR, TASKING ERRO& and
user-defined exceptions. The NUMERIC ERROR exception is first
discovered by the hardware and the exception is propagated back to the
runtime system by an interrupt signal from the hardware.
CONSTRAINT ERROR is raised by the Ada runtime system.
TASKING _ ERROR is raised during task elaboration, task actlvauon, or
certain conditions of conditional entry calls (it is covered later on in Section
3.5.2.4). The user-defined exception is raised by the programmer. Except
for the user-defined exception, the method of raising the exceptions can be
done by forcing the relevant abnormal state in the code and by using the
raise statement.

3.52.1 BENCHMARK: Measure a) timing overhead due to exceptions and
b) exception response time when exception is handled in the block
statement

€00001.a (e00001_1.a, e00001_2.a) These benchmarks measure two aspects
related to exceptions when there are 0 (5, 10) idle tasks in the system:

e Measure the overhead associated with a code sequence that has an
exception handler associated with it, yet no exception is raised during the
execution of that code. Since exceptions are used to indicate "exceptional
situations”, exception handlers should gave minimum overhead during
normal program execution.

-58-

o Measure exception response time for a) user-defined exception and b)

pre-defined 2
CONSTRAINT ERROR raised both by the raise statement as well as
due to abnormal situations in the application code. Exception Response
time is defined as the time when a exception is raised to the time the
execution handler starts executing.

NUMERIC _ERROR,

exceptions and

Table 11 below gives the results for exception handling times for exceptions
raised and handled in a block for the Verdix compiler. In this table, the word
explicit has been used for exceptions raised via the raise statement, and
implicit is used for abnormal conditions in the code.

TABLE 11
Exception Raised and Handled i Block
(Verdix Execution Time in Microseconds)

File Exception | User Constraint | Contraint | Numeric | Numeric
Name not raised | defined | _error ~ _error _error _error
explicit | explicit implicit explicit implicit
€00001.a 02 3033 5815 581.8 5878 603.9
€00001_1a | 0.2 303.8 582.7 586.4 588.7 604.9
€00001 2.a | 02 303.8 582.7 586.4 588.7 604.9

Interpretation of results:

1

3.

It is desirable to have minimal overhead associated with entering and
exiting an exception handler’s scope. If timing overhead due to
exceptions is high, then time-critical applications will have unnecessary
overhead even though no exception has been raised. For the Verdix
compiler, the overhead associated with the code sequence (that has an
exception handler associated with it, yet no exception is raised during
the execution of that code) is negligible.

For the user-define exception, exception handling times are much less
than exception handling times for other exceptions.

As expected, times for handling NUMERIC ERROR (implicitly
raised) is higher than exception handling times for other exceptions.
NUMERIC_ERROR is raised by the underlying computing resource
through the interrupt mechanism. The interrupt management function
of the runtime system passes those interrupts that are traps
(corresponding to predefined Ada exceptions) to the exception
management function. Real-time embedded systems need fast
NUMERIC_ERROR handling times to meet timing constraints.

-59-

4. Additional tasks in the system have a very slight effect on exception
handling times.

3.5.2.2 BENCHMARK: Measure Exception handling time when exception
is raised and propagated one level above to be handled.

User-defined, and pre-defined (CONSTRAINT_ERROR,
NUMERIC_ERROR) exceptions are raised via the raise statement as well
as abnormal situations in code. Depending on the exception-handling
mechanism that the compiler designer chooses, exceptions may involve
deallocation of stack space during exception propagation. When an
exception propagates to outer scopes the system requires termination actions
for each inner scope, which will involve deallocating any local space for
tasks, access collections, arrays, and other dynamic structures.

o e00002.a: No idle tasks exist in the system when the exceptions are raised.
e 00002 _1.a: 5 idle tasks exist in the system when the exceptions are raised.
o e00002_2.a: 10 idle tasks exist in the system when the exceptions are raised.

Table 12 below gives the results (for Verdix compiler) for exception handling
times for exceptions raised and handled one level above: In this table, the
word explicit has been used for exceptions raised via the raise statement,
and implicit is used for abnormal conditions in the code.

TABLE 12
Exception Raised and Handled One Level Above
(Execution Time in Microseconds)

File User Constraint | Contraint | Numeric | Numeric
Name defined | _error _error _error _error
explicit | explicit implicit explicit implicit
€00002.a 576.2 852.2 8425 851.6 8418
¢00002_1.a | 576.2 8522 8425 8516 8418
¢00002_2.a | 576.2 8522 842.5 851.6 8418
Interpretation of results:

1. After subtracting the timings obtained in the previous section, it takes
roughly about 270 more microseconds to propagate and handle the
exception one levei above where it is raised.

3.5.2.3 BENCHMARK: Measure Exception handling time when exception

is raised and propagated 3 and 4 levels above to be handled.
Only User-defined exceptions are raised via the raise statement. Table 13
lists the exception handling benchmarks.

TABLE 13
More Exception Handling Benchmarks
(Verdix Execution Time in Microseconds)

File Name | Benchmark Description Time

€00003.2 User Exception handled 3 procs above 1267.8
€00003_l1.a | User Exception handled 3 procs above,S idle tasks 12678
€00003_2.a | User Exception handled 3 procs above,10 idle tasks | 1267.8
¢00004.a User Exception Raised handled 4 procs above 15753
€00004_l1.a | User Exception handled 4 procs above,S idle tasks | 15753
Le00004__2.a User Exception handled 4 procs above, 10 idle tasks | 15753

1. User-defined exception is raised and propagated 3 levels above where
it handled. There are three scenarios:

o e00003.a: No idle tasks exist in the system when the exception is
raised.

e e00003_1.a: 5 idle tasks exist in the system when the exception is
raised.

o €00003 2.a: 10 idle tasks exist in the system when the exception is
raised.
Verdix: For the user-defined exception, exception handling time is
1267.8 microseconds for each of the three scenarios.

2. User-defined exception is raised and propagated 4 levels above where
it handled. There are three scenarios:

o e00004.a: No idle tasks exist in the system when the exception is
raised.

o e00004 l.a: 5 idle tasks exist in the system when the exception is
raised.

o e00004 2.a: 10 idle tasks exist in the system when the exception is
raised.
Verdix: For the user-define exception, exception handling time is
1575.3 microseconds for all the three scenarios.

Interpretation of resuits:

-61-

1. This benchmark reinforces the results obtained in Section 3.5.3.2 about
the extra time for each level (270 microseconds) that the exception
has to be propagated.

3.5.2.4 Exception During a Rendezvous

If an exception is raised within a rendezvous, it is propagated to the task
containing the accept as well as to the calling task. This is the most complex
form of exception handling since the exception is handled in both the task
containing the accept and the calling task. Task exception handling within a
rendezvous can be quite expensive due to the overhead associated with
propagating the exception to the calling environment as well as to the called
task.

Table 14 lists TASKING_ERROR exception benchmarks.

TABLE 14
TASKING_ERROR Exception Benchmarks
(Verdix Execution Time in Microseconds)

File Name | Benchmark Description Time
€00005.a Exception Raised in rendezvous,0 idle tasks 353.0
€00005_1.a | Exception Raised in rendezvous,5 idle tasks 353.0
€00005_2.a | Exception Raised in rendezvous,10 idle tasks 353.0

€00006.a Child task has error during elaboration,0 idle tasks | STORAGE_ERROR

€00006_1.a | Child task has error during elaboration,5 idle tasks | STORAGE_ERROR

€00006_2.a | Child task has error during elaboration,10 idle tasks | STORAGE_ERROR

3.52.41 BENCHMARK: Measure time to handle TASKING_ERROR
exception in the calling task.

In this test, TASKING _ERROR is raised during a rendezvous. The same
entry is timed without the exception being raised so the exception handling
times can be determined.

This benchmark is executed with 3 scenarios:

o e00005.a: No idle tasks exist in the system when the exception is raised.

-62-

e e00005_l.a: 5 idle tasks exist in the system when the exception is raised.

» e00005_2.a: 10 idle tasks exist in the system when the exception is raised.
Verdix: TASKING_ERROR handling time is 353.0 microseconds for all the
three scenarios.

Interpretation of results:

1. Propagating the exception to the calling environment as well as the
called task may involve additional overhead. If task exception handling
time within a rendezvous is costly when compared to exception
handling time in a procedure or block, then serious consideration must
be given to providing an exception handler within the accept body of
the time-critical tasks.

2. The time for the Verdix compiler has to be compared to times
obtained from other compiler systems.

3.52.42 BENCHMARK: Measure time to propagate and handle exception
when a child task has an error during its elaboration,

Tasking_Error is raised at the place of activation of a local task (i.e. at the
begin of the parent unit or on allocation of an object with a task component)
if the task has an error during its elaboration.

This benchmark is executed with 3 scenarios:

e e00006.a: No idle tasks exist in the system when the exception is raised.
o e00006_l.a: 5 idle tasks exist in the svstem when the exception is raised.
o e00006 2.a: 10 idle tasks exist in the system when the exception is raised.

Verdix: The Verdix compiler raised STORAGE_ERROR during the
elaboration of the child task for all the three benchmarks.

3.5.3 Remarks on Exception Handling

The problems that a compiler implementation faces in order to provide
efficient exception handlir ;. mechanism for real-time embedded systems are
numerous. For real-time sy -:2ms, exceptions should be used only when truly
unexpected situations occur and not for control flow techniques. If the
exception handling mechanism is not efficient, the overhead costs involved
with using exceptions will generally be too great to maintain memory and
timing constraints in real-time embedded systems.

For efficient exception handling, ideally one would like that execution time
be expended only when an exception is raised. There should be minimum
execution time overhead in setting up and maintaining the current
appropriate exception handler. Of course there are memory costs involved
in maintaining the code for the exception handler.

Another factor with exception handling is the manner in which exceptions
are reported and their causes. For real-time embedded system applications,
a runtime system may not include TEXT IO due to memory constraints or
lack of capability to display textual messages. Hence during execution time,
it may be very difficult to pinpoint the exact spot where the exception
occurred.

3.6 Chapter 13 Benchmarks

Ada defines some features which allow a programmer to specify the physical
representation of an entity, i.e., map the abstract program entity to physical
hardware. These features are implementation-dependent: an
implementation is not required to support these features. For programming
real-time embedded systems, it may be necessary to use Ada LRM Chapter
13 features due to the following reasons:

« Real-time embedded systems may need to interface with physical devices
and to specify the precise layout of data structures. Most Ada compilers
perform memory access with logical addresses which are converted to
physical addresses by the linking loader. What is needed is a way to map
hardware registers, bit patterns, and addresses onto memory/source Ada
objects. The solution is the implementation of bit level, address, length,
record, and enumeration representation clauses.

« Unchecked Conversion can be very useful, especially while doing
communication protocols with check-sum calculations.

« Real-time applications may require explicit bit-set and bit-reset
operations to manipulate external hardware devices in microprocessor
systems. Bit manipulation - the direct issuance of a command to set an
individual bit in memory is crucial for quick response in systems with
bit-mapped I/O. Hence, the need for implementation of Chapter 13
features cannot be stressed more.

Benchmarking Chapter 13 features also depends on the characteristics listed
in package SYSTEM, the hardware and its interface with the peripheral
devices. The goal is to develop general purpose benchmarks that can be
easily tailored for a specific implementation. Table 15 lists all the Chapter
13 benchmarks.

TABLE 15
Chapter 13 Benchmarks
(Verdix Execution Time in Microseconds)
File Name | Benchmark Description Time
h00001.a Boolean operations on arrays, Pragma PACK 933
h00001_l.a | Boolean operations on arrays, Rep Clause 919
h00001_2.a | Boolean operations on arrays, not packed 362.5
h00002.a Boolean operations on array components, Pragma Pack 979.1
h00002_1.a | Boolean operations on array components, Rep Clause 968.7
h00002_2.a | Boolean operations on array components, not packed 479.4
h00003.a Assignment,comparison on arrays of booleans, Pragma PACK 382
h00003_1.a | Assignment,comparison on arrays of booleans, Rep Clause 382
h00003 2.2 | Assignment,comparison on arrays of booleans, not packed 68.2
h00004.a Assign,compare whole records, no rep clause 619
h00004_l.a | Assign, compare whole records, rep clause 872
h00004_2.a | Assign, compare whole records, Pragma PACK 872
h00005.a UNCHECKED_CONVERSION, INTEGER object to another | 03
h00005_1.a | UNCHECKED_CONVERSION, STRING to INTEGER 17
h00005_2.a | UNCHECKED_CONVERSION, floating array to record Program_Error
k00006.a Store, extract record bit fields, no rep clause 49.1
h00006_1.a | Store, extract record bit fields, rep clause 64.1
h00006_2.a | Store, extract record bit fields, rep clause 68.7
h00008.a Store, extract record bit fields defined Not compiled
by nested rep clauses using packed arrays
h00009.a Change of representation from one record to another 1159
h00009_1.a | Change of representation from one array to another 160.4
h00010.a POS,SUCC, and PRED operations on enum type with rep 256.0
clause numbered with gaps in internal coding
h00010_1.a | POS,SUCC, and PRED operations on enum type with rep 256.0

clause numbered with no gaps in internal coding

- 65 -

3.6.1 Pragma Pack

There are a set of test problems for Pragma pack which measure both time
and space utilization. Some packing methods do allocate a component so
that it will span a storage unit boundary while some pack as densely as
possible. The time to access a component which spans a storage unit is
usually greater than when the component does not span a boundary.
Although which component of a record spans a boundary is dependent on
the implementation storage unit size, the computation to identify the
component can be performed in an implementation independent manner
using the named number SYSTEM.STORAGE_UNIT.

In addition to measuring the time to perform the test problems accessing
packed objects, these test problems use the representation attribute X’SIZE
to determine the actual bit size of the objects and compare this with the
predetermined minimum possible bit size for the object. This shows the
degree of packing the system under test performs.

