DTC FILE COPY

CECOM
CENTER FOR SOFTWARE ENGINEERING

SOFTWARE PROCESSING ENGINETLRING
TECHNOLOGY DIVISION

“TEC ’*

P
o e A n—
},'. £t T E'... J’" / fi',‘»'
'éf!j—t.‘ ¢ DF N £
., ’.’| . . (J e
B
K :‘n?
1 ‘5.?“'«',“"

AD-A230 265

Subject: - SOFTWARE REUSE METHODS
Final Report

Y TS T e
VAT T Iy e
! "ﬂ—--_.‘.::’_”. CATEMENT B |
) G od ..
o SToptimiie reis ek 3] ‘
‘»"“I—-J J-aﬁ U rad
222 Valiured

CIN:C04-08700-0001-00
JULY 1990

CLEARANCE OF INFORMATION FOR PUBLIC RELEASE

SUBMIT FORM IN TRIPLICATE

TO: Commanding General FROM: Director DATE: 2 Nov 90
U.S. Army CECOM CECOM Center for Softwarc Engineering
ATTN: AMSEL-IO ATTN: AMSEL-RD-SE-AST-SS
Fort Monmouth, N] 07703 Fort Monmouth, NJ 07703-5000

In compliance with AR 360-5, Public Information Policies, as supplemented, the attached manuscript /abstract is sub-
mitted for clearance for public release. (Material should be in triplicate if local clearance is requested, in 6 copies if

clearance through Headquarters, AMC, is required. See paragraphs (A) through (J) below).
Section 1. DESCRIPTION

TITLE
PATER: Software Reuse Mcethods
ABSTRACT

AUTHOR(S): Steve Goldstein NAME OF PERIODICAL
(If for publication): include country if outside CONUS
For submission to NTIS and/or DTIC

EXT NO: 22606

NAME OF CONFERENCE OR SYMPOSIUM (If for presentation):

DATE AND PLACE OF CONFERENCE:

DATE CLEARANCE REQUIRED: 2 Dec 90 PAPER DOES
X DOES NOT CONTAIN
CLASSIFIED INFORMATION

MATERIAL DOES _ X DOES NOT CONTAIN ANY OF THE FOLLOW-
INGMATTERREQUIRING AMC CLEARANCE.
IF SO, INDICATE AND EXPLAIN ON SEPA-

RATE SHEET:

(A) Information which is, or has the potential to become an item of national or internationa! interest.

(B) Information on subject of potential controversy among the military scrvices or with other federal agen-

Qaes.

(©) Information on new weapons or weapon systems or significant modifications or improvements to exist-
ing weapon svstems, equipment or techniques. Unofficial prior publication of such information does not

constitute authority for official release.

(D) Information on significant military operations, potential operations, operation security, and military cx-

ercises.

SEL FORM 1012, 1 Oct 1985
(Supersedes SEL Form 1011 and SEL Form 1012, 1 Jan 79)

d [}

(E) Ifformation on military applications in space; nuclear weapons and the components of such weapons,
induding nuclear weapons effects research; chemical warfare and defensive biological and toxic re-
search; hizh energy lasers and particle beams technology: and nuclear biological, chemical (NBC) de-
fense testing and production, policy. programs and activities.

(F) .Information and materials involving critical military technology.

» ++«*(G) Information concerning communications security, electronic warfare, signal intelligence, and comput-
er securitv.

(H) Subject matter involving or referring to other service interests or those of other government activities
outside AMC.

(I) Information on tests, studies or experiments not yet officially approved by appropriate echelon con-
cerned. For exampile, studies or tests directed by DA, AMC, or other agencies outside CECOM.

() Subject matter which by its nature implies official positions or scientific attitudes of higher headquar-
ters or agencies outside CECOM.
Section Il. DISTRIBUTION CONTROL

If document contains technical data information, a Distribution Statecment must be applied. Indicate the appropri-
ate statement in this section.

Approved for public release; distribution is unlimited.

Scction III. VERIFICATION

The attached manuscript docs not contain classified information. Additionally, understanding the hostile intelli-
gence in open source publications, the undersigned have individually conducted an OPSEC review, find its release
clearly consistent with the AMC OPSEC Program, and verify that it DOES__X____DOES NOT contain any
of the matter iterized in paragraphs (A) though (J).

7 Z ﬂf’
///‘/__/%)
Ap&vi& GPSEC Officer Pivision Chief
d

\-ped title) Signature/Date (Typed name anc title) Signature/ Date
JOSEPH ARETINO EDWARD J. GALLAGHER JR. GM-14
AMSEL-RD-SE-CRM-SE-O C, Software Eng Tech Branch, SPET Div, CECOM , CSE

S L 7 T

—7 0 s T

/_/Actfvfty Security Manager Agsociate D%ctor
vped nafme and title) Signaturc/Date (Tvped namc and title) Signature/Date
SEPH ARETINO iARTIN . WOLFE GM-15

AMSEL.PD CE CIM-SE-O C, Software Processing Eng Tech Div, CECOM , CSE

SEL FORM 1012, T Oct 1985
(Supersedes SEL Form 1011 and SEL Form 1012, 1 Jan 79)

SOFTWARE REUSE METHODS

Final Report

PREPARED FOR: US ARMY CECOM

CENTER FOR SOFTWARE ENGINEERING
AMSEL-RD-SE-AST
FORT MONMOUTH, NJ 07703

PREPARED BY: ITT RESEARCH INSTITUTE

4600 Forbes Boulevard
Lanham, Md 20706
oot fel N]
NTIS TRk '
SRV . ‘
l.'ﬁ ‘ ;»: B ‘l
o oawttalaly ‘__ ‘
JuLy 99 o, |
i i
i

The views, opinions, and findings contained in this report are those of the author(s) and should nct be canstruad as
an official Department ot Deleise position, policy, or decision, uniess so designated by other official documentation.

TABLE OF CONTENTS

Page
1.0 INTRODUCTION .. i i i i et i e e e e et e e e e e 1
1.1 DEFINITION OF REUSABILITY ..ttt ittt ittt ittt ts et tnaiaean e, 1
1.2 STOPE OF THIS REPOR T ittt it e et i et ettt e et e e i 2
2.0 REUSABILITY CHARACTERISTICS ... ittt ittt ittt et e e ettt e e e e e 3
21 DESIGN FACTORS ..ttt i ittt i ittt it ettt et et e e e e e e 3
22 PACKAGE FACTORS .. ittt it ittt e e et e e e e e e e e e e e e i, 6
23 PRESENTATION FACTORS it i ittt it e e e e et e e e i 6
3.0 DOMAIN ANALYSIS .. it i e et et et e et e e e e 9
3.1 THE NEIGHBORS APPROACH TO DOMAIN ANALYSIS 10
3.2 THE PRIETO-DIAZ APPROACH TO DOMAIN ANALYSIS 10
3.3 THE PROBLEM OF KNOWLEDGE ACQUISTTION it 11
3.4 DEFINING THE DOMAIN .. i e e e e e e e e e 12
2.5 DISCUSSIONS OF EXISTING EFFORTS ittt ittt ie i 12
3.5.1 Reuse of Software Elements (ROSE) ... ot ittt ittt it e e i e e 13
3.5.2 The Ravtheon L3111 1= 11 13
3.5.3 The Common Ada Missiie Package (CAMPY 13
3.5.4 The McCain ADDIOBChttt ittt ittt ettt et e 14
3.5.5 Tne Prieto-Diaz ApDIroach ittt it e e e e 14
3.5.6 DIaCO .. e e e e e e e e e 15
3.6 SUMMARY AND CONCLUSIONS ittt ittt ettt eeee e 16
4.0 DOMAIN-INDEPENDENT APPROACHES i i e e, 19
4.1 COMPONENT LIBRARIES/REPOSITORIESttt e 19
4.1.1 Desirable Characteristics of Software Compgnent Libraries/Repositories 19
4.1.2 Existing Software Component Libraries/Repositories 20
4.1.2.1 The Ada Software Repository (ASR) 21
4.1.2.2 Computer Software Management Information Center (COSMIC) .. 22
4.1.2.3 Common Ada Missile Packages (CAMP) 23
4.1.2.4 AdaNET .t ittt it ittt et e e e e e e e e e e e e 24
4.1.2.5 The Booch Taxonomy viiiiiivi ... 25
4.12.6 Other Library Systems, 26
413 Library Sl UD .. ittt it e e e e e 27
4.1.3.1 SearCh e e e e e e e e e e 28
4132 Retneval i i i e e e e e e e e 29
4.13.3 Configuration Management0iiiiin... 29
4.13.4 AdminiStrationttt ittt it ettt e ettt eaen 30
4.1.4 Summarv and RecCOMMENCELONS . . . v v v v v vt et oot omeeeeee e 31
42 COMMERCIAL COMPONENTS ..ttt it ittt ettt et tee e 33
43 A _DESIGN METHODOLOGY FOR PRODUCING REUSABLE COMPONENTS
(OBJECT-ORIENTED DEVELOPMENT) ..t ittt ittt et er et eenaenenn 35
4.3.1 QObiect-Oriented Requirements ARAIVSIS . . . v vt vt vt e e et e e, 35
43.2 Object-Oriented Design ... v v i it ittt ittt ce et e 37
4353 QObhiect-Orented Coding it e e 38
4.3.4 Risks of Obiect-Oriented Development« ..t eieeneunnnen . 41
5.0 DOMAIN-SPECIFIC APPROACHES i e e e e e e e i 43
5.1 GENERIC ARCHITECTURES i e e e e e e e i 43

5.2 CTHEZ DOMAIN SPECIFIC METHODS . . . ¢ ittt ittt e e e e e e e

b TOOND B @ e 1 1.1 ¢ .+ Lot {01 o3OS

5ol Structurai Models i e e e e e e e e e e e e e

6.0 COST/BENEFIT ANALYSIS FOR SOFTWARE REUSEttt

6.1 ECONOMICS OF REUSE . .ttt ittt it ittt e e e et e e e e e e e e eee e

6.2 SOFTWARE COST MODELS WITH A REUSE COMPONENT

6.2.1 ,Accounting for Reusable Components In a New Cost Estimate

2.1.1 COCOMO Reuse Model ittt it e i i e

6.2.1.2 SASET Method for Caiculating Equivalent New HOL

6.2.2 Estimating the Developmen: of Reusable Code

6.2.2.1 PRICE S ..ttt e e e e e e e e

6.222 ADA COCOMO ..ttt it e e e e e e e .

6.2.2.3 SOFTCOST-ADA . . ittt i et e e e e e e e e e

6.2.3 Deficiencies In Software Cost Models i e

6.3 ESTIMATING THE COST/BENEFITS OF REUSE oo

€.:.1 Factor_Adjustments to Cost Models

6.3.2 Empirical BSUMAUOM & ot v i it e e e e et e e e e e et e e e e e e e

7.0 REUSE METRICS . i e e e e e e e e e e e e e e e e s

8.0 SUMMARY AND CONCLUSIONS ... i ittt i et ettt e e et e e e

BIB L O G R A P H Y . ittt it e e e e e e e e e e e e

APPENDIX AL EXAMPLES OF PACKAGE TYPES ... it e e e e e e,

APPENDIX B. MODEL VENDORS/POINTS OF CONTACT (POC) i

APPENDIX C. HARDWARE REQUIREMENTS . .ttt et et e e e e e e e e
APPENDIX D. CONTRACTUAL ARRANGEMENTS AND COSTS it
APPENDIX E. SCOPE OF COVERAGE: LIFE-CYCLE PHASES AND ACTIVITIES
APPENDIX F. GENERIC UNTITS & TEMPLATE GENERATORS i i ..

TABLE 1. RELATION OF SOFTWARE ENGINEERING VARIABLES TO

2SR OV -N =3 5 1 30

TABLE 2. ADA EQUIVALENTS TO OBJECT-ORIENTED ENTITIES

TABLE 3. PACKAGE TYPES . ittt ettt e e e e e e e e e e e e e e

TABLE 4. TEST CASE STUDY RESULTS [IITRI 1989]: PERSONNEL EFFORT

TABLE 5. OVEZRVIEW OF DATA USED TO DEVELOP/CALIBRATE COST MODZ_S
TABLE 6. TEST CASE STUDY RESULTS FOR NOMINAL RUNS [IITRI 1989):

PERSONNE L EFFORT & ittt ittt ittt ettt e eeneae e
TABLE 7. TEST CASE STUDY RESULTS [IITRI 1989}: SCHEDULE DURATION
TABLE 8. TEST CASE STUDY NOMINAL RUN RESULTS [IITRI 1989): SCHEDULE

DURATION . i e e e e
TABLE 9. ADA COCOM?T DEGREE OF REUSE PARAMETER
TABLE 10. SOFTCOST-ADA REUSE COST RATINGSot ittt iieiein
TABLE 11 ANTICIPATED ADDITIONAL COSTS. ..ottt ettt et et ee e e iia e
TABLE 12. AREAS OF POTENTIAL COST SAVINGS. ittt e i ieie e
TABLE 13. SELECTION OF REUSE STRATEGIES. ittt it

ii

TABLE B-1.
TABLE B-2
TABLE C-1.
TABLE D-1.
TABLE D-2
TABLE E-1
TABLE E-2
TABLE E-3.

FIGURE 1.

MODEL VENDORS/POINTS OF CONTACT (POC) - -« v v oo eenn 96

ADA COCOMO IMPLEMENTATIONS POINTS OF CONTACT (POC) 97
HARDWARE REQUIREMENTS i .. 99
CONTRACTUAL ARRANGEMENTSciuunenn.... 102
LEASE/PURCHASE RATES (DoD) i, 102
OPERATIONAL SUPPORT ACTIVITIES [P 105
SCOPE OF COVERAGE: LIFE-CYCLEPHASES 106

iii

iv

1.0 INTRODUCTION

Given the increasing number of computerized, software J-iven systems being designed and
implemented throughout the Department of Defense (DoD) and industry, reusability of software has
become a critical endeavor. To better prepare software engineers and computer programmers 10 address
the challenge of software reuse, the U.S. Army Communications and Electronics Command (CECOM) has
undertaken a program to investigate different software reuse methods. This effort will provide guidelines

on reuse strategies for software developers.

1.1 DEFINITION OF REUSABILITY

It is first necessary to clarify the concept of reusability. Specifically, it is necessary to distinguish
reusability from poruwability. For the purposes of this report, we will consider reusability to be the exten:
to which the services provided by a software unit can be used by other software units. We will define
portabiiity as the ease with which a software unit can be transferred to other hardware or operating sysiems.
From this point of view, reusability differs from portability in the following respect: reusability involves
using a unit in another software environment, whereas poriability involves using a unit in another hardware

or operating system environment.

The portability of a system depends on how it is designed and implemented, for instance, whether
all svstem decpendencies are localized in one place. It is the nature of low-level routines to interface
directly to the hardware and/or operating system. This has the tendency to make these routines very
hardware specific, and hence non-portable. Conversely, it is not uncommon to encounter a very portable
routine that is built 2round an application-specific database. Such an application would not be reusable.

This suggests that reusability and portability are independent of each other.

In Adz the unit of reuse is the librarv unit. This is because in Ada reusable software is
incorporated into an application through a context clause. A context clause designates the library unit that
is 1o be made visible to the compilation unit. We can speak of the potential for reuse of a program unit
nested inside a library umit or secondary unit, but in doing so we are considering that program unit as a

potential stand-alone library unit

.2 SCOPE OF THIS REPORT

Reusability is widely believed 10 be a key to improving software development productivity and
quality. The reuse of software components amplifies the software developer's capabilities. It results in
fewer total symbols in a system's deveiopment and in less time spent on organizing those symbois [Kaiser
1987]. The opportunity 1o reuse sofrware is frequently proposed as one strategy fo: reaucing the cost of
developing and enhancing the reliability of complex large-scale applications. However, scfrware reuse
usually requires more intense intellectual effort in the initial development of a part and in many instances
a decrease in its performance efficiency. For embedded real-time Mission Criiical Computer Resource
(MCCR) system:., the tradeoff between increused reliability and decreased performance may determire the

depree of reusability possible [Gargaro 1988

The planned reuse of software has been practiced since the advantages for common libraries were
recognized in the early days of high-level programming languages. The librarics were usually restricted 10
include only mathematical and statistical routines that implemented well-defined, numerical algorithms.
However, since then, software reuse technology has not progressed to the same level of sophistication as
its hardware counterpart. This results from the lack of discipline and formaiism ir the design and
implementation of reusable software. Often, reusability is relegated to an implementation activity that is

left to the discretion of the individual programmer [Gargare 198S).

As part of the ongoing effort to promote the deveiopment of reusabie software, foliowing issues are

examined in this report:

. Reusability Characteristics
. Domain Analysis
. Domain-Independent Approaches
. Domain-Specific Approaches
’ Cost/Benefit Analysis for Software Reuse

. Reuse Metrics.

o

2.0 REUSABILITY CHARACTERISTICS

Reusability is not a binary function. A procedure may be fully reusable, that is, 1t can be used as
is in a different application from which it was written. Or a procedure may require modifications to be
reused. Thus, the quastion is not whether a particular sofrware component is reusable, but the degree to
which the software unit is reusable. We can attempt to quantifv this by defining the constructs that

promote reusability.

In evaluating reusability, we can distinguish three categc Hes of reusability factors:

. design factors
. packayc factors
. prescntation factors.

Design factors are siructural components that are relevant 10 reuse. Package factors are reuse design
elements that are unique 1o A*': packages. Presentation factors are those factors that affect ones ability

to reuse 1 software unit.

2.1 DESIGN FACTORS

Software reuse is affected by several design factors. The following design factors are discussed:

. level of abstraction

. genericness

. size

. reusability of components

. cohesiveness

. coupling

. degree of information hiding.

