
]TIC FILE COP';

400

QQ

Subec SOFTWARE ROCSSIN ENGINERIN

Final Report

E-- I

i *

CIN:CO4-087OO-0001-00

JULY 1990

6 6

CLEARANCE OF INFORMATION FOR PUBLIC RELEASE

SUBMIT FORM IN TRIPLICATE

TO: Commanding General FROM: Director DATE: 2 Nov 90
U.S. Arm% CECOM CECOM Center for Softwarc Engineering
ATTN: AMSEL-lO ATTN: AMSEL-RD-SE-AST-SS
Fort Monmouth, NJ 07703 Fort Monmouth, NJ 07703-5000

In compliance with AR 360-5, Public Information Policies, as supplemented, the attached manuscript/abstract is sub-
mitted for clearance for public release. (Material should be in triplicate if local clearance is requested, in 6 copies if
clearance through Headquarters, AMC, is required. See paragraphs (A) through (J) below).

Section 1. DESCRIPTION

TITLE
PAPER: Software Reuse Methods
ABSTRACT

AUTHOR(S): Steve Goldstein NAME OF PERIODICAL
(If for publication): include country if outside CONUS
For submission to NTIS and/or DTIC

EXT NO: 22606

NAME OF CONFERENCE OR SYMPOSIUM (If for presentation):

DATE AND PLACE OF CONFERENCE:

DATE CLEARANCE REQUIRED: 2 Dec 90 PAPER - DOES
_X DOES NOT CONTAIN
CLASSIFIED INFORMATION

MATERIAL DOES _X DOES NOT CONTAIN ANY OF THE FOLLOW-
ING MATTER REQUIRING AMC CLEARANCE.
IF SO, INDICATE AND EXTLAIN ON SEPA-
RATE SHEET:

(A) Information which is, or has the potential to become an item of national or international interest.

(B) Information on subject of potential controversy among the military services or with oth,r federal agen-
cies.

(C) Information on new weapons or weapon systems or significant modifications or improvements to exist-
ing weapon systems, equipment or techniques. Unofficial prior publication of such information does not
constitute authorit, for official release.

(D) Information on significant military operations, potential operations, operation security, and military ex-
ercises.

SEL FORM 1012, 1 Oct 1985
(Supersedes SEL Form 1011 and SEL Form 1012, 1 Jan 79)

(E) Irjormation on military applications in space; nuclear weapons and the components of such weapons,
in(uding nuclear weapxons effects research; chemical warfare and defensive biological and toxic re-
search; high energy lasers and particle beams technology; and nuclear biological, chemcal (NBC) de-
fense testing and production, policy programs and activities.

(F) Information and materials involving critical military technology.

". "G) Information concerning communications security, electronic warfare, signal intelligence, and comput-
er security.

(H) Subject matter involving or referring to other service interests or those of other government activities
outside AMC.

(I) Information on tcst, , studies or experiments not yet officially approved by appropriate echelon con-
cerned. For example, studies or tests directed by DA, AMC, or other agencies outside CECOM.

Q) Subject matter w\hich by its nature implies official positions or scientific attitudes of higher headquar-
ters or agencies outside CRCOM.

Section II. DISTRIBUTION CONTROL

If document contains technical data information, a Distribution Statement must be applied. Indicate the appropri-
ate statement in this section.

Approved for public release; distribution is unlimited.

Section III. VERIFICATION

The attached manuscript does not contain classified information. Additionally, understanding the hostile intelli-
gence in open source publications, the undersigned have individually conducted an OPSEC review, find its release
clearly consistent with the AMC OPSEC Program, and verify that it DOES X DOES NOT contain anv,
of the matter itemized in paragraphs (A) though (J).

vi SEC Officer D'vision Chf '

Xlvped na e a d title) Signature/Date (Typed name an6 title) Signature/Date
JOSEPH ARETLNO EDWARD J. GALLAGHER JR. GM-14
AMSEL-RD-SE-CRM-SE-O C, Software Eng Tech Branch, SPET Div, CECOM, CSE

/,,"A~c~fty Security Manager Asociate Di"ctor

N d n fne and title) Signature/Date (Typed name and title) Signature/Date
-,,)SEH ARETINO oMARTIN I. WOLFE GM-15

AMSFL-PED E C,'M- E-O b C, Software Processing Eng Tech Div, CECOM , CSE

SEL FORM 1012, 1 Oct 1985
(Supersedes SEL Form IMlI and SEL Form 1012, 1 Jan 79)

SOFTWARE REUSE METHODS

Final Report

PREPARED FOR: U S ARMY CECOM
CENTER FOR SOFTWARE ENGINEERING
AMSEL-RD-SE-AST

FORT MONMOUTH, NJ 07703

PREPARED BY: IT' RESEARCH INSTITUTE
4600 Forbes Boulevard
Lanham, Md 20706

JULY 1990 ,.

The views, opinions, and findings contained in this report are those of the authnr(s) ard should not bc coaniruw as
an official Department ot Defei.s posiiua, polio.y, or OeCision, unless so aesignated by other official documentation.

TABLE OF CONTENTS

Page

1.0 INTRODUCTION ... 1
1.1 DEFINITION OF REUSABILITY 1
1.2 SCOPE OF THIS REPORT ... 2

2.0 REUSABILITY CHARACTERISTICS ... 3
2.1 DESIGN FACTORS .. 3
2.2 PACKAGE FACTORS .. 6
2.3 PRESENTATION FACTORS .. 6

3.0 DOMAIN ANALYSIS .. 9
3.1 THE NEIGHBORS APPROACH TO DOMAIN ANALYSIS 10
3.2 THE PRIETO-DIAZ APPROACH TO DOMAIN ANALYSIS 10
3.3 THE PROBLEM OF KNOWLEDGE ACQUISITION 11
3.4 DEFINING THE DOMAIN .. 12
2.5 DISCUSSIONS OF EXISTING EFFORTS 12

3.5.1 Reuse of Softwtre Elements (ROSE) 13
3.5.2 The Raytheon Experiment 13
3.5.3 The Common Ada Missile Package (CAMP) 13
3.5.4 The McCain Approach 14
3.5.5 The Prieto-Diaz Approach 14
3.5.6 Draco 15

3.6 SUMMARY AND CONCLUSIONS 16

4.0 DOMAIN-INDEPENDENT APPROACHES 19
4.1 COMPONENT LIBRARIES/REPOSITORIES 19

4.1.1 Desirable Characteristics of Software Component Libraries/Repositories 19
4.1.2 Existing Software Component Libraries/Repositories 20

4.1.2.1 The Ada Software Repository (ASR) 21
4.1.2.2 Computer Software Management Information Center (COSMIC) . . 2_
4.1.2.3 Common Ada Missile Packages (CAMP) 23
4.1.2.4 AdaN T .. 24
4.1.2.5 The Booch Taxonomy 25
4.1.2.6 Other Library Systems 26

4.1.3 Library Set U p .. .2
4.1.3.1 Searcb . .. 28
4.1-3.2 Retrieval ... 29
4.1.3-3 Configuration Management 29
4.1.3.4 Administration 30

4.1.4 Summary and Recommencations 31
4.2 COMMERCIAL COMPONENTS 33
4.3 A DESIGN METHODOLOGY FOR PRODUCING REUSABLE COMPONENTS

(OBJECT-ORIENTED DEVELOPMENT) 35
4.3.1 Obiect-Oriented Requirements Analysis 35
4.3.2 Obiect-Oriented Design 37
4 23.3 Ohiect-Ori,,,pd Coding. 38
4.3,4 Risks of Obiect-Oriented Development 41

5.0 DOMAIN-SPECIFIC APPROACHES .. 43
5.1 GENERIC ARCHTTECTURES 43

5.2 OTHER DOMAIN SPECIFIC METHODS 45
5.2.1 Constructors ... 45
5..2 Structurai Models 47

6.0 COST/BENEFIT ANALYSIS FOR SOFTWARE REUSE 49
6.1 ECONOMICS OF REUSE ... 49
6.2 SOFTWARE COST MODELS WITH A REUSE COMPONENT 50

6.2.1 Accounting for Reusable Components In a New Cost Estimate 56
6.2.1.1 COCOMO Reuse Model 59
6.2.1.2 SASET Method fo: Calculating Equivalent New HOL 60

6.2.2 Fstimatin? the Developmenm of Reusable Code 61
6.2.2_1 PRICE S . .. 61
6.2.2.2 ADA COCOMO 62
6.2.2.3 SOFTCOST-ADA 62

6.2.3 Deficiencies In Software Cost Models 63
6.3 ESTIMATING THE COST/BENEFITS OF REUSE 63

6.7.1 Factor Adjustments to Cost Models 64
6.3.2 Empirical Estimation .. 65

7.0 REUSE M ETRICS .. 67

8.0 SUMMARY AND CONCLUSIONS .. 71

BIBLIO G RAPH Y .. 75

APPENDIX A. EXAMPLES OF PACKAGE TYPES 81

APPENDIX B. MODEL VENDORS/POINTS OF CONTACT (POC) 95

APPENDIX C. HARDWARE REQUIREMENTS 99

APPENDIX D. CONTRACTUAL ARRANGEMENTS AND COSTS 101

APPENDIX E. SCOPE OF COVERAGE: LIFE-CYCLE PHASES AND ACTIVITIES 105

APPENDIX F. GENERIC UNTq'S & TEMPLATE GENERATORS 109

TABLE 1. RELATION OF SOFTWARE ENGINEERING VARIABLES TO
REUSABILITY ... 8

TABLE 2. ADA EQUIVALENTS TO OBJECT-ORIENTED ENTITIES 40
TABLE 3. PACKAGE TYPES ... 41
TABLE 4. TEST CASE STUDY RESULTS [IITRI 1989: PERSONNEL EFIFORT 52
TABLE 5. OVERVIEW OF DATA USED TO DEVELOP!CALIBRATE COST MODE.zS 54
TABLE 6. TEST CASE STUDY RESULTS FOR NOMINAL RUNS [IITRI 1989]:

PERSONNEL EFFORT ... 55
TABLE 7. TEST CASE STUDY RESULTS [IlTRI 1989: SCHEDULE DURATION 57
TABLE 8. TEST CASE STJDY NOMINAL RUN RESULTS [IITRI 1989]: SCHEDULE

DURATION ... 58
TABLE 9. ADA COCOMCD DEGREE OF REUSE PARAMETER 62
TABLE 10. SOFTCOST-ADA REUSE COST RATINGS 63
TABLE 11. A:,',ICL 'ATED ADDITIONAL COSTS 65
TABLE 12. AREAS OF POTENT1IAL COST SAVINGS 65
TABLE 13. SELECTION OF REUSE STRATEGIES 72

ii

TABLE B-i. MODEL VENDORSMOINTS OF CONTACT (POC) 96
TABLE B-2. ADA COCOMO IMPLEMENTATIONS POINTS OF CONTACT (POC) 97
TABLE C-1. HARDWARE REQUIREMENTS 99
TABLE D-i. CONTRACTUAL ARRANGEMENTS 102
TABLE D-2. LEASE/PURCHASE RATES (DoD) 102
TABLE E-1. OPERATIONAL SUPPORT ACTIVITIES 105
TABLE E-2- SCOPE OF COVERAGE: LIFE-CYCLE PHASES 106
TABLE E-3. SOFTWARE COST ELEMENTS ENCOMPASSED BY MODEL ESTIMATES .. 107

FIGURE 1. THE CONSTRUCTOR AND RELATED PARTS 46

Iii

iv

1.0 INTRODUCTION

Given the increasing number of computerized, software r-iven systems being designed and

implemented throughout the Department of Defense (DoD) and industry, reusability of software has

become a critical endeavor. To better prepare software engineers and computer programmers to address

the challenge of software reuse, the U.S. Army Communications and Electronics Command (CECOM) has

undertaken a program to investigate different software reuse methods. This effort will provide guidelines

on reuse strategies for software developers.

1.1 DEFTNTIION OF REUSABILITY

It is first necessary to clarify the concept of reusability. Specifically, it is necessary to distinguish

reusability from portability. For the purposes of this report, we will consider reusability to be the extent

to which the services provided by a software unit can be used by other software units. We will define

portability as the ease with which a software unit can be transferred to other hardware or operating systems.

From this point of view, reusabilitv differs from portability in the following respect: reusability involves

using a unit in another software environment, whereas portability involves using a unit in another hardware

or operating system environment.

The portability of a system depends on how it is designed and implemented, for instance, whether

all system dependencies are localized in one place. It is the nature of low-level routines to interface

directly to the hardware and/or operating system. This has the tendency to make these routines very

hardware specific, and hence non-portable. Conversely, it is not uncommon to encounter a ve- portable

routine that is built around an application-specific database. Such an application would not be reusable.

This suggests that reusability and portability are independent of each other.

In Ada the unit of reuse is the library unit. This is because in Ada reusable software is

incorporated into an application through a context clause. A context clause designates the library unit that

is to be made visible to the compilation unit. We can speak of the potential for reuse of a program unit

nested inside a library unit or secondary unit, but in doing so we are considering that program unit as a

potential stand-alone library unit.

1.2 SCOPE OF ThIS REPORT

Reusabiliry is widelv believed to be a key to improving software development productivity and

quality. The reuse of software components amplifies the software developer's capabilities. It results in

fewer total symboLs in a system's development and in less time spent on organizing those symbols [Kaiser

1987]. The opportunity to reuse software is frequently proposed as one strategv fo: recucing the cost of

developing and enhancing the reliability of complex large-scale applications. However, softwart reuse

usually requires more intense intellectual effort in the initial development of a part and in many instances

a decrease in its performance efficiency. For embedded real-time Mission Critical Computer Resource

(MCCR) systerm., the traceoff between increased reliability and decreased performance may determine the

actiree of reusability possible [Gargaro 198].

The planned reuse of software has been practiced since the advantages for common litraries were

recognized in the early days of high-level programming languages. The libraries were usually restricted to

include only mathematical and statistical routines that implemented well-defined, numerical algorithms.

However, since then, software reuse technology has not progressed to the same level of sophistication as

its hardware counterpart. This results from the lack of discipline and formnaism i. the design and

implementation of reusable software. Often, reusability is relegated to an implementation activity that is

left to the discretion of the individual programmer [Gargaro 19881.

As part of the ongoing effort to promote the development of reusable software, following issues are

examined in this report:

Reusability Characteristics

Domain Analysis

Domain-Independent Approaches

Domain-Specific Approaches

Cost/Benefit Analysis for Software Reuse

Reuse Metric.

2

2.0 REUSABILITY CHARACTERISTICS

Reusabiliry is not a binary function. A procedure may be fully reusable, that is, it can be used as

is in a different application from which it was written. Or a procedure may require modifications to be

reused. Thus, the qt stion is not whether a particular software component is reusable, but the degree to

which thc software unit is reusable. We can attempt to quantify this by defining the constructs that

promote reusability.

In evaluating reusability, we can distinguish three categc -ies of reusabilitv factors:

* design factors

* packait,': factors

• pres,;nta,on factors.

Desian factors are sziuctural components that are relevant to reuse. Package factors are reuse design

elements that are unique to A!': packages. Presentation factors are those factors that affect ones abiliry

to reuse a software unit.

2.1 DESIGN FACTORS

Software reuse is affected b. several design factors. The following design factors are discussed:

level of abstraction

genericness

size

reusability of components

cohesiveness

coupling

degree of information hiding.

Level of Abstraction. The level of abstraction represented by a library unit is inversely related to

its reusability. The higher the level of abstraction, the less likely it is that it will be reusable. This is

because a library unit at a higher level of abstraction is more sophisticated than one at a lower level. For

example, one common representation of a map is as a non-directed graph. But a non-directed graph is at

3

a luwer level of abstractior than a map, and therefore can be used in other contexts as well, whereas the

possibili-- of the use of a map are more limited. A road map would be a more complex and constrained

form of a map, t,." it is at a higher level of abstraction an,. is less reusabl , than a map

Most low-level program units, units found -t the lowest level of abstraction (e.g.. device drivers,

graphics primitives), are very reusable. Low-level program units tend to have a simple, gentral-purpose

interface, be small in size, and perform a single function. Tnese characteristics of low-level software can

be empirically applied to reuse. Mid-level program units (e.g., windowing functions, stiisticai sub-routines)
are likely to have a broader function, be lg-rer in size, and have a ge.;eral purpose interface. 7hey ty'pically

are cohesive units that are not couwled with other 'inits. Reusabilirv at this le.-1 L, hia. These units can

also be structured for easy transportability by constrainii: all of the intcrrupts to a lh,wer level. High-

level program units are usually a melange of iow-level, mid-level, and "o:ner stuff su: ::rting a specific

appication. They are usually large. marginally cohesive, functionally compicx, functionaljv specific, and

interdependent with cther routines and structures. Rarely are these program units fu2'% reusable. To what

dcgree these units are reusable depends largely on the reusability of .hei: component. For exmple. a

procedure that is built solely with reusable low-level and mid-leve' program units, must iLself be reusable.

This does not imply, however, that a reusable procedure has reusable components.

Genericness. Genericness (in the Ada sense) is directly related to the reusability of a library unit.

.as is a binary decisicn: either the unit is ceneric or it is not. A ceneric '.:nt can !%- :r._n:antiated for any

of a given set of types, objects, and operations. In effect, by being made generic a ii.-arv unit is put at a

lower level of abstraction. Thus, the sheer fact that a librar. unit is gencric increases the likelihood of i s

reusaoiiitv.

Size. The size of a software unit i, inversely related to its reusabilitv. The larger the software

unit. the less likely it is that it will be reusable. 7his is particularly true of systems in which space is

tightly constrained. In general it is preferable to have many small, reusable corr.oonents than few large

ones.

Reusability of components. The higher the percentage of code that consists of reus.ble modules,

the greater its reusability. Many times it is desirable to exiract sections of code from a previous sofw-'-e

development. if that prior effort was comprised of manv ,:usable software modules, it is likely that u,,e

could find the needed elements in a compietely autonomous form.

Cohesiveness. Cohesiveness is the measure of focus in a software unit. It is directly related to

reusabi,itv. A routine that performs a single function or operates on a single object is cohesive. Cohesive

4

modules tend to be easily extracted for reuse in other routines. The less cohesive a module, the more

likely it will do things that are not needed by the new host application. As a rule, it Ls much better from

a reuse point of view to have a large number of operations, e-)ch of which performs one atomic function,

than to have few operaiions, each of which performs more than one atomic function.

Coupling. Coupling is inversely related to reusability. When one removes a software component

from its host environment, one needs to extract all the units intertwined with that component. These units

may be lower level subcomponents, data str ,urc,, files, or complimentary routines (e.g., push and pop).

These inseparable relationships between a software component and other software units are defined as

coupling. Obviously, the more ties a software component has, the less liiely one could reuse that

component

In the case of library units, the number of library unit dependencies is inversely related to

reusability. At the present state of compiler sophistication, importing other library units into a program

only increases the size of the executable image. It is unnecessary and wasteful to add to the size of a

program if the extra baggage is unused. Moreover, this consideration is related to the size of a library unit:

the larger, the library unit, the more library unit dependencies it is likely to have.

Degree of Information Hiding. A library unit's degree of information hiding is directly proportional

to its reusabilitv. A library uni" specification should contain the minimum information to allow that library

unit tc be used. If it is encumbered with extra baggage, there is less incentive to use it.

A more serious situation concerns compilation dependencies. If compilation unit A "withs" library

unit B in A's specification, and if then the specification of B is recompiled, the specification of A must be

recompiled (along with its body and any subunits). If the specification of A is recompiled, any compilation

unit that *withs* A must be recompiled as well. However if A "withs" B in A's body, or if one of A's

subunits "withs' B, and if then the specification of B is recompiled, only the secondar, unit that 'withs" B

needs to be recompiled (along with any of its subunits). In other words, hiding of context clauses in libr -v

unit bodies or subunits limits the spread of recompilation overhead. This increases the user's incentive

to reuse the library unit.

5

2.2 PACKAGE FACTORS

The reuse variables that are germane on the package level are:

* sufficiency/completeness of operations

* presence of exceptions.

Sufficiency/Completeness of Operations. A package that does not provide at least a sufficient set

of operations for a given type is not as reusable as one that does, and one that provides a complete set is

even more reusable. Booch [1987A] defines a sufficient set of operations as being available when. "the

component captures enough characteristics of the abstraction to permit meaningful inierac:i.zn with the

ob)ject;" and he defines a complete set of operations as being availlNe when "the compc;:lent interface

captures all characteristics of the component'. The operation. in both sufficient ind complc:e sets of

operations should be primitive, that is, they should be operations "that can be efficiently implemented only

with access to the underlying representation of the object* [Booch 1987A1. Completeness not only refers

to program units, but to other constructs visible to the user. These include, type, constants, global

variables, and exceptions that are found in the librar' unit specification. For exampie, users of most

reusable components will need certain common constant values (such as a null value of a given --:ne) at

some time. The presence of constant declarations in the package interface indicates that such nee. have

been foreseen.

Presence of Exceptions. Similarly, the presence of exception declarations ir, the package interface

enhances its reusability. Exceptions are even more likely to be needed than constants. Most operations

can have exceptional conditions associated with them and so should raise exceptions a: 'he appropriate

occasions. Moreover, it is far more meaningful for a locally declared exceptior. to te raised than a

predefined exception. In fact, if an exception name is chosen with care, it can provide tne user of the

package a great deal of information.

2.3 PRESENTATION FACTORS

Presentation factors also affect reuse. The following are of particular interest:

• clarity of identifiers

* simplicity

* presence of documentation

6

S neatness

• desirability.

Clarity of Identifiers. The clarity of identifiers is directly related to reusabilit.. Ada sets no limit

other than the width of a line on the length of an identifier. Thus, the programmer has no excuse for

using cryptic identifiers. A great deal of thought should be put into identifier names (something that is all

too frequently neglected). Clear, terse, identificr names make it more obvious to the user of a software

unit what the unit is designed to do. If identifiers are cryptic, a programmer is more likely to avoid using

a software unit because he or she does not know what the unit can do.