3.6.1.1 BENCHMARK: This test measures time to perform standard
boolean operations (XOR, NOT, OR, AND) on arrays of booleans. The
tests are performed on entire arrays.
The declaration for the array is as follows:

subtype PACKED 16 is PACKED BIT_ARRAY(0..15);
where
type PACKED BIT ARRAY is array(NATURAL range < >) of BOOLEAN;

The following scenarios are benchmarked:

o h00001.a: The arrays are PACKED with the pragma 'PACK".
Verdix: Time for AND, XOR, and OR operation is 93.3 microseconds.
Also, ARRAY’SIZE after pragma PACK is 16 bits.

o h00001_l.a: Representation clause is used to specify array size.
Verdix: Time for AND, XOR, and OR operation is 91.9 microseconds.
Also, ARRAY’SIZE after representation clause is 16 bits.

o h00001 2.a: The arrays are NOT PACKED with the pragma 'PACK'..
Verdix: Time for AND, XOR, and OR operation is 362.5 microseconds.
Also, ARRAY’SIZE is 128 bits.

Interpretation of results:

1. Both the Pragma PACK array and representation clause array took
nearly the same amount of time for the boolean operations. Also, the
Verdix compiler packed the array in 16 bits for both Pragma Pack and
representation clause specified array.

2. The size of the regular array (in h00001_2.a) is 128 bits (16 bytes). The
time here is considerably higher than the others as in the case of
h00001_2.a the boolean operations have to be performed on 16 bytes
as opposed to 2 bytes in h00001.a and h00001_1l.a.

3.6.1.2 BENCHMARK: This test measures time to perform standard
boolean operations (XOR, NOT, OR, AND) on arrays of booleans. The
tests are performed on components of arrays.
The declaration for the array is as follows:

subtype PACKED _16 is PACKED BIT _ARRAY(0..15);
where
type PACKED BIT ARRAY is array(NATURAL range < >) of BOOLEAN;

The following scenarios are benchmarked:

e h00002.a: The arrays are PACKED with the pragma 'PACK..
Verdix: Time for AND, XOR, and OR operation is 979.1 microseconds.
Also, ARRAY’SIZE after pragma PACK is 16 bits.

o h00002_1.a: Representation clause is used to specify array size.
Verdix: Time for AND, XOR, and OR operatlon is 968.7 microseconds.
Also, ARRAY’SIZE after representation clause is 16 bits.

o h00002 2.a: The arrays are NOT PACKED with the pragma 'PACK"..
Verdix: Time for AND, XOR, and OR operation is 479.4 microseconds.
Also, ARRAY’SIZE is 128 bits.

Interpretation of results:

1. Both the Pragma PACK array and representation clause array took
nearly the same amount of time for the boolean operations. Also, the
Verdix compiler packed the array in 16 bits for both Pragma Pack and
representation clause specified array.

2. The size of the regular array (in h00002 2.a) is 128 bits (16 bytes). The
time here is considerably hxgher than the others as in the case of
h00002 2.a the boolean operations have to be performed on 16 bytes
as opposed to 2 bytes in h00002.z \nd h00002_1.a.

3.6.1.3 BENCHMARK: This test measures time to perform assignment and
comparison operations on arrays of booleans.
The declaration for the array is as follows:
subtype PACKED 16 is PACKED_BIT_ARRAY(0..15);
where
type PACKED BIT ARRAY is array(NATURAL range < >) of BOOLEAN;

The following scenarios are benchmarked:

-67-

o h00003.a: The arrays are PACKED with the pragma 'PACK..
Verdix: Time for assignment and comparison operations on arrays of
booleans is 38.2 microseconds.

 h(00003_1.a: Representation clause is used to specify array size.
Verdix: Time for assignment and comparison operations on arrays of
bocleans is 38.2 microseconds.

o h00003_2.a: The arrays are NOT PACKED with the pragma 'PACK'.
Verdix: Time for assignment and comparison operations on arrays of
booleans is 68.2 microseconds.

interpretation of results:

1. Both the Pragma PACK array and representation clause array took
nearly the same amount of time for the assignment and comparison
operations.

2. The time taken to execute h00003_2.a is considerably higher than the
others as the operations have to be performed on 16 bytes as opposed
to 2 bytes in h00003.a and h00003_1.a.

3.6.1.4 BENCHMARK: This test measures time to perform assignment and
comparison operations on whole records.
The declaration of the record is as follows:

type MY_REC is record
Al: INTEGER range -3 .. 3;
A2: BOOLEAN;
A3: INTEGER range 0..15;
A4: INTEGER range 10 .. 100;
AS: BOOLEAN,;

end record;

The following scenarios are benchmarked:

e h00004.a: Records are NOT defined by representation clause.
Verdix: Time for assignment and comparison operations on whole
records is 61.9 microseconds. RECORD'SIZE =128 bits (8 bytes).

o h00004_1.a: Records are defined by representation clause.
Verdix: Time for assignment and comparison operations on whole
records is 87.2 microseconds. RECORD’SIZE =17 bits

o h00004 2.a: Records are PACKED using PRAGMA PACK
Verdix: Time for assignment and comparison operations on whole
records is 87.2 microseconds. RECORD’SIZE = 18 bits

Interpretation of results:

1. Both the Pragma PACK array and representation clause record took
nearly the same amount of time for the assignment and comparison
operations (87.2 microseconds). This is considerably higher than the
time for records without any Pragma PACK or representation clause
(61.9). The logical explanation is that it takes more time to unpack the
record in order to perform the operation.

2. The most amount of packing (17 bits) is performed by representation
clause specification rather than Pragma PACK (18 bits).

3.6.2 Unchecked Conversion

3.6.2.1 BENCHMARK: Measure the time to do an unchecked conversion of
one integer object to another.

h00005.a: The time measured is for UNCHECKED CONVERSION to
move one INTEGER object to another INTEGER object. This may be
nearly zero with good optimization.

Verdix: Time to do unchecked conversion is 0.3 microseconds.

Interpretation of results:

1. The time taken is nearly 0 showing good optimization by the compiler.

3.622 BENCHMARK: Measure the time for
UNCHECKED CONVERSION to move a STRING object to another
INTEGER obJect.

h00005_1.a: This may be nearly zero with good optimization.

Verdix: Time to do unchecked conversion is 1.7 microseconds.

Interpretation of results:
1. ‘The time taken is nearly 0 showing good optimization by the compiler.

3.6.2.3 BENCHMARK: Measure the time to do an unchecked conversion of
an array of 10 floating components into a record of 10 floating
components.

h00005_2.a:
Verdix: The Verdix compiler raised the exception PROGRAM_ERROR on
the execution of this benchmark. Interpretation of results:

-69-

1. The compiler vendor has been contacted with the results.

3.6.3 Representation Clauses

3.6.3.1 BENCHMARK: Measure the time to store and extract bit fields
using Boolean and Integer record components. 12 accesses, 5 stores, 1
record copy.

There are 3 scenarios:

e h00006.a: The time to store and extract bit fields that are NOT defined by
representation clauses.
Verdix: 49.1 microseconds

e h00006 1.a: The time to store and extract bit fields that are defined by
representation clauses.
Verdix: 64.1 microseconds

o h00006 2.a: The time to store and extract bit fields that are packed by
PRAGMA PACK.
Verdix: 68.7 microseconds

Interpretation of results:

1. Both the Pragma PACK array and representation clause record took
nearly the same amount of time for operation performed in this
benchmark. This is considerably higher than the time for records
without any Pragma PACK or representation clause. The logical
explanation is that it takes more time to unpack the record in order to
perform the operation.

3.6.3.2 BENCHMARK: Measure the time to store and extract bit fields
that are defined by nested representation clauses using packed arrays of
Boolean and Integer record components.

LILLL I RN

Verdix: The Verdix compiler could not execute this benchmark and objected
to the record representation specified for the record.

Interpretation of results:
1. The compiler vendor has been contacted with the results.

3.5.3.3 BENCHMARK: Measure the time to perform a change of

-70-

representation from one record representation to another,

h00009.a:

Verdix: Time for record conversion is 1159 microseconds. Normal
record’SIZE =128, Representation clause record size = 17

Interpreta*.on »f results:

1. The Verdix —ompiler took 1159 microseconds for the record
conversion. Ii also packed the record from 128 bits to 17 bits. This
has to be compared with results obtained by running the benchmark
on other Ada compilers.

3.634 BENCHMARK: Measure the time to perform a change of
representation from a packed array to an unpacked array.
where

type INT is range 0..4095;
type PACKED TYPE is array(INT range (..315) of INT;

h00009_1.a:
Verdix: Time for array conversion is 160.4 microseconds.

Interpretation of results:

1. The Verdix compiler took 160.4 microseconds for the array
conversion. This has to be compared with results obtained by running
the benchmark on other Ada compilers.

3.6.3.5 BENCHMARK: Measure the time to perform POS, SUCC, and
PRED operations on enumeration type with representation clause
specification.

There are two cases:

e h00010.a: Representation clause numbered with gaps in internal coding.
Verdix: Time for POS, SUCC and PRED operations is 256
microseconds.

e h00010 l.a: Representation clause numbered with NO gaps in internal
coding.
Verdix: Time for POS, SUCC and PRED operations is 256.4
microseconds.

Interpretation of results:

1. 'There is no effect on the execution time for representation clause with
no gaps and representation clause with gaps. For enumeration type
representation clauses, all compilers must generate the programmer-
defined codes for enumeration types instead of its own.

-71-

3.7 Interrupt Handling

In real-time embedded systems, efficient handling of interrupts is very
important. Interrupts are asynchronous events. In a real-time embedded
system, interrupts are critical to the ability of the system to respond to real-
time events and perform its required functions and it is essential that the
system responds to the interrupt in some fixed amount of time. Interrupt
handling function is responsible for handling a) software signals such as
UNIX signals (for real-time UNIX operating systems), b) asynchronous
hardware interrupts (real-time clock, I/O devices, and ¢) synchronous
hardware interrupts (arithmetic exceptions). For real-time systems,
interrupt latency has to be minimized. Also, interrupts should be
controllable to prevent interruption of a critical section.

3.7.1 Implementation of the Interrupt Handling Mechanism

In Ada, an interrupt is identified through its association with a particular
task entry. The association is effected by means of an "address" clause
attached to the entry specification; the address clause, whose format is
necessarily machine dependent, specifies a particular interrupt from a
particular source. When an interrupt occurs a call is made to the associated
entry. When the call is accepted the rendezvous is executed at a higher
priority than that of any user defined task, thus ensuring that interrupt
handling takes precedence over "normal" processing. The entry call may be
a normal entry call or a timed entry call, depending on the kind of interrupt
and on the implementation. Control information associated with the
interrupt may be passed to the handling task by "in" parameters to the entry.

Because Ada treats an interrupt handling routine like any other task,
compilers generate code to allocate data structures, save and store data from
other tasks, and so forth, when responding to system-generated interrupts.
In real-time control applications, such overhead can make or break a
weapons system or flight control computer. Embedded systems must be
able to suspend all other processing to react immediately--in less than a
millisecond--to interrupts from an airplane navigation system sensor, for
instance. The interrupt handler may enable and disable the interrupt
mechanism by modifying the appropriate control registers.

3.7.2 Interrupt Handling Tests

-72.

3.7.2.1 BENCHMARK: Measure Interrupt Response Time.

Techniques for measuring interrupt response time are very difficult as
hardware external to the CPU must be involved in order to generate
interrupts.

This measure is totally dependent on the hardware involved, although some
general criteria for measuring the interrupt response time is discussed in this
report. External instrumentation (e.g., electronic equipments, real-time
timers etc.) is required to accurately capture the time of interrupt
occurrence. There is no difficulty in time stamping within the program the
start of interrupt handler execution, but some form of external
instrumentation is necessary to accurately schedule or capture the time of
interrupt occurrence. In this report a general approach for measuring the
interrupt response time has been described below.

Benchmark Design: The benchmark designed should be able to control the
generation of interrupt signal so that the time at which the interrupt was
generated can be measured. A special routine is needed that causes
interrupts to be generated when specified from the benchmark program.
This special routine should go through the runtime system.

The benchmark code notes the time at which the special routine is called
that causes the interrupt. The interrupt handler for that interrupt records
the time at which the handler was invoked and returns from the interrupt. If
Tco is the overhead time for calling the clock function, and the difference in
times recorded by the interrupt handler and the benchmark code is Ti, then
the interrupt response time is Ti - Tco.

-73-

3.7.3 Remarks on Interrupt Handling

Because embedded systems rely heavily upon interrupts to signal the
occurrences of external events, any overhead associated with the processing
of the interrupts will directly affect system timing. When an interrupt is
received, the runtime system has to stop the current process and issue an
entry call to the interrupt handler task. In current Ada implementations, this
overhead time is in hundreds of microseconds or milliseconds, whereas in
non-Ada embedded systems overhead times have been in tens of
microseconds or less. The treatment of interrupt priorities is not very well
handled in Ada. The language does not discriminate between the hardware
priorities of different interrupts. The handling of a sequence of high priority
interrupts, after the first interrupt, could be blocked by the handling of lower
priority interrupts. This is due to the fact that the handler of the high
priority interrupt, which is required by the Ada LRM to execute a
synchronization point between interrupts, is also required to have a lower
priority than the low priority interrupts. Consequently, the arrival of the
lower priority interrupts could block the high priority interrupt server from
becoming ready to accept the second high priority interrupt after the first
high priority interrupt has been handled.

3.8 Clock Function and TYPE Duration

For real-time embedded systems, the CLOCK function in the package
CALENDAR is going to be used extensively. The implementation of the
system clock is an important factor in the overall capabilities of the system.
The CLOCK function reads the underlying timer provided by the system and
returns the value associated with the timer. If the time taken to execute the
CLOCK function is less than the time resolution, successive evaluations of
CLOCK will return the same value. If the overhead associated with
executing the CLOCK function is high, then real-time embedded systems
will be hesitant to use the CLOCK function.