Level of Abstraction. The level of abstraction represented by a library unit is inversely related to
its reusability. The higher the level of abstraction, the less likely it is that it will be reusable. This is
because a library unit 3t 2 higher level of abstraction is more sophisticated than one at a Jower level. For

example, one common representation of a map is as a non-directed graph. But a non-directed graph is at

a luwer level of abstractior than a map, and therefore can be used in other contexts as well, whereas the
possibiliiic - of the use of a map are more limited. A roac map would be u more compiex and censtrained

form of a map, bu! it 1s at a higher level of abstraction an. is less reusabls than a map

Most low-level program units, units found 2t the lowest level of abstraction (e.g.. device drivers,
graphics primitives), are very reusable. Low-level program units tend to have a simple, general-purpose
interface, be small in size, and perform a single function. These characteristics of low-level software can
be empirically applied 10 reuse. Mid-level program units (e.g., windowing funcuons, stutisticai sub-routines)
are likely to have a broader function, be lurger in sizc, and have a general purpose interface. They typically
are cohesivz units that are not coupled with other nnits. Reusability at this le~ .1 i hizn. These units cun
also be struciured for easy transporiability by constraininz all of the interrupts to a lower level. High-
level program units are ususily a melange of iow-leve!l, mid-level, and "other swff™ su; vorting a specific
appiication. They arc usually large. marginally cohesive, functionally compicx, funcuonziiv specific, and
interdependent with cther routines and structures. Rarely are these program units fuilv reusable. To what
degree these units are reusable depends largely on the reusability of their component. For example, a

procedure that is built solely with reusable low-level and mid-leve! program units. must itself be reusable.

This does not imply, however, that a reussble procedure has rcusable components.

Genericness. Genericness (in the Ada sense) is directly related to the reusability of a library unit.
Thrs is a binary decisicn: either the unit is generic or it is not. A generic unit can e :nsiantiated for any
of a given set of types, objects, and operations. In effect, by being made genenic a lirrary unit is put at a
lower level of abstraction. Thus, the sheer {act that a library unit is ceneric increases the likelihood of iis

reusaoiiity.

Size. The size of a software unit i inversely relatec to its reusability. The larger the software
unit. the less likely it is that it will be reusable. This is particularly true of systems in which space is
tghtly constrained. In general it is preferable to have many small, reusable components than few jarge

ones.

Reusability of components. The higher the percentage of code that consists of reuszble modules,
the greater its reusability. Mzny times it is desirable to extract sections of code from a previous softw~-e
development. If that prior effort was comprised of many . >usable software modules, it is likely thai vue

could find the needed elements in a compietely autonomous form.

Cohesiveness. Cohesiveness is the measure of focus in a software unit. It is directly related to

reusabiity. A routine that performs a single function or operates on a singie object is cohesive. Cohesive

4

modules tend 10 be easily extracted for reuse in other routines. The less cohesive a module, the more
likely it will do things that are not needed by the new host application. As a rule, it is much better from
a reuse point of view 10 have a large number of operations, ench of which performs one atomic function,

than to have few operaiions, each of which performs more than one atomic function.

Coupling. Coupling is inversely related to reusability. When one removes a software component
from its host environment, one needs to extract all the units intertwined with that component. These units
may be lower level subcomponents, data str ‘ures, files, or complimentary routines (e.g., push and pop).
These inseparable relationships between a software component and other software units are defined as
coupling. Obviously, the more ues a software component has, the less likely one could reuse that

component.

In the case of library units, the number of library unit dependencies is inversely related to
reusability. At the present state of compiler sophistication, importing other library units into a program
only increases the size of the executable image. It is unnecessary and wasteful to add to the size of a
program if the extra baggage is unused. Moreover, this consideration is related to the size of a library unit:

the larger the library unit, the more library unit dependencies it is likely to have.

Degree of Information Hiding. A library unit’s degree of information hiding is directly proportional
to 1ts reusability. A library unit specification should contain the minimum information 10 allow that library

unit tc be used. If it is encumbered with extra baggage, there is less incentive 10 use it.

A more serious situation concerns compilation dependencies. If compilation unit A "withs" library
unit B in A’s specification, and if then the specification of B is recompiled, the specificaton of A must be
recompiled (along with its bodyv and any subunits). If the specification of A is recompiled, any compilation
unit that "withs’ A must be recompiled as well. However if A "withs” B in A’s body, or if one of A's
subunits "withs” B, and if then the specification of B is recompiled, only the secondary unit that “withs" B
needs to be recompiied (along with any of its subunits). In other words, hiding of context clauses in libr v
unit bodies or subunits limits the spread of recompilation overhead. This increases the user's incentive

to reuse the library unit

2.2 PACKAGE FACTORS

The reuse variables that are germane on the package level are:

. sufficiency/completeness of operations

. presence of exceptions.

Sufficiencv/Completeness of Operaticns. A package that does not provide at least a sufficient set
of operations for a given type is not as reusable as one that does, and one that provides 2 complete set is
even more reusable. Booch [1987A] defines a sufficient set of operations as being available when "the
component captures enough characteristics of the abstraction 1o permit meaningfui initerac:ion with the
ohject;” and he defines a2 complete set of operations as being availoble wher "the component interface
captures all characteristics of the component”. The operation: in both sufficient und comple:e sets of
operations should be primitive, that is, they should be operations "“that can be efficiently implemented only
with access to the underlying representation of the object” [Booch 1987A]. Completencss not only refers
10 program units, but to other constructs visible to the user. These include. types, constants. global
variables, and exceptions that are found in the library unit specification. For exampie. users of most
reusable components will need certain common constant values (such as a null value of a given tipe) at
some time. The presence cf constant declarations in the package interface indicates that such needs have

been foreseen.

Presence of Exceptions. Similarly, the presence of exception declarations ir the puckage interface
enhances its reusability. Exceptions are even more likely 10 be needed than consiants. \iost cperations
can have exceptional conditions associated with them and so should raise exceptions a: the appropriate
occasions. Moreover, it is far more meaningful for a locally declared exceptior. tc de raised than a
predefined exception. In faci, if an exception name is choser with care, it can provide the user of the

package a great deal of information.

23 PRESENTATION FACTORS

Presentation factors also affect reuse. The following are of particular interest:

. clarity of identifiers
. simplicity
. presence of documentation

* neatness

. desirability.

Clarity of Identifiers. The clarity of identifiers is directly related to reusability. Ada sets no limit
other than the width of a line on the length of an identifier. Thus, the programmer has no excuse for
using cryptic identifiers. A great deal of thought should be put into identifier names (something that is all
too frequently neglected). Clear, terse, identificr names make it more obvious to the user of a software
unit what the unit is designed to do. If identifiers are cryptic, a programmer is more likely to avoid using

a software unit because he or she does not know what the unit can do.

Simplicity. Simplicity is also directly related to reusability. Learning the proper use of a program
unit results in a certin labor cost. The simpler the unit, the lower the labor cost. Also, there is a
frustration factor associated with the simplicity of a unit. Users have little patience for overly complex

software and hence will not want to use such a unit.

Presence of Documentation. Similarly, the presence of documentation is directly related to
reusability. If a software module is well documented, then it is clearer how 10 use it. A potential user is

more likely 1o make use of a documented unit than one that is not documented.

Neatness. Neatness refers to the "look™ of a program unit and thus is directly related 1o reusability.
Software should be easy to look at. In general, a programmer should make liberal use of spaces and blank
lines, indent logical blocks (e.g., loops, branches), and employ a consistent scheme for utilizing upper and
lower case. Furthermore, comments should be positioned around (not in) logical blocks of code. An

easy-to-read program unit, would definitely be reused more than a cumbersome looking unit.

Desirabilitv. Desirability is directly related, and in fact crucial to reusability. One could make the
argument that all sofrware is reusable. It would be simple to write a higher level program that encapsulates
any routine, hence, that routine wouid be reused. But, from a reuse standpoint, we are only interested in
software that one would want to reuse. Desirability, therefore, is the degree 10 which a particular software

element is useful.

All of the factors discussed above and their relation to reuse are summarized in TABLE 1.

TABLE 1. RELATION OF SOFTWARE ENGINEERING VARIABLES TO REUSABILITY

Software Engineering Directly Inversely
Variables Related Related

Design Factors

Level of Abstraction X B
Genericness X

Sice X

Reusability of Components X

Cohesiveness X

Coupling X

Degree of Information Hiding X

Package Factors

Sufficiency/Completeness

of Operations X
Presence of Exceptions .X
Presentation Factors .
Claricy of Identifiers X
Simplicicy X
Neatness X
Presence of Documentation X
Desirabilicy X

3.0 DOMAIN ANALYSIS

This section addresses domain analysis, a potentially powerful process that facilitates high levels
of reuse. If an application is to operate within a specific domain, it can benefit from prior knowledge
about that domain. This is what domain analysis provides. The knowledge resulting from a domain
analysis may then be used 10 refine the environment in which the application is to be developed. In this

way, domain analysis may be usec as a fundamental step in creating real reusable components.

Domain analysis generalizes all systems in an application domain by means of a domain model,
or domain language, whict transcends specific applications; this model identifies the commonalities and
law: of an individual domain in a manner that is conducive to the specifications, requirements analysis,
and actual design of a software system. In some cases the domain model may result in a library of closely

related software components.

The product of 2 domain analysis is not universally agreed upon. One school of thought [Pricto-
Diaz 1987] suggests that domain analysis produces a library of reusable modules that share a certain
commonality and predefined relationships based upon the domain in which they are to interact. Another
school of thought [INeighbors 1984] suggests that 3 domain-specific language containing predefined objects
and procedures that are abstractions of groups of objects and procedures from common "executable”

languages is produced by a domain analysis.

The software community has made only a few forays into the realm of domain analysis. These
efforts consist of several untesied methodologies and handful of prototypes. The most extensively tested

system, Draco by James Neighbors [Neighbors 1984}, has a base of a dozen small and moderate domains.

The remainder of this section contains a discussion of the methodology of domain analysis in
general terms; an enumeration of the participants’ roles and responsibilities for both views of domain
analysis; an overview of pertinent related efforts, experiences, and proposed methodologies; and finally, a

summary of the pros and cons of domain analysis.

3.1 THE NEIGHBORS APPROACH TO DOMAIN ANALYSIS

If a2 domain exists that can acceptably describe the objects and operations of a new system, the
systems analyst has an environment that facilitates the development of the specificitions and requirements
of that system. This is the reuse of analysis and is potentially the most powerful form of reuse. This is
also the goal of domain analysis. Reuse of analysis is powerful because the other forms of reuse, reuse of
design (also known as reuse of information) and reuse of code, may be made, in some degree, to follow

from reuse of analysis.

The first step of domain analysis it t0 define the domair 10 be analyzed. This is an application-
dependent process. The next siep is 10 gather information about the domain with wiich 10 identify the
common attributes of the domain that may be reused. This is done either by analvzine o group of exdsting
applications within the domain or by developing a2 group of applications within the ¢omuin (a costly and
time-consuming option). The objects, operations, and relationships that are consistent throughout the
domain are refined into a domain-specific language with which 10 reason about the domain. This language

is also known as the domain model.

The requirements and specifications of a new application will be done in a domain language. This
provides the basis for an abstract design which, through refinements, is made into a group of absiract

algorithms. These refinements are at least partially automated in most proposed and existing svsiems.

Development of an application using this methodology requires that a processor b2 created which
interacts with a programmer and produces executable code for the application. This processor must operate
on the domain model. Ideally, a generic processor might be developed which allows a domain model as

an input.

3.2 THE PRIETO-DIAZ APPROACH TO DOMAIN ANALYSIS

Not all supporters of domain analysis advocate the development of 2 domain model suitable for
automated software life-Cycle support. Many support the development of libraries of coded components
based on the domain analysis. Thre basic theory behind the two schools of thought is the same. Both
gather informatior. and common attributes on the domain. Both look for the objects, operations, and
relationships that are ccasistent throughout the domain. It is after the information has been gathered that

they differ.

10

Aspects of the domain are stored in a library that contains special information about the
relationships among the software components within the library. These strong relationships allow for the

selection of some components based on previous selections.

The development of the library from the raw domain information takes place in a series of discrete
steps. First, each component (components may be requirements, designs, objects, data structures, or
algorithms) is generalized into an abstract form to fit the entire domain. The abstract components are then
arranged in groups. The relationships between the abstract components are generalized to fit the entire

domain. Finally, the relationships are formed as rules that guide the use of the components.

The encoding of domain knowledge into reusable structures accomplishes four upstream reuse
objectives: feature-based selection, consiraint-based analysis, domain-driven compietion, and domain-driven
refinement. Feature-based selection is the selection of objects and associated components based on
descriptions of their known features. Constraint-based analysis consists of analyzing the requirements and
speciflications from the user based on domain-orienied dependencies and relationships. D .ain-driven

‘complelion fills in the missing requirements and specifications to guarantee completeness. Relationship
constraints and operations can be used 1o pick appropriate refinements for more detailed specifications and

designs. This is domain-driven refinement.

33 THE PROBLEM OF KNOWLEDGE ACQUISITION

Most researchers in domain analysis feel that the most difficult problem in the production and
subsequent use of a domain model is the extraction of the domain-specific knowiledge that is to be
represented in the model. The formulation of the domain knowledge often requires a thorough
understanding of one of more appiication domains, the objects of the domain, the relationships berween
those objects, and the ways of processing those objects. This knowledge is difficult and costly to acquire.
Two approaches have been taken to achieve this domain knowledge: in one effort the analyst "picks the
brains® of one or more domain experts [Neighbors 1984]; in the other effort the anslvst analyzes existing
systems within the application domain [Horowitz 1984]. Both techniques are expensive and time

consuming,.

The problem of extracting knowledge from a source that is not familiar with domain analysis is
very similar to the probiems knowledge engineers have experienced with populating the rule-bases of expert
systems. In fact, expert system developers have found that most of the effort and expense often go toward

formulating the production rules. To reduce this expense, expert svstem developers have utilized a variety

11

of techniques with varying degrees of success. Not the least of these efforts has been the creation of expert
systems to guide a domain expert in the formulation of rules. To date, however, there is no known method
of removing all of the problems associated with knowledge acquisition. The domain analysis community
should carefully follow the expert system community and its efforts, because any useful technologies should

be applicable within both fields.

3.4 DEFINING THE DOMAIN

A common problem many domain analysts have encountered is the difficulty associated with
defining the boundaries of domains. Most applications deal with multiple domains, e.g.. 2 missile coicnse
svstem would have to deal with both missile and database domains. If domains are madc o0 smzll and
objects or operations are separated into separate domains beneficial relationships berween objects and

operations are lost.

Domains that are made too large mav become too complex 10 allow for the completion of the
domain analysis. As the number of components within a domain increases, the potential number of
relationships increases exponentially. While the actual number of relationships does not approximate the
exponential growth of the potential relationships, it too will quickly become 100 large 10 be managed
effectively when the domain grows too big. Another problem with creating over-sized dom:ins is the larpe
number of components and relationships tha: must be reckoned with during the creatior: ol .r application.
As the percent of components used decreases (compared to the components which muyv potentially be

reused), the utility of the domain decreases.

3.5 DISCUSSIONS OF EXISTING EFFORTS

This section will discuss the following:

. ROSE

. Raytheon Experiment
. CAMP

. McCain Approach

. Prieto-Diaz Approach
. Draco.

12

3.5.1 Reuse of Software Elements (ROSE)

ROSE [Lubars 1987] is a two-part application development system. The front end is a System
Design Assistant that accepts specifications and requirements of the application from the user and, utilizing
a library of design schemas, domain types, and domain constraints, produces 2 set of useful algorithms and
type expressions and an abstract design. The back end is a design assistant that combines the abstract

algorithms, data types, and representations to generate executable code.

The libraries upon which the front end of ROSE operates are analogous to a library of domain
models. The front end uses the user interface to select the appropriate domains that supply the abstract
data types and operations, and assists in the development of the abstract design. Two separate libraries are
used to do this. A library of domains is referenced through descriptions of domain objects and attribuies,
and this library in turn references a design component library that provides the abstract design with the

help of some user-supplied associated design schemas.

3.5.2 The Ravtheon Experiment

A methodology 10 reuse code in business applications was developed at Raytheon [Lanergan 1979).
While business applications might be considered a rather large domain, the development of the library 2nd
classification of the components placed within the librarv was done using domain analysis. They found that
most modules fall into one of three major classes within the business application domain. They aiso found
that most programs could be described by a combination of three logic structures, although as many as 85
logic structures were defined. The common functions and the relationships between them were defined
to form the domain model. The abstractions of these functions and their relationships were used to form

the three logic structures.

While the Raytheor. experiment did not follow a classic domain analysis paradigm, it is similar to

the ROSE method discussed above.

3.53 The Common Ada Missile Packase (CAMP)

Ten tactical missile systems, coded in various languages, were analyzed for common components.
The analysts identified existing systems within the application domain, performed a functional decomposition
and functional abstraction to break those systems into their abstract component parts, and then developed

reusable components that were based on the common abstract components.

13

3.5.4 The McCain Approach

An approach to domain analysis is discussed by McCain in his paper, "A Software Development
Methodology for Reusable Components” [McCain 1985]. He divides domain analysis into four separate
sequential processes. First, reusable entities are determined. These entiiies include objects and related
independent operations. Relationships between these operations are then defined. These relationships

define search paths for the retrieval of library components.
An approach to domain analysis devised by G. Arango is discussed by Pricto-Diaz. Arango utilizes

a similar approach to McCain but spends a great deal more effort first bounding the domain in order to

Iimit the analysis. Neither McCain nor Arango have tested their approaches to date.

