AFHRL-TP-90-81 o 4 v LAY @
AIR FORCE

DESIGN KNOWLEDGE MANAGEMENT SYSTEM (DKMS)

Richard J. Mayer, et al.

Knowledge Based Systems, Inc.
2746 Longmire

H
U
College Station, Texas 77845.-5424
M
A
N

LOGISTICS AND HUMAN FACTORS DIVISION
Wright-Patterson Air Force Base, Ohio 45433-6503

DTIC.

ELECTE
DEC19 1930

December 1990 %

AD-A230 266

Final Report for Period September 1989 - August 1990

Approved for public release; distribution is unlimited.

BEST
AVAILABLE COPY

LABORATORY

‘omOoICOMMD

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601

90 12 18 152

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the
United States Government incurs no responsibility or any obligation whatsoever.
The fact that the Government may have formulated or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication, or
otherwise in any manner construed, as licensing the holder, or any other person or
corporation; or as conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

The Public Affairs Office has reviewed this paper, and it is releasable to the National
Technical Information Service, where it will be available to the general public,
including foreign nationals.

This paper has been reviewed and is approved for publication.

BERTRAM W. CREAM, Technical Director
Logistics and Human Factors Division

JAMES C. CLARK, Colonel, USAF
Chief, Logistics and Human Factors Division

Copyright 1990 Knowledge Based Systems inc. All rights reserved including those
of translation. This report, or parts thereof, may not be reproduced in any form or
by any means, without permission in writing.

REPORT DOCUMENTATION PAGE OB N Sr5e0188

Public ieporting burdeo for this cotiechion of infurmation is estimated 1o average 1 hous per response, including the ime for mwewum‘; NSHUCTIONS, seaichinig exist) da'a Lot es
Aubenng and mamtaning the data needed, and compleling and reviewing the collection of intormation Send commants regarding Tris buiden estiriate coan, cifics st ot -
ollgehan ot ntormation, mx.luqmi; suggestions tor reducing this burden, fo Washington Headquarters Services, Directorate Tor infurmation Operations and Report. 1,015 Jette
Lavis thghway, Sude 1204, Aringlon 22202-4302, and lo the Office of Management and Budget, Paperwork Reduction Pruject {0704-0188), Washington, DU Ut
t. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1990 Final Paper - September 1989 to August 1990

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Design Knowledge Management System (DKMS) C - F41622-89-C-0018

PE - 65502F

6. AUTHOR(S) PR - 3005

Richard J. Mayer, et al. TA - L2

2746 Longmire WU - 03

College Station, Texas 77845-5424

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Knowledge Based Systems, Inc. REPORT NUMBER
2746 Longmire
College Station, Texas 778435-5424

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. g’éggg?ﬁ*ggggg"”omm AGENCY
Logistics and Human Factors Division
Air Force Human Resources Laboratory AFHRL-TP-90-81

Wright-Patterson Air Force Base, Ohio 45433-6503

11. SUPPLEMENTARY NOTES

Prepared as final report for Phase | Small Business Innovation Research (SBIR) contract effort. Copyright 1990
Knowledge Based Systems Inc. All rights reserved including those of translation This repon, or parts thereof, inay
not be reproduced in any form or by any means, without permission in writing.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

;‘/ This document describes the Design Knowledge Management System (DKMS), which provides a software
environment for both the development and the delivery of intelligent assistants. These intelligent assistants can be
used for computer-aided design (CAD), computer-aided engineering (CAE), and computer-aided manufacturing (CAM)
applications in product design, engineering, manufacturing, and logistics planning. ™

The DKMS can be thought of as an integrated concurrent engineering system whose environment includes facilities
for (a) design knowledge representation including shape-based associative retrieval and container objects, (b)
intelligent user interface including form feature interfaces and a generalized constructive solid geometry (GCSG)
engineer, (c) engineering performance modeling functionality including constraint management and bond graph
techniques, (d) data integration suppont, and (e) configuration management. This facility will enable the delivery of
design advice on-line to the designer as new definitions are being created. Backing up this geometry engine, a container
object management system will be produced that extends the proven composite object capabilities by integrating
geometry concepting and manipuiation primitives into the basic object definition and inheritance lattice operators. As
an initial manufacturability, reliability, and maintainability capability, the baseline system will include a manufacturability
checker, an associated generative process planning system, and an engineering performance model development

environiment. T e TN
-> " N . \\
14. SUBJECT TERMS - A 15.NUMBER OF PAGES
computer-aided desigh (CAD) concurrent engineering 144
computer-aided engineering (CAE) : deg]s_log support_ ' 76.PRICE CODE
computer-aided manufacturing (CAM) unified tife ry~le engineering (ULCE), .| |
17. 3CCURL. Y CLASSIFICATION |18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT uL
Unclassified Unclassified Unclassified
NN 7540 01 280 5500 Stafrdard Form 298 (Rev 2-89)

Pregcribed by ANSI Std 239 18
102

Item 13 (Conciuded):

This environment is intended to be used to support the rapid experimentation, prototyping,
and development of a new generation of integrated engineering and manufacturing decision
support applications to meet the challenges of concurrent engineering. Most important, this

architecture will enable the capture of and delivery to the engineer of product life cycle experience
relative to manufacturability, reliability, and maintainability.

.—A;cession_ﬂﬂ___?_,
NTIS GRAXIL
DTIC TAB D

Unannounced 0O
Just 1£ieationm—me——"1

BY_____________——————""—————
Distributl_gpl____ﬁ
availability Codes

~ Avail acdfor
Diat ‘ cpecial

AFHRL Technical Paper 90-81 December 1990

DESIGN KNOWLEDGE MANAGEMENT SYSTEM (DKMS)

Richard J. Mayer, et al.

Knowledge Based Systems, Inc.
2746 Longmire
College Station, Texas 77845-5424

LOGISTICS AND HUMAN FACTORS DIVISION
Wright-Patterson Air Force Base, Ohio 45433-6503

Reviewed by

Bertram W. Cream, Technical Director
Logistics and Human Factors Division

Submitted for publication by

James C. Clark, Colonel, USAF
Chief, Logistics and Human Factors Division

This publication is primarily a working paper. It is published solely to documeit work performed.

SUMMARY

The Design Knowledge Management System (DKMS) provides a
software cnvironment for both the development and the delivery of
intelligent assistants. These intelligent assistants can be used for computer-
aided design (CAD), computer-aided engineering (CAE), or computer-
aided manufacturing (CAM) applications in product design, engineering,
manufacturing, and logistics support. The DKMS focuses on the overall
system problems rather that just individual solutions and differs from
general efforts in knowledge-based management systems by its:

1) focus on engineering knowledge,

2) addressing of heterogeneous forms and the distributed nature of
such an engineering knowledge base,

3) focus on the shape nature of the indexing and organization of such
engineering knowledge, and

4) consideration of knowledge acquisition, application support, and
evolution management as well as storage and retrieval.

The DKMS can be thought of as an integrated concurrent engineering
system providing facilities for:

1) design knowledge representation including shape-based associative
retrieval and container objects,

2) intelligent user interfaces including form feature interfaces and a
generalized constructive solid geometry (GCSG) engine,

3) engineering performance model development support
functionality including constraint management and bond graph techniques,

4) tools and utilities for construction of knowledge-based engineering
assistants for the entire scale of life cycle engineering knowledge support
needs,

5) data integration support, and

6) knowledge configuration and version management support. This
architecture enables the capture and delivery, to the engineer, of product
life cycle experience relative to manufacturability, reliability, and
maintainability (MR&M).

This Phase I SBIR effort demonstrated the viability of an
environment that includes generic utilities for:

1) shape- and feature-based knowledge representation,

2) a GCSG modeling capability,

3) geometry-based container object modeling systems,

4) a multi-schema, object-based Common Data Manager (CDM),
5) engineering data configuration manager, and

6) smart Knowledge Base Editors/Browsers (KBEB).

il

PREFACE

The purpose of this technical paper is to document work performed
under a Phase I, Small Business Innovative Research (SBIR) effort. The
effort was supportive of AFHRL efforts in Unified Life Cycle
Engineering, a precursor initiative to the larger, DOD-initiated, effort in
Concurrent Engineering under the umbrella initiative of Total Quality
Management.

This report describes the concepts, algorithms and designs developed

during the Phase I effort. The investigations, designs, and prototypes
reported on are intended to support a Phase II SBIR development effort.

il

Table of Contents

| IR 514 {0 s {1 Lot o) 1 DUUURUUS RO 1

2. The Flow of Knowledge Required to Support Concurrent

ENGINEEIING .. ccuviiiiiiiiiiniiiiiniiiii et ce e et eeai e eeneeeen e raesaane 6
3. Envisioned DKMS Scenario of Use and Benefits...............ccooeeeee. 11
4. The Design Phenomena............c.coivviemiiiniiimiininniiiiiininnieinnenn. 14
4.1. Characteristics of the design situation.............c.c.ceevveueeenen.. 17
4.2. Characteristics of “modes” of design.........cccoeeervririnnnnnnnn. 18
4.3. Generic activities of designccceeveeeiruiiiirnnniiiininnnn., 22
4.3.1. Minimal decision making and least commitment
strategies in design.........coeeivirriniiicininiiiinncennnnn.. 25
4.3.2. Prototyping in design........cccceeeeeeeniiiiencriiinninnna. 26
4.3.3. Engineering reasoning mechanisms:..........c.cc........ 28
4.4. Predominant design Strategies.......ccccceeeeeeeeeriieereeieiiennnnnnen. 29
4.5. Types of design knowledgecccvveeiiivniiiiiiininiinnnnnn, 30
4.6. Role of shape in design cognition...........ccceuevieeeeniiiinnnennne. 32
4.7. Characterization of design rationale / intent....................... 34
5. Design Knowledge Organization and Retrieval............cccccoovuineii. 36
5.1. Shape based knowledge representation and reasoning.......... 37
5.1.1. Algorithm for shape extractionc......c.ouuuunn... 41
5.2. Feature based associative retrievalcc.coccoiiiiinnii. 42
6. Container ObDJeCtS.......oiiviniiiiiiiiiiee e cee e eaieeereseseene 46
6.1. Basic concepts and theory of operation...........cc...cceuvnennnee. 46
6.2. Principles for composite Objectsc...coeeeeeeriiiiiiiiiiinnnnne. 46
6.3. Basic requirements for container objectscccoeeeunennne. 47
6.3.1. Container object templates...........c.coueeuenrrerrnnnnnn... 47
6.3.2. Instantiation of container object templates 47
6.3.3. Specializing container objects...........ccceceiiiiniinnni.l 48
6.3.4. Constrained, conditional, and iterative
temMPlates....cocveemiiiiiiiiiei e 48
6.3.5. Defaulting of attributes values in container
ODJECLS e 48
6.3.6. Lazy instantiation and demand driven control of
CONtAINET ODJECES.c.uuuiireeieeriirineriiieeinrceeeeranennaee 48
6.3.7. Graphic browser for examining objects................. 48
6.3.8. Part-whole defaulting..........cccoevviniiriiinnn. 49

10.

6.3.9. No class versus instance distinCtioNcc.cevueunen.e 49

6.4. Geometry driven container object systemcece.nee.. 49
6.4.1. Container objects based on partition
SIMIIAMHES .cooeviiiiiiiiniiniice et 49
6.4.2. Container object based partition similarities........... 50
6.4.3. Coniainer object based feature similarities............. 50
6.4.4. Container object based arrangement
SIMIlAMItIES ..ooovieiiriieirr e 50
6.4.5. Container object based deformation similarities50
6.4.6. Container object based function similarities............ 50
High Productivity CAD Systemsccccceveeerierereeereeeeneeiiiieeeeeenn h]|
7.1. Shape/form feature based CAD interfaces.......................... 54
7.2. Generalized CSG geometry engine.............cccccceeeereennunnneee. 58
Advanced Engineering Modeling Support..........cccccccevvmeeneenrennnene 71
8.1. CMS in CONLAINETS.......uvverrrreereereeeeieiieiereereereesseseaaeaasaannns 72
Services for Evolution Control within the DKMS........................... 74
9.1 DefINItIONSuueeeiiieiiinieerreeeereeeereerereereeeseeeeeenescanrsessnnnnnns 74
9.2 Configuration control and version management.................. 76
9.3 DKMS configuration control and version management........ 80
9.3.1 Product data evolution management...................... 80
9.3.2 Knowledge base evolution control 82
9.3.3 Personal design hiStory........c.ccccceneenvucnvcnencnnncen. 85
Product Designer Systemsuueuvieiirieeinrieeerieiecnennereinneeeenns 86
10.1. Characteristics of designer Systemsccoeeveeeveererinnnnns 87
10.2. Components of designer SyStems............ceceeeeererrenrerearennnnn. 89
10.3. Knowledge acquisition approacnes for designer systems......91
10.4. Knowledge application approaches in designer systems....... 91
10.5. Generic utilities required to develop designer systems......... 93
10.5.1. Knowledge engineering utilities (representation
and reasoning methods)cccoevevereiiiiiiinnnenennens 94
10.5.2. User interface construction utilities
(visualization of the design history) 95
10.5.3. Engineering artifact management......................... 96
10.6. Support for interacting / integrated designer systems.......... 96

vi

11.

12.
13.
14,

15.

Design Knowledge Application Support - (Advanced

CAE/CAM) ...ttt e 7
11.1. Al CAD/CAM planner concept of operations..................... 100
11.2. General algorithms and approach..........cccccoviveviernncnnnnn. 102
11.2.1. Manufacturability determination...............ccc.oeue. 103
11.2.2. Pnsm generation and prism analysis..................... 103
11.2.3. Process plan generation...........ccoevvvuueiieriereeerennns 103
11.2.4. Process specificationccoeerveeuenninineereneeiennnnns 105
11.2.4.1. NC code generationc.cccevuuurernnenn. 105
11.2.4.2. Global tool path gereration...................... 106
11.2.4.3. Local tool path generation..........cc........... 106
11.2.4.4. Local finishing........cccoooieviiiirinnnnienniie. 106
11.2.4.5. Tool path to NC code translation.............. 106
11.2.5. Process verification.........ccccevveiiiiiveicieeennnnninnien. 106
11.2.6. Process sim alationccvvueeviiiiiriiniineeiiiiernnenenens 107
DKMS Platform ArchiteCture........ocuveevmiuiveirienieriiiiiireiicieeeeeenen 108
Related WOrK... ... e e 118
Summary and Conclusions..........cccovvvererereeeereiiennieierreeesreeeeesans 125
Bibliography........ccoiiiiii e 129

vil

Figure 1.
Figure 2.

Figure 3.
Figure 4.
Figure S.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.

rigure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.

Figure 25.
Figure 26.
Figure 27.
Figure 28.

Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.

List of Figures

DKMS Architecture OVerview.......cccceeeevevivieenrnevecenerennneee. 5
Typical Types of Knowledge Flow Within and Between
PrOJECtS...ccomneiiiiie ettt e 9
Predominant Flows for Knowledge and Information............ 10
Modes of Designccc.iivmeiiiiiiiiiiiiiiieeeiee e 19
Typical Patterns of Generic ACtivitiescvuueereerievnnen... 24
Role of Prototyping ir Engineering Design...............cccc...... 26
Characteristics of Problem Shapes...........ccccccecvercrncnnnnnne. .39
Problerin Shape Analysis......cccuvveeeeiiiiiiiiiiiniieiireee e, 39
Problem IS0lation............cccceiiiiimiimmimmiiceiriee e 40
Boundiry Curve Traversal for Shape Recovery................... 41
Example of Graph Networks for Topological Form
Feature Representation.............ccceeeveeeivieeiiiiiiinneneeeeeeeennn. 45
SOCK 1iiiiiiiiiiiiiiei e 56
Cut Feature.........ccceeveiiiiiiriiiiieiieeeeseeeeecrrreeeeeee e ee e 56
Intermediate Part............ooiiniiiiiiiii e e 56
Resulting Fart..........ccoooiiiiiiiiii e 57
Completed Part..........cccoiiiiiiiiiiiinicie e 58
Relational Graph..........ccooooiiiiiiiiiiiiiiiiceer e 58
Ferguson-Coons Patch and Defining Information................. 62
Six Patch FC surface........cccocuiiiiviiiniiiiieiniiieiecreceeeeeeenns 63
Sculptured Surface Faceting using Recursive Subdivision65
Two Polyhedral Objects....c....ccocvvueiiiiiiiiiiiiiin e 68
AINBand AOUT B.....oooiiiiiiiiiiiieieereeeeec e 68
BOUTAandBIN AL ... e, 69
Ilustration of Face Classification and Resulting Solid
GeNETALION......ouiviiiiiiiiieieitiiiieiiieeeeeeeeeseereeeeerees seea e 69
Generic Component Objects in Designer Systems................. 90
Heuristic Guided Generate and Test........cccceeeeveeeveercneenenne 93
AI CAD/CAM Process Plan Editorccccccvveieieninecnennnne. 99

Current Implementation of the Generative Component of

AT CAD/CAM.. ..ottt ettt e 101
The Machining of an Inclined Planeccccovuerennnnn .. 106
Service Integration Manager..........cccoevcveeiiiiesierenneeenennans 110
Multi-schema Architecture Approach......ccc.cceeeeveeeeeeninnenee. 113
Legacy System Architecture...............covvvvvvunuveereereeereennnnnn. 116
Installation of Legacy Application into Services Network...... 117

viii

Design Knowledge Management System - DKMS

The Design Knowledge Management System {DKMS) provides a software
environment for both the development and the delivery of intelligent
assistants. These intelligent assistants can be used for computer-aided
design (CAD), computer-aided engineering (CAE), and computer-aided
manufacturing (CAM) 1ppiications in product design, engineering,
manufacturing, and logistics support.

In the seventies and early eighties, a crisis was recognized in US industries
relating to a slip in the rate of growth of industrial productivity and quality
of US made products. This recognition gave rise to an increase in
investment in automation and modernization of manufacturing equipment,
facilities, systems, organizations, and labor management. In the late
eighties, a shift of the focus to problems in worldwide competitive position
forced the recognition that many of the previous problems were actually
symptoms of deeper-rooted issues addressing the entire corporation from
marketing and finance through research, engineering, manufacture, and
field support. Among the key issues affecting the erosion of worldwide
competitive position are:

1) Comparatively long lead times to take a concept to rate production,

2) Inability to assimilate research results into product or production
technology,

3) Lack of a total systematic approach to quality management,
4) A retiring or otherwise lost knowledge base,

5) High rates of change in the product definition (and the production
process) during buildup to rate production and upon any ma; r
product or process change.

In short, the DKMS is pt posed as a part of the answer to: Why does it
take so long to design/engineer/produce a product? Why are so many of the
mistakes of the past icpeated? Why are we always the last to use the new
ideas and technology being produced by our own research laboratories?
The part of the problem that DKMS addresses is focused on the acquisition,
management, and effective delivery of engineering knowledge, experience,

DKMS Final Report Knowledge Based Systems, Inc.

and rationale. Lest the reader be misled by common biases, we use the
term engineering in the broad sense to include product design, product
engineering, manufacturing engineering, process engineering, maintenance
engineering, and sustaining engineering. In the remainder of this document
we will refer to this holistic enterprise engineering knowledge base as the
life cycle engineering knowledge base. It is this life cycle engineering
knowledge that must be marshalled to achieve the goals of concurrent
engineering and total quality management.

Distinguishing the DKMS effort from general efforts in knowledge base
management systems are (1) the focus on engineering knowledge, (2) the
addressing of heterogeneous forms and the distributed nature of such an
engineering knowledge base, (3) the focus on the shape nature of the
indexing and organization of such engineering knowledge, and (4) the
consideration of knowledge acquisition, application support, and evolution
management as well as storage and retrieval. What distinguishes the DKMS
effort from previous design expert systems is the focus on the overall
system problems rather than just the individual solutions. These problems
and knowledge-sharing issues that form the requirements for the DKMS
are discussed in more detail in Section 2 of this report.

The DKMS can be thought of as an integrated concurrent engineering
system which provides an environment with facilities for (1) design
knowledge representation including shape based associative retrieval and
container objects, (2) intelligent user interfaces including form feature
interfaces and a generalized constructive solid geometry (GCSG) engine,
(3) engineering performance model development support functionality
including constraint management and bond graph techniques, (4) tools and
utilities for construction of knowledge-based engineering assistants for the
entire scale of life cycle engineering knowledge support needs described
previously, (5) data integration support, and (6) knowledge configuration
and version management support. This environment is intended to be used
to support the rapid experimentation, prototyping, and development of a
new generation of integrated design, engineering, manufacturing and
maintenance decision support applications to meet the challenges of
concurrent engineering. Most important, this architecture will enable the
capture and delivery to the engineer of product life cycle experience
relative to manufacturability, reliability, and maintainability (MR&M).

Sections 2 through 12 of this report describe the concepts, algorithms, and

designs developed during our Phase I SBIR effort. We have demonstrated
the viability of an environment that includes generic utilities for:

DKMS Final Report Knowledge Based Systems, Inc.

1) Shape & Feature Based Knowledge Representation of engineering,
manufacturing, and maintenance knowledge associated with the
geometric properties of the part. This includes knowledge, relevant
to design, planning, costing, and scheduling decisions, that is
associated with shape. Shape-based means that the knowledge
representation scheme can handle shape references that have no
symbolic names. This provides the capability to represent
"conditions on" or "contents of" design knowledge that contains
arbitrary geometry structures. Feature-based knowledge
representation handles geometry references which have named
prototypes (hole, slot, pockets, etc.).

2) A Generalized Constructive Solid Geometry (GCSG) modeling
capability including form feature-based user interfaces for high-
productivity CAD man/machine interfaces. Form feature
interfaces support geometry concepts using named features as well
as the ability to define prototypical forms as new feature sets. Such
high productivity CAD interfaces are required to enable the
acquisition of shape based knowledge and to allow its delivery to
the personnel actually making the design/engineering decisions.

3) Geometry Based Container Object modeling systems needed for
efficient delivery of the compiled design, manufacturing, and
maintenance knowledge across the product life cycle.

4) Multi-Schema Object-based Common Data Manager (CDM) for
information and knowledge base integration support and
integration with existing CAD and CAM application systems.

5) Engineering Data Configuration Manager (EDCM) for control of
technical data objects throughout their life cycle including version
management to support the controlled evolution of those technical
data objects as well as the associated knowledge units.

6) Smart Knowledge Base Editors / Browsers (KBEB) for support of
human interaction with the evolving engineering knowledge bases.
The primary use of the KBEB is for ad hoc application of the
design and product knowledge bases. They will also support tutor
modes of use of the static portions of that knowledge base.

Layered onto this platform is a development support environment

including a powerful complement of system, software, and knowledge
engineering tools and utilities as shown in Figure 1.

DKMS Final Report Knowledge Based Systems, Inc.

The investigations, designs, and prototypes reported in this technical report
are intended to support a Phase II SBIR development effort. The objectives
of the Phase II project are to implement an initial DKMS based concurrent
engineering support environment. This support environment includes (1)
life-cycle engineering knowledge representation, (2) knowledge acquisition
support, (3) knowledge storage, and (4) retrieval utilities, as well as (5)
knowledge and information integration utilities. It also includes the
development of the Generalized CSG engine and form feature geometry
input interfaces to allow rapid capture of shape-based design knowledge.
This facility will enable the delivery of life-cycle advice on-line to the
designer as new product definitions are being created.

DKMS Final Report Knowledge Based Systems, Inc.

DKMS ARCHITECTURE

USER INTERFACE ™S REVERSE
ENGINEERING
5 SITUATION
MACRO DEFN LANG. ; REASONER / ASSEMBLY
& REPRESENTATION | pLANNING
DISPLAY MODELER =
& RETERULESYS ENGINEERING
t:r!: ANALYSIS
% TEMPORAL
o REASONING FE MESH
& GENERATION
= SEARCH
o PROCESS
DEV SUPPORT GENERALIZED | Z ALGORITHM PLANNING
ENVIRONMENT CSG ‘é’ CONSTRAINT NC CODE
SUPERQUADRIC w PROPAGATION GENERATION
i SPLINES S
o 2 4 BREP & CONTAINER NC CODE
22| B Se 2 OBJECT VERIFICATION
&]g > 2 4 g BSPT DEFINITION
a LU A NURBS SUPPORT
DYNAMIC OBJECT MANAGER
CONTAINER OBJECT |
NETWORK TRANSACTION MANAGER
LOCAL EDMC LAN
ﬂ’(‘;TRAS MULTI- SCHEMA| LOCAL
PROCESSOR PERSISTANT —— CYBER910
L OBJECT ATP
SCHEMA/ MAP
CONSTRAINT/ VAX
METHOD T INGRESS
MAPPING & IBM
OBJECT MGR CATIA

1 3
> n BM
p— IMS
" , =Ny
n MICRO
l—— AUTOCAD/

SOLID
DKMS Definition

Local Design Data
Knowledge Stores

Local Product
Definition Data

—— VAXIDEAS

Figure 1: DKMS Architecture Overview

Backing up this geometry engine, a container object management system
will be produced that extends the proven composite object capabilities by

DKMS Final Report Knowledge Based Systems, Inc.

integrating geometry concepting and manipulation primitives into the basic
object definition and inheritance lattice operators. As an initial MR&M
(manufacturability, reliability, and maintainability) capability, the baseline
system will include a manufacturability checker, an associated generative
process planning system, and an engineering performance model
development environment. To ensure the usability of the resulting system,
industrial advisors and beta test sites will be established and operated
throughout the life of the project.

The completed Phase II will represent a major milestone in architectures,
knowledge representation techniques, and geometry acquisition/reasoning
methods for concurrent engineering. It will establish a demonstration (and
possibly a de-facto standard) for engineering support environments for the
next 15 years. These results will have widespread potential for application
in private industry, government operations, the defense community, and
universities. The Phase II results will enable a Phase III effort focused
primarily on commercialization and rehosting to a wide variety of
hardware platforms. This level of product maturity (due to the beta testing
with industrial partners during Phase II) will significantly enhance the
- ability of KBSI to secure Phase III support. In fact, we believe that a
significant level of support will be available from the direct marketing of
the Phase II results. This will be possible because of the availability of the
Symbolics development hardware as imbedded processors in traditional
hardware hosts (currently Sun and Macintosh).