Most computer architectures have two kinds of hardware for timing. The
counter timer chip used to drive the system clock defines the minimum
granularity of time available to the system. The second level of granularity is
the basic clock period which can be found in the Ada package SYSTEM
(SYSTEM.TICK). Typically, some reasonable value is chosen for the size of
the CLOCK period, and an interrupt is generated at this rate. The interrupt
handler updates the system clock, and this represents the finest resolution

-74 -

available to the CLOCK function. If the main processor is responsible for
clock maintenance, as the resolution increases, so does the amount of time
spent handling interrupts and maintaining the clock (this is not the case if
the clock is maintained independently of the CPU).

The Ada type DURATION is not required to have the same resolution as
the clock period. The smallest representable duration DURATION'SMALL
must not be greater than 20 milliseconds (whenever possible a value not
greater than 50 microseconds should be chosen). A real-time embedded
system has timing constraints that require response within a predetermined
time interval. The clock period or resolution of type DURATION must
support these requirements.

Another extensive use of the CLOCK function is for the measurement of
time in benchmarks. Even though more accurate timers may be present, the
benchmark developer can only be certain that the system clock is present via
the CLOCK function.

3.8.1 Clock Tests

Table 16 lists all the CLOCK tests.

TABLE 16
CLOCK Function Tests
(Verdix Execution Time in Microseconds)

File Name | Benchmark Description Time
c00001.a CLOCK function overhead | 922.59
¢00002.a CLOCK resolution 0.000061

3.8.1.1 BENCHMARK: Measure CLOCK function overhead.

If the overhead associated with executing the CLOCK function is high, then
real-time embedded systems will be hesitant to use the CLOCK function.
The method used is essentially the same as measuring the overhead
associated with a entry and exit of a do-nothing subprogram in a separate
package.

c00001.a : This benchmark test measures the overhead associated with a call to
and return from the CLOCK function provided in the package CALENDAR.
Verdix: CLOCK function overhead is 922.59 microseconds.

Interpretation of results:

-75-

1. The CLOCK overhead does add to the time required to make a
benchmark measurement. But the dual loop benchmarking strategy
can negate this effect by subtracting the control loop from the test
loop.

2. For real-time applications, an overhead of 900 microseconds could be
very time-expensive. Generally speaking, a CLOCK function overhead
of 100 microseconds is more suitable for real-time applications. It has
to be compared with the CLOCK resolution of other Ada compilers.

3.8.1.2 BENCHMARK: Measure CLOCK resolution.

If the resolution time of the CLOCK function is not high, then for real-time
applications a higher resolution clock is needed.

c00002.a: This test measures the resolution time of the CLOCK function.
Verdix: CLOCK resolution is 0.000061 microseconds.

Interpretation of results:

1. The CLOCK resolation of 0.000061 microseconds is acceptable for
real-time applications. Again, it has to be compared with the CLOCK
resolution of other Ada compilers.

3.9 Numeric Computation

An embedded system must be able to represent real-world entities and
quantities to perform related manipulations and computations. There should
be support for numerical computation, units of measure (including time),
and calculations and formulae from physics, chemistry etc.

3.9.1 Arithmetic for Time and Duration

For real-time embedded systems, it is necessary to dynamically compute
values of type TIME and DURATION. An example of such a computation
is the difference between a call to the CLOCK function and a calculated
TIME value. This value may be used as a parameter in the delay statement.
If the overhead involved in this computation is significant, the actual delay
experienced will be longer than anticipated which could be critical for real-
time systems.

-76 -

3.9.1.1 BENCHMARK: Measure the overhead associated with a call to and
return from the "+" and "-" functions provided in the package
CALENDAR.

Times are measured for computations involving just variables and both
constants and variables. The variables have predefined values. Although
both "+" functions are essentially the same (only the order of parameters
reversed) both are tested. This is done because a discrepancy in the time
needed to complete the computation will occur if one of the functions is
implemented as a call to the other. Table 17 lists the benchmarks that
calculate the overhead involved in dynamic computation of values of type
TIME and DURATION.

TABLE 17
TIME and DURATION Mathematics
(Verdix Execution Time in Microseconds)

File Operation ‘ Time

Name | Performed

tmla | Time = Var_time + Var_duration 683.20
tm2.a | Time = Var_time + Const_duration 683.20
tm3.a | Time = Var_duration + Var_time 731.99
tmd4.a | Time = Const_duration + Var_time 732.60
tmS.a | Time = Var_time - Var_duration 734.99
tm6.a | Time = Var_time - Const_duration 735.20
tm7.a | Duration = Var_time - Var_time 76.50

tm8.a | Duration = Var_duration + var_duration 3.9

tm9.a | Duration = Var_duration + Const_duration 3.90

tmi0.a | Duration = Const_dura*tion + Var_duration 3.79

tmll.a | Duration = Const_duration + Const_duration | 1.40

tm12.a | Duration = Var_duration - Var_duration 399
tm13.a | Duration = Var_duration - Const_duration 3.80
tml4.a | Duration = Const_duration - Var_duration 3.80

l tmifa | Duration = Const_duration - Const_duration | 0.29

Interpretation of Results:

1. The timings of tin3.a4 and und.a (732 microseconds) are higher than
tml.a and tm2.a (683.2 microseconds). This suggests very strongly that
the function "+" (Left:Duration;Right:Time) is implemented as a call
to the function "+" (Left: Time; Right:Duration).

2. tmS.a and tmé6.a timings are higher than tm7.a because of the time
required to convert a variable or constant of type DURATION to type
TIME. The time required to convert a variable of type TIME to type
DURATION is small as compared to vice-versa.

3. tm8.a through tmlS.a resemble timings for float addition and
subtraction.

3.9.2 Mathematical Computations

TABLE 18
Numeric Computation Benchmarks
(Verdix Execution Time in Microseconds)

File Operation Time
Name | Performed

tml16.a | Float Matrix Multiplication | 1567.0

tm17.a | Float Matrix Addition 1449.40
tml8.a | Factorial Calculation 133.0
tm19.a | Square root calculation 605.4

392.1 BENCHMARK: Determine time required for float matrix
multiplication/addition.

e tml6.a: A 5 by 5 matrix is multiplied by another 5 by 5 matrix.
Verdix: 1567.0 microseconds

e tml7.a: A 5 by 5 matrix is added to another 5 by 5 matrix.
Verdix: 1449.40 microseconds.
Interpretation of Results:

1. These timings have to be compared to results from other compilers.

3.92.2 BENCHMARK: Determine time required for factorial and square
root calculation.

-78 -

o tml8.a: Factorial of 8 is calculated.
Verdix: 133 microseconds

o tm19.a: Square root of 1000 is calculated
Verdix: Time for SQRT calculation was 605.40 microseconds.

Interpretation of Results:
1. These timings have to be compared to results from other compilers.

3.10 Subprogram Overhead

In Ada, subprograms rank high among program units from a system
structure point of view. Systems designed and implemented in Ada appear as
a collection of packages and subprogram units, each of which may have
multiple procedures. For real-time programmers to use good programming
techniques and structured system design methodologies, it is important that
subprogram call mechanism be as efficient as possible. If the subprogram
overhead is high, then the compiler can generate INLINE expansion at the
cost of increasing the size of the object code. However, if calls to that
subprogram are made from a lot of places, then the pragma INLINE defeats
the purpose due to increase in size of object code. In embedded systems
where memory is at a premium using pragma INLINE may not be a
practical solution. Also, a compiler implementation may not support
pragma INLINE.

3.10.1 Factors Influencing Overhead of Subprogram Calls

Overhead due to subprogram calls can be high because of the following
activities that take place when a subprogram is called:

 Ada has strict and elaborate rules for passing parameters to the called
subprogram. These rules have to be followed when a subprogram call is
made. Parameters can be passed via the stack or registers.

« Local objects are elaborated and storage for them is allocated and new
exception scopes are entered for each subprogram call.

-79.

3.10.2 Subprogram Overhead Tests

Several tests were designed to provide insight to different aspects of
subprogram calls. Subprogram overhead is measured when no parameters
are passed in the procedure call. Then various numbers of parameters of
types INTEGER and ENUMERATION are passed to determine the
subprogram overhead associated with simple parameter passing. Then
composite objects (arrays and records) are passed to determine if they are
passed by copy or reference. Using copy to pass composite types may cause
an application to incur large execution time and storage overheads. In these
tests, if the time measured is constant (in other words the time does not
depend on the size of the record or array passed), then parameters are
passed by reference (as pass by copy times will vary with the size of the array
or record passed). Finally, the formal parameters of the subprogram called
are of an unconstrained composite type, thus giving the subprogram
overhead involved in passing constraint information along with the
parameter itself. All of the tests include passing the parameters with modes
in, out, and in out.

All of the tests involve two different types of subprogram calls, one to a
subprogram that is a part of the same package as the caller, and the other to
a subprogram in a package other than the one in which the caller resides.
These two sets of tests determine if there is any difference in the overhead
for intra- and inter-package calls. In the case of intra-package calls, all of the
tests are repeated with the addition of the INLINE pragma to determine if
the INLINE pragma is supported and if it is, the amount of overhead
involved in executing code generated by an in-line expansion as opposed to
executing the same set of statements originally coded without a subprogram
call.

The final aspect of the tests involves the use of package instantiations of
generic code. All of the tests are for both inter-package and intra-package
are repeated with the subprograms being part of a generic unit. These tests
are designed to determine the additional overhead involved in executing
generic instantiations of the code.

3.102.1 Intra-Package Reference Tests

In intra-package reference tests, both caller and called subprogram are part
of the same package.

3.102.1.1 BENCHMARK: Measure the subprogram overhead involved in
entering and exiting a subprogram.

-80-

Table 19 lists the types and modes of the parameters that are used in this
test and also lists the results. In Table 19, the headings under the Time
column: I, O, I_O have the times listed for parameters with mode in, out,

and in out.

TABLE 19

Subprogram Overhead (Intra-Package)

(Verdix Execution Time in Microseconds)

File Type of Parameter Number | Size Time

Name Passed Passed I (0] 10
d na 0 0 0.2

dila Integer 1 103 | 103 |97
di 10.a Integer 10 103 | 195 | 195
d i 100.a Integer 100 89.7 | 150.1 | 1904
de la Enumeration 1 9.7 9.7 9.7

d e_10.a Enumeration 10 103 | 201 | 201
d_e_100.a Enumeration 100 903 | 150.1 | 1904
dala Array of Integer 1 1 201 | 402 | 500
d a 10a Array of Integer 1 10 9.7 9.7 9.7

d _a_100.a Array of Integer 1 100 9.7 109 | 109
d a_10k.a Array of Integer 1 10000 | 0.6 0.6 0.6
drla Record of Integer 1 1 209 | 494 | 500
d_r_100.a Record of Integer 1 100 0.6 0.6 0.6
duala Unconstrained array | 1 1 9.7 9.7 9.7
d_u_a_100.a | Unconstrained array | 1 100 9.7 9.7 9.7
d_u_a 10k.a | Unconstrained array | 1 10000 | 9.7 9.7 9.7
durla Unconstrained record | 1 1 9.7 9.7 9.7
d_u_r_100.a | Unconstrained record | 1 100 9.7 9.7 9.7

Interpretation of Results:

1. It seems that the Verdix compiler is in-lining some procedures even if
pragma INLINE is not specified as the timings for d_na and
d_a 10k.a are nearly zero. The compiler vendor has been contacted

with these results.

2. For integer and enumeration types, subprogram overhead for variables
of mode out and in out is greater than that of mode in. This is because

-81-

of the additional overhead involved in copying back the parameters of
mode out and in out when returning from the procedure call. Also,
the overhead for passing 100 integers is-higher than the overhead for
passing 1 integer (due to the time required for copying the integers on
the stack when the procedure call is made).

3. 'The timings for arrays of integer (of length 1) seemed to indicate that
it is passed by copy as opposed to by reference, whereas the timings
for arrays of size 10 and more seem to indicate that it is passed by
reference (as pass by reference times do not vary with the length of the
array passed).

4. The timings for unconstrained types seem to suggest that there is very
little extra overhead in passing the constraint information in the
procedure call.

3.102.2 Intra-Package Tests with Pragma INLINE

Many compiler implementations may not support this pragma. If pragma
INLINE is supported by the compiler implementation, these tests will
determine the subprogram overhead due to code generated by an in-line
expansion as opposed to code that is written without a subprogram call.

3.10.2.2.1 BENCHMARK: Repeat benchmarks in Section 3.10.2.1.1 with
pragma INLINE for the called procedure.

In the case of intra-package calls, all of the tests are repeated with the
addition of the INLINE pragma to determine if the INLINE pragma is
supported and if it is, the amount of overhead involved in executing code
generated by an in-line expansion as opposed to executing the same set of
statements originally coded without a subprogram call. Table 20 lists the
types and modes of the parameters that are used in these tests and also lists
the results in microseconds. In Table 20, the headings under the Time
column: I, O, I_O have the times listed for parameters with mode in, out,
and in out respectively.

TABLE 20
Subprogram Overhead (Intra-Package with Pragma Inline)
(Verdix Execution Time in Microseconds)

File Type of Parameter Number | Size Time

Name Passed Passed I 0 10
ina 0 02

iila Integer 1 1.0 18 1.8
iil0a Integer 10 113 | 199 | 203
i_i_100.a Integer 100 1135 | 2025 | 2135
iela Enumeration 1 0.2 09 0.8
iel0a Enumeration 10 11.3 199 | 208
i_e_100.a Enumeration 100 1135 | 2025 | 2138
iala Array of Integer 1 1 05 04 0.4
i_a_10.a Array of Integer 1 10 0.4 0.7 0.7
i_a_100.a Array of Integer 1 100 03 0.7 0.7
i_a_l0k.a Array of Integer 1 10000 | Q7 a6 0.8
irla Record of Integer 1 1 0.8 1.0 1.0
i_r_100.a Record of Integer 1 100 0.7 0.7 0.7
iuala Unconstrained array | 1 1 1.0 L5 1.0
i_ua 100.a | Unconstrained array | 1 100 11 13 12

i ua 10ka | Unconstrained array | 1 10000 | 13 13 1.5
iurla Unconstrained record | 1 1 15 14 15

i_ ur 100.a | Unconstrained record | 1 100 16 14 1.0

Interpretation of Results:

1. The overhead due to INLINE expansion of code for parameters of
type integer and enumeration indicates that the overhead due to
INLINE expansion is higher than the time it takes to execute the same
set of statements without a procedure call. In fact, the overhead for 10
or more integer and enumeration variables is very similar to timings
obtained in TABLE 19.