Simplicity. Simplicity is also directly related to reusability. Learning the proper use of a program

unit results in a certain labor cost. The simpler the unit, the lower the labor cost. Also, there is a

frustration factor associated with the simplicity of a unit. Users have little patience for overh, complex

software and hence will not want to use such a unit.

Presence of Documentation. Similarly, the presence of documentation is directly related to

reusability. If a software module is well documented, then it is clearer how to use it. A potential user is

more likely to make use of a documented unit than one that is not documented.

Neatness. Neatness refers to the "look' of a program unit and thus is directly related to reusability.

Software should be easy to look at. In general, a programmer should make liberal use of spaces and blank

lines, indent logical blocks (e.g., loops, branches), and employ a consistent scheme for utilizing upper and

lower case. Furthermore, comments should be positioned around (not in) logical blocks of code. An

easy-to-read program unit, would definitely be reused more than a cumbersome looking unit.

Desirability. Desirability is directly related, and in fact crucial to reusabilitv. One could make the

argument that all software is reusable. It would be simple to write a higher level program that encapsulates

any routine, hence, that routine would be reused. But, from a reuse standpoint, we are only interested in

software that one would want to reuse. Desirability, therefore, is the degree to which a particular software

element is useful.

All of the factors discussed above and their relation to reuse are summarized in TABLE 1.

TABLE 1. RELATION OF SOFTWARE ENGINEERING VARIABLES TO REUSABILMTY

Software Engineering Directly Inversely
Variables Related Related

Design factors

Level of Abstraction X

Genericness X

Size X

Reusability of Components X

Cohesiveness X

Coupling X

Degree of Information Hiding X

Package Factors

Sufficiency/Completeness
of Operations X

Presence of Exceptions X

Presentation Factors

Clarity of Identifiers X

Simplicity X

Neatness X

Presence of Documentation X

Desirability X

3.0 DOMAIN ANALYSIS

This section addresses domain analysis, a potentially powerful process that facilitates high levels

of reuse. If an application is to operate within a specific domain, it can benefit from prior knowledge

about that domain. This is what domain analysis provides. The knowledge resulting from a domain

analysis may then be used to refine the environment in which the application is to be developed. In this

way, domain analysis may be usec as a fundamental step in creating real reusable components.

Domain analysis generalizes all systems in an application domain by means of a domain model,

or domain language, which transcends specific applications; this model identifies the commonalities and

law. of an individual domain in a manner that is conducive to the specifications, requirements analysis,

and actual design of a software system. In some cases the domain model may result in a library of closely

related software components.

The product of a domain analysis is not universally agreed upon. One school of thought [Prieto-

Diaz 1987] suggests that domain analysis produces a library of reusable modules that share a certain

commonality and predefined relationships based upon the domain in which they are to interact. Another

school of thought [Neighbors 1984] suggests that a domain-specific language containing predefined objects

and procedures that are abstractions of groups of objects and procedures from common "executable"

languages is produced by a domain analysis.

The software community has made only a few forays into the realm of domain analysis. These

efforts consist of several untested methodologies and handful of prototypes. The most e.%tensivelv tested

system, Draco by James Neighbors [Neighbors 1984], has a base of a dozen small and moderate domains.

The remainder of this section contains a dizcussion of the methodology of domain analysis in

general terms; an enumeration of the participants' roles and responsibilities for both views of domain

analysis; an overview of pertinent related efforts, experiences, and proposed methodologies; and finally, a

summary of the pros and cons of domain analysis.

9

3.1 THE NEIGHBORS APPROACH TO DOMAIN ANALYSIS

If a domain exists that can acceptably describe the objects and operations of a new system, the

systems anal7st has an environment that facilitates the development of the specificztions and requirements

of that system. This is the reuse of analysis and is potentially the most powerful form of reuse. This is

also the goal of domain analysis. Reuse of analysis is powerful because the other forms of reuse, reuse of

design (also known as reuse of information) and reuse of code, may be made, in some degree, to follow

from reuse of analysis.

The first step of domain analysis is to define the domain to be analyzed. This is an application-

dependent process. The next step is to gather information about the domain with which to identify the

common attributes of the domain that may be reused. This is done either by anah-zin 1. -roun of existing

applications within the domain or by oeveloping a group of applications within -ht (;cmain (a costly ard

time-consuming option). The objects, operations, and relationships that are consistent throughout the

domain are refined into a domain-specific language with which to reason about the domain. This language

is also known as the domain model.

The requirements and specifications of a new application will be done in a domain language. This

provides the basis for an abstract design which, throurh refinements, is made into a group of abs;:act

algorithms. These refinements are at least partially automated in most proposed and existing systems.

Development of an application using this methodologw¢ requires that a processor be created which

interacts with a programmer and produces executable code for the application. This processor must operate

on the domain model. Ideally, a generic processor might be developed which allows a domain model as

an input.

3.2 THE PRIETO-DIAZ APPROACH TO DOMAIN ANALYSIS

Not all supporters of domain analysis advocate the development of a domain model suitable for

automated software life-cycle support. Many support the development of libraries of coded components

based on the domain analysis. The basic theory behind the two schools of thought is the same. Both

gather information and common attributes on the domain. Both look for the obiects, operations, and

relationships that are contsistent throughout the domain. It is after the information has been gathered that

they differ.

10

Aspects of the domain are stored in a library that contains special information about the

relationships among the software components within the library. These .strong relationships allow for the

selection of some components based on previous selections.

The development of the library from the raw domain information takes place in a series of discrete

steps. First, each component (components may be requirements, designs, objects, data structures, or

algorithms) is generalized into an abstract form to fit the entire domain. The abstract components are then

arranged in groups. The relationships between the abstract components are generalized to fit the entire

domain. Finally, the relationships are formed as rules that guide the use of the components.

The encoding of domain knowledge into reusable structures accomplishes four upstream reuse

objectives: feature-based selection, constraint-based analysis, domain-driven completion, and domain-driven

refinement. Feature-based selection is the selection of objects and associated components based on

descriptions of their known features. Constraint-based analysis consists of analyzing the requirements and

specifications from the user based on domain-oriented dependencies and relationships. D, ain-driven

completion fills in the missing requirements and specifications to guarantee completeness. Relationship

constraints and operations can be used to pick appropriate refinements for more detailed specific.1tions and

designs. This is domain-driven refinement.

3.3 THE PROBLEM OF KNOWLED'E ACQUISITION

Most researchers in domain analvsis feel that the most difficult problem in the production and

subsequent use of a domain model is the extraction of the domain-specific knowledge that is to be

represented in the model. The formulation of the domain knowledge often requires a thorough

understanding of one or more application domains, the objects of the domain, the relationships between

those objects, and the ways of processing those objects. This knowledge is difficult and costly to acquire.

Two approaches have been taken to achieve this domain knowledge: in one eftort the analyst "picks the

brains' of one or more domain experts [Neighbors 1984]; in the other effort the an)vst analyzes existing

systems within the application domain [I-Iorowitz 1984]. Both techniques are expensive and time

consuming.

The problem of extracting knowledge from a source that is not familiar with domain analysis is

very similar to the problems knowledge engineers have experienced with populating the rule-bases of expert

systems. In fact, expert system developers have found that most of the effort and expense often go toward

formulating the production rules. To reduce this expense, expert system developers have utilized a variety

11

of techniques with varying degrees of success. Not the least of these efforts has been the creation of expert

systems to guide a domain expert in the formulation of rules. To date, however, there is no known method

of removing all of the problems associated with knowledge acquisition. The domain analysis community

should carefully follow the expert system community and its efforts, because any useful technolocies should

be applicable within both fields.

3.4 DEFINING THIE DOMAIN

A common problem many domain analysts have encountered is the difficulty associated with

defining the boundaries of domains. Most applications deal with multiple domains, e.g.. a missile C_';nse

system would have to deal with both missile and database domains. If domains are madc too small and

objects or operations are separated into separate domains benefical relationships between objects and

operations are lost.

Domains that are made too large may become too complex to allow for the completion of the

domain analvsis. As the number of components within a domain increases, the potential number of

relationships increases exponentially. While the actual number of relationships does not approximate the

exponential growth of the potential relationships, it too will quickly become too large to be managed

effectively when the domain grows too big. Another problem with creating over-sized dom.ns is the lare

number of components and relationships that must be reckoned with during the creatior: of :.r. application.

As the percent of components used decreases (compared to the components which mL- potentially be

reused), the utility of the domain decreases.

3.5 DISCUSSIONS OF EXISTING T--FORTS

This section will discuss the following:

* ROSE

* Raytheon Experiment

* CAMP

• McCain Approach

* Prieto-Diaz Approach

* Draco.

12

3.5.1 Reuse of Software Elements (ROSE)

ROSE [Lubars 19871 is a two-part application development system. The front end is a System

Design Assistant that accepts specifications and requirements of the application from the user and, utilizing

a library of design schemas, domain types, and domain constraints, po.d---.es a set of u-efu.' algorithms and

type expressions and an abstract design. The back end is a design assistant that combines the abstract

algorithms, data types, and representations to generate executable code.

The libraries upon which the front end of ROSE operates are analogous to a library of domain

models. The front end uses the user interface to select the appropriate domains that supply the abstract

data types and operations, and assists in the development of the abstract design. Two separate libraries are

used to do this. A library of domains is referenced through descriptions of domain objects and attributes,

and this library in turn references a design component library that provides the abstract design with the

help of some user-supplied associated design schemas.

3.5.2 The Raytheon Experiment

A methodology to reuse code in business applications was developed at Raytheon [jLanergan 1979].

While business applications might be considered a rather large domain, the development of the library -nd

classification of the components placed within the library was done using domain analysis. They found that

most modules fall into one of three major classes within the business application domain. They also found

that most programs could be described by a combination of three logic structures, although as many as 85
logic structures were defined. The common functions and the relationships between them were defined

to form the domain model. The abstractions of these functions and their relationships were used to form

the three logic structures.

While the Raytheor experiment did not follow a classic domain analysis paradigm, it is similar to

the ROSE method discussed above.

3.5.3 The Common Ada Missile Package (CAMP)

Ten tactical missile systems, coded in various language-, were analyzed for common components.

The analysts identified existing systems within the application domain, performed a functional decomposition

and functional abstraction to break those systems into their abstract component parts, and then developed

reusable components that were based on the common abstract components.

13

3.5.4 The McCain Approach

An approach to domain analysis is discussed by McCain in his paper, "A Software Development

Methodology for Reusable Components' [-McCain 1985]. He divides domain analysis into four separate

sequential processes. First, reusable entities are determined. These enti-,ies include objects and related

independent operations. Relationships between these operations are then defined. These relationships

dcfine search paths for the retrieval of library components.

An approach to domain analysis devised by G. Arango is discussed by Pricto-Diaz Arango utilizes

a similar approach to McCain but spends a great deal more effort first bounding the domain in order to

limit the analysis. Neither McCain nor Arango have tested their approaches to date.

3.5.5 The Prieto-Diaz Approach

Ruben Prieto-Diaz [Pricto-Diaz 19S7] defines a domain analysis approach which dcfines pre-domain

analysis and post-domain analysis activities as well as the actual domain analysis description. He also

breaks nis domain analysis down into three separate operations.

The pre-domain analysis activities consist primarily of defining the domain. I. addition to defininc

the scope of the domain, his domain definition includes identifying the source of the information about the

domain and tailoring the domain analysis itself.

The post-domain analysis activities consist of the production of the guidelines with which the

reusable components produced by the domain analysis are to be used. This step is cor, idered to be part

of the domain analysis process by some other researchers.

The three steps involved in performing the domain analysis are: identification of the objects and

operations, abstraction of those objects and operations into a domain-specific application independcn: form,

and classification of those objects and operations. The abstraction of the objects and operations includes

the definition of the relationships that bind them together. The classification of the objects and operations

includes the formal definition of the domain language.

This approach is only in the research phase and has not been tested to date.

14

3.5.6 Druco

A domain analysis approach which supports reuse of design is that of Draco; the system was

devised by Neighbors [Neighbors 1984]. Draco performs a domain analysis that produces both a domain

language and a group of tools that support the use of the domain language. The system designer writes

a program in the domain language, and the tools, with help from the user, produce an executable version

of the application in a conventional language.

The results of a domain analysis and domain design are the domain description, which consists of

five tools: a parser, a pretty printer, transformations, software components, and software procedures. The

parser consists of the external syntax of the domain and the prefix internal form, which is the actual data

that is manipulated by Draco. The pretty printer is a tool that produces the mapping from internal

program fragments to the external syntax for the domain. The transformations are source-to-source

transformations on the objects and operations of the domain. These transformations represent the rules

of exchange between the objects and operations of the domain and are correct regardless of the

implementation chosen for the object or operation. The software components specify the semantics of the

domain. There is one component for each operation and object in the domain. The components make

implementation decisions. Each component consists of one or more refinements that represent different

implementations for the object or operation. The software procedures are used when the knowlcdge for

a certain domain-specific transformation is algorithmic in nature.

This svstem is ',uilt in six stages. These stages are:

1) Specify the domain.

2) Perform a domain an:.-sis.

3) Create a domain language.

4) Create the parser and pretty printer.

5) Define the transformations.

6) Define a specific computerized system based on the domain language.

Stages one through three might be considered to all be contained within the definition of a domain

analysis, if the standarwi broader definition is used_ A quality domain analysis is crucial for correct

operation of Draco, because the tools are directly generated from the domain language that is derived from

the domain analysis.

15

J. G. Ric- advocated a system called the Automatic Software Generation Svstem (ASGS) which

is similar to Draco [Rice 1981].

3.6 SUMMARY AND CONCLUSIONS

Domain analysis may prove to be an effective tool in providing reuse because of the wide spectrum

of knowledge that may be reused. If a domain analysis has been performed on a domain in which a new

application is to be developed, the systems analyst has a framework on which to hang the specifications for

the new application. This reuse of analysis information is a powerful form of reuse because its effects are

felt throughou: the development process. The de-sign of the application, the components used in the actual

coding of the application, and the relationships between those compor.ents may all be provided within the

libraries developed in the domain analysis and mapped from the specification writter, in the domain

language. The ability to reuse these designs and components that were developed independently is the

strength of domain analysis.

Domain analysis is a relatively new process, and several problems in the process remain unresolved.

Not the least of these is the lack of a standard methodologv with which domain analysis should be

performed. The three most prevalent deficiencies with existing methodologies are the following:

* defining the domain

* acquiring knowledge about the domain

* generating concrete goals and uses for the product of the domain analysis.

No research effort has suggested a technique to determine when a domain anals is is complete or

when the knowledge of an idea is fully encapsulated. Nor have any efforts suggested a technique that

determines when a domain is oversized and requires division into multiple domains. These problems have

not surfaced in the prototypes because all domains have been made sufficiently small. 7he incompleteness

of a domain is more likely to surface as more applications are developed and the more complexity is added

to those applications. To date, the existing prototypes have been used for developing onh a few

applications, and those applications have been relatively simple.

It is widely agreed upon that the knowledge about a domain is costly and diffici.,t to acquire. This

problem could be minimized if domain analysis were to become a widely accepted technique, because the

domain experts would have more experience. This L being seen with structured design now, as the vas

16

majority of those software engineers who are knowledgeable in an application domain are also

knowledgeable in structured design. As long as relatively few software engineers are familiar with domain

analysis, either those with the knowledge of the domain must learn about domain analyis or those with the

knowledge of domain analysis must learn about the domain. This transfer of knowledge is both difficult

and costly, as the experiences of knowledge engineers developing expert systems show.

It is important to realize that the science of domain analysis is targeted specifically toward the

capture of information about a specific application domain, and that, while that information is a viable

resource that may be reused in the development of future applications within that domain, the perceived

use of the fruits of a domain analysis vary widely. Domain analysis based paradigms have been shown to

be capable of providing the following reusable products:

templates for the systems analysis of the application which result in a design of the
application

a mapp.nig to a library of applicable constructs for the application, including procedural
components and objects

complete CASE tools which guide the systems analysts, systems designers, anl programmers
through the entire development life-cycle

a high-level, domain-specific language and a translator to a common executable language
(C, Ada or FORTRAN).

Because of this diversity in the potential use of domain analysis, there can be no uniform assessment of the

amount of risk or the potential for gain from using domain analysis. The potential benefits and the

amount of risk resulting from a given type of domain analysis can best be evaluated for the spec&: rcuNe

approach being implemented.

The science of domain analysis is z new, relatively unexplored field in whicIt, neither the extent of

the benefits nor the depth of the pitfalls is fully known. Virtually all stages of the software design life-

cycle can be supported by reusable componers spawned from the domain analysis. This could include

automatically gener.ated applications. Domain analysis has the potential to reduce the effort required for

individual applications by a tremendous amount. Yet, questior-s abou: the amount of effort required to

perform a domain analysis, and the degree of usefulness of the components, tools, and designs available for

reuse through domain analysis, raise doubts as to the final net gains of domain analysis.

17

18

4.0 DOMAIN-[NDEPENDENT APPROACHES

Domain-independent approaches are those approaches that propagate reuse across unrelated

application areas. The reusable elements in this category are considered to be general purpose. Most

general purpose elements are component based. Therefore the predominant domain-independent

approaches deal with producing, using. validating, finding, cataloging, managing, and maintaining general-

purpose components. Some examples of these components include linked list managers, sort routines, and

math functions. The three major domain-independent approaches identified in this section are:

* h'braries/repositories

* commercial components

• a design methodology for producing reusable components.

All of the domain-independent approaches may also be applied to a specific domain. For example, CAMP

uses a repository that is domain specific.

4.1 COMPONENT LrBRAR[ES/REPOSITORIES

Interest in software development cost savings and the potential for reuse of Ada code have given

rise to a number of efforts in the U.S. to create software repositories and libraries of software components.

Efforts to devefop such libraries have varied in sponsorship, management, breadth of focus, and accessibility.

The following topics are examined in this section:

factors to be considered in the development of software component libraries and

repositories

* existing component libraries and U.S. repositories

* lessons learned and recommendations for future developments.

4.1.1 Desirable Characteristics of Software Component Libraries/Repositories

In literature on reuse, and from experience with existing libraries, a few factors stand out as

important to the development of software libraries.

Accessibility of Code. To encourage reuse, code must be easily accessible to both

contributors and users. Ease of access includes the knowledge that the repository exists,

19

the ability to find individual programs or components that fit reuse requirements, and the
means to obtain code in a reasonable amount of time at a reasonable COSL The medium
in which code is available is also important to the accessibility of the repository, because
many developers have a limited hardware configuration. Security restrictions may be a
barrier to easy access of code and so must be carefully considered.

Ease of Reuse. After code has been located which seems to fit the requirements for a
particular application, the user must be able to quickly determine what modifications, if
any, are required for the code to exactly fit functional specifications. The developer must
also be able to spot areas of concern for portability.

Quality Control The user should be able to distinguish among different versions of the
same software component or program, and also to understand the differences between
different impiementations of the same application (e.g., two different sort routines). The
user should know whether the code has ever been tested and used and on what hardware
configuration.

Management and Acquisition Incentives to Reuse. Management strategies must be
developed both to encourage the development of code for a software library, and the use
of the resulting code in other efforts. The development of code for the software library
may be accomplished by a single contractor, or it may be the result of many contractors'
efforts. Contractual requirements or incentives may spur the use of software libraries.

Documentation. Documentation should be provided that describes how to use the library
component. The component documentation should include an abstract of the component,
and a description of its interface. Examples of the components' use should also be
included. Finally, documentation should enable the user to contact either the code
developer or the repository maintainer to report bugs and problems, and reported bugs or
limitations should be clearly indicated in the repository.

In the following sections the characteristics of existing sets of reusable components will be weighed

against these criteria.

4.1.2 Existin! Software Component Libraries/Repositories

In the U.S., efforts to establish collections of reusable components have been undertaken both by

the Government and in the commercial sector. Early efforts to build software repositories were not

restricted to particular application areas or technologies. More recent work has focused on the

development of components for restricted application areas, such as software for missiles and avionics, and

software for management information systems.

20

4.1.2.1 The Ada Software Repository (ASR)

The Ada Software Repository (ASR), established in 1984, is a collection of general information,

Ada programs, tools and educational material which is available on the Defense Data Network (DDN), a

national electronic network maintained by the DoD. The ASR currently contains more than 1.500 files.

The ASR is intended to promote the reuse of Ada programs, tools, and components, and to promote Ada

education by providing several working examples of programs in source form for people to study and

modify. This repository contains ony Ada de and Ad.a-related information, but is otherwise unrestricted

in application focus. The ASR contains programs and components for graphics, communications, database

management, mathematical functions and text manipulation, as well as benchmarks, programming tools and

metrics. The ASR also contains general information such as the list of validated compilers and the text

of DoD directives concerning Ada.

The ASR receives sponsorship and some funding from two organizations: the U.S. Army

Information Systems Command and the DoD's Software Technology for Adaptable Reliable Systems

(STARS) Joint Program Office. A support contractor handles dissemination of copies of the repository

and interface with the public. Even now, only one individual handles the software acquisition, software

review, electronic mailing list, newsletter preparation, Master Index preparation, internal and on-line

database maintenance and points rf contacts.

All material in the ASR is considered in the public domain. It is accessible to users in a number

of ways. Direct, on-line access to the ASR is currently available only to users of the DDN. DDN users

may electronically transfer any file in the ASR. Users may also obtain copies of the ASR on magnetic

tape, floppy disk, and CD ROM at a reasonable cost. Finally, a hardcopy directory of the repository and

its contents is available from the ASR support contractor. To promote the availability of its prod uc:s, the

ASR has established links with a number of other organizations in the Ada community, including the Ada

Information Clearinghouse and AdaNET. These organizations provide additional distribution points for

information concerning the ASR.

The ASR provides descriptions of available programs both via an on-line documentation system

which may be easily adapted for use with typical database management systems, and a hardcopy index. A

regular newsletter provides information on new releases. At a more detailed level, each piece of software

has an associated prologue file and item description file in a standard format, providing information on the

version, date, author, environment and any review that has been performed.