2. The Flow of Knowledge Required to Support
C t Engi -

The DKMS approach to the solution of the serious problems and challenges
facing U.S. industries is to support the assimilation, application, access, and
maintenance of the life-cycle engineering knowledge base. This section
provides some observations on the complexities of the flow of knowledge
that the DKMS was designed to facilitate.

The complexity of the design, engineering, manufacture, and maintenance
of maintainable, reliable, safe, high-performance systems that employ the
state of the art in technology within tight cost and schedule constraints
requires the assembly and effective delivery of life-cycle engineering
knowledge assistance to the design/engineering activities (whether these
engineering activities occur in product, manufacturing, or maintenance
arenas). As a minimum, such assistance includes:

DKMS Final Report Knowledge Based Systems, Inc.

1) Application of previously acquired knowledge in the engineering
area to the task at hand. The product designer must have efficient
access to the knowledge of product design accumulated by his
predecessors. The manufacturing or process engineer must have
access to the knowledge of previous experts.

2) Application of knowledge from outside the engineering area to the
task at hand. The product designer must have assistance in the
application of the experiences and lessons learned by the
manufacturing and maintenance engineering discipline.

3) Access to a trace of the decision rationale that led to that most
current state of the product or process definition. The product
engineer must be able to quickly uncover the rationale of the
product designer. The manufacturing engineer must be able to lay
open the decision rationale and assumptions of both the product
designers and engineers.

4) Access to the most current state of the product or process
configuration description.

5) Man machine interfaces to support the capture of product definition
data as the decisions relating to that data are made and not after the
fact. If these don't exist, delivery of concurrent engineering
support is almost impossible. Similarly, the accumulation of the
rationale, experience, and knowledge bases that the concurrent
engineering support would be based on cannot be affordably
achieved without such interfaces.

Management of the assimilation and flow of knowledge is complicated by
both long project life spans and short life spans. For example, in the NASA
environment, project managers used to be able to see from start to finish
several major initiatives within a single assignment. However, the space
station and other advanced proposed projects have development and
operation life spans that exceed an entire career. Excessively long
development and operation cycles mean that the use of the "human" as the
knowledge base manager has no chance of success. In addition, there is a
problem with accumulation of knowledge based on multiple experiences
with similar situations. In contrast to this, a 60-month (or longer)
development process has for decades been the norm in the automotive
industry, whereas now the goal is to reduce this concept to rate production
to less than 30 months. Dramatically reduced development cycles impair
the formation of knowledge, denying the opportunity for reflection and

DKMS Final Report Knowledge Based Systems, Inc.

experimentation. Throughout the life-cycle, the result of compression of
the engineering results in critical point engineering rather than the
development of any complete understanding of the features and
characteristics of either the product or problem environment.

To give the engineer visibility into the Life Cycle implications of a design
decision requires giving access to historical information. That is, there are
many unquantifiable factors in the design process where the designer must
make judgments that result in implications manifesting themselves much
later in the product life cycle. In large, long-life, complex products such as
modern weapons systems, the original design team is long since gone when
the product exhibits design problems. The only way to provide the new
design team with insight into the correlation between the design decisions
and their implications is to provide a means of capturing the design
rationale and correlating this rationale and the product definition
information to the effects (lessons learned or experience of the
manufacturing or maintenance engineering activities). Both the original
designers and the sustaining engineering staff need access to manufacturing,
maintenance, and logistics experience.

There is a need for flow forward and flow in of knowledge relative to the
product development cycle. Design rationale, alternatives considered, and
lessons learned in the process of life-cycle design/engineering must flow
forward to the next individuals in the development chain as shown in the
upper portion of Figure 2. Similarly, experiences, lessons learned, and
limitations discovered must flow from downstream engineering activities
of previous projects back to upstream engineering activities of the current
project as illustrated in the lower half of Figure 2.

DKMS Final Report Knowledge Based Systems, Inc.

Types of Knowledge Flow within and between Projects

rationale/intent/alternatives

DESIGN

MANUFACTURE

>
4,
>

Lo
MAINTAIN K]

: o AlN'!A!N

experience/lessons learned

\

DESIGN

MANUFACTURE

MAINTAIN
MODIFY
MAINTAIN

Figure 2: Typical Types of Knowledge Flow Within and Between Projects

The flow of knowledge that needs to be supported by the DKMS appears to
be somewhat (though not radically) different from the flow of information
studied for many years in support of information integration and
information resource management efforts. Relative to a particular product
development effort, the knowledge flow tends to be unidirectional whereas
the information flow is bidirectional, as shown in Figure 3. For example,
one of the primary flows of information into the product design activities
is feedback information from product engineering and manufacturing
engineering activities related to the current product definition. On the
other hand, the fiow into product design of concurrent engineering
knowledge assistance is most often the accumulation of experience from
many previous product histories. The loss of the current product definition
as a frame of reference for the knowledge flow makes the management of,
access to, and application of the knowledge resource much more difficult
(as though management of the flow of information were not difficult
enough).

DKMS Final Report Knowledge Based Systems, Inc.

10

Knowledge Flow versus Information Flow

rationale/intent/alternatives

DESIGN
SIS MANUFACTURE * —>
.|
MAINTAIN
] MA]HA N ces
——————-.—.—-———> |
specifications

+---——---—-——

problems/change requests

- Information Flow

—ee——u= Knowledge Flow

Figure 3: Predominant Flows for Knowledge and Information
There is a need for capture of design knowledge

To support passing on of that knowledge to future engineers,

To support downstream decision making by other product
designers,

To support downstream decision making by manufacturing
engineers,

To support downstream decision making by field support &
maintenance engineers,

To support downstream decision making by sustaining engineering
efforts.

How can these knowledge flows be assisted and effected? First, we must
efficiently be able to capture such knowledge. Second, we must be able
(hopefully efficiently) to represent such knowledge. Third, we must be able
to deliver the necessary advice or recommendations implicit in this
knowledge to whatever task requires those recommendations. Fourth, we

DKMS Final Report Knowledge Based Systems, Inc.

11

must be able to manage the evolution of such knowledge because (1) we
don't want to deliver out-of-date recommendations, (2) we don't want to
accumulate lessons learned on out-of-date product definitions, and (3) we
can't afford to deliver recommendations on out-of-date product definitions.
We also need more efficient means for generation of accurate and complete
specifications as a part of the engineering concepting / analysis / decision-
making process and not as an afterthought. Finally, we must improve the
use and availability of engineering performance models. The product
design / engineer needs faster access to product design evaluation
mechanisms. The manufacturing planner/engineer needs faster access to
process / plant design evaluation mechanisms. The maintenance engineer
needs faster access to product design / process / plant design modification
evaluation mechanism. These types of performance prediction models
speed the acquisition of knowledge by these various engineering groups.

The DKMS, as described in the remainder of this report, attempts to serve
these needs. The next section of this report provides a possible scenario of
use of the DKMS to illustrate how these needs might be met operationally.

. Envisioned DKM nario of nd Benefi

When the Design Knowledge Management System (DKMS) based
CAD/CAE/CAM reaches maturity, the following user scenarios will be
possible:

* A product definer/designer accesses requirements, chooses previous
design data and, if the design is routine, invokes a knowledge-
based system designer based on design knowledge embedded in a
container object system to develop concepts for a new product.

» A designer sketches geometry concepts into the system which
provides dimensioning support as well as material, tolerance, and
finish specification support. In cases where the design is routine
and both compiled design knowledge and engineering analysis
models exist, analysis of the shape and forms of the sketches by the
system allows for automated specification generation. Using the
DKMS facilities, the evolving shape is mapped against a knowledge
base of fabrication, assembly, and maintenance/support experience,
and potential problems are indicated to the designer. Using this
same shape associative retrieval mechanism, the designer can
request suggestions for alternative shapes with similar functional

DKMS Final Report Knowledge Based Systems, Inc.

12

characteristics but with better manufacturability, reliability, and
maintainability (MR&M) life cycle characteristics.

» When engineering performance prediction models do not exist, the
designer uses the Modeler support environment to rapidly adapt
existing models or to generate new models. Using the geometric
reasoning capabilities of the DKMS, the necessary geometry based
input to these models can be easily prepared.

« At any time, the entire existing set of product definition data,
including geometry and design attributes, can be passed to the
manufacturability, assemblability, or reliability assessors for
analysis and life cycle cost estimation.

» As the design matures, it can be released to the manufacturing
engineers who use the generative planning capabilities to generate,
evaluate, and simulate process plans, assembly plans, and quality
assurance plans for the proposed product.

» When the designer moves into system level design situations which
involve heterogeneous components, or when a new designer is
added to the team, they can browse the intened design knowledge
sources. Using these resources in a tutorial fashion, he can update
himself on both basic principles as well as specialized knowledge
about specific components and devices.

To provide the above illustrated support for design engineers to better
integrate the tradeoff of various design attributes such as performance,
costs, schedule, manufacturability, and supportability requires the ability
to:

1) Capture, store, and reason about an efficient representation of
concurrent engineering knowledge including:

a) Design knowledge such as: design rationale, design intent,
design limits, and constraints,

b) Manufacturing fabrication, procurement, assembly, and test
experience,

¢) Maintenance and field support experience.

DKMS Final Report Knowledge Based Systems, Inc.

13

2) Capture the design attributes determined at various stages in a
design life cycle.

3) Relate the design attributes and designer's intent to the product
definition.

4) Distribute the above relations to any level in the product definition
including the form features of an individual part of the product.

S) Support the rapid entry of a design concept or intent, particularly
when that concept requires the definition of geometry-related
information.

6) Effectively control the design data evolution process (including the
product definition data, engineering model data, test data, as well as
manufacturing, operations, and logistics experience data) over the
entire product life cycle.

7) Provide integrated systems combining:

a) Multiple knowledge-based assistants,

b) Engineering modeling and analysis programs, and

c) Traditional engineering, product, manufacturing, and
maintenance data base systems

KBSI’s method of providing these capabilities is centered around the
development of a Design Knowledge Management System (DKMS) with an
underlying Generalized Constructive Solid Geometry (CSG) capability to
allow for the:

1) Integration of a number of "design decision support tools."

2) Development of "designer” systems which automatically make the
desired design tradeoff decisions.

3) Reduction in time for concept entry, particularly the entry of
form/shape geometry data and the generation of "design-tradeoff-
model" input data derived from that product geometry data.

4) Delivery of qualitative assessments of design options by providing
the ability to associatively index historical knowledge structures

DKMS Final Report Knowledge Based Svstems, Inc.

14

around form feature interpretations of the evolving product
geometry.

The proposed DKMS would be usable as a base concurrent engineering
platform for almost any engineering automation effort in the Government,
Defense Contractor, and Commercial industrial sectors. It would provide a
quantum improvement over any available design automation concept
available today. It could also serve as a means 10 promote better
university/industry/government ties in that it would provide a direct
vehicle for moving design, manufacturing, and field experience into the
academic classroom. It is anticipated that initial installations would be in
(1) very aggressive small business communities which must leverage scarce
resources, (2) DoD installations where management of knowledge bases
over long life-cycle weapon systems is a critical issue, (3) NASA Space
Station and deep space missions where knowledge bases will span multi-
careers, (4) commercial industries where reduction in product development
time is critical to the maintenance of a competitive position. The results of
this project will be focused primarily on mechanical device design support.
We have been careful to track and maintain (at least conceptual)
compatibility with the Air Force initiative in electronic system design
integration [EIS 1989]. We also are monitoring the Air Force and NASA
initiatives in integrated software design and development environments.
The DKMS will be able to be integrated with these systems as they emerge.
This will allow complete concurrent engineering support across all the
major technology types involved in complex products (weapons systems to
automobiles). We also believe that this technology will be applicable to the
design and sustaining engineering for the manufacturing systems (plants to
machine tools and robotic workstations) required to produce these 21st
century prcducts.

In the following section, we describe the results of our studies into the
nature of the knowledge and lifc-cycle engineering processes that the
DKMS must accommodate to support the above described scenario.

4. The Design Phenomena

What is design? Why can some people do it well and others not? Why does
the design process of systems require so much time and yet still be so error
prone? What mental processes are involved in understanding another
person's design? What information constitutes the essence of a design

description? Why in some situations does a short passage and a sketch
communicate far more than volumes of structured documentation? These

DKMS Final Report Knowledge Based Systems, Inc.

15

are just a few of the questions which we investigated as a part of the Phase
I effort to understand the knowledge environment that the DKMS must
work within. While a complete answer is not necessary, a consistent
characterization of the set of “reasonable” answers is needed to effectively
define the DKMS requirements.

The Phase [plan called for the study of the IDEF models of the design
process developed for the Air Force under the ICAM (Integrated
Computer Aided Manufacturing) [Softech 81] and IDS (Integrated Design
System) [Bsharah 86] programs. The results of this effort were
disappointing as little insight was gained from those models into the nature
or cognitive skills of design. Rather, these models tend to describe the
organizational view of the design process. While such a view is valuable
from the point of view of DKMS requirements for interfacing with the
design culture of an organization, it provides little insight into the
knowledge types or reasoning processes that the individual designer must
possess and which the DKMS must support. This problem caused the Phase
I team to synthesize its own models of design. The result of this effort is an
understanding that design must be characterized from the following points
of view:

1) Characteristics of the design situation--understanding what are
circumstances where design is normally performed and
understanding what constitutes an instance of a design process.

2) Characteristics of “modes” of design--delineation of major
classifications of design activities during the product life cycle (the
major focus of the ICAM and IDS models).

3) Characteristics of the cognitive skills or “generic activities” of the
human designer--including a characterization of the distinguishing
reasoning methods.

4) Characterization of predominant design strategies under various
design situations--arrangements or orderings of the design activities
to deal with different design situations.

5) Types of knowledge possessed by designers--characteristics of the
content and structure of knowledge used to recognize the design
situation, perform the design activities, and interact with the related
product development processes within a particular organization.

DKMS Final Report Knowledge Based Systems, Inc.

16

6) Role of shape in design cognition--characterization of how shape
concepting, shape triggered recall, and shape based constraints
influence the generic activities of design.

7) Characterization of design rationale--the beliefs and facts as well as
their organization that the human uses to make design commitments
and propagate those commitments.

The following subsections provide an overview of several of the major
findings in each area. These results set the stage for the architecture and
major components of the DKMS presented in the remainder of this
document. However, before getting into the details of design, there are
four terms that we must characterize: system, subsystem, component, and
system element. A basic characteristic of design is that it is an activity that
produces specifications of artifacts. These terms allow us to talk in general
about both the artifacts and their specifications.

A "system" is a collection of objects standing in purposefully defined
relations to address some set of problems [Ramey 83]. It is the designer's
task to forge such an association of related objects with a set of problems to
make a system. It is this association (of the related objects with the
problems that they together address) that forms the essence of a system. In
the following sections, we will point out that all proposed models of design
account for this association building process.

Both natural and man-made systems may consist of large numbers of
objects, each having innumerable complex relationships and
interdependencies. In fact, systems often appear to have arbitrary or even
random structure [Ramey 83]). Several different organizational
mechanisms are used by designers to assist in the management of this
complexity, including the formation of hierarchies of both abstractions and
idealizations as well as imposing hierarchical layers into the solution
structure.

The term "subsystem” refers to an assemblage of objects within a system.
A subsystem can be created by the designer for many different reasons,
such as (1) partition of the design or development effort, (2) separation of
a part of the problem for independent consideration, or (3) creation of an
internal system to deal with a problem inherent to the solution design in
mind. Subsystem creation can be recursive in that each subsystem defined
within a system may be further partitioned into yet smaller subsystems. In
fact, this decomposition of subsystems can be viewed as a part of the design
process in that lower and lower level subsystems are created down to the

DKMS Final Report Knowledge Based Systems, Inc.

17

point that specifiable components (objects that can be procured or
fabricated) are recognized. In general, a subsystem is any separable part of
a system that has specifications that include reference to other specified
objects. This part-whole structure will form the basis for an important
design knowledge representation component of the DKMS called the
container object system.

The lowest-level objects that are formally specified within a system are
known as components. A "component” is an element of a system that does
not need to be further specified in terms of the objects that it is made up of
for its realization to successfully contribute to the satisfaction of the system
requirements. Components may be systems or subsystems from the point
of view of manufacturing or a supplier. However, from the point of view
of design, they represent an important completion criteria. That is, they
represent the isolation of an element of the system for which a specification
can be developed that, if achieved, will result in an artifact that will
perform correctly within the overall system design. In the system/
subsystem partitioning, components appear at all “levels” in that they are
used to form the interfaces between the various levels. Finally, we use the
term "system element” to refer to any of the previously characterized
levels within a system. It is a generic term that may refer to a component
or to any portion of the system.

4.1. Characteristics of the design situation

One of the means of characterizing design is by the situation types where it
occurs. Characteristics of the design situation [Goel 89, Friel 88, Ramey
83] that we have chosen to describe the environment of use for the DKMS
include:

1) Many degrees of freedom--the problem constraints do not
determine the solution.

2) A large solution space--there may be an infinite number of very
good solutions.

3) Delayed / limited feedback--the time between commitment or
specification to realization of the artifact is long.

4) High cost of action--benefits are realized for correct decisions;
penalties are paid for incorrect decisions.

DKMS Final Report Knowledge Based Systems, Inc.

18

5) Lack of clear right /wrong decision (evaluation) criteria.

6) Input consists of goals and intentions that are generally unclear and
subjective.

7) Complexity of the problem addressed.
8) Many poorly understood parameters or subproblem interactions.

9) A large search space--parameters may take on a large number of
possible values that could be reasonable in some context.

10) Existence of referents (reusable system elements)--many of the
problems faced by the designer have been solved at least to some
extent .

11) Necessity of producing a specification for an artifact.

12) Need for languages of thought to leverage the capabilities of the
designer or to communicate the specifications.

13) Inherently iterative process.

14) Involves learning a mapping of the problem space onto the design
space--the iterations are not random trial and error. Rather, later
iterations employ knowledge gained from previous iterations on the
same problem.

4.2. Characteristics of “modes” of design

The design process is a part of a product life cycle. It is a predominant
activity early in the life cycle as well as in the sustaining engineering
activities after the product has been produced. The notion of a design life
cycle is a convenient device often used to help produce an understanding of
the basic design processes, particularly for administrative purposes. The
design process from such a view is assumed to begin at some point, to
continue through maturity, and eventually to stop. This view of design as a
series of incremental and sequentially interdependent steps is an attempt to
order the steps of the process in such a fashion that each step can be looked
on as an independent state except for its occurrence relative to the other
states that surround it. This is in fact the view taken by the IDEFQ@
modelers in the ICAM and IDS models of design reviewed as a part of this

DKMS Final Report Knowledge Based Systems, Inc.

]

19

Phase 1 effort. Maintenance of an existing design is often overlooked in this
way of viewing design [Bsharah 86]. Use of a system often tumns up
problems that either are not addressed by the system or are products of
changes in the system's environment. These new problems must be
addressed by the sustaining engineering activities as illustrated in Figure 4.

Sustaining Engineering of a Product

Conceptual Design

Preliminary Design

Detailed Design

Product Development

Figure 4. Modes of Design

As appealing as the life-cycle model of design may be, it is only one view
needed for understanding the requirements for a DKMS. This is because
the DKMS is targeted at the support of the individual designer’s thinking
process which, from studies of actual design instances, tends to take on an
ad-hoc application of a number of skills described in a later section. While
this ad-hoc approach is not chaotic, since it tends to follow particular
strategies, it is certainly not linear as life-cycle models would imply. What
the life-cycle partitions do provide is a characterization of the types of
specifications that emerge from the design process and a framework for
describing the more basic design activities (as certain of those activities
predominate certain portions of the life-cycle).

With its chronologically ordered events, the life-cycle model of design,

particularly one imbedded within a product life-cycle, is an effective tool
for understanding the administratively oriented aspects of design evolution.

DKMS Final Report Knowledge Based Systems, Inc.

20

With it, we can understand the support DKMS must provide for the project
administrator to establish his strategic plans and schedules based on prior
experience with similar design situations.

Depending upon the level of application within the solution artifact, the
purpose of conceptual design is primarily the structuring of the problem,
either the discovery or analysis of requirements and the identification of
the boundaries of the solution space [Friel 88]. The purpose of preliminary
design is to separate the promising from the unlikely solutions. Ultimately,
the objective of the designer is to select solution approaches to the
problems posed that address those problems in an optimal fashion. In the
detailed design mode, designers undertake three major tasks [Ramey 83}:

a. Identify and define the interfaces between system elements,

b. Separate out subsystems (those elements requiring yet more
structural definition) from components (those elements requiring
no further structural definition to be realized), and

c. Detail the characteristics that will govern the realization of
components.

This mode is called detailed design and it is the detailing of component
definitions that is at its heart. The mode has nothing to do with its
placement in time--that is, preliminary design is not a "sketchy detailed
design” and vice versa. The detailed design mode is focused sharply on
identification of the detailed characteristics of components to the end that
those components may be reliably realized by a supplier.

This life-cycle view does provide insight into support required by the
DKMS for large-scale system design that involves groups of individuals.
The way a system design effort arrives at its specification of a system is as
an iterative process of developing more and more detail. Higher-level
system requirements can be viewed as giving rise to subsystem
requirements, which in turn, give rise to still lower-level subsystem
requirements, and so forth. The mechanism for this involves several of the
technical modes of thougnt that a system designer goes through. To begin
with, the designer defines requirements to which a system element is to
respond. In the preliminary-design mode, the designer considers various
alternatives by which these requirements may be met and identifies logical
partitionings of the glement that will satisfy different functional aspects of
the requirements. These allocated to particular technology disciplines
where they may be realized. Finally, the designer enters the detailed-

DKMS Final Report Knowledge Based Systems, Inc.

21

design mode, and may determine that a particular element cannot be
implemented directly but requires further definition.

At this point, a new subsystem is defined, allowing the definition of an
independent design effort. Thinking as a requirements definer, the system
designer determines which system requirements are appropriate to be
imposed upon the new subsystem. The designer then defines additional
requirements that reflect the decisions leading to the identification of this
new subsystem. Both the functionality expected of this subsystem and the
degree to which it is expected to contribute to the resolution of other
system requirements must be shown. These requirements are then imposed
on the new design effort, where they are combined with requirements or
limitations that are specific to the discipline in which development will
occur.

Since requirements imposed on the new subsystem originate from several
sources, there are bound to be some conflicts. Consequently, the subsystem
design effort must carefully analyze and compare these requirements.
Specifically, the requirements must be checked for consistency and
completeness. Any conflicts or voids identified during this requirements
assessment call for negotiation between personnel from the next-higher
level effort that imposed the requirements and the new design effort that
will be held responsible for meeting them. All of this implies different
types of problem structuring efforts for the subsystem level design than for
the system level design.

This kind of negotiation can also be triggered by a number of other issues.
For instance, a requirement imposed on a subsystem might lead to a design
that would have a system element use resources over which that element
had no control. Similarly, a design might call for a failure to be generated
(or detected) in one system element that had to be resolved in another
system element. Other problems could be technology costs that prove to be
too high or byproducts unexpectedly produced in a subsystem that it is not
equipped to handle.

In all of these cases, the requirements causing the problem must be fed
back to the next-higher level in the system hierarchy. There, the problem
is resolved or passed back yet another level. Generally, the system or
subsystem effort responsible for resolving the problem will do so by
imposing additional requirements on one or more of its subordinate
subsystem development efforts. If these additional requirements create
new problems for the development effort they are imposed upon,
negotiations to iron out the problems resume. This requirements

DKMS Final Report Knowledge Based Systems, Inc.

22

assessment process tends to be an ongoing activity and continues until all
subsystem efforts have a sufficiently workable set of requirements upon
which they can base their design activities. Of course, this iteration is
never in real life as simple as it appears on paper. The definition of
subsystems and subsystem boundaries is an experimentation process with
each designer discovering the boundaries to be finally imposed.

4.3. Generic activities of design

In the Phase I effort, we have attempted to abstract away the structure
influences of the life-cycle model to identify the cognitive primitives
(generic activities) of design. This results in what Ramey refers to as
“patterns’ of behavior. All such patterns would be present to some extent
in each life-cycle mode. However, certain patterns would predominate in
each mode. For example, the following are predominant generic activities
in preliminary design [Serrano 88]:

1) Generation of plausible design alternatives (primarily based on
historical precedence [Ramey 83, Friel 88]).

2) Identification and exploration of the boundaries of the design space
(principally the identification of constraints).

3) Evaluation of the global performance of the alternatives to select
the most appropriate ones for detailed analysis and refinement. If a
candidate is found to violate a set of the constraints, the following
actions can be taken:

a) Alter the candidate solution,
b) Try a different candidate solution,

c) Change the original design specifications.

The set of generic design functions identified in Phase I to be relevant to
the DKMS design are [Goel 89, Friel 88, Ramey 83]:

1) Extensive problem structuring--partitioning, decomposition,
establishment of minimal conditions and constraints.

2) Fitting of prestructured approaches--use of knowledge of previous
problem structures or solution approaches to force structure into

DKMS Final Report Knowledge Based Systems, Inc.

23

the problem and to provide a means of understanding how the
current situation maps into previous situations.

3) Performance modeling--use of mathematical idealizations designed
to reliably predict the performance (steady state or dynamic) of a
proposed solution or of the problem situation and its environment
to assist in the understanding of each.

4) Prototyping--building artifacts which mimic the problem situation
or a proposed solution in certain ways in order to evoke
information / decisions from the domain experts or to demonstrate
feasibility of a concept.

5) Personalized stopping rules--completion criteria for level to level
decision making, component identification, and deciding on the
completeness of a design effort.

6) Limited commitment strategy--the use of multiple contexts for
decisions allowing decisions to be reversed by elimination of the
context.

7) Minimal decision making strategy--an optimal decision-making
strategy is one that leaves open the maximum number of
alternatives as the result of each decision.

8) Initiation and propagation of commitments and constraints
discovered throughout the design process.

9) Solution decomposition into “leaky” modules--toleration of the
delay in specification of the components that form the interfaces
between proposed modules of a solution.