2. For composite and unconstrained types, the timings indicate that the
overhead in executing code produced by pragma INLINE is negligible.

3.102.3 Inter-Package Reference Tests
In inter-package reference, the calling subprogram is in a package other than

the one in which the called subprogram resides. The motivation for inter-
package tests is to compare the subprogram call overhead time between
intra- and inter-package calls.

3.10.2.3.1 BENCHMARK: Repeat benchmarks in Section 2.10.2.1.1 with the
called subprogram being part of another package.

Table 21 lists the types of the parameters that are used in these tests and
also lists the results for the Verdix compiler. In Table 21, the headings
under the Time column: I, O, I_O have the times listed for parameters with
mode in, out, and in out respectively.

TABLE 21
Subprogram Overhead (Inter-Package)
(Verdix Execution Time in Microseconds)

File Type of Parameter Number | Size Time

Name Passed Passed I 6] 10
p_na 0 59

p_i_la Integer 1 6.8 73 15
p_i_10a Integer 10 148 | 198 | 247
p_i_100.a Integer 100 947 | 1486 | 1951
pela Enumeration 1 9.2 9.1 93
p_e 10.a Enumeration 10 148 | 199 | 247
p_c_100.a Enumeration 100 948 | 1416 | 1951
p_a_la Array of Integer 1 1 251 | 446 | 440
p_a_10.a Array of Integer 1 10 6.7 7.0 6.5
p_a_100.a Array of Integer 1 100 6.7 10 78
p_a_10k.a Array of Integer 1 10000 | 7.8 7.7 1.7
p_r_la Record of Integer 1 1 253 | 47 | 47
p_r_100.a Record of Integer 1 100 70 6.9 70
p_u_ala Unconstrained array | 1 1 78 8.0 78
p_u_a_100.a | Unconstrained array | 1 100 8.0 8.0 79
p_u_a_10k.a | Unconstrained array | 1 10000 | 7.9 78 8.0
p_ur_la Unconstrained record | 1 1 6.8 9.0 85
p_u_r_100.a | Unconstrained record | 1 100 9.1 8.6 87

Interpretation of Results:

1. For integer and enumeration types, subprogram overhead for variables
of mode out and in out is greater than that of mode in. This is because
of the additional overhead involved in copying back the parameters of
mode out and in out when returning from the procedure call. Also,
the overhead for passing 100 integers is higher than the overhead for
passing 1 integer (due to the time required for copying the integers on
the stack when the procedure call is made).

2. The timings for records of integer (field 1) and array of integer (of
length 1) seemed to indicate that they are passed by copy as opposed
to by reference, whereas the timings for records of 100 fields and
arrays of size 10 and more seem to indicate that they are passed by
reference (as pass by reference times do not vary with the length of the
array passed).

3. The timings for unconstrained types seem to suggest that there is very
little extra overhead in passing the constraint information in the
procedure call. Also, unconstrained records and arrays are passed by
reference.

3.10.2.4 Instantiations of Generic Code

3.10.2.4.1 BENCHMARK: In the tests for inter- and intra-package calls,
the subprograms are part of generic packages that are instantiated.

These benchmarks will measure ~dditional overhead involved in executing
generic instantiations of the code. Table 22 (for intra-package) and 23 (for
inter-package) list the types of the parameters that are used in these tests.
In Tables 22 and 23, the headings under the Time column: I, O, I_O have the
times listed for parameters with mode in, out, and in out respectively.

-85 -

TABLE 22

Subprogram Overhead (Intra-Package with Generic Instantiation)

(Verdix Execution Time in Microseconds)

File Type of Parameter | Number | Size Time

Name Passed Passed I (0] 10
gnca 0 6.0

gilca Integer 1 88 88 78
gil0ca Integer 10 146 | 206 | 259
g_i 100 ca | Integer 100 107.7 | 148.5 | 2077
gelca Enumeration 1 107 | 107 | 107
g ¢ 10 ca | Enumeration 10 146 | 207 | 26.0
g e _100_c.a | Enumeration 100 1075 | 1485 | 207.6
galca Array of Integer 1 1 264 | 457 | 46.0
ga 10 ca Array of Integer 1 10 8.7 74 8.2

g a 100 ca | Array of Integer 1 100 8.2 7.4 82

g a 10k c.a | Array of Integer 1 10000 | 8.6 7.0 86
grlca Record of Integer | 1 1 264 | 455 | 465
g r 100 ca | Record of Integer | 1 100 83 15 82

Interpretation of Results:

1.

2.

3.

For integer and enumeration types, subprogram overhead for variables
of mode out and in out is greater than that of mode in. This is because
of the additional overhead involved in copying back the parameters of
mode out and in out when returning from the procedure call. Also,
the overhead for passing 100 integers is higher than the overhead for
passing 1 integer (due to the time required for copying the integers on
the stack when the procedure call is made).

The timings for integer records of field 1 and array of integer (of
length 1) seemed to indicate that they are passed by copy as opposed
to by reference, whereas the timings for integer records with 100 fields
and arrays of size 10 and more seem to indicate that they are passed
by reference (as pass by reference times do not vary with the length of
the array passed).

There is a slight difference in the times as listed for intra-package
reference without generic instantiations and with generic
instantiations. On the whole, the timings seem to be compatible.

- 86 -

TABLE 23
Subprogram Overhead (Inter-Package with Generic Instantiation)
(Verdix Execution Time in Microseconds)

File Type of Parameter | Number | Size Time

Name Passed Passed I 0] 10
c_na 0 89

cila Integer 1 128 138 16.9
c_i_10.a Integer 10 47.1 532 786
c_i_100.a | Integer 100 370.1 436.7 674.7
ce la Enumeration 1 143 14.8 17.7
c e 10.a | Enumeration 10 47.1 53.1 78.6
c_e 100.a | Enumeration 100 370.1 436.8 674.7

cala Array of Integer 1 50.2 69.2 89.7

10 433 43.9 75.5
100 156.8 1574 3026
10000 | 12646.2 | 12646.1 | 252774
1 50.2 69.2 89.5

100 156.7 1572 3024

c_a_10.a | Array of Integer

c_a_100.a | Array of Integer

c_a_10ka | Array of Integer

cr_la Record of Integer

Y S S A S

c_r_100.a | Record of Integer

Interpretation of Results:

1. For integer and enumeration types, subprogram overhead for variables
of mode out and in out is greater than that of mode in. This is because
of the additional overhead involved in copying back the parameters of
mode out and in out when returning from the procedure call. Also,
the overhead for passing 100 integers is higher than the overhead for
passing 1 integer (due to the time required for copying the integers on
the stack when the procedure call is made).

2. There is a big difference in the times as listed for inter-package
reference without generic instantiations and with geperic
instantiations. This seems to indicate that inter-package calls with
generic instantiation are extremely inefficient on the Verdix compiler
as opposed to inter-package calls without generic instantiation.

-87-

3.11 Pragmas

The main purpose of pragmas is to select particular runtime features of the
language or to override the compiler’s default. There are certain predefined
pragmas which are expected to have an impact on the execution time and
space of a program. These include: SUPPRESS, CONTROLLED,
SHARED, PACK, INLINE, OPTIMIZE and PRIORITY. Benchmarks for
Pragma INLINE are covered under Subprogram Overhead (Section 3.10)
Pragma PACK is covered under Chapter 13 benchmarks (Section 3.6). and
Pragma PRIORITY is covered under Section (4.3).

These are test problems which contain the same source text where the only
difference between the problems is the presence (or absence) of pragmas.
Table 24 lists the Pragma benchmarks. The time column in the table below
lists the improvement in execution time when the Pragma was used in the
benchmark.

TABLE 24
Pragma Benchmarks
(Verdix Execution Time in Microseconds)

File Name Benchmark Description Time Difference
pr00001.a Pragma SUPPRESS used for Overflow_Check,

Division_Check, and Range_Check 12.8
pr00001_l.a | Pragma SUPPRESS used for Access_Check 22
pr00001 2.a | Pragma SUPPRESS used for Index Check

and Length Check 94.0
pr00001_3.a | Pragma SUPPRESS used for STORAGE_CHECK 0.0
pr00001 4.2 | Pragma SUPPRESS used for ELABORATION_CHECK | 184
pr00001_S.a | Pragma SUPPRESS used for INDEX CHECK 794.0
pr00002.a Pragma CONTROLLED used for access type STORAGE_ERROR
pr00003.a Pragma SHARED shared integer updated
pr00003_l1.a | Pragma SHARED shared integer updated

during rendezvous

3.11.1 Pragma SUPPRESS

The benchmarks for pragma SUPPRESS determine the improvement in
execution time when pragmas SUPPRESS is used. Pragma SUPPRESS
causes the compiler to omit the corresponding exception checking
(RANGE_CHECK, STORAGE_CHECK etc.) that occurs at runtime.

When the cost of runtime checks is unacceptable, the programmer can use
the pragma Suppress to suppress them selectively. This can be dangerous
because if a language rule is violated when the corresponding runtime checks
have been suppressed, the program’s behavior will become unpredictable.
Nevertheless, it happens often in practice that a program with runtime
checks is too large to fit into a limited memory or is too slow to meet a time
constraint.

Issues relevant to the decision of whether to suppress these runtime checks
include the execution overhead of performing them, the associated code size
overhead, and the additional application level code needed to perform the
same level of error detection if they are turned off.

3.11.1.1 BENCHMARK: Determine improvement in execution speed when
pragma SUPPRESS is used for the following checks:

e pr00001.a: Pragma SUPPRESS is used for these checks: Cverflow_Check,
Division_Check, Range_Check.
Verdix: The execution time of this test had an improvement of 12.8

microseconds when the above mentioned checks are used with pragma
SUPPRESS.

Interpretation of Results:

1. The results imply that Pragma SUPPRESS is implemented for
Overflow_Check, Division_Check, and Range_Check.

o prO0001_I.a: Pragma SUPPRESS is used for these checks: Access_Check
Verdix: The execution time of this test had an merovement of 2.2
microseconds when pragma Suppress (Access_check) is used.

Interpretation of Results:

1. Since the improvement in execution time is negligible, it is possible
that Pragma SUPPRESS for Access_Check has no effeci.

o pr00001 2.a: Pragma SUPPRESS is used for these checks: Index_check,
Length_check.
Verdix: The execution time of this test was better WITHOUT the
pragma specified. The speed without the pragma was 94 microseconds
bette, than with the pragma specified.

-89 -

Interpretation of Results:

1. The results imply that Pragma SUPPRESS besides NOT being
implemented for Index Check and Length Check, causes a
degradation in execution time when specified. The compiler
vendor has been contacted with the results.

o pr00001_3.a: Pragma SUPPRESS is used for these checks: Storage_Check.
Verdix: The execution time of this test had no improvement when
pragma SUPPRESS (STORAGE_CHECK) is used.

Interpretation of Results:

1. Since the improvement in execution time is negligible, it is obvious
that Pragma SUPPRESS for Storage Check is not implemented.

e pr00001 4.a: Pragma SUPPRESS is used for these checks:
Elaboration_Check.
Verdix: The execution time of this test had an improvement of 18.4
microseconds when pragma Suppress (Elaboration_Check) is used.

Interpretation of Results:

1. The results imply that Pragma SUPPRESS is implemented for
Elaboration_Check.

o pr00001 5.a: Pragma SUPPRESS is used for these checks: Index_Check.
Verdix: The execution time of this test was better WITHOUT the
pragma specified. The execution speed without the pragma was 794
microseconds better than with the pragma specified.

Interpretation ¢i Results:

1. The results imply that Pragma SUPPRESS besides NOT being
implemented for Index_Check, causes a degradation in execution
time when specified. The compiler vendor has been contacted with
the results.

3.11.2 Pragma CONTROLLED

Pragma CONTROLLED may be used to request that deallocation of heap
objects take place only on leaving the scope of that obiect.

3.11.2.1 BENCHMARK: Determine if pragma CONTROLLED has any
affect for a access type object.

pr00002.a: This test will allocate memory and overwrite the only access objects
to the allocated memory. Pragma CONTROLLED is specified for the access
object. Even if there is no garbage collection performed on the fb,
STORAGE_ERROR should be raised if Pragma CONTROLLED is
implemented.

Verdix: The exception STORAGE ERROR was raised upon execution of
this benchmark.

Interpretation of Results:

1. Since the Verdix compiler by default does not deallocate space upon
leaving the scope of an access type object, two conclusions can be
drawn:

o Either Pragma CONTROLLED does defer deallocation of space.
or

o It is not implemented.

Looking at the Verdix documentation it was determined that Pragma
CONTROLLED is not implemented.

3.11.3 Pragma SHARED

With multiple tasks executing, there may be an instance where the same
nonlocal variable must be accessed. Pragma SHARED is the mechanism
that designates that a variable is shared by two or more tasks. Pragma
SHARED directs the RTE to perform updates of the shared variable copies
each time they are updated, but the overhead may be significant. Pragma
SHARED is applied only to scalar and access type variables. Local copies of
the shared variables are made identical at synchronization points, such as at
the start and at the completion of the rendezvous.

3.11.3.1 BENCHMARK: Determine the overhead due to Pragma SHARED
when two tasks access a shared integer variable.

pr00003.a: In this test, the main program updates a shared integer variable.
This integer variable is also updated by another task. The overhead involved in
updating a shared integer variable is compared to the overfiead involved in
updating an integer variable that is not shared.

Verdix: The overhead involved was negligible.

-91-

Interpretation of Results:

1. From the results obtained and also from looking at the compiler
documentation, it was determined that the Verdix compiler does not
implement pragma SHARED.