3.5.5 The Prieto-Diaz Approach

Ruben Prieto-Diaz [Pricto-Diaz 1987] defines a domain analysis approach which defines pre-domain
analysis and post-domain analysis activities as well as the actual domain analysis description. He also

breaks nis domain analysis down into three separate operations.

The pre-domain analysis activities consist primarily of defining the domain. Ir addition to defining
the scope of the domain, his domain definition includes identifving the source of the information about the

domain and tiloring the domain analysis itself.

The post-domain analysis activities consist of the production of the guidelines with which the
reusabie components produced by the domain analysis are 10 be used. This step is con idered t0 be part

of the domain analysis process by some other researchers.

The three steps involved in performing the domain analysis are: identification of the objects and
operations, abstraction of those objects and operations into a domain-specific application independzn: form,
and classification of those objects and operations. The abstraction of the objects and operations includes
the definition of the relationships that bind them together. The classification of the objects and operations

inciudes the formal definition of the domain language.

This approach is only in the research phase and has not been tested to date.

14

3.5.6 Druco

A domain analysis approach which supports reuse of design is that of Druco; the system was
devised by Neighbors [Neighbors 1984]. Draco performs a domain analysis that produces both a domain
language and a group of tools that support the use of the domain language. The system designer writes
a program in the domain language, and the tools, with help from the user, produce an executable version

of the application in a conventional language.

The results of a domain analysis an¢ domain design are the domain description, which consists of
five tools: a parser, a pretty printer, transformations, software components, and software procedures. The
parser consists of the external syntax of the domain and the prefix internal form, which is the actual data
that is manipulated by Draco. The pretty printer is a tool that produces the mapping from internal
program fragments to the exiernal syntax for the domain. The transformations are source-io-source
transformations on the objects and operations of the domain. These transformations represent the rules
of exchange berween the objects and operations of the domain and are correct regardiess of the
implementation chosen for the object or operation. The software components specify the semantics of the
domain. There is one component for each operation and object in the domain. The components make
implementation decisions. Each component consists of one or more refinements that represent different
implementations for the object or operation. The software procedures are used when the knowicdge for

a certain domain-specific transformation is algorithmic in nature.

This system i< uilt in six stages. These stages are:

1 Specify the domain.

2) Perform a domain anciysis.

3) Create a domain language.

4) Create the parser and pretty printer.

5) Define the transformations.

6) Define a specific computerized system based on the domain language.

Stages one through three might be considered to all be contained within the definition of a domain
analysis, if the standaru broader definition is use A quality domain analysis is crucial for correct
operation of Draco, because the tools are directly generated from the domain language that is derived from

the domain analysis.

15

J. G. Rice advocated a system called the Automatic Softrware Generation System (ASGS) which

is similar 10 Draco [Rice 1981].

3.6 SUMMARY AND CONCLUSIONS

Domain analysis may prove to be an effective 100l in providing reuse because of the wide spectrum
of knowledge that may be reused. If a domatn analysis has been performed on a domain in which a new
application is to be developed, the sysitems analyst has a framework on which 10 hang the specificztions for
the new application. This reuse of analysis information is a powerful form of reuse because its effects are
felt throughou: the development process. The design of the application, the components used in the actual
coding of the application, and the relationships between those components may all be provided within the
libraries deveioped in the domain analysis and mapped from the specification writter in the domain
language. The ability 10 reuse these designs and components that were developed independently is the

strength of domain analysis.

Domain analysis is a relatively new process, and several problems in the process remain unresolved.
Not the least of these is the lack of a standard methodology with which domain analysis shouid be

performed. The three most prevalent deficiencies with existing methodologies are the following:

. defining the domain
. acquiring knowledge about the domain
. generating concrete goals and uses for the product of the domain analysis.

No research effort has suggested a technique 10 determine when a domain analysis is complete or
when the knowledge of an idea is fully encapsulated. Nor have any efforts suggested a technicue that
determines when a domain is oversized and requires division into multiple domains. These problems have
not surfaced in the prototypes because all domains have been made sufficiently small. The inccmpleteness
of a domain is more likely to surface as more applications are developed and the more complexity is added
to those applications. To date, the existing prototypes have been used for developing only a few

applications, and those applications have been relatively simple.
It is widely agreed upon that the knowledge about a domain is costly and difficuit 10 acquire. This

problem couid be minimized if domain analysis were 10 become a widely accepted technique, because the

domain experts would have mo:e experience. This it being seen with structured design now, as the vasi

16

majority of those software engineers who are knowledgeable in an application domain are aiso
knowledgeable in structured design. As long as relatively few software engineers are familiar with domain
analysis, either those with the knowledge of the domain must learn about domain analysis or those with the
knowledge of domain analysis must learn about the domain. This transfer of knowledge is both difficult

and costly, as the experiences of knowledge engineers developing expert systems show.

It is imporant to realize that the science of domain analysis is targeted specifically toward the
capture of information about a specific application domain, and that, while that information is a viable
resource that may be reused in the development of future applications within that domain, the perceived
use of the fruits of a domain analysis vary widely. Domain analysis based paradigms have been shown to

be capable of providing the following reusable products:

. templates for the systems analysis of the applicauon which result in a design of the
application
. a mapp.ng to a library of applicable constructs for the application, including procedural

components and objects

. complete CASE tools which guide the svsiems analysts, svsiems designers, anJ programmers
through the entire development lile-Cycie

. a high-level, domain-specific language and a translator t0 a common executable language
(C, Ada or FORTRAN).

Because of this diversity in the potential use of domain analysis, there can be no uniform assessment of the
amount of risk or the potential for gain from using domain analysis. The poteatial benefits and the
amount of risk resulting from a given type of domain analysis can best be evaluated for the specif.: rcuse

approach being impiemented.

The science of domain analysis is z new, relatively unexplored field in which neither the extent of
the benefits nor the depth of the pitfalls is fully known. Virtually all stages of the sofrware design life-
cvcle can be supported by reusable componer:s spawned from the domain analysis. Thais could include
automatically gener:ted applications. Domain analysis has the potential to reduce the effort required for
individual applications by a tremendous amount. Yet, questions abou: the amount of effort required to
perform a domain analysis, and the degree of usefulness of the components, tools, and designs available for

reuse through domain analysis, raise doubts as to the final net gains of domain analysis.

17

18

4.0 DOMAIN-INDEPENDENT APPROACHES

Domain-independent approaches are those approaches that propagate reuse across unrelated
application areas. The reusable elements in this category are considered to be general purpose. Most
general purpose clements are component based. Therefore the predominant domain-independent
approaches deal with producing, using, validating, finding, cataloging, managing, and maintaining general-
purpose components. Some examples of these components include linked list managers, sort routines, and

math functions. The three major domain-independent approaches identified in this section are:

. libraries/repositories
. commercial components
. a design methodology for producing reusable components.

All of the domain-independent approaches may also be applied to a specific domain. For example, CAMP
uses a repository that is domain specific.

4.1 COMPONENT LIBRARIES/REPOSITORIES

Interest in software development cost savings and the potential for reuse of Ada code have given
rise to a number of efforts in the U.S. to create software repositories and libraries of software components.
Efforts to develop such libraries have varied in sponsorship, management, breadth of focus, and accessibility.

The following topics are examined in this section:

. factors to be considered in the development of software component livraries and
repositories

. existing component libraries and U.S. repositories

. lessons learned and recommendations for future developments.

4.1.1 Desirable Characteristics of Software Component Libraries/Repositories

In literature on reuse, and from experience with existing libraries, a few factors stand out as

important to the development of software libraries.

. Accessibility of Code. To encourage reuse, code must be easily accessible to both
contributors and users. Ease of access includes the knowledge that the repository exists,

19

the ability to find individual programs or components that fit reuse requirements, and the
means to obwain code in a reasonable amount of time at a reasonable cost. The medium
in wkich code is available is also important to the accessibility of the repository, because
many developers have a limited hardware configuration. Security restrictions may be a
barrier to easy access of code and so must be carefully considered.

. Ease of Reuse. After code has been located which seems 0 fit the requirements for a
particular application, the user must be able to quickly determine what modifications, if
any, are required for the code to exactly fit functicnal specifications. The developer must
aiso be able 1o spot areas of concern for portabiliry.

. Quality ControL The user should be able to distinguish among different versions of the
same software component or program, and also to understand the differences berween
different impiementations of the same application (e.g., two different sort routines). The
user should know whether the code has ever been tested and used and on what hardware
configuration.

. Management and Acquisition Incentives to Reuse. Managemen! strategies must be
developed both to encourage the development of code for a software library, and the use
of the resulting code in other efforts. The development of code for the software library
may be accomplished by a singie contractor, or it may be the result of many contractors’
efforts. Contractual requirements or incentives may spur the use of sofrware libraries.

. Documentation. Documentation should be provided that describes how to use the library
component. The component documentation should include an abstract of the component,
and a description of its interface. Examples of the components’ use should also be
included. Finally, documentation should enable the user to contact either the code
developer or the repository maintainer to report bugs and problems, and reported bugs or
limitations should be clearly indicated in the repository.

In the following sections the characteristics of existing sets of reusable components will be weighed

against these criteria.

4.1.2 Existing Software Component Libraries/Repositories

In the U.S,, efforts to establish collections of reusable components have been undertaken both by
the Government and in the commercial sector. Early efforts to build software repositories were not
restricted 10 particular application areas or technologies. More recent work has focused on the

development of components for restricted application areas, such as software for missiles and avionics, and

software for management information systems.

4.1.2.1 The Ada Software Repository (ASR)

The Ada Software Repository (ASR), established in 1984, is a collectior of general information,
Ada programs, toois and educational material which is available on the Defense Data Network (DDN), a
national electronic network maintained by the DoD. The ASR currently contains more than 1,500 files.
The ASR is intended to promote the reuse of Ada programs, tools, and components, and to promote Ada
education by providing several working examples of programs in source form for people to study and
modify. This repository contains only Ada code and Ada-related information, but is otherwise unrestricted
in application focus. The ASR contains programs and components for graphics, communications, database
management, mathematical functions and text manipulation, as well as benchmarks, programming tools and
metrics. The ASR also contains general information such as the list of validated compilers and the text

of DoD directives concerning Ada.

The ASR receives sponsorship and some funding from two organizations: the US. Army
Information Systems Command and the DoD’s Software Technology for Adaptable Reliable Systems
(STARS) Joint Program Office. A support contractor handles dissemination of copies of the repository
and interface with the public. Even now, only one individual handles the software acquisition, software
review, electronic mailing list, newsletter preparation, Master Index preparation, internal and on-line

database maintenance and points c¢f contacts.

All material in the ASR is considered in the public domain. It is accessible to users in a number
of ways. Direct, on-line access to the ASR is currently available only to users of the DDN. DDN users
may electronically transfer any file in the ASR. Users may also obtain copies of the ASR on magnetic
tape, floppy disk, and CD ROM at a reasonable cost. Finally, 2 hardcopy directory of the repository and
its contents is available from the ASR support contractor. To promote the availability of its products, the
ASR has established links with a number of other organizations in the Ada community, including the Ada
Information Clearinghouse and AdaNET. These organizations provide additional distribution points for

information concerning the ASR.

The ASR provides descriptions of available programs both via an on-line documentation system
which may be easily adapted for use with typical database management systems, and a hardcopy index A
regular newsletter provides information on new releases. At a more detailed level, each piece of software
has an associated prologue file and item description file in a standard format, providing information on the

version, date, author, environment and any review that has been performed.

21

Quality control has been the most criticized facet of the ASR’s operation. The software is proded
"AS IS®, without any warranty concerning its validity. The prologue for each software component con:ains
a point of contact for the author of the code. No formal screening is done in most cases before placing
items into the ASR, other than checking to ensure that the required proiogue is complete. Screening and
reliability information on a piece of software may be provided after its release. Each item has one or more
comment files, stored with the software, which relate comments received from users. In the case of
software upgrades, both old and new versions of software are kept for some time, until reports from users
have been received that the new version is reiiable and can be trusted to the same level as the old; at th:at
time, the old version may be removed. It is intended that, once a critical mass of software has been received
in the ASR and the quality items become well-known, then a separate collection of only the quaiity items
will be establishe .

Some DoD organizations, including Worldwide Military Command and Control System
(WWMCCS), STARS, and the Defense Communications Electronics Command, have already mandated
submission of contractorCreated software to the ASR. Other software has been submitted by individuals in

academia, industry and other government agencies.
4.1.2.2 Computer Software Management Information Center (COSMIC)

ﬁe Computer Software Management Information Center (COSMIC), founded in 1966, is operated
by the University of Georgia for the National Aeronautics and Space Administration (NASA). COSMIC
contains more than 1,000 programs and components in a variety of application areas, implementation
languages and environments. COSMIC was started with the goal of technology transition; it was hoped
that the results of research and development funded by NASA would benefit U.S. businesses as well, and
would maintain public support of NASA efforts. COSMIC is staffed by approximately 15 people from the
University of Georgia.

The distribution of programs in the COSMIC inventory is restricted to the continental U.S. for the
first year after their receipt. Then, if permission is granted by NASA and the author of the software,
distribution is unlimited. COSMIC is not directly accessible via an electronic network; instead, it publishes
a catalog of available programs from which interested users may order. The catalog is well indexed by
topic and provides a brief description of each program, along with information on its development
environmer - Drocessing requirements, and its cost. Programs are available in a variety of digital format..
software p:; .ams or components are individually priced based on their size, documentation, and

application area. Documentation is unbundled from software and sold for the cost of reproducing it.

22

Although COSMIC actempts to compile and test all code received, this effort is in fact limited by
the hardware environments available to COSMIC personnel. Each author is required to provide test data
or benchmarks with which to test the program submitied. COSMIC has been receiving an increasing
number of utility programs that are difficult to test. Version control is maintained, and both old and new
versions are made available. There are no formal documentation standards, but software has been rejected
because of inadequate documentation. COSMIC acts as a buffer between the author and user and provides
the first tier of technical support. If that is not sufficient, COSMIC's technicians call the author and

attempt to work out problems. With the author’s permission his or her name may be provided to a user.

NASA’s requirement that software developed for it be made available to COSMIC has not
guaranteed submission of code to the Center. COSMIC personnel often have to take the first step in
monitoring trade journals, NASA Tech Briefs, and so forth, for news of code that has been developed
under NASA contracts, and then contacting the contractors or offices responsible,

4.1.23 Common Ada Missile Packages (CAMP)

Common Ada Missile Packages (CAMP) is an Air Force software technology project focusing
specifically on software reusability. CAMP was initiated in 1984 and currently contains 452 operational
flight software parts in Ada for tactical missiles, as well as a prototype parts engineering system to support
parts identification, cataloging, and construction. CAMP differs from the ASR and COSMIC in a number
of ways. First, it is narrow in application focus. Second, the development of both its software and the
associated tools for its use have been the responsibility of a single contractor. Third, the software in it is

considered "militcrily critical” and so is subject to limited distribution.

CAMP software is distributed by an Air Force facility, the Data & Analysis Center for Software
(DACS). Because the CAMP software is considered "militarily critical”, it is subject to export control
regulations which make distribution cumbersome. Distribution via electronic network is prohibited. The
DACS handles the necessary Government paperwork required to distribute limited distribution software
while staying within moderate costs. CAMP also requires that users complete a new form, agreeing that
the Government software will not be resold to the Government, or sold as a separate entity in competition
with commercial products. This agreement, however, allows CAMP component users to be compensated

for time spent modifying CAMP software for use on a Government contract.

The CAMP components are all packages or subprograms usable in a stand-alone fashion. To help
the user find the appropriate component for his requirements, CAMP has developed a prototype parts
engineering system that enabies the user to identify, catalogue, and customize components. This system is
currently hosted on a Symbolics 3620 using the ART expert system, but will be implemented in Ada and

re-hosted on a DEC computer to increase accessibility.

Because CAMP software was developed by a single contractor over a two year period, the problems
of quality control, configuration management, and use of documentation standards are not as great as for
large repositories such as the ASR and COSMIC. All CAMP components were tested before release, and

the components have been demonstrated in the subsequent development of a real-time embedded system.

As an incentive for reuse, the CAMP software was distributed to more than 125 Government
agencies and contractors between September 1985 and May 1988. The CAMP parts were acquired by the
Government with unlimited rights. The parts are being considered for a number of other systems, including

NASA’s Space Station, the Advanced Tactical Fighter, and the Advanced Air-to-Air Missile.

4.1.2.4 AdaNET

AdaNET is a cooperative effort among NASA, the Ada Joint Program Office, the U.S. Department
of Commerce, and the University of Houston to provide electronic access t0 Ada software, tools,
infdrmation, and education, and 10 expediie the transfer of technology to industry, small business and

academia, as well as to government agencies. The contract to develop AdaNET was awarded in 1987.

One of the first goals of AdaNET will be to link with existing sources of Ada code and information
to make such repositories more widely available to the public. Although there is currently no charge for
accounts on the AdaNET system, which is accessible via GTE Telenet, it is intended that AdaNET services
eventually be self-funded. Later goals of AdaNET include the provision of value-added services and
products, including Ada “starter” packages, documentation and tutorials, seminars and workshops,
development and management tools, and telephone assistance. It is also planned that AdaNET be a
pointer for other sources of information about Ada products and services. AdaNET has participated in
major Ada conferences as a vendor in order 1o raise awareness of its products and its plans for the future.

Because AdaNET currently offers no software products of its own, it serves more as a redistribution point

for other repositories than as a repository itself.