10) Hierarchies of idealizations--in general, sets of descriptive models
that fit together into a hierarchy such that models lower in the
hierarchy can represent all of the relations and objects of their
parents as well as some additional relations. This allows the quick
determination of how more detailed decisions might compromise
the commitments made on more global issues.

11) Artificial symbol systems--special purpose (often graphical)

languages for representing critical information that must be
identified or managed during the design process.

DKMS Final Report Knowledge Based Systems, Inc.

24

12) Process driven reasoning--envisionment of courses of events,
causality consequences, and enablement relations to determine if the
design will "do the right thing."”

Figure 5 below illustrates how these generic design activities often fit into a
pattern of design prevalent in the conceptual and preliminary design
modes.

Cognitive Skills in the
Engineering Process

Requirements
Understanding
« function
* form
Testing « fit Design - I;:;a;:l :f prior
*use Formulation - Structuring
e environment - Componentizing
« interface - Rationalization
; - Evaluating
. » test analysi
Analysis ysis
k Model
Design

Figure 5. Typical Patterns of Generic Activities

Another way to understand how this collection of generic activities is
structured by the human designer is to recognize that the process of
designing systems is fundamentally a leaming activity. Every stage in the
process requires that the designer undergo a substantial amount of
hypothesis generation, testing, and belief revision to attain the desired
objectives. At first, the designer is involved in learning about the problem
or problems to be solved and about the environment into which the solution
must fit. In the development of the solution, the designer is using models,
prototypes, and lab results to learn about how the problem fits into the
design space. As a solution begins to emerge, the designer is involved in
learning about the technology available for that solution and about the ways
various technologies can be juxtaposed to solve the problem.

DKMS Final Report Knowledge Based Systems, Inc.

25

The supplier (manufacturer) of an artifact has to learn not only about the
product that has been designed, but also about the characteristics of
materials and processes that may be used in realizing that design. Finally,
the learning process comes full cycle, as the designer becomes involved in
evaluating problems that may arise because of, or in connection with, the
new system when it becomes operational. From the DKMS point of view,
a primary role of the knowledge management facilities is to accelerate the
learning process as well as capture its results throughout the product life
cycle and to be able to distribute those results throughout the life cycle.

4.3.1. Minimal decision making and least commitment
strategies in design

The notion of minimal decision making is fundamental to the capability of
being a competent designer. Because the designer is constantly placed in a
position of uncertainty with regard to possible learning, the best course of
action in decision making is to delay decisions as long as is reasonable. An
optimal decision-making strategy in this environment is one that leaves
open the maximum number of alternatives as the result of each decision.
These are termed minimal decisions, consistent with the notion of least
commitment introduced by Goel [89]. Using the practice of minimal
decision making, the decision maker evaluates each decision, separating
those that must be made from those that can be delayed. For those that
must be made at this time, the alternatives are determined and grouped into
those having harmful side effects if they are not selected and those with
essentially benign side effects. Finally, those alternatives that cannot be
avoided are evaluated in terms of their costs, benefits, and the degree to
which they leave other options open. All things considered, this latter
criterion is usually taken as the driver of the decision-making effort
[Ramey 83].

Often, this principle of minimal decision making runs directly counter to
most management practices. Traditionally, managers have learned that if a
decision can be made, it should be made. In a business environment, this
not only creates an appearance of decisiveness, but also leads to quick and
orderly commitments, often to considerable competitive advantage.
However, in the design environment, such convenient decisions can be
extremely risky. A decision made now, whether it is needed or not, will
almost always preclude the making of other decisions in the future. Often
this is precisely why a decision is made, to reduce the size of the design
space. However, experienced designers are aware that, in the design
environment, very few decisions can be made with certainty in the

DKMS Final Report Knowledge Based Systems, Inc.

26

outcome. In general, decisions that can only be made with uncertainty
early in the project, can be made with much greater certainty later. If the
decision doesn't have to be made, it should not be made. In this way, the
decision maker with the most information, the person with the best
perspective on the problem, is allowed to make the decision, and this point

in time almost always occurs where the decision has to be made [Ramey
83].

4.3.2. Prototyping in design

Figure 6 illustrates the relation of prototyping to the other generic
activities in the design process. Prototyping is one of the core generic
activities in the design of systems because of either the weakness,
unavailability, or computational complexity of analytic performance
models.

TEST & DEVELOPMENT
ACTIVITY

Problem Identification
Experimental Data
Parameter Change Requests

Problem Identification
Experimental Data
Redesign Requests

Modified Prototype
Test Plan

PROTOTYPE
CONSTRUCTION
ACTIVITY

Prototype Specifications

Figure 6. Role of Prototyping in Engineering Design

Prototypes serve to approximate aspects of the desired system. They are
used to evaluate some aspect about which the designer is unsure by
ignoring temporarily other aspects. There are basically three kinds of
prototyping efforts relevant to design:

1) Requirements prototypes--both demonstration and feasibility

prototypes designed to assist in the structuring or understanding of
the problem and its environment.

DKMS Final Report Knowledge Based Systems, Inc.

27

2) Technology prototypes--including proof of engineering principles,
proof of design maturity, and proof of production prototypes used
to assist in the solution generation, evaluation, and testing of the
artifact specification itself.

3) Research prototypes--prototypes built for the purpose of acquiring
performance data for engineering models and design planning
support.

Because design prototypes are developed in the same fashion as any other
system element, the DKMS can support this phase of the design process.
Almost all of the concurrent engineering phenomena related to the product
are evident in the prototype life cycle. Requirements and specifications are
determined for them; they are constructed, integrated, and tested, and
finally they are installed and operated. Many prototypes are not
maintained; however, some prototypes, particularly research prototypes,
are operated over many years [Friel 88].

Requirements Prototypes

Requirements prototypes are developed to establish a firm understanding of
the requirements to be imposed on a system. These prototypes are rapidly
developed mini-systems that implement certain important aspects of the
system as understood and ignore many other aspects.

Technology Prototypes
Technology prototypes are prototypes developed for the purpose of

evaluating the suitability of technology to solve some specific problem.
Like requirements prototypes, these are systems implementing certain
aspects of the ultimate system and ignoring many others. Unlike
requirements prototypes, technology prototypes may be major development
undertakings in and of themselves. The traditional engineering-design
model (EDM) is a type of technology prototype as is the mock-up. These
prototypes demonstrate some aspects of the system, such as functionality in
the former case and physical structure in the latter, at the expense of other
aspects.

Research Pro $
Research prototypes can vary from experimental apparatus designed to
enable the measurement of some basic parameters (e.g. the viscosity of a
new freon substitute) or complete end item systems (preproduction units)
specially instrumented for test stand operation. Unlike technology
prototypes, research prototypes generally are tied to the detailed design

DKMS Final Report Knowledge Based Systems, Inc.

28

phase of the product development and have a very focused role. They are
used to generate the engineering data required for the final artifact
specifications.

In general, the contribution that the DKMS can make in the prototyping
area is reducing the iteration time between the activities shown in Figure 6.
By reducing the time required to develop the engineering models, the
requirements for various prototypes can be developed earlier. By
application of the feature extraction and process planning capabilities of the
DKMS, the production data for the construction of the prototypes
(including NC code generation) can be automatically developed, shortening
the lead time for prototype development.

4.3.3. Engineering reasoning mechanisms

Underlying the above generic functions of design are a collection of
mechanisms for extracting additional information from the information
that the designer has assembled as well as from his personal knowledge-
base. These mechanisms form the basis for decision making and rationale
generation throughout the design lire-cycle. The following are the critical
methods necessary to support the DKMS mission, in relative order of their
importance:

1) Abduction

2) Production application

3) Belief maintenance

4) Constraint management

5) Constraint propagation

6) Qualitative reasoning based on envisionment or simulation

7) Induction

8) Deduction.
An important p'int first made by Ramey (83] and Friel [88] and
substantiated by all of our experience to date, is the importance of

abduction and induction over deduction in the design process. The designer
does not deduce the proper system structure from the requirements, but

DKMS Final Report Knowledge Based Systems, Inc.

29

rather uses induction (or abduction) to arrive at a structure that can be
demonstrated to be appropriate. In other words, the designer makes an
educated guess based on experience and then uses data (or rationalized
explanation) to support or discredit these beliefs. The solution is not a
necessary one in the sense that many other solutions exist, but it is an
adequate one. Within the limitations of schedule and budget constraints,
the designer can demonstrate its optimality with regard to design criteria.
In reaching this point of knowledge, the designer is guided by an
understanding of the options available. To a large extent, this is driven by
an ability to understand other systems of which he has some prior
experience or knowledge as approximations of the system being developed.

Given the focus of the Phase I effort, another important relation to note is
that the abductive (or inductive or production rule) reasoning processes
that the designer goes through with respect to geometric data clearly are
not at the points and lines level, but at the feature level. This holds for
reasoning related to the model development as well as reasoning relative to
the product design. In traditional CAD systems, it is impossible to directly
associate features with points and lines. This observation is a primary
motivation for the feature based CAD interfaces and the GCSG components
of the high productivity CAD element of the DKMS.

4.4. Predominant design strategies

Design strategies can be considered as “meta-plans” for dealing with the
complexities of frequently occurring design situations. They can be viewed
as methodizations or organizations of the primitive design activities
identified above. The three types of design strategies considered within the
Phase I effort included:

1) External-constraint driven design--design carried out under
situations where the goals, intentions, and requirements are not
even characterized well, much less defined. These situations often
result whea the designer is brought into the product development
process too early.

2) Characteristic driven design--design in a closely controlled
situation where strict accountability and proof of adequacy are
rigidly enforced. These design situations often involve potentially
life threatening situations.

3) Carry over driven design (sometimes referred to as “routine”
design).

DKMS Final Report Knowledge Based Systems, Inc.

30

From a DKMS point of view, the external constraint driven and carry over
driven strategies are the most important because it is our experience that
they characterize over 95% of design today. There are definite differences
in the types of support and knowledge needed for these two strategies. For
example, external-constraint-driven strategies rely heavily on working,
observable prototypes and mock-ups because these allow the customer to
crystalize an understanding of actual goals and objectives. Engineers using
carry over driven strategies would prefer to, and in better design
organizations, do rely on the use of predictive analytical models as a means
of design evaluation.

4.5. Types of design knowledge
From the analysis of the life-cycle and generic activities views presented
above and our experience with the construction of knowledge based
systems for mechanical system design, the following classes of knowledge
are evident in the practice of system design:

1) Knowledge of basic principles.

2) Knowledge of the general design process in a domain.

3) Knowledge of available components.

4) Knowledge of previous solution approaches.

5) Knowledge of available engineering performance models and
workable modeling approaches.

6) Knowledge of test capabilities and results (e.g. what sorts of
experimental data can be affordably, reliably, or physically
acquired).

7) Knowledge of the human network (i.e. where is the knowledge and
information in the organization or in professional associations).

8) Knowledge of the requirements, design goals, design decision /
evaluation process, and design environment of the current problem,

9) Knowledge of political or governmental constraints.

DKMS Final Report Knowledge Based Systems, Inc.

31

An effective and comprehensive knowledge based design support system
must extend current capabilities on several fronts. First, an effective
design optimization aid must incorporate at least three distinct types of
design knowledge. The first type involves knowledge of the process of
engineering design that is, the iterative process of conceptualization,
analysis, design specification, prototype construction and testing, and
design refinement as displayed previously in Figure 6. The second
involves knowledge of the life cycle of the product itself as it evolves from
an operational need through an engineering concept to a manufactured
reality into field service and repair / refurbishing. The need for both types
of knowledge is evident when one considers the activities and the
knowledge sources that a designer uses. A designer going through the
iterative process of design is constantly drawing on a wealth of product life
cycle information gleaned from experience. Test results on the design
currently being generated are evaluated in the light of "similar” historical
cases. A designer may, for instance, remember on observing certain
characteristics of a design that a similar design had certain problems in
maintenance. Thus a tool to support the generation of more optimized
designs in terms of manufacturability, reliability, survivability, and
maintainability must incorporate support for the design cycle activities and
a store of knowledge of product life cycles. The third type involves
knowledge of how to design effective performance prediction models in the
product domain. Our experience in development of modeling support
environments has been that usable models are rarely developed from first
principles (basic laws of nature). Expert modelers bring experience in test
data acquisition, computational limitations, required accuracy, and previous
models developed by them or theirpeers to bear along with the knowledge
of first principles to develop new or modify old models.

In the DKMS, given the current state of the art of knowledge
representation, we must distinguish between the capture of knowledge
(design, manufacturing, or maintenance experience or principles) that is to
be passed on as applicable knowledge (e.g., a representation such as a
container object representation or a shape prototype based production rule
is actually engineered so that it can be applied at a later time) and design
rationale which must be captured on the fly and is suitable for browsing
but not necessarily application. Both types of knowledge can contribute to
the delivery of concurrent engineering support. With the first type, we can
actually automate portions of the design decision process. With the second,
we hope to leverage the lessons learned throughout the product life cycle to
allow designers to operate under the influence of this accumulated
experience.

DKMS Final Report Knowledge Based Systems, Inc.

32

4.6. Role of shape in design cognition

The physical world around us is a rich source of constraints for designers,
a kind of constraint they are often attempting to overcome and yet the kind
they first rely on to partition and control the design evolution. Different
design disciplines treat shape and form differently. To the architect, shape
is a means for expression of themes. To the microelectronic device
designer, characteristics of the physical shape such as size of die or size of
intercomponent spacing are naturally provided constraints that must be
managed. To the mechanical system designer, shape is often synonymous
with function. Our contention is that much of a designer's rationale is
based on shape and form-related considerations. This is not to say that
materials, processes, and environmental constraints are not also important
considerations. A primary goal of the design activity is the production of
specifications and a major aspect of such specifications is the specification
of shape and form.

In our Phase I effort, we analyzed the role of shape based reasoning and
discovered critical relationships between shape concepting and both
problem partitioning and solution structuring. When a person describes a
natural shape, one characterization of the involved cognitive processes
consists of the following four generic activities applied recursively:

1) Partitioning--breaking up the object into separable elements.

2) Classification--categorization of an element with a prototype.

3) Deformation --local / global topology changes to a prototype.

4) Arrangement--description of relationships between the elements.
The term "recursive application” implies that the same process of shape
description is normally applied to each element of the partitioning. This
recursion appears to continue until the prototype classifications of the
resulting elements can be clearly established. When a person forms
concepts of shapes, many of the same cognitive activities are involved, only
slightly rearranged. In the design situation, the shape concepting process
appears to proceed recursively with the following steps:

1) Use "function to prototype” knowledge to establish a general shape.

2) Use partitioning to separate out elements for further specification.

DKMS Final Report Knowledge Based Systems, Inc.

33

3) Use functional relations to suggest arrangements.

4) Use deformations to accommodate constraints of physical form.
5) Use arrangements to build up the whole from the parts.

6) Use shape description to generate the resulting specifications.

The discovery of this process organization led to some important insights
relative to the capabilities required of the form feature CAD interface
component of the DKMS. For one, traditional CSG systems operate on the
assumption that the elemental pieces will be defined first and then
composed into the whole. In fact, it appears that this strategy for user
interaction only works if you have an image of the object in front of you
and can develop a partitioning strategy that can be accommodated by the
CSG system. Since current CAD systems were designed to replace or
augment the draftsman function (which is merely creating the artifact
specification), this style of interface is marginally acceptable. However, to
deliver concurrent engineering knowledge support to the designer, one
must develop a geometry concepting environment that does not assume that
the decisions have been made before it is engaged. We believe we have
captured the essence of an interface and a geometry engine that will
provide such design concepting support.

We believe that the close parallelism between the cognitive activities of
design and those of shape concepting and shape description argue for a
central focus on a powerful shape concepting and manipulation component
of the DKMS. Rather than treating the geometry generation element
merely as a necessary element for artifact specification support, we believe
it is a critical component in the capture of design knowledge, delivery of
design advice, and support for the human design cognition process.

4.7. Characterization of design rationale / intent

In the design of a DKMS, it is important to define and contrast design
rationale, design specifications, and design process history. Design
specifications describe what should be realized in the physical artifact.
Design rationale describes why the design is the way it is and how the
specified artifact is intended to work. Included in this design rationale are
the principles and philosophy of operation as well as models of correct
behavior including models of how the artifact is intended to behave as it

DKMS Final Report Knowledge Based Systems, Inc.

34

fails. The design process history records the steps taken, the plans and
expectations that led to these steps, and the results of each step.

One of the problems with the capture of design rationale is that it requires
the statement of characteristics beyond the minimum specifications
required to produce the product. Since the major goal of design has
traditionally been the construction of specifications for artifacts so
complete that any realization of them will satisfy the requirements (and
thereby solve the problems), specification of the underlying logic of the
decisions that contributed to, led to, or resulted in such a design description
are not naturally recorded. After all, their inclusion into the traditional
document structures used to record the design artifacts may cause
confusion or at best complicate the acquisition / interpretation of the
critical information communicated by these artifacts. In addition, as noted
in Friel [88], Goe! [89], a designer may make hundreds of focused
component decisions or through interpretation of test results, implicitly
make thousands of configuration decisions in a very short time. Lack of
efficient methods for the capture and representation of these decision
considerations is a primary impediment to the capture of design rationale.

In our investigation into solutions to this problem, we have characterized
both types of design rationale and mechanisms for representation of these
types. The core types of design rationale identified are:
1) Philosophy of a design including:
a) Process descriptions of intended system operation, and

b) Design themes in terms of object or relation types.

2) Design limitations expressed as range restrictions on system
parameters or environmental factors.

3) Factors considered in tradeoff decisions.

4) Design goals expressed in terms of:
a) Use or lack of use of particular components,
b) Priorities on problems requirements,

¢) Product life-cycle characteristics (e.g. disposable versus
maintainable),

DKMS Final Report Knowledge Based Systems, Inc.

35

d) Design rules followed in problem or solution space partitioning,
test/model data interpretation, or system structuring.

5) Precedence or historical proof of viability.

6) Legislative, social, professional society, business, or personal
evaluation factors or constraints.

Possibly due to the common carry-over strategy or the complexity of
design rationale expression, the most frequent rationale given for a design
is that it was the design that worked last year. Without making judgment on
this situation, a minimum requirement for a design knowledge management
capability is that it must be able to record historical precedence, as well as
statements of beliefs and rationalizations for why a current design situation
is identical to the one the previous design serviced.

Moving beyond text capture and association for the support of capture of
design rationale becomes quite complex. In Phase I we approached this
complexity by examining the typical questions a user might make of a
design knowledge base. The information required to answer these questions
then become requirements for the DKMS to capture and manage. We
partition these questions into several types: (1) Questions about the
specified artifacts’ composition and structure, (2) Questions about object's
purpose or function relative to the intended behavior of the artifacts, (3)
Questions about causality / enablement characteristics of the established
relations between individual objects or subsystems, (4) Questions about
supportability of particular beliefs used as rationale for design decisions,
(5) Questions about the design process, how it was planned, and how it was
carried out, and (6) Questions about device behavior or failure (the
proverbial “What if ..?” questions).

In general, our approach uses several strategies based on a situation theory
structured description of the evolving design and the design situation
(objects standing in relations in situations that stand in planned involvement
relations with other situations). The questions concerning the composition
and structure are answered through information access of the design bill of
materials. The key to questions about purpose and function is the
recognition of the difference between purpose and function. At an initial
level function can be explained by knowing the dependence or
independence of an object in the device relative to the environment of
operation of the device [Forbus 84, De Kleer 83]. At a more detailed level,
knowledge of inter- and intra-state phenomena is required. Questions about

DKMS Final Report Knowledge Based Systems, Inc.

36

purpose require knowledge of the events in the planned operation of the
device and then an association of an object's existence with its role in those
events. Supportability questions can be answered by collecting and
displaying the set of support from problem and first principle premises (or
assumptions) to the fact in question [Hobbs 86]. In this area a major role is
played by engineering discipline specific “thematic abstraction units”
(commonly agreed upon assumptions) to establish grounding conditions for
many assumptions [Dyer 83]. Questions about the design process itself can
be addressed with the use of qualitative simulation and planning techniques
as in Wilensky [83]. Finally, the answer of “What if”’ questions appears to
be relegated to simulation (either qualitative or quantitative) [Kuipers 84,
Laughton 85].

5. Design Knowledge Organization and Retrieval

The DKMS must accommodate multiple forms of knowledge
representation. In this section we describe some of the general
characteristics of how such knowledge would be treated by the overall
knowledge manager and then describe two specific forms of shape indexed
knowledge and container object knowledge representation methods
developed as a part of the Phase I effort.

Relative to the knowledge management functions of the DKMS, the issue of
knowledge capture, storage, and retrieval is primarily one of organization
and retrieval as distinct from representation and matching. Organization
differs from representation in that it is focused on structuring of
knowledge and information together to support use by multiple processes.
Previous efforts in this area have traditionally focused on attempting to add
flexibility to a base representational scheme and interfaces to traditional
data base systems. Generally, the result is a representational scheme that is
inefficient or ineffective for all but the class of problems addressed by the
original base representation. Retrieval is distinguished from matching
since matching is the dominant process required for support of the
reasoning methods described above. Retrieval, on the other hand, has as
its domain the management cf memory use and object indexing. Retrieval
is concerned with locating and retrieving collections of knowledge units
that possibly contain the structures needed by the reasoning process. To
the retrieval process, prototypes, matchers, and candidate objects are all
treated equally. In other words, the DKMS retrieval resources can be used
by a reasoning process to support its matching of prototypes against
candidate objects, in which case the role of the retrieval mechanism is to
produce as small as possible set of candidate objects that potentially fit the

DKMS Final Report Knowledge Based Systems, Inc.

37

matching specification of the reasoning mechanism. Similarly, the retrieval
mechanism in support of a design decision support process could return a
reasoning mechanism (i.e., a collection of patterns and a matcher) to
support a particular phase of the decision support activity.

The general form of knowledge organization in the DKMS is independent
of the underlying knowledge representation. It is based on a treatment of
each element of knowledge as an independent object with associated
descriptions and procedures. We have employed a situation theoretic
model for our description structure and demonstrated the effectiveness of
this model to organize first order predicate language and production-
language-based knowledge (two of the major forms of declarative
knowledge found in expert systems for design automation). We are
experimenting with the Air Force IISyCL constraint language [1ISyCL 89]
for procedure representation as the form of these constraints allows for the
representation of both the triggers and conditions for execution as well as
alternately the execution specifications or a reference to a host language (C,
Ada, Fortran, LISP etc.) module.

Thus the proposed DKMS knowledge management facilities will operate on
a declaration and definition of the knowledge that exists in the system much
in the same manner that the ISO multi-schema architectures provide
integration services through a definition of the common information. An
overview of the architecture and processing operation of this approach is
provided in the DKMS Platform Architecture section of this report. This
approach allows us to use both simple key indexing of knowledge units that
can easily be derived from the logical structure of the knowledge as well as
associative links based on patterns or contexts of knowledge use.

The remainder of this section will focus on three new knowledge
representation and reasoning methods developed to fill critical voids in the
capture and delivery of design knowledge and product experiences within a
concurrent engineering environment.

5.1. Shape based knowledge representation and reasoning

Shape Matching is an important issue in Unified Life Cycle Engineering
(ULCE). The research results addressed in this section relate to two
important aspects of this problem: (1) finding of potential problem regions
and (2) matching the geometrical model of a potential problem region with
problem shapes described by manufacturing experts and stored in a product
life cycle experience knowledge base.

DKMS Final Report Knowledge Based Systems, Inc.

38

We propose a method using object descriptions in terms of their surfaces.
The surface of an object is described by segmentation into surface patches
and the complete description consists of each patch’'s normal and their
interrelationships. The partition and description of the surface is based on
measured curvature properties of the surface. We believed that our chosen
representation has many advantages for potential problem shape finding
and shape-based associative matching for retrieval of life cycle experience
‘rom the knowledge base. It also enables us to construct altemative shapes
on the part design as advice (or work-arounds) on potential problems
[Ting-jung 89].

As previously mentioned, we have chosen partitioned surface descriptions
for representing objects in the potential problem matching work. The
automatic identification of potential problem shapes has not been addressed
in the research community to date. The difficulty of performing this task
automatically is similar to the difficulty of performing it manually. That is,
how can you tell designers to avoid a shape they don't know about. Since
these shapes can result from the interaction of more than one part, they
tend to evolve as the design evolves. We are proposing an approach that is
a variation on the theme “common things occur commonly.” More
specifically, we are proposing to break up complex shapes into component
shapes by examination of “unexpected” changes in the shape definition. The
discontinuities (breaking surfaces), creases (radical change in curvature),
and limbs (connection curve between surfaces) are chosen to be the factors
for partitioning surfaces as they are explicit shape determiners of the
surfaces of 3-D objects. These factors are also used for localizing the
region for potential problem shape checking.

In the first stage (Figure 7), the object represented with surfaces is
partitioned at discontinuities which can be detected by examining (1) the
zero-crossings, (2) limbs which are formed by the boundary of two
connected surfaces, and (3) creases which can be found by evaluating the
extremal values of surface curvature. These detected discontinuities, limbs,
and creases are then used to partition a complex surface into patches
(Figure 8). These patches can be subsequently approximated by planar
facets. The region which holds the property of discontinuity, limb, or
crease would be localized for problem shape checking (Figure 9).

DKMS Final Report Knowledge Based Systems, Inc.

39

discontinuity

Surface Model

Figure 7. Characteristics of Problem Shapes

Figure 8. Problem Shape Analysis

DKMS Final Report Knowledge Based Systems, Inc.

Figure 9. Problem Isolation

After the stage of patch generation, the system would query the designer
about the discontinuity situation (if it exists). If it is a design error, the
designer can request the system to reconnect the broken surface to its
neighboring surfaces using a surface smoothing algorithm. Along the
boundary curve between two surfaces, the vector field formed by the
normal vectors of patches would be checked against the vector field of the
problem shapes in the database (see Figure 10). If, using the isolated shape
to index into the DKMS knowledge base, the system determines a potential
problem shape has been detected, the system will then report the problem
to the designer and provide a suggested modification.

DKMS Final Report Knowledge Based Systems, Inc.