3.11.3.2 BENCHMARK: Determine the overhead in rendezvous time when
a shared variable is updated during the rendezvous.

pr00003_1.a: In this test, the main program updates a shared integer variable
during a rendezvous. The overhead involved in vpdating a shared integer
variable during a rendezvous is compared to the overhead involved in updating
an integer variable (that is not shared) during a rendezvous.

Verdix: The overhead involved was negligible.

Interpretation of Results:

1. From the results obtained and also from looking at the compiler
documentation, it was determined that the Verdix compiler does not
implement pragma SHARED.

3.11.4 Pragma PACK

Pragma PACK is covered under Chapter 13 benchmarks (Section 3.6).

3.11.5 Pragma INLINE

Benchmarks for Pragma INLINE are covered under Subprogram Overhead
(Section 3.10)

3.11.6 Pragma PRIORITY

Benchmarks for Pragma PRIORITY are covered under Section 4.1.

3.12 Input/Qutput

Embedded systems depend heavily on real-time input and output. An Ada
embedded system must have potential access to I/O ports, to control, status
and data registers (for a memory mapped scheme), to direct memory access
controllers, and to a mechanism for enabling and disabling interrupts.
Real-time I/O is subject to strict timing requirements and can be either
synchronous or asynchronous. To handle I/O for a specialized device, a
special interface is needed. This interface provides the attributes found in
device drivers and interrupt handlers. For example, a real-time application
needs to enable, disable, and handle device interrupts; it may need to send
control signals to and request status from a device; and it has to move data
to and from the data registers and I/O memory of a device. Low-level
asynchronous I/O operations to and from hardware devices tend to be
interrupt driven. As such a real-time programmer needs low-level I/O
support and the ability to handle hardware interrupts in software efficiently.
Package @~ LOW LEVEL IO provides the control primitives
(SEND _ CONTROL and RECEIVE _CONTROL) for I/ O operations on a
physical device. The details of this implementation is lmplementanon
dependent. For handling hardware interrupts, the Ada address clause is used
to bind a particular Ada task entry to a hardware interrupt. Low level device
interfaces are machine dependent and programs including them are
therefore not portable. Facilities are needed for manipulating device
registers, whether on architectures which use memory mapped I/O or on
architectures which use specialized I/O instructions. In the case of
memory-mapped I/O Ada provides representation clauses for addressing
and accessing registers. For architectures with specialized I/O instructions
an Ada implementation can use code inserts or the package
LOW_LEVEL IO. Low level asynchronous I/O operations to and from
hardware devices tend to be interrupt driven.

3.12.1 TEXT IO

These benchmarks deal with TEXT IO. Table 25 lists the I/O benchmarks.

-93.

TABLE 25
Input/Output Benchmarks
(Verdix Execution Time in Milliseconds)
File Name | Benchmark Description Time
io00001.a | Create output file and copy characters 3111.0
i000002.a | Create output file, copy data using ENUMERATION_IO | 2548.0
i000003.a | Create output file, copy data using INTEGER_IO 2509.0
i000004.a | Create output file, copy data using FLOAT IO 2563.0
i000005.a | Create output file, copy data using FIXED IO 2549.0

ENUMERATION_IO, INTEGER IO, FLOAT IO, and FIXED I0. The
tests are designed to open data file for reading and copying the data to
another file. Time is measured to achieve the above for each type of IO
mentioned above.

i000001.a: TEXT 10
Verdix: The Verdix compiler took 3111 milliseconds to create an output file
and then copy the lines in the input file to the output file.

i000002.a: ENUMERATION 10
Verdix: The Verdix compiler took 2548 milliseconds to create an output file
and then copy the enumeration values from the input file to the output file.

i1000003.a: INTEGER IO
Verdix: The Verdix compiler took 2509 milliseconds to create an output file
and then copy the integer values from the input file to the output file.

i000004.a: FLOAT 10O
Verdix: The Verdix compiler took 2563 milliseconds to create an output file
and then copy the float values from the input file to the output file.

i000005.a: FIXED 10
Verdix: The Verdix compiler took 2549 milliseconds to create an output file
and then copy the fixed type values from the input file to the output file

Interpretation of Results:

1. The timing for various types of I/O varies from 2509 milliseconds to
3111 milliseconds. These timings seem expensive compared to at most
a couple of milliseconds timings for other operations. For real-time
systems, these results seem to indicate that TEXT IO,
ENUMERATION _IO, INTEGER IO, FLOAT IO, and FIXED IO
should only be performed in non-time critical regions of code.

- 95 -

Chapter 4: Runtime Implementation Benchmarks

The Ada Language Reference Manual (LRM) has a lot of implementation
dependent features that are of concern to real-time programmers. A list of
the implementation dependent features is compiled in a document published
by the Ada Runtime Environment Working Group (ARTEWG) [4]. The
large variance in implementation options for a feature affect application
program behavior and efficiency. This is a clear signal that simply adopting
the language as defined in the LRM is not enough for real-time embedded
systems. The implementation approach of various Ada language features
and the runtime system has to be benchmarked to assess an Ada compiler’s
suitability for a real-time embedded application.

This chapter deals with benchmarks that determine Ada runtime
implementation dependencies. A primary source of input is the ARTEWG
[4] document. The areas that have been covered include:

o Tasking

 Scheduling and Delay Statement
o Memory Management

o Exceptions

o Interrupt Handling

« Asynchronous I/O

4.1 Tasking

4.1.1 Tasking Implementation Dependencies

Table 26 lists the benchmarks that determine tasking implementation
dependencies.

-96 -

TABLE 26
Tasking Implementation Benchmarks
(Results for Verdix Compiler)

File Name | Benchmark Description Results
rt_t00L.a Is task space deallocated on return from procedure | No

on task termination
rt_t002.a Is task space deallocated upon task termination No

when access type is declared in library unit

rt_t003.a Determine order of elaboration when several tasks | See
are activated 4113

rt_t004.a Can a task continue execution after its activation but { Yes
prior to completion of activation of tasks declared
in the same declarative part

rt_t005.a If allocation of task raises STORAGE_ERROR Task
when is exception raised Creation
rt_t006.a What happens to tasks declared in a library Do not
package when main task terminates terminate
rt_t007.a Print default attribute STORAGE_SIZE 10240 bytes
and SIZE for tasks objects 32 bytes
rt_t008.a Order of evaluation of tasks in See
abort statement 4.1.18
rt_t009.a Task aborted while updating a See
variable 4.1.19

4,1.1.1 BENCHMARK: Determine if task space is deallocated on return
from a procedure when a task that has been allocated via the new operator
in that procedure terminates.

rt_ t001.a: In this benchmark, the main program program calls a procedure.
Inside that procedure are declared a task type and an access type for that task
type. A task is allocated (via new) in that procedure. Upon return from the
procedure, the task space should be deallocated as the task type and access
type are not visible outside the procedure.

Verdix: Exception Storage Error was raised upon execution of the
benchmark.

Interpretation of results:

1. Since exception Storage Error was raised upon execution of the
benchmark, this implies that task space is not deallocated upon return
from the procedure.

e

-97.

2. In many real-time embedded systems where space is at a premium it
may be desirable that task space be deallocated when that task
terminates.

4.1.12 BENCHMARK: Determine if tasks that are allocated dynamically
by the execution of an new allocator do not have their space reclaimed
upon iermination when access type is declared in a library unit or
outermost scope.

It might be impossible for the runtime system to deallocate the task storage
space after termination. This is because the access value might have been
copied and an object might still be referencing the terminated task’s task
control block.

rt_t002.a: In this benchmark, a task is allocated (via new) whose access type is
declared in a library unit.

Verdix: Exception Storage Error was raised upon execution of the
benchmark.

Interpretation of results:

1. The ralsmg of the exception STORAGE ERROR indicates that task
space is not deallocated upon termination of a task when access type is
declared in the outermost scope or in library unit.

4.1.1.3 BENCHMARK: Determine the order of elaboration when several
tasks that are declared in the same declarative region are activated in
parallel.

When several tasks are activated in parallel, the order of their elaboration
may affect program execution.

rt_t003.a: In this benchmark, 5 tasks are declared in the main program. The
task declarations are in the order TASKI, TASK2, TASK3, TASK4, TASKS
whereas the task bodies are declared in the order TASKS, TASK2, TASKI,
TASK4, TASK3. Each task prints its name as soon as it is activated. The
main task prints the word "master” when it is activated.

Verdix: The output of the benchmark was TASKS, TASK4, TASK3, TASK2,
TASK1 and master (this was always printed in several runs).

Interpretation of results:

1. The results for the Verdix compiler indicate that the task that is
declared last (NOT the task body) is elaborated and activated first,
and the task elaboration order proceeds to activate the task declared
before the last declared task and so on. The task declared first is
activated the last and the main program starts executing after all the
tasks declared in the main program’s declarative part start executing.

-98 -

4.1.1.4 BENCHMARK: Can a task, following its activation but prior to the
completion of activation of tasks declared in the same declarative part,
continue execution.

The activation of tasks proceeds in parallel. Correct execution of a program
may depend on a task continuing execution after its activation is completed
but before all other tasks activated in parallel have completed their
respective activations.

rt_t004.a: In this benchmark, two tasks are declared in a block statement. Using
Benchmark 4.1.1.3 one can determine the order of elaboration of tasks. For
this benchmark to run correctly, the declaration of task REQUESTOR has to
be placed so that it is activated first. Task REQUESTOR makes a conditional
entry call to an entry in task SERVER. If the entry call is accepted, the value of
a boolean variable is changed to TRUE else it is changed to FALSE. The
entry call will only be accepted if SERVER has been activated. If the boolean
variable is FALSE, this implies that a task, following its activation but prior to
the completion of activation of tasks declared in the same declarative part, can
continue execrition.

Verdix: The Verdix compiler returned the value FALSE for the boolean
variable.

Interpretation of results:

1. Since the value of the boolean variable is FALSE for the Verdix
compiler, a task following its activation but prior to the completion of
activation of tasks declared in the same declarative part, continues
execution.

4.1.1.5 BENCHMARK: If the allocation of a task object raises the
exception STORAGE _ERROR, when is the exception raised?

The LRM does not define when STORAGE ERROR must be raised
should a task object exceed the storage allocation of its creator or master.
The exception must be no later than task activation: however an
implementation may choose to raise it earlier.

rt_t005.a: In this benchmark, a task (A) whose STORAGE SIZE attribute is
specified to be 10 megabytes is declared in the main program.in the main
program. During the elaboration of task A, STORAGE _ERROR will be
raised. If STORAGE ERROR is raised at activation of task A, then task A
prints the message '"STORAGE ERROR RAISED AT TASK
ACTIVATION". If STORAGE ERROR is raised at creation of task A, then
main task prmts the message "STORAGE _ERROR RAISED AT TASK
CREATIO

Verdix: Execution of this benchmark prints the message
"STORAGE_ERROR RAISED AT TASK CREATION".

Interpretation of results:

1. The Verdix compiler raises STORAGE ERROR at the time of task
creation, rather than at the time of task activation.

4.1.1.6 BENCHMARK: What happens to tasks declared in a library
package when the main program terminates?

For some real-time embedded applications, it is desirable that such tasks do
not terminate. System designers need to know this information.

rt t006.a: In this benchmark, the library task waits for the main program to
terminate. If the termination of the main program causes the termination of the
library task, the message "LIBRARY TASK NOT TERMINATED WHEN
THE MAIN TASK TERMINATES" is not printed (the reason being that as
soon as the main task terminates, tasks declared in the library package are
basically terminated without any chance to write something out on the
terminal).

Verdix: The message "LIBRARY TASK NOT TERMINATED WHEN
THE MAIN TASK TERMINATES" is printed.

Interpretation of results:

1. For the Verdix compiler, tasks declared in library packages do not
terminate when the main task terminates.

4.1.1.7 BENCHMARK: The attributes SIZE and STORAGE_SIZE provide
information about storage assignments for task objects and types. These
attributes can also be used to specify an exact size (amount of storage) to
be associated with a task type. For some real-time applications, it is
important to know how much storage a task object is allocated.

rt_t007.a: This test pnnts the SIZE and default STORAGE SIZE allocated for
tasks. Also, the maximum number of tasks allowed for an implementation are
calculated.

Verdix: The Verdix compiler allocates 10240 storage units for the attribute
STORAGE SIZE and 32 storage units for attribute SIZE. The maximum
number of allowable tasks in the system being used is 100.

Interpretation of results:

1. The default STORAGE SIZE for tasks can be changed using the
representanon clause "for TASK TYPE'STORAGE _SIZE use ...".
The maximum number of allowable tasks in the system depends on the
total amount of memory available to the system divided by the
STORAGE_SIZE needed for a task.

4.1.1.8 BENCHMARK: Determine order of evaluation of tasks named in an
abort statement.

- 100 -

Abort statement provides a convenient way to terminate a task hierarchy.
When a task T1 aborts a task T2, the result T2’COMPLETED is true when
evaluated by T1. Other tasks may not immediately detect that
T2ZCOMPLETED is true. In real-time embedded systems, tasks may have
to be aborted in a certain sequence. T.: semantics of the abort statement
do not guarantee immediate completion of the named task. Completion
must happen no later than when the task reaches a synchronization point.

rt_t008.a: There are 4 tasks in this benchmark, TASKI has rendezvous with
TASK2, and TASK3 has rendezvous with TASK4. In the accept statement of
TASK4 and TASK2, a delay statement is executed. The abort statement is
executed in the order TASK4 and then TASK2. If TASK4 is aborted first, then
TASK3 raises TASKING ERROR first (prints "TASK3 aborted"). If TASK2
is aborted before TASK4, then TASKI raises TASKING ERROR (prints
"TASK1 aborted" first) before TASK3.

Verdix: The message "TASK3 aborted" is printed first.