21

Quality control has been the most criticized facet of the ASR's operation. The software is provided

*AS IS' without any warranty concerning its validity. The prologue for each software component conutins

a point of contact for the author of the code. No formal screening is done in most cases before placing

items into the ASR, other than checking to ensure that the required prologue is complete. Screening and

reliability information on a piece of software may be provided after its release. Each item has one or more

comment files, stored with the software, which relate comments received from users. In the case of

software upgrades, both old and new versions of software are kept for some time, until reports from users

have been received that the new version is reliable and can be trusted to the same level as the old; at ttat

time, the old version may be removed. It is intended that, once a critical mass of software has been received

in the ASR and the quality items become well-known, then a separate collection of only the quality items

will be establishe.-

Some DoD organizations, including Worldwide Military Command and Control System

(WWMCCS), STARS, and the Defense Communications Electronics Command, have already mandated

submission of contractor-created software to the ASR. Other software has been submitted by individuals in

academia, industry and other government agencies.

4.1.2.2 Computer Software Management Information Center (COSMIC)

The Computer Software Management Information Center (COSMIC), founded in 1966, is operated

by the University of Georgia for the National Aeronautics and Space Administration (NASA). COSMIC

contains more than 1,000 programs and components in a variety of application areas, implementation

languages and environments. COSMIC was started with the goal of technology transition; it was hoped

that the results of research and development funded by NASA would benefit U.S. businesses as well, and

would maintain public support of NASA efforts. COSMIC is staffed by approximately 15 people from the

University of Georgia.

The distribution of programs in the COSMIC inventory is restricted to the continental U.S. for the

first year after their receipt. Then, if permission is granted by NASA and the author of the software,

distribution is unlimited. COSMIC is not directly accessible via an electronic network; instead, it publishes

a catalog of available programs from which interested users may order. The catalog is well indexed by

topic and provides a brief description of each program, along with information on its development

environmer" rocessing requirements, and its cost. Programs are available in a variety of digital format-.

;oftware p; .-ams or components are individually priced based on their size, documentation, and

application area. Documentation is unbundled from software and sold for the cost of reproducing it.

22

Although COSMIC attempts to compile and test all code received, this effort is in fact limited by

the hardware environments available to COSMIC personnel. Each author is required to provide test data

or benchmarks with which to test the program submitted. COSMIC has been receiving an increasing

number of utility programs that are difficult to test. Version control is maintained, and both old and new

versions are made available. There are no formal documentation standards, but software has been rejected

because of inadequate documentation. COSMIC acts as a buffer between the author and user and provides

the first tier of technical support. If that is not sufficient, COSMICs technicians call the author and

attempt to work out problems. With the author's permission his or her name may be provided to a user.

NASA's requirement that software developed for it be made available to COSMIC has not

guaranteed submission of code to the Center. COSMIC personnel often have to take the first step in

monitoring trade journals, NASA Tech Briefs, and so forth, for news of code that has been developed

under NASA contracts, and then contacting the contractors or offices responsible.

4.1.2.3 Common Ada Missile Packages (CAMP)

Common Ada Missile Packages (CAMP) is an Air Force software technology project focusing

specifically on software reusability. CAMP was initiated in 1984 and currently contains 452 operational

flight software parts in Ada for tactical missiles, as well as a prototype parts engineering system to support

parts identification, cataloging, and construction. CAMP differs from the ASR and COSMIC in a number

of ways. First, it is narrow in application focus. Second, the development of both its software and the

associated tools for its use have been the responsibility of a single contractor. Third, the software in it is

considered "militz.-ily critical" and so is subject to limited distribution.

CAMP software is distributed by an Air Force facility, the Data & Analysis Center for Software

(DACS). Because the CAMP software is considered "militarily critical', it is subject to export control

regulations which make distribution cumbersome. Distribution via electronic network is prohibited. The

DACS handles the necessary Government paperwork required to distribute limited distribution software

while staying within moderate costs. CAMP also requires that users complete a new form, agreeing that

the Government software will not be resold to the Government, or sold as a separate entity in competition

with commercial products. This agreement, however, allows CAMP component users to be compensated

for time spent modifying CAMP software for use on a Government contract.

23

The CAMP components are all packages or subprograms usable in a stand-alone fashion. To help

the user find the appropriate component for his requirements, CAMP has developed a prototype parts

engineering system that enables the user to identify, catalogue, and customize components. This system is

currently hosted on a Symbolics 3620 using the ART expert system, but will be implemented in Ada and

re-hosted on a DEC computer to increase accessibility.

Because CAMP software was developed by a single contractor over a two year period, the problems

of quality control, configuration management, and use of documentation standards are not as great as for

large repositories such as the ASR and COSMIC. All CAMP components were tested before release, and

the components have been demonstrated in the subsequent development of a real-time embedded system.

As an incentive for reuse, the CAMP software was distributed to more than 125 Government

agencies and contractors between September 1985 and May 1988. The CAMP parts were acquired by the

Government with unlimited rights. The parts are being considered for a number of other systems, including

NASA's Space Station, the Advanced Tactical Fighter, and the Advanced Air-to-Air Missile.

4.1.2.4 AdaNET

AdaNET is a cooperative effort among NASA, the Ada Joint Program Office, the U.S. Department

of Commerce, and the University of Houston to provide electronic access to Ada software, tools,

information, and education, and to expedite the transfer of technology to industry, small business and

academia, as well as to government agencies. The contract to develop AdaNET was awarded in 1987.

One of the first goals of AdaNET will be to link with existing sources of Ada code and information

to make such repositories more widely available to the public. Although there is currently no charge for

accounts on the AdaNET system, which is accessible via GTE Telenet, it is intended that AdaNET services

eventually be self-funded. Later goals of AdaNET include the provision of value-added services and

products, including Ada *starter packages, documentation and tutorials, seminars and workshops,

development and management tools, and telephone assistance. It is also planned that AdaNET be a

pointer for other sources of information about Ada products and services. AdaNET has participated in

major Ada conferences as a vendor in order to raise awareness of its products and its plans for the future.

Because AdaNET currently offers no software products of its own, it serves more as a redistribution point

for other repositories than as a repository itself.

24

At present, AdaNET offers access to the ASR products. It is expected that access to software

developed by the STARS Foundation contracts will be provided as well as access to the COSMIC software

catalog. There is currently no additional screening of software accessible via AdaNET and no version

control or configuration management other than that which is performed by the repositories with which

AdaNE7' is linked.

4.1.2.5 The Booch Taxonomy

Another source of reusable components is that proposed by Grady Booch in hi- recent hook

Software Components with Ada. In this book Booch advocates developing families of reusable components

rather than single components [Booch 1987A]. For one application, a linked list of unbounded length may

be appropriate; for another application, space constraints may put a limit on the size of a linked list. In

both cases, the interface of the package handling the linked list manipulations should be the same; but

the implementations of the linked list would differ in the two cases. The advantage of having identical

interfaces is that if the needs of the application change, for example, limits must be placed on the size of

the linked lists, one can simply "unplug" the unbounded package and "plug in" the bounded one. Thus

families of reusable components are more flexible than components of which there is only one

representative of each kind.

Booch recommends classifying components by the following distinctions:

" Bounded. Unbounded

- A bounded component is one whose size is static. For example, a list implemented as
an array is of fixed size.

. An unbounded component is one whose size is dynamic. For example, a list
implemented as a linked list is of variable size.

• Unmanaged - Managed - Controlled

- An unmanaged component is one that does not provide garbage collection. In this
case, any garbage collection is performed automatically by the runtime systc.n.

- A managed component is one that provides garbage collection for sequential systems.

- A controlled component is one that provides garbage collection for concurrent systems.

• Noniterator - Iterator

- An iterator is an operation that does something to all members of a homogeneous
class, such as an array. A noniterator component is one that does not have such an
operation.

25

An iterator component is one that does provide an iterator.

Sequential - Guarded - Concurrent - Multiple

- A sequential component is one that is designed to be used in a sequential application.

- A guarded component is one that preserves the integrity of data in a concurrent
environment by means of devices, such as semaphores, that are visible to the user.

- A concurrent component is one that preserves the integrity of data in a concurrent
environment by making access to the protected data sequential.

- A multiple component is one that preserves the integrity of data in a concurrent
environment and allows simultaneous readers but only sequential writers.

Given these distinctions, Booch develops a taxonomy of reusable components. Booch sells a

representation of these components through WIZARD Software (see Section 4.2, Commercial Components).

GRACE component, distributed by EVB, Inc., also follow this taxonomy. The main disadvantage of the

Booch components is that a given development effort is likely to need only one comr-,onent of a given type.

Yet as things stand now, the developer must purchase the entire package.

4.1.2.6 Other Library Systems

The STARS program has investigated many software libraries issues. As a result of that

investigation, four prototype library systems were developed;

* Reusable Library Framework (RLF)

* Reusable A0a Packages for Information systems Development (RAPID)

* Rapid Search and Retrieval (RSR) system

* GENeralized Embedded SYstem Specification (GENESYS) tool.

Except for RAPID, each of these systems was developed as a STARS Foundation project, and copies are

available to the public by way of the Naval Research Laboratory (NRL).

The primary objective of the RLF was to provide for an intelligently guided search through a

library of software components, and more generally, a knowledg, based approach to the management of

software artifacts that apply to a particular application domain. The basic achievement of the RLF project

is the provision, in a demonstrable prototype, of a general framework for the construction of domain-

specific libraries of Ada software components.

26

The main goal of the RAPID Center is to promote software reuse. Plans for the RAPID Center

include policy recommendations, administration guidelines, standards, and user guidelines. The RAPID

system also contains a hbrary system of reusable components.

The software life-cycle needs to incorporate the role of software reuse in order to reduce

development costs and increase software reliability. The U.S. Army Information System Engineering

Command recognizes this fact. The SIDPERS-3 RAPID Center is a proof-of-concept that will be applied

to the development of SIDPERS-3. The current version will support only software components that are

Ada code. Because the benefits of reuse can be achieved early in the life-cycle, future versions should be

extended to include not only code, but also design, specifications, and documentation.

RSR employs a three-phase method to increase Ada code accessibility. The first phase establishes

a powerful, easy to use, readily accessible, centralized STARS Repository. The second phase makes the

same sophisticated repository technology generally available to the software development community so that

others can establish their own repositories. The third phase will be the formation of a distributed

repository comprising networked repositories resulting from the first two phases.

GENESYS is designed to assist in the assembly of individually tailored Ada Run-Time Support

Environments (ARTSEs) from a library of vendor-supplied, third-party or custom-built Run-Time Elements

(RTEs). In addition, GENESYS provides an attractive user interface to any library of reusable Ada

software components. GENESYS supplements the traditional software development life-cyc!e in much the

same manner as other reuse support tools. GENESYS should pay off over the entire life-cycle through

productivity increases through reuse

reduced development risk through multiple instances.

The potential for risk reduction by supporting multiple development paths for the same general class of

functionality makes GENESYS a unique software reuse and tailoring tool for Ada development.

4.1.3 Library Set Up

Several different library systems have been descnbed. How does the project manager set up his

own library system? What are the problems that need to be solved? Here the primary issues are defined

and some approaches are suggested.

27

Reusable libraries are still in their infancy as a technology. A study that investigated the underlying

assumptions of software libraries states, 'current operations will not scale up gracefully to handle our

assumptions involving large numbers of components with large amounts of information about those

components' [Hocking 1988]. Hocking goes on to point out that software solutions to simple problems

have rarely scaled up to handle larger problems. If this is the case, a number of different solutions may

have to be tried before the best solution is found. Only experimentation and use will shed insight into the

fine grain of technical issues that need to be resolved in order for the best library system to emerge.

There are four primary issues related to libraries:

Search: The mechanism/method that a library employs to facilitate the location of a desired
component.

Retrieval: The means by which a component is transferred from the library to the intended
user.

Configuration The methods/policies used to control component changes in a library.
Management:

Administration: Administrative needs that a staff or librarian will fulfill.

4.1-3.1 Search

After a fair number of components have been collected, the components need to be put into some

classification scheme. Classification of components allows the user to begin to search for a component in

a "logical' place.

Initially, a directory structure may be sufficient as a means of classifying components, but when a

large number of components are collected, this method may become very cumbersome.

Another way of classifying components is through the use of a taxonomies. Taxonomies would

provide a depth-first search for a component. Furthermore, taxonomies may be customized with categories

that the user is familiar. There are many ways to classify software: by size, by the problem it is solving,

by the characteristics of its solution, or by the domain the component belongs to. By selecting a set of

attributes and describing all the software in the library in terms of those attributes, one can define a

vocabulary to locate the components. This process is called faceted classification. A search strategy based

28

on faceted classification can easily be implemented with a database. Each facet defines a field in the

database structure. A user can then query the database using a facet-based vocabulary.

The Rapid Search and Retrieval (RSR) system appears to have a good solution to this problem.

The key to the system is, in essence, its universal symbol table. A unique symbol is assigned to each word.

That symbol is constant in all documents. Rather than reducing the degree of indexing, this technique

reduces the overhead of storing the original code and documentation. The unique symbol table facilitates

indexing, which allows for an effective and efficient way to impose different taxonomies on the same set of

software components.

4.1.3.2 Retrieval

Once a potential component has been found the next step is to obtain a copy. Before the library

system is put into place, the program manager should decide if he wants to integrate the.library system into

the project development environment. If a library system is integrated into the development environment,

it makes reuse easier. The software engineer can search through the library at his terminal. Obtaining a

component may be as simple as copying it from one place to another. A drawback of this approach is that

multiple copies of the same code may result. This would be a waste of memory space as well as a

configuration nightmare.

If a library is not integrated into the development environment, then for the reuser to obtain a

copy of the component, a variety of options exist. The librarian may send it to the reuser on a floppy disk

or magnetic tape, or the component may be downloaded. This all depends on what resources are available

to the project manage: and how he decides to integrate the library.

4.1.3.3 Configuration Management

When setting up a library, one must define who will be allowed to use the library. 'I'here are a

range of possibilities. One extreme would be to make the library available to the world, a public domain

library. The other extreme would be to make the library available only to developers on one project. The

first would be overkill and unnecessary; the other would be too limiting and restrict the benefits of reuse.

A project manager's library system should at least be available to all the projects for which he is

responsible. Another option is to make the library system assessable throughout a particular domain.

These options will allow each project to benefit from reuse while keeping the library system to a

29

manageable size. After the library's domain is defined, a number of library requirements will naturally fall

into place, e.g., who is allowed to use it, library staff size, distributed needs, etc.

What happens when a bug is found and a component is modified, or a component is enhanced, or

a new implementation to a package specification is developed? Should the users be notified of every

change? If so, how? If not, in what manner should they be notified? These are the questions

configuration management addresses. Some example configuration management policies are listed below:

Do not store functionally redundant components.

Notify reusers of bugs found in the code.

Supply reusers with solutions to bugs when developed.

Supply reusers with coded solutions, if they have actually used the code.

Do not supply reusers with new components that have been modified to improve functionality.
Consider it a new component.

Determine a way to link package specifications with different package bodies.

A library system that is integrated into the software development environment has the advantage

of being linked to the reusers. Also an automated tracking system may be implemented. Notices, based

on defined configuration management policies, could be sent directly to the reuser. However, the

integration will be costly.

A library system that is separate from the development environment needs to set priorities for its

policies. The objective is to keep manual work to a minimum, thus keeping administrative cost low.

4.1.3.4 Administration

Obviously, a library system does not just come into existence and maintain itself. A library staff

is needed. Their responsibilities are many.

Complete and test components that come from outside sources.

Recommend enhancements to components.

Analyze bug reports and correct problems; distribute change notices to library users.

30

* Upon acceptance of a software component. enter the component into the classification

schemes.

• Track the experience gained from running the library.

* Collect cost data from inside and outside the organization to compare software reuse with
conventional software development practices.

4 Identify and extract components requested by the user.

• Log a variety of information for tracking purposes, e.g., software component use, search
failures, suggestion boxes, and user accounts. 7he logs are used to determine areas in
which the library needs to be improved.

Topic specialists may also be part of the library staff. Their purpose is to be very knowledgeable

about the components in the library that are in a specific domain. The topic specialist keeps notes on

problems, solutions, and other information about those components that are not represented in the

database. Periodically these notes would be publined.

It should be noted that reuse will not happen as a result of the implementation of a reuse library.

To ensure that reuse is at least attempted, checkpoints need to be inserted in the development process.

4.1.4 Summary and Recommendations

The diversity of goals and approaches in the development of U.S. software repositories has made

clear that with each of the considerations outlined above there are benefit tradeoffs.

The ASR, funded and staffed at a low level, places little emphasis on the quality of software

submitted. It is a "grass-roots' repository that was initially established without fanfare. Its achievements,

however, in terms of quantity of avua:.Lble software, have been immense given the low level of investment

in it. ASR has now become so well known that it is being made accessible on other media through a

number of second party vendors. The progress of the ASR can probably be attributed to the dedication

of a few individuals and the relative lack of bureaucratic and contractual "red-tape" surrounding it.

COSMIC provides a much higher degree of quality control than the ASR. With the additional

investment in quality, however, additional time is also needed to make software available. Turnaround time

between submission of code to C.SMIC and its accessibility to the user via the COSMIC catalog is apt to

be far longer than that of the ASR. COSMIC personnel also mentioned that the Center's lack of publicity

is a problem; even those within NASA are often unaware of the Center. Finally, the diversity of

31

application areas, implementation languages, and media represented by the COSMIC collection, even with

its well organized catalog, present a challenge to users searching for reusable software.

The CAMP project has had the greatest focus on software development with reuse as an explicit

objective, and it has already shown a great deal of promise. CAMP is the only repository that is comprised

of components only, and not entire programs, and it is the only one that includes additional software to

assist the user in tailoring components for use in various applications. One barrier to reuse of CAMP is

its means of dissemination. Contractor users have complained about the length of time required to satisfy

government requirements surrounding access to CAMP products, because of their militarily critical status.

Because AdaNET is fairly new, conclusions may be premature. However, if AdaNET's goals include

adding value to exis:ing repository products, its problems with configuration management will be even

greater than those of the ASR and COSMIC. Ironically, AdaNET may also suffer from being publicized

too much; users may expect products and services more quickly than could be reasonably expected of such

a large undertaking. AdaNET's publicity underlines the necessity to advertise reasonable goals and a

realistic schedule for achieving them.

Repository developers must define short term and long term goals and a realistic schedule of

milestones to achieve the goals. The definition of repository goals is especially important if there are a

number of sponsors or developers involved. If the need to show that software can be developed for

particular applications is greater than the need to have a single set of standard components, the strategy

adopted may be similar to that of the ASR. If, however, application areas are well-defined, the CAMP

strategy may work best. The following are addiri. nal recommendations for the successful developmen, of

software repositories.

* Ensure adequate repository management. Support required includes configuration
management, quality control, catalc- generation, public relations, dissemination of
components and documentation, and coordination with sponsors and developers.

* Define quality control standards, including standards for coding, documentation, and
testing. These standards should be clearly stated in all literature describing the repository,
so that users know the extent to which the repository contents have been screened.

0 Assist users in finding the components or programs by providing a well-indexed,
comprehensive catalog. Make the catalog and the components available both in hardcopy
and electronically. The catalog should include, at a minimum, information on the
applica*, n, development date and version, development environm,nt and limitations or
trouble reports.

32

Make repository software as easy to obtain as possible. Sometimes cost is less a barrier
than government procedures. The dissemination organization must be able to provide
timely response to requests for library components.

Publicize the repository as widely as possible to software developers, potential users, and
government software acquisition organizations. Also, provide a means of obtaining
feedback from users.

Contact other repository developers to obtain specific information on software licensing
agreements used, and agreements with government sponsors and contractors regarding the
reuse of software. There are still many issues surrounding data rights which are important
to understand before adopting a strategy.

The use of government contractual incentives for the reuse of software has not yet been

demonstrated completely. Many feel that the availability of high quality products which are conducive to

reuse provides adequate incentive to vendors with fixed-price contracts. Contractors will reuse code if there

is an obvious cost benefit, and if competition is driven by the reuse philosophy. To achieve high quality

products in the shortest time, repositories must have clear goals, be adequately funded and directed, and

must be well publicized.

4.2 COMMERCIAL COMPONENTS

Private industry is beginning to supply the software community with reusable components or

commercial components. The cost of the components is typically much less the development cost of a

comparable component. Also, many manufacturers offer warranties, maintenance contracts, and/or user

support. Thus it is prudent to survey the industry to determine whether the available componentL can be

useful. Below is a sample of commercial components that can be purchased from their respective

developers. A brief description of the component(s) is provided along with a point of contact.

Ada Components Catalo includes mathematical algorithms, control systems, graphics algorithms, boare.

support packages, b~siness, string processing, sorting algorithms and geometric algorithms. For additional

information, contact: John Griffin, lib Systems, Inc., P.O. Box 18173, Anaheim, CA 92187, (714) 528-

6710.

The AdaSoft Components Kit (TACK) Current tools available withir, TACK include AdaMenus, which

providev facilities for creating and displaying several kinds of menus, and AdaWindows, which provides

facilities for creating and using windows. This software is available both in source and binary. For more

information, contact: Mr. Jerry Horsewood, AdaSoft Inc., 9300 Annapolis Rd., Lanham, MD 20706, (301)

459-4696, adasoft@grebyn.com.

33

Computer Representatives Intenational, Inc. (CRI), has developed and markets a database management

system written in Ada. The DBMS is available as a standalone product and can be embedded in

applications written in Ada. For more information, contact: CRI Incorporated, 5333 Betsy Ross Dr., Santa

Clara, CA 95054, (408) 980-989&

Software Technology, Inc., offers an implementation of the Graphical Kernal System (OKS) written in Ada

and for use by applications written in Ada. Versions of GKS are available for systems including

VAX/VMS, PC/MS-DOS, Macintosh, as well as training in the use and application of GKS. An Ultrix

impiementation is under development. For more information, contact: Geri Cuthbert, Software

Technology, Inc., 1511 Park Avenue, Melbourne, FL 32901, (407) 723-3999.

GRACE (Generic Reusable Ada Components for Engineers) is a library of 275 reusable software

components based on commonly used data structures. The only requirement for its use is a validated Ada

compiler. For additional information, contact: EVB Software' Engineering, Inc., Frederick, MD. (301)

695-6960.