24

At present, AdaNET offers access to the ASR products. It is expected that access to software
developed by the STARS Foundation contracts will be provided as well as access to the COSMIC software
catalog. There is currently no additional screening of software accessible via AdaNET and no version
control or configuration management other than that which is performed by the repositories with which
AdaNET is linked.

4.1.2.5 The Booch Taxonomy

Another source of reusable components is that proposed by Grady Booch in his recen: bock
Software Components with Ada. In this book Booch advocates developing families of reusable components

rather than single components [Booch 1987A]. For one application, a linked list of unbounded length may
be appropriate; for another application, space constraints may put a limit on the size of a linked list. In
both cases, the interface of the package handling the linked list manipulations should be the same; but
the implementations of the linked list would differ in the two cases. The advantage of having identical
interfaces is that if the needs of the application change, for example, limits must be placed on the size of
the linked lists, one can simply "unplug” the unbounded package and "plug in" the bounded one. Thus
families of reusable components are more flexible than components of which there is only one

representative of each kind.

Booch recommends classifying components by the following distinctions:

¢ Bounded - Unbounded

- A bounded component is one whose size is static. For example, a list implemented as
an array is of fixed size.

- An unbounded component is one whose size is dynamic. For example, a list
implemented as a linked list is of variable size.

e Unmanaged - Managed - Controlled

- An unmanaged component is one that does not provide garbage collection. In this
case, any garbage collection is performed automatically by the runtime system.

: - A managed component is one that provides garbage collection for sequential systems.
- A controlled component is one that provides garbage collection for concurrent systems.
* Noniterator - Iterator

)

- An iterator is an operation that does something to all members of a homogeneous
class, such as an array. A noniterator component is one that does not have such an
operation.

25

- An iterator component is one that does provide an iterator.
* Sequential - Guarded - Concurrent - Multipie
- A sequential component is one that is designed to be used in a sequential application.

- A guarded component is one that preserves the integrity of data in 2 concurrent
environment by means of devices, such as semaphores, that are visible to the user.

- A concurrent component is one that preserves the integrity of data in a concurrent
environment by making access t0 the protected data sequential.

- A multiple component is one that preserves the integrity of data in a concurrent
environment and allows simultaneous readers but only sequential writers.

Given these distinctions, Booch develops a taxonomy of reusable components. Booch sells a
representation of these components through WIZARD Software (see Section 4.2, Commercial Components).
GRACE component, distributed by EVB, Inc, also follow this taxonomy. The main disadvantage of the
Booch components is that a given development effort is likely to need only one component of a given type.

Yet as things stand now, the developer must purchase the entire package.
4.1.2.6 Other Library Systems

The STARS program has investigated many software libraries issues. As a result of that

investigation, four prototype library systems were developed:

. Reusable Library Framework (RLF)

. Reusable Aad Packages for Information systems Development (RAPID)
. Rapid Search and Retrieval (RSR) system

. GENeralized Embedded SYstem Specification (GENESYS) tool.

Except for RAPID, each of these systems was developed as a STARS Foundation project, and copies are
available to the public by way of the Naval Research Laboratory (NRL).

The primary objective of the RLF was to provide for an intelligently guided search through a
library of software components, and more generally, a knowledg. based approach to the management of
software artifacts that apply to a particular application domain. The basic achievement of the RLF project
is the provision, in a demonstrable prototype, of a general framework for the construction of domain-

specific libraries of Ada software components.

26

The main goal of the RAPID Center is to promote software reuse. Plans for the RAPID Center
include policy recommendations, administration guidelines, standards, and user guidelines. The RAPID

system also contains a library system of reusabie components.

The software lifecycle needs to incorporate the role of software reuse in order to reduce
development costs and increase software reliability. The US. Army Information System Engineering
Command recognizes this fact. The SIDPERS-3 RAPID Center is a proof-of-concept that will be applied
to the development of SIDPERS-3. The current version will support only software components that are
Ada code. Because the benefits of reuse can be achieved early in the lifecycle, future versions should be

extended to include not only code, but also design, specifications, and documentation.

RSR employs a three-phase method to increase Ada code accessibility. The first phase establishes
a powerful, easy to use, readily accessible, centralized STARS Repository. The second phase makes the
same sophisticated repository technology generally available to the software development community so that
others can establish their own repositories. The third phase will be the formation of a distributed

repository comprising networked repositories resuiting from the first two phases.

GENESYS is designed to assist in the assembly of individually tailored Ada Run-Time Support
Environments (ARTSEs) from a library of vendor-supplied, third-party or custom-built Run-Time Elements
(RTEs). In addition, GENESYS provides an attractive user interface to any library of reusable Ada
software components. GENESYS supplements the traditional software development life-cvcle in much the

same manner as other reuse support tools. GENESYS should pay off over the entire life-Cycle through

. productivity increases through reuse

. reduced development risk through multiple instances.

The potential for risk reduction by supporting multiple development paths for the same general class of
functionality makes GENESYS a unique software reuse and wiloring tool for Ada development.

4.13 Library Set Up
Several different library systems have been described. How does the project manager set up his

own library system? What are the problems that need to be solved? Here the primary issues are defined

and some approaches are suggested.

27

Reusable libraries are still in their infancy as a technology. A study that investigated the underlying
assumptions of software libraries states, “"current operations will not scale up gracefully to handle our
assumptions involving large numbers of components with large amounts of information about those
components” [Hocking 1988]. Hocking goes on to point out that software solutions to simple problems
have rarely scaled up to handle larger problems. If this is the case, a number of different solutions may
have to be tried before the best solution is found. Only experimentation and use will shed insight into the

fine grain of technical issues that need to be resolved in order for the best library system to emerge.

There are four primary issues related to libraries:

Search: The mechanism/method that a library employs to facilitate the location of a desired
component.

Retrieval: The means by which a component is transferred from the library to the intended
user. :

Configuration The methods/policies used to control component changes in a library.
Management:

Administration: Administrative needs that a staff or librarian will fulfill.

4.1.3.1 Search

After a fair number of components have been collected, the components need to be put into some
classification scheme. Classification of components allows the user to begin to search for a componeat in

a "logical” place.

Initially, a directory structure may be sufficient as a means of classifying components, but when a
large number of components are collected, this method may become very cumbersome.

Another way of claﬁﬁyi‘ng components is through the use of a taxonomies. Taxonomies would
provide a depth-first search for a component. Furthermore, taxonomies may be customized with categories
that the user is familiar. There are many ways to classify software: by size, by the problem it is solving,
by the characteristics of its solution, or by the domain the component belongs to. By selecting a set of
attributes and describing all the software in the library in terms of those attributes, one can define a

vocabulary to locate the components. This process is called faceted classification. A search strategy based

on faceted classification can easily be implemented with a database. Each facet defines a field in the

database structure. A user can then query the database using a facet-based vocabulary.

The Rapid Search and Retrieval (RSR) system appears to have a good solution to this problem.
The key to the system is, in essence, its universal symbol table. A unique symbol is assigned to each word.
That symbol is constant in all documents. Rather than reducing the degree of indexing, this technique
reduces the overhead of storing the original code and documentation. The unique symbol table facilitates

indexing, which allows for an effective and efficient way to impose different taxonomies on the same set of

software components.
4.13.2 Retrieval

Once a potential component has been found the next step is to obtain a copy. Before the library
system is put into place, the program manager should decide if he wants to integrate the library system into
the project development environment. If a library system is integrated into the development environment,
it makes reuse easier. The software engineer can search through the library at his terminal. Obuaining a
component may be as simple as copying it from oné place to another. A drawback of this approach is that
multiple copies of the same code may result. This would be a waste of memory space as well as a

configuration nightmare.

If a library is not integrated into the development environment, then for the reuser to obtain a
copy of the component, a variety of options exist. The librarian may send it to the reuser on a floppy disk
or magnetic tape, or the component may be downloaded. This all depends on what resources are available

to the project manage: and how he decides to integrate the library.
4.133 Configuration Management

When setting up a library, one must define who will be allowed to use the library. There are a
range of possibilities. One extreme wouid be to make the library available to the world, a public domain
library. The other extreme w()ul?i be 10 make the library available only to developers on one project. The
first would be overkill and unneressary; the other would be too limiting and restrict the benefits of reuse.
A project manager’s library system should at least be available to all the projects for which he is
responsible. Another option is to make the library system assessable throughout a particular domain.

These options will allow each project to benefit from reuse while keeping the library system to a

29

manageabie size. After the library’s domain is defined, a number of library requirements will naturally fail

into place, e.g., who is allowed to use it, library staff size, distributed needs, etc.

What happens when a bug is found and a2 component is modified, or a component is enhanced, or
a new implementation to a package specification is developed? Shouid the users be notified of every
change? If so, how? If not, in what manner should they be notified? These are the questions

configuration management addresses. Some exampie configuration management policies are listed below:

Do not store functionally redundant components.

Notify reusers of bugs found in the code.

Supply reusers with solutions to bugs when developed.

Supply reusers with coded solutions, if they have actuallv used the code.

Do not supply reusers with new components that have been modified to improve functionality.
Consider it a new component.

Determine a way to link package specifications with different package bodies.
A library system that is integrated into the software development environment has the advantage
of being linked to the reusers. Also an automated tracking system may be implemented. Notices, based

on defined configuration management policies, could be sent directly to the reuser. However, the

integration will be costly.

A library system that is separate from the development environment needs to set priorities for its

policies. The objective is to keep manual work to a minimum, thus keeping administrative cost low.

4.1.3.4 Administration

Obviously, a library system does not just come into existence and maintain itself. A library staff

is needed. Their responsibilities are many:

. Complete and test components that come from outside sources.
. Recommend enhancements to components.
. Analyze bug reports and correct problems; distribute change notices to library users.

. Upon acceptance of a software component. enter the component into the classification

schemes.
. Track the experience gained from running the library.
. Collect cost data from inside and outside the organization to compare software reuse with

conventional software development practices.
. Identify and extract components requested by the user.

. Log a variety of information for tracking purposes, e.g., software component use, search
failures, suggestion boxes, and user accounts. The logs are used to determine areas in
which the library needs 10 be improved.

Topic specialists may also be part of the library staff. Their purpose is 10 be very knowledgeable
about the components in the library that are in a specific domain. The topic specialist keeps notes on
problems, solutions, and other information about those components that are not represented in the

database. Periodically these notes would be published.

It should be noted that reuse will not happen as a resuit of the implementation of a reuse library.

To ensure that reuse is at least attempted, checkpoints need to be inserted in the development process.

4.1.4 Summarv and Recommendations

The diversity of goals and approaches in the development of U.S. software repositories has made

clear that with each of the considerations outlined above there are benefit tradeoffs.

The ASR, funded and staffed at a low level, places little emphasis on the quality of software
submitted. It is a "grass-roots” repository that was initially established without fanfare. Its achievements,
however, in terms of quantity of ava:iuble software, have been immense given the low level of investment
in it. ASR has now become so well known that it is being made accessible on other media through a
number of second party vendors. The progress of the ASR can probably be attributed to the dedication

of a few individuals and the relative lack of bureaucratic and contractual “red-tape” surrounding it

COSMIC provides a much higher degree of quality control than the ASR. With the additional
investment in quality, however, additional time is also needed to make software available. Tumaround time
between submission of code to CUSMIC and its accessibility to the user via the COSMIC catalog is apt to
be far longer than that of the ASR. COSMIC personnei also mentioned that the Center’s lack of publicity

is a problem; even those within NASA are often unaware of the Center. Finally, the diversity of

31

application areas, implementation languages, and media represented by the COSMIC collection, even with

its well organized catalog, present a challenge to use:s searching for reusable software.

The CAMP project has had the greatest focus on software development with reuse as an explicit
objective, and it has already shown a great deal of promise. CAMP is the only repository that is comprised
of components only, and not entire programs, and it is the only one that includes additional software to
assist the user in tailoring compounents for use in various applications. One barrier 10 reuse of CAMP is
its means of dissemination. Contractor users have complained about the length of time required 1o satisfy

government requirements surrounding access to CAMP products, because of their militarily critical status.

Because AdaNET is fairly new, conclusions may be premature. However, if AdaNET's goals include
adding value to exisiing repository products, its problems with configuration management will be even
greater than those of the ASR and COSMIC. Ironically, AdaNET may also suffer from being publicized
too much; users may expect products and services more quickly than could be reasonably expected of such
a large undertaking. AdaNET's publicity underlines the necessity to advertise reasonable goals and a

realistic schedule for achieving them.

Repository developers must define short term and long term goals and a realistic schedule of
milestones t0 achieve the goals. The definition of repository goals is especially important if there are a
number 6f sponsors or developers involved. If the need t0 show that software can be developed for
particular applications is greater than the need 10 have a single set of standard components, the strategy
adopted may be similar to that of the ASR. If, however, application areas are well-defined, the CAMP

strategy may work best. The following are addit*- -nal recommendations for the successful developmen* of

software repositories.

. Ensure adequate repository management. Support required includes configuration
management, quality control, catalc? generation, public relations, dissemination of
components and documentation, and coordination with sponsors and developers.

. Define quality control standards, including standards for coding, documentation, and
testing. These standards should be clearly stated in all literature describing the repository,
so that users know the extent to which the repository contents have been screened.

. Assist users in finding the¢ components or programs by providing a well-indexed,
compreheasive catalog. Make the catalog and the components available both in hardcopy
and electronically. The catalog should include, at a minimum, information on the
applica’')n, development date and version, development environm.nt and limitations or
trouble reports.

32

i Make repository software as easy to obtain as possible. Sometimes cost is less a barrier
than government procedures. The dissemination organization must be abie t0 provide
timely response to requests for library components.

. Publicize the repository as widely as possible to software developers, potential users, and
government software acquisition organizations. Also, provide a means of obtaining
feedback from users.

. Contact other repository developers 10 obtain specific information on software licensing
agreements used, and agreements with government sponsors and contractors regarding the
reuse of software. There are still many issues surrounding data rights which are important
to understand before adopting 2 strategy.

The use of government contractual incentives for the reuse of software has not yet been
demonstrated completely. Many feel that the availability of high quality products which are conducive to
reuse provides adequate incentive to vendors with fixed-price contracts. Contractors will reuse code if there
is an obvious cost benefit, and if competition is driven by the reuse philosophy. To achieve high quality
products in the shortest time, repositories must have clear goals, be adequately funded and directed, and

must be well publicized.

4.2 COMMERCIAL COMPONENTS

Private industry is beginning to supply the software community with reusable components or
commercial components. The cost of the components is typically much less the development cost of a
comparable component. Also, many manufacturers offer warranties, maintenance contracts, and/or user
support. Thus it is prudent to survey the industry to determine whether the available components can be
useful. Below is a sample of commercial components that can be purchased from their respective

developers. A brief description of the component(s) is provided along with a point of contact.

Ada Components Catalog includes mathematical algorithms, control systems, graphics algorithms, board
support packages, business, string processing, sorting algorithms and geometric algorithms. For additional
information, contact: John Griffin, Iib Systems, Inc, P.O. Box 18173, Anaheim, CA 92187, (714) 528-
710.

The AdaSoft Components Kit (TACK). Current tools available within TACK include AdaMenus, which
provides facilities for creating and displaying several kinds of menus, and AdaWindows, which provides
facilities for creating and using windows. This software is availabie both in source and binary. For more
information, contact: Mr. Jerry Horsewood, AdaSoft Inc., 9300 Annapolis Rd., Lanham, MD 20706, (301)
459-4696, adasoft@grebyn.com.

33

Computer Representatives International, Inc. (CRI), has developed and markets a database management
svstem written in Ada. The DBMS is available as a standalone product and can be embedded in

applications written in Ada. For more information, contact: CRI Incorporated, 5333 Betsy Ross Dr., Santa
Clara, CA 95054, (408) 980-9898.

Software Technology, Inc, offers an impiementation of the Graphical Kernal Svstem (GKS) written in Ada
and for use by applications written in Ada. Versions of GKS are available for systems including
VAX/VMS, PC/MS-DOS, Macintosh, as well as training in the use and application of GKS. An Ultrix
impicmentation is under development. For more information, contact: Geri Cuthbert, Software
Technology, Inc., 1511 Park Avenue, Melbourne, FL 32901, (407) 723-3999.

GRACE (Generic Reusable Ada Components for Engineers) is a library of 275 reusable software

components based on commonly used data structures. The only requirement for its use is a validated Ada
compiler. For additional information, contact: EVB Software’ Engineering, Inc., Frederick, MD. (301)
695-6960.

Math Advantage, a library of reusable Ada components, is available in the new 3.0 release. This version
is useful for vector and matrix manipulation, as well as signal and image processing. Contact Quantitative

Technology Corp. for more information at (503) 626-3081.

Numerical Algorithms Group, Inc. Offers mathematical components in its NAG Ada Librarv. Package

units include basic arithmetic, input/output, numbers, and error trapping. For additional information

contact Numerical Algorithms Group, Inc., Downers Grove, [L. (312) 971-2337.

The Booch Components (referenced in Section 4.1.2.5), are sold as a set by WIZARD Software. There are
501 packages in this coliection, totalling just under 150,000 lines of Ada. The collection includes structures
(e.g., stacks, strings, queues, lists, trees), tools (e.g., filters, pipes, sorts, searches and pattern maiching
packages), and subsystems (components that denote a logical collection of cooperating structures and tools).
For additional information, contact Wizard Software, 2171 S. Parfet Court, Lakewood, CO 80227, or call
(303) 987-1874.

43 A DESIGN METHODOLOGY FOR PRODUCING REUSABLE COMPONENTS
(OBJECT-ORIENTED DEVELOPMENT)

There are numerous methods of developing software. Reusable software can be developed using
any development method. There is one method however, that seems to facilitate reusable code. That
method is called object-oriented development. Object-oriented development tends to produce software that
is loosely coupled, and highly cohesive. This method also promotes development at multiple levels of
abstraction. These properties coincide with primary characteristics of reusable software. Therefore, object-

oriented development is a good choice when trying to produce or consume reusable code.