Interpretation of results:

1. The Verdix compiler aborts the tasks in the order they are named in
the abort statement.

4.1.1.9 BENCHMARK: What are the results if a task is aborted while
updating a variable ?

When a task has been aborted, it may become completed at any point from
the time the abort statement is executed until its next synchronization point.
Depending on when an implementation actually causes the task to complete
the results of an aborted task may be different. Senpose a task is updating a
variable that is visible to other tasks, prior to a syncht onization point. If the
task is aborted just prior to the update, it may leave the variable unchanged
if it becomes completed immediately, or it raay update the variable and then
becomes completed at the synchronization point. This could affect the
results of the whole program. An implementation may defer compl..ion of
a task if it is aborted while updating a variable, and thus prevent a variable
from being undefined. This may be crucial in the case of a common
variable.

rt_t009.a: This benchmark determines the results if a task is aborted while
updating an variable. When a task has been aborted, it may become completed
at any point from the time the abort statement is executed until its next
synchronization point. If a task is aborted prior to a update, it may leave the
variable unchanged if it becomes completed immed:ately, or it may update the
variable and then become completed at the synchronization point. There is |
task declared in this program (TASKI). Main program has rendezvous with
TASK1 and then after the rendezvous it aborts TASK1 which is in the process
of updating X. The Main program prints the value of X. If X has been updated

I

then its value should be INTEGER’LAST.
Verdix: The main program prints INTEGER’FIRST.

Interpretation of results:

1. The Verdix compiler is completed before updating the variable. It does
wait for the synchronization point to be reached before aborting.

4.1.2 Task Synchronization

Table 27 lists the benchmarks that determine task synchronization
implementati .n dependencies. The results for these benchmarks are listed
in their respective sections as the results cannot fit in the table column size.

TABLE 27
Rendezvous Implementation Benchmarks

File Name | Benchmark Description Section

rt_r00l.a Algorithm used when choosing among branches
of selective wait statement 4121

rt_r002.a Order of evaluation of guard conditions ;
in a selective wait 4.122

rt_r003.a | Method to select from delay alternatives
of the same delay in selective wait 4123

rt_r004.a Determine when expressions of an open delay
altecnative or entry family index in an open
accept alternative evaluated 4124

rt_r005.a Determine the priority of a task
which has no explicit priority specified 4131

rt_r006.a | Determine the priority of a rendezvous
between two tasks which have no explicit
priorities specified 4132

4.12.1 BENCHMARK: Determine algorithm used when choosing among
branches of a selective wait statement.

Fairness of select-alternative is a particular aspect of scheduling fairness. If
a task reaches a selective wait and there is an entry call waiting at more than
one open alternative, or i\ a task is waiting at a selective wait and more than
one open accept or delay alternative becomes eligible for selection at the
same time, an alternative is selected according to criteria that are not
specified in the LRM. The implementation may make a) a random
selection, b) select the entry call that arrived first, c) select the first eligble

SRRSO

-102-

accept aliernative or d) select the task with the highest priority making the
entry call. Priority is not used when selecting among branches of a selective
wait. Real-tim programmers need to know this mechanism as designing an
embedded system without this knowledge can lead to missed deadlines even
for very low levels of processor utilization.

nt_r00La: Determine algorithm used when choosing among branches of a
selective wait statement. In this benchmark, a task SELECTED is declared
inside the main program with 4 entries declared in the order el, e2, e3, and e4
in the select statement. There are four other tasks declared which make entry
calls in the order e2, e4, el, and e3 respectively. The entry calls are made such
that the entry calls are queued up when SELECTED starts processing the entry
calls. The order in which the entry calls are accepted is printed out.

Verdix: The Verdix compiler printed "el e2 e3 e4".

Interpretation of results:

1. The Verdix compiler accepts the entry calls in the order that they are
declared in the select statement. This implies that real-time
embedded programmers using the Verdix compiler should place their
most critical accept statements at the beginning of the select
statement. If a program is designed using this knowledge, it may
present portability problems if the application changes the compiler
for which the program was designed initially.

4.12.2 BENCHMARK: Determine the order of evaluation for guard
conditions in a selective wait.

rt_r002.a: The main program calls entries in a task that is declared in the main
program. The accept statements have guard statements in front of them. The
order in which the uards are processed is printed out.

Verdix: The Veraix compiler printed "f1 f2 f4 f5".

Interpretation of results:

1. The Verdix compiler evaluates the guard conditions in the order that
they are declared in the select statement.

4.1.2.3 BENCHMARK: Determine method used to select from delay
alternatives of the same delay in a selective wait.

nt_r003.a: In this test, a task is declared in the main program called DELAYS.

This task has an entry E1 declared along with 3 delay altematives of "delay 1.0"
in the select statement. The delay statements print the order in which they are
evaluated as there is no entry call made to the accept in task DELAYS.

- 103 -

Verdix: The Verdix compiler printed "d1 d2 d3".

Interpretation of results:

1. The Verdix compiler always selects the first delay alternative of the
same delay in a selective wait.

4124 BENCHMARK: When are the expressions of an open delay
alternative or the entry family index in an open accept alternative
evaluated.

After all the open alternatives have been determined, the expressions in the
open delay alternative or the entry family index in an open alternative are
evaluated in the process of selecting an open alternative. It is up to the
implementation to determine whether all those expressions must be
evaluated before a selection is made. The choice affects both side effects and
the performance behavior of the select statement.

rt_r004.a: In this test, a delay alternative is part of a select statement. The delay
alternative calculates the delay time by calling a function that changes the value
of a global variable X (initialized to 0). The entry call is already queued up
before the select statement is reached. If the expression in the delay is
evaluated before accepting the entry call, then the value of X is 10, else it is 5.
Verdix: This benchmark did not execute on the Verdix compiler. The
benchmark compiled fine, but could not execute. The program never
returned. The compiler vendor has been contacted.

Interpretation of results:

1. None, as the program could not execute.

4.1.3 Tasking Priorities

Ada has two features to assist in real-time control. These are the priority
mechanism and timing facilities. A process priority is essential in any real-
time programming language since it allows the programmer to specify that
certain processes are more urgent than others and must therefore be
scheduled first. In Ada a task may be assigned a priority by use of the
pragma priority in its specification. Some of the consequences of the priority
concept are:

« All instances of the same task type must have equal priority.

- 104 -

e A task cannot change its priority (other than by entering a rendezvous
with a higher priority task).

o Tasks without a defined priority can have a high or low priority
depending on the implementation.

» Queue of tasks on an accept statement is strictly FIFO.

o The choice among open accept alternatives of the select statement is
arbitrary.

Priority is a concept that considers time in relative terms, not absolute. A
task having a higher priority than another will not execute later than the
second task, but no limit will be set on the time it may have to wait before
execution, apart from the fact that it will not be longer than the time the
lower-priority tasks have to wait. On the other hand, for a real-time tasks it
is of no concern whether its priority is higher or lower than others’ provided
that its execution time can be guaranteed to start (or to finish) within a
certain time limit.

4.1.3.1 BENCHMARK: Determine priority of tasks (and of the main
program) that have no defined priority.

Real-time programmers need to know the default priority of the main
program and other tasks in order to design usable embedded systems.

rt_r005.a: This benchmark determines the default priority of a task that has no
pnonty specified. This test has tasks declared whose priorities vary from
SYSTEM.PRIORITY'LAST to SYSTEM.PRIORITYFIRST. The
implementation of PRIORITY is specified in the package SYSTEM. The
rwnber of tasks declared depend on the range of value for PRIORITY. These
tasks each make entry calls to an entry GO declared in a task MAIN in the
main program. After the rendezvous is complete, the highest priority task
should execute. If MAIN executes before the other task after the rendezvous,
then the priority of task MAIN is either greater than or equal to the other task.
Verdix: For the Verdix compiler, the implementation of PRIORITY has the
range 0 .. 99. 0 is the lowest priority and 99 is the highest. During the
benchmark execution, the task MAIN (after the accept call) was put in the
execution queue ONLY before a task of priority 0.

Interpretation Of Results:

1. The priority of tasks that have no priority specified is 0 (from a range
of 0..99) on the Verdix Compiler.

4.1.3.2 BENCHMARK: Determine priority of a rendezvous between two

- 105 -

tasks without explicit priorities.

Two tasks without explicit priority conduct a rendezvous. If the priority
given to the rendezvous is higher than a task with an explicit priority, the
Ada program may perform in a manner unpredictable by the program
designer. This knowledge may be required by the designers of an embedded
system to ensure required system performance.

nt_r006.a: This benchmark determines the default prionity of a rendezvous
between two tasks with undefined priorities. This test has tasks declared whose
priorities vary from SYSTEM.PRIORITY’'LAST to
SYSTEM.PRIORITY’FIRST. The implementation of PRIORITY is specified
in the package SYSTEM. The number of tasks declared depend on the range of
value for PRIORITY. There are two tasks declared MAIN and MAINI
without explicit prionities. These tasks execute a rendezvous with each other and
suspend themselves in the rendezvous via a delay. When the delay expires, all
the other tasks whose priorities are higher than the rendezvous priority should
execute first before the rendezvous is completed. If rendezvous is completed
before other tasks which have not executed, then the priority of the rendezvous
is either greater than or equal to highest priority task yet to execute.

Verdix: For the Verdix compiler, the implementation of PRIORITY has the
range 0 .. 99. The rendezvous completed ONLY before a task of priority 0
was left to execute.

Interpretation Of Results:

1. The priority of an rendezvous between tasks whose priorities are not
explicitly defined is 0.

4.1.3.3 BENCHMARK: Determine if a low priority task activation could
result in a very long suspension of a high priority task.

A task spawning another task is the parent of that task; the parent task is
delayed while the child task is activated. Any problems in activation are
relayed back to the parent, who assumes responsibility for taking corrective
action. During the execution of an Ada program, a low priority task spawns
a task. While the activation of this spawned task is occurring, a high priority
task becomes ready to execute and it remains suspended until the
completion of the low priority task activation. In an embedded system, the
suspension of a high priority task could prevent the response to a time
critical event resulting in disastrous consequences. This could not be
benchmarked as more than one processor is needed to execute this
benchmark. This processor is needed in order to have a high priority task
become ready to execute while a low priority task spawns a task. This can
not be accomplished with a single processor.

- 106 -

4.2 Scheduling and Delay Statement

Task scheduling is an important consideration for a multitasking application.
Real-time embedded systems contain jobs with hard deadlines for their
execution. Failure to meet a deadline reduces the value of the job’s
execution possibly to the extent of jeopardizing the system’s mission. It is
the responsibility of the runtime system’s scheduling mechanism to
guarantee that the most important deadlines are met while also meeting as
many of the less important deadlines as possible. Also, the scheduler has the
responcibility to allow execution among tasks.

In MacLaren [8], real-time applications are classified by their inherent
scheduling complexity as follows:

o Purely cyclic (periodic) applications: Schedules are rigid and invariant
since no asynchronous events will occur. A cyclic executive can be used
to implement such applications. With a cyclic executive, the application
programmer controls the scheduling.

o Cyclic applications with some asynchronous events and possible
variations in computing loads. (Ada multitasking approach can be used to
solve these problems)

 Event driven applications that contain little or no periodic processing.
These kinds of applications can also be used using Ada multitasking.

The LRM imposes no restrictions on scheduling of tasks, except that a task
of higher priority that is ready to execute will not be kept waiting while a
task of lower priority exccutes.

For scheduling tasks at a particular time, the delay statement can be used in
conjunction with the predefined CALENDAR package. The time given in
the delay statement is expressed in fractions of seconds and is a fixed point
type defined in the predefined package CALENDAR. The delta of this
fixed point type DURATION is implementation dependent and is defined
by the value of the attribute SMALL. The precision of the timing depends
on the implementation of the package CALENDAR and on the granularity
of the underlying scheduler.

Some of the points to note about the delay statement are:

o The semantics for the delay statement, however, provides only that the
delay specified is a minimum amount of the delay time. On average, a
delay is likely to be longer than specified because of the time it takes for
the runtime system to recognize the expiration of the delay, reschedule
and resume the task. Furthermore, delay can only be used for coarse
timing. Fine resolution timing requires an external clock and interrupt.

|

-107 -

For real-time embedded systems, it is the maximum delay not the
minimum delay which is of interest.

o There is the possibility of an interrupt between the time a delay is
computed and the time it is requested. Hence the time at which delay
expires cannot, in general, be predicted in advance.

Ada’s preemptive, priority-based tasking model is inherently
nondeterministic. Predictability and reliability may demand that portions of
a given multitasking system be deterministic. Process execution order and
repetition rate must be fixed in such systems. The basic problem is that the
Ada rules are oriented towards solving the problems of task starvation rather
than towards the kind of scenarios that arise in practice with deadline

scheduling.

To allow execution to switch among tasks, the scheduler provided by the
runtime system is entered at certain synchronization points in a program,
and the scheduler decides at this point which task has to be executed.
According to the LRM, a implementation is free to choose among tasks of
equal priority or among tasks whose priority has not been defined. For some
applications fairness within a priority level may be desirable. For other
applications an unfair scheduler may be preferable.

The minimum synchronization (a implementation may choose to have more)
points at which the scheduler is invoked are the beginning and end of task
activations and rendezvous. The pragma priority enables real-time
embedded systems programmers to specify a higher priority for more
important tasks. The priority is fixed at compile time (we are assuming tha:
pragma priority is implemented). Hence, whenever a scheduling decision
has to be made, the highest priority task receives control (task priorities are
discussed in Section 4.1.3). .

The real-time performance of a system is high]y dependent upon the
performance of the scheduler, which in turn, is highly dependent upon the
timing mechanisms available. Accordingly, real-time computer systems
nearly zlways contain an interval timer, with either a fixed or programmable
time interval.

Table 28 lists the benchmarks for Scheduling and delay statement
dependencies.