Math Advantage a library of reusable Ada components, is available in the new 3.0 release. This version

is useful for vector and matrix manipulation, as well as signal and image processing. Contact Quantitative

Technology Corp. for more information at (503) 626-3081.

Numerical Algorithms Group, Inc. Offers mathematical components in its NAG Ada Library. Package

units include basic arithmetic, input/output, numbers, and error trapping. For additional information

contact Numerical Algorithms Group, Inc., Downers Grove, IL. (312) 971-2337.

The Booch Components (referenced in Section 4.1.2-5), are sold as a set by WIZARD Software. There are

501 packages in this collection, totalling just under 150,000 lines of Ada. The collection includes structures

(e.g., stacks, strings, queues, lists, trees), tools (e.g., filters, pipes, sorts, searches and pattern matching

packages), and subsystems (components that denote a logical collection of cooperating structures and tools).

For additional information, contact Wizard Software, 2171 S. Parfet Court, Lakewood, CO 80227, or call

(303) 98-7-1874.

34

4.3 A DESTGN METHODOLOGY FOR PRODUCING REUSABLE COMPONENTS

(OBJECT-ORIENTED DEVELOPMENT

There are numerous methods of developing software. Reusable software can be developed using

any development method. There is one method however, that seems to facilitate reusable code. That

method is called object-oriented development. Object-oriented development tends to produce software that

is loosely coupled, and highly cohesive. This method also promotes development at multiple levels of

abstraction. These properties coincide with primary characteristics of reusable software. Therefore, object-

oriented development is a good choice when trying to produce or consume reusable code.

Object-oriented design is a method of partitioning a software system. It states that partitioning

should be based on objects, not functions: each module in the system should be built around one class or

object. The term "object-oriented design' has lately been replaced by the term 'object-oriented

development* because it has been realized that an object-oriented mentality must be present all the way

through the software development cycle, not just in the design phase. Accordingly, we will begin with a

discussion of object-oriented requirements analysis.

Defenders of object-oriented design contend that an object-oriented library unit is more likely to

be reused. This is because object-oriented library units tend to be highly cohesive and loosely coupled to

the outside world. A properly designed object-oriented library unit is built around a given type and exports

at least a primitive set of operations for that type, and so is highly cohesive. Moreover, a well designed

object-oriented library unit has a tightly controlled interface: it exports only the minimum needed by the

outside world and hides the rest, and it imports only what it needs from the outside world. This ensures

that object-oriented library units will be loosely coupled.

4.3.1 Obiect-Oriented Requirements Analysis

An object-oriented requirements analysis enhances the traceability between the requirements and

the design. Although the designer is free to improve on the view of the world presented by the analyst,

an object-oriented requirements analysis will still look a lot more like an object-oriented design than a

functionally-onented requirements analysis will. Since many functions may pertain to a single object and

many objects may embody a single function, it is likely to be extremely d:ficult to achieve a straightforward

mapping between functional requirements and object oriented design. The mapping between object-oriented

requirements and object-oriented design, however, is likely to be much more direct.

35

A requirements analysis provides a default framework for a design. The designer may choose to

accept this default. In that case, the design and coding phases would consist of nothing more than filling

in the gaps left by the requirements analysis. But the designer is not obligated to do this. The designer

may instead combine objects identified in the requirements analysis phase into larger objects, or he/she may

brealr them apart into smaller objects. The situation is no different from functional requirements: there

may be a one-to-one, a many-to-one, or a one-to-many relationship between a functional requirement and

the subprogram(s) that implements it. The essential thing is that the requirement be satisfied in some way.

It has been claimed that it is more difficult to derive an object-oriented design from a functionally

oriented requirements analysis (such as a structured analysis) than from an object-oriented requirements

analysis. Why should this be? To answer this question we must recognize that the software development

process from design through coding is a continual process of making explicit what was only implicit in the

original requirements. This is true in the first place of derived requirements. Derived requirements, as

the name implies, are implied by the original system requirements. The same is true of the actual code:

the data structures and processes that constitute the completed system constitute the "cash value' of its

requirements. The full implications of the original system requirements, therefore, cannot be understood

until the coding phase has been completed.

Because the ratio of requirements to lines of code is almost always very small, each requirement

typically summarizes an enormous number of implementation features. Any two complete sets of system

requirements will of necessity summarize all the features of the implemented system. The difference

between them will not be in the features summarized but in the way the features are grouped together.

Thus, each requirements analysis will organize the system from a unique point of view.

Now an object-oriented design has very specific needs: objects must model the real world, and

operations must be subordinate to objects. What this means is that an object-oriented design will need

implementation features that are grouped together in a certain way. What is to insure that, out of all the

possible groupings, these features will be grouped together in the way an object-oriented design needs

them? Not unless we introduce object-oriented thinking from the start can we maximize the likelihood that

serviceable objects and operations will come out of the requirements analysis phase. The entities identified

by a functionally oriented requirements analysis method are likely to be the wrong collections of

implementation features-too general, too specific, or simply irrelevant to the needs of an object-oriented

design. This is because functionally oriented requirements analysis methods are really looking for different

things than obiect-oriented requirements analysis, so that, even if both completely express a system's

implementation features, it is unlikely that the way in which those features are organized will be as useful

for an object-oriented design.

36

Functionally oriented requirements analysis and object-oriented requirements analysis also organize

the system requirements differently at a higher level The former organize them by function, breaking down

general operations into more specific ones; the latter organizes the requirements by object, breaking down

higher-level objects into lower-level ones. Thus, not only are the objects and operations identified in an

object-oriented requirements analysis more likely to be serviceable for an object-oriented design, but the

structure of a system is more likely to fit in with an object-oriented design if that design is based on an

object-oriented requirements analysis.

Object-oriented requirements analysis uses basically the same set of techniques as object-oriented

design. The main difference between them is that requirements analysis focuses on required objects,

attributes, and operations, whereas design fills in the details.

4.3.2 Object-Oriented Design

An obvious strategy for reuse of high-level routines is to structure them with reusable modules.

A contemporary method for doing this is object-oriented design. Object-oriented design restricts an

application to the manipulation of objects. Objects tend to be general purpose, and are constructed with

other lower level objects that are themselves reusable.

Given the need for object-oriented requirements analysis as a front end to object-oriented design,

let us first of all attempt to clarify just what the object-oriented designer is looking for. The goal of

object-oriented design is to identify the following:

* classes

* subsystems

* objects

0 states

* attributes

a operations.

The basic concept of object-oriented development is the notion of a class. A class is an entity that

is characterized by a set of attributes and/or a set of operations. If the structure of the class is visible, then

it is characterized by the data structure in terms of which it is defined, the implicit operations that pertain

to that data structure, and any further operations that are explicitly provided in the library unit defining the

37

class. If the structure of the class is not visible, then it is characterized only by the operations that are

explicitly provided in the library unit defining the class, as well as any operations (such as equality) that

may still be implicitly available.

Other concepts are based on the notion of a class:

A subsystem is a collection of classes. For example, in an aircraft simulator all classes
pertaining to the aircraft components may be grouped together into the same subsystem.

An attribute is a property of a class. For example, *location' is an attribute, because it is
a property of the class 'aircraft' An attribute is an instance of a class in its own right,
which may in turn be characterized by other attributes. For example, "location" may be an
instance of the class 'coordinates," which is characterized by the attributes "latitude' and
'longitude.'

An object is an instance of a class other then an attribute. An example of an object is
'Air Force One,' which is an instance of the class "aircraft.'

A state is an instance of all the attributes of an object. Suppose the class "aircraft' were
characterized bv the attributes "altitude," 'air speed," "heading," and 'location.' Then the
state of an aircraft would be the particular values of these attributes, for example, '1000
feet," '100 knots,' '180 degrees," and '40 degrees north by 160 degrees west.'

An operation is a process that either changes or provides information about the state of
an object. For exampte, the operation "accelerate" would change the state of an aircraft;
the operation "current speed' would provide information about the state of the aircraft.

Operations can be divided into constructors, selectors, and iterators: Constructors change the state

of an object; selectors provide information about the state of an object; iterators are performed on

homogeneous complex objects (e.g. arrays, linked lists) and either change or provide information about the

state of every element in the object. Thus, iterators are either constructive or selective.

The most important of these concepts are class, attribute, and operation. It is important to keep

in mind the conceptual differences between them. The benefits of object-oriented design can be fully

realized only if it is indeed classes that are encapsulated in software modules, not attributes or operations

disguised as classes. Conceptu clarity is important. Attributes are properties; operations happen over

time; classes are things that have attributes and perform operations.

4.3.3 Objeet-Oriented Codin!

How can these entities be mapped onto Ada library units? A subsystem has no Ada equivalent.

A class is typically an abstract data type defined in a package (for example, a linked list package), and an

38

object is typically a variable, constant, or task of that type. Sometimes it is advisable to represent a class

by a generic package-what Booch calls an "abstract-state machine' package [Booch 1987B]. In this

instance, an object of the class would be an instantiation of the generic package, and so would be a

package. Attributes are represented by generic formal types. States are represented by the possible values

of those types, expressed in Ada by literals or aggregates. Operations would be implemented by functions,

procedures, and entries. All Ada functions are selectors, and iterators are represented by generic

procedures. TABLE 2 provides Ada equivalents to object-oriented entities.

The principal Ada design tool is the package. An object-oriented package will be built around a

single type and will define the type in terms of the operations that can be performed on objects of the

type. One can distinguish five kinds of object-oriented packages:

0 Open, in which the central type declaration is visible

* Private, in which the central type is a private t-pe

* Limited, in which the central type is limited private

0 Opaque, in which the central type is limited private and implemented as an access type, the
full type declaration of whose designated subtype is located in the package body [ARM
3.8.1 (3)]

Closed, in which the central type is declared in the package body.

Orthogonal to this taxonomy is another distinction based on what the package exports. From this

point of view, packages can be classified into the following types:

Class exporting, in which the central type is declared in the visible part of the package
specification

Object exporting, in which an object of the central type is declared in the visible part of
the package specification

Operation exporting, in which at least one operation of the central type is declared in the
visible part of the package specification. It should be pointed out that a package can
export an operation in two ways-explicitly or implicitly. When a type is declared, certain
operations are -mplicitly declared for that type. These are comprised of the following
[ARM 3.3.3 (2)1:

* Basic operations [ARM 3.33 (3 - 7)]

° Predefined operators [ARM 4.5 (2, 6)]

Enumeration Literals [ARM 3.5.1 (3)]

39

TABLE 2. ADA EQUIVALENTS TO OBJECT-ORIENTED ENTITIES

Object-Oriented Entity Ada Equivalent

Subsystem < none >

Class Type
Generic package

Object Variable
Constant
Task
Package

Attribute Generic Formal Type

State Literal

Aggregate

Operation

Constructor Procedure

Entry

Selector Function
Procedure

Entry

Iterator Generic Procedure
Constructive
Selective

* Derived subprograms [ARM 3.4 (11 - 14)].

Explicitly declared operations for a type are subprograms each of which meets the following
conditions [ARM 7.4.2 (4)]:

At least one of its parameters and/or its result is of the type in question.

The operation is declared in the specification of the same package in which the
type is declared.

An open package exports all of its implicitly declared operations. A private package
exports only those implicitly declared operations which do not depend on the knowledge
of the full type declaration [ARM 7.4.2 (1 - 3)]. A limited package exports the same
implicitly declared operations as a private type with the exception of the basic operation
of assignment and the predefined equality operator [ARM 7.4.2 (1, 3)].

40

It seems clear that the first of these types is characteristic of open, private, limited, and opaque

packages, because the central type declaration is visible. It also seems clear that the second of these types

is another variant of the open package, because in order for an object to be visible in a package

specification, its type must also be visible. Finally, the third type pertains to open, private, limited, opaque,

and closed packages. Combining this distinction with the one above, we can produce the following

classification shown in TABLE 3. Examples of each package can be found in Appendix A.

TABLE 3. PACKAGE TYPES

class object operation
exporting exporting exporting

open x x x
private x x
limited x x
opaque x x
closed x

4.3.4 Risks of Object-Oriented Development

Any advocate of object-oriented development is likely to run into a certain amount of resistance.

In any profession there is a certain reluctance to change. People have built successful care-s on certain

procedures with which they are comfortable. Adopting the adage, 'If it works, don't fix it,* people may see

no need to do things any differently than the way they have always been done.

Object-oriented development is still a very new technology. It is best accomplished with an

object-oriented requirements analysis as a front end. This part of object-oriented development is even

newer and thus relatively untried. There are few analysts around with genuine experience in object-oriented

requirements analysis. Hence, there may be a substantial learning curve for any group of software engineers

intending to use object orientation for the first time.

A related problem is that software engineers have for years been trained in functional methods.

This, coupled with ihe fact that functional decomposition is probably easier to perform with less training

than object-oriented development, means that designerF on a project are likely to be more comfortable with

functional than with object-oriented approaches.

41

Another difficulty a program manager may encounter when considering object-oriented development

is fitting it into the software life-cycle. It was argued above that the most suitable front end to

object-oriented design is object-oriented requirements analysis. Often, however, a program manager simply

inherits a functionally specified system in which the major components are also broken down functionally.

It may be difficult to fit object-oriented development into a life-cycle which has already progressed along

a different path.

All of the above cautions center around the newness of object-oriented programming. But if

novelty were always a reason for not doing something, no progress would ever be made in any field. In

order to be persuaded to embrace a new technology, managers must be convinced that the long-term

benefits are substantial enough to outweigh the short-term liabilities. This is probably the case with object-

oriented development. Object-oriented systems, when done in the right way, exhibit a coherent design, are

loosely coupled internally, are clear and easy to maintain, are modularized in a meaningful way, are easy

to debug, and are likely to have reusable components. An investment of the time and resources to become

comfortable with object orientation will probably pay for itself in the long run.

42

5.0 DOMAIN-SPECIFiC APPROACHES

Reusable elements whose reuse is restricted to a defined application area are called domain-specific

approaches. The payoff when using these approaches is usually higher than when using domain-

independent strategies. This is because the percentage of reusable elements in a given application can be

greater in the domain-specific approaches.

The component approaches to reuse that are defined in the previous section also apply to domain-

specific environments. The only difference is that the reusable components are not as general-purpose as

in the domain-independent case.

Another style of reuse approaches is adaptive reuse. Adaptive approaches try to reuse the

framework of the software. This includes the design as well as the top layers of an application.

Component reuse structures the application around the components. Conversely, adaptive reuse maintains

a fixed structure and plugs in, deletes, or alters components to change the functionality of the system.

In most cases, domain-specific components can be used to feed the adaptive approaches. This is

because the adaptive approaches advocate a top-down software design where component methods are

generally bottom-up. Combining the two types of approaches provides the potential for automating the

software coding process.

The domain-specific reuse methods discussed in this paper are:

• generic architectures

* constructors.

5.1 GENERIC ARCHITECTURES

Generic architectures are a form of adaptive reuse. Generic architectures are upper-level structures

that contain reusable software and design components along with common interface mechanisms. They

provide the high-level design and code as well an application-specific set of components to be adapted,

swapped, or deleted. Thus a new application could experience huge savings through the reuse of most of

the design and code from a generic architecture.

43

Generic architectures can be thought of as a form of standardization at the design level. One

could make an analogy with computer hardware. An IBM-AT compatible computer will always have a

chassis, a 286 mother-board with expansion slots, and a power supply. These common elements define the

generic architecture of the system. Hardware components can be adapted, swapped, or deleted from one

specific configuration to create a second configuration that satisfies totally different needs. For example,

a desktop publishing system requires a high resolution graphics card driving a large screen black and white

monitor, a hard drive, a floppy drive, a controller, I/O ports, a mouse, and a postscript laser printer. An

image processing workstation would be configured with a frame grabber, CCD camera, high resolution color

monitor and graphics card, a dry ink plotter, 1/0 ports, a track ball, a larger hard drive, a floppy drive, a

controller, and extended memory. These applications have dissimilar functionalities and require drastically

different hardware support. Yet both configurations are based on a generic architecture of the IBM-AT

compatible computer.

There are several criteria that govern when to use generic architectures. First, there must be

several applications to be developed that are similar in nature such that a generic architecture can be [
applied. Also these applications should be funded from the same source. This is because the up-front cost

of creating a generic architecture is high. Thus several reuses are required to offset the initial costs and [
save long-term dollars. Furthermore, it should be anticipated tat the technology in the application domain

be stable over the life of the program. Rapidly growing technologies could foster some radical changes in

the requirements of the systems. Changes in requirements c.',uld shatter a generic architecture.

The level of reuse for generic architectures is high. This is due to the sheer volume of elements

that are reusable. The design, the upper-level code, and the lower-level components are all potentially

reusable. Also the data structures, communication protocols, and other software interfaces are standardized

across applications. This translates into savings in future developments as well as system-wide maintenance.

Training costs are reduced because the man-machine interface will be fairly consistent among the

applications spawned from the same generic architecture.

A key feature of generic architectures is that all the functionality of the system is known before

much code is written. The opposite is true of a bottom-up component reuse strategy. Also the adaptive

nature of generic architectures lends itself to an iterative style of development where one would code, test,

and provide feedback. Thus generic architectures facilitate tae development of rapid prototypes. These

prototypes are also useful to validate the generic architecture.

For generic architectures to be feasible, the application domain needs to be well understood, and

the potential applications in the domain need to be identified. Consequently, a quality domain analysis

44

needs to be completed prior to the design. This domain analysis must be performed by an experts in the

application domain and by individuals who are experienced in domain analysis.

The cost for doing a domain analysis is high and cannot be budgeted. The cost cannot be budget,

because it is difficult to determine when a domain analysis is complete, and an incomplete or marginal

quality domain analysis may produce an invalid architecture. Note that the feasibility of using the generic

architecture is not fully determined until the domain analysis is complete.

Generic architectures have a moderate amount of flexibility in the handling of requirements

changes. The domain analysis identifies or tries to anticipate the requirements for future applications.

Such requirements pose -little threat to the generic architecture because the architecture is designed to

accommodate all of the current and future requirements for the systems. However those requirements that

were not forecasted by the domain analysis may compromise the architecture. This danger is prevalent in

domains that were ill conceived, or where the technology is experiencing rapid growth. Using our hardware

example, the IBM-AT architecture cannot adapt to the new micro channel technology and therefore cannot

be used.

Once the decision is made to use generic architectures, it must be enforced. This is because most

of the expense of developing a generic architecture is incurred near the beginning of the project. These

battles are best waged prior to spending all the funds on a detailed domain analysis.

5.2 OTHER DOMAIN SPECIFTC METHODS

Other reuse methods that are unique to the realm of domain-specific approaches are discussed:

* constructors

* structural models

5.2.1 Constructors

A component constructor is a software system that facilitates the development of application

software by producing components based on user requirements [McNYcholl 1988]. There are three parts

to a constructor.

a domain-specific library of skeleton components called meta-parts

45

an interface to the user that allows the user to build applications through a collection of

components

a set of rules and tools that instanuiate a meta-part.

Requirements are input by the user. The constructor analyzes this information, searches the library

for the appropriate meta-part, and then instantiates the meta-parts thereby generating a compilable

component For a schematic representation of a construcLor, see Figure 5.

User Requirements
I

Meta-Part - W' Constructor - 0_ Compilabie Component

FIGURE 1. THE CONSTRUCTOR AND RELATED PARTS

Each item in Figure 5 will be explained in dewil:

meta-part

The meta-part is the general form of a component and is either the complex Ada gene-c
or the schematic part. A complex generic part may require data types, operators, an .
subprograms for instantiation. It m:, also require a complex defaulting scheme. Sim..e
generic parts require only a small number of data types for instantiation. Schematic parts
consist of a 'blueprint" for construction, and a set of construction rules for building a
specific instance of the part. Ada generics are used whenever possible. But not all possible
templates can be captured as Ada generics. Specifically, generics cannot handle situations
in which only the structure, not the content, remains the same (cf. Section 5.1.1.1). In
these instances, schematic parts are used in place of Ada generics.

user requirements

The requirements are entered based on questions elicited by the constructor's user interface.

constructor

The co,.tructor analyzes the requirement data and extends the mca-part to generate the
code for the component.

46

component

The resulting component is an instance of the component's general form.

The creation of a constructor requires a close interaction between the constructor developer and

the component develnper. The constructor developer creates the user interface and the constructor, and

the component developer generates the meta-parts.

The CAMP project determined that constructors would be beneficial for efficient implementation

of nine of their components and developed nine component constructors. The following discussion

describes constructors based on CAMP's experiences.

The meta-part for CAMP's finite state machine is a schematic part, because the variable number

of states and transitions .. - difficult to capture in generic units [McNicholl 1988]. The meta-part for the

autopilot is made up of complex generic parts. The constructor assists the user in creating a correct

instantiation. For the Kalman Filter Constructor a combination of generics and schematics is used. The

user's options determine the implementation.

CAMP's experiences with the constructor show its feasibility within narrow domains, and its use

does increase productivity. In its current state, it is not vert portable. Because the constructor is closely

tied to the software component, an.- eignificant changes to the component will require modifications in the

constructor. Thus, constructor maintenance can be a costly concern.

A software developer working in the domain of the constructor, can build a large portion of the

desired application with the constructor. This can result in a large cost savings in the design, coding, and

maintenance phases of a software development.

5.2.2 Structural Models

There are two premises of structural models. One is that there will exist a solution that can be

described as a series of recurring patterns. The other is that these patterns can be generalized to other

applications within a broader domain. This translates to two levels of reuse. The first is the reuse of the

recurring patterns within the application. The second is the reuse of those patterns between applications.

Structural models operate predominantly at the design and code levels of the software life-cyc'.

At the design level, a structural model will define a set of recurring patterns, and a grouping strategy with

47

which these patterns apply. Code for the structural model would consist of a set of software templates.

These templates are skeleton packages that require a user to fill in specific type definitions and formal

procedural parameters. If a generic is used in lieu of a template, a large number of generic formal

parameters and subprograms would need to be instantiated. This would add an unnecessary level of

complexity to the code and obscure the essence of the recurring patterns. This is discussed further in

Appendix F.