Object-oriented &aign is a method of partitioning a software system. It states that partitioning
should be based on objects, not functions: each module in the system should be built around one class or
object. The term "object-oriented design® has lately been replaced by the term "object-oriented
development® because it has been realized that an object-oriented mentality must be present all the way
through the software development cycle, not just in the design phase. Accordingly, we will begin with a

discussion of object-oriented requirements analysis.

Defenders of object-oriented design contend that an object-oriented library unit is more likely to
be reused. This is because object-oriented library units tend 1o be highly cohesive and loosely coupled to
the outside world. A properly designed object-oriented library unit is built around a given type and exports
at least a primitive set of operations for that type, and so is highly cohesive. Moreover, a well designed
object-oriented library unit has a tightly controlled interface: it exports only the minimum needed by the
outside world and hides the rest, and it imports only what it needs from the outside world. This ensures

that object-oriented library units will be loosely coupled.

43.1 Object-Oriented Requirements Analysis

An object-oriented requirements analysis enhances the traceability between the requirements and
the design. Although the designer is free to improve on the view of the world presented by the analyst,
an object-oriented requirements analysis will still look a lot more like an object-oriented design than a
functior.ally-onented requirements analysis will. Since many functions may pertain to a single object and
many objects may embody a single function, it is likely to be extremely dTicult to achieve a straightforward
mapping between functional requirements and object oriented des.ign. The mapping between object-oriented

requirements and object-oriented design, however, is likely to be much more direct

35

A requirements analysis provides a default framework for a design. The designer may choose to
accept this default. In that case, the design and coding phases would consist of nothing more than filling
in the gaps left by the requirements analysis. But the designer is not obligated to do this. The designer
may instead combine objects identified in the requirements analysis phase into larger objects, or he/she may
break them apart into smaller objects. The situation is no different from functional requirements: there
may be a one-to-one, 2 many-lo-one, Or a one-to-many relationship between a functional requirement and

the subprogram(s) that implements it. The essential thing is that the requirement be satisfied in some way.

It has been claimed that it is more difficult t0 derive an object-oriented design from a functionally
oriented requirements analysis (such as a structured analysis) than from an object-oriented requirements
analysis. Why should this be? To answer this question we must recognize that the software development
process from design through coding is a continual process of making explicit what was only implicit in the
original requirements. This is true in the first place of derived requirements. Derived requirements, as
the name implies, are implied by the original system requirements. The same is true of the actual code:
the data structures and processes that constitute the completed svstem constitute the "cash value” of its
requirements. The full implications of the original system requirements, therefore, cannot be understood

until the coding phase has been completed.

Because the ratio of requirements to lines of code is almost always very small, each requirement
typically summarizes an enormous number of implementation features. Any two compiete sets of system
requirements will of necessity summarize all the features of the implemented system. The difference
between them will not be in the features summarized but in the way the features are grouped together.

Thus, each requirements analysis will organize the system from a unique point of view.

Now an object-oriented design has very specific needs: objects must model the real worid, and
operations must be subordinate to objects. What this means is that an object-oriented design will need
implementation features that are grouped together in a certain way. What is to insure that, out of all the
possible groupings, these features will be grouped together in the way an object-oriented design needs
them? Not unless we introduce object-oriented thinking from the start can we maximize the likelihood that
serviceable objects and operations will come out of the requirements analysis phase. The entities identified
by a functionslly oriented requirements analysis method are likely to be the wrong collections of
implementation features—t0o general, too specific, or simply irrelevant to the needs of an object-oriented
design. This is because functionally oriented requirements analysis methods are really looking for different
things than obiect-oriented requirements analysis, so that, even if both completely express a system’s
impiementation features, it is unlikely that the way in which those features are organized will be as useful

for an object-oriented design.

Functionally oriented requirements analysis and object-oriented requirements analysis also organize
the system requirements differently at a higher level. The former organize them by function, breaking down
general operations into more specific ones; the latter organizes the requirements by object, breaking down
higher-level objects into lower-level ones. Thus, not only are the objects and operations identified in an
object-oriented requirements analysis more likely to be serviceable for an object-oriented design, but the
structure of a system is more likely to fit in with an object-oriented design if that design is based on an

object-oriented requirements analysis.
Object-oriented requirements analysis uses basically the same set of iechniques as object-oriented

design. The main difference between them is that requirements analysis focuses on required objects,

autributes, and operations, whereas design fills in the details.

43.2 Obiject-Oriented Design

An obvious strategy for reuse of high-level routines is to structure them with reusable modules.
A contemporary method for doing this is object-oriented design. Object-oriented design restricts an
application to the manipulation of objects. Objects tend to be general purpose, and are constructed with

other lower level abjects that are themselves reusable.

Given the need for object-oriented requirements analysis as a front end to object-oriented design,
let us first of all attempt to clarify just what the object-oriented designer is looking for. The goal of

object-oriented design is to identify the following:

. classes

. subsystems
. objects

. states

. attributes

. operations.

The basic concept of object-oriented development is the notion of a class. A class is an eatity that
is characterized by a set of attributes and/or a set of operations. If the structure of the class is visible, then
it is characterized by the data structure in terms of which it is defined, the implicit operations that pertain

to that data structure, and any further operations that are explicitly provided in the library unit defining the

37

class. If the structure of the class is not visible, then it is characterized only by the operations that are
explicitly provided in the library unit defining the class, as well as any operations (such as equality) that

may still be implicitly available.

Other concepts are based on the notion of a class:

. A subsystem is a collection of classes. For example, in an aircraft simulator all classes
pertaining to the aircraft components may be grouped together into the same subsystem.

. An attribute is a property of a class. For exampie, "location” is an attribute, because it is
a property of the class "aircraft.” An attribute is an instance of a class in its own right,
which may in turn be characterized by other attributes. For example, "location” may be an
instance of the class "coordinates,” which is characierized by the attributes Mattude” and
"longitude."

. An objec: is an instance of a class other then an attribute. An example of an object is
"Air Force One,” which is an instance of the class "aircraft.”

. A state is an instance of all the attributes of an object. Suppose the class "aircraft" were
characterized by the attributes "altitude,” "air speed,” "heading,” and "location.” Then the
state of an aircraft would be the particular values of these attributes, for example, "1000
feet,” "100 knots,” "180 degrees,” and "40 degrees north by 160 degrees west.”

. An operation is a process that either changes or provides information about the state of
an object. For example, the operation "accelerate” would change the state of an aircrafy;
the operation "current speed” would provide information about the state of the aircraft.

Operations can be divided into constructors, selectors, and iterators: Constructors change the state
of an object; selectors provide information about the state of an object; iterators are performed on
homogeneous complex objects (e.g. arrays, linked lists) and either change or provide information about the

state of every element in the object. Thus, iterators are either constructive or selective.

The most important of these concepts are class, attribute, and operation. It is important 10 keep
in mind the conceptual differences between them. The benefits of object-oriented design can be fully
realized only if it is indeed classes that are encapsulated in software modules, not attributes or operations
disguised as classes. Conceptudi clarity is important. Attributes are properties; operations happen over

time; classes are things that have attributes and perform operations.

433 Object-Oriented Coding

How can these entities be mapped onto Ada library units? A subsystem has no Ada equivalent.

A class is rypically an abstract data tvpe defined in a package (for example, a linked list package), and an

38

object is typically a variable, constant, or task of that type. Sometimes it is advisable to represent a class
by a generic package-what Booch calls an "abstract-state machine” package [Booch 1987B]. In this
instance, an object of the class would be an instantiation of the generic package, and so would be a
package. Attributes are represented by generic formal types. States are represented by the possible values
of those types, expressed in Ada by literals or aggregates. Operations would be implemented by functions,
procedures, and entries. All Ada functions are selectors, and iterators are represented by generic

procedures. TABLE 2 provides Ada equivalents to object-oriented entities.

The principal Ada design tool is the package. An object-oriented package will be built around 2
single type and will define the type in terms of the operations that can be performed on objects of the
type. One can distinguish five kinds of object-oriented packages:

. Open, in which the central type declaration is visible

. Private, in which the central type is a private type

. Limited, in which the central type is limited private

. Opaque, in which the central type is limited private and implemented as an access type, the
full type declaration of whose designated subtype is located in the package body [ARM
3.8.1 (3)]

. Closed, in which the central type is declared in the package body.

Orthogonal to this taxonomy is another distinction based on what the package exports. From this

point of view, packages can be classified into the following types:

. Class exporting, in which the central type is declared in the visible part of the package
specification .
. Object exporting, in which an object of the central type is declared in the visible part of

the package specification

. Operation exporting, in which at least one operation of the central type is declared in the
visible part of the package specification. It should be pointed out that a package can
export an operation in two ways—explicitly or implicitly. When a type is declared, certain
operations are ~-mplicitly declared for that type. These are comprised of the following

[ARM 333 (2)):

' . Basic operations [ARM 333 (3 - 7]
. Predefined operators [ARM 4.5 (2, 6)]
. Enumeration Literals [ARM 3.5.1 (3)]

39

TABLE 2. ADA EQUIVALENTS TO OBJECT-ORIENTED ENTITIES

Object-Oriented Entity

Ada Equivalent

Subsystem < none >
Class Type
Generic package
Object Variable
Constant
Task
Package
Attribute Generic Formal Type
State Literal
Aggregate
Operation
Constructor Procedure
Entry
Selector Function
Procedure
Entry
Iterator Generic Procedure
Constructive
Selective .
. Derived subprograms [ARM 3.4 (11 - 14)).

Explicitly declared operations for a type are subprograms each of which meets the following

conditions [ARM 7.4.2 (4)]:

N Al least one of its parameters and/or its result is of the type in question.
. The operation is declared in the specification of the same package in which the
type is declared.

An open package exports all of its implicitly declared operations. A private package
exports only those implicitly declared operations which do not depend on the knowledge
of the full type declaration [ARM 7.4.2 (1 - 3)]. A limited package exports the same
implicitly declared operations as a private type with the exception of the basic operation
of assignment and the predefined equality operator [ARM 7.4.2 (1, 3)].

It seems clear that the first of these types is characteristic of open, private, limited, and opaque
packages, because the central type declaration is visible. It also seems clear that the second of these types
is another variant of the open package, because in order for an object t0 be visible in a package
specification, its type must also be visible. Finally, the third type pertains to open, private, limited. opaque,
and closed packages. Combining this distinction with the one above, we can produce the following
classification shown in TABLE 3. Examples of each package can be found in Appendix A

TABLE 3. PACKAGE TYPES

class object operation
exporting exporting exporting

open X x X
private X x
limited X X
opaque X X
closed x

43.4 Risks of Object-Oriented Development

Any advocate of object-oriented development is likely to run into a certain amount of resistance.
In any profession there is a certain reluctance to change. People have built successful carecss on certain
procedures with which they are comfortable. Adopting the adage, "If it works, don’t fix it,” people may see

no need to do things any differently than the way they have always been done.

Object-oriented development is still a very new technolocgy. It is best accomplished with an
object-oriented requirements analysis as a front end. This part of object-oriented development is even
newer and thus relatively untried. There are few analysts around with genuine experience in object-oriented
requirements analysis. Hence, there may be a substantial learning curve for any group of software engineers

intending 10 use object orientation for the first time,

A related problem is that software engineers have for years been trained in functional methods.
This, coupled with the fact that functional decomposition is probably easier to perform with less training
than object-oriented development, means that designers on a project are likely to be more comfortable with

functional than with object-oriented approaches.

41

Another difficulty 2 program manager may encounter when considering object-oriented development
is fitting it into the software life<cycle. It was argued above that the most suitable front end to
object-oriented design is object-oriented requirements analysis. Often, however, a program manager simply
inherits a functionally specified system in which the major componeats are also broken down functionally.
It may be difficult 10 fit object-oriented development into a life-cycle which has already progressed along
a different path.

All of the above cautions center around the newness of cbject-oriented programming. But if
novelty were always a reason for not doing something, no progress would ever be made in any field. In
order to be persuaded to embrace a new technology, managers must be convinced that the long-term
benefits are substantial enough to outweigh the short-term liabilities. This is probably the case with object-
oriented development. Object-oriented systems, when done in the right way, exhibit a coherent design, are
loosely coupled internally, are clear and easy to maintain, are modularized in a meaningful way, are easy
to debug, and are likely to have reusable components. An investment of the time and resources (0 become

comfortable with object orientation will probably pay for itseif in the long run.

42

5.0 DOMAIN-SPECIFIC APPROACHES

Reusable elements whose reuse is restricted t0 a defined application area are called domain-specific
approaches. The payoff when using these approaches is usually higher than when using domain-
independent strategies. This is because the percentage of reusable elements in a given application can be

greater in the domain-specific approaches.

The component approaches to reuse that are defined in the previous section also apply to domain-
specific environments. The only difference is that the reusable components are not as general-purpose as

in the domain-independent case.

Another style of reuse approaches is adaptive reuse. Adaptive approaches try to reuse the
framework of the software. This includes the design as well as the top layers of an application.
Component reuse structures the application around the components. Conversely, adaptive reuse maintains

a fixed structure and plugs in, deletes, or alters components to change the functionality of the system.

In most cases, domain-specific components can be used to feed the adaptive approaches. This is
because the adaptive approaches advocate a top-down software design where component methods are
generally bottom-up. Combining the two types of approaches provides the potential for automating the

software coding process.

The domain-shecific reuse methods discussed in this paper are:

. generic architectures

. CONSIructors.
5.1 GENERIC ARCHITECTURES

Generic architectures are a form of adaptive reuse. Generic architectures are upper-level structures
that contain reusable software and design components along with common interface mechanisms. They
provide the high-level design and code as well an application-specific set of components o be adapted,
swapped, or deleted. Thus a new application could experience huge savings through the reuse of most of

the design and code from a generic architecture.

43

Generic architectures can be thought of as a form of standardization a! the design level. One
could make an analogy with computer hardware. An IBM-AT compatible computer will always have a
chassis, a 286 mother-board with expansion slots, and a power supply. These common elements define the
generic architecture of the system. Hardware components can be adapted, swapped, or deleted from one
specific configuration to create a second configuration that satisfies totally different needs. For example,
a desktop publishing system requires a high resolution graphics card driving a large screen black and white
monitor, a hard drive, a floppy drive, a controller, /O ports, a mouse, and a postscript laser printer. An
image processing workstation would be configured with a frame grabber, CCD camera, high resolution color
monitor and graphics card, a dry ink plotter, /O ports, a track ball, a larger hard drive, a floppy drive, a
controller, and extended memory. These applications have dissimilar functionalities and require drastically
different hardware support. Yet both configurations are based on a generic architecture of the IBM-AT

compatible computer.

There are several criteria that govern when to use generic architectures. First, there must be
several applications to be developed that are similar in nature such that a generic architecture can be
appiied. Also these applications should be funded from the same source. This is because the up-front cost
of creating a generic architecture is high. Thus several reuses are required 10 offset the initial costs and
save long-term dollars. Furthermore, it should be anticipated taat the technology in the application domain
be stable over the life of the program. Rapidly growing technologies could foster some radical changes in

the requirements of the systems. Changes in requirements c.ruld shatter a generic architecture.

The level of reuse for generic architectures is high. This is due to the sheer volume of elements
that are reusable. The design, the upper-level code, and the lower-level components are all potentially
reusable. Also the data structures, communication protocols, and other software interfaces are standardized
across applications. This translates into savings in future developments as well as system-wide maintenance.
Training costs are reduced because the man-machine interface will be fairly consistent among the

applications spawned from the same generic architecture.

A key feature of generic architectures is that all the functionality of the system is known before
much code is written. The opposite is true of a bottom-up component reuse strategy. Also the adaptive
nature of generic architectures lends itself to an iterative style of development where one would code, test,
and provide feedback. Thus generic architectures facilitate tae development of rapid prototypes. These

prototypes are also useful to validate the generic architecture.

For generic architectures to be feasible, the application domain needs to be well understood, and

the potential applications in the domain need to be identified. Consequently, a quality domain analysis

44

needs 10 be completed prior to the design. This domain analysis must be performed by an experts in the

application domain and by individuals who are experienced in domain analysis.

The cost for doing a2 domain analysis is high and cannot be budgeted. The cost cannot be budgeted
because it is difficult to determine when a domain analysis is complete, and an incomplete or marginal
quality domain analysis may produce an invalid architecture. Note that the feasibility of using the generic
architecture is not fully determined until the domain analysis is complete.

Generic architectures have a moderate amount of flexibility in the handling of requirements
changes. The domain analysis identifies or tries 10 anticipate the requirements for future applications.
Such requirements pose Jittle threat to the generic architecture because the architecture is designed to
accommodate all of the current and future requirements for the systems. However those requirements that
were not forecasted by the domain analysis may compromise the architecture. This danger is prevalent in
domains that were ill conceived, or where the technology is experiencing rapid growth. Using our hardware
example, the IBM-AT architecture cannot adapt to the new micro channel technology and therefore cannot
be used.

Once the decision is made to use generic architectures, it must be enforced. This is because most
of the expense of developing a generic architecture is incurred near the beginning of the project. “[hese

battles are best waged prior to spending all the funds on a detailed domain analysis.

52 OTHER DOMAIN SPECIFIC METHODS

Other reuse methods that are unique to the realm of domain-specific approaches are discussed:

. constructors

. structural models
5.2.1 Constructors

A compohcnt constructor is a software system that facilitates the development of application
software by producing components based on user requirements [McNicholl 1988). There are three parts

t0 a constructor.

a domain-specific library of skeleton components called meta-parts

45

an interface to the user that allows the user to build applications through a collection of

components
a set of rules and tools that instantiate a meta-part.