41

Vector field

Patches

i i] r
between two surfaces,

Figure 10. Boundary Curve Traversal for Shape Recovery

This potential problem shape detection method can be descrited
algorithmically as follows :

5.1.1. Algorithm for shape extraction
Given a set of surfaces (planar or sculptured) which represent an object.

1. Compute curvature for each sculptured surface and find the extremal of
the curvature.

Note: for a general space curve r = r(t), the curvature k is obtained by
differentiating r(t) twice. Thus

r=sTand r =5T +5’k N
where s is the arc length and T is the unit tangent vector.

For a curve u = u(t) on the surface r = r(u,v) the curvature can be
obtained from the following equation :

DKMS Final Report Knowledge Based Systems, Inc.

42

ir=ST +s8k N =%u2 +28?3vuv'+%92 +g:—lii +%’\3

If the extremal of the curvature is greater than a prec:fined
tolerance, the surface is then partitioned along the extremal curve.

For each subsurface, recursively subdivide the surface until the extremal of
curvatures of all subsurfaces is smaller than the predefined value.

2. Check the discontinuities among surfaces using crossing zero method. If
discontinuity has been detected, query the designer for reconnection.

3. Generate patches for each subsurface, finer (more) patches are generated
along the surface boundary.

4. Collect normal vectors of the patches to form vector fields along the
boundary among surfaces.

5. Check the vector field against the vector field of potential problem
feature stored in the knowledge base. If similar vector field is detected,
report the potential problem to the designer and provide a suggestion for
modification.

5.2. Feature based associative retrieval

The understanding of named shapes (features) is an important link in the
unification of the design, manufacturing, and maintenance components of
any Unified Life Cycle Enginecring (ULCE) support environment. Global
understanding of shape and form comes from the ability to characterize a
part in terms of its constituent features. The constituent features may be
specific to design or manufacturing processes. Because of the necessity of
being able to associatively retrieve manufacturing and design information
based on form features, it has become imperative that the major thrust in
research in this area should be in feature recognition and in feature-
oriented CAD systems.

Research in the feature recognition area to date has been pushed by
research in process planning. The most promising techniques tried to date
include:

a) Volume Decomposition [Woo 1982]

DKMS Final Report Knowledge Based Systems, Inc.

43

b) Syntactic Pattern Recognition [Kypriano 1980, Jared 1985)
¢) Logic Programming [Henderson 1985]

d) Topological models [De Floriani 1989]

e) Projection Classification [Keen 1989]

In this discussion, it is important to distinguish between Geometric and
Topological modeling:

i) Topological modeling describes the relationships between primitive
geometric elements.

i) Geometr > modeling defines the shape, orientation, and location of each
topological element.

For a feature representation/extraction system to be useful in providing
keys for database retrieval of parts, it should have the following properties:

a) The representation must be unique.

b) The representation should not be brittle, i.e., subtle variations in parts
should not produce drastically different feature representations.

c¢) The representation must allow the definition of its own limits. The limits
of the representation should be precisely defined, i.e., the system should be
able to warn the user about topologies that it cannot classify.

Henderson uses a depth first search strategy on the boundary representation
of the stock minus the part to pattern match features defined in terms of
rules. On matching a feature, it is subtracted from the boundary
representation of the material to be removed and asserted as a fact. The
problem with this approach is that subtracting features from the material to
be removed may render other features unrecognizable. Furthermore, this
approach requires the definition of raw stock.

Syntactic pattern recognition was used for group technology coding by
Kypriano and Jared at Cambridge University. It relies heavily on local
information within the boundary representation, such as loops of convex or
concave edges. It does not handle interfering features very well.

DKMS Final Report Knowledge Based Systems, Inc.

44

Volume decomposition involves searching for patterns in an object's
Constructive Solid Geometry (CSG) representation by first subtracting the
part from the convex hull of the part and then recursively subtracting the
difference from the convex hull of the difference until only convex
differences remain. It should be pointed out that this restricted CSG
representations is unique, but in general CSG representations are not
unique. While this approach can provide a unique representation of the
features of an instance of a part, it is brittle. Because slight variations of
the same part could produce radically different CSG trees, it is not useful
as a key for database retrieval.

De Floriani uses a generalized edge-face graph to represent the topological
information in the part. The feature recognition algorithm partitions the
graph into biconnected and triconnected components that it uses for
recognizing form features such as protrusions, depressions, through holes,
handles, and bridges. The decomposition of the edge-face graph into
biconnected and triconnected components is a directed acyclic graph, called
an object decomposition graph. The object decomposition graph can be
used for associative database retrieval of parts based on shape and form
because it provides genus, shape, and feature keys in the patterns of
biconnected and triconnected components. Parts with similar arrangements
of features can be retrieved by resolving subgraph isomorphisms between
the key decomposition subgraph and the decomposition graphs of parts in
the database. It is possible, however, to define patterns for which no
recognizer exists. For example, De Floriani's system cannot classify
features that cross more than three faces.

As an example of this procedure, Figure 11b shows the decomposition of
the part shown in Figure 11a into three triconnected components T1', T2',
and T3', all having Face 1 and Face 2 {fl, f2} as a separation pair. Figure
11c shows the object decomposition of the edge face graph shown in Figure
11b, where it can clearly be seen that T1, T2, and T3 are adjacent
components. T2 is a closed component as 11 and 12 are closed loop nodes,
as shown in Figure 11a. T3 is a trivial component, and T1 is an open
nontrivial component since the edge described by T3 does not belong to
T1.

From our research in Phase I, it would appear that a topologically based
form feature based representation is better suited for feature indexed
knowledge base retrieval than CSG subgraph isomorphism.

DKMS Final Report Knowledge Based Systems, Inc.

45

Figure 11. Example of graph networks for topological form feature

representation

Knowledge Based Systems, Inc.

DKMS Final Report

46

6. Container Obiject

The purpose of this section is to demonstrate the applicability of composite
objects as a knowledge representation technique for concepting and
describing shape, form, and function within a framework of
experimentally derived description primitives.

6.1. Basic concepts and theory of operation

A composite object oriented system extends the notion of objects to make
them recursive under composition. This enables the instantiation of a group
of objects as an entity. This is useful when relative relationships between
members of the group must be isomorphic for distinct instances in the
group. A composite is defined by a template that describes the sub-objects
and their connections. These objects are created by an instantiation process
and are describable in a class inheritance network. One benefit of creating
composite object classes is the ability to make modified versions of a
template by making a new subclass which inherits the properties of the
super class. Facilities for making composite objects are not common in
object-oriented languages, but are fairly common in application languages
such as those for describing circuits and layout of computer hardware.

6.2. Principles for composite objects
Composite Objects have the following features:

« Composite Objects are specified by a class containing a description
that indicates the classes of the parts and the interconnections
among the parts. The use of a class makes instantiation uniform.

+ Instantiation creates instances corresponding to all the parts in the
description. The instantiation process must keep track of
correspondence between the parts in the instantiated object. It fills
in all the connections between objects. It must permit multiple
distinct uses of identical parts.

» The instantiation process must be recursive to allow the use of
composite objects as parts. For programming convenience, the
system must either flag as an error the situation where a
description specifies using a new instance of itself as a part or
support "lazy instantiation." A description of a part which

DKMS Final Report Knowledge Based Systems, Inc.

47

includes itself can result in the instantiation of objects with an
unbound size. Alternatively, instantiating subparts on demand
(lazy instantiation) would allow the use of potentially unbounded
objects as the subparts are generated only on use.

« It must be possible to specialize a description by adding new parts
or substituting for existing parts. The description language must
allow specialization of composite objects with a granularity of
changes at the level of parts.

The following sections describe the basic requirements for the DKMS
container-object system based on the above general theory of composite
object operation.

6.3. Basic requirements for container objects

A container-object-oriented system uses structural templates to describe
container objects having a fixed set of parts. Container objects are regular
objects, created by an instantiation process, and describable in a class
inheritance network. The benefit of creating container object classes is the
ability to make modified versions of a template by making a new subclass
which inherits the properties of the super class.

6.3.1. Container object templates

A container object is described by cr- uting a class whose metaclass is a
template or itself has a superior tha is a template. Any class whose
metaclass is a template or a subclass of a template is called a template. The
default values of the instance variables of a template can point to other
templates which will be treated as parameters and be recursively
instantiated when the parent is instantiated. Instance variables that point to
non-template classes or to default values are treated as constants that are
inherited by the instances.

6.3.2. Instantiation of container object templates

The instantiation process will recurse on all the parameters of the template.
Every parameter is instantiated when it is first encountered. Multiple
references to the same parameter are replaced by pointers to the same
instantiated instance. The instantiation of a template is isomorphic to the
original template structure with constants inherited and distinct instances
substituted for distinct templates (i.e., parameters). If a container needs

DKMS Final Report Knowledge Based Systems, Inc.

48

multiple distinct instances, then multiple distinct templates are needed in the
description.

6.3.3. Specializing container objects

Specialization of container object templates must be supported both at the
definitional level and at the instantiation of a template. That is, the template
class must also be a template aliowing the construction by example of new
template structures.

6.3.4. Constrained, conditional, and iterative templates

The instantiation of container objects having repetitive or conditional parts
with the logic specified with IISyCL constraints will be supported by the
DKMS.

6.3.5. Defaulting of attributes values in container objects

When instantiating a container object, it would be advantageous for it to
determine default attribute values that satisfy the instantiation constraints.
For example, in ICAD to make a table, the user only has to design one leg
and the table top and then specify that the table should be on top of four of
the legs. ICAD automatically defaults the positions of the four legs to the
corners of the table top.

6.3.6. Lazy instantiation and demand driven control of
container objects

A container object could be very large. For example, an instance of an F-
16 is composed of thousands of parts. Each part has geometric models, as
well as design, test, manufacturing, assembly, maintenance, and vendor
data attached to it. On referencing or creating the F-16 instance, it would
be advantageous if the entire F-16 were not instantiated, rather only those
components of the container that we care to reference and the set of
support objects needed to instantiate those subcomponents so as to satisfy
the instantiation constraints. Demand driven control means the system only
performs those calculations that are necessary to respond to a query. This
facilitates partial design and saves time during design revisions.

6.3.7. Graphic browser for examining objects

A hierarchical organizational structure manages the complexity in design
by breaking down the assembly into its component parts. The designer

DKMS Final Report Knowledge Based Systems, Inc.

49

must be able to create, edit, instantiate, and modify container object
templates using a graphic browser that displays user-selected structure
forming relations. The default relations displayed would be the part-whole
and inheritance relations.

6.3.8. Part-whole defaulting

When an object requires an attribute that does not appear in its definition,
the object looks up the tree to its ancestors for the value. In ICAD, this
mechanism is known as part-whole defaulting, as attributes are
automatically made available as default values to parts within the subtree of
the part owning the attribute. Thus, only the attributes of the descendents
that are different from the ancestors need be defined. For example if a
table's material-type attribute is defined to be wood, it would only be
necessary to define the material type of those components of the table that
are not made of wood such as nuts, screws, and bolts. For example, if we
were to define a house with a red terracotta tile roof, it would be
unacceptable if we would have to set a color attribute on each one of its
tiles, while at the same time, we might want to be able to point to a tile and
obtain its properties.

6.3.9. No class versus instance distinction

In many object oriented systems, a distinction is made between class and
instance. Classes are generic objects or definition of a prototype, whereas
instances are specific examples and instantiations of the generic class.
Generally, classes are not used directly in a system, but are used to
construct instances. In ICAD, for example, the design language is used to
describe a class, which is the set of possible instances that may be created
from a single definition, but class descriptions cannot be created by the
instantiation process. In the DKMS container object system design, we are
modeling our class structures after the schema structures in frame systems.
All operation types applicable to instances will be executable on classes.

6.4. Geometry driven container object system

6.4.1. Container objects based on partition similarities
In fleshing out a description using prototypes or building up a description
using generic primitives and operations, the process will be recursive and

will involve partitionings, features, arrangements, deformations, and
functions for specifying the components and their constraints, and

DKMS Final Report Knowledge Based Systems, Inc.

50

relationships. There is a high degree of interdependence between these
terms. For example, a partition may be defined in terms of features, which
are defined in terms of partitions, arrangements, functions, and
deformations. A deformation may be described in terms of features.

6.4.2. Container object based partition similarities

The system will support the subdivision of the object in terms of features,
arrangements, function, and deformation.

6.4.3. Container object based feature similarities

The system will support the use of predefined feature descriptors to
describe the contents of a container object.

6.4.4. Container object based arrangement similarities

The system will support the description of the spatial / functional patterns
that exist between the elements in a container object. ICAD has a set of
predefined arrangement keywords, whereas LOOPS requires the writing of
LISP code to control the instantiation of patterns of objects within a
template. What is needed is the ability to define arrangement classes or
abstractions within the framework of the container system.

6.4.5. Container object based deformation similarities

The system will support the specialization of prototypical descriptions by
describing incremental departures from the prototype in terms of form
(bending, tapering, pincning) or behavior. All object oriented languages
allow the altering of behavior through the definition of class hierarchies
and the definition of methods. Because LOOPS uses metaclasses to define
composite templates, this allows the user to specialize the behavior of
composites through the definition of methods. As CLOS supports the

metaclass concept, we will be using a similar implementation strategy as
LOOPS.

6.4.6. Container object based function similarities

The system will support the description of the contents of a container in
terms of the specifications, enviror ient, and purpose for which the
components are intended. ICAD allows the definition of function through
the addition LISP coded constraints defined either in the defpart macro, or
extenally using methods that operate directly on the instantiated objects.

DKMS Final Report Knowledge Based Systems, Inc.

51

7. High Productivity CAD System

To provide support for design engineers in the rapid development of
product specifications and engineering prototypes, a design environment
must:

1) Use a solid modeling representation and organization that is
isomorphic to the representations used to perceive and structure the
design situation. [Pentland 86a]

2) Support the rapid entry of a design concept or intent into the CAD
system.

3) Intelligently set default dimensions, spatial orientation, and surface
blends.

4) Allow inheritance and / or merging of design attributes between
parts or components (e.g., blending, corner radii, etc.).

5) Manage and propagate constraints specified in the product needs
analysis or in design goal specifications and enforce those
constraints on the evolving solid models.

6) Relate the design attributes and designer rationale to the
components of the evolving product definition.

7) Capture, store, and reason about an efficient representation of the
designer's intent.

8) Transparently control the configuration of the design artifacts.

9) Support rapid browsing and modification of the above information
about an evolving design.

The rationale for a GCSG to support rapid entry of part geometry and
definition data goes beyond the traditional design automation needs. It is
also critical to the development of knowledge-based concurrent engineering
support systems. Qur experience with the development of the
manufacturing support portion (advanced process planning and NC code
generation and verification) of Al CAD/CAM as well as with knowledge
based systems that automate mechanical system designs is that no single
geometry representation is sufficient for all the functions required by an
integrated knowledge-based design support environment. It is also clear

DKMS Final Report Knowledge Based Systems, Inc.

52

that much of the design and manufacturing knowledge that must be
delivered in such an environment is shape and form related. Without a
means of rapidly acquiring the geometry component of this knowledge, the
requisite knowledge bases cannot be constructed. Of particular interest is
the rapid generation of parts which exhibit both irregular sculptured
surfaces and prismatic or rotational components (as are common in die and
mold components).

The design of efficient algorithms that will allow the transparent use of
multiple geometry representations by both human users and geometric
reasoners will lay the mathematical foundation for a unified
implementation to support an intuitive and interactive design environment.
To achieve the goal of ease of construction and manipulation of irregular
sculptured surfaces, a collection of everywhere differentiable parametric
objects, known as superquadrics, will be used as one of the base
representations. Another base representation to be supported is the
traditional BRep (Boundary Representation) and BSPT (Binary Space
Partition Tree) for representing prismatic form and feature shapes.
Efficient geometric algorithms for boolean operations on combinations of
primitives in the various representations, as well as local and global
deformations of the superquadrics, and surface blends must be investigated
and initial development completed to pursue this goal. Furthermore,
constraint propagation paradigms for interacting with the GCSG based
modeler will be designed. This will allow the creation of an integrated,
object-oriented front-end solid modeling system using superquadric
primitives [Barr 81, 84] supported by a rich and interactive environment
of orientation, deformation, boolean, and blending operations with
intelligent defaulting handled via constraint management. Such an
environment could support the user in the concurrent evolution of needs
analysis, concept design, and feasibility analysis that will facilitate rapid
prototyping and design of parts.

The primary thrusts and progress to date of the CAD interface are:

1) The design of efficient algorithms for superquadric boolean
operations. This problem is not well reported in the Yiterature. We
have found that by taking advantage of the spherica. product that
generates a superquadric, the problem of solving the highly
nonlinear 3-D surface intersection can be simplified to intersections
in two 2-D spatial domains, from which the 3-D structure of the
resulting solid can be reconstructed from the spherical product.

DKMS Final Report Knowledge Based Systems, Inc.

53

2) The design of efficient algorithms for the boolean operations
between superquadric and BRep. We have found that the BSPT is
well suited to the role of neutral representation between the
superquadric and BRep. Our intended approach is as follows: The
hyperplanes coincident to the BRep faces are used to encode both
the BRep and the superquadrics into a BSPT representation. The
BSPT provides a spatial ordering that will allow the sub-
hyperplanes of the BRep to be efficiently classified against
superquadric using the analytical form of its inside-out function.
The resulting solid is a BSPT consisting of mixed superquadric and
BRep.

3) The design of efficient algorithms for surface blending between
superquadric surfaces and between superquadrics and BRep. With
the intersection curve between the two solids and using the rolling
ball paradigm, we can compute the path of the center of the rolling
ball about the intersection curve and tangential to the surfaces
divided by intersection curve. The spherical product can then be
used to generate a solid representation of the blend surface that
may be unioned to the target solid.

4) The design of efficient algorithms for performing local
deformations on superquadrics. In our investigation of local
deformations, we have found that there are many ways to achieve
local deformations, but the choice of mathematical formalism used
is strongly influenced by the user interface paradigms that are best
suited for describing the local deformations.

5) The design of efficient display schemes for combined BRep,
superquadric, and generalized cylinder part descriptions.

6) The development of representation schemes and inferencing
mechanisms for handling design knowledge using the GCSG
capabilities. We have experimented with the use of (1) Situation
Based Reasoning, (2) Truth Maintenance, (3) Constraint
Propagation and Management, as well as conventional paradigms in
the pursuit of the representation schemes and inferencing
mechanisms that would be needed in this system.

DKMS Final Report Knowledge Based Systems, Inc.

54

7.1. Shape/form feature based CAD interfaces

Most of the conventional solid modeling or CAD systems are inadequate
for mechanical design due to the complexity of design modifications,
difficulty of manipulation, and lack of product information (e.g., material
properties, surface finish, tolerance, surface condition, etc.).

To provide an environment which is suitable (1) for the user to design
parts in the level of abstraction (designer does not need to know the design
beforehand) and (2) for supporting automated applications such as (a)
computer aided process planning and tolerancing, (b) numerically control
code generation, (c) assembly plan generation, or (d) engineering analysis,
an integrated form feature based CAD system has been studied. The
technique of object oriented programming is used in the system to support
user definition of form features which may be positioned and manipulated
in a logical manner.

In the proposed system, the user is allowed to form and define the desired
features by using the combination (boolean operations and deformations
such as bending, twisting, tapering, etc.) of polyhedral primitives and
flexible superquadrics family (superellipsoid, supertoroid,
superhyperbloid) under generalized CSG (GCSG) paradigm.

The DKMS form feature interface system design consists of four modules:

1. Form Feature Definition Module. This module facilitates the
necessary functions for designers to create new features or delete,
manipulate, and modify the existing features. This module can be
customized by adding feature knowledge (the designer's expertise
in needed features) into the system to get a complete system to
define features.

2. Form Feature Modeling Module. This module is basically a
feature based solid modeler with a set of predefined form features
which allow designers to visualize and modify part design. Within
this module, the regularized boolean operations (union,
intersection, difference, gluing) of polyhedral-polyhedral,
polyhedral-superquadrics are embedded. Designers can extract the
existing features from database and position them in a logical
manner (above, below, toward, along, etc.) using the current
geometry as a reference (see example). The system would perform
necessary regularized boolean operations automatically to generate
desired features.

DKMS Final Report Knowledge Based Systems, Inc.

55

Once any new feature is created, the feature would be placed into

the feature hierarchy which describes the relationship between
features. If a feature has been modified, the proper modification
will be made by default on all its subfeatures. The modeling
functions, such as database queries (e.g., feature hierarchy,
directories, names and generic types) and graphic facilities (e.g.,
zooming, scaling, translating, rotating, hidden surface removal,
rendering, etc.), are also provided in this module.

3. Tolerance and Maierial Modeling. In this module, designers
are expected to provide information about dimensional tolerance,
surface finish, and material type which can be used to drive the
automation applications such as process planning, robot assembly
planning, and numerically controlled code generation. Designers
specify acceptable deviations of dimensions, datum planes, surface
finish requirements, and material type to ensure the parts can be
properly assembled and function as desired.

4. Output and Feature Transformation Module. Three types of
output are generated by the system: (a) BRep (Boundary
Representation) which is probably the most commonly used
representation in CAD systems, (b) CSG tree, which shows how the
part is formed in terms of boolean operations, and (c) relational
graph which structuralizes the interrelationship among features in
the part design; this interrelationship provides valuable information
for robot assembly planning and process planning. The
interpretation of features is commonly varied from applications.
In other words, it is application-specific. An interface program
may be written to transform the design database into an
application-specific database to support various applications.

Example:

Suppose a bearing is needed to mount on a wall. The designer may start
with a rectangular block (primitive) with proper dimensions as shown in
Figure 12. The second step may be to put a feature called 'cut out’ in the
block. The designer can use the mouse to select points on edges and angle ¢
(default 90 degree) between the cutting planes to create a ‘cut out’ feature
(see Figures 12, 13).

DKMS Final Report Knowledge Based Systems, Inc.

56

Figure 12. Stock Figure 13. Cut Feature

The cut out can be modified by changing angle @, or by moving faces (1 or
2) ALONG edges or normal vectors of faces as shown in Figure 14.

Edge 1

Face 1

Edge 2
Figure 14. Intermediate Part

Suppose the user now issues the command:
"CREATE THROUGH HOLE ON FACE 2 RADIUS 2"

With this command, the system would generate a through hole on face 2
and 3 (bottom face) and check whether radius 2 is valid (too big or not).
The hole can be moved along any edge, face normal vectors, or toward or
away from any vertex. A part resulting from this type of command is
illustrated in Figure 15.

DKMS Final Report Knowledge Based Systems, Inc.

57

After creation, the hole becomes a subfeature of the cut out and the cut out
is a subfeature of the block. If .ny modification is made on the block, the
cut out and hole would be changed accordingly; or if any modification is
made on the cut-out, then the corresponding modification on the hole will
be made automatically, unless the designer specifies not to do so.
Furthermore, if there is a slot in the hole, then, if the size or location of
the hole is modified, the proper modification would be made in the system
by default.

Edge 1

Face 1

| Face 2

Face 3

Figure 15. Resulting Part

In summary, if any modification (dimensions changing, repositioning, etc.)
is made to a feature, the system would attempt to perform the
corresponding modifications on all its subfeatures. Similarly, another two
holes can be created and positioned on face 1 to complete the design as
shown in Figure 16.

DKMS Final Report Knowledge Based Systems, Inc.

58

Face 1

Figure 16. Completed Part

Besides the BRep geometry output, the system would also produce a CSG
tree and a relational graph. Figure 17 illustrates the general form of a
relation graph as described above.

Relational Graph
Block

:

Cut Out

N

Holel Hole2 Hole3

Figure 17. Relational Graph

7.2. Generalized CSG geometry engine

Most of CAD (Computer Aided Design) systems are CSG (Constructive
Solid Geometry) based. Using a small number of primitive solids (cube,
cylinder, tetrahedron, tube, sphere, etc.) as construction blocks, these CAD
systems allow modeling of complex three-dimensional solids as planar-
faceted polyhedra in a boundary representation. Although such modeling
approaches are useful for many applications and very simple to use, they
generally do not lend themselves to the design of sculptured surfaces
(surfaces with double curvature), rapid prototyping, or design in abstract.

DKMS Final Report Knowledge Based Systems, Inc.

59

An algorithm for performing boolean operations (union, intersection,
difference) on various representations is needed.

A GCSG (Generalized CSG) algorithm has been developed for supporting
the incorporation of sculptured surfaces (e.g. Ferguson-Coons, Bezier and
B-spline curves and surfaces, superquadrics) into a shape/feature based
high productivity CAD system which allow users to conceptualize the
design rapidly by using superquadrics and sculptured surfaces and to
complete the design by using deformations and logical modifications (See
Section 7.1.).

The general approach to accomplish the task of GCSG can be outlined as
the following sieps :

Generalized CSG Algorithm Outline

1. Extraction:: If we are dealing with a primitive set that includes
polyhedral (e.g. BRep and traditional CSG) or superquadric objects,
then step one is to directly extract the underlying analytical
representation of the superquadric and polyhedral object.

2. Interpolation:: If a sculptured surface (e.g. Ferguson-Coons,
Bezier or B-spline) is detected by the GSCG, then an interpolation
algorithm would be used to calculate an analytical representation of
the surface (by a set of control point coordinate and tangent vectors).

3. Patch generation:: Convert the analytically represented
sculptured surface or superquadric to a format for faceted
approximation (polyhedral objects are already in a faceted format).
This conversion is accomplished by generating a set of patches by
recursive subdivision until a predefined tolerance is achieved.

4. Triangulation:: Approximate each patch of surfaces by
triangular facets to eliminate all curved surfaces.

5. Refinement:: Collapse all the co-planar facets to achieve a more
compact representation.

6. Classification:: Perform reduction (determination of all
possible intersection points between the two objects) and
neighborhood classification (see the discussion on neighborhood
classification) which was originally developed by Mantyla [Mantyla
88]. Then, depending on the operation desired (union, etc.), classify

DKMS Final Report Knowledge Based Systems, Inc.

60

facets, generate the resulting solid of boolean operations in BRep and
produce the desired representation of the result (See [Mantyla 88] for
an overview of the reduction and neighborhood classification
algorithm).

Mathematical Background

The following sections overview the application of this general algorithm
to the classes of solid representations that we would address in the Phase 11
effort.