The first step in developing a structural model, is a domain analysis. A- with the generic

architecture, the domain analysis bounds the domain, defines the requirements for software within the

domain, and identifies commonality between elements in the domain. Initially, in a structural model, the

domain is defined as the application itself. The domain analysis consists of defining requirements for the

given application, and identifying any recurring patterns within the application. Requirements are typically

defined as part of the software life-cycle. Thus, the net effort required in a domain analysis for structural

models is reduced to finding the recurring patterns.

Once the recurring patterns are established, software templates based on these patterns are

generated. A framework is then designed to interface the instances of the patterns with the application.

Because the domain analysis is minimal for a structural model, the up front cost, hence the risk is

less than most other reuse schemes. Conversely, there is no guarantee that the patterns will translate well

into future applications.

A generic architecture is appropriate when the applications to be developed are planned. In this

situation it is preferable to define the requirements and the design for all the applications simultaneously.

If the number and function of future applications is not known, then a structural model should be

considered. For instance, if software is being developed for an application that is to be implemented in a

number of disjoint organizations (e.g., across DoD agencies or services), then the in-depth domain analysis

needed to develop a generic architecture would be virtually impossible due to the amount of coordination

necessary, and the unknowns of various implementation schedules, budgets, and staff assignments. In this

case, use of structural models buld be more practical and less risky. The focus in this case would be the

current application with the consideration of future applications.

The idea of structural models is a very powerful concept because it rf._lly achieves reuse on two

levels-within an application and between applications. Its power comes from the detection of patterns

internal to any application of a given type and iterating instances of that pattern. It is a domain-specific

concept and requires some knowledge of the intended application domain to be used.

48

6.0 COST/BENEFIT ANALYSIS FOR SOFTWARE REUSE

Four cost/benefit issues are addressed in this section:

the economics of reuse

* software cost models with a reuse component

* estimating the cost/benefits of reuse

6.1 ECONOMICS OF REUSE

There are two areas that are relevant to the economics of reuse. These areas are the production

of reuse, and the consumption of reuse. In this section the factors that influence cost will be delineated

for both reuse production and consumption.

Production of Reuse

At the beginning of most software efforts, a decision must be made as to whether software units

are to be made reusable. This determination can be aided by looking at the factors influencing the costs.

The first factor to consider is the initial investment in reuse. For components this is the cost to

produce a reusable component versus the cost to produce a non-reusable functionally equivalent component,

and/or the start-up cost for a component library. With adaptive reuse the initial costs can include a domain

analvsis, a generic architecture, a structural model, a constructor, a template generator, and/or supporting

tools.

Another major factor is the number of times a reusable element is to be used. It costs more to

produce a reusable element than an equivalent non-reusable one. This is because the development of

reusable code requires more tirme in the planning and coding stages. Thus, it is important to anticipate the

number of potential reuses for a given software element. By reusing a software module, one is, in effect,

distributing the developed cost for that software among the various applicptions. Therefore, if a software

element is used three times, then the cost of developing that element can be divided by three, with each

third being charged to each usage. The number of reuses will determine the pay-back in the development

phase.

49

The extra time expended to create reusable code is offset somewhat by the amount of debug time

saved in the testing phase; it is easier to localize bugs when working with reusable modules since one can

zero in on small blocks of code. Another factor enhanced by reusability is maintainability. Reusable

components are easy to maintain because they are easy to localize. They also can be easily extracted for

testing. Furthermore, once a reusable software element is validated, all instances of that element are valid.

The maintenance aspect alone could justify the creation of reusable software.

Gonsumption of Reuse

Including a reusable unit in an application is the consumption of reuse. When addressing the cost

effectiveness of reuse consumption, some additional cost factors need to be examined.

One factor that should be considered is the extra cost of identifying, finding, and evaluating

reusable components. Finding a component to fit your needs is not a trivial task. Hence this task may be

expensive.

There is also the cost of the learning curve for using a reusable unit. The learning curve cost

refers to the extra time and effort required for the proper usage of the unit. Good documentation will

reduce this cost significantly.

Finally, there is the cost of working within reuse-imposed design constraints. Reusable modules can

restrict the design of the software they support. The greater the number of reusable components used in

a given application, the greater the number of design constraints imposed by the reused software. Such

constraints affect the structure, operation, and function of the application. At times these constraints are

beneficial to the development effort. At other times an extra software layer needs to be developed to

interface the reusable component with the application.

6.2 SOFTWARE COST MODELS V"TrfI A REUSE COMPONENT

This section describes the methods used to account for reuse in current software cost models. The

following topics are discussed:

* accounting for reusable components in new cost estimates

* estimating the development of reusable code

* deficiencies in the current cost models.

50

Selecting a Cost Model

The term 'cost model" is a conventional one, but it should be recognized that cost models estimate

personnel effort and schedule duration for software project activities and life-cycle phases. There are few

discriminating factors when determining which model is the most appropriate within a unique environment.

Most automated models will run on an IBM PC (or compatible) and estimate operational support costs in

addition to development. (Appendices B - E provide an overview of the contractual arrangements, costs,

hardware requirements, and developer points-of-contact for several well-known models.)

Of first concern to managers when determining the cost for a new project is which model will give

the best ballpark figure. Few comprehensive studies have been performed that demonstrate the differences

between software cost estimation models in view of their ability to provide reasonable estimates. A-uracy

claims made by the developer are difficult to substantiate. In addition, differing perceptions exist on how

to estimate software cost for new technologies such as Ada. The following discussion will focus on the

empirical studies performed to date that address model accuracy. The discussion is divided into two areas:

1) predicting personnel effort and 2) predicting schedule duration.

Personnel Effort

For estimating software development costs, two studies have demonstrated that different models

have better expected accuracy for different classes of applicar -'s [FERENS 1989] [IITRI 1989]. An IITRI

study targeted eight completed Ada projects and compared the effort predicted by six cost models to the

actual project resources expended by their respective developers. Projects targeted in the test case study

consisted of three different types of applications: command and control (4 projects), tools/environment (3

projects) and avionics (1 project). TABLE 4 summarizes the model performances that were based on a

comparison of estimated to actual effort. An analysis of the results based on application type demonstrated

that model performance varies for different types of applications.

51

TABLE 4. TEST CASE STUDY RESULTS [1TRI 1989]: PERSONNEL EFFORT

I Evaluation I Model 1Performance I Range 1
II Criteria I I (Within 30%)l

Overall Accuracy ISoftCost-Ada 14 out of 7 0% to 13%
of Effort ISASET 14 out of 8 I -29% to 29%

II ISPQR/20 13 out of 8 I -22% to 19% II
[I ICOSTMODL 12 out of 6 I -25s to 1% II
I IPRICE S 10 out of8 8 I

ISYSTEM-3 10 out of 8 11F I F
Overall Consistency ISYSTEM-3 15 out of 8 -14% to 28% Ii
of Effort !PRICE S 15 out of 8 1 -26% to 22% II

I ISoftCost-Ada 14 out of 7 I -13% to 2%
II ICOSTMODL 13 out of 6 1 -29% to 10% II
II ISASET 14 out of 8 I -15% to 27% II
II ISPQR/20 13 out of 8 I -20% to 21% II

Model Accuracy on ISASET 13 out of 4 1 - 7% to 29%
II Command & Control ISPQR/20 13 out of 4 1 -22% to 19%

Applications ISoftCost-Ada 12 out of 4 I 6% to 13% II
II ICOSTMODL 12 out of 4 1 -25% to - 1% II

IPRICE S I0 out of 4 1

I ISYSTEM-3 1O out of 4 I

Modei Consistency on PRICE S 14 out of 4 1 -26% to 0%
II Command & Control ISASET 13 out of 4 I -15% to 1% II
II Applications ISYSTEM-3 13 out of 4 I -14% to 26%

I! tSPQR/20 13 out of 4 I -20% to 21% II
II JSoftCost-Ada 12 out of 4 - 8% to - 2% II

JCOSTMODL 12 out of 4 - 1% to 10% ItSftCt-A ou of 2 % o 2

Model Accuracy on oos- 2 out of 2 0% to 2%
Tools/Environment ISASET 11 out of 3 -29% II
Applications ICOSTMODL J0 out of 1

I JRICE-S 10 out of 3 I
ISYSTEM-3 J0 out of 3 1 II
ISPQR/20 10 out of 3 1 II

Model Consistency on 1SoftCost-Ada 12 out of 2 1 -13% to -1
Tools/Environment IPRICE S 11 out of 3 I 22%

Applications ISYSTE.M-3 11 out of 3 I 28% I
I ICOSTMODL 10 out of 1I

ISASET 10 out of3
II ISPQR/20 10 out of 3 I

COSTMODL is an automated implementation of Ada COCOMO, IOC version.

52

Results were evaluated for consistency by comparing the project's actual effort to the estimated

effort after a computed mean value was applied to each model estimate. An analysis of model efforts for

consistency was performed to establish if results were consiste, 'v high or consistently low, eliminating

differences between the perspectives of the person deriving tt its to each model and the model

developer. This process involved the following steps:

1. A percentage of actual effort to model effort was calculao.d.

2. The two extremes were discarded to achieve a truer sampling of percentages.

3. A mean value of the remaining percentages was computed and applied to the given model's
estimates.

4. The relative error for each project was recalculated using the adjusted efforts.

The results of this process when applied to each model are illustrated in Tables 4 through 6.

Models were also applied using nominal (average) values for input ratings while providing actual

project values for model input parameters that must be estimated early in the life-cycle, and for which

there is no associated average value. The nominal inputs reflect the level of knowledge about a new

development prior to contract award. An evaluation of the results of the study showed model performances

varied with differing amounts of project information. Some had surprisingly good results with minimum

information. A summary of the test case study results for nominal runs is provided in Table 6.

The results are somewhat indicative of the databases that were used to develop and validate cost

models (See TABLE 5). SoftCost-Ada has a database that is comprised of a large number of commercial

projects. PRICE S, SYSTEM-3, and SASET appear to be based on DoD software development

environments.

Because of the size of the database and the nature of the programs targeted in the test case study,

it is difficult to make positive conclusions with regard to model accuracy. One can, however, identify

trends that may be supported in future studies. Outside validation studies should ideally be userd to

supplement a model user's own analysis.

53

TABLE 5. OVERVIEW OF DATA USED TO DEVELOP/CALIBRATE COST MODELS

Cost Model Data

Ada COCOMO Calibrated using two completed TRW Ada projects
which had been developed using full DoD software
acquisition standards [IITRI 1989].

SoftCost-Ada Approximately 30 software projects developed by
12 different organizations within five aerospace
firms during the period spanning 1982 through 1987
[IITRI 1989].

PRICE S Software projects at RCA Morristown Surface Radar
Division, including airborne, ship, and ground
radar projects [IITRI 1987].

SASET Martin Marietta software development data
consisting of more than 300 completed projects
and some selected Navy data (IITRI 1989].

SYSTEM-3 Data points on 50 management information systems
and command and control systems [IITRI 1987].

54

TABLE 6 TEST CASE STUDY RESULTS FOR NOMINAL RUNS [IUTRI 1989]: PERSONNEL EFFORT

S Evaluastion F"odl7 Performance I RangeI
criteria I I (Within 30%) It

Overall Accuracy [SASET 1 out of 8 -24% to 29%
of Effort ISYSTEM-3 13 out of 8 I -17% to 28%

JCOSTMODL 12 out of 6 I -25% to -24%
ISoftCost-Ada 12 out of 7 I -27% to 14%

It IPRICE-S 12 out of 8 1 -14% to -8% II
SIsPQR/20 I1 out of 8 I -27% II
Itoverall Consistency fCOSTMODL J3 out of 6 -2%t 30

I of Effort ISoftCost-Ada 13 out of 7 0% to 28% II
I ISASET 13 out of 8 -24% to 7%

ISYSTEM-3 13 out of 8 -26% to 13%
ISPQR/20 11 out of 8 -14%

IPRICE-S i1 out of 8 -29%

Model Accuracy on tSASET 13 out of 4 - 7% to 29%
Command & Control ISYSTEM-3 13 out of 4 1 -17% to 28% II

It Applications JCOSTMODL 12 out of 4 1 -25% to -24% II
I IPRICE S 12 out of 4 1 -14% to - 8% I

ISoftCost-Ada 12 out of 4 1 -27% to 14% II
ISPQR/20 I1 out of 4 -27%

Model Consistency on 1SASET 13 out of 4 -24% to 7%
Command & Control ISoftCost-Ada 12 out of 4 12% to 28% II
Applications ISYSTEM-3 12 out of 4 -11% to 13% It

II ICOSTMODL 12 out of 4 -23% to 30% It
liISPQR/20 11 out of 4 -14%

IPRICE-S 1i out of 4 -29%

Model Accuracy on ISPQR/2 11 out of 43 -24% I
I Tools/Environment ICOSTMODL !0 out of i I U
I Applications SoftCost-Ada t0 out of 2 1 It

IPRICE-S t0 out of 3 I I
I ISYSTEM-3 to out of 3

CJSPQR/20 O out of 3

IModel Consistency on ICSPQR/2o to out of 3
i Tools/Environment ISoftCost-Ada t0 out of 2 I
I Applications ISASET t0 out of 3 I I
tPRICE S 10 out of3 I
SISYSTEM-3 10 out of 3 J I

ISPQR/20 t0 out of 3 1

* COSTMODL is an automated implementation of Ada COCOMO, IOC version.

55

Schedule Duration

For assessing the expected accuracy of software scheduling techniques, especially for the cost model

scheduling algorithms, two studies are noted. The Blalock study (Air Force Institute of Technology Thesis:

1988), which focussed on five cost models, showed that COCOMO was the least accurate of the five and

had an error of greater than 50%. The other four models: PRICE S, SYSTEM-3, SPQR,.In, and

SOFTCOST-R were accurate within 20% of the actual schedule. There was one project targeted in the

study-, therefore, general conclusions could not be drawn about the models studied [FERENS 1989].

A subsequent study compared schedule duration for eight completed Ada projects to the durations

that were estimated by the six models studied. Table 7 shows results based upon a comparison of

estimated to actual schedule duration. Nominal run results for schedule duration are provided in Table 8.

It is interesting to note that the estimates for scheduled duration correlated more closely to the actual

schedule in the majority of cases when a minimum set of data was used as input to the modes.

6.2.1 Accountine for Reusable Components In a New Cost Estimate

Software cost models typically take the form of a set of equations which relate size, effort, and

calendar time, and hence allow the prediction of effort and time given size as an input parameter. The

effort and time predictions are then modified by a number of additional parameters which reflect

conditions specific to the project and developing organization. In a recent review of six cost estimation

models [IITRI 1989], all of them require the size and language of reusable components that are to be

incorporated into a new product. What follows will be based on the two models whose underlying

equations are nonproprietary, Ada COCOMO and the Navy's Software Architecture, Sizing, and Estimating

Tool (SASET). In these models reused components are accounted for in the base estimate for software

size. The number of instructions of new code to be developed and number of instructions that are to be

adapted are combined into an estimate for the *equivalent delivered source instructions.' The following

discussions of the COCOMO Reuse Model and SASET's Direct Input mode for software sizing illustrate

how these models account for reusable components in new developments.

56

TABLE 7. TEST CASE STUDY RESULTS [lTRI 1q89]: SCHEDULE DURATION

Model Performance Range
I(Within 30%)

SYSTEM-3 4 of 8 -27% to - 7%
PRICE S 3 of 8 3% to 18%
SASET 3 of 8 -24% to 6%
SPQR/20 3 of 8 -16% to 26%
COSTMODL 2 of 6 -28% to -25%

I SoftCost-Ada 2 of 7 -26% to - 4% II

After Application of the Means:

Model Applied Performance Range
II Mean (Within 30%)

SYSTEM-3 1.38 5 of 8 0% to 28% II
PRICE S .69 5 of 8 -29% to 28%
SPQR/20 .85 5 of 8 -29% to 29%
SASET 1.63 4 of 8 -30% to 23%
SoftCost-Ada .90 3 of 7 -13% to 24% II
COSTMODL 1.93 1 of 6 -11%

* COSTMODL is an automated implementation of Ada COCOMO, IOC version.

57

TABLE 8. TEST CASE STUDY NOMINAL RUN RESULTS [flTRI 1989]: SCHEDULE DURATION

Model Performance Range
(Within 30%) II

11 SPOR/20 6 of 8 -23% to 28%
PRICE S 4 of 8 -26% to 21% Il
SoftCost-Ada 2 of 7 - 6% to 5% iI
SYSTEM-3 2 of 8 -23% to 5% I
COSTMODL I of 6 -26%

After Application of the Means:

Model Applied Performance Range
IIMean (Within 30%) II

SPQR/20 .94 6 of 8 -28% to 20% i
PRICE S .97 5 of 8 -28% to 29%

I SoftCost-Ada 1.89 2 of 7 0% to 14% II
SYSTEM-3 2.05 3 of 8 -25% to 19% II
COSTMODL 2.1 2 of 6 -27% to -23% II

* COSTMODL is an automated implementation of Ada COCOMO, IOC version.

58

6.2.1.1 COCOMO Reuse Model

The basis of the adaptation equations used in COCOMO is that reused code is not counted in the

same way as newly developed software. Reuse of existing code may require additional effort in the following

ways [Boehm 1981]:

* redesigning adapted software to meet the objective of the new product

* reworking portions of the source code to accommodate changes in the new
product's environment (hardware, operating system, etc.)

integrating the adapted software into the new product environment.

The COCOMO Reuse Model uses the following equations to determine equivalent d

elivered source instructions (EDSI):

EDSI = (ADSI) [.4 (DM) + .3 (CM) + .3 (IM)] 100

where

EDSI - Equivalent delivered source instructions
ADSI = Number of adapted or reused instructions
DM = Percentage of adapted software design modified
CM = Percentage of adapted code modified
IM = Percentage of integration required for modified software as compared to

the normal amount of integration and testing effort required for software
of comparable size.

The coefficients (Design: 40%, Code: 30%, and Integration and Test: 30%) are determined from the average

amount of effort devoted to each corresponding phase of the life-cycle. An installation whose phase

distributions are considerably different might consider an alternate formula - for example, for small

embedded-mode jobs where less effort is spent in integration and testing:

EDSI = (ADSI) [.4 (DM) + .4 (CM) + .2 (IM) 1/100

The EDSI value is added to the number of new source instructions to be developed. The cimbined

size value is then used in the nominal estimating COCOMO equations to predict effort and schedule.

59

6.2.1.2 SASET Method for Calculating Equivalent New HOL

The equivalent new high order language line of code value is computed for each software function

before the sizes are aggregated to represent the total size of the software that is being estimated. To

calculate 'equivalent new higher order language' lines of code, the analyst must account for the condition

of the code. Given a lines of code estimate for a software function, the analyst must determine what

percent of the code is new, modified, or rehosted. The code conditions are briefly defined below [Silver
19&91:

New Code: This constitutes software code that is to be developed from scratch. Software
requirements must be determined, a design established, the design must be coded and units
tested. Regardless of the software type, 100 % of this LOC value is used in the new
higher order language equivalent calculations.

Modified Code:. This constitutes software code which is already partially complete and
which can be utilized in the software program under consideration. Generally, modified
software at the very least needs to be retested, and some redesign and recoding efforts are
required. The new higher order language equivalent calculations use 73 % of the modified
LOC value.

Rehosted Code: This consists of completed and tested software code which is to be
transferred from one computer system to another. Generally, the code requires no
recuirements definition, little or no design definition, and only partial testing. The new
higher order language equivalent calculations use 10 % of the rehosted LOC value.

The following example illustrates how equivalent new higher order language lines of code are

calculated to account for reuse [Silver 1988]:

The condition of 9,900 lines of code estimated as the size of a software function is
distributed as follows:

Condition Fraction of Total Lines of Code

New 1/3 (33.3 %) 3,300
Modified 1/3 (33.3 %) 3,300
Rehosted 13 (33.3 %) 33JI

100 % 9,900

60

The condition of the code is considered in the computation for equivalent DSI as fo:iows:

Code Size Equivalent DSI

3,300 (New) • 100% = 3,300
3,300 (Modified) 73 % = 2,409
3,300 (Rehosted) * 10 % = 330

Total HOL Equivalent: 6,039

6.2 Estimating the Development of Reusable Code

Only three of the six models (PRICE S, Ada COCOMO, and SoftCost-Ada) reviewed in the above-

mentioned Ada costing study [IITRI 1989] took into account the issue of developing reusable software.

Although two of the approaches are proprietary, PRICE S and SoftCost-Ada, the following paragraphs

provide an overview on how model developers view this issue.

6.2.2.1 PRICE S

PRICE S differentiates between requirements to produce reusable software at the system level and

at the module or component level [Park 1989). At the component level, estimators can view requirements

to produce reusable code as either

* complications to the development process, or

an increase in the application's difficulty.

The first view is appropriate when the developer uses time, rather than adding new people, to meet

reusability requirements. The second view is appropriate when both resources and time will be used to

achieve reusability. These views increment the complexity and hence the cost of the affected code rather

than distribute the increased effort over the entire product. System-level requirements for reusability, on

the other hand, affect the design, documentation, and testing of the full product [Park 19891.

61

6.2.2.2 ADA COCOMO

Developmen' of reusabie code is accounted for in the Degree of Reuse (RUSE) parameter.

TABLE 9 provides the FUSE cost driver ratings and associated effort multipliers. With this input, the

estimator enters the degree of reusability for which the software is being built. The ratings indicate that

the development of reusable software will increase cost anywhere from 10% (reuse within a single mission)

to as much as 50% (reuse in any application).

TABLE 9. ADA COCOMO DEGREE OF REUSE PARAMfErER

Rating Rating Description Multiplier

Nominal Not for Reuse Elsewhere 1.0

High Reuse Within Single Mission 1.10

Very High Reuse Across Single Product 1.30

Extra High Reuse in Any Application 1.50

6.2.2.3 SOFTCOST-ADA

SoftCost-Ada differs from the other models in that development of reusable components in Ada

is viewed differently than development of reusable components in other languages. Its input parameter,

Reuse Costs, specifies how the technical and managerial costs associated with reuse are handled. Rating

descriptions are provided in TABLE 10 [RCI 1989]. The main philosophy behind this parameter is that

Ada has specific features, generics, which have been included in the language to make developing reusable

components easier. Further, once the developer becomes more proficient in the language, reusable software

will be even easier to develop.