Requirements are input by the user. The constructor analyzes this information, searches the library
for the appropriate meta-part, and then instantiates the meta-parts thereby generating a compilable

component. For a schematic representation of a construcior, see Figure 5.

User Requiremena
;

v

| I) {
Meta-Part ——®' Constructor [———>] Compilabie Component

——

FIGURE 1. THE CONSTRUCTOR AND RELATED PARTS
Each item in Figure 5 will be explained in detzil:

. meta-part

The meta-part is the general form of a component and is either the complex Ada gene—¢c
or the schematic part. A complex generic part may require data types, operators, anc
subprograms for instantiation. It m: s also require a complex defaulting scheme. Simy:e
generic parts require only a small number of data types for instantiation. Schematic parts
consist of a "blueprint” for construction, and a set of construction rules for building a
specific instance of the part. Ada generics are used whenever possible. But not all possible
templates can be captured as Ada generics. Specifically, generics cannot handle situations
in which only the structure, not the content, remains the same (cf. Section 5.1.1.1). In
these instances, schematic parts are used in place of Ada generics.

. user requirements
The requirements are entered based on questions elicited by the constructor’s user interface.
M constructor

The coi.tructor analyzes the requirement data and exiends the mcia-part 1o generate the
code for the component.

. component

The resulting component is an instance of the component’s general form.

The creation of a constructor requires a close interaction between the constructor developer and
the component developer. The constructor developer creates the user interface and the constructor, and

the component developer generates the meta-parts.

The CAMP project determined that constructors would be beneficial for efficient implementation
of nine of their components and developed nine component constructors. The following discussion

describes constructors based on CAMP’s experiences.

The meta-part for CAMP's finite state machine is a schematic part, because the variable number
of states and transitions -z difficult to capture in generic units [McNicholl 1988]. The meta-part for the
autopilot is made up of complex generic parts. The constructor assists the user in creating a correct
instantiation. For the Kalman Filter Constructor a combination of generics and schematics is used. The

user’s options determine the implementation.

CAMP’s experiences with the construcior show its feasibility within narrow domains, and its use
does increase productivity. In its current state, it is not very portable. Because the constructor is closely
tied to the software component, an <ignificant changes to the component will require modifications in the

constructor. Thus, consiuructor maintenance can be a costly concern.

A software developer working in the domain of the constructor, can build a Jarge portion of the
desired application with the constructor. This can result in a large cost savings in the design, coding, and

maintenance phases of a software development.

5.2.2 Structural Models

There are two premises of structural models. One is that there will exist a solution that can be
described as a series of recurring patterns. The other is that these patterns can be generalized to other
applications within a broader domain. This translates to two levels of reuse. The first is the reuse of the

recurring patierns within the application. The second is the reuse of those patterns between applications.

Structural models operate predominantly at the design and code levels of the software life-cycie.

At the design level, a structural model will define a set of recurring patterns, and a grouping strategy with

47

which these patterns apply. Code for the structural model would consist of a set of software templates.
These templates are skeleton packages that require a user 10 fill in specific type definitions and formal
procedural parameters. If a generic is used in lieu of a template, a large number of generic formal
parameters and subprograms would need to be instantiated. This would add an unnecessary level of

complexity to the code and obscure the essence of the recurring patterns. This is discussed further in

Appendix F.

The first step in developing a structural model, is a domain analysis. A: with the generic
architecture, the domain analysis bounds the domain, defines the requirements for software within the
domain, and identifies commonality between elements in the domain. Initially, in a structural model, the
domain is defined as the application itself. The domain analysis consists of defining requirements for the
given application, and identifying any recurring patterns within the application. Requirements are typically
defined as part of the software life-cycle. Thus, the net effort required in a domain analysis for structurai

models is reduced to finding the recurring patterns.

Once the recurring patterns are established, software templates based on these patterns are

generated. A framework is then designed to interface the instances of the patterns with the application.

Because the domain analysis is minimal for a siructural model, the up front cost, hence the risk is
less than most other reuse schemes. Conversely, there is no guarantee that the patierns will translate well

into future applications.

A generic architecture is appropriate when the applications to be developed are planned. In this
situation it is preferable to define the requirements and the design for all the applications simultaneously.
If the number and function of future applications is not known, then a structural model should be
considered. For instance, if software is being developed for an application that is 10 be implemented in a
number of disjoint organizations (e.g., across DoD agencies or services), then the in-depth domain analysis
needed to develop a generic architecture would be virtually impossible due to the amount of coordination
necessary, and the unknowns of various implementation schedules, budgets, and staff assignments. In this
case, use of structural models would be more practical and less risky. The focus in this case would be the

current application with the consideration of future applications.

The idea of structural models is a very powerful concept because it re_lly achieves reuse on two
levels—-within an application and between applications. Its power comes from the detection of patterns
internal to any application of a given type and iterating instances of that pattern. It is a domain-specific

concept and requires some knowiedge of the intended application domain 10 be used.

48

6.0 COST/BENEFIT ANALYSIS FOR SOFTWARE REUSE

Four cost/benefit issues are addressed in this section:

. the economics of reuse
. software cost models with a reuse component
. estimating the cost/benefits of reuse

6.1 ECONOMICS OF REUSE

There are two areas that are relevant to the economics of reuse. These areas are the production
of reuse, and the consumption of reuse. In this section the factors that influence cost will be delineated

for both reuse production and consumption.

Production of Reuse

At the beginning of most software efforts, a decision must be made as to whether software units

are t0 be made reusable. This determination can be aided by looking at the factors influencing the costs.

The first factor to consider is the initial investment in reuse. For cc;mponems this is the cost to
produce a reusable component versus the cost to produce a non-reusable functionally equivalent component,
and/or the start-up cost for a component library. With adaptive reuse the initial costs can include a domain
analysis, a generic architecture, a structural model, a constructor, a template generator, and/or supporting

tools.

Another major factor is the number of times a reusable element is to be used. It costs more to
produce a reusable element than an equivalent non-reusable one. This is because the development of
reusable code requires more time in the planning and coding stages. Thus, it is important to anticipate the
number of potential reuses r<'>r a given software element. By reusing a software module, one is, in effect,
distributing the developed cost for that software among the various applicetions. Therefore, if a software
element is used three times, then the cost of developing that element can be divided by three, with each
third being charged to each usage. The number of reuses will determine the pay-back in the development

phase.

49

The extra time expended to create reusabie code is offset somewhat by the amount of debug time
saved in the testing phase; it is easier to localize bugs when working with reusable modules since one can
zero in on small blocks of code. Another factor enhanced by reusability is maintainability. Reusable
components are easy to maintain because they are easy to localize. They also can be easily extracted for
testing. Furthermore, once a reusable software element is validated, all instances of that element are valid.

The maintenance aspect alone could justify the creation of reusable software.

Consumption of Reuse

Including a reusable unit in an application is the consumption of reuse. When addressing the cost

effectiveness of reuse consumption, some additional cost factors need to0 be examined.

One factor that should be considered is the extra cost of identifying, finding, and evaluating
reusable components. Finding a component to fit your needs is not a trivial task. Hence this task may be

expensive.

There is also the cost of the learning curve for using a reusable unit. The learning curve cost
refers to the extra time and effort required for the proper usage of the unit. Good documentation will
reduce this cost significantly.

Finally, there is the cost of working within reuse-imposed design constraints. Reusable modules can
restrict the design of the software they support. The greater the number of reusable components used in
a given application, the greater the number of design constraints imposed by the reused software. Such
constraints affect the structure, operation, and function of the application. At times these constraints are
beneficial to the development effort. At other times an extra software layer needs to be developed to

interface the reusable component with the application.

6.2 SOFTWARE COST MODELS WITH A REUSE COMPONENT

This section describes the methods used to account for reuse in current software cost models. The

following topics are discussed:

. accounting for reusable components in new Cost estimates
. estimating the development of reusabie code
. deficiencies in the current cost models.

50

Selecting 3 Cost Model

The term "cost model" is a conventional one, but it should be recognized that cost models estimate
personnel effort and schedule duration for software project activities and life-cycle phases. There are few
discriminating factors when determining which model is the most appropriate within a unique environment.
Most automated models will run on an IBM PC (or compatible) and estimate operational support costs in
addition to development. (Appendices B - E provide an overview of the contractual arrangements, costs,

hardware requirements, and developer points-of-contact for several well-known models.)

Of first concern to managers when determining the cost for a new project is which model will give
the best ballpark figure. Few comprehensive studies have been performed that demonstrate the differences
between software cost estimation models in view of their ability to provide reasonable estimates. Accuracy
claims made by the developer are difficult to substantiate. In addition, differing perceptions exist on how
to estimate software cost for new technologies such as Ada. The following discussion will focus on the
empirical studies performed 1o date that address model accuracy. The discussion is divided into two areas:

1) predicting personnel effort and 2) predicting scheduie duration.

Personnel Effort

For estimating software development costs, two studies have demonstrated that different models
have better expected accuracy for different classes of applicar ~~s [FERENS 1989] [IITRI 1989]. An IITRI
study targeted eight completed Ada projects and compared the effort predicted by six cost models to the
actual project resources expended by their respective developers. Projects targeted in the test case study
consisted of three different types of applications: command and control (4 projects), tools/environment (3
projects) and avionics (1 project). TABLE 4 summarizes the model performances that were based on a
comparison of estimated to actual effort. An analysis of the results based on application type demonstrated

that model performance varies for different types of applications.

51

TABLE 4. TEST CASE STUDY RESULTS [IITRI 1989]: PERSONNEL EFFORT

Evaluation Model Performance Range]
Criteria (Vithin 30%) |
Overall Accuracy SoftCost-Ada |4 out of 7 0% to 13%
of Effort SASET 4 out of 8 -29% to 29% |
SPQR/20 3 out of 8 -22% to 19%
COSTMODL 2 out of 6 -25% to - 1%
PRICE S 0 out of 8
SYSTEM-3 0 out of 8
I
Overall Consistency |SYSTEM-3 5 out of 8 -14% to 28%
of Effort ‘PRICE S 5 out of 8 -26% to 22%
| SoftCost-Ada |4 out of 7 -13% to - 2% |
| COSTMODL 3 out of 6 -29% to 10% |
| SASET 4 out of 8 -15% to 27% |
| SPQR/20 3 out of 8 -20% to 21 |
Model Accuracy on SASET 3 out of 4 - 7% to 29%
| command & Control SPQR/20 2 out of 4 -22% to 19%
| applications SoftCost-Ada |2 out of 4 6% to 13%
l COSTMODL 2 out of & -25% to - 1%
| PRICE S 0 out of & :
[SYSTEM-3 0 out of 4 | |
Model Consistency on [PRICE S 4 out of 4 -26% to 0%
| command & Control SASET 3 out of &4 -15% to 1%
| Applications SYSTEM-3 3 out of 4 -14% to 26% |
| SPQR/20 3 out of 4 | -20% to 21% |
I SoftCost-Ada 2 out of 4 | - 8% to - 2% |
COSTMODL 2 out of 4 ! - 1% to 10% y
Model Accuracy on SoftCost-Ada |2 out of 2 0% to 2% }
| Tools/Environment SASET 1 out of 3 -29% |
| Applications COSTMODL 0 out of 1
I PRICE-S 0 out of 3
I SYSTEM-3 0 out of 2 I
SPQR/20 0 out of 3 |
Model Consistency on |SoftCost-Ada |2 out of 2 -13% to -1ll%
| Tools/Environment PRICE S 1 out of 3 22%
ﬂ Applications SYSTEM-3 1l out of 3 28%
i COSTMODL 0 out of 1
[SASET 0 out of 3 |
ﬁ SPQR/20 0 out of 3 ﬂ

* COSTMODL is an automated implementation of Ada COCOMO, IOC version.

52

Results were evaluated for consistency by comparing the project’s actual effort to the estimated
effort after a computed mean value was applied to each model estimate. An analysis of model efforts for
consistency was performed to establish if results were consister ‘v high or consistently low, eliminating
differences between the perspectives of the person deriving th its t0 each model and the model
developer. This process involved the following steps:

L A percentage of actual effort to model effort was calcula..d.

pA The two extremes were discarded'to achieve a truer sampling of percentages.

3. A mean value of the remaining percentages was computed and applied to the given model’s
estimates.

4, The relative error for each project was recalculated using the adjusted efforts.

The results of this process when applied to each model are illustrated in Tables 4 through 6.

Models were also applied using nominal (average) values for input ratings while providing actual
project values for model input parameters that must be estimated early in the life-cycle, and for which
there is no associated average value. The nominal inputs reflect the level of knowledge about a new
development prior to contract award. An evaluation of the results of the study showed model performances
varied with differing amounts of project information. Some had surprisingly good results with minimum

information. A summary of the test case study results for nominal runs is provided in Table 6.

The results are somewhat indicative of the databases that were used to develop and validate cost
models (See TABLE 5). SoftCost-Ada has a database that is comprised of a large number of commercial
projects. PRICE S, SYSTEM-3, and SASET appear to be based on DoD software development

environments.

Because of the size of the database and the nature of the programs targeted in the test case study,
it is difficult to make positive conclusions with regard to model accuracy. One can, however, identify
trends that may be supported in future studies. Outside validation studies should ideally be used to

supplement a model user’s own analysis.

53

TABLE 5. OVERVIEW OF DATA USED TO DEVELOP/CALIBRATE COST MODELS

——
Cost Model Data
Ada COCOMO Calibrated using two completed TRW Ada projects

SoftCost-Ada

PRICE S

SASET

SYSTEM-3

which had been developed using full LoD software
acquisition standards [IITRI 1989].

Approximately 30 software projects developed by
12 different organizations within five aerospace
firms during the period spanning 1982 through 1987
[IITRI 1989].

Software projects at RCA Morristown Surface Radar
Division, including airborme, ship, and ground
radar projects [IITRI 1987].

Martin Marietta software development data
consisting of more than 300 completed projects
and some selected Navy data [IITRI 1989].

Data points on 50 management information systems
and command and control systems [IITRI 1987].

54

TABLE 6. TEST CASE STUDY RESULTS FOR NOMINAL RUNS [IITRI 1989]: PERSONNEL EFFORT

Evaluation Model Performance Range
Criteria (Within 30%)
Overall Accuracy SASET 4 out of 8 -24% to 29%
of Effort SYSTEM-3 3 out of 8 -17% to 28%
COSTMODL 2 out of 6 -25% to -24% |
SoftCost-Ada |2 out of 7 -27% to las |
PRICE-S 2 out of 8 -14% to -8% |
SPQR/20 1 out of 8 -27% l
Overall Consistency [COSTMODL 3 out of 6 -23% to 30%
of Effort) SoftCost-Ada |2 out of 7 0% to 28% |
SASET 3 out of 8 -24% to 7% |
! SYSTEM-3 3 out of 8 -26% to 13% |
SPQR/20 1 out of 8 -14% |
PRICE-S 1 out of 8 -29% !
Model Accuracy on SASET 3 out of 4 - 7% to 29% "
| Command & Control SYSTEM-3 3 out of 4 -17% to 28s% |
| applications COSTMODL 2 out of 4 -25% to -24% |
i PRICE S 2 out of &4 -14% to - 8% |
[SoftCost-Ada |2 out of &4 -27% to las |
SPQR/20 1 out of 4 -27% I
Model Consistency on |SASET 3 out of 4 -24% to 7%
Command & Control SoftCost-Ada |2 out of 4 123 to 28%
| Applications SYSTEM-3 2 out of & -11% to 13% |
COSTMODL 2 out of 4 -23% to 30% |
SPQR/20 1 out of 4 -14% l
| PRICE-S |1 out of 4 -29% l
Model Accuracy on SASET 1 out of 3 -24%
ﬂ Tools/Environment COSTMODL Oout of 1 |
Applications SoftCost-Ada |0 out of 2 I
PRICE-S 0 out of 3
SYSTEM-3 0 out of 3
SPQR/20 0 out of 3 [
Model Consistency on |COSTMODL 0 out of 1
Tools/Environment SoftCost-Ada 0 out of 2
Applications SASET 0 out of 3
L PRICE S 0 out of 3
SYSTEM-3 0 out of 3
SPQR/20 0 out of 3
* COSTMODL is an automated implementation of Ada COCOMO, IOC version.

55

Schedule Duration

For assessing the expected accuracy of software scheduling techniques, especially for the cost model
scheduling algorithms, two studies are noted. The Blalock study (Air Force Institute of Technology Thesis:
1988), which focussed on five cost models, shcwed that COCOMO was the least accurate of the five and
had an error of greater than 50%. The other four models: PRICE S, SYSTEM-3, SPQR.™, and
SOFTCOST-R were accurate within 20% of the actual schedule. There was one project targeted in the
study; therefore, general conclusions could not be drawn about the models studied [FERENS 1989].

A subsequent study compared scheduie duration for eight completed Ada projects to the durations
that were estimated by the six models studied. Table 7 shows results based upon a comparison of
estimated to actual schedule duration. Nominal run results for schedule duration are provided in Table 8.
It is interesting 10 note that the estimates for scheduied duration correlated more closely 10 the actual

schedule in the majority of cases when a minimum set of data was used as input to the models.