1. Superquadrics. A superquadric is formed by the spherical product of
two two-dimensional curves; one is defined horizontally, the other
vertically.

Spherical product :
Given two two-dimensional curves

hj(®)

hiw) = [hy(w)

], <O,

and

m() = mlgm Mo<M <M,

the spherical product x = m * h is defined as

' m@) h@)
X(n, (1))= ml(n) hz((l)) ,(DOS(DS(D]

m,(N) Mo =M=

Geometrically,-h(w)is a hori-zontal curve vertically modulated by m(n);
m(n) changes the relative scale of h, while m4(n) raises and lowers it.

. COS &m a; COoSs &2
m= and h=
aj sin el'r] ar sin £
DKMS Final Report Knowledge Based Systems, Inc.

61

then [a; cos &M cos € |

®
B CoSEM SIN®W | _p/2<M<

az sin &m

Let x= a; CcOs €T COS €
Y= a, cos & sin ©

z= ajzsinn

the inside out function can then be written as

if f(x,y,z)=1 ---> (x,y,z)ison
<1l --> (x,y,z)isin
>1 ---> (x,y,z)isout

The shape and size of superquadrics can be modified by varying epsilonl,
epsilon2 and the al, a2, and a3 parameters. The global deformations
(bending, tapering, pinching, etc.) can also be applied to superquadrics to
generate desired shapes.

2. Ferguson-Coons surface. A Ferguson-Coons surface is a surface
interpolated through a rectangular grid of control points. The control
points define a set of Ferguson-Coons bicubic parametric patches which are
blended to satisfy continuity constraints between adjacent patches.

In (s, t) parametric space, each Ferguson-Coons patch is normalized over
intervals s, t in [0,1] and is defined as:

DKMS Final Report Knowledge Based Systems, Inc.

62

P(s,t)=[s3 s2s IINBNT[3¢2¢ 1T
where
2
N= 3
0
1

211
3 -2-1
o010
0 00

and B is a 4 by 4 matrix of coordinate and tangent information at control
points. Figure 18 shows a Ferguson-Coons patch and its defining
information; a six-patch FC surface (Figure 19).

P(11) Sj P(11)

P(st) = <X(st), Y(st), Z(st)>

EC bicubic patch

Figure 18. Ferguson-Coons Patch and Defining Information

DKMS Final Report Knowledge Based Systems, Inc.

63

s —

t

Figure 19. Six Patch FC Surface

3. Bezier surfaces--Bezier surfaces are also defined by a rectangular
grid of points. In (s,t) parametric space, a Bezier surface is normalized
over the intervals s,t in [0,1] and is defined as

QG.H= Z z Bi+lj+lJn,i(S)KmJ(t)

where

i=0 j=0-

B is a control point,

hj=(")sw1sr4

i

Km, =(m) ¢ (1-)™
j

4. B-spline surfaces--A B-spline surface may be defined as:

DKMS Final Report Knowledge Based Systems, Inc.

Qs)=, Y Bis,juNix(s)M;i(t)
oy St

where

’ 1if x; €5 <Xj41

Nii(s) =

‘ 0 otherwise

Nix(s) = (s - xpPNix-1(s) (X|+k $)Nit1x-1(8)
1k Xisk-1 - Xi Xisk - Xit1

1 lf y t< yj+l
M. =)
b 0 otherwise

Mj(t) = (t - yIM;it) | (¥jer - OMje10.1()
Yj+l-1 - Yj Yi+l - Yj+1

X; is the ith value in the knot vector in the s direction, y; is the ith value in
the knot vector in the t direction and B is a control point.

The faceting process on superquadrics is done in the @ and M space;
triangular facets are generated by sweeping along two two-dimensional
spaces. The sculpture facets are derived from the recursive subdivision
algorithm (see the following Figure 20) with a specified tolerance value.

DKMS Final Report Knowledge Based Systems, Inc.

65

SR
==

R ive subdivisi

Figure 20. Sculptured Surface Faceting using Recursive Subdivision

® oo l—

DKMS Final Report Knowledge Based Systems, Inc.

66

After completion of the sculptured surfaces subdivision, superquadrics
sampling, and polyhedral objects extraction, the faceting information is
obtained. The faceting information is the input needed in the neighborhood
classification process. The neighborhood classification algorithm is then
being used to complete the task of GCSG and generate the resulting BRep
solid.

In the first stage, the set operations (union, etc.) problem can be reduced
into a collection of vertex neighborhood classification problems via
Reduction Procedure.

Reduction Procedure
Let A and B be two polyhedral objects.

1. Locate all pairs of edges eA of solid A and eB of solid B that
intersect each other properly, i.e., at an internal point of both
edges. Subdivide both edges at their intersection point, 1.e., replace
each edge by two edges and a new vertex lying at the intersection
point. (edge-edge intersection point).

2. Locate all edges of A that pass through a vertex of B. Subdivide all
such edges at the intersection point. (edge-vertex intersection
point).

3. Do step 2 symmetrically for edges of B and vertices of A.

4. Locate all coincident pairs of vertices vA of A and vB of B, and
store them for later processing. (Of course, the resulting set
includes at least all vertices added during step 1 through 3.)
(vertex-vertex intersection).

5. Locate all edges eA of A that intersect a face fB of B properly, i.e.,
at an internal point of fB. Subdivide all such edges at the
intersection point. (edge-face intersectior).

6. Do step 5 symmetrically for edges of B and faces of A.

7. Locate all vertices vA of A that lie within a face fB of B and store

the pair (vA,fB) for later processing. (This set will include all
vertices added during step 5.) (vertex-face intersection).

DKMS Final Report Knowledge Based Systems, Inc.

67

8. Locate all vertices vB of B that lie within a face fA of A and store
the pair (vB,fA) for later processing. (This set includes all vertices
added in step 6.).

After the reduction step, the necessary information for generating the
resulting solid can be obtained by executing one of two kinds of vertex
neighborhood classification steps as follows (see [Mantyla 88] for details).

Vertex Neighborhood Classifications

There are two kinds of vertex neighborhood classifications needed for the
GCSG.
1. Vertex-face classification: The processing of a pair of a vertex of
one solid that lies on a face of the other solid.
2. Vertex-vertex classification: The processing of a pair of coincident
vertices of A and B.

Once all faces have been classified as "IN,"” "ON," or "OUT" through the
vertex neighborhood classification, the resulting solid can then be derived
using the following three equations :

Aunion B=AoutB ©® Bout A
Aintersect B=AinB ®Bin A
A set-difference B = A out B ® (B in A)'1

where @ denotes the gluing operation in the context of solid modeling and
(B in A)'] denotes the complement of B in A.

For an illustration see the sequence of illustrations in Figures 21 through
24.

DKMS Final Report Knowledge Based Systems, Inc.

68

Figure 21. Two Polyhedral Objects
AINB
~
(A OUT B

Figure 22. A IN B and A OUT B

DKMS Final Report Knowledge Based Systems, Inc.

69

Figure 23. B OUT A and B IN A

AunionB=AoutB ® Bout A Aintersect B=AinB ®BinA

Figure 24. Illustration of Face Classification and Resulting Solid
Generation

DKMS Final Report Knowledge Based Systems, Inc.

70

Generalized Constructive Solid Geometry. The phrase "generalized
constructive solid geometry"” refers to the capability to combine definitions
of assorted geometric solids which have been stored in different
representations by performing boolean operations on the solid objects. For
instance, one may want to intersect an object stcred using a polyhedral
representation with an object stored using a superquadric representation. It
should be noted that the existence of multiple solids representations is only
partly creditable to the historical usc of a variety of CAD packages in
engineering / manufacturing enterprises. It is also creditable to the greater
efficiency or effectiveness of certain representations for specific purposes;
thus, the use of multiple solid representations is inherent to the engineering
process.

The CSG tree that we are considering in this exploratory work is
comprised of boolean operations on the following solids and surface
representations:

a. Polyhedral representations,

b. Superquadrics representations,

c. Surface generation (Bezier, Ferguson-Coon, and B-Spline)

representations,
d. Sweeps (Generalized cylinder) representations.

Polyhedral representations are well-known and have a well-developed
underlying theory. Experi:: 2ntation in this project has focuced on boolean
operations involving the neighborhood classification and BSPT variations.
The major result to date is that the neighborhood classification schemes
appear to yield much faster boolean operations.

Boolean operations for solids using the Superquadrics representation have
been developed using our owr. approach. At this point, the basic theory is
well developed. However, the operations are complicated in the case of the
superquadrics representation when the objects have been globally
deformed, and even more complicated under local deformations. In
addition, considerable work remains in finding sufficiently efficient and
accurate methods for performing the operations.

Boolean operations among objects of like representation are in all cases
simpler than such operations among objects of hybrid representations We
have already developed some basic algorithms in this area; however, work
is ongoing and constitutes a substantial effort to complete.

DKMS Final Report Krowledge Based Systems, '1c.

e

71

One of the primary components in any design support or automated
"designer” system is the engineering analytic model (s). One of the goals
of DKMS is to also support the development / refinement of the models of
the physical systems or processes used in that design process.

A large part of engineering design involves the manipulation of models.
Yet most computer models today are coded in such a way as to be very
resistant to change. Any changes to the existing models frequently require
extensive recoding of very old and largely undocumented code. New
model developments are equally difficult because the engineer has no
means of expressing the model concepts to a computer in a way natural to
him. What is needed is an intelligent model building system that knows
about model concepts, solution technique types, and implementation
methods. Phase II of this project will produce a set of utilities for
constructing engineering models and for managing modifications to those
models based on the KBSI Modeler capability. The resulting modeling
support environment will provide capabilities in the areas of:

1) Qualitative simulation (curve based reasoning).

2) Bond Graphs for dynamic performance modeling of heterogeneous
physical systems

3) Constraint management for supporting the derivation of complex
systems models from first principles as well as test data results.

Knowledge Based Systems Engineer’s Modelling Assistant [KBSI 89] was
designed to aid in the development of analytical models for expert systems.
Based on both bond graph modeling and constraint management
methodologies for engineering performance modelling, it represents one of
the most sophisticated support environments for such modelling. Its
features include graphic, on-screen model generation, a relationship
interface which ensures consistency and completeness, and direct access to a
programming language. The tool was used to generate a simulation of the
cool down of the interior of a car as well as the phenomenological models
of all the components in the asscciated heating and air conditioning systems
for the Chrysler Corporation.

Of the modeliiig support utilities to be provided by the DKMS, the most

powerful is the constraint management. Design is constraint-oriented: much
of the design process involves the recognition, formulation, and satisfaction

DKMS Final Report Knowledge Based Systems, Inc.

72

of constraints. The CMS (Constraint Management System) can aid
designers to identify and explore the boundaries of the design space. It can
help to determine which are the most important design parameters,
specifications, and constraints and evaluate the global performance of the
alternatives to select the most appropriate ones for detailed analysis and
refinement.

The main functionalities to be provided by the CMS component of the
DKMS include:

1. Causality and dependency determination via Bipartite matching,

2. Strong component (simultaneous constraints) detection,

3. Consistency verification,

4. Explanation and qualitative reasoning,

5. Solution sequence generation,

6. Sensitivity analysis.
Besides the engineering performance modeling support. the CMS will be
incorporated into the container object representation mechanism as
described in the following section.

8.1. CMS in containers

Composite objects, because of the ability to specify recursive template
siructures in their definitions, have a need for constraint management
capabilities. These capabilities would be used to ease the specification of
the instantiation logic as illustrated in the following example.

ICAD has :trials, and :query-trials keywords within the defpart macro that
define a list of possibilities for an attribute and a test to determine which
attribute is chosen. Each possibility is tested in left-to-right order, and the
value of the attribute is the value of the first success. An example of the
use of :trials is where the analysis of a list of catalogued parts might
require the total mass of the object's parent. Since the total mass depends
on which cataloged part is used, :trials is used to perform the analysis.

The syntax of :trials is as follows:
:trials ([:trial-attribute-name (trial-test list-of-possibilities)]

:trial-attribute-name is the name of an attribute trial-test is an expression
list-of-possibilities is the list of values to be tried

(defpart table (box)

DKMS Final Report Knowledge Based Systems, Inc.

73

:attnbutes (:leg-strength (* (the :leg :any :surface-area) 65.0)
:length 30 :width 20 :height 20)
:trials (:leg-type ((< (the :total-weight) (* 4.0 (the :leg-strength)))
'(AISC:w5x16 AISC:w6x20 AISC:w8x40)))
:parts((table-top :type box

:height 1.0
:position (top 0.0))(leg :type (the :leg-type)
:orientation (:rotate :left) (2 2))))

When information about the table leg is required, the system has to
calculate the leg type. The test uses :total-weight and :leg-strength which
depend on the type selected. We are proposing to implement a more
flexible form of this type of control structure using a primitive form of
constraint manager. The traditional type of searching is computationally
expensive as it does not use any searching strategy. As shown in the
following example, the user can intercede by conditioning the search data
where the cataloged data is sorted in ascending horsepower before the
search is attempted.

(defpart mower (box)
:query-trials (:motor-hp ((> (the :motor-hp) 10)
:horse-power
'(:sort (:select motor
(eq (iq:the-element :vendor)
:westinghouse))
((< :horse-power))))))

Using a constraint management approach would allow the system to
automatically compute a solution strategy based on the “knowns and
unknowns” of a particular design session. It would also simplify the
container specification as less procedural specification for instantiation
needs to be supplied.

DKMS Final Report Knowledge Based Systems, Inc.

74

9. Services for Evolution Control within the DKMS

To provide support for design engineers in the control of the evolution of
the design data, a design environment must:

1) Manage and propagate constraints specified in the product needs
analysis or in design goal specifications and enforce those
constraints on the evolving solid models.

2) Transparently control the configuration of the design artifacts.

3) Support rapid browsing and modification of the above
information about an evolving design.

4) Support definition and management of perspectives.

5) Support definition and management of versioned objects.

6) Provide configuration decision management capabilities.

Such capabilities are required if current “computer aided drafting” (cad)
and computer implemented engineering analysis programs are to evolve
into effective Computer Aided Design and Engineering (CAD/CAE)
environments. Current cad interfaces are so user abusive that even
trivial parts can require weeks of drafting time to enter. Lack of computer
support for determination of the effect of changes (at a semantic level, not
just at an effected parts list level) causes poor disposition decisions that can
result in major delays in a product program. Inability to enforce
constraints across multiple representations of design data and poor
decisions often result in a requirement for a complete reentry of the design
data. This amplifies the negative impact of the poor cad interfaces.
Configuration control is normally manually performed, resulting in an
average of 8 man-hours required to locate the current released design data
for modification.

9.1 Definitions

The details of our approach to perspective, configuration, and version
management and control developed during Phase I are described in the
final report. This approach is centered around the following definitions:

Boot Layers: A layer of the knowledge base that contains a set of
assertions that describe the knowledge base, i.e., the boot layer
contains environmental objects that describe the knowledge base.
Therefore, the boot layer must be read in before the knowledge
base can be accessed.

DKMS Final Report Knowledge Based Systems, Inc.

75

Community Knowledge Bases: Knowledge bases shared and
maintained by a number of knowledge engineers or designers.

Control Points: Triggers (switch based upon event occurrence)
plus a condition set. If the condition set is satisfied, a set of
policies is invoked.

Environment: Provides a namespace in working memory for
associating names and unique identifiers with objects from a
particular knowledge base.

Environmental Objects: Knowledge bases, environments, and
layers represented are instances of an Environmental Class.

Environments: The user works in a personalized environment. An
environment provides a lookup table linking unique identifiers to
objects in the connected knowledge bases. The user may indicate
dominance relationships between selected knowledge bases. When
an object is referenced, the dominance relationships determine the
order in which knowledge bases are examined to resolve the
reference. By making personal knowledge bases dominate over
community knowledge bases, the user can override portions of
the community knowledge bases in favor of his own knowledge
bases.

Global Name Table: A table, accessible from any environment,
containing all the environinental objects.

Knowledge Base State: A superclass of a knowledge base
referring to an explicit set of file layers or knowledge base states.

Knowledge Base: Files built up of a sequence of layers of
incremental changes. A user may choose any subset of layers of
the knowledge base or share a communal database without
incorporating the most recent changes. Thus, the user may refer
to or restore earlier versions of the database.

Layer: A portion of a file containing descriptions of objects.
Multiple Alternatives: Environments provide fast access to

alternative versions. A user can have any number of
environments available at any one time since each environment is

DKMS Final Report Knowledge Based Systems, Inc.

76

isolated from the others, and information can only be transferred
between environments explicitly through the knowledge bases.

Policy: Constraints that modify the system behavior.

Unique Identifiers: The ability to determine which layers are
referring to the same entity is critical in shared knowledge bases.
Therefore, unique identifiers have to be assigned to objects before
they are written to a knowledge base.

Updating Community Knowledge Bases: Updating a
Community Knowledge Base is accomplished in two steps. First,
users make tentative changes to their own environment which can
be saved in a layer of their own knowledge base. The knowledge
base manager can later copy these layers into the community
knowledge base. This separation of tasks encourages
experimentation with proposed changes because the user does not
have the responsibility for maintaining consistent knowledge bases
for shared use by the community. This mechanism also allows
individuals to compare each other's designs by exchanging layers
of their personal knowledge bases.

Version: A defining structure of parent / alternative instances of
objects.

Version Pointer: A generic reference between versioned ar.d non
versioned objects.

Versioned Object: Any container, design, knowledge unit, policy,
control point, layer, etc., which maintains version pointers.

9.2 Configuration control and version management

Providing an environment that meets design support environment needs
requires a set of tools that addresses the concerns of version management
and configuration control. Discussions on how these concepts can be
implemented and employed in a system requires an understanding of
several other topics. These are control points, policies and constraints, and
to some degree access control. In this section these concepts will be
described in more detail and our approach to their use will be outlined.

DKMS Final Report Knowledge Based Systems, Inc.

17

Version management and configuration control are by their very nature
linked. In an object-management system, an object would be represented
by a set of versions of that object (either composite or ron-composite),
normally ordered by time. Creation of a new version for an object would
be a function of configuration control within the object management
system. Furthermore, it will likely be associated with some control point's
set of policies and constraints.

In a design support environment, the primary reason for object versions is
to maintain the design or decision history of an object. There are two levels
of version management.

Public-level: In public-level version management, the version
history of a managed object records the sequence of changes to
the object as seen by all users (or classes of users) of the system.
In this level of version management, an object is defined by
policies and procedures of the organization or of the system
management. In this level we would see:

1) Versions of objects representing changes to approved/released
product designs. In the case of the DKMS, this would likely be
seen in the objects maintained in the Community Knowledge
Bases.

2) Versions of objects representing changes to the DKMS
integration services components.

3) Versions of objects representing changes to the knowledge
engineering support components.

4) Versions of objects representing changes to the life-cycle
engineering knowledge bases.

5) Versions of objects representing changes to the engineering
performance models.

6) Versions of objects representing changes to the analysis tools
used to predict component or system performance based on the
engineering models.

7) Versions of objects representing generic functions of shared

services (e.g. user interface utilities, geometry engines, graphics
display utilities, animation, simulation, model management, etc.)

DKMS Final Report Knowledge Based Systems, Inc.

78

Private-level: Private-level version management supports the
representation of time- or sequence-dependent changes to an
object at a level that is private to an application or specific user.
Definition of an object at this level of version management is a
function of the application. In application-level versioning, the
versions of an object represent changes within an object relative
to itself. An example of this level of versioning can be seen in
the DKMS personalized user environments. In such a
personalized environment the user would be able to invoke
version control support to manage a set of visualization formats
that he has evolved for particular engineering tasks.
Engineering designer systems are also amenable to application-
level version management. In these systems, version control can
be used to maintain the history of the object design process. In
such a designer environment, the user would be able to invoke
version control support to record incremental changes that were
made to an object (during design exploration or development)
prior to its approval as part of an approved or released design.

In the DKMS, our design objective is to provide a reusable set of version
management services that could be applied uniformly across the public and
private levels as described above. Configuration Control for design
artifacts in an object management environment can be provided in two
ways.

1) First there is the "“check-in / check-out" approach to
configuration control. In this approach, the artifacts (versioned
objects) are checked out by an authorized user. When this
occurs, other users are locked out until the artifact is checked
back in. For example, product design data would go through
several states throughout its life cycle. Starting with a working
version, it would progress to a released state and finally would
become archived. The states are essentially versions of the
object.

2) The other method is referred to as "percolation." In this
approach, the evolving artifact is viewed as a collection of other
objects (i.e., it is a composite object). Percolation strategies
attempt to provide finer grained control over both the objects
and their relations to other objects. The versioned object can be
set up as a tree structure with the design artifact being the root
of the tree and each node being a composite object. In this
approach, a change to a low-level object in the structure that has

DKMS Final Report Knowledge Based Systems, Inc.

79

no impact on the container (or relations to other objects in the
container) can easily be managed separately. Changes to low-
level objects that result in the evolution of the container can
result in new versions of all other objects within the version tree
of that container. Design changes percolate back up the tree. In
this approach, versioning is used to represent an object's
compatibility with other objects because successive versions for
a given object within the design may be unchanged.

An integral part of configuration management is change control. Here the
term "change control” refers to what procedures the system will enforce
when someone recognizes the need for a change, how to proceed with the
change, and the procedures for recording a completed change. Change
control includes facilities for requesting change, informing affected users
of the need for a change, creating the change, and reporting the completed
change. Message passing facilities are required with most stages of the
change control procedures. It is the changes to an object that result in the
need to maintain versions. Functions associated with the change control
aspect of version and configuration management are triggered by control
points.

By definition, control points are flags attached to the entrance and exit
functions of commands, transactions, or service requests. Associated with
control points will be a set of before, during, and/or after execution
enterprise policies or constraints. In a system that employed control
points, execution of a command would be a function call. The procedure
would be:

1) The client (user / system / application) issues a request.
2) The system checks for control points associated with the
before execution phase. If there is one or more, evaluate the

prioritized list of policy or constraint functions.

3) Perform any actions indicated by the functions and retumn an
"abort" or "continue” flag to the entrance function.

4) If "continue" initiate response to the service request.

5) If "during” constraints exist, initiate monitoring process to
check for and enforce the specified constraints.

DKMS Final Report Knowledge Based Systems, Inc.

80

6) For either a normal or abnormal termination, check for
control points associated with either the exit command or
abnormal termination handler. If there is a control point,
evaluate the prioritized list of policy or constraint functions
associated with the control point, and perform the actions
indicated by those functions.

Configuration management at both the public and private levels is built on
top of the concepts of change control and version control along with
contrel points and policies/constraints to manage the product life-cycle.

9.3 DKMS configuration control and version management

In an environment designed to augment the engineering design process,
support for all these concepts would be necessary. The DKMS
environment would have to provide version control services usable directly
for the public and private version management areas described above. It
must also support the definition of configuration management services as
described in the previous section. The DKMS approach presented here is
based on functionality similar to that described for the Engineering
Environment Services provided by the Engineering Information System
(EIS) prepared by Honeywell Systems and Research Center [EIS 89). The
requirements for the services described in that document were aimed at
supporting an environment for administrative and electronic design
information. We are extending the concepts to the entire DKMS
environment, including the management of the evolving life-cycle
engineering knowledge bases.

9.3.1 Product data evolution management

The term product data refers to the public product definition artifacts that
are managed by the system. If the DKMS environment were used by an
automobile manufacturing organization, these artifacts would be such items
as complete vehicle designs, radiators, tires, etc. Other information
maintained would be supporting data such as cost analysis reports, vehicle
design requirements, etc. These items would all have versions and most of
them would be composite objects. The default product data configuration
management services provided by the DKMS would be based on the
“check-in/check-out” strategy, with public-level version control. This
default was chosen because it represents the approach most likely to be
found in current corporations.

DKMS Final Report Knowledge Based Systems, Inc.

81

Consider, as an example, a product that undergoes four phases in its life-
cycle. The first of these is an initial design phase. During this phase the
product undergoes initial development, testing, and refinement. While the
product is in this state, there will be frequent changes to the configuration
and possibly parts of the design will remain undefined for a period of time.
As this phase nears completion, certain portions of the design may become
immune to changes. The phase ends sometime early in the product
production phase. During the production phase, changes may still be made
to parts of the design; however, there will be extremely stringent
constraints on these changes. The next stage in the life-cycle of the product
comes when production terminates. The product in this phase will likely
continue to be supported by the organization. Once production of the
product ends, the need for design changes becomes less likely; therefore
change-control constraints would force very high level approval for any
design change. At some point the organization will no longer support the
product. This places the product design in the final phase of its life-cycle.
The design data still needs to be maintained because there is much usable
information in the design, and the organization would benefit by keeping
the design available for review and copying. However, modifications will
no longer be made to this particular design; it is frozen. These four phases
that a product design goes through are called states. We call these states
development, production, support, and retired.

The DKMS environment will provide functions which will allow an
organization to define the descriptions for the objects which exist In its
product data databases. The objects created will contain, in addition to the
attributes that describe the product, version and state attributes. The
functions provided by DKMS would be such functions as create versioned-
object. A versioned-object would inherit version and time-stamp
attributes. Simple versioned objects would likely be non-composite objects
or components of the product that are out-sourced (i.e., components of a
composite product that are neither designed nor produced by the
organization). For an object that would pass through phases in its life-
cycle, the DKMS environment must provide a function to create sidte-
object. State-objects will likely be composite objects. These would be
product components produced by the organization, but in particular a
product which is a composite object, such as a vehicle produced by an
automobile manufacturer. A state-object would inherit version, state, and
time-stamp attributes. The time-stamp attribute not previously mentioned
would be a means of assisting in a merge operation that would be necessary
when multiple users are working on the same design. For an object to be
properly described, it will be necessary to include the abilitv to describe
objects as component-parts (i.e., list of objects that arc part of another

DKMS Final Report Knowiedge Based Systems, Inc.

82

object). Each object in a list of component-parts would have the
component object in their is-a-component-of list. In addition to providing
a facility for defining objects, functions will be provided for describing the
states in which the orgarnization’s product data can exist. Functions will
also be provided for defining what would constitute the termination of one
state and the start of the next. In addition to the above described version
management capabilities, additional functions to be provided by the DKMS
environment include:

* Problem report generation,
 Change request processing,

» Message passing,

» Status report generators,

« Status / state browsing facilities.