62

TABLE 10. SOFTCOST-ADA REUSE COST RATINGS

Rating Rating Description

Low Limited packaging for future reuse

Nominal < 10% of software packaged for future reuse

High < 20% of software packaged for future reuse

Very High > 20% of software packaged for future reuse

6.2.3 Deficiencies In Software Cost Models

While current cost models are including the basic reuse of code into their algorithms, they do not

account for the more complex issues of reuse. For example, to incorporate a reusable component into an

application, the designer may have to do an extensive search of several component libraries, evaluate the

candidate components. understand how to use the components, and integrate them into the application.

SASET does not account for this potentially costly process. And COCOMO only factors in the integration

cost. No cost model anticipates a domain analysis, or the development of a generic architecture,nor do they

consider the expense of CASE tools or constructors. Clearly there are deficiencies in current costing

models. These tools can be useful, however, in the cost estimation of non-reusable code. Such an estimate

would provide a baseline for comparison in the monitoring of the efforts of reuse on a development. In

other words, a developer would use a costing tool to estimate the development cost of the system, ignoring

reuse. The developer would then track actual expenses (that include reuse) and compare them with the

estimated cost. Thus, the developer can monitor the economic effects reuse had on the project.

6-3 ESTIMATING THE COST/BENEFITS OF REUSE

There are two methods to evaluate the economics of reuse across the software life-cycle:

* factor adjustments to cost models

* empirical estimation.

63

6.3.1 Factor Adjustments to Cost Models

While there are no explicit metrics for reuse, there are software cost models that estimate a normal

software development. These cost models can provide an initial estimate. This estimate car. then be

adjusted by those costs that are incurred by a specific reuse approach. This adjustment should include

both the anticipated additional costs, summarized in Table 11, and the areas of potential cost savings,

summarized in Table 12.

The major driver to reuse elements during software development is economic. However, for any

economics gain to be realized additional costs will undoubtedly be incurred. For elements to be developed

for reuse they will be more general purpose, less application-specific, than in a standard development. This

may result in increased documentation, more accommodating design, and code which stresses a simplified

flow of control. Achieving these attributes will require more effort, therefore more money. If previously

developed components are to be used, a source of components must be located and the available elements

studied to identify candidate components. These components must be adequately understood to be fitted

into the system currently under development. Understanding the specific candidate components, as well as

understanding the reuse of components will not be efficient or optimized. Other factors which may add to

the cost of reuse include designing with external design constraints (either designing reusable components

or desirning a system to incorporate reusable components), implementing a component library, performing

a domain analysis, and acquiring support tools. Not all of these additional costs will be experienced in

every instance of reuse; however, they must be considered when estimating the cost of system development

when reuse is involved.

For reuse to make economic sense, areas of cost savings must exceed these additional costs. One

area of potential savings is in system development. Reusing documentation, design, or code may cost less

than developinqz the components. There are additional areas with even greater potential savings. The

validation process for reused software should be sigificantly less expensive. If a machine interface is

reused, training costs should be significantly less. The greatest potential for savings is typically the area of

greatest expense; for software intensive systems this is the maintenance activity. Maintenance activities are

anticipated to be less expensive due to increased familiarly with reused software components by

postdeployment support personnel and by the anticipated increase in reliability. Furthermore, the

maintenance phase benefits when modules are loosely coupled and highly cohesive.

64

6.3.2 Empirical Estimation

Another method of evaluating the cost/benefits of reuse is through an empirical investigation. To

employ this method one must collect data from other developments that used similar reuse approaches.

By comparing the cost data from those other projects and evaluating their respective scopes, one could

empirically derive a cost estimate. The accuracy of this approach is dependent upon how much data is

collected and how similar the current development is to those about which the data was collected.

TABLE 11. ANTICIPATED ADDITIONAL COSTS.

ANTICIPATED ADDMONAL COSTS

Additional labor required to develop reusable modules
Cost of obtaining a reusable component
Learning curve
Design constraints imposed by reusable units
Startup cost for a component library
Domain Analysis
Support tools

TABLE 12. AREAS OF POTENTIAL COST SAVINGS.

AREAS OF POTENTIAL COST SAVINGS

Development Validation
Training
Maintenance

65

66

7.0 REUSE METRICS

A quantitative evaluation of reusability can be valuable in the selection of components for use in

an application or for a component's acceptance in a repository. Unfortunately, there exists no single metric

that can provide a comprehensive assessment of reusability. There are some metrics, however, that can

provide a first approximation of a component's reuse potential by measuring selected software engineering

attributes that affect reusability. Examples of attributes that affect reusability include complexity,

independence, modularity, simplicity, and data bindings. Researchers and tool vendors have identified

hundreds of metrics that apply to these attributes; we will mention only a few to provide some insight into

the current state of the practice.

Examples of metrics relevant to software complexity include number of statements per software

module, number of subprogram calls per module, number of logical paths through a program, number of

levels of control in a program, and so on. Independence metrics can be based on the numbers of accesses

to 1/0 types and packages, system dependent services, compiler dependent services, and tasks. Examples

of modularity metrics include those that measure information hiding and the degree of coupling between

modules: use of private and limited private types; proportion of operators, objects and types in the module

bodies or the private part of package specifications; proportion of blocks which do not contain bodies of

packages, tasks, procedures, or functions; use of variable declarations in package specifications; and others.

Fortunately for software developers and evaluators, a number of automated tools are already

available for the specific purpose of measuring software attributes such as those listed above. Some of

these tools are being used or considered for use by repository managers in evaluating software for insertion

into repositories. For instance, ADAMAT and LOGISCOPE, described below, have been used by staff at

RAPID to determine the characteristics of modules inserted into RAPID's library.

The remainder of this section will briefly describe some popular tools and collections of metrics

that can, in a limited fashion, determine the reusability of a software unit.

RADC Software Quality Attibites Worksheets

The RADC worksheet method is a non-language specific technique based on the manual application

of generalized worksheets. The worksheets have been automated as part of QUEF. To effectively apply

the worksheets, several early steps must be taken, specifically.

67

1) Identification of quality goals

2) Tailoring of the questionnaires to adequately reflect the project under assessment and the
defined goals

3) Tailoring of the equations for factor scores to reflect the defined goals.

The RADC worksheet method is defined as a hierarchy of factors (13), criteria (29), metrics (73),

and metric elements (>300). Questionnaire worksheets are tailored to the project being assessd and then
completed. Yes, No, and Numeric answers are transcribed to worksheets where affirmative answers are

equate: to a value of one and negative answers are equated to a value of zero. Numeric responses are

already in the zero-to-one range by the nature of the question. Scores are then aggregated up the hierarchy

by averaging reiated metric elements into a metric and related metrics into a criterion. Criteria scores are

then used in "ailored equations to determine the factor score. The worksheets should be applied

throughout the development life-cycle requirements specification through testing and delivery.

OUE

QUEF is an automated tool being developed by Software Productivity Solutions, Melbourne,

Florida. This tool is expected to be completed by mid-1990. The tool is an automation of the RADC

worksheet method. However, significant emphasis is being placed on the development of an extremely

friendly user interface. Another important difference will be the deveiipment of an Ada parser. The

parser only analyze code with the intent to complete the questionnaires. No analysis specific to the Ada

language is performed.

ADAMJAT

ADAMIAT is a language specific automated tool developed by Dynamics Research Corporation.

The ADAKAT tooi operates by examining compilable Ada source code. The technique used by the tool

is the counting of significant language features that are considered to promote or detract from the quality

of the product. These counts are the metric elements. Metric element scores are shown as a ratio of the

number of opportunities to comply with the preferred quality practice versus the number of actual

compliances. The metric scores are then aggregated to a criterion level and then to a factor level. The

factors evaluated by the tool are reliability, portability and maintainability. Six criteria are evaluated:

anomaly management, independence, modularity, self-descriptiveness, simplicity, an sytem clarity. Criteria

scores are derived from 153 metric values. The tool provides the capability to tailor the metrics gathered

and to tailor the aggregation process; that is, the user has the ability to selectively omit metric elements

68

and metrics. Weights can also be set to give greater importance to one metric over another or one

criterion over another in the score calculations. Results can be viewed at any level in the hierarchy, or

reports can be triggered by user-specified thresholds. Using thresholds, the user would indicate minimal

acceptable scores and a report would be generated only if the scores were below the threshold.

LOGISCOPE

LOGISCOPE is an automated and mostly language.s..ecific tooL It operates by analyzing module

source code and producing graphs (kiviat diagrams, control graphs, and call graphs and histograms) to

provide information about that module. The LOGISCOPE tool was developed by Verilog in Toulouse,

France, and is used and marketed by AMS Software. More than 4C high-level languages can be analyzed,

including assembly, COBOL, Ada, C, FORTRAN, and Pascal.

The intent of the LOGISCOPE tool is to assess the complexity, efficiency, and structural integrity

of the module by investigating the number of paths, the level of required *decision makingn through those

paths, the overall size and the depth of the calling hierarchy, and the structure and

readability/understandability of the code. Approximately 22 metrics are taken to make this assessment and

used in a standard metric, criterion, factor hierarchy. LOGISCOPE analysis can begin as early as

development and applied periodically throughout the life-cycle. Information is available from a static and

a dynamic analyzer. The static analyzer provides measures specific to syntax, text elements, logical structure

and architecture levels. The dynamic analyzer measures path coverage by inserting proves into the source

code through the use of CASE tools.

Static Analyzer

Kiviat Diagrams are used to identify whether the metrics are within acceptable ranges. The diagram

is actually a plot of metrics radially along a set of spokes. The minimum and maximum values are shown

as concentric circles through which these spokes pass. If the corresponding points are outside the inner

circle and within the outer circle, then the measure is acceptable.

Control graphs plot the flow of control through the module. That is, from a starting point at the

left of the diagram, an arrow directs control to the next point (such as a call or decision) and shows the

paths and looping posible through the module. From these diagrams the developer can assess the

structure of the module - whether it is nicely structured with minimal looping, backtracking, and decision

making, or whether it is excessively complex or poorly designed.

69

Dynamic Analyzer

The LOGISCOPE dynamic analyzer also measures the unit and integrated testing coverage through

control graphs. Special control graphs can be generated to identify the location of paths that have not

been covered through testing and the number of lines in that path. This allows modification of the test

plan to increasc test coverage before final testing and delivery.

Call graphs give a pictorial view of the system architecture. A call graph is a hierarchical graph

of the calling sequence from the main program to the lowest level routines. Other outputs include metrics

histograms (e.g., the ni.mber of statements in each module), quality factor histograms (a combination of

metrics compared to standards), and test cover-. -e histogrzms (e.g., percent of coverage for each module).

Other Analytical Methods

Several studies have been performed that attempt to simply define what metrics are important or, [
with re Dect to Ada. how language features affect some reusability factors. Some examples of these types

of studies are listed below: !i

* An an.lysis of the ph,,sical properti-- of software (size) as they affect reusability and design
guilehnes to enhance reusability jiHESS 1987]

* A description of the metric developed during the foundation phase of Army WWMCCS
Information System (AWIS) [DELANEY_" 1988]

Methods for goal setting, data collection and analysis for complexity, quality and cost
[BASILI 19831.

Other studies attempt to define metrics applicable to reuse. These methods are primarily non-

automated and most requir, source code analysis. This combination often results in the method being

impractical for application to any but the smallest of projects. Examples of these studies are listed below:

Measures of Ad2 complexity through an extension of the McCabe's Cyclomatic Complexiy
Metre [TAUSON--ZIDNTE 1988]

Analysis of complexity with respect to understandability, testability, and maintainability
through an examination of the relationship between prog-am slices and module cohesion
fOTT-" 1989]

Ada reusability as measured through an analysis of data bindings between modules
[BASILqJ

Defect density as a measure of reliability and maintainability [VALE7 19891.

70

8.0 SUIEMARY AND CONCLUSIONS

Most software engineers today practice some form of reuse. This reuse, however, is restricted to

the individual developer. What this report has described are state-of-the-art methods. to formalize reuse.

Formalization will extend the benefits of reuse to the project or system leveL

Most current reuse methods concentrate on reusing code. These methods can usually extrapolate

a certain amount of reuse to other elements in the life-cycle. A generic architecture approach, for example.

could reuse requirements, design, code, test procedures, documentation and training. Component reuse

could reuse code, verification, and validation. Thus, when evaluating the costs and benefits of reuse

methods, it is important to consider the entire software life-cycle.

One interesting side-effect of reuse is maintainability. Most of the software engineering factors that

promote reusability also apply to maintainability. There is a difference, however, in the relative importance

of each factor. For example, the presentation factors are much more critical for maintainability than they

are for reusability. It is likely, nevertheless, that writing or incorporating reusable code will produce a more

maintainable product. This implies a considerable cost savings in the maintenance phase of the software

life-cycle.

T--ABLE 13 offers general guidance in selecting reuse strategies.

71

6.z

- W - - MO - _

t, .- t -
cc g

4.z.) -C3 .

VI 4.)
~, ~ - m

C.)CZ

.. 2

- ca

-~~~Q >V ,-) . U

7R)

=
eq = 4

>)4 z

43 W
>~

us.

tj W, CO2

004

4)

- U

4>1-

74

BIBLIOGRAPHY

[ARM] ANSI/MIL.STD-1S15A. Department of Defense, Ada Joint Program Office.
Reference Manual for the Ada Programming Language. Washington: Government
Printing Office, 1983.

[Bailey 19891 Bailey, S., Laird, :., Falacara, G., Angevine, M. *GENESYS: Embedded Software
Tailorabilitv.* Proceedings of the 7th National Conference on Ada Technoloev,
March 1989, pp 13-24.

[Basili 1988! Basili. V.R. "Towards a Comprehensive Framework for Reuse: A Reuse-Enabiing
Software Evolution Environment.* College Park: Institute for Advanced Computer
Studies, December 1988.

[Boehm 1981] Boehm, Barry. Software Eneineerine Economics. Englewood Cliffs: Prentice Hall.
1981.

[Booch 1987A] Booch, Grady. Software Components with Ada: Structures. Tools. and Subsystems.
Menlo Park: Benjamin/Cummings, 1987.

[Booch 1987B] Booch, Grady. Software Eneineering with Ada, 2nd Ed. Menlo Park:
BenjaminiCummings, 1987.

wn 1988] Brown, Gerald R. and Quanrud, Richard B. 'The Generic Architecture Approach
to Reusable Software.' Proceedings of the Sixth National Conference on Ada
Te'hnolog. March 1988, pp. 390-394.

[Bunch 1988] Bunch, J. *Rapid Search and Retrieval of Reusable Components.* STARS
Foundations Workshop, November 1988.

[Ferens 1989] Daniel V. Ferens, Defense System Software Project Mvanagement, Air Force Institute
of Technology, Draft edition: 11 August 1989.

[Freeman 1987] Freeman, Peter. Software Reusability. Washington: Computer Society Press, 19S7.

[Gargaro 1988] Gargaro, Anthony. *Analysis of the Impact of the Ada Runtime Environment on
Software Reuse.' Final Technical Report to Center for Software Engineering,
CECOM. December 1988.

[Guerrieri 1988] Guerrieri, E. 'Searching for Reusable Software Components with the R-kPID
Center Library System.' Proceedings of the 6th National Conference on Ada
Technolo,. March 1988, pp 395-405.

[Hocking 1988] Hocking, D. E. 'The Next Level.* Proceedings of the 6th National Conference on
Ada Technoloey March 1988, pp 407-410.

[Horowitz 1984] Horowitz, E. and Munson, J. 'An Expansive View of Reusable Software.'
Transactions on S,'tware Engineering. Vol. SE-10, September 1984.

[IITRI 1987,] 11T Research Institute, U. S. Army Cost and Economic Analvsis Center
(USACEA' Software Cost Model Research Paper September 19S7.

75

[IITRI 1989] I1' Research Institute. Test Case Study: Estimating the Cost of Ada Software
Qve!ooment. April 1989.

[Kaiser 19871 Kaiser, Gail E. and Garlan, David. 'Melding Software Systems from Reusable
Building Blocks." IEEE Software July 1987: 17 -24.

[Lanergan 1979] Lanergan, R. and Poynton, B. *Reusable Code: The Application Development
Technique of the Future.' Proceedings of the IBM SHAREGUTDE Software
Symposium IBM, Monterey, CA. October 1979.

[Lee 1988A] Lee. Kenneth J., Rissrnan, Michael S., D'Ippolito, Richard, Plinta, Charles, and Van
Scoy, Roger. *An OOD Paradigm for Flight Simulators.' 2nd Ed. Pittsburgh:
Software Engineering Institute. September 1988.

[Lee 1988B] Lee, Kenneth, Plinta, Chuck, and Rissman, Mike. "Application of Domain Specific
Software Architectures.* Pittsburgh: Software Engineering Institute, December
1988.

[Levy 1989] Levy, P., Ripken, K. "Experience in Constructing Ada Programs form Non-Trivial
Reusable Modules." Proceedings of the Ada-Eurone International Conference,
Stockholm, May 1989, pp 100-112.

[Lin 19881 Lin. Dar-Biau. "A Knowledge-Structure of a Reusing Software Component in L'L.,
Proceedings of the SLxh National Conference on Ada Technoioey. March 19S8,
pp. 377-380

[Lubars 1987] Lubars. M. 'Wide-Spectrum Support for Software Reusabilirv." Proceedings of the
Worksvoo on Software Reusabilitv and Maintainabilitv National Institute of
Software Quality anc Productiviy, October 1987.

[McCain 1985] McCain. R. "A Software Development Methodology for Reusable Components.'
Procee"dincs of the !985 Hawaii International Conference on Systems Sc:enc2,
January 1985.

[McNicholl 1988] McNicholl, D. G. et al. 'Common Ada Missile Package - Phase 2." Air Force
Armament Laboratory, Eglin AFB, Florida, 1988.

[National 1989] The National Institute for Software Quality and Productivity. National Conference:
Software Reusability July 1989.

[Neighbors 1984] Neighbors, J. 'The Draco Approach to Constructing Softwre from Reusable
Components." Transactions on Software Engineering Vol. SE-10, September 1984.

[Park 1989] Park, Robert E., 'Ada Estimating - A PRICE S Profile.' January 1989.

[Prieto-Diaz 1987] Prieto-Diaz, R. 'Domain Analysis for Reusability.' Proceedings of COMPSAC '87 -

1987.

[RCI 1989] Reifer CQatsultants, Inc. Softcost-Ada User Guide Software Version 2.0. January

1989.

[Randall 1988] Randall, William D. Jr. Software Reusabilirv: A Decision Tree Model I June 1988.

76

[Rice 1981] Rice, J.G. Build Pro. m Technigue: A Practical Approach for the Development
of Automatic Software Generation Systems. New York: Wiley, 1981.

[Ross 1986] Ross, Donald L 'Classifying Ada Packages.* Ada Letters VoL 6, No. 4, July/August

1986.

[Silver 19881 Silver, Aaron, et. aL SASET User's Guide, July 1988.

[Solderiuscb 1989] Soldeuirsch, J. J., Wallnau, K.C., Thalhamer, J. A. 'Constructing Domain-Specific
Ada Reuse Libraries.' Proceedings of the 7th Annual Conference on Ada
Technology March 1989, pp 419-433.

F[racz 1988] Tracz, Will. Software Reuse: Emerzing Technology. Washington: Computer Socieyv
Press, 1988.

[US Army 1989] U.S. Army Institute for Research in Management Information, Communications.
and Computer Science. Proceedings: Ada Reuse and Metrics Workshop, June
1989.

77

78

APPENDICES

79

80

APPENDIX A. EXAMPLES OF PACKAGE TYPES

A.1 Example of Open Package

This example is a dynamic array manager. All arrays in Ada are static. A package must bc .written

to handle variable length arrays. The reason this package was implemented as an open package was to

allow component selection and slices on objects of the type. The package specification is as follows:

GENERIC
TYPE elements IS PRIVATE;
TYPE ranges IS RANGE <;
TYPE static_ranges IS RANGE <>;
TYPE static_arrays IS array(static_ranges RANGE <>) of elements;
WITH FUNCTION indexof (element : IN staticarrays)

RETURN ranges;
WITH FUNCTION arrayof (index IN ranges)

RETURN static-arrays;
nullelement IN elements;
maximumarray IN ranges;
maximum indexlength IN ranges;

PACKAGE dynamic arraymanager IS

TYPE dynamicarrays IS array(l .. maximumarray +
maximum_indexlength) of elements;

SUBTYPE lengths IS ranges RANGE 0 .. maximumarray;
SUBTYPE indices IS ranges RANGE 1 .. maximum_array;
SUBTYPE counts IS ranges RANGE 1 .. maximum-array + 1;

overflow : EXCEPTION;
out of bounds : EXCEPTION;
index-overflow EXCEPTION;

--CONVERSIONS

FUNCTION static-arrayof (dynamicarray : IN dynamicarrays)

RETURN static-arrays;
- Converts a dynamic to a static array.

FUNCTION dynamic_arrayof (staticarray IN static_arrays)
RETURN dynamicarrays;

-- Converts a static to a dynamic array.
-- Raises indexoverflow if array is not large enough to hold length value.

FUNCTION length_of (dynamicarray : IN dynamicarrays)

81

RETURN lengths;
-- Returns the current length of a array.

FUNCTION nullarzay RETURN dynamicarrays;
-- Returns a null dynamic array.

- -SEARCHING

FUNCTION previous_index of (element IN elements;
within IN dynamicarrays;
before IN counts)

RETURN lengths;

-- Finds the index of the previous element specified.

-- If element is not found, returns 0.

-- Raises out-ofbounds if specified index is longer than array.

FUNCTION next index of (element IN elements;
within IN dynamicarrays;
after IN lengths :- lengths'first)

RETURN lengths;
-- Finds the index of the next element specified.