6.2.1 Accounting for Reusable Components In a New Cost Estimate

Software cost models tvpically take the form of a set of equations which relate size, effort, and
calendar time, and hence allow the prediction of effort and time given size as an input parameter. The
effort and tme predictions are then modified by a number of additional parameters which reflect
conditions specific to the project and developing organization. In a recent review of six cost estimation
models [ITTRI 1989}, all of them require the size and language of reusable components that are to be
incorporated into a new product. What follows will be based on the two models whose underlyving
equations are nonproprietary, Ada COCOMO and the Navy’s Software Architecture, Sizing, and Estimating
Tool (SASET). In these models reused components are accounted for in the base estimate for software
size. The number of instructions of new code 10 be developed and number of instructions that are to be
adapted are combined into an estimate for the "equivalent delivered source instructions.” The following
discussions of the COCOMO Reuse Mode! and SASET's Direct Input mode for software sizing illustrate

how these models account for reusable components in new developments.

56

TABLE 7. TEST CASE STUDY RESULTS [ITRI 1989): SCHEDULE DURATION

Model Performance Range
(Within 30%)

l SYSTEM-3 4 of 8 -27% to - 7%
PRICE S 3 of 8 3% to 18%
SASET 3 of 8 -24% to 6%

I spqr/20 3 of 8 -16% to 26%
COSTMODL 2 of 6 -28% to -25%
SoftCost-Ada 2 of 7 -26% to - 4%

After Application of the Means:

Model Applied Performance Range l
Mean (Within 30%) g
| SYSTEM-3 1.38 5 of 8 0% to 28% |
I PrICE s .69 5 of 8 -29% to 28% |
| sPqr/20 .85 5 of 8 -29% to 29% |
SASET 1.63 4 of 8 -30% to 23% |
SoftCost-Ada .90 3 of 7 -13% to 24% |
COSTMODL 1.93 1 of 6 -11%

L j
* COSTMODL is an automated implementation of Ada COCOMO, IOC version.

57

TABLE 8. TEST CASE STUDY NOMINAL RUN RESULTS [ITTRI 1989): SCHEDULE DURATION

Model Performance Range
(Within 30%)

|

|

I spor/20 6 of 8 -23% to 28% '

PRICE S 4 of 8 -26% to 21% |

SoftCost-Ada 2 of 7 - 6% to 5% |

| SYSTEM-3 2 of 8 -23% to 5% !
I cost™oDL 1 of 6 -26%

After Application of the Means: [

Model Applied Performance Range

H Mean (Within 30%) H
I spqr/20 .94 6 of 8 -28% to 20% I
| PRICE s .97 5 of 8 -28% to 29% [
| softCost-ada 1.89 2 of 7 0% to 14% |
| SYSTEM-5 2.05 3 of 8 -25% to 19% |
F COSTMODL 2.1 2 of 6 -27% to -23% |
|

Ik

* COSTMODL is an automated implementation of Ada COCOMO, I10C version.

58

6.2.1.1 COCOMO Reuse Model

The basis of the adaptation equations used in COCOMO is that reused code is not counted in the
same way as newly developed software. Reuse of existing code may require additional effort in the following
ways [Boehm 1981}

. redesigning adapted software 10 meet the objective of the new product

. reworking portions of the source code 10 accommodate changes in the new
product’s environment (hardware, operating system, etc.)

. integrating the adapted software into the new product environment.

The COCOMO Reuse Model uses the following equations to determine equivalent d
elivered source instructions (EDSI):

EDSI = (ADSI) [.4 (DM) + .3 (CM) + .3 (IM)] / 100

where
EDSI = Equivalent delivered source instructions
ADSI = Number of adapted or reused instructions
DM = Percentage of adapted software design modified
M = Percentage of adapted code modified
M = Percentage of integration required for modified software as compared to

‘ the normal amount of integration and testing effort required for software
of comparable size.

The coefficients (Design: 40%, Code: 30%, and Integration and Test: 30%) are determined from the average
amount of effort devoted to each corresponding phase of the lifecycle. An installation whose phase
distributions are considerably different might consider an alternate formula -- for example, for small

embedded-mode jobs where less effort is spent in integration and testing:

EDSI = (ADSI) [4 (DM) + 4 (CM) + .2 (IM)] / 100

The EDSI value is added to the number of new source instructions to be developed. The combined
size value is then used in the nominal estimating COCOMO equations to predict effort and schedule.

59

6.2.1.2 SASET Method for Calculating Equivalent New HOL

The equivalent new high order language line of code value is computed for each software function
before the sizes are aggregated to represent the total size of the software that is being estimated. To
calculate "equivalent new higher order language” lines of code, the analyst must account for the condition
of the code. Given a lines of code estimate for a software function, the analyst must determine what
percent of the code is new, modified, or rehosted. The code conditions are briefly defined below [Silver
1988}

New Code: This constitutes software code that is (10 be developed from scratch. Software

requirements must be determined, a design established, the design must be coded and units

tested. Regardless of the software type, 100 % of this LOC value is used in the new
higher order language equivalent caiculations.

Modified Code: This constitutes software code which is alreadv partially complete and
which can be utilized in the software program under consideration. Generally, modified
software at the very least needs to be retested, and some redesign and recoding efforts are
required. The new higher order language equivalen: calculations use 73 % of the modified
LOC value. '

Rehosted Code: This cunsists of completed and tested software code which is to be
transferred from one computer system to another. Generally, the code requires no
recuirements definition, little or no design definition, and only partial testing. The new
higher order language equivalent calculations use 10 % of the rehosted LOC value.

The following example illustrates how equivalent new higher order language lines of code are

calculated to account for reuse [Silver 1983]:

The condition of 9,900 lines of code estimated as the size of a software function is
distributed as follows:

Condition Fraction of Total Lines of Code
New 173 (333 %) 3,300
Modified 13 (333 %) 3,300
Rehosted 13 (333 %) 3300

100 % 9,900

The condition of the code is considered in the computation for equivalent DSI as fc'iows:

Code Size Equivalent DSI
3,300 (New) i 100 % = 3,300
3,300 (Modified) i 73 % = 2,409
3,300 (Rehosted) . 10 % = 330
Total HOL Equivalent: 6,039

6.2.2 Estimating the Development of Reusable Code

Only three of the six models (PRICE S, Ada COCOMO, and SoftCost-Ada) reviewed in the above-
mentioned Ada costing study [ITTRI 1989] took into account the issue of developing reusable software.
Although two of the approaches are proprietary, PRICE S and SoftCost-Ada, the following paragraphs

provide an overview on how model developers view this issue.

6.2.2.1 PRICE S

PRICE S differentiates between requirements to produce reusable software at the system level and
at the module or component level [Park 1989). At the component level, estimators can view requirements
to produce reusable code as either

. complications 10 the development process, or

. an increase in the application’s difficulty.

The first view is appropriate when the developer uses time, rather than adding new people, to meet
reusability requirements. The second view is appropriate when both resources and time will be used to
achieve reusability. These views incremeat the complexity and hence the cost of the affected code rather
than distribute the increased effort over the entire product. System-level requirements for reusability, on

the other hand, affect the design, documentation, and testing of the full product [Park 1989].

61

6.2.2.2 ADA COCOMO

Developmen* of reusabie code is accounted for in the Degree of Reuse (RUSE) parameter.
TABLE 9 provides the FUSE cost driver ratings and associated effort multipliers. With this input, the
estimator enters the degree of reusability for which the software is being built. The ratings indicate that
the development of reusable software will increase cost anywhere from 10% (reuse within a single mission)

1o as much as 50% (reuse in any application).

TABLE 9. ADA COCOMO DEGREE OF REUSE PARAMETER

Rating Rating Description Multiplier
Nominal Not for Reuse Elsewhere 1.0
High Reuse Within Single Mission 1.10
Very Eigh Reuse Across Single Product 1.20
Extra High Reuse in Any Application 1.50

6.2.23 SOFTCOST-ADA

SoftCost-Ada differs from the other models in that development of reusable components in Ada
is viewed differently than development of reusable components in other languages. Iis input parameter,
Reuse Costs, specifies how the technical and managerial costs associated with reuse are handled. Rating
descriptions are provided in TABLE 10 [RCI 1989]. The main philosophy behind this parameter is that
Ada has specific features, generics, which have been included in the language to make developing reusable
components easier. Further, once the developer becomes more proficient in the language, reusable software

will be even easier 1o develop.

62

TABLE 10. SOFTCOST-ADA REUSE COST RATINGS

Rating Rating Description

Low Limited packaging for future reuse

Nominal < 10% of software packaged for future reuse
High < 20% of software packaged for future reuse
Very High > 20% of software packaged for future reuse

6.23 Deficiencies In Software Cost Models

While current cost models are including the basic reuse of code into their algorithms, they do not
account for the more complex issues of reuse. For example, to incorporate a reusable component into an
application, the designer may have to do an extensive search of several component libraries, evaluate the
candidate components, understand how to use the components, and integrate them into the application.
SASET does not account for this potentially costly process. And COCOMO only factors in the integration
cost. No cost model anticipates a domain analysis, or the development of a generic architecture.nor do they
consider the expense of CASE tools or constructors. Clearly there are deficiencies in current costing
models. These tools can be useful, however, in the cost estimation of non-reusable code. Such an estimate
would provide a baseline for comparison in the monitoring of the efforts of reuse on a development. In
other words, a developer would use a costing tool to estimate the development cost of the system, ignoring
reuse. The developer would then track actual expenses (that include reuse) and compare them with the

estimated cost. Thus, the developer can monitor the economic effects reuse had on the project

63 ESTIMATING THE COST/BENEFITS OF REUSE

There are two methods to evaluate the economics of reuse across the software life-cycle:

. factor adjustments to cost models

. empirical estimation.

63

63.1 Factor Adjustments to Cost Models

While there are no explicit metrics for reuse, there are software cost models that estimate a normal
software development. These cost models can provide an initial estimate. This estimate car. then be
adjusted by those costs that are incurred by a specific reuse approach. This adjustment shouid include
both the anticipated additional costs, summarized in Table 11, and the areas of potential cost savings,

summarized in Table 12.

The major criver to reuse elements during software development is economic. However, for any
economics gain to be realized additional costs will undoubtedly be incurred. For elements to be developed
for reuse they will be more general purpose, less application-specific, than in a standard development. This
may resull in increased documentation, more accommodating design, and code which stresses a simplified
flow of control. Achieving these attributes will require more effort, therefore more money. If previously
developed components are 10 be used, a source of components must be located and the available elements
studied to identify candidate components. These components must be adequately understood to be fitted
into the system currently under development. Understanding the specific candidate components, as well as
understanding the reuse of components will not be efficient or optimized. Other factors which may add to
the cost of reuse include designing with external design constraints (either designing reusable components
Or desirning a system 10 incorporate reusable components), implementing a component library, performing
a comair analysis, and acquiring support tools. Not all of these additional costs will be experienced in
every instance of reuse; however, they must be considered when estimating the cost of system development

when reuse is invoived.

For reuse to make economic sense, areas of cost savings must exceed these additional costs. One
area of potential savings is in system development. Reusing documentation, design, or code may cost less
than deveicpine the components. There are additional areas with even greater potential savings. The
validatior process for reused software should be significantly less expensive. If a machine interface is
reused, training costs should be significantly less. The greatest potential for savings is typically the area of
greatest expense; for software intensive svstems this is the maintenance activity. Maintenance activities are
anticipated to be less expensive due to increased familiarly with reused software components by
postdeployment support personnel and by the anticipated increase in reliability. Furthermore, the

maintenance phase benefits when modules are loosely coupled and highly cohesive.

63.2 Empirical Estimation

Another method of evaluating the costbenefits of reuse is through an empirical investigation. To
employ this method one must collect data from other developments that used similar reuse approaches.
By comparing the cost data from those other projects and evaluating their respective scopes, one could
empirically derive 2 cost estimate. The accuracy of this approach is dependent upon how much data is
collected and how similar the current development is to those about which the data was collected.

TABLE 11. ANTICIPATED ADDITIONAL COSTS.

ANTICIPATED ADDITIONAL COSTS

Additional labor required to devejop reusable moduies
Cost of obtaining a reusabie component

Learning curve

Design constraints imposed by reusable units

Startup cost for a component library

Domain Analysis

Support tools

TABLE 12. AREAS OF POTENTIAL COST SAVINGS.

AREAS OF POTENTIAL COST SAVINGS

Development Validation
Training
Maintenance

7.0 REUSE METRICS

A quantitative evaluation of reusability can be valuable in the selection of components for use in
an application or for a component’s acceptance in a repository. Unfortunately, there exists no single metric
that can provide a comprehensive assessment of reusability. There are some metrics, however, that can
provide a first approximation of a component’s reuse potential by measuring selected software engineering
attributes that affect reusability. Examples of attributes that affect reusability include complexity,
independence, modularity, simplicity, and data bindings. Researchers and tool vendors have identified
hundreds of metrics that apply to these attributes; we will mention only a few to provide some insight into

the current state of the practice.

Examples of metrics relevant to software compiexity include number of statements per software
module, number of subprogram calls per module, number of logical paths through a program, number of
levels of control in a program, and so on. Independence metrics can be based on the numbers of accesses
to /O types and packages, system dependent services, compiler dependent services, and tasks. Examples
of modularity metrics include those that measure information hiding and the degree of coupling between
modules: use of private and limited private types; proportion of operators, objects and types in the module
bodies or the private part of package specifications; proportion of blocks which do not coatain bodies of

packages, tasks, procedures, or functions; use of variable declarations in package specifications; and others.

Fortunately for software developers and evaluators, a number of automated tools are alrcady
available for the specific purpose of measuring software attributes such as those listed above. Some of
these tools are being used or considered for use by repository managers in evaluating sofrware for insertion
into repositories. For instance, ADAMAT and LOGISCOPE, described below, have been used by staff at
RAPID to determine the characteristics of modules inserted into RAPID's library.

The remainder of this section will briefly describe some popular tools and collections of metrics

that can, in a limited fashion, determine the reusability of a software unit.

RADC Software Qualitv_Atttibutes Worksheets

The RADC worksheet method is a non-language specific technique based on the manual application
of generalized worksheets. The worksheets have been automated as part of QUEF. To effectively apply

the worksheets, several early steps must be taken, specifically:

67

1) Identification of quality goals

2) Tailoring of the questionnaires t0 adequately reflect the project under assessment and the
defined goals
3) Tailoring of the equations for factor scores to reflect the defined goals.

The RADC worksheet method is defined as a hierarchy of factors (13), criteria (29), metrics (73),
and metric elements (>300). Questionnaire worksheets are tailored to the project being assessed and then
completed. Yes, No, and Numeric answers are transcribed to worksheets where affirmative answers are
equates to a value of one and negative answers are equated to a vaiue of zero. Numeric responses are
already in the zero-to-one range by the nature of the question. Scores are then aggregated up the hierarchy
by averaging reiated metric elements into a metric and related metrics into a criterion. Criteria scores are
then used in ‘2ilored equations to determine the factor score. The worksheets should be applied

throughout the development life-cycle requirements specification through testing and delivery.

QUEF

QUEF is an automated toc! being developed by Software Productivity Solutions, Melbourne,
Florida. This tool is expected to be completed by mid-1990. The 100l is an automation of the RADC
worksheet method. However, significant emphasis is being placed on the development of an extremely
friendly user interface. Another imporant difference will be the deveiopment of an Ada parser. The
parser only analyzes code with the intent to compiete the questionnaires. No analysis specific to the Ada

language is periormed.
ADAMAT

ADAMAT is a language specific automated ool developed by Dynamics Research Corporation.
The ADANMAT t00i operates by examining compilable Ada source code. The technique used by the tool
is the counting of significant language features that are considered to promote or detract from the quality
of the product. These counts are the metric elements. Metric element scores are shown as a ratio of the
number of opportunities t0 comply with the preferred quality practice versus the number of actuai
compliances. The metric scores are then aggregated to a criterion level and then to a factor level. The
factors evaluated by the tool are reliability, portability and maintainability. Six criteria are evaluated:
anomaly management, independence, modularity, self-descriptiveness, simplicity, ana system clarity. Criteria
scores are derived from 153 metric values. The tool provides the capability to tailor the metrics gathered

and to tailor the aggregation process; that is, the user has the ability 1o selectively omit metric elements

68

and metrics. Weights can also be set 10 give greater importance to one metric over another or one
criterion over another in the score calculations. Results can be viewed at any level in the hierarchy, or
reports can be triggered by user-specified thresholds. Using thresholds, the user would indicate minimal
acceptable scores and a report would be generated only if the scores were below the threshold.

LOGISCOPE

LOGISCOPE is an automated and mostly language-s secific tool. It operates by analyzing module
source code and producing graphs (kiviat diagrams, control graphs, and call graphs and histograms) to
provide information about that module. The LOGISCOPE tool was developed by Verilog in Toulouse,
France, and is used and marketed by AMS Software. More than 4C high-level languages can be analyzed,
including assembly, COBOL, Ada, C, FORTRAN, and Pascal.

The intent of the LOGISCOPE tool is to assess the complexity, efficiency, and structural integrity
of the module by investigating the number of paths, the level of required "decision making” through those
paths, the overall size and the depth of the «calling hierarchy, and the structure and
readability/understandability of the code. Approximately 22 metrics are taken to make this assessment and
used in a standard metric, criterion, factor hierarchy. LOGISCOPE analysis can begin as early as
development and applied periodically throughout the life-cycle. Information is available from a static and
a dynamic analyzer. The static analyzer provides measures specific (0 syntax, text elements, logical structure
and architecture levels. The dynamic analyzer measures path coverage by inserting proves into the source

code through the use of CASE tools.

Static_Analyzer

Kiviat Diagrams are used to identify whether the metrics are within acceptable ranges. The diagram
is actually a plot of metrics radially along a set of spokes. The minimum and maximum values are shown
as concentric circles through which these spokes pass. If the corresponding points are outside the inner

circle and within the outer circle, then the measure is acceptable.