Requirements for these and other configuration management functions
require further definition and refinement. These issues will be addressed in
the next phase of the DKMS project.

Controlled manipulation of the Product Data will be provided by the
Knowledge Base which is described in the following section.

9.3.2 Knowledge base evolution control

In addition to maintaining a database(s) of product data, the DKMS must
also manage a set of life-cycle engineering knowledge bases. These
knowledge bases can be thought of as a database that would be composed of
the rules, constraints, policies, and principles of life-cycle engineering in
the organization. The knowledge base data will also have versions. These
rules, constraints, policies, and principles of design influence the design
process via the control points to which they are attached. Most important,
the knowledge base maintains an additional version management data type
that we call a context. The context version management capability allows
one to control the "applicability” of knowledge and the validity of certain
inferencing mechanisms. For example, the execution or application of a
particular rule, or constraint, etc. doesn't always occur. For an illustration
of this point, assume that the organization recently acquired a new cooling
system analysis tool which requires more data than the old. All new designs
must use this tool. A context would then be defined to allow the inference

DKMS Final Report Knowledge Based Systems, Inc.

83

that if the released version of the vehicle is later than some date, then the
new analysis tool has been used in its design process. The context would
determine which set of rules, policies, constraints, and principles of design
are applied in a given situation.

Items in the Knowledge Base will be treated as versioned-objects and
functions will be provided in the DKMS environment which will allow a
qualified user of the environment to define objects of each of these types.
The functions for defining objects in the Knowledge Base are the key to
personalizing the system for different organizations. They allow the
creation of versioned objects in the Knowledge Base that provide for:

1. User-defined rules and organization policies. Rules can be
defined that limit user access to cnly certain applications.

2. User-defined constraints on objects in the Product Base. An
example of a constraint could be projected production cost of
object should not exceed x number of dollars.

3. User-defined policies such as change request must be approved
by department manager, or change request requires approval
by the division head.

4. User-defined context. In the previous example of policies,
there appear to be two conflicting change request policies;
however, the context could be "apply the first policy when the
stage is development " and "apply the second when the stage is
supported." A context would also be used to control such
procedures as which analysis programs to use or whether
certain data is stored in a database or is calculated. Often the
context will be associated with the value of the time-stamp
attribute in a design object.

5. User defined principles of design.

Sets of the objects in the Knowledge Base will be associated with control-
points. Because the objects in the Knowledge Base are separate entities, an
object can be associated with multiple control-points. The definition of the
control-points and the sets of objects to be associated with each would be
defined by an authorized Knowledge Base manager. Definition of a
control-point would be the equivalent to setting a flag on the entrance to or
exit from a given function or command. A context would be a means of
attaching different sets of objects to a control point based on some user-

DKMS Final Report Knowledge Based Systems, Inc.

84

defined situation. The context would also be used to enforce the use of
particular design and analysis tools based on some user defined criteria.

For the objects in this Knowledge Base to be of maximum use, a command
to the design system functions and applications would go through a
command interpreter. The actual commands would be called by the
command interface rather than by the user. For instance, the user wishes
to run a cost analysis on a given design. The user would type a command
such as cost design x . The command interface would:

1) Receive the command,

2) Check the version and state of design x,

3) Select the appropriate entry control-point(s) for the context
of the design,

4) Check the set of policies/constraints associated with the entry
control point,

5) Execute the functions associated with the policies/constraints,
6) Initialize the appropriate costing application,
« The user would:
a) perform the costing process,
b) terminate the process.
T) Select the appropriate exit control-point(s),

8) Check the set of policies/constraints associated with the exit
control point,

9) Execute the functions associated with the policies/constraints,
sending any required messages, change versions or state of
the design object, etc.

The previous two sections have not directly considered the needs of the

individual user of the system; they have been more concerned with the
needs of the organization. However, proper handling of the organization's

DKMS Final Report Knowledge Based Systems, Inc.

85

needs for a product base and a knowledge base requires that consideration
be given to the individual user of the system.

9.3.3 Personal design history

The DKMS will support the individual user in the definition and use of
personalized environments in which he/she can define personalized
interface presentations, rules, constraints, etc. These would be attached to
control points in the same manner that those in the knowledge base are
attached to control points. Another area that needs to be considered in a
description of the individual user’s environment is the ability of the user to
experiment with the design of objects within his/her design domain without
modification of the .ommunity databases. For instance, consider the
designer of an automobile. This individual needs the freedom to
experiment with vehicle body designs in order to develop ideas for future
development. While being able to make multiple changes to an object
within a specific domain, the user should retain the ability to back out of
those changes at will. These topics will be discussed in this section.

The user's domain would be defined by the role type assumed. Role type is
an aspect of access control, which is of vital importance in any multiuser
system. The installations will be allowed to define different role or user
types to which individual users can be assigned. Associated with each role
type will be a set of allowable functions or operations that users of that role
type can execute or use. The system manager will assign each user to one
or more role types. A user can then login to the system, which would
place ‘the user into a private environment. After login, the user would
select one role type to use. This procedure will provide the user with
access to only those operations required. The environment will be
designed so that an individual does not have to terminate a session and
reenter the system to change roles. However, for the purposes of security,
when a user exits one role type and starts another, the system will
automatically clear the session (after prompting for the save operation).
The user would then have a different set of commands available, some of
which could be duplicates of the preceding set. With the definition of
available functions for a role type, the objects in the product base that an
individual is allowed to modify can be controlled. This restriction will
provide extra protection for the product data. The engineering design
support environment will provide an exit-role command in all role type
descriptions. Ending a session would automatically execute the exit-role
command.

DKMS Final Report Knowledge Based Systems, Inc.

86

If the functionality is available in a particular user's role type, then the user
can define rules, constraints, control-points, etc. that would be applicable
only in his/her environment. The creation and use of these control-points
and policy sets, etc. is identical with those in the knowledge base; however,
the use of individual control-points would be in addition to the
organizational defined rule sets and would not be allowed to invalidate any
requirement defined by them.

Whether the user is working on product data or experimenting with a
design that may eventually become product data, the objects created and
manipulated within a user's personal environment require versioning. In
the individual's private environment, the primary reason for versioning is
to maintain a history for changes made to an object with respect to other
objects within the design.

The designer would make incremental changes to the object of design with
each change recorded as a version of the total object. The designer could
browse through these different versions selecting any one for further
refinement (each refinement would represent a change and thus another
version). Eventually one version would prove acceptable and it would
return to the Product Base where its inclusion would produce a new
version of the product. The private environment could then be purged of
the excess versions or they could be retained for future reference. One
facility that would have to be provided to the user would be a means of
organizing the personal environment.

In this section we have presented an approach to evolution management that
will be offered ac one of the key integration services of the DKMS. In the
next section, the DKMS approach to integration services in general will be
described.

10. Product Designer Systems

As a platform for knowledge based design assistants, DKMS will provide
design support systems that can assist in producing more nearly optimal
designs in less time. The ultimate goal is to have these concepis
incorporated into a "design support system” construction shell, i.e. a tool
box designed to facilitate the construction of specific design support
systems. Such a tool box will ease the development of design support
systems able to use coherently a diversity of design information sources
accessible through the DKMS. The benefits of design support systems built
with this tool box include reduction in the development and modification
time for products and systems for the customer. The generic nature of the

DKMS Final Report Knowledge Based Systems, Inc.

87

envisioned tool box will allow support of commercial product design
support systems that would improve the international competitive stance of
many U.S. industries.

Design information sources typically used by a human designer of
mechanical parts include geometric data, engineering domain principles,
material properties, cost data, analytic models, and product life cycle
histories, among others. However, current automated design aid systems
are unable to access all these information types in any integrated way, and
these systems typically have no understanding of the information usage
patterns and design development rationale employed by the human
designer. One might say by rough analogy that current automated design
aids are at the "calculator plus pen and paper” stage, not at the spreadsheet
stage.

We have built / are building design support systems using a variety of these
components. Such design support systems are individually useful;
however, the greatest long term benefit to industry will be gained from
developing a tool box of utilities for constructing specific design support
systems.

10.1. Characteristics of designer systéms

Our recognition of the opportunity to develop a generalized architecture
for design knowledge management and concurrent engineering support is
based primarily on our experience building "knowledge based systems for
mechanical design,” currently in use at Chrysler Motors for the design of
engine box cooling systems, structural fasteners, engine valve train
components, air conditioning systems, and cost estimation systems. Our
understanding of the issues in the development of such designer systems is
also based on research work in life-cycle engineering support for building
architects. One important characteristic to recognize about "designer”
systems is that they are rarely autonomous. Rather, they tend to provide
more of a "design assistant” capability that improves the efficiency and
productivity of the human designer. These systems usually provide a
"manual” as well as "automatic" mode of operation. In the manual mode
they provide design history management and high productivity interfaces to
the traditional performance analysis tools. In the automatic mode, they
provide services ranging from qualitative assessment (e.g.
manufacturability, cost, reliability etc.) of proposed designs to computer-
generated and analyzed system designs.

DKMS Final Report Knowledge Based Systems, Inc.

88

The designer system models both the domain reasoning and the design
process reasoning of an expert engineer as he generates initial design
specifications. Inputs to such a system typically comprise a description of
the environment in which the system will operate from the perspective of
the system, (i.e. the environment parameters that constrain the
performance requirements on the system), a specification of test conditions
(e.g. horsepower, speed, ambient temperature), and certain technical or
administratively directed constraints on the system. In the process of
producing acceptable design specifications, the system iteratively proposes
specifications, tests these usiing an analytical performance prediction
program, evaluates the test outputs, and revises the design specifications.
The analytical program models state defining characteristics of the system
in the context of the related environment. The Design Assistant does not
search exhaustively but uses heuristics gleaned from the expert designer
during the redesign step. Concepts derived from our experience with these
systems that we expect to incorporate into the DKMS Designer Shell
include:

1) The use of existing engineering analysis models as evaluators on a
design. An important issue in the use of such models involves the
acquisition of the portion of the designer knowledge base that
defines how using the system will understand the capabilities,
resulting outputs, and particularly the limitations and underlying
assumptions of the analysis program.

2) The use of curve-based reasoning as part of the reasoning model.
Engineers frequently think in terms of curves (or sometimes
surfaces) when relating design parameters to performance
expectations.

3) The use of truth maintenance techniques. Mechanical design
engineers typically think in terms of alternative design proposals.
That is, they will freely make and retract assumptions as the design
process proceeds. Truth maintenance techniques are useful in
managing the complexity generated by this situation in a complex
design history.

4) Highly flexible user presentation. Designers do not take one
prescribed path to a solution, but may change viewpoints readily.
To support this process, an automated design support system must
allow the user to choose to look at various aspects of the problem
almost at will and in varying levels of detail.

DKMS Final Report Knowledge Based Systems, Inc.

89

5) The support for integration with product definition databases,
including both geometry and non-geometry based systems.

6) "Special study" design, analysis, and presentation. The fact that a
design satisfies requirements and constraints may not be enough to
gain acceptance for the design in an organization; rather the design
engineer will be expected to demonstrate the design rationale, show
why the design is better than other satisfying designs, and answer
"why not" questions about alternatives. This implies the ability to
maintain the design rationale, to do comparative analysis on test
results, to do sensitivity analysis on designs, and to produce a
suitable presentation of the results.

7) Use, at varying levels of detail, of engineering models used for
performance analysis. A design support system should
accommodate system specifications at varying levels of detail, e.g. a
component may in one case be modeled as simply an output and in
another as a set of parameters manipulated by a routine simulating
performance.

10.2. Components of designer systems

The principal components of a designer system are represented in Figure
25. These components are not shown in any particular structure primarily
because the structure of interconnections is generally left up to the session
user. Our experience has been that the cognitive process of the life-cycle
engineering activities is a rationalized, exploratory, learning process
generating its own internal structure as it proceeds. Any attempt to impose
a defined pattern on such a process by a tool may work well for one
problem instance and then fail miserably on another (even similar)
instance. Therefore, the DKMS approach to this problem is to build from
the systems that have been implemented to develop more of an "object"”
based approach to the development shell components. Under this approach,
these components become programmable services in the respect that a
"designer” system developer would be able to tune the generic services to
accommodate the needs of a particular domain. He could even provide a
structured interaction for new users. However, as soon as the users had
progressed to the point of understanding the protocols of the interactions
between the objects, they could quickly develop their own specialized
interfaces. One important note on these components is that, in any one
application, there are almost always multiple domains whose knowledge is
a part of the services provided by the "Engineering Domain Knowledge

DKMS Final Report Knowledge Based Systems, Inc.

Representation” component.

90

This will be even more the case in the
Concurrent Engineering Applications that are anticipated in the DKMS.

Domain-4
Domein-3
Domain-2
Domain-1
Engineering Engineering Performance
Domain Engineering Process Model/Analysis
Knowledge Knowledge Knowledge
Representation Representation Representation
Conistraint
Production Rule Propagation Truth Maintenance
Engine Engine Engine
Engineering Design
Performance Command History
Mode! User interface Application Visualization
interface Specitic Interface
Tradeoff/Compar Session Basic
Report Gm:t.iol:on Task < Specification
Utilities Manager s Application Generation
Specific Utilities
Context, Configuration,Version
Management
Available Design Engineering Engineering
Component History Performance Performance
Types Base Management Analysis Tools Model Library
Design Experimental
History/ Product Analysis Component/System
Alternatives Definition Results Test Data
Base Data Base Base

Figure 25. Generic Component Objects in Designer Systems

DKMS Final Report

Knowledge Based Systems, Inc.

-~

91

10.3. Knowledge acquisition approaches for designer
systems

Knowledge acquisition in the life-cycle engineering areas described above
can be time consuming and tedious. Of all the traditionally studied
problems of knowledge acquisition (internment of the process as well as the
domain knowledge, etc.), the most serious problem with knowledge
application in the life-cycle engineering domains is the lack of (sometimes
any) written corpus of cases that can be analyzed. Part of this problem is
due to the previously noted use of "languages of thought" which are often
semi-formal symbol systems. These symbol systems carry a rich semantics
and generally (from a computerization point of view) a complex syntax.
Complexities range from the definition of an entire sublanguage to the use
of complex two-dimensional (graphics/iconic based) languages. Part of the
problem then of knowledge acquisition in these domains is the problem of
assisting the domain experts in a formalization of their languages of
thought. Another is the creation of note-making environments that can be
mixed into early prototypes of a designer system that human experts can
use to capture their comments as they use the system. We have also
experimented with the delivery of sophisticated user interfaces to existing
engineering performance modeling analysis programs as a first step. These
systems offer the human user a direct benefit and hence an incentive for
use. Into these systems then we can integrate session monitors (flight
recorders of a sort) and the note-making capabilities described above. Once
in place, the information collected by these systems can be periodically
recovered and studied by the knowledge engineers.

To expect to produce anything other than "crude" automated knowledge
acquisition aids is believed to be presumptuous to a high degree over the
life of the DKMS. However, there are utilities that can greatly assist the
human knowledge engineers in their acquisition, organization, and analysis
of the domain knowledge in the life-cycle engineering knowledge bases.

10.4. Knowledge application approaches in designer
systems

There are four basic approaches to the application of acquired engineering
knowledge in designer systems.

1) Heuristic guided search using generate and test methods.

DKMS Final Report Knowledge Based Systems, Inc.

92

2) Design option generation through backsolving of the performance
models followed by heuristic based option ranking methods.

3) Structured selection using constraint tree representation of the
design knowledge.

4) Constraint satisfaction supporting a combination of structured
selection and heuristic guided search.

The DKMS designer system development shell utilities for control must
support these application approaches.

The first approach is illustrated in Figure 26. Each ncde in that figure
represents a possible rule generated design configuration. Those nodes that
are connected with links represent possible "follows from" relationships.
That is, one node is generated based on the analysis performed on its parent
nodes. While there is no requirement for a strict hierarchy in such an
application approach, our exnerience has rarely seen different. It is also
important not to misinterpret the illustration as though each generation is
based strictly on the results of an analysis of its direct parent. In fact the
"next step" decision is generally based on every node generated to that
point. As can be seen from the figure, there are nodes in the design space
that may not be generated at all by a particular execution of the designer
system. This can be the result of the "learning” process that the system
undergoes as it solves a particular instance of the design problem (program
learning can be as faulty as the human counterpart). The thicker links
represent a level of heuristic based "belief” on the part of the "designer
system" that pursuit of that particular link is more advantageous (such
heuristic-based beliefs can also be erroneous).

The second common knowledge application strategy uses analytic methods
and quantified constraints to generate the entire set of acceptable solutions.
The design knowledge in these cases usually takes the form of the
constraint set or heuristics for rank ordering the resulting set of acceptable
solutions. The application of the configuration analysis techniques is
reserved for the more detailed evaluation of only the top ranked
techniques.

DKMS Final Report Knowledge Based Systems, Inc.

93

STARTING

GUESS Space of

Possible
Configurations

Heuristic Guided
Search

Potential Acceptable Dead End
Solution Solution Direction

Figure 26. Heuristic Guided Generate and Test

10.5. Generic utilities required to develop designer
systems

Concepts derived from this work that will apply to the DKMS concept
include the following:

1) User interface / composite part representation construction utilities.
The automated design of mechanical systems frequently involves a
large representation structure for the objects being designed and a

DKMS Final Report Knowledge Based Systems, Inc.

94

sophisticated user interface for intelligent management of the input
of object descriptions. A utility being developed facilitates the rapid
prototyping of these interfaces and automatically generates the
representation structures (which are accessible either to a rule-
based reasoner or to analytic programs) as the input formats are
defined.

2) Knowledge-base structures for supporting reasoning based on the
identification of situation types in the design process. Frequently a
designer will make design decisions based not only on the current
state of the designed object and domain principles, but also on the
current "situation” as determined by the history of design changes
and evaluations to date.

3) Utilities for defining control structures to manage the interplay of
numeric components, heuristic components, display and
communication components, and so on.

10.5.1. Knowledge engineering utilities (representation and
reasoning methods)

By far the most common knowledge representation scheme used to date in
the designer systems we have constructed is the production rule
representation with an associated set of logical consistency constraints
managed by an assumptive based truth maintenance system. As described
in the previous section, there are serious shortfalls in this area when
confronting knowledge domains which have extensive geometry concepting
or recognition components. In these situations, the only options in the past
have been to:

1) Develop linear language encoding (names or descriptors) for the
"20%" of the commonly occurring or most important shapes and
use the traditional symbolic processing facilities.

2) Hard code sophisticated (but generally limited) geometry
processing and reasoning mechanisms (as in the Al CAD/CAM
system described below).

3) Avoid the problem as too difficult for current methods.

With the addition of the shape representation / reasoning capabilities of the

Generalized CSG and the container objects, the option will exist for the
direct representation of shape indexed knowledge representation.

DKMS Final Report Knowledge Based Systems, Inc.

95

The DKMS will also provide support for the traditional production rule
and belief maintenance facilities as a part of the DKMS. The production
rule facilities will be based on a Rete net processor with additional
language facilities that we have found essential to the construction of
designer class systems including:

1) Seamless integration with the host language environment.

2) Rule language facilities for both formulation of relational and
object oriented database queries.

3) Rule language facilities for the convenient processing of the results
of such database queries.

4) Rule language and processing facilities for matching against objects
in the execution domain without the direct incorporation of those
objects into the working memory of the rule processing system.
This capability avoids the problems of data redundancy and
currency control.

Three types of belief maintenance facilities will be supported in the DKMS
including a) justification-based, b) logic-based, and c¢) assumptive-based
capabilities. In addition to the standard first-order-propositional logic
support in the logic-based truth maintenance facilities, label-based numeric
equality and inequality support will also be supported.

10.5.2. User interface construction utilities (visualization of
the design history)

Based on our experience in the development of designer systems, the
sophistication, intelligence and flexibility of the user interface is most often
the determining factor of the acceptability of the system to the target end
user. Besides the familiar desktop, windowing, menu, mouse, and
presentation manager capabilities, the DKMS tool kit will provide for the
development of specialized visualization support for:

1) Browsing a visual representation of the design history.

2) Multiple simultaneous display of text/tabular results of the
execution of performance analysis runs.

DKMS Final Report Knowledge Based Systems, Inc.

96

3) Ad hoc specification and simultaneous display of multiple graphs
and charts for comparative visualization of the results of execution
of performance analysis runs.

4) Visualization of the base of components, design sessions, rule sets
and other information, knowledge or processing resources to
support the end user management of these resources.

Our current approach to the provision of these facilities is based on the
extensive use of the New-Flavors objects and the Symbolics Presentation
and window manager systems. During the course of Phase II the CLOS
(Common Lisp Object System) and CLIM (Common Lisp Interface
Manager) capabilities will be reaching maturity and we plan to convert to
these utilities to allow delivery of the resulting capabilities on a wide
variety of platforms. We are also continuing to monitor the progress of the
AFHRL IMIS model based user interface strategies as a design philosophy
for the underlying architecture for the user interface construction utilities
[Gunning 89].

10.5.3. Engineering artifact management

The ease of use of engineering designer systems, the magnitude of the
possible design alternatives and choices that are generated, to say nothing
of the volume of complex interlinked data resulting from the online
rationale capture, make issues of cenfiguration, version, and evolution
management a critical element in a successful DKMS. To provide the
capabilities to generate such a rich environment without the corresponding
assistance in managing the resulting complexity is an invitation to disaster
and disappointment. The DKMS evolution management services described
in this report are sufficient (based on our experience) to keep track of this
complexity. However, additional design work on the needed
summarization, visualization, and knowledge-based support requirements
to realize a truly effective man-machine interface for addressing this
problem must be pursued in Phase II of this project.

10.6. Support for interacting / integrated designer
systems

One of the implications of the establishment of a DKMS capability in an
enterprise is the inevitability of the desire to construct not only individual
designer systems but also federations of interacting cooperating designer
systems. The integration services provided by the DKMS provide many of
the needed base capabilities for construction of such cooperating systems.

DKMS Final Report Knowledge Based Systems, Inc.

97

However, there are several specialized utilities beyond those integration
services that address problems of the nature of modeling the negotiations
and compromising associated with team engineering of comple¥ systems.
The DKMS designer shell must provide support in the following areas to
enable the construction of this class of truly simultaneous engineering
applications.

1) Facilitator cons uaction.
2) Decision scenario specification and implementation.
3) Blackboard construction.

Facilitators are knowledge-based components that support the interaction of
a primary designer with the other primary designers in a cooperative
design scenario. The role of the facilitator is to relieve the designer of the
need to understand the complexity of the cooperative design process, thus
allowing reuse of the primary designer in many different cooperative
sessions. The facilitators' knowledge base includes knowledge of:

1) The decision process.
2) The other agents involved in that process.
3) A model of its primary designer's activities.

4) Negotiation procedures for the critical state variables that define the
coupling between the components being designed.

5) Error / failure mode diagnosis and recovery procedure knowledge.

The facilitator concept has been successfully implemented in complex
cooperating systems involving over 15 knowledge based agents with cr' ical
fault tolerant capabilities [Mayer 87]. However, the design of such agents
can often be as complex as the primary knowledge sources they serve.
Hence special support ‘s required in the DKMS development shell for
decision scenario specirication, blackboard construction, and knowledge
source analysis.

DKMS Final Report Knowledge Based Systems, Inc.

98

AM

To the concurrent engineering market, the proof of viability of a concept is
in the actual demonstration of capabilities that escape their current grasp.
We propose that along with the information integration platform, CAD
innovations and knowledge representation schemes will be investigated.
We will assemble three demonstration capabilities in the following areas:

* Manufacturability checking,
* Process planning based manufacturing cost estimation,
* Engineering modeling support.

These capabilities will be built from stand-alone applications which KBSI
already has under development in each of these areas. KBSI's philosophy
in designing the engineering and manufacturing support systems has been
to develop systems that serve in an advisory role to the human expert so
that the system will accommodate the expertise of the user. With respect to
the process planning system of Al CAD/CAM, the goal of the system is to
effectively capture the knowledge of the process planner so that the tedious
and repetitive procedures (i.e., NC code generation and verification) can be
automated. Achieving this goal will free the expert to experiment with
new tool and fixture designs. In other words, the expert is able to devote
more time to the more creative, and potentially beneficial, aspects of
process planning.

DKMS Final Report Knowledge Based Systems, Inc.

machm tools Tfhixtures] stock
Were., REVN) .} dismeter ml 1 lach Vise rew stech }
RiV) 2 .1 dlemeter ai 2 lach Vaive
Vert, MIIL 4 .2 dianeter at
Lathe

.
- diameier a
_)" dianerter a

= r

process editor -
11 Squace Rland - Setup | Wore. Ril) 1|2 tach Vine|.0 dlaner
78 Square Bland - Setom 2 Narr, Ril) 112 inch Vie| . & digart N
1 ArIl Bland - Setup) Hner. MLl 117 1ach Yiae| .4 dianes
LLLLLLAL RV RN 1T}
LLLUISF A JRIT])

RANULE XD, 2use
NOWICIY -2 204D
RUNURCIXG, BUue
NREWA Y 7. e N
HENINCIXE. (uuaY -] JsaN N
WARLICIN] 40u8Y-2 Jeve N
KOBI12CIY-), aune
NERIAC I NG, nuNEY) SR8
RN LG (XS, (BBAY-2 Jeue
ROS (LT | XQ, ANUEY-2, tuwy
NORIACING. 6RENY-2, 1880
LITIRIIY TR LT SR NN ITY
HUMIRC AN duua
HEBIICIXE, enuaY-2 Jual
#O87UC 1NN, 20887), Juus
NA2ICINY_NNuS
WD) Y-3 RERQ
"a823L N, 2060
NE824C1V-), I8N0
REIJATCIX 8. NuNEY- |, /308
NEMILEIXD . Buve
NEOTILAY ¢ wusn

i NRUIRCIX- 9, wun®
NEN29C YL, IR0

(T

(91

PRI -t aman g ety 0n

B e K Pt s
t > RN -
el
) y K
Ll .
Yty dﬂg!!? ?j!! Hid e

dewtodge Berad Syrtein

Figure 27. Al CAD/CAM Process Plan Editor

Figure 27 presents a view of the Plan Editor utility of Al CAD/CAM. This
interface allows the user to edit or browse through the computer generated
plans, while the Graphic Interface Manager provides visual cues in the
form of three dimensional models of the state of the plan the operation on
which the user has positioned the cursor. In the example shown in the
figure, the user is viewing a tool path associated with the NC code
generated for a particular operation in the process plan. Visual aids like
this, as well as other plan analysis features of the system, assist the user in
determining if any modifications must be made to the process plan. If a
plan is modified, the new plan is resubmitted to the process planner to
determine if there is some reason why the modifications should not be
allowed.