If default value of after is taken, searches from beginning of array.
-- If element is not found, returns 0.

-- Raises out-of-bounds if specified index is longer than array.

FUNCTION previous_indexof (subarray IN staticarrays;
within :IN dynamicarrays;
before IN counts)

RETURN lengths;
-- Finds the index at the end of the previous array specified.
-- If array is not found, returns 0.
-- Raises out-of-bounds if specified index is longer than array.

FUNCTION nextindexof (subarrav !N staticarrays;
within IN dynamic_arrays;
after IN lengths :- lengths'first)

RETURN lengths;
-- Finds the index at the beginning of the next array specified.
-- If default value of after is taken, searches from beginning of array.
-- If array is not found, returns 0.
-- Raises out-of-bounds if specified index is longer than array.

--DYNAMIC OPERATIONS

FUNCTION "&" (left IN dynamicarrays;
righ: IN dynamicarrays)

RETURN dynamic_arrays;
-- Concatenates two arrays together.

-- This operation must be used in place of predefined "&" in order to
- set the length of the new array correctly.

82

-- Raises overflow if resultant array exceeds maximumarray.
-- Raises index overflow if array is not large enough to hold length value.

PROCEDURE append (dynamicarray IN dynamic_arrays;
to IN OUT dynamicarrays);

-- Appends one array to the end of another.
-- Raises overflow if resultant array exceeds maximumarray.
-- Raises index overflow if array is not large enougn to hold length value.

PROCEDURE insert (dynamicarray IN dynamic_arrays;
into IN OUT dynamic_arrays;
startingat IN counts);

-- Inserts one array into the middle of another.
-- Raises overflow if resultant array exceeds maximum array.
-- Raises out of bounds if specified index is longer than array.
-- Raises index overflow if array is not large enough to hold length value.

PROCEDURE remove (dynamic array OUT dynamic_arrays;
from IN OUT dynamicarrays;
startingat IN indices;
stoppingat IN indices);

-- Removes a subarray from a array.
-- The array from which the subarray is removed is changed.
-- Raises out of bounds if either specified index is longer than array.
-- Raises index-overflow if array is not large enough to hold length value.

PROCEDURE foreshorten (dynamicarray IN OUT dynamicarrays;
to : IN counts);

-- Foreshortens a array from the beginning.

-- Raises out of bounds if specified index is longer than array.
-- Raises indexoverflow if array is not large enough to hold length value.

PROCEDURE truncate (dynamic array IN OUT dynamicarrays;
to : IN lengths);

-- Truncates a array from the end.
-- Raises out of bounds if specified index is longer than array.
-- Raises index overflow if array is not large enough to hold length value.

END dynamic arraymanager;

There are several things to notice about this example:

* The package is built around type 1DynamicArrays. It is implemented as an open type
This means that the user has access to its structure.

83

Several of the generic formal parameters are needed to define the class: Elements, Ranges,
MaximumArray, and MaximumjndexLength.

Types Static-Ranges and Static-Arrays are needed to allow conversions between static and
dynamic arrays.

The other generic parameters provide values and operations needed by class.

The subprograms in the visible part of the package specification are operations exported
by the class.

Subtypes Lengths, Indices, and Counts are neeaed by several of these subprograms.

The three exceptions are further declarations needed by a user of the package.

A.2 Example of Private Package

This example is a date managing package. The package specification is as follows:

PACKAGE datemanager IS

TYPE dates IS PRIVATE;

maximum_year : CONSTANT "- 0_000;
maximum daysper year : CONSTANT :-366;

TYPE years IS RANGE -maximum_year .. maximumyear;
-- Positive years are CE years. Negative years are BCE years.
-- There is no year 0.

TYPE months IS (january february march april
may , june july august
september, october november , december)"

TYPE days IS RANGE 1 .. 31;
TYPE numbers of days IS RANGE -maximum Year * maximum daysper year

maximum_year * maximum daysper year;

null-date : CONSTANT dates;

date overflow : EXCEPTION;
dayoverflow : EXCEPTION;
invalid-date : EXCEPTION;

- - CONVERSIONS

FUNCTION dateof (year : IN years;
month : IN months;
day : IN days)

RETURN dates;
Converts from years, months, and days to dates.

-- Raises invalid-date if year, month, and day do not represent a

84

-- possible date.

PROCEDURE split (date :N dates;
year OUT years;
month OUT months;
day OUT days);

-- Converts from dates to vears. months. and days.

--CURRENT DATE

FUNCTION current date RETURN dates;
-- Returns the current date.

--ARITHMETIC OPERATIONS

FUNCTION "+" (left IN dates;
right IN numbers of days)

RETURN dates;
-- Adds a number of numbers of days to a date.
-- Raises dateoverflow if resultant date is out of range.

FUNCTION "+" (left IN numbers of days;
right IN dates)

RETURN dates;
-- Adds a number of numbers of days to a date.

-- Raises date-overflow if resultant date is out of range.

FUNCTION "-" (left dates;

right IN numbers of days)
RETURN dates;

-- Subtracts a number of numbers of days from a date.

-- Raises date-overflow if resultant date is out of range.

FUNCTION "-" (left IN date5;
right IN dates)

RETURN numbers of days;
-- Subtracts one date from another and returns the number of
-- numbers of days.
-- Raises day overflow if number of days is out of range.

- -COMPARISONS

FUNCTION "<" (left IN dates;
right IN dates)

RETURN boolean;
-- Returns whether left is less than right.

FUNCTION "<-" (left IN dates;
right I, dates)

RETURN boolean;

35

-- Returns whether left is less than or equal to right.

FUNCTION ">" (left IN dates;
right IN dates)

RETURN boolean;

-- Returns whether left is greater than right.

FUNCTION ">-" (left IN dates;
right IN dates)

RETURN boolean;

-- Returns whether left is greater than or equal to right.

PRIVATE
TYPE dates IS RANGE -maximum-Year * maximum days peryear

maximum-year * maximum days pervear;

null-date : CONSTANT dates :- 0;
-- 1 represents January 1, 1 CE. -1 represents December 31, 1 BCE.

END datemanager;

There are several things to notice about this example:

The package is built around type Dates, which is implemented as a private type. This
means that predefined assignment and equality are available to the user of the package.

The subprograms in the visible part of the package specification are operations exported
by the class.

Types Years, Months, Days, and NumbersOfDays are needed by several of these
subprograms.

The constant NullIDate and the three exceptions are further declarations needed by a user
of the package.

86

A3 Example of Limited Package

This example is a standard doubly linked list manager. The package specifiction is as follows:

GENERIC
TYPE items IS LIMITED PRIVATE;
WITH PROCEDURE assign (item IN items;

to OUT items) IS <>;
WITH FUNCTION "-" (left IN items;

right IN items)
RETURN boolean IS <;

WITH FUNCTION "<" (left IN items;
right IN items)

RETURN boolean IS <>;
PACKAGE doubly linked_list manager IS

TYPE doublylinked lists IS LIMITED PRIVATE;

TYPE directions IS (forward, backward);

overflow EXCEPTION;
no list EXCEPTION;
no item EXCEPTION;
out-of-bounds EXCEPTION;

--STATE

PROCEDURE view (list IN doublylinkedlists;
as OUT doubly_linked_ist s;

- Creates another view of the same list.

PROCEDURE copy (list IN doubly_linked_lists;
to OUT doubly_linked_lists);

-- Makes a copy of the list.
-- Raises overflow if storage is exceeded.

PROCEDTaE create (list OUT doubly_linked_lists);
-- Allocates head and tail of list.
-- Sets current item to head.
-- Raises overflow if storage is exceeded.

PROCEDURE destroy - (list : IN OUT doublylinkedlists);
-- Deallocates list.

FUNCTION isnull (list IN doubly_linked_lists)
RETURN boolean;

-- Returns true if list does not exist.

FUNCTION is-empty (list IN doublylinkedlists)
RETURN boolean;

P7

-- Returns true if list has no items in it.
-- Raises no list if list does not exist.

--WRITE

PROCEDURE insert (item IN items;

into IN OUT doubly_linkedlists;

going IN directions :- forward);

-- Inserts item in order in list.

-- I at least one identical item already exists in list and direction
-- is forward, inserts new item after last identical item.

-- If at least one identical item already exists in list and directicon
- is backward, inserts new item before first identical item.

-- Sets current item to item inserted.
-- Raises no list if list does not exist.

-- Raises overflow if storage is exceeded.

PROCEDURE modifycurrent_item (within IN OUT doublylinkedlists;
to IN items;
going IN directions :- forward;

-- Modifies current item in list with specified values.

-- If modification necessitates relocation of item in list, moves item.
-- if at least one identical item already exists in list and direction
-- is forward, inserts new item after last identical item.

-- If at least one identical item already exists in list and direction
-- is backward, inserts new item before first identical item.
-- Raises no list if list does not exist.

-- Raises no item if there is no item at current location.

PROCEDURE delete current item (from IN OUT doublylinked_lists;
going IN directions - for-ard),

-- If specified direction is forward and item is only item in !ist,
-- sets current item to tai-.
-- Otherwise, sets current item to next item.
-- If specifieQ direction is backward and item is only item in list,
- sets current item to head.

-- Otherwise, sets current item to previous item.
-- Raises no list if list does not exist.

-- READ

PROCEDURE lccate (item IN items;
found OUT boolean,
within IN OUT doubly_linkedlists;

going IN directions forward;
again IN boolean false);

-- Sets current item to item.

-- If item is not found, withi-n does not change.

-- If specified direction iz forward, searches from head of list.

-- If specified direction is o~rkward, s arches from tail of list.
-- If again is true, searches for next item in same direction.

P8

-- Raises no-list if list does not exist.

FUNCTION curr~ntitemin (list IN doubly linkedlists)
RETURN items;

-- Returns current item in list.

-- Raises no list if list does not exist.

-- Raises no-item if there is no item at current location.

- -TRAVERSE

PROCEDURE set tohead (list IN OUT doubly_linked lists)"
-- Sets current item to head.

-- Raises no list if list does not exist.

PROCEDURE settotail (list IN OUT doubly linkedlists)"
-- Sets cur'ent item to tail.

-- Raises no-list if list does not exist.

FUNCTION atheadof (list IN doubly linkedlists)
RETURN boolean;

-- Returns true if previous node is head of list.

-- Raises no-list if list does not exist.

FUNCTION attailof (list IN doubly linkedlists)
RETURN boolean;

-- Returns true if next node is tail of list.
-- Raises no list if list does not exist.

PROCEDURE step forwardin (list : IN OUT doubly_linkedlists);
-- Sets current item to next item in list.
-- Raises no list if list does not exist.

-- Raises out-of-bounds if next position is tail of list.

PROCEDURE stepbackward in (list IN OUT coubly_linked_lists);
-- Sets current item to previous item in list.
-- Raises no list if list does not exist.

-- Raises out-of-bounds if previous position is head of list.

GENERIC
TYPE inputs IS LIMITED PRIVATE;
TYPE outputs IS LIMITED PRIVATE;

WITH PROCEDURE process (data IN OUT items;
using IN inputs;

updating IN OUT outputs;
again OUT boolean);

PROCEDURE traverseforwardin (list IN OUT doublylinked_'ists;
using IN inputs;
updating IN OUT outputs);

-- Iterates forward over each item in list.

-- Raises no list if list does not exist.

GENERIC

89

TYPE inputs IS LIMITED PRIVATE;
TYPE outputs IS LIMITED PRIVATE;
WITH PROCEDURE process (data IN OUT items;

using IN inputs;
updating : IN OUT outputs;
again OUT boolean);

PROCEDURE traversebackwardin (list IN OUT doublylinked lists;
using IN inputs;
updating : IN OUT outputs);

-- Iterates backward over each item in list.
-- Raises no list if list does not exist.

PRIVATE
TYPE nodekinds IS (head node, component, tail node);
TYPE contents (node : nodekinds :- component);

TYPE content-links IS ACCESS contents;

TYPE contents (node • nodekinds :- component) IS rECORD
CASE node IS
WHEN head node ->

first : content links :- NULL;
WHEN component ->

previous content links :- NULL;
i:em items;
next content-links "- NULL;

WHEN tail node ->

last content links "- NULL;
END CASE;

END RECORD;

TYPE doublylinked lists IS RECORD
head content links NULL;
current content links NULL;
tail content links NULL;

END RECORD:

nulllist : CONSTANT doublylinked_lists :- (NULL, NULL, NULL);
END doublylinkedlist manager;

There are several things to notice about this example:

The package S built around type Doubly LinkedLists, which is declared as a limited
private type.

The package is parametenzed by the type lIems, which it imports. The operations it also
imports in the generic formal part are needed to support manipulation of objects of type
Items. This is because Items is imported as a limited private type to allow instantiation
with any type.

The subprograms in the visible part of the package specification are operations exported
by the class.

90

* Type Directions is needed by several of these subprograms.

The package contains two iterators, Traverse ForwardIn and Traverse BackwardIn. These
are generic procedures instantiated with the types to be input and output and a procedure
Process to be executed at each node of the linked list. Process allow~s the data at each
node to be updated or read, passes in and out information to be used or acquired at each
node, and contains an out parameter Again to signal the iterator to abort the traversal if
it is set to False.

The constant Null List and the four exceptions are further declarations needed by a user
of the package.

A.4 Example of Opaque Package

This example is a network traversal simulator, which simulates the movement of any sort of object

(e.g., trains, cars, messages, water) over any sort of network (e.g., tracks, roads, wires, pipes). The package

specification is as follows:

WITH
calendar;

GENERIC

TYPE directions IS (C);
TYPE states IS (Q);
TYPE datum ids IS RANGE 0;
TYPE node ids IS RANGE <>;
TYPE node indices IS RANGE <>;
TYPE lengths IS RANGE <>;
TYPE tolerances IS RANGE C>;
TYPE data, IS PRIVATE;

WITH FUNCTION backward RETURN directions;
WITH FUNCTION forward RETURN directions;
WITH FUNCTION neither RETURN directions;
WITH FUNCTION starting RETURN states;
WITH FUNCTION stopping RETURN states;
WITH FUNCTION normal RETURN states;
WITH FUNCTION deadlocked RETURN states;

WITH FUNCTION datum id of (datum IN data)
RETURN datum-ids;

WITH FUNCTION direction-of (datum IN data)
RETURN directions;

WITH FUNCTION length-of (datum IN data)
RETURN lengths;

WITH FUNCTION tolerance-of (datum IN data)
RETURN tolerances;

WITH FUNCTION next node index of (datum IN data)
RETURN node-indices;

91

WITH FUNCTION at-destination (datum : IN data)
RETJRN boolean;

WITH FUNCTION exittimeof (datum IN data)
RETURN calendar.time;

WITH PROCEDURE process (datum IN OUT data;
node id IN node ids;
state IN states);

null datum : IN data;
null node id : IN node-ids;
nullnodeindex IN nodeindices;

PACKAGE networkmanager IS

-- This package simulates the mcvement of any number of data items on a
-- network of any configuration. All data items are added to and removed
-- from their nodes on a first-in-first-out basis.

-- Generic formal subprogram Process is called in the following situations:

-- o when a data item is added to a node,

-- o when a data item is transferred from one node to another,

-- o when a data item is removed from a node,

o when a data item cannot be transferred due to deadlock.

-- Process receives the current state of the node as either starting,
-- stopping, normal, or deadlocked. It should then take the action

-- appropriate to the application.

TYPE nodes IS PRIVATE;

TYPE node-groups IS ARRAY(node ids RANGE <>) OF nodes;

null-node : CONSTANT nodes;

overflow : EXCEPTION;
no node : EXCEPTION;

PROCEDURE create (node OUT nodes);

-- Creates a new node.
-- Raises Overflow if available storage is exceeded.

PROCEDURE destroy (node : IN OUT nodes);

-- Destroys node.

92

PROCEDURE connect (node IN nodes;
named IN node_ids;
oflength IN lengths;
with tolerance : IN tolerances;
to-follow : IN node-groups;
toprecede : IN node-groups);

-- Initializes node with a name, a length, and a tolerance.
-- Connects node with others, both in front and behind.
-- If there is no other node, it should be set to null.
-- Raises No Node if node does not exist.
-- Raises Overflow if available storage is exceeded.

PROCEDURE add (datum IN data;
to IN nodes);

-- Adds a new data item to node designated by to.
-- Raises No Node if node does not exist.
-- Raises Overflow if available storage is exceeded.

PROCEDURE enable (node IN nodes);
-- Allows execution of node.
-- Raises NoNode if node does not exist.

PROCEDURE disable (node : IN nodes);
-- Suspends execution of node.
-- Raises No Node if node does not exist.

PROCEDURE start (node : IN nodes);
-- Initiates execution of node.
-- Raises NoNode if node does not exist.

PROCEDURE stop (node : IN nodes);
-- Terminates execution of node.
-- Raises NoNode if node does not exist.

PRIVATE
TYPE node objects;
TYPE nodes IS ACCESS nodeobjects;

null node : CONSTANT nodes :- NULL;
END network-manager;

There are several things to notice about this example:

The package is built around type Nodes. It is implemented as an opaque type.

The package 'withs" package Calendar. This is because Calendar is at a lower level of
abstraction.

93

Several of the generic formal type parameters are attributes of the class: Directions,
Noe Ids, Lengths, Tolerances, and Data.

The other generic formal type parameters are needed for the imported operations- functions
Backward, Forward, Neither, Starting, Stopping, Normal. and Deadlocked are needed as
values of generic formal types Directions and States; and the generic formal object
parameters are other values needed by the class.

S The remaining generic formal subprograms are imported operations needed by the class.

0 The subprograms in the visible part of the package specification are operations exported
by the class.

0 Type NodeGroups is needed by several of these subprograms.

• Constant Null-Node and the two exceptions are other declarations needed by a user of the
package.

A.5 Example of Closed Package

This example is a package to log messages in a concurrent system. It is implemented as a closed

package, the definition of the log type being hidden in the package body. Consequently, a!l that appears

in the interface are operations. The package specification is as follows:

PAC}XGE logmanager IS

PROCEDURE createlog;
-- Creates log in memory.

PROCEDURE destroy log;
-- Removes log from memory.

PROCEDURE log (item : IN string);
-- Adds entry to log.

PROCEDURE dump log (to : IN string);
-- Writes log to disk.

END log manager;

There are several things to notice about this example:

The type around which this package is built is hidden in the package body.

The subprograms in the visible part of the package specification are operations exported
by the class.

94

APPENDIX B. MODEL VENDORS/POINTS OF CONTACT (POC)

Each of the models included in this study are undergoing continual revision as developers receive
feedback from their users. For additional information about a model or package, the designated
vendor/point of contact listed in Table B-1 should be contacted.

TABLE B-I. MODEL VENDORS/POINTS OF CONTACT (POC)

Ada COCOMO Mr. Bernie Roush
NASA Johnson Space Center

Mail Code FM 7
Houston, TX 77058
(713)483-9092

PRICE S Dr. Robert E. Park
PRICE Systems
General Electric Company
300 Route 38, Bldg. 146
Moorestown, NJ 08057
1-800-GE-PRICE

SASET Mr. Steve Gross
Naval Center for Cost Analysis
Department of the Navy
Washington, DC 20350-1100
(202) 694-0173

SoftCost-Ada Mr. Donald Reifer
Reifer Consultants, Inc.
25550 Hawthorne Blvd, Suite 208
Torrance, CA 90505
(213) 373-8728

95

TABLE B-i. COST MODEL PORT OF CONTACT (Continued)

SPQR/20 Mr. Wa-xae Hadlock
Software Productivity Research, Inc.
P.O. Box 1033
1972 Massachusetts Avenue
Cambridge, MA 02140
(617) 495-0120

SYSTEM-3 Mr. Wayne Stanley
Computer Economics, Inc.
Suite 109
4560 Admiralty Way
Marina del Rey, CA 90292-5424
(213) 827-7300

DoD: Lt. Paul Marsey
Wright-Patterson AFB
(513) 255-6347

96

TABLE B-2. ADA COCOMO IMPLEMENTATIONS POINTS OF CONTACT (POC)

BMO* Lt. Darrish
Headquarters BMO-ACS
Norton AFB, CA 92409-6468
(714) 382-4713 Autovon: 876-5836

COSTAR Mr. Dan Ligett
Softstar Systems

28 Ponemah Road
Amherst, NH 03031
(603) 672-0987

COSTMODL Mr. Bernie Roush
NASA Johnson Space Center
Mail Code FM 7
Houston, TX 77058
(713) 483-9092

GECOMO Ms. Susan Boers
GEC Software
1850 Centennial Park Drive, Suite 300
Reston, VA 22091

(703) 648-1551

Mr. Peter Sizer
132-135 Long Acre'
London WC2E England
44-1-240-7171

* Currently does not include Incremental Development.

Restricted use to Government only.

97

98

APPENDIX C. HARDWARE REQ uMENTs

Table C-1 summarizes the hardware requirements for each of the models. All of the models areavailable on an IBM PC (or compatible). Additional details concermng hardware requirements are provided
in the aoowing text.

TABLE C.1. HARDWARE REQUIREMENTS

IBM PC ZENITH-248 PRIME VAX MODEM

COSTMODL x I

PRICE S X X Ix

SASET x

SoftCosc-Ada X I

SPQR/20 x i
SYSTEM- 3 x x

X - Available to DoD and Commercial users

99

1. COSTMODL: COSTMODL runs on IBM PCs and compatibles. A hard disk and 640K bytes of
memory are required. Any monitor may be used, but a color monitor is preferred since color is
used to differentiate between different classes of data.

"2. PRICE S: PRICE S runs on a PRIME minicomputer operating under PRIMOS. Ih. addition.
PRICE S car, be accessed via a time-sharing system with an office terminal and sundard modem.

3. SASET: SASET may be hosted on any IBM PC or compatible with a minimum of 512K bytes ct
memory, one disk drive, and an 8088/86, 80186, 80286, 80386 microprocessor running PC-DOS or
MS-DOS, version 2.0 or higher. The model functions with either a color or monochrome monitor.
A hard disk and printer arc optional.