-108 -

TABLE 28
Scheduling and Delay Statement Dependencies
(Results for Verdix Compiler)

File Name | Benchmark Description Results
dt00001.a | Determine minimum delay time 0.001 sec
dt00002.a | Determine if user tasks are pre-emptive Yes
dt00003.a | Determine method to share processor within | See
each priority level 423
dt00004.a | Does delay 0.0 cause scheduling Yes

4.2.1 BENCHMARK: Determine the minimum delay time.

dt00001.a: This benchmark determines the actual delay time for a desired
delay time specified in the delay statement. This benchmark starts by
calculating the actual delay time for a minimum delay of
DURATION'SMALIL. The desired delay time is increased in steps and the
actual delay calculated.

Verdix: The Verdix compiler had a minimum actual delay of 0.001 seconds
for a desired delay of 0.000061 seconds (DURATION'SMALL). As the
desired delay time was increased, the actual delay time remained the same
till the desired delay time was 0.0005 seconds. The actual delay time then
became 0.002 seconds. The actual delay time remained 0.002 seconds for a
desired delay time of 0.001 seconds.

Interpretation of Results:

1. The results show that even if a delay time of DURATION'SMALL is
specified (0.000061 seconds) the minimum actual delay for the Verdix
compiler is 0.001 seconds. This is quite a big variation and real-time
programmers definitely need to be aware of this when using the
Verdix compiler.

42.2 BENCHMARK: Determine if user tasks are pre-emptive. Does a
completed delay interrupt the currently executing task to allow the
scheduler to elect the highest priority tasks.

dt00002.a: In this test, a task of a lower prionity task (B) is executing when a
high priority task (A) becomes eligible for execution. If user tasks are pre-
emptive then A should interrupt B and resume execution.

Verdix: Task A interrupted task B after it became eligible for execution.

Interpretation of Results:

-109 -

1. The Verdix compiler has delays that are pre-emptive.

4.2.3 BENCHMARK: Determine the method of sharing the processor
within each priority to prevent starvation of any single task.

The Ada LRM does not specify the method by which a scheduler should
choose among tasks of equal or unstated priority. An implementation may
choose round-robin scheduling or some arbitrary method to choose among
tasks of equal priority. Another implementation may choose to implement
time slicing. Although overhead is required to implement time slicing, it is a
good way to insure that each task within a priority will get an even chance at
processing time. If time-slicing has been implemented in conjunction with
pre-emptive priority scheduling, the algorithm must take into consideration
the time remaining in the slice allotted a task that gets pre-empted so that it
will be allowed to finish its slice when scheduling returns to that priority
level.

dt00003.a: In this benchmark, 3 tasks are executing at the same priority (A4, B,
C;. These tasks have no synchronization points so that the scheduler is not
invoked by the tasks themselves. If either of the three tasks runs to completion
without the other 2 being able to execute, then the scheduler is starving tasks
within the same priority level.

Verdix: This benchmark was run with a) the runtime system configured
without time-slicing and b) configured with time-slicing. For the case
without time-slicing, the results show that task C ran to completion, then
task B, and finally task A. When time-slicing was enabled then the three
tasks ran in a round robin fashion.

Interpretation of Results:

1. For the Verdix compiler, if time slicing is not enabled then tasks of the
same priority execute to completion unless a synchronization point is
reached.

2. For the Verdix compiler, if time slicing is enabled then tasks of the
same priority are served in a round robin fashion.

4.2.4 BENCHMARK: Does delay 0.0 simply return control to the calling
task or causes scheduling of another task.

The delay statement suspends further execution of the task that executes the
delay statement, for at least the duration specified by the value of the
expression in the delay statement. There is an overhead in requesting an
delay from the runtime system. This overhead may exceed the requested
delay period. Unless the requested task has been aborted, the runtime
system may return control directly to the task or schedule another task for
execution.

-110-

dt00004.a: In this benchmark, the main program calls another task entry which
has a delay 0.0 statement in the accept. The execution of the delay 0.0 should
either cause scheduling action or be ignored.

Interpretation of results:

1. Delay 0.0 for the Verdix compiler causes scheduling of another task
and does not simply return control to the calling task.

4.3 Memory Management

One of the biggest reliability concerns in real-time embedded systems are
heap deallocation issues. If storage that is allocated is never reclaimed, then
there is grave danger of the system running out of storage. Real-time
embedded systems are designed to operate for indefinitely long periods and
running out of storage at a critical point could be disastrous for the
application. Therefore in real-time systems it may not be acceptable to
allocate space and not deallocate it all. For space deallocation, some
systems use garbage collection mechanism. If an implementation interrupts
all processing to perform garbage collection, there is a danger that timing
constraints in real-time systems may not be met. This garbage collection is
either run periodically or when the amount of allocated memory reaches
some threshold. Garbage collection runs on the same CPU as the
application program and can take an inordinate amount of time at irregular
intervals. Some real-time applications may not require garbage collection to
be performed by the runtime system and make storage deallocation the
responsibility of the application program.

It is important for real-time programmers to know if a particular compiler
implementation:

o deallocates nothing

« supports only UNCHECKED _DEAILLOCATION

o deallocates all the storage for an access type when the scope of the
access type is left

e detects inaccessible storage and automatically deallocates it (garbage
collection).

-111-

Table 29 lists the benchmarks memory management dependencies.

TABLE 29
Memory Management Dependencies
(Results for Verdix Compiler)

File Name | Benchmark Description Results
m00001.a Determine STORAGE_ERROR threshold | 12 meg
m00002.a Is Unchecked Deallocation implemented Yes

m00003.a Garbage Collection performed on fly No
m00003_1l.a

m00004.a Garbage Collection performed on scope exit | No

4.3.1 BENCHMARK: Determine STORAGE_ERROR threshold.

This benchmark depends on the amount of memory available to the system
and hence comes more under runtime implementation benchmarks rather
than under micro benchmarks.

m00001.a: This test is basically concerned with determining at which point
exception STORAGE_ERROR is raised. If memory is allocated in a loop via
the new allocator, and the access variable that is pointing to the allocated
memory remains throughout the run, then STORAGE ERROR will be raised
at some point.

Verdix: For the system that these benchmarks were —un on, 340 arrays of
1000 integers was the maximum storage space allocated. At this point
STORAGE_ERROR was raised.

Interpretation Of Results:

1. The size of the memory space available is approximately 1.2
megabytes. This is the size at which STORAGE_ERROR should be
raised.

4.3.2 BENCHMARK: Determine if Garbage collection is performed on the
mi

m00003.a, m00003_l.a: These tests use the same loop structure as 4.3.1, but
only two access variables. Each time around the loop, the contents of one
access variable is shifted to the second, and the newly acquired data is assigned
to the first access variable, thus implicitly freeing the storage allocated two
iterations previous to the current one. If there is no garbage collection

-112-

performed on the fly, STORAGE_ERROR will be raised at the same point as
in431
Verdix: STORAGE_ERROR is raised.

Interpretation Of Results:

1. The Verdix compiler raised STORAGE_ERROR. Hence no implicit
deallocation is performed.

4.3.3 BENCHMARK: Determine if Garbage collection is performed on
scope exit.

mO00004.a: In this test an access type to an array of 10000 integers is declared in
a procedure called from the main program. This subprogram is called
repeatedly and if storage is not bemg automatically deallocated upon scope exit,
STORAGE ERROR will again be raised. If garbage collection is implicitly
called, no STORA GE_ERROR exception will be raised.

Verdix: STORAGE ERROR is raised.

Interpretation Of Results:

1. The Verdix compiler raised STORAGE ERROR and hence no
Garbage Collection is performed on scope exit.

43.4 BENCHMARK: Determine if Unchecked Deallocation is
implemented.

m00002.a: The structure of this test is the same as the STORAGE ERROR
threshold test, except that UNCHECKED DEALLOCATION is ‘added to
explicitly free storage. If STORAGE ERROR is raised again, then
UNCHECKED DEALLOCATION is not t implemented.

Verdix: No ST! ORAGE ERROR is raised.

Interpretation Of Results:
1. The Verdix Compiler has Unchecked Deallocation implemented.

4.4 Exceptions

4.4.1 BENCHMARK: Does an implementation raise NUMERIC_ERROR
on an intermediate operation when the larger expression can be “correctly
computed ?

-113-

Some compilers may not raise NUMERIC_ERROR for the above scenario.

rt_e0001.a: In this benchmark, an mteger variable A whose initial value is
INTEGER’LAST is involved in an expression of the form:
Ar=(A+1)-2

Determine if this raises NUMERIC ERROR.
Verdix: The Verdix Compiler raises NUMERIC ERROR.

Interpretation Of Results:

1. The Verdix compiler raises NUMERIC_ERROR on an intermediate
operation even when the larger expression is correctly computed.

4.5 Interrupt Handling

For interrupt handling tests, hardware external to the testbed system is
needed. The hardware is needed to generate interrupts. Also a logic
analyzer is needed to capture the time of interrupt occurrence. Also, some
of the questions that are listed below are hidden in the runtime system
code and can only be obtained from the compiler implementor. The
following information about interrupt handling is needed by the software
designers

e Determine if an interrupt entry call is implemented as a normal Ada
entry call, a timed entry call, or a conditional entry call.

o What are the implementation restrictions on these interrupt entries. Can
they be called from the application code? Can they have parameters ?

o Determine if an interrupt is lost when an interrupt is being handled and
another interrupt is received from the same device.

o Determine the restrictions imposed by an implementation for selection
of the terminate alternative that may appear in the same select statement
with an accept alternate for an interrupt entry. Selecting the terminate
alternative may complete the task which contains the only accept
statements which can handle the interrupt entry calls, leaving the
hardware unserviced.

o Determine if an interrupt entry call invokes any scheduling decisions. An
interrupt need not invoke any scheduling actions.

o Determine if accept statement executes at the priority of the hardware
interrupt, and if priority is reduced once a synchronization point is
reached following the completion of accept statement.

- 114 -

Consider an interrupt handler that is coded below:

task high priority_handler is
entry interrupt; for interrupt use at; -- address clause
pragma priority(..); --high task priority;

end;

task body high priority_handler is

begin
loop
accept interrupt do
-- this code is executed at hardware (highest) priority
end;
-- this code is executed at task priority, allowing low
-- low priority devices to interrupt
end loop;
end;

The handler deals with high priority interrupts, and is therefore allocated
a high task priority. However, it can be interrupted outside the
rendezvous by a low priority intcrrupt and cannot guarantee to return to
the accept statement in time to catch the next high priority interrupt.

e Determine if interrupt entries can be called from application code.

4.6 Asynchronous I/O

One of the benefits of Ada’s tasking techniques is the ability to implement
true asynchronous I/O. By using Ada tasks to drive I/O controllers, only
the task that requested the I/O must wait for completion before resuming
execution, while other tasks within the application program can continue
execution while I/O is being processed. For example, suppose taskl has
requested I/O from a device. While waiting for completion, taskl places
itself in a wait state, letting task2 begin execution. Since task2 also wants I/O
from the same device as task], its rendezvous request is placed on the queue
and task2 suspends, pending completion of the rendezvous. At this point
task3 is free to execute.

4.6.1 BENCHMARK: Determine if true asynchronous I/0 is iinplemented.

rt_io00l.a: In the main procedure, two separate tasks are activated. Taskl1 is
the highest priority task, and task2 is medium priority task. Taskl makes a

———

- 115 -

request from a I/O device, then task2 makes a request to the same I/O
device. Both task1 and task2 should be suspended and and the main program
should be executing at this point.

Verdix: The main task does not execute when tasks taskl and task2 were
waiting for I/O.

Interpretation of Results:

1. The Verdix compiler does not implement true asynchronous I/O.

- 116 -

Chapter 5: Real-Time Paradigms

Users, system programmers, and academicians have found a number of
useful paradigms for building concurrency. Real-time systems will be
designed as a set of cooperating concurrent processes (Ada tasks) using the
Ada tasking model. Translation of concurrency paradigms may force the
creation of intermediary tasks with the risk of compromising real-time
performance. There is a runtime penalty when intermediary tasks are
introduced into the design. The more tasks introduced, the higher the
penalty in the form of additional task control blocks, task scheduling and
dispatching time, and context switching time.

Real-time paradigms can be coded in Ada using macro constructs and
benchmarked. Also, a compiler implementation may recognize these
paradigms and perform optimizations to implement that paradigm much
more efficiently.

Table 30 lists real-time paradigms that have been benchmarked in this
chapter.

5.1 Intermediary Tasks

Many real-time implementations require buffered and unsynchronized
communication between tasks. Rendezvous is the mechanism used in Ada
for task communication. Due to the rendezvous being a synchronous and
unbuffered message passing operation, intermediary tasks are needed to
uncouple the task interaction to allow tasks more independence and increase
the amount of concurrency.

-117-
TABLE 30
Real-time Paradigms
(Verdix Time in Microseconds)
File Name Benchmark Description Time
pa00001.a Simple producer consumer transaction 358.6
with main calling consumer task
pa00001_1.a | Simple producer consumer transaction with 419.8
consumer using selective wait
pa00001_2.a | Simple producer consumer transaction with 358.6
producer task calling consumer task
pa00001_3.a | producer task communicates with consumer task 954.9
through a bounded buffer
pa00001 _4.a | producer task communicates with consumer task 1248.8
indirectly through a bounded buffer with a
transporter between buffer and consumer
pa00001_5S.a | producer task communicates with consumer task 1701.1
indirectly through a bounded buffer with a
transporter between buffer and producer as well as
transporter between buffer and consumer
pa00001_6.a | Producer task communicates with a 634.9
consumer via relay
pa00002.a Monitor using semaphores Error
pa00002_1.a | Monitor using rendezvous 1801.0
pa00002_2.a | Monitor using rendezvous Error
pa00003.a Selection of Highest Priority client Compile
during entry call Error
pa00004.a Abort a task and create a new one 4253.0

Various combinations of intermediary tasks are used in different task
paradigms to create varying degrees of asynchronism between a producer
and consumer. Intermediary tasks introduce a lot more rendezvous in a
real-time system than if a producer and consumer were directly
communicating with each other. The use of intermediaries also adds to the
cost of executing a real-time design in Ada. The benchmarks in this section
evaluate the cost of introducing intermediary tasks for various real-time
tasking paradigms. The goal of these benchmarks is to give real-time
programmers a feel for the cost of using such paradigms in a real-time
embedded application and to avoid using such paradigms if the cost is
unacceptable for a real-time system.