DKMS Final Report Knowledge Based Systems, Inc.

100

11.1. Al CAD/CAM pilanner concept of operations

Key to the AI CAD/CAM philosophy in process planning support is the
division of the problem into multiple interacting and overlapping major
components that mimic the functionality of the human planner. The
functions duplicated include:

 Understanding the finished part requirements,
» Manufacturability assessment,

e Process Plan generation,

* Process Specification generation,

* Plan verification,

+ Plan simulation.

The process planning system of AI CAD/CAM accepts solid model files and
transforms these into an object oriented half-edge and Binary Space
Partition Tree (BSPT) data structure. The decision support geometry
reasoning tools used in the determination of process suitability are centered
around the generation of convex enclosing objects, prismatic
decomposition, and orthonormal visibility analysis. The enclosing objects
include the convex hull, smallest enclosing box, and principal orientation
box of the part. If no single machine process is available for machining the
set of prisms and residue elements of the part, a structured minimal
representation of those elements is handed over to the planner system.
Otherwise, the opportunistic nature of the AI CAD/CAM planner
immediately proceeds to the process specification stage, where the tool
approach angles and milling planes are then analyzed, and a process
specification is determined based on the minimum number of setups
needed. The system then generates NC code for machining the part using
the maximum volume removal criterion to consolidate the tool passes over
the feature space.

Figure 28 shows the current level of implementation of the generative

component of the AI CAD/CAM concept from a networking/hardware
viewpoint.

DKMS Final Report Knowledge Based Systems, Inc.

101

Al CAD/CAM
Sunlvory
Maclvory

Factory
FIS Information
System

NC Machine Tool

Figure 28. Current Implementation of the Generative Component of Al
CAD/CAM

This planning capability demonstrates the importance of the DKMS
integration facilities. The information and knowledge necessary to produce
an effective process plan comes from many sources. Initially, the prism
generation and analysis required to fully understand the part in question
are performed through interaction with the Generalized Constructive Solid
Geometry. To produce an effective process plan requires product data
definition information to be available on the part as well as on machines,
tools, and fixtures. This information is maintained in a variety of
manufacturing databases and is accessible by the planning system through
the Common Data Manager. Without means of effectively integrating all

DKMS Final Report Knowledge Based Systems, Inc.

102

this information, the capabilities of the process planner, as well as other
portions of AI CAD/CAM, would be severely limited.

11.2. General algorithms and approach

In duplicating the six functions normally performed by the human expert,
several interacting utilities had to be developed. To fully understand the
part in question, a prism generation and analysis system was built. The
geometric reasoning capability built into this system allows the planner to
know what material must be removed from the stock material. The prism
analysis also provides the capability to relate or link prisms together in an
intelligent fashion so that operations in the process plan may be combined.
By viewing the prisms from all possible machining directions, the system
can determine if every prism is accessible by the spindle from at least one
of the machining directions.

Once the geometric processing is completed, the information is passed onto
the process planner. This utility is a rule-based system that produces a
sequence of operations that will remove the necessary volume from the
stock material. The rules in the system incorporate the knowledge of the
expert and enforce the practices to be followed in producing a process
plan. Throughout the plan generation, the planner is advised by a set of
domain specific critics. The tolerance critic, tool critic, setup critic, and
machine critic all provide the plan generator with feedback on how “good”
was a choice made by the plan generator. The planner then stores this
feedback from the critics in a truth maintenance system network. This
network is used to prune the search of the plan generation by preventing
choices from being repeated. In addition, the network provides a line of
reasoning from which an explanation of the decisions made by the planner
can be derived.

The next component of the system is the process specification. It is in this
unit that the NC code generation is performed. However, this unit is
capable of modifying the process plan so that more efficient tool paths may
be produced.

Finally, using solid models of the tool, spindle, fixture, and stock, the NC
code undergoes verification. For the entire plan, the tool path is followed
to determine if any invalid collisions occur between the objects. The only
valid collision is one where the tool intersects with the stock material
during a cutting operation. The intersection is calculated first by
generating the swept volume of both the tool and spindle for a tool

DKMS Final Report Knowledge Based Systems, Inc.

103

movement. The following sections present more detail on the components
of the process planning tool of Al CAD/CAM.

11.2.1. Manufacturability determination

The algorithm used for machinability checking utilizes the properties of
point visibility, point orthonormal visibility, facewise complete visibility,
facewise partial visibility, and solid visibility from the convex enclosing
object to determine the suitability of a part to a process. Since there are
infinite points on the boundary of a part S, it is not always possible to
check the visibility of all boundary points. In practice, facewise visibility,
instead of pointwise visibility, is checked for machinability. That is, if
every part face can be visible from some enclosing object face, then the
part is acceptable as visible to a three-axis machine with one repositioning
axis. A Machinability Theorem was developed based on orthonormal
visibility, providing a mathematical foundation for machinability. Using
the Machinability Theorem in conjunction with practical constraints on the
available machining tools and machine, a cutting strategy can be derived.

11.2.2. Prism generation and prism analysis

After generation of the prisms, the system enters the prism analysis phase.
It is at this point that distinction is made between residual prisms (those
prisms that represent material to be removed from stock) and part prisms
(those prisms that make up the finished part). The analysis then concerns
itself with only the residual prisms and arranges a hierarchy of prisms for
each of the possible machining directions. At the lowest levels, these
hierarchies consist of the residual prisms. But as the tree is traversed
upward, each level represents a union of the prisms at the next lower level.
This analysis allows the system to determine if any relationships exist
between prisms visible from a certain machining direction. Should these
relationships exist, the planner would be able to take advantage of this to
produce more efficient and effective plans.

11.2.3. Process plan generation
The generative planning problem can be formulated in the following way:
minimize(tool changes, setup, fixturing)
subject to
Constraints

Machinability Theorem
Physical Constraints

DKMS Final Report Knowledge Based Systems, Inc.

104

Coordinate Constraints

Tolerance & Dimension Constraints
Shop Constraints

Tooling Constraints

The CAD interface, along with the machined attributes extraction facility
and the primitives required for the machinability checker and the NC code
generator provide a solid platform for the development of the Master
Planner. Using the information from the Minimum Enclosing Box (MEB),
the 3-D Convex Hull, and the Principal Orientation Box (POB)
calculations, we can determine hidden faces and optimal machining
directions as well as fixturing orientations. With this logical information
we can then view the problem of plan generation as a two-phase planning
process. The first phase involves the selection of a range of operations for
accomplishment of the required material removal and a set of machine
tools for each operation. This phase of the planning process attempts to
make local or static decisions and record the options available at each
decision point. This first phase applies the expert planner's knowledge of
which types of machining processes can be used to remove material of
various forms at particular rates and with certain types of tolerances.

The next phase in the planning process starts with the generation of an
implicit sequencing of the operations. We are using an implicit sequencing
approach to avoid the combinatorial explosion inherent in the possible
number of sequences which could be generated for any part. The second
phase begins to apply the knowledge which the human planner has acquired
concerning how operations and plan segments can be assembled into a
coherent plan. The internal representation of the coherent plan will take the
form of two directed networks of nodes. Each node in the plan network
will contain a plan step or a group of plan steps. Each arc in the plan
network will represent a set of constraints between each pair of plan net
nodes. Constraints are recast as sequence constraints to enable the use of
temporal logic.

e.g.: Drill-hole-a must be before during or meets taphole-a

drill-hole-a (b d m) taphole-a
mill-face-b (b) drill-hole-a

Associated with each arc and node in the plan network will be a nude in the

second network which record the rationale or justification for the plan
network element. This second network maintains the justifications or

DKMS Final Report Knowledge Based Systems, Inc.

105

assumptions which must be true for a plan node or arc to be included in a
valid plan.

Taken together these two networks define implicitly all the feasible plan
structures. The generation of an instance of a plan would result from a
traversal of the plan network extracting a set of nodes with valid
justifications. To maintain plan validity, the three main truth maintenance
paradigms are used, namely assumptive, logic, and justification based. For
the Phase I DKMS planning system, we plan to use an assumptive-based
paradigm for the overall planning strategies, a justification-based sysiem
for the actual planning, and a logic based system to critique the plan.

The master plan is represented as a set of Plan periods, consisting of
operations.

For example:

(MASTER PLAN
(Plan Period 1 (operation 1)
(operation 2)...

(operation n))

(Plan Period 2 ...)

(Plan Period M...)
A Plan Fragment is defined as a subset of a Plan Period. This structure is
important for both the Plan Editor / Browser and the actual execution of
the Plan to allow plan fragments to be rearranged because the
environmental constraints have changed or the user decides to intervene.

11.2.4. Process Specification
4 neration
Before NC code is generated, the set of tool approach directions for the
features are determined. By minimizing the number of set ups, a subset of

these tool approach directions may be selected for NC code generation.

The following algorithms have been implemented for generating the NC
code.

DKMS Final Report Knowledge Based Systems, Inc.

106

a) Global Tool Path Generation for roughing
b) Local Tool Path Generation for roughing
¢) Local Finishing

d) Tool Path to G-Code translation

11.242. Global Tool Path Generation

The Global Tool Path generation is used for cutting planes perpendicular to
the milling plane. For example, it can be used for cutting generalized
pockets with walls parallel to the milling plane, and floor perpendicular to
the milling plane.

Local Tool Path Gen
The Local Tool Path Generation is used for cutting faces that are not
perpendicular to the milling plane. For example, a pocket with an inclined

floor can be decomposed into a global operation and a local operation.
Figure 29 illustrates the machining of an inclined plane.

p/aﬂ

RAW R
STOCK
\ PART

Figure 29. The Machining of an Inclined Plane

11.24.4, Loca] Finishing

Local finishing is used for milling out the roughing steps left by the local
tool path operation. Because the operation is taking place on an inclined
surface, care must be taken to ensure that the tool passes are close enough

DKMS Final Report Knowledge Based Systems, Inc.

107

together so that the grooves that will be formed are within the surface
finish tolerance specified.

11.2.4 Tool Path To N Translati

The tool path tours that have been determined by the procedures described
above have to be translated into a format compatible with the NC Machine.
Thus, the tool path is translated into low level NC code, which will control
the milling machine.

11.2.5. Process verification

In the machine shop, process verification requires a test run of the NC code
using a wax stock to determine if any collisions would occur between the
equipment and the stock or fixtures. If any problems occur, the NC code
must be modified and another verification step performed. However, with
Al CAD/CAM, this verification process is run online so that no test runs
need be performed.

Initially, every object used in the machining process (tool, tool holder,
spindle, stock, fixture, machine bed) is represented as a solid model. After
every movement of the tool/tool holder/spindle arrangement, a solid model
representing the swept volume of each of these objects is calculated. Then,
with the set operators provided by the Generalized Constructive Solid
Geometry, the swept volume solids are intersected with the stock, fixture,
and bed models to determine if any collisions occur. Of course, the
situation would determine what collisions would be tested for. For
example, the tool can only collide with the fixture or bed or with the stock
on a fast tool movement (GO movement). If a collision is detected, the user
is notified that the NC code is invalid and the user can then make
appropriate adjustments.

11.2.6. Process simulation

In a similar fashion to process verification, the tool cutting can be
simulated. Once a tool movement is determined to be valid (no collisions)
during the process verification, the model of the tool swept volume is
subtracted from the model of the stock material. From this operation, the
simulator is able to present an intermediate representation of the stock as
the NC code is being processed.

This facility is used in conjunction with the Process Verification. Because
operations on the solid models are expensive, as the process is being

DKMS Final Report Knowledge Based Systems, Inc.

108

verified, intermediate information is written to a file so that the simulation
can be played back later. This allows the simulation to run quickly and
allows the same simulation to be played multiple times.

This off-line simulation also indicates the importance of the Generalized
Constructive Solid Geometry. The process verification step requires the
solid models to be represented as Binary Space Partition Trees (BSPTs).
The BSPT is a complicated data structure. By storing key information off-
line, the process simulation is able to use the standard BREP to regenerate
the objects in the simulation. The GCSG allows the components of the
system to use the representation that is the best for those operations.

12, DKMS Platform Architecture

To provide the type of information and knowledge management support
and control required, KBSI is proposing a platform architecture based on a
services approach to integration. This represents a new way of looking at
the integration problem. In essence, we are suggesting that rather than
focusing on the construction of an "integrated system” we should focus on
the "integration services” that the DKMS platform as well as the functional
applications will provide. In previous approaches to integrated systems
architectures, the burden was assumed to be on the platform to provide the
integration support desired. The prevailing wisdom on achieving
concurrent engineering integration within an organization is that it occur in
three ordered waves:

a) Data Integration,
b) Application Integration,
c) Function Integration.

For this to occur, comprehensive standards have to be set up a priori and
universally accepted by the organization. Thus, applications would have to
meet these standards before being accepted by the organization. These
traditional approaches have severe problems (which is probably why after
11 years there are still no significant applications of this approach). One of
those problems is the need to define a priori the comprehensive standards.
This presumes that an organization (or a group of analysts within that
organization) can foresee (a) the integration services required and (b) the
relative demands for those integration services. Presuming that we could
solve (a) with a yet to be discovered appropriate “crystal ball" without

DKMS Final Report Knowledge Based Systems, Inc.

109

knowing the answer to (b), the ISO style integration approaches force an
equivalence of integration support across all needs. This implies a massive
overhaul of existing legacy systems and unjustifiable modifications by
vendors of their existing systems to achieve even a minimal level of
integration support. Thus, this "socialistic" approach just won't work. What
is clearly needed is a "capitalistic" approach where such services can be
incrementally introduced as the user demand forces suppliers of the needed
services to emerge. The key is the establishment of the appropriate
guidelines and structures for the service contract specification, service
protocol, service advertisement, and contracting so that (a) once the
expense of setting up a service has been incurred that service is available to
all subscribers and (b) the service brokerage evolves in an organized
fashion.

Under the "services" concept, the platform focuses on advertisement,
specification, and facilitation of "integration services." In the simplest
realization of this concept, an application (or user) could request
information services. Such requests would be advertised across the
"services" network. Applications capable of responding to the services
request would, based on availability, bid to provide the service. This
simple approach is much like the Information Automat concept proposed
by Max Wilson [87]. Our approach is made possible by the advances in
both the conceptual understanding and implementations of the object
oriented paradigm (Wilson's concepts were based on transaction processing
paradigms). In fact, many of the capabilities of the "Integration
Mechanism"” component of the ISO genre of integrated architectures would
be carried over under the notion of a planner (or general/systems
contractor). Such a mechanism would allow the generation of a “service
request” plan (or proposal) which would essentially be a design of a means
to service a complex (or unusual) request by employment of a number of
advertised services. An important characteristic of this approach is that the
integration planner only need be involved with those more complex service
requests. This is in contrast to the CDM (conceptual data model) processor
approach of the ISO. In fact, there would be nothing preventing
applications (or users) from serving as their own general contractors (i.e.
having a hard coded proposal as a part of the application code) running
only the risk of not knowing what are the latcsi services available.

It is our thesis that the integration of an engineering application into a
concurrent engineering platform should be viewed as an opportunity to
provide greater functionality to the system by providing new services and
resources. The opportunity to incorporate new services into a system must
be addressed at three classes of services:

DKMS Final Report Knowledge Based Systems, Inc.

110

a) Passive services {Data, Information, Knowledge}
b) Active services {Application, Function, Inference }
¢) Control {Configuration, Versioning, Context }

As these classes do not have strict ordering, vendors may use their
discretion to advertise services in terms of generic capabilities that can be
rendered by their applications. Thus, an object may issue a service request
to a Service Integration Manager (SIM) that will post the request(s)
directly to blackboards serviced by domain brokers. The brokers put
together service package proposals by assembling resources and methods,
and costs by broadcasting requests to a network of applications in their
domain. These domain brokerages can include network service, data
service, version control negotiation, geometry, etc. The brokered service
package includes a time window in which the services can be initiated.
There are at least two varieties of bid and proposal support that must be
provided by the SIM. The first variety is referred to as the verified sources
variety that would be implemented in a fashion similar to the ISO CDM
processing scheme using a directed message passing paradigm. The second
variety (referred to as "open bidding") would employ a stock exchange
(blackboard) style approach. The SIM then selects a package from amongst
the service proposals based on criteria such as duration and cost and
initiates the service. Figure 30 displays the operation of the SIM.

DKMS Final Report Knowledge Based Systems, Inc.

111

Request
{a, b,q}

Service Integration Manager

b

{a) Sequencing

3

_ {c} Scheduling
Service a servicebc

Figure 30. Service Integration Manager

The Planner components of the SIM would be based on the following three
premises:

» Knowledge Driven Service Support Planning

» Description Based Information and Knowledge Integration
Mechanism

* Object Level Life Cycle Data and Life-Cycle Knowledge
Evolution Control

The first premise, Knowledge Driven Service Support Planning, is simply
the requirement that the planning component of the integration services

DKMS Final Report Knowledge Based Systems, Inc.

112

system have an understanding of the processes that it will be planning
services for (and with). The information integration component of this
knowledge base will be built up from an IDEF3 specification by the
managers and technical leaders at a site. This resulting knowledge will
then be loaded into the system platform. With this knowledge, the system
can provide the administration of the design data development process (as
well as the life-cycle engineering knowledge evolution process) that was
described above. The knowledge base integration component of the DKMS
will be described in a similar fashion (IDEF3) but the source of these
descriptions will come from the design experience and rationale capture
mechanisms as well as from experience captured from the manufacturing,
maintenance, and operations personnel.

The second premise is that the system must have description-based
integration service mechanisms. Information integration is necessary to
provide complete and accurate access to (and control of) the life cycle data
of the software system. The number and variety of tools used in the design
activities throughout a product life cycle makes an integrated homogeneous
(i.e., one supplier, one hardware platform that does all) environment
impossible. Instead, tools must have the ability to access data and
information that are created by different tools. In addition to the ability to
provide active information sharing between tools, information resources
for making complex scoping, design, and change management decisions
must be supported. This implies the provision of ad hoc search and query
support with both browsing and user defined presentation generation
(reports, hypernotes, illustrations, etc.). However, we must accommodate
an evolution to this goal. With the integration services approach we can
initially support design tool interfacing and as the demand dictates and the
vendor accommodates, evolve to more functional levels of support. For
example, initially we may have to convert an entire CAD file from one
system to the other to query for information about a particular model. If,
however, the users only require answers to directed questions (such as
"what is the normal vector at a particular point"), then the vendor could
provide this capability as an exported service in later releases of his
product. To accomplish this, support service descriptions must be defined
for each vendor or legacy tool as well as information descriptions for those
life cycle artifacts developed or managed outside of a particular tool. These
descriptions must be used as an active component of the advertisement,
planning and contracting elements of the service environment. The
integration services planning mechanism will then have the ability to use
these descriptions to support access/control of the data produced by a
specific tool. This mechanism must also have the ability to recognize

DKMS Final Report Knowledge Based Systems, Inc.

113

which object is being accessed so that the appropriate framework constraint
can be applied.

Process
Descriptions

Xﬁ Conceptual
-

Figure 31. Multi-schema Architecture Approach

Constraint
Descriptions

TS

This information integration planning support provided by the integration
services component in the DKMS will be accomplished using a multi-
schema architecture implementation of the ISO conceptual schema standard
as seen in Figure 31. The schemas in addition to the three standard
schemas depicted in that figure are knowledge bases that define the life
cycle information managed by the proposed framework programmable
platform. They not only specify what data exist but also how to access the
data, what constraints exist on the data, and how the data is/can be used.
This complete description of the information making up the system is a
major means of providing the type of control that the programmable
framework system will give.

Effective integration support depends on the third premise of Object Level
Life Cycle Data Evolution. Previous integration and technical data
management/control strategies have taken one of two approaches:

1) Data translation standards from one format to another.

2) Object definition and control at the file level.
Both of these ideas can be supported by the integration services approach.
Data translation standards can be set up initially to enable application / tool
interfacing. A preplanned communications link between two tools can

easily be established. The result of the traditional integration architectures
(which supported such links) was that any tool that was to be integrated

DKMS Final Report Knowledge Based Systems, Inc.

114

must have these communication links set up. Using the planner services of
the DKMS, established communication and translation services will be able
to be combined into powerful new interfaces on demand. This approach
delivers both the performance and the appearance of integration without
radical modifications to the vendor programs and without a combinatorial
growth in interface program development.

File level control (while an appropriate first step) is not fine grained
enough. For example, in a system design, it is often useful to refer to a
specific requirement in the system requirements document. In an
integrated system that operates at the file level, this reference could only be
made to the requirements document. If this requirements document were
changed, the entire document would have to be parsed to determine if the
change affected the design. However, the services approach will provide
intelligent support to this traditional approach as required.

As Life Cycle Data and life-cycle engineering knowledge begin to be
represented and controlled at the object level, these two methods would be
obsolete. No format translation methods between tools would be required
because the integration services mechanisms would have the ability to
access all versioned objects directly. The second problem of having to
parse the entire file would be eliminated because a notification would be
sent only when the specific requirement object referenced by the design
document when modified.

Clearly, this is the best way to proceed. However, it requires that the tools
and utilities that make up the design support environment be based on these
premises. The scope of this project is to address these issues of a platform
for a federated system of knowledge based, data based and analysis
applications. The result will be a system that incorporates these
technologies to provide a suite of integrated CAE tools along with the
knowledge based data administration and seamless configuration control
capabilities.

Figure 1 of this report displayed a traditional view of the architecture that
will be pursued in the development of the prototype DKMS. That is, it
illustrates the formation of an "integrated” system from a set of integration
services. The lower half of the diagram illustrates the internal components
of the Information Integration Services and the Knowledge Management
Services system. Above that is the Dynamic Object Manager that provides
the necessary local services to access both the required elements of
concurrent engineering knowledge and the product life cycle data at the
local object level. Then, in the center of the diagram is the the GCSG and

DKMS Final Report Knowledge Based Systems, Inc.

115

the container object system. These service components support the
backbone of the knowledge representation and shape based reasoning
capabilities required of the DKMS. The remaining components of the
architecture are typical tools and utilities that a design development
environment should provide.

The power of the “services" approach to integration is better illustrated by
the introduction of legacy (or existing commercial) engineering CAD based
applications into the DKMS platform. Figure 32 illustrates the architecture
of such a typical application [Krause 89]. The view taken in the
construction of this illustration is that there are core reusable functions that
are integrated together into the application by the construction of
application specific interface layers on top of the functional levels. Under
the "services" approach to integration, the level of integration of such a
system will be largely defined by the level of access to these underlying
functional methods that a legacy system provides.

DKMS Final Report Knowledge Based Systems, Inc.

116

The components of a typical Engineering Application

System Control/Main Program

M : ~ UserIF
b A Modeling IF | User
§ t Communi-
€ § M g |y Core cations
£l 59 " Application
5 33 M gs c Modeling
3 E s|T <o A Routines Graphics IF
=20 i L Graphics
F Routines
I
F
Data Management IF
5 Data Management Subroutines
Model
Base

Data
Base

Figure 32. Legacy System Architecture

Figure 33 illustrates the assimilation of such a legacy system into the
DKMS. The primary determiner of the level of passive, active, or control
services provided by that system will be determined by the number of
service contracts that the system can satisfy through the advertised
protocols of those services. It is clear that, initially, a legacy system may
not offer any services whatsoever. Its existence in the system will be
justified solely on the particular function that it provides to the direct
users. In fact, in some cases this may be the terminal stage of such a
package. However, in the fiercely competitive world of CAD/CAE/CAM
applications, such an isolated tool has a low probability of survival. It is

DKMS Final Report Knowledge Based Systems, Inc.

117

likely that at least data access services will be requested of the application.
The opportunity offered by the DKMS is that these integration requests can
be handled on a case-by-case basis by modular extensions (essentially
additional interfaces to the underlying generic functions of the application).

l Services Netwark P
Resource/Service Management Unit
Data Mgt Services |Data Mgt Protocols
Modeling Services Modeling Interface Protocol
User Interface Services User interface Protocol
P System
raphics Sevices Graphics Methods Protocol Control
Analysis Services Analysis Routines Protocol
Model Mgt Services Model Mgt Protocol
Control Services Control Protocols
- |
A
M N User IF
o Modeling IF
D A odeling User
e 'Y' Communl-
- | £ catlons
€ § M _g = |y Core
g € |G >0 |, Application
83 Im g8 | Modeling |
8E5 |T <a |2 Routines Graphics IF
3
£33 | L Graphics
Routines
F)
F
l—- Data Management IF
Wodel Data Management Subroutines
Base

<>
Data

Figure 33. Installation of Legacy Application into Services Network

DKMS Final Report Knowledge Based Systems, Inc.

118

A major task within the next phase of this project will be the further
definition and implementation of this services approach to integration. As
mentioned previously this approach can build directly off the initiatives and
research results of the ISO conceptual schema architecture community. For
example, standards such as the evolving PDES and the ISO STEP would
serve as powerful mechanisms for specification of both service contracts
and protocol ontologies.

1 | rk

Many of the insights and concepts behind the DKMS have resulted from
our experience in the development of knowledge-based designer,
concurrent engineering, and information integration systems. The
following provides a brief overview of several of the salient experiences
drawn on in the course of development of the DKMS concept.