4. SoftCost-Ada: SoftCost-Ada runs on an IBM PC, PC/XT, PC/AT, PS/2 or cnmpatible w;!h a
minimum of 256K bytes of memory and a color or monochrome display. The s-.- eCM recuires PC-
DOS or MS-DOS, version 2.0 or higher. A minimum of one floppy disk drive is requireu. A hard
disk drive and printer are optional. SoftCost-Ada may also be hosted on the Digital MicroVax II
or VAX 11/780 with VMS version 4.6 or higher.

5. SPQR'20: SPQR/20 runs on an IBM PC, XT, AT, or compatible with 512K bytes of memory and
a color or monochrome display. Two floppy disk drives or a fioppy disk drive and a hard disk
drive are required.

6. SYSTEM.3: SYSTEM-3 runs on an IBM PC, XT, AT. Zenith 248 or w.ompatibles with a minimum
of 512K bytes of memory and a color or monochrome display. The system recuires PC-DOS or
MS-DOS, version 2.0 or higher. A minimum or one floppy disk drive is required.

100

APPENDIX D. CONTRACTUAL ARRANGEMENTS AND COSTS

Tables D-1 and D-2 summarize the availability and cost of models applied in the test case study.

Table D-1 summarizes the availability of each model to DoD and commercial users. Availability through

request means that a potential user can receive the model at no cost by contacting the model POC. The

model is received on diskettes that are provided by the requesting agency. Table D-2 shows the DoD rates

for each of the models. Seqrate .oinmercial rates apply to PRICE S and System-3. Additional costs may
be associated with user training, which is required for some of the models. Also, rates will vary depending

upon the type of licensing agreement procured (annual, site, corporate, etc.).

1. COSTMIIODL: COSTMODL is available to all DoD and commercial users. Version 5.0
of COSTMODL is available by contacting Bernie Roush at NASA- Johnson Space Center.
Version 5.0 implements the complete Ada COCOMO model and the Incremental
Development model which were introduced by Dr. Boehm at the November 1987 COCOMO
User's Group Conference. It does not include the enhancements to the Ada model that
Dr. Boehm introduced at the 1988 COCOMO User's Group Conference. Enhancements
will be incorporated in Version 6.0. Requests should be accompanied with three 360K
5.25" disks. Implementors are currently soliciting feedback on the package's user interface.
After upgrades, COSTMODL will be available from

NASA/COSMIC
The University of Georgia
Computer Services Annex
Athens, GA 30602
(404) 542-3265

There is a nominal handling charge for the program.

2 PRICE S: PRICE S is part of the PRICE system of models that includes PRICE SZ for
software sizing, and PRICE SL for software life-cycle costs (maintenance, enhancement, and
growth activities associated with life-cycle support). Government users can use the PRICE
S package on a time-sharing basis at $82 per hour (through 11/91) by contacting L. Ken
Nelson of the Aeronautical Systems Division at Wright Patterson AFB. Commercial users
can use the PRICE S package on a time-sharing basis at S15/hour of connect time and

TABLE D-1. CONTRACTUAL ARRANGEMENTS

PURCHASE LEASE TIME SHARE REQUEST

COSTMODL

I x x
PRICE S 4

SASET
SX __

SoftCost-Ada I 4
x I

SPQR/20 lx I
SYSTEM-3 I _

TABLE D-2. LEASE/PURCHASE RATES (DoD)

FIRST UNIT EXTRA UNIT TIME SHARE

No Cost
COSTMODL I

I $82/Hour
PRICE S 4

No cost, but
I controlled accessi

SASET

$8,000 I $1,000/Copy
SoftCost-Ada ,

$5,000 I Negotiable
SPQR/20 I

$9,550/Year I $800/Copy
SYSTEM-3 _

102

SO.060/resource unit of CPU time by contacting PRICE Systems at Moorestown, New
Jersey, but they must also pay an access fee of S40,000/year ior one unit or $60,000/year
for unlimited access. Commercial users can also lease the PRICE S package for installation
on their own PRIME minicomputer at S60,000/year for one user at a time or SS0.000/year
for unlimited access. A one week training course is mandatory and costs S1.312.50 (through
11/91) for a government student or S1,750 for a commercial student. These costs include
refresher training, manual updates, technical assistance, and newsletter at no additional
charge.

3. SASET: SASET is presently being used by the U.S. Air Force Cost Center and the Naval
Center for Cost Analysis. Availability to DoD users on a broader basis is an issue that will
be decided by Mr. Steve Gross and the Naval Center for Cost Analysis. There are presently
no plans to market the SASET model, but Martin Marietta Corporation may market a
derivative model.

4. SoftCost-Ada: SoftCost-Ada is available for a monthly or annual licensing fee. The
SoftCost-Ada PC version annual licensing fee for one unit costs S8,000. The price for
additional copies is S1,000. A site license is S11.000. The SoftCost-Ada Vax version costs
$8,000 for the first license (4 users) and S1,000 for each additional license (4 users). Prices
include a telephone help line and system upgrades at no additional charge. SoftCost-Ada
Vax version site licensing agreements are negotiable. A GSA contract is being negotiated
which will result in a discount for DoD users.

5. SPQR/20: A SPQR!j0 one time licensing fee for purchasing one unit costs 55,000. Site
licenses and multi-volume purchases are negotiable.

6. SYSTEM-3: The System-3 annual rate for government users is S9,5501year (or one unit;
additional units (two and three) are $800/year and S600/year for four or more units. The
System-3 annual licensing fee for commercial users is S12,500 for one unit; additional units
(two through four) are S2,000/year. In addition, further price reductions are available for
blocks of live, ten. 25 and 50 units. System-3 has a training course available. This course
is stron:v. recommended and costs S790/person when given at the CEI facility. Training
at the customer's facility (up to 20 persons per session) is S4500/session plus travel and
living expenses for CEI personnel. Commercial training costs are $5,800/per session plus
travel and living expenses. Prices include a telephone help line and system upgrades at no
additional charge.

103

104

APPENDIX E. SCOPE OF COVERAGE. LIFE-CYCLE PHASES AND ACTIVITIES

With the exception of SPQR/20, each model included in this Ada costing study generates an

effort expenditure summary in terms of the software cost elements encompassed by the estimate

and by life-cycle phase. SPQR/20 provides estimates only in terms of the software project activity.

However, these activities can be mapped to life-cycle phases. Table E-2 shows the range of life-

cycle phases covered by each model. Phases are mapped to technical reviews and audits [DOD-

STD-2167A] in order to provide a basis for comparison of models in terms of life-cycle coverage.

Blocks depicted in Table E-1 are labelled using the same phase terminology prescribed by each

model It is evident from the table that phases are not defined in a standard way across all

models. All of the models cover the operational or maintenance phase in addition to

development. Operational support, following successful completion of a software acceptance

review (FQR), estimated for each model is provided in Table E-1.

A breakdown of software cost elements encompassed by the model estimates is provided in

Table E-3. Activities are described using the exact terminology of the model. A separate estimate

given in terms of person-months of effort is provided for each cost element.

TABLE E-. OPERATIONAL SUPPORT ACTIVITIES

COSTMODL: Annual maintenance

PRICE S: Operational support for user-specified
length

SASET: Operational support for user-specified
length

SoftCost-Ada: Operational support for user-specified
length

SPQR/20: Up to 5 years of operational support

SYSTEM-3: 15 years of operational support

105

TABLE E-2. SCOPE OF COVERAGE: LIFE-CYCLE PHASES

- . 0.

ICA

U, , r , i
-- 0-m a-

I ! -i
to 0 I

-C M

r- - --
I I, I . i

nI

1 CD

o - I n I -

to

I I I I 00II

CL I l I CL

aI I I I Ir I 0.-

4 _------ --------------- eeee --- e

1! I 0 0

0. I I I I ~ ~ I 21 1 . I I

C ICI

I~ z

L _ . - - - - I - - - -

in I I I I I I I I 106i

TABLE E-3. SOFTWARE COST ELEMENTS ENCOMPASSED BY MODEL ESTIMATES

MODEL ACTIVITY

COSTMODL Requirements Analyses
Product Design
Programming
Test Planning
Verification and Validation
Project Office

* Configuration Management/
Quality Assurance

Manuals

PRICE S Software Design
Programming
Documentation
Systems Engineering and Program
Management
Quality Assurance
Configuration Management

SASET Software Engineering
Systems Engineering
Quality Assurance
Test Engineering

SoftCost-Ada Software Development
Software Management
Software Configuration Management
Software Quality Evaluation

SPQR/20 Planning
Requirements
Design
Coding

Integration/Test
Documentation

Management

SYSTEM-3 Systems Engineering
Project Management
Design
Programmers
Quality Assurance
Configuration Management
Test
Data Manipulation

107

108

APPENDIX F. GENERIC UNITS & TEMPLATE GENERATORS

Two techniques that directly support reuse are the use of generic units and the use of

template generators. These two are similar in that each is used to reduce the amount of coding

required by a programmer. In the case of a generic unit, a unit (e.g., a subprogram) is written

with the use of parameters in place of data types or subprogram declarations. To instantiate the

unit requires only that actual data types or declarations replace the parameters. Template

generators provide the structure for a segment of code. The structure is based on patte.-7.s of

program statements that repeat. In this case, the programmer fills in the portions of the template

unique to a particular use. Generic units and template generators are each described in more

detail in this appendix.

Generic Units.

Generic units in Ada are templates that are filled in by the generic instantiation. Generic

units can be either packages or subprograms. All generic units contain a generic formal part in

which generic formal parameters are specified. The generic formal parameters are the "wildcards"

in the template. Upon instantiation, matching actual parameters must be supplied for the generic

formal parameters. These matching actual parameters are either supplied explicitly or by default.

There are three kinds of generic formal parameters:

* generic formal types

* generic formal objects

* generic formal subprograms.

Generic formal types allow a generic unit to be parameterized for a given type. Generic

formal objects act as either constants or global variables, depending on their mode. A generic

formal object of mode in will behave like a constant in the generic unit; a generic formal object

of mode 'in out" will behave like a global variable. Generic formal subprograms allow procedures

and functions required by the generic unit to be imported by that unit. In general, generic formal

109

parameters allow entities to be passed to a generic unit from above, by the unit that %withs' and

instantiates the generic unit, rather than from below, by %vithing' a lower-level unit.

The following is a typical example of a generic unit:

generic
type Items is limited private;
with procedure Assign (Item : in Items;

To : out Items);
with function "-" (Left : in Items;

Right : in Items)
return Boolean is <>;

with function "<" (Left in Items;
Right in Items)

return Boolean is <>;

package DoublyLinkedListManager is

-- package specification

end Doubly_Linked-List Manager;

In this instance DoublyLinked ListManager is parameterized by the type Items, which

defines the components of the linked list. In addition, the package needs the subprograms Assign

and "=" because type Items is limited private, and 0<' because the items in the list need to be

ordered. There are no generic formal objects in this example.

Because generic units are templates, multiple instances of them can be created by

parameterizing them in various ways. The linked list above is a good example of this. One can

create as many instances of a linked list for as many types of data as one likes by simply

instantiating the generic unit with each type that one needs. Clearly, generics provide L tool which

allows the programmer to create multiple instances of patterns detected in the application.

Template Generators

In Ada, generics were intended as a means of enhancing reuse among software components.

A generic unit is a template for a package or subprogram. Generics work particularly well for

abstract data types, such as linked lists, where a generic package can be instantiated with the type

out of which the linked list is to be constructed. However, generics do not cover all cases in

110

which a template is required. This is particularly the case when the structure of various library
units is the same but the content is different. As an example, consider the following two

subprogram bodies:

procedure Update_Units (Using : in Units) is
Unit : Units;

begin
Choose(Unit, From -> UnitsTable, Having -> Using.Id);
if Unit.Id - Null Id then
Insert(Using, Into -> Units_Table);

else
raise Duplicate_Key;

end if;
end UpdateUnits;

procedure Update_Personnel (Using : in Personnel) is
Person : Personnel;

begin
Choose(Person, From -> Personnel Table, Having -> Using.Name);
if Person.Name - Null Name then
Insert(Using, Into -> Personnel_Table);

else
raise DuplicateKey;

end if;
end UpdatePersonnel;

Notice that they both have a common structure. We might wish to take advantage of this
commonality and construct a generic procedure that would embody the common flow of control,
but which would be instantiated with the differences in content. Unfortunately, however, other
than the flow of control, practically everything else would have to be passed as a generic
parameter. This practically nullifies any advantage that would accrue from using a generic unit.

The interface would appear as follows:

generic
type Records is private;
type Keys "i7 private;
Table : in Tables;
NullKey : in Keys;
with procedure Choose (Rec : out Records;

From : in Tables;
Having : in Keys);

with procedure Insert (Rec : in Records;
Into : in Tables);

with function KeyOf (Rec in Records)

111

return Keys;
procedure Update (Using : in Records);

The generic formal parrmeters Records and Keys are necessary in order to make Update general

for all records in the daibase. The constants Table and NullKey and the procedures Choose

and Insert are needed in the body of Update. The function KeyOf is necessary because Update

does not know the structure ot Records and hence has no way of extracting the key field f-om the

record.

Given this information, the body would appear as follows:

procedure Update (Using : in Records) is
Rec : Records;

begin
Choose(Rec, From -> Table, Having -> KeyOf(Using));
if KeyOf(Using) - NullKey then
Insert(Using, Into -> Table);

else
raise DuplicateKey;

end if;
end Update;

In order to instantiate Update, matching functions for Key Of would have to be written:

function IdOf (Unit : in Units)
return Ids is

be gin
return Unit.Id;

end IdOf;

function NameOf (Person : in Personnel)
return Names is

begin
return Person.Name;

end NameOf;

Assuming the other information is all available globally, Update would then be instantiated

as follows for Units and Personnel:

procedure UpdateUnits is new Update(
Records -> Units,
Keys -> Ids,

112

Table -> Units Table,
NullKey -> Null Id,
Choose -> ChooseUnit,

Insert -> InsertUnit,
KeyOf -> Id_Of);

procedure Update_Personnel is new Update(
Records -> Personnel,
Keys -> Names,
Table -> Personnel Table,
NullKey -> NullName,
Choose -> ChoosePerson,
Insert -> InsertPerson,
Key Of -> Name_Of);

If one has to go to this much trouble to make a library unit generic, it is probably not worth

the effort The conclusion is that payoffs from using generics do not arise unless a substantial

portion of the content of the library unit is genericizable in addition to its structure. Nevertheless

it would be helpful to have a means of taking advantage of a common structure. The fact that

generics will not necessarily help in this regard does not mean that having some kind of

terplating mechanism is not a useful concept. It only highlights the necessity of having a tool

which usefully provides templates for library units whizh share only a common structure.

Let us explore this in more detail. What is needed is a tool that would produce procedures

Update-Units and UpdatePersonnel automatically. One approach that could be taken is to

define the template by writing a procedure in which the variant items are indicated by means of

symbols. A separate file of substitutions for these symbols could then be created. A tool could

read both files, replacing the symbols in the first file by the substitution-instances in the second.

In that way UpdateUnits and Update-Personnel could be generated automatically.

Below is an example of this technique. First a template for UpdateUnits and

Update-Personnel might be constructed as follows:

procedure <procedure_name> (Using: in <type_l>) is
<variable _> : <type I>;

begin
Choose(<variable_', From -> <table>, Having ->

Using.<key>);
if <variable I>.<key> - <constant_1> then

Insert <Using, Into -> <table>);
else

113

raise Duplicate_Key;
end if;

end <procedure name>;

Then a file of substitution-instances would be created for each procedure to be instantiated.

The one for procedure UpdateUnits might look like this:

procedure name Update Units
type_ 1 Units
variable 1 Unit
table Units Table
key Id
constant Null Id

A tool could easily read this file, store the equivalencies in memory, and generate UpdateUnits

by substituting the values in the right column for the symbols in the left.

114

Faim AwrovedREPORT DOCUMENTATION PAGE PM ft. 0704-%W

iti - WM VA I lre i atw %no I M m m , i e im up ,qpfw. a" "-a"-.m-- wi--t......

10 80M mwi O . OW WW mossuso~eim W lf 0i mw WAi
mi ~~~~VG" hwa- -QX~~Mww-bug.~ D

1. AGENCY USE ON.Y (Lom BW 2. P DAIMTE REPRT TYPE AMD ATES OOVERED

I July 1990 Final REport

4. TITLE AND SUBTITI1 S. FUNDING NUMBERS

Software Reuse Methods MDA903-87-D-O056

G.AUTHOR(S)

Steve Goldstein

7. PE-ORMWd ORGANLATION NAE(S) AND ADORESS(ES) I. PERFORMING ORGANIZATION
REPORT NUMBER

ITT Research Institute
4600 Forbes Boulevard
Lanham, MD 20706

9. SPONSORINWMONTiORING AGENCY NAME(S) AND ADORESS(ES) i0. SPONSORINGtMONITORING AGENCY
REPORT NUMBER

AJPO

3 E 114
The Pentagon
Washington, DC 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIOtWAVAILABILITY STATENEht 12b. DISTRIBUTION CODE

UNLIMITED

13. ABSTRACT (umnU 200 wmo-M)

Given the increasing number of computerized, software-driven

systems being designed and implemented throughout the Department of Defense

(DOD) and industry, reusability of software has become a critical endeavor.

To better prepare software engineers and computer programmers to address the

challenge of software reuse, the U.S. Army Communications and Electronics

Command (CECOM) has undertaken a program to investigate different software

reuse methods. Thi effort will provide guidelines on reuse strategies for

software developers. This report examines reusability characteristics,

domain analysis, domain-independent approaches, domain-specific approaches,

cost/benefit analysis for software reuse, and reuse metrics. , ,

14. SUS.ECTTERMS 15. NL).BER OF PAGES

SOFTWARE REUSE, REUSE METHODS, DOMAIN APPROACHES, COST BENEFIT 117

ANALYSIS, REUSE METRICS.
16. PRICE COE

17. SEWRt' LSSIFICAIO16 S-CUR:7y CJ.SSIFICATON. Ii. SEDURFTY UL.AssW)ATIOtN 20. IMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7540-O1-280-5500 itanoaro Form 29E, (fe. M -8)
P by ANSt Ad. 2M-1I

GENERAL INSTRUCTIONS FOR C01tAPLFETIt4 SE 29B
The Repor, Documentation Page (RDP) is used! ir. announcing and cataloging reports. 14 is Importan't
that this information be consistent with thie res! c' the report, particularly the cover and title page.
instructions for filling in each block of4 the forrm tollow. ht is important to stay within the lines to meet
optica! scanaing requirements.______________________

Block 1. Anny Ll-, Only (Iav blan~k). Block 12a. Dkirztiiii nrLAyaii!Pily S;tatment,
Denotes piblic availability or limita:.,ors. Cite

Block 2. Bepponr.Date. Full publication date any availability to the public. Ente' aduitional
including dlay, month, and year, i! available (e.g. limitations or special markinos in all: cap;ta~s
1 Jan 88). Must citE at least the year. teg NOFORN, REL, ITAR;..

Block 3. Typ~ne ort anr' r)t_5 rvrd
State whetner repor. is interim, final, etc. If DOD - See DoDD 5230.24, 'Distributionapplicable, enter inclusive report dates (e.g. 10 Statements or. TeChnicalJun 87 - 30 Jun 88). Documents.
Block 4. Title and SRuhfifle. A title is taken, trom DOE - Sef authoritiez..
the parl of the repor, that provides the m:;s, NAIS - Seae Hanbi.N. 2202meaninoful and complete information. Wrien a Ni ev ln.
report ii prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Ointrinution Coda
c;assif aed documents enter the tilie
classification in parentheses. DOD -DOD - Leave blank.
Block ; unimdn- N-irnerc To include contract DOE - DO= - Ente- DOE: distributior cateoories

and ran nuber; ma inuceproramfrom the Stanoa!rc Distribution for
elemen', number(S), projec'. number(s). task Unclassified- Scientifi: an,. TeChnical
number(s), anc work unit number(s). Use; the Report.

foliwin labls:NASA - NASA - Leave blank.folowi: abes:NTIS -NT1 - Leave blank.

C - Contract PR - Project
G - Granlt T A - Task Block 13. Abtract. Include a brief (MaximumPE - Prooram WU- Work Unit 20,r,' words) factual sumr-- of the most

Elemnt Acesior'No. significant information contained in the report.
Block 6. 4uthorte' Na mels; Of personfs'
responsioie 1101, v.,rifin tne repor. permiln: Block 14. SubJun* =, Key'words or phrases
tie researct, or crediitev- with trie conqten* o: tne ioentifying. major subjects in tne re~on.
re:o.1. i editor or compiler, this shcoulc follow
:n name(s). Elocai: 15. Numne, n! Enter the t -ta
Biocz'. 7. r-- Nana an number o pages.

As~sx S;-xanator'. Block 16E. Prina ndj Enter appropriate price
Block a. Pe_0 -=in Dr; fl :!tior' Roo code (KI!S oni).'
NLin - Enter ne unique alphanumeric report,
numboer(s) assionec by the organization Blocks 17.- 19. Security C~sssfiti -!s

penoman tnereprt.Self-explanatory. Enter U.S. Security
Blc~l-: ~.S~~i-Mn~icA~enc Classification in accordance with U.S. Security

a nfc A=~e~e Sellf-exp;anatory. Regulations (i.e., UNCLASSIFIED). If form
con' 'ains class;,' ez in! o, ,ation, stamp

Block 10. ~ ~classification on. the top ant, bonwmr of the paoe.
Repo.-L Nurnoer. (11. known)

Bloc 11 SUi~mn~,~ No~ EterBlock 20. Urnitatin- of Abst-2!t. This block
informatior. no, in:duced, -elsewhere such as: mu ab opee sinalmaist h
Prepared ir co'operation w;-i ... : Trans. of.; To0 abstra2ct. Enter eitria- UL (unlimited) o, SAR
be puohished in.... When a report, is revise'd. (sam)e as report,. An, entry in this block is
include a. sta~emen: whether the new repor! necessary if the abstrza,' is IC be limnited. If
sucersedes or, supplements tne oicer repo_)n blank, the abstract is assumed! to be unlimited.

Slancar: Foirr, 295 Baci (Rie%