- 118 -

5.1.1 Producer-Consumer

The case where one task passes information to another task is called a
producer-consumer relationship. The task that is the source of the
information is called the producer and the task that is the recipient of the
information is called the consumer. Each time a piece of information is
passed to the consumer one rendezvous occurs.

5.1.1.1 BENCHMARK: Measure time for a simple producer-consumer
type transaction when the main procedure calls a consumer task.

pa00001.a: The main task calls a consumer task. A simple integer value is the
only data transferred and the consumer simply loops on the accept
statement. Task/activation/termination time is not included in the timing.
The time measured is the time it takes for the producer to call the entry in
the consumer, the start of rendezvous with the consumer accepting the
information, and the beginning of execution of the calling task. This is
equivalent to two context switches: the first from the main task to the called
task and the second from the called task to the main task.

Verdix: Time for a single rendezvous is 358.6 microseconds.

5.1.1.2 BENCHMARK: Measure time for a producer-consumer type
transaction when the consumer uses a selective wait.

pa00001_1l.a: In this test the main task calls a consumer task that consumes
more than one type of item. A simple integer value is the only item
transferred and the consumer simply loops on the selective accept. This test v
differs from the previous test in that the consumer uses a select statement to
take the entry call where the select has two open alternatives. In the previous
case there is no select statement. Task/activation/termination time is not
included in the timing. The time measured is the time it takes for the
producer to call the entry in the consumer, the start of rendezvous with the
consumer accepting the information, and the beginning of execution of the
calling task.

Verdix: Time for rendezvous in this case is 419.8 microseconds.

5.1.1.3 BENCHMARK: Measure time for a producer-consumer type
transaction when a producer task calls a consumer task.

pa00001_2.a: This is similar to test 5.1.1.1, except that a producer task calls
an entry in the consumer task, instead of the main task calling an entry in the
consumer task. Both the producer and consumer task have the highest

RIS E—————————— e =

priority possible (PRIORITY’LAST).
Verdix: Time for a single rendezvous is 358.6 microseconds.

Interpretation of Results:

1. Each time a piece of information ia passed from the producer to the
consumer one rendezvous occurs. The time required for this type of
interaction was measured to be 358.6 microseconds without a select to
419.8 microseconds with a select.

2. pa00001.a, pa00001_i.a, and pa00001 2.a are examples of tasks with
tight coupling. Tight coupling is obtained via the Ada rendezvous
without introducing any intermediary tasks. The advantage of a direct
rendezvous between the producer and consumer is that no
intermediary tasks are introduced with an associated runtime
overhead.

5.1.2 Buffer Task

A buffer is pure server task that provides for one entry for storing of items in
a buffer and another entry for providing items from the buffer. A buffer
uncouples the producer from the consumer to provide more independence.
Since the buffer is a task, its use adds some overhead. Both the consumer
and the producer call the buffer task to obtain a piece of information.

pa00001 3.a: In this benchmark, the producer task communicates with the
consumer task indirectly through a bounded buffer.

Verdix: Time taken by the consumer to receive information from the
producer via the buffer task is 954.9 microseconds.

Interpretation of Results:

1. [Each time a piece of information is passed from the producer to the
consumer two rendezvous occur: the producer with the buffer and the
consumer with the buffer. The time required for this type of
interaction was measured to be 954.9 microseconds.

2. 'This is an example of a loose coupling between the producer and the
consumer.

5.13 Use of a Buffer and Transporter

-120-

Many times a producer will want to communicate with a consumer via a
buffer, but it is undesirable for the consumer to be a calling task. For
example, the consumer may want to accept request from any number of
producers and therefore would want to be a called task. This is
accomplished by having a transporter task take information from the buffer
and pass it on to the consumer i.e., producer-buffer-transporter-consumer.
This scheme implies the use of two intermediary tasks between the producer
and the consumer.

pa00001 4.a: In this benchmark, a producer task communicates with a
consumer task indirectly through a bounded buffer with a transporter between
the buffer and the consumer.

Verdix: Time taken by the consumer to receive information from the
producer via the buffer and transporter tasks is 1248.8 microseconds.

Interpretation of Results:

1. Each time a piece of information is passed from the producer to the
consumer three rendezvous occur: the producer with the buffer, the
transporter with buffer, and the transporter with the consumer. The
time required for this type of interaction was measured to be 1248.8
microseconds.

5.1.4 Use of a Buffer and Two Transporters

If both the producer and consumer wish to communicate via a buffer and
both need to be called tasks, it is necessary to use a transporter on each side
of the buffer. This results in the producer-transporter-buffer-transporter-
consumer paradigm.

pal0001 S5.a: In this benchmark, a producer task communicates with a
consumer task indirectly through a bounded buffer with a transporter between
the buffer and the producer as well as between the buffer and the consumer.
Verdix: Time taken by the consumer to receive information from the
producer is 1701.1 microseconds.

Interpretation of Results:

1. Four rendezvous occur when a piece of information is passed from the
consumer to the producer. These are - a transporter with the
producer, the transporter with the buffer, a second transporter with
the buffer, and the second transporter with the consumer. The time
required for this type of interaction was 1701.1 microseconds.

-121-

5.1.5 Use of a Relay

A relay is an intermediary task that takes information from a producer and
passes it on to the consumer.

pa00001_6.a: In this benchmark, a producer task communicates with a
consumer via the relay.

In terms of the task communication model, this resembles the producer-
buffer-transporter-consumer paradigm, but in terms of performance it
should resemble the producer-buffer-consumer paradigm.

Verdix: Time taken by the consumer to receive information from the
producer is 634.9 microseconds.

Interpretation of Results:

1. For each piece of information that is passed from the producer to the
consumer two rendezvous occur - the producer with the relay and the
relay with the consumer. The-time required for this type of interaction
was measured to be 634.9 microseconds.

5.2 Asynchronous Exceptions

Quick restarts of tasks are required in a number of real-time embedded
systems. Ada model of concurrency does not provide an abstraction where a
task may be asynchronously notified that it must change its current execution
state. In the initial design of the language, FAILURE exception was
intended to serve this purpose. But FAILURE exception was removed as it
is difficult to implement as there are complicated interactions between
FAILURE and other exception conditions, or multiple instances of
FAILURE.

One way to implement asynchronous change in control is te abort the task
and then replace it with a new one. Aborting a task may not be appropriate
for an application because an abort can take a long time to complete or
because the asynchronous change of control needed is something other than
termination.

pa00004.a: This benchmark measures the time to abort a task and create a
new task.

Verdix: The Verdix compiler took 4253.0 microseconds to abort an existing
task and spawn a new task.

e e———

-122-

Interpretation of Results:

1. Abort and task initialization are expensive operations and a abort
could take a long elapsed time to complete. The Verdix compiler takes
a rather large amount of time to abort and create a new task.

3.3 Selection of Highest Priority Client

The LRM states that in a select statement if more than one accept is open
and ready for a rendezvous, then any one accept can be chosen and the
choice is left to the compiler implementor. In real-time embedded systems,
it may be necessary to choose the highest priority waiting client.

When a set of client tasks directly request service from a server by calling a
server’s entry, the requests are processed by the server in the order of their
arrival. But in real-time systems, it may be essential that the clients should
be processed in the order that corresponds to their priority rather than their
arrival.

pa00003.a: This benchmark implements a generic package that orders client
requests so that they are processed by the server in a priority order. This
package logically exists as an intermediary between the clients and the server.
Verdix: The Verdix compiler could not compile this program, although this
program can be compiled on other systems. The compiler during the
semantic analysis phase just dumped core. The compiler vendor has been
contacted with the results.

Interpretation of Results: '

1. The overhead to this solution is three additional rendezvous for each
prioritized rendezvous. This is pretty expensive in terms of execution
time for a prioritized rendezvous.

5.4 Monitor/Process Structure

A monitor is commonly used for controlling a systems resource. Such a task
performs a watchdog function and would be classified as an actor task
(Actor tasks are active in nature and make use of other tasks to complete
their function). For example, read and write operations to a disk are usually
controlled by a monitor that ensures the integrity of data on the disk. This is

e el

-123-

also known as mutual exclusion. Monitors can be implemented to have
controlled access to a shared data pool. Monitors can be implemented via
semaphores, event signaling, [12] and rendezvous mechanism. The
implementation via semaphores and event signaling is essentially the same.

Semaphores are an effective low-level synchronizing primitive. However, the
use of semaphores in an complex application can result in disaster if an
occurrence of a semaphore operation is omitted somewhere in the system or
if the use of a semaphore is erroneous. A monitor replaces the need to
perform operations on semaphores. Entry to a monitor by one process
excludes entry by any other process. A monitor thereby ensures that if it has
exclusive access to a resource, then a monitor’s user has exclusive access to
that resource. In [10], several approaches to implementing a monitor are
discussed.

In this program, a monitor is developed in Ada. The problem is having a
pool of data common to a group of processes. The data in the pool may be
set by one or more processes or used by one or more processes. Any number
of processes are aliowed to read the pool simultaneously, but no reads are
permitted during a write operation. The monitor developed is used to
control the reading and writing of data to the pool.

Two implementations are considered:

e pa00002.a the first using semaphores;

Verdix: The Verdix compiler at runtime just exited with status 0. This is
a bug in the Verdix compiler as the program exited without even
executing the first statement of the program.

e the last two (pa00002_l.a, pa00002 2.a) using the Ada rendezvous
mechanism.

Verdix: The time to do a single read and write operation to the pool
(pa00002_1.a) was calculated to be 1801 microseconds.

Verdix: The Verdix compiler raised TASKING_ERROR on execution of
this benchmark.

Interpretation of Results:

1. The macro construct semaphore is used to implement this
monitor/process structure for controlling access to a shared data pool.
Based on the timings for the semaphore and the rendezvous
implementations, real-time programmers can choose the best
implementation mechanism.

-124 -

5.5 Mailbox

In message passing, a question that arises is where messages are to be
deposited. A common paradigm involves "mailboxes” (mailbox is a macro
construct) which are global variables updated by processes to provide
asynchronous communication. These are specially suitable for such situations
as the producer/consumer scenario in which a producer produces some
output which is consumed by a consumer process. The mailbox
implementation of this involves a global mailbox visible to both these
processes, and a send operation by the producer into this mailbox. The
consumer then performs a receive operation on the mailbox to retrieve the
data.

This paradigm is similar to the buffer task paradigm in Section 5.1.2
(pa00001_3.a) in the sense that each time a piece of information is passed
from the producer to the consumer two rendezvous occur..

- 128 -

Chapter 6: Conclusions

This report has developed a series of benchmarks to test the performance of
Ada compilers meant for real-time embedded systems. Finding an efficient
and reliable cross-compiler for programming embedded systems (even for
widely used and powerful micro-processors such as the Motorola 68000
family) is extremely difficult. The embedded programmer community is
faced with trying to use incomplete and somewhat unstable systems while
trying to deliver efficient and ultra-reliable code. This benchmarking effort
concentrated on developing benchmarks that measure

« the runtime performance of Ada code on a bare target system,

o the runtime system implementations of various features of a particular
Ada compiler system,

« and the performance of commonly used real-time paradigms.
It is hoped that the results of this benchmarking effort will enable managers
and programmers to

« select a compiler best suited for their real-time application;

« identify areas where there are performance changes in a new compiler
release;

« and determine the most efficient way to implement real-time algorithms.

One area that was not touched during this effort was the area of composite
benchmarks. Rather than measuring individual features, this approach looks
as much at the interaction between features as to the performance of the
features themselves. Good examples of this approach involve the use of
typical code segments from a given application collected into a program
whose overall performance is measured (like the Ada Avionics Test
Program Package developed by SofTech Inc.). The advantage of this
approach is that for a given application domain, running this benchmark on
different compiler implementations enables a more straightforward
selection. The development of composite benchmarks will be addressed in a
follow-on effort.

(1]

(2]

3]
(4]
[5]
(6]

[7]

(8]

(91

(10}
[11]

[12]

[13]

[14]

-126 -

References

R.M. Clapp et al., "Towards Real-time Performance Benchmarks for
Ada", CACM, Vol. 29, No. 8, August 1986.

N. Altman, "Factors Causing Unexpected Variations in Ada
Benchmarks", Technical Report, CMU/SEI-87-TR-22, October
1987.

N. Altman et al., "Timing Variation in Dual Loop Benchmarks" ,
Technical Report, CMU/SEI-87-TR-21, October 1987.

"Catalog of Ada Runtime Implementation Dependencies”,
ARTEWG Report, November, 1986.

A. Goel, "Evaluation of Ada Compilers Targeted to Bare Systems",
To be Published,

"Catalog of Interface Features and Options for the Ada Runtime
Environment ", ARTEWG Report, December, 1987.

M. D. Broido, "Toward Real-time Performance Benchmarks For
Ada", Technical Correspondence, CACM, Vol. 30, No. 2, February
1987.

L. MacLaren, "Evolving Toward Ada in Real-time Systems",
Proceedings of the ACM, SIGPLAN Symposium on the Ada

Programming Language, November, 1980.

N. Weiderman et al., "Ada for Embedded Systems: Issues and
Questions", Technical Report, CMU/SEI-87-TR-26, October 1987.

SofTech Inc., "Real-time Ada", July, 1984.

A. Goel, E.Wong, "Evaluation of Existing Benchmark Suites For
Ada", Ada Technology Conference Proceedings, Washington DC,
March 15-20,1988.

Center for Software Engineering Final Report, "Establish and
Evaluate Ada Runtime Features of Interest for Real-time Systems",
Final Report C02092LA0003, October 1988.

"Proceedings of the International Workshop on Real-time Ada
Issues”, UK, 13-15 May, 1987, pages 10-11.

A. Tetewsky, A. Clough, R. Racine, R. Whittredge, "Mapping Ada
onto Embedded Systems:Memory Constraints", Ada Letters,
September/October, 1988.

—