Manufacturing Engineering Experience

Al CAD/CAM KBSI is developing AI CAD/CAM composed of (1) a
superquadrics based CAD interface, (2) manufacturing process plan
support, (3) design support, and (4) engineering modeling support. Al
CAD/CAM is a platform and a collection of integrated tools that provide
intelligent support for automated design and manufacturing engineering.
The focus of the Intelligent Assistant for CAD/CAM is concurrent
engineering of mechanical systems. The goal of Al CAD/CAM is to
provide engineering decision support, intelligent CAD interfaces, and
manufacturing plan generation support in disciplines ranging from product
design to NC code generation and validation. The system is based on a
layered architecture supporting geometric reasoning, design object
management and control, object-oriented database integration support, and
applications development tools. AI CAD/CAM provides the means to
integrate engineering support systems from the design to the manufacture
of a product. The current focus of Al CAD/CAM centers on
manufacturing engineering, but other key areas of development include a
high productivity CAD interface as well as Design and Engineering
Modeling Support.

n imati I This prototype system,
develop:d for Chrysler Manufacturing, addresses the problem of
automated reasoning about part features directly from the geometric
representation. The system is based on superquadrics based geometry
models of part and die geometry. The superquadrics based models have the

DKMS Final Report Knowledge Based Systems, Inc.

119

advantage that they are mathematically complete and provide a symbolic
(rather than point, line, curve sets) representation of part features.

The designer interface with Proteus allows the molding of a superquadric
primitive into a model of the part which the designer wishes to construct.
The CAD interface will allow the designer to "fit" a superquadric to an
existing part geometry representation from an existing CAD system. Once
the designer completes the representation of the geometry of the desired
part, the knowledge based component applies rules for costing and process
planning based on the features of that part. The cost estimation facility
provides manufacturing cost advice to the designer for sheet metal parts.
This cost advice includes consideration for the reuse of existing dies (with
modifications) as well as the cost of the required new dies. The process
planning advice identifies what dies are required to fabricate the part as
well as what types of press equipment can be used to apply those dies.

Integration Platforms--Space Station Software Support
Environment (NASA)

Knowledge Based Systems, Inc. is involved in an integration platform
project with NASA Johnson Space Center. The Advanced Software
Development Workstation (ASDW) Project is conducting research into
development of advanced technologies for Computer Aided Software
Engineering (CASE). The ASDW has as a primary goal the provision of
concepts and technology for future NASA systems including the Space
Station Software Support Environment (SSE), Space Shuttle support
systems, and other NASA initiatives. This goal provides an avenue where
future requirements for software support environments can be defined and
demonstrated. Under this project, we are creating an integrated
environment for the development of computer software systems. Like the
DKMS, this environment will provide complete control over the
development and use of the software systems life cycle data artifacts.

Control of the software development process is an important aspect of any
software development system. For a development environment to provide
intelligent coordination and control throughout the software development
process, the environment must have some means of understanding the
intended development process and knowledge of past experiences with
similar processes. The Ada APSE concepts, as reflected in the current
Space Station Software Support Environment, attempts to accomplish this
by defining a “project instance” as part of the setup of an SSE environment.
However, this “project instance” falls short of describing the methodology

DKMS Final Report Knowledge Based Systems, Inc.

120

used in the development process and provides no means for the
accumulation of experience within the organization.

KBSI’s system will make use of a Framework programmable platform.
Within this environment the actual development process can be modeled by
the project manager to include the unique characteristics of each project
within the context of the development experience at a site. This
Framework (organization experience base and project specific
characteristics) will then be installed within the ASDW at that site to define
(1) the method, tool, and computer resources, (2) the personnel roles
within the project, (3) the tasks that must be performed to complete the
project, and (4) the configuration control method to be applied to the
products of those tasks. Once the instantiation is performed, the
environment will have complete control over the development process and
the life cycle artifacts produced by that process. We intend to demonstrate
that such an environment can support extremely sophisticated Ada
development tools.

The ASDW component proposed, (referred to as the Framework
Programmable Software Development Platform in this report), will
provide a programmable platform of CASE tools for the development of
complex software systems, with an emphasis on Ada software development.
Through the use of an IDEF3 description (the proposed form of the
framework definition) of the process that development should follow, the
platform will be configured to make use of the tools and resources
necessary for that project. This system development process definition is
referred to as a framework. It includes not only the life cycle phases,
tasks, milestones, and documentation artifacts, but also:

a) Descriptions of the procedures for analysis, decision making, and
configuration control,

b) Callouts for the application of specific methods (methodologies),

¢) Definition of common information/data across the different
methods,

d) Descriptions of how the results of using the methods will be
applied,

e) Role definitions and personnel assignments to roles.

DKMS Final Report Knowledge Based Systems, Inc.

121

It is envisioned that each site will have its own Framework definition,
though software job shops may have several since a framework definition
is sensitive to the system software type involved. This framework concept
will allow the flexibility required to properly define the development
process for a specific project instance, but also provide carry over of the
experience base from project to project within an organization. The
installed framework will provide the necessary control over the project
system development to ensure development success as well as consistency
between projects required to allow multiple project coordination,
management consistency, and personnel portability.

In addition to the programmable framework, a major element of this effort
will be a suite of integrated CASE tools to provide the necessary
capabilities for developing Ada based software systems. Particular
emphasis will be given to Ada specific (upper)CASE tools that provide Ada
code generation from IDEF requirements and object based system design
models.

Engineer's Modelling Assistant Experience

One of the primary components in any design support or automated
"designer” system is the engineering analytic model (s). One of the goals
of a generalized architecture for building expert systems to support the
engineering life cycle would be to also support the development /
refinement of the models of the physical systems or processes used in that
design process. Knowledge Based Systems Engineer’s Modelling Assistant
was developed to aid in the development of analytical models for expert
systems. Based on both bond graph modeling and constraint management
methodologies for engineering performance modelling, it represents one of
the most sophisticated support environment for such modelling. Its
features include graphic, on screen model generation, a relationship
interface which ensures consistency and completeness, and direct access to a
programming language. The tool was used to generate a simulation of the
cool-down of a car's interior as well as the phenomenological models of all
of the components in the associated heating and air conditioning systems
for Chrysler passenger vehicles.

Knowledge Based Design Automation Expeiience
Our recognition of the opportunity to develop a generalized architecture
for design knowledge management and concurrent engineering support is

based primarily on our experience building "knowledge based systems for
mechanical design” which are in use at Chrysler Motors for the design of

DKMS Final Report Knowledge Based Systems, Inc.

122

engine box cooling systems, structural fasteners, air conditioning systems
and cost estimation systems.

This system, developed in cooperation
with Cooling Systems Engineering at Chrysler, generates design
specifications for engine box cooling systems. The system models the
design process reasoning of an expert cooling systems designer as he
generating initial design specifications. The mputs to the system compnse
a description of the vehicle from the perspective of the cooling system, i. e.
the vehicle subsystem parameters that constrain the performance
requirements on the cooling system, a specification of test conditions (e.g.
car speed, ambient temperature), and certain technical or administratively
directed constraints on the system. In the process of producing acceptable
design specifications, the system iteratively proposes specifications, tests
these using an analytical performance prediction program, evaluates the
test outputs, and revises the design specifications. The analytical program
models thermal and mass airflow characteristics of the cooling system in
the context of related vehicle subsystems (e.g. transmission, air
conditioning system, engine) and has been in use in the cooling systems
laboratory for some time. The Cooling System Design Assistant does not
search exhaustively, but uses heuristics gleaned from the expert designer in
making the redesign step. Concepts derived from this system that we expect
to be incorporated in the DKMS Designer Shell include:

1) The use of existing engineering analysis models as evaluators on a
design. An important issue in the use oi suci models invoives how
the using system will understand the functions, and particularly the
limitations and underlying assumptions, of the analysis program.

2) The use of curve based reasoning as part of the reasoning model.
Engineers frequently think in terms of curves (or sometimes
surfaces) when relating design parameters to performance
expectations.

3) The use of truth maintenance techniques. Mechanical design
engineers typically think in terms of alternative design proposals,
that is, they will freely make and retract assumptions as the design
process proceeds. Truth maintenance techniques are useful in
managing the complexity implied in this situation.

4) Highly flexible user presentation. Designers do not take one

prescribed path to a solution, but may change viewpoints readily.
To support this process, an automated design support system must

DKMS Final Report Knowledge Based Systems, Inc.

123

allow the user to choose to look at various aspects of the problem
almost at will, and in varying levels of detail.

Fastener Selection, This system is being developed in cooperation with the
Fastener group in Chrysler Engineering. The purpose of the system is to
assist structures and body engineers in the selection / design of an
appropriate joining approach (as well as selection of fasteners to be used in
a joining approach) given the geometry, materials, and function of the
mated parts. The fastener design system also takes into consideration
product life cycle considerations including:

1) Manufacturing considerations.

2) Assembly considerations.

3) Maintenance considerations.

4) Corrosion, vibration, tolerance, and safety considerations.

The users of this design system have the option of describing their joint by
application area / function, by mechanical properties (tensile joint), by
creation of the geometry of the joint using a solids modeling system, or by
a combination of the above. If the designer can include the application area
characterization, then the fastener advisor can propagate many of the
product life cycle considerations from its knowledge base. Otherwise,
these considerations will be prompted from the user. The initial prototype
of the fastener advisor was constructed on a Symbolics Lisp machine. It is
currently being revised and expanded to operate on a Compaq 386 class
microcomputer. This enhanced version will include the capability to
interface through IGES files with traditional CAD environments including
3-d CSG and form feature modelers.

Climate Control Design Assistant. The Climate Control Design Assistant is

being developed as an aid to generating design specifications for
automobile interior air conditioning systems. The system can be used in
one of several modes:

1) To generate a design for a new vehicle.

2) To evaluate design changes proposed by a vendor.

3) To evaluate effects of design changes to other subsystems (e.g. an
engine change) on the air conditioning system.

DKMS Final Report Knowledge Based Systems, Inc.

124

The system incorporates two engineering analysis programs one which
models the performance of the air conditioning system componen.s and one
which models the interior comfort conditions of the veh'cle over time
under a test sequence involving varying speeds and initial hea. conditions.
Performance goals, in contrast to the cooling system case. ar2 frequently
specified in relative terms, e.g. "an average interior temperatu.e over a 60-
minute test cycle that is 6 degrees less than the 1986 K body car.”

Concepts derived from this system that we expect to be incorporated in the
DKMS Designer Shell include those listed in the Cooling System section
plus the following:

1) "Special study” design, analysis, and presentation. The fact that a
design satisfies requirements and constraints may not be enough to
gain acceptance for the design in an organization; rather the design
engineer will be expected to demonstrate the design rationale, show
why the design is better than other satisfying designs, and answer
"why not" questions about alternatives. This implies the ability to
maintain the design rationale, to do comparative analysis on test
results, to do sensitivity analysis on designs, and to produce a
suitable presentation of the results.

2) Use at varying levels of detail of engineering models used for
performance analysis. A design support system should
accommodate system speciications at varying levels of detail, e.g. a
component may in one case be modeled as simply an output, in
another as a set of parameters manipulated by a routine simulating

performance.
Cooperating Knowledge Based Systems. The goals of this project with

Chrysler Engineering are twofold:

1) To integrate design systems in various laboratories where there are
dependencies between the subsystems being designed, and

2) To develop utilities for constructing future design systems in
Engineering where common elements of such design systems can be
identified.

The Cooling System and Climate Control System designers serve as the

focus of this development. The two systems form a particularly useful
testbed because the engine box cooling system and the air conditioning

DKMS Final Report Knowledge Based Systems, Inc.

125

system in a vehicle have tightly coupled dependencies and because the two
design problems present considerable similarities in terms of design
method, use of engineering analysis programs, and design presentation as
numeric or symbolic parameters (neither employs a geometric model).

Concepts derived from this work that will apply to the DKMS concept
include the following:

1) User interface / composite part representation construction utilities.

2) Knowledge base structures for supporting reasoning based on the
identification of situation types in the design process.

3) Utilities for defining control structures to manage the interplay of
numeric components, heuristic components, display and
communication components.

n nclusi

The goal of Phase I of this project was the definition of the structure and
key algorithms for a design knowledge management system (DKMS) that
will support:

1) High productivity CAD system that will reduce the time for
concept entry, particularly the entry of form feature geometry data
and the generation of design tradeoff model input data derived
from that product geometry data. The principal elements of this
system include:

a) Form Feature based user interface,

b) Geometry concepting support based upon a multi-geometric
model constructive solid geometry engine (GCSG).

2) Shape and Feature based concurrent engineering knowledge
representation and associative retrieval mechanisms. This facility
will enable delivery of qualitative assessments of design options by
providing the ability to associatively index historical knowledge
structured around form feature interpretations of the evolving
product geometry.

DKMS Final Report Knowledge Based Systems, Inc.

126

3) Container object knowledge representation mechanism for the
representation/encapsulation of design knowledge for automated
application as well as reuse.

4) Multi-schema DKMS platform (framework) architecture to
support:

a) Information integration of "design decision support tools" with
traditional engineering, manufacturing, and field support
databases,

b) Management and retrieval support for concurrent engineering
knowledge stored in heterogeneous representation forms,

¢) Configuration, versioning, and perspective definition and
control.

5) Complete development shell for "designer” systems which
automatically makes the desired design tradeoff decisions.

Phase I resulted in the definition of a new model of the design process
based around both life-cycle activities and cognitive primitives. Phase I also
produced the base requirements for, and a conceptualization of, a services-
based integration architecture for the DKMS platform, the container object
system, the form / feature CAD interface, the GCSG, the knowledge-based
designer development shell, and the shape/form geometry reasoning system
(SGRS). Geometric modeling algorithms were developed for the GCSG
and the SGRS. Finally a Phase II plan and proposal was developed.

In Phase II of this project, KBSI will:

1) Complete the detailed design for the DKMS and all of its
subsystems.

2) Build and unit test the components of the DKMS.

3) Establish at least three beta test sites where each subsystem will be
implemented and used.

4) Integrate the subsystems into a complete DKMS environment.

5) Develop a marketing plan and sponsor group for the Phase Il
commercialization of DKMS

DKMS Final Report Knowledge Based Systems, Inc.

127

The key technology issues to be addressed in Phase Il include:
1) Efficient implementation algorithms for the GCSG and SGRS.

2) Implementation languages, integration service processors and
version management elements of the DKMS platform for the multi-
representation knowledge base integration.

Potential pitfalls and barriers that must be managed during the Phase II
development include:

1) Maintaining compatibility with the evolving standards.

2) Maintaining in depth knowledge of government and private
initiatives in integration schemes and mechanisms.

The proposed DKMS would be usable as a base concurrent engineering
platform for almost any engineering automation effort in the Government,
Defense Contractor, and Commercial industrial sectors. It would provide a
quantum improvement over any available design automation concept
available today. It could also serve as a means to promote better
university/industry/government ties in that it would provide a direct
vehicle for moving design, manufacturing, and field experience into the
academic classroom. It is anticipated that initial installations would be in
(1) very aggressive small business communities which must leverage scarce
resources, (2) DoD installations where management of knowledge bases
over long life-cycle weapon systems is a critical issue, (3) NASA Space
Station and deep space missions where knowledge bases will span multi-
careers, and (4) commercial industries where reduction in product
development time is critical to the maintenance of a competitive position.
The results of this project will be focused primarily on mechanical device
design support. By having industrial, university, and government beta test
sites as a part of Phase II and because of the modular nature of the
approach we have taken, there is an opportunity for commercialization of
the DKMS a piece at a time. This modularity, combined with the feedback
from the beta test sites, also will allow KBSI to be able to fund selected
pieces of this commercialization itself.

The technology resulting from this project will provide support for design
engineers to better integrate the trade-off of various design attributes such
as performance, cost, schedule manufacturability, and supportability. It
will also result in significant reduction in the engineering cycle time and

DKMS Final Report Knowledge Based Systems, Inc.

128

manpower requirements for both initial product design and sustaining
engineering of a product. The resulting system will truly provide a
framework for concurrent engineering initiatives beyond those to be
demonstrated in this Phase II effort. By supporting the knowledge based
delivery of manufacturing and maintenance experience to the initial
product designers, an order of magnitude reduction in redesign and
engineering change requests will be realized. Finally, because of the
integration support and high productivity CAD support offered by the
DKMS, it will find use in many areas other than just product design. For
example, in manufacturing planning and production planning, access to the
design rationale and design knowledge bases will allow automation of a
number of these “manufacturing engineering” activities as well as
significantly reducing quality and reliability problems in the final product.

DKMS Final Report Knowledge Based Systems, Inc.

129

5. Bibli I

[Allen 1983] Allen, J.A., Maintaining Knowledge about Temporal
Intervals, Communications of the ACM, November 1983, Volume
26, No 11, pp. 832 - 843.

[Allen 1987] Allen, R.H., Boamet, M.G., Culbert, C.J., and Savely, R.T,,
"Using hybrid expert system approaches for engineering
applications," Computers 2 (1987) pp. 95 - 110.

[Archer 1984] Archer, L.B., "Systematic method for designers,"” in: N. Cross
(Ed.) Developments in Design Methodology, (John Wiley & Sons, Ltd.,
1984) pp. 57-82.

[Armstrong 1982] Armstrong, G. T., 1982. A study of automatic
generation of nonevasive NC machine paths from geometric models.
Ph.D Dissertation, University of Leeds.

[Armstrong 1984] Armstrong, G. T., Carey, G. C. and de Pennington, A.,
1984. “Numerical code generation from a geometric modeling
system.” In Pickett, M. S. and Boyse, J.W. (Eds), Solid Modeling by
Computers. Plenum Press, New York.

[Barr 1981] Barr, Alan H., “Superquadrics and Angle-Preserving
Transformations”, IEEE Computer Graphics and Applications,
1(January 1981) , pp.11-23.

[Barr 1984) Barr, Alan H., “Global and Local Deformations of Solid
Primitives”, Computer Graphics, Volume 18, No. 3, July 1984.
[Bsharah 1986] Bsharah, "AS-IS Engineering Support IDEFO Model
(ESO)", NA-86-1604-L, North American Aircraft Operations, Los

Angeles, CA, September 1986.

[De Floriani 1989] De Floriani, L., "Feature Extraction From Boundary
Models of Three Dimensional Objects," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 11, No. 8, August
1989.

[DeKleer 1983] DeKleer, J., Brown, J. S., "The Origin, Form, and Logic
of Qualitative Physical Laws,” In: Proceedings of the Eight
International Joint Conference on Artificial Intelligence, William
Kaufman, Los Altos, CA, 1983.

[Descotte 1985] Descotte, Y. and Latombe, J. C., 1985. "Making
compromises among antagonist constraints in a planner,” Artificial
Intelligence, Volume 27, No. 2, pp. 183-217.

[Dixon 1986] Dixon, J.R., "Artificial Intelligence and Design: A
Mechanical Engineering View," Proceedings AAAI-86, 2(1986) pp.
872-877.

[Dyer 1983] Dyer, M.G., [In-Depth Understanding. MIT Press,
Cambridge, MA, 1983.

DKMS Final Report Knowledge Based Systems, Inc.

130

[EIS 1989] "Specifications for Engineering Information Systems Volume I:
Organization and Concepts," F33615-87-C-1401, United States Air
Force, Air Force Systems Command, Wright Research &
Development Center, Wright-Patterson Air Force Base, OH 45433;
prepared by Honeywell Systems & Research Center, Minneapolis,
MN, Xerox Advanced Information Technology, Cambridge MA,
TRW, Redondo Beach, CA, October 1989.

[Faux 1979] Faux, 1. D. and Pratt, M. J., Computational Geometry for
Design and Manufacture, Wiley, New York, 1979, p.230.

[Forbus 1984] Forbus, K.D., “Qualitative Process Theory,” AI-TR-789,
MIT., July 1984.

[Franklin 1981] Franklin, W. R., and Barr, A. H., "Faster Calculation of
Superquadric Shapes,"” IEEE Computer Graphics and Applications,
Volume 1, No. 3, 1981.

[Friedell 1984] Friedell, M., "Automatic Synthesis of Graphical Object
Descriptions," Computer Graphics, Volume 18, No. 3, July 1984.
pp. 53-62.

[Friedman 1969a] Friedman, G.J., and Leondes, C.T., "Constraint Theory,
Part I: Fundamentals"”, IEEE Transactions on System Sciences and
Cybernetics, Vol. ssc-5, No.2, Apr., pp. 132-140.

[Friedman 1969b] Friedman, G.J., and Leondes, C.T., 1969, "Constraint
Theory, Part II: Models Graphs and Regular Relations”, /EEE
Transactions on System Sciences and Cybernetics, Vol. ssc-5, no.1,
Jan., pg. 48-56.

[Friel 1988] Friel, P. Griffith, “Modeling Design Reasoning in Automotive
Engineering,” PhD Dissertation, 1988, Texas A&M University.
[Goel 1989] Goel, V., Pirolli, P., “Motivating the Notion of Generic
Design with Information Processing Theory: The Design Problem

Space,” Al Magazine, Vol 10, No. 1, Spring 1989.

[Grayer 1977] Grayer, A. R.,, 1977. “The automatic production of
machined components starting from a stored geometric description,”
In, McPherson, D. (Ed), Advances in Computer-Aided Manufacture.
North-Holland, Amsterdam. :

[Gunning 1989] Gunning, D., "A general Framework for Describing
Human-Computer Information Systems” Technical Report, AFHRL
Wright Patterson Air Force Base, OH 45433, 1989.

[Harmon 1986] Harmon, G., Change in View. The MIT Press, Cambridge,
MA,, 1986.

[Henderson 1984] Henderson, M., R., "Extraction of Feature Information
from Three Dimensional CAD Data,” Ph.D dissertation, Purdue
University, 1984,

[Henderson 1985] Henderson, M. R., 1985. Extraction and organization of
form features, In Proceedings of Prolamat 1985, pp.131 141.

DKMS Final Report Knowledge Based Systems, Inc.

131

[Hobbs 1986] Hobbs, J., "On the Coherence and Structure of Discourse,”
in: The Structure of Discourse. L.Polanyi, (Ed), Ablex Publishing
Corporation, Nc-wood, NJ, 1986.

(IISyCL 1989] IISyCL Constraint Language, submitted to AFWAL/LDL ,
WPAFB, for approval, December 1989.

[Jared 1985] Jared, G.E.M., Shape Features in Geometric Modeling, in
Pickett, M. S. and Boyse, J. W., (Eds), Solid Modeling by
Computers, Plenum Press, New York, 1985.

[KBSI 1989] Lockledge, J.C., Engineering Modelling Assistant, Final
Report, KBSI Internal Technical Report, KBSI-89-023, 1989.

[Keen 1989] Keen, A.A., Mayer, R.]., private communication, 1989.

[Kim 1989] Kim, W., Lochorsky, F.H., eds., Object-Oriented Concepts,
Databases, and Applications. ACM Press, New York, 1989.

[Kuipers 1984] Kuipers, B., “Common Sense Reasoning about Causality:
Deriving Behavior from Structure,” Artificial Intelligence Vol. 24,
1984.

[Krause 1989] Krause, F.L., Beinert, M., Fortmann, K., et al., "System
Architecture for CAD/CAM Integration,” Final Report, Engineering
Office of Scientific Affairs, Chrysler Motors Corporation, Highland
Park, MI, 1989.

[Kypriano 1980] Kypriano, L. K., Shape Classification in Computer Aided
Design, Ph.D. Dissertation, University of Cambridge, United
Kingdom, 1980.

[Laughton 1985] Laughton, S., “Explanation of Mechanical Systems
Through Qualitative Simulation,” AITR85-19, AI Laboratory,
University of Texas at Austin TX, December, 1985.

[Mantyla 1988] Mantyla, Martti, An Introduction to Solid Modeling.
Computer Science Press, Rockville, MD, 1988.

[Mayer 1987} Mayer R. and Underbrink A., "Autonomous Underwater
Vehicle Knowledge Based Control System Design,” AUV Phase I
Final Technical Report, SEA Grant Project #R/C, Grant Number
NZ85AA-D-SG128, July 1987.

[Pentland 1986a] Pentland, Alex, “Recognition by parts”, Technical Note
No. 406, SRI International (December 16, 1986).

[Pentland 1986b] Pentland, Alex, “Perceptual Organization and the
Representation of Nature Form,” Artificial Intelligence 28, 1986,
pp- 293-331.

[Ramey 1983] Ramey, T. L., “Guidebook to Systems Development,”
Internal Research Report, Hughes AirCraft Co., El Segundo, CA
1983.

DKMS Final Report Knowledge Based Systems, Inc.

132

[Requicha 1988] Requicha, A. A. G., and Vandenbrande, J., "Automated
systems for process planning and part programming,” Artificial
Intelligence Implications for CIM, Ed. Andrew Kusiak,
IFS/Springer-Verlag, 1988, p. 299-326.

[Serrano 1988] Serrano, D., 1988. Constraint management in conceptual
design. Ph.D. Dissertation, MIT.

[Simon 1967] Simon and Shuster, “The Way Things Work: An Illustrated
Encyclopedia of Technology” New York, 1967.

[Su 1989] Su, Chuan-Jun, 1989, An Enclosing Object Based Automatic NC
Code Generation System. Ph.D Dissertation, Texas A&M
University.

[Tilove 1980] Tilove, R. B., “Set Membership Classification : A Unified
Approach to Geometric Intersection Problems”, IEEE Trans.
Computers, Volume C-29, No. 10, Oct. 1980, pp. 874-883.

[Ting-jung 1989] Ting-Jung Fan, Gerard Medioni, and Ramakant Nevatia
"Recognizing 3-D Objects Using Surface Descriptions," IEEE
Transactions on Pattern Analysis and Machine Intelligence,
November 1989, Vol. 11, No. 11.

[Voelcker 1978] Voelcker, H., et al.,, “The PADL-1.0/2 System for
Defining and Displaying Solid Objects”, Computer Graphics,
Volume 12, No. 3, August 1978, pp. 257-263.

[Webster 1987} Webster, D. E., "Mapping the Design Representation
Terrain: A Survey," MCC Technical Report Number STP-093-87,
MCC Austin TX, July 1987.

[Wilensky 1983] Wilensky, R., Planning and Understanding: A
Computational Approach to Human Reading. Addison-Wesley
Publishing Company, Redding, MA, 1983.

[Wilson 1987] Wilson, M.L., Information Automat: Concept Definition
Facility. IA Systems, Inc., San Jose, CA, 1987.

[Woo 1982] Woo, T., C., "Feature Extraction by Volume Decomposition,”
in Proc. Conf. CAD/CAM Technol. Mechanical Eng., M.I.T., 1982.

DKMS Final Report Knowledge Based Systems, Inc.