Control graphs plot the flow of control through the module. That is, from a starting point at the
left of the diagram, an arrow directs control to the next point (such as a call or decision) and shows the
paths and looping possible through the module. From these diagrams the developer can assess the
structure of the module -- whether it is nicely structured with minimal looping, backtracking, and decision

making, or whether it is excessively complex or poorly designed.

69

Dvnamic Analvzer

The LOGISCOPE dynamic analyzer also measures the unit and integrated testing coverage through
control graphs. Special control graphs can be generated t0 identify the location of paths that have not
been covered through testing and the number of lines in that path. This allows modification of the test

plan to increasc test coverage before final testing and delivery.

Call graphs give a pictorial view of the system architecture. A call graph is a hierarchical graph
of the calling sequence from the main program to the lowest leve] routines. Other outputs include metrics
histograms {e.g., the number of statements in each module), quality facior histograms (a combination of

metrics compared to standards), and test cover: re histogrems (e.g., percent of coverage for each module).

Otiher Analvtical Methods

Several studies have been performed that attempt to simply define what metrics are important or,
with re pect 10 Ada, how language features affect some reusability factors. Some examples of these types

of studies are listed below:

. An an:lysis of the phvsical properti=. of software (size) as they affect reusability and design
guideiines 10 enhance reusability {HESS 1987)

. A description of the metric developed during the foundation phase of Army WWMCCS
Information System (AWIS) [DELANEY 1988]

. Methods for goal setting, data collection and analysis for complexity, quality and cost
[BASILI 1983}

Other studies attempt t0 define metrics applicable to reuse. These methods are primarily non-
automated and most requirc source code analysis. This combination often results in the methoc being

impractical for application to any but the smallest of projects. Examples of these studies are listed below:

. Measures of Ad2 complexity through an extension of the McCabe’s Cyclomatic Complexity
Metrnc [TAUSON-ZONTE 1988]

. Analysis of complexity with respect t0 understandability. testability, and maintainability
through an examination of the relationship between prog-am slices and module cohesion
{OTT 1989]

. Ada reusability as measured through an analysis of data bindings between modules
[BASILI]

. Defect density as a measure of reliability and maintainability [VALETT 1989].

70

o |

8.0 SUMMARY AND CONCLUSIONS

Most software engineers today practice some form of reuse. This reuse, however, is restricted to
the individual developer. What this report has described are state-of-the-art methods- to formalize reuse.
Formalization will extend the benefits of reuse to the project or system level

Most current reuse methods concentrate on reusing code. These methods can usually extrapolate
a certain amount of reuse to other elements in the life<cycle. A generic architecture approach, for example,
could reuse requiremeats, design, code, test procedures, documentation and training. Component reuse
could reuse code, verification, and validation. Thus, when evaluating the costs and benefits of reuse

methods, it is important to consider the entire software life-cycle.

One interesting side-effect of reuse is maintainability. Most of the software engineering factors that
promote reusability also apply to maintainability. There is a difference, however, in the relative importance
of each factor. For example, the presentation factors are much more critical for maintainability than they
are for reusability. It is likely, nevertheless, that writing or incorporating reusable code will produce a more

maintainable product. This implies a considerable cost savings in the maintenance phase of the software

life-cycle.

T-ABLE 13 offers general guidance in selecting reuse strategies.

n

w

st 1o Jo sopdwexa ‘siuauodwon aygy 10y
SAULINOT 1S3} “LONRIUAUNIOP JO [3A7] ‘spuouodiio
arepdosdde oy Supuy ur pasn spopow [ead NI
41502 stuouodiod ‘ssoooe Livigyy ‘Kigenb Kinsgyg
PAIIPISHOI D 0) PadU S10108) Kunpy

swewmop ajdppnn ug suopeoydde
Bupiatas uoym [njasa st Lineng .

sanonsoday)/saneiqyy
yapuadapu] wiewo()

st 115y Jo sapdwiexd ‘sjuonodwod oy 10y
SAUNNOI 152 VONBIINRIOP JO [0AD] *‘siuduoadiio)

wewmop 1ydn e wg suonendde
apdugnwr Jupatos ase yeyy swiesdosd

arepdordde aqr Fuipuy w pasn spoiiom jeANIND] adiey 10) srendordde sy A3meng .
1500 siuauodwoa ‘ssoaoe Leqip ‘Kipenb Legy stuouotinod apqesnar sm Junendod saropsodayy/satreqry
PAIDPISUOD 3¢ 0) Padu s101 Auwpy pue ‘fndeuew ‘Junessd sopnjow wonoun,j . aads urewo(g

DPNUMYIIOM 101DRISUOY aY) Wipping Jo PEAIDAO o) oy) Yydnoud 1aypp isnwl siusuoduwod parepay .

qupsdangq

10 o3exyded d110und awes oy wo1) paatdp aq ued Lo e ydnovs s o asnwe stauodiiod parejoy .

‘spafosd wiy Juop no apgsedy Ajuo e s1opnsuO) .

Kreaqu wsuodwos e Fugmewrew/@uneann jo peaaao ap qrosqe oy ydnoua afieg aq sn 1pafory .
siwoundwos pansap oy 1of suoneajdde Luewr Guuapr 0y a1qe oq pinoys 1adogaaagg . S10)001SU0)

fidde susonud
aqr asonm stonexnjdde paepas (e uo pasn og pmoys

suopenpdde o jo vomuyap resp
€ anoia suonpodde sepiuns griaass
1) wawainbas v saey pinoys 1adogaasq .

SPOPOW [EINDdANG

“Kofoupra dwmosd Aipdes e punose
2A10A21 Jou pinoys qjej suonedjdde

5o A g utewop paredinuy .
22IN0S Ames o
ydnonp papuny aq prnoys suonenpdde 1y .
PAUFISOpP SEM DINIIDINYDIE NI M J0) suopenjdde sequrs (e1aaos SUNDNNPIY
voneadde iy Y3noi puosas vo pasn og sfeaje ppnoys auyapfHnuopm o1 a)qe a4 s 1adopaaagg . I113u30)
uondwnsuo)) HONOINPO1L Y

SHEDNLLVILLS ISR DO NOLLDIIS ¢ 2FiUvl

£L

suopieatydde s pue odae) pogq w arepndoiddy

10foad e ur poyiow asnas 210s M) se pasn oq Osje ue)

POYION IsN01 s Auw quawdne ves ISALIDQ UOREIIPISUOI Yriom shempy

dwdojaaa(g
PO LIYO

‘sIuduodwod ugewop oygnd oy Adde osje s1015.]
uavodwos ay jo

asn/uofidun) oy pueisiapun o1 Af1s0a aq osje pina)
“padojarap 29 01 s eOdS

€ 23inbos Adew pue uoneondde oy uo SIVRNSUOD
udisap asodwi oy Aayif ase siuauodwioo (eI
'udisap ay1 oy siwavodwoo asay Jupesdoyn

JO 1502 211 01 w18 9q plRoYS voEIIPISUO))
Yaes wosp siuauodwod

o Junum ueyy sodeays yonmw 2q o puay,
d1qel|1 pue WAl Alne) 3q plroys 1sopy
‘siauodwon spqeondde oy

renjead pue 1Yysew Loatns o1 eapy pood e skempy

VIN

siwauodwo) felrawwoy

uonduinsuoyy

uonINPOIY

CINOD) SHEDLVILLS Asncnd AO NOLLYFEIS €1 v

74

[ARM]

[Bailey 1989]

(Basili 1988]

[Boehm 1981]

[Booch 1987A]

(Booch 1987B]

. vn 1988]

[Bunch 1988

[Ferens 1989]

[Freeman 1987]

(Gargarc 1983]

(Guerrieri 1983]

[Hocking 1988]

{Horowitz 1984]

(IITR! 1987)

BIBLIOGRAPHY

ANSI/MIL-STD-1815A. Department of Defense, Ada Joint Program Office.
Reference Manual for the Ada Programming Language. Washington: Government
Printing Office, 1983.

Bailey, S., Laird, .., Falacara, G., Angevine, M. "GENESYS: Embedded Software

Tailorability.® Proceedings of the 7th National Conference on Ada Technology,
March 1989, pp 13-24.

Basili, V.R. "Towards a Comprehensive Framework for Reuse: A Reuse-Enabiing
Software Evolution Environment.” College Park: Institute for Advanced Computer
Studies, December 1988.

Boehm, Barry. Software Engineering Economics. Englewood Cliffs: Prentice Hall,
1981.

Booch, Grady. Software Components with Ada: Structures. Tools. and Subsvstems.
Menio Park: Benjamin/Cummings, 1987.

Booch, Grady. Software Engineering with Ada, 2nd Ed. Menlo Park:

Benjamin/Cummings, 1987.

Brown, Gerald R. and Quanrud, Richard B. "The Generic Architecture Approach
to Reusable Software.” Proceedings of the Sixth National Conference on Ada
Te-hnologv, March 1988, pp. 390-394.

Buach, J. "Rapid Search and Retrieval of Reusable Components.” STARS
Foundations Workshop, November 1983.

Daniel V. Ferens, Defense Svstem Software Proiect Management, Air Force [nstitute
of Technology, Draft edition: 11 August 198S.

Freeman, Peter. Software Reusabilitv. Washington: Computer Society Press, 1987.

Gargaro, Anthony. "Analysis of the Impact of the Ada Runtime Eavironment on
Software Reuse.” Final Technical Report to Center for Sottware Enginesning,
CECOM. December 1988.

Guerrieri, E. "Searching for Reusable Software Components with the RAPID
Center Library System.” Proceedings of the 6th National Conference on Ada
Technology, March 1988, pp 395-405.

Hocking, D. E. "The Next Level." Proceedings of the 6th National Conference on
Ada Technology, March 1988, pp 407-410.

Horowitz, E. and Munson, J. "An Expansive View of Reusabie Software.”
Transactions on S~ftware Engineering, Vol. SE-10, September 1984.

IIT Research Institute, U. S. Armv_Cost and FEconomic Analvsis Center
(USACEAQ) Software Cost Model Research Paper, September 1587,

75

[IITRI 1989]

[Kaiser 1987]

(Lanergan 1979]

[Lee 1988A]

[Lee 1S88B]

[Levy 1989

(Lin 1988

[Lubars 1987)

[McCain 1985]

[McNicholl 1988]

[National 1989]

[Neighbors 1984)

[Park 1589

[Prieto-Diaz 1987]

[RCI 1989]

[Randall 1988)

[IT Research Institute. Test Case Studv: Esitimating the Cost of Ada Sofrware
Development. April 1989.

Kaiser, Gail E. and Garlan, David. "Melding Software Systems from Reusable
Building Blocks." [EEE Software, July 1987: 17 - 24.

Lanergan, R. and Povnton. B. "Reusable Code: The Application Development
Technique of the Future." Proceedings of the [BM SHARE/GUIDE Software
Svmposium, [BM, Monterey, CA, October 1979.

Lee. Kenneth J., Rissman, Michael S., D’Ippolito, Richard, Plinta, Charles, and Van
Scov, Roger. "An OOD Paradigm for Flight Simulators.” 2nd Ed. Piusburgh:
Software Engineering Institute, September 1983.

Lee, Kenneth, Plinta, Chuck, and Rissman, Mike. "Application of Domain Specific
Sofrware Architectures.” Pittsburgh: Software Engineering Institute, December
1988.

Levy, P., Ripken, K "Experience in Constructing Ada Programs form Non-Trivial
Reusable Modules." Proceedings of the Ada-Zurope [nternational Conference,
Stockholm, May 1989, pp 100-112.

Lin. Dar-Biau. "A Knowledge-Structure of a Reusing Software Component in LIL."
Proceedings of the Sixth Nationaj Conference on Ada Techneioev. March 1988,
pp. 377-380

Lubars. M. "Wide-Spectrum Support for Software Reusabilitv.” Proceedings of the
Worksnop _on Software Reusability_and Maintainability, National Insitute of
Sofrware Quality anc Productivity, Ociober 1987.

McCain, R. "A Software Development Methodology for Reusabie Componeats.”
Proceedines of the 1985 Hawaii Internatioral Conference on_ Svstems Scienceg,

January 198S.

McNicholl, D. G. et al. "Common Ada Missile Package - Phase 2." Air Force
Armament Laboratory, Eglin AFB. Florida, 158S.

The National Institute for Software Quality and Productivity. National Conference:
Software Reusability, July 1989.

Neighbors, J. "The Draco Approach to Constructing Softwzre from Reusable

Components.” Transactions on Software Engineering, Vol. SE-10, September 1934

Park, Robert E., "Ada Estimating - A PRICE S Profile.” January 1989.

Prieto-Diaz, R. "Domain Analysis for Reusability.” Proceedings of COMPSAC '87,
1987.

Reifer Coasultants, Inc. Softcost-Ada User Guide Software Version 2.0. January
1989.

Randall, William D. Jr. Software Reusability; A Decision Tree Model, 1 June 1988.

76

[Rice 1981]

[Ross 1986}

[Silver 1988]

[Solderitsch 1989]

[Tracz 1988]

[US Army 1989

Rice, J.G. Build Program Tschnique: A Practical Approach for the Development

of Automatic Software Generation Svstems. New York: Wiley, 1981.

Ross, Donald L. "Classifying Ada Packages.” Ada Letters, Vol 6, No. 4, July/August
1986. ‘

Silver, Aaron, et. al. SASET User's Guide, July 1988.

Solderitsch, J. J., Wallnau, K.C,, Thathamer, J. A "Constructing Domain-Specific
Ada Reuse Libraries." Proceedings of the 7th Annual Conference on Ada
Technology, March 1989, pp 419-433.

Tracz, Will Software Reuse: Emerging Technology. Washington: Computer Socie.y
Press, 1988.

U.S. Army Institute for Research in Management Information, Communications,
and Computer Science. Proceedings: Ada Reuse and Metrics Workshop, June
1989.

APPENDICES

79

APPENDIX A. EXAMPLES OF PACKAGE TYPES
A.l Example of Open Package
This example is a dynamic array manager. All arrays in Ada are static. A package must be wTitten

to handle variable length arrays. The reason this package was implemented as an open package was to

allow component selection and slices on objects of the type. The package specification is as follows:

GENERIC
TYPE elements IS PRIVATE;
TYPE ranges IS RANGE <;

TYPE static_ranges IS RANGE <;
TYPE static_arrays IS array(static_ranges RANGE <) of elements;

WITH FUNCTION index_of (element : IN static_arrays)
RETURN ranges;
WITH FUNCTION array_of (index : IN ranges)
RETURN static_arrays;
‘null_element : IN elements;
maximum_array : IN ranges;
maximum_index_length : IN ranges;

PACKAGE dynamic_array_manager IS

TYPE dynamic_arrays IS array(l .. maximum_array +
maximum index_length) of elements:

SUBTYPE lengths IS ranges RANGE O .. maximum_array;
SUBTYPE indices IS ranges RANGE 1 .. maximum_array;
SUBTYPE counts IS ranges RANGE 1 .. maximum_array + 1;
overflow : EXCEPTION;

out_of bounds : EXCEPTION;
index_overflow : EXCEPTION;

--CONVERSIONS
FUNCTION static_array_of (dymamic_array : IN dynamic_arravs)
RETURN static_arrays;
-- Converts a dynamic to a static array.
FUNCTION dynamic_array_of (static_array : IN static_arrays)
RETURN dynamic_arrays;
-- Converts a static to a dvnamic array.

-- Raises index_overflow if array is not large enough to hold length value.

FUNCTION length of (dynamic_array : IN dynamic_arrays)

81

RETURN liengths;
-- Returns the current length of a array.

FUNCTION null_array RETURN dymamic_arrays;
-- Returns a null dymamic array.

- -SEARCHING
FUNCTION previous_index_of (element : IN elements;
within : IN dynamic_arrays;
before : IN counts)

RETURN lengths;
-- Finds the index of the previous element specified.
-- If element is not found, returns O.
-- Raises out_of_bounds if specified index is longer than arrayv.

FUNCTION next_index_of (element : 1IN elements;
within : IN dynamic_arrays;
after : IN lengths := lengths'first)

RETURN lengths;
-- Finds the index of the next element specified.
-- If default value of after is taken, searches from beginning of array.
-- If element is not found, returns 0.
-- Raises out_of bounds if specified index is longer than array.

FUNCTION previous_index_of (subarray :@ IN static_arrays;
within : IN dynamic_arrays;
before : IN counts)

RETURN lengths;
-- Finds the index at the end of the previous array specified.
-- If array is not found, returns 0.
-- Raises out_of bounds if specified index is longer than array.

FUNCTION next_index_of {subarray : IN static_arrays;
wichin : IN dynamic_arrays;
afrer : IN lengths := lengths’Iirst)

RETURN lengths;
-- Finds the index at the beginning of the next array specified.
-- If default value of after is taken, searches from beginning of array.
-- If arrav is not found, returns 0.
-- Raises out_of bounds if specified index is longer than array.

- -DYNAMIC OPERATIONS

FUNCTION "&" (lefs: : IN dynamic_arrays,;
righe : IN dynamic_arrays)
RETURN dynamic_arrays;
-- Concatenates two arrays together.
-- This operation must be used in place of predefined "&" in order to
-- set the length of the new array correcctly.

82

-- Raises overflow if resultant array exceeds maximum_array.
-- Raises index_overflow if array is not large enough to hold length value.

PROCEDURE append (dynamic_array : IN dynamic_arrays;
to : IN OUT dynamic_arrays);
-- Appends one array to the end of another.
-- Raises overflow if resultant array exceeds maximum_array.
-- Raises index_overflow if array is not large enougi to hold length value.

PROCEDURE insert (dynamic_array : IN dynamic_arrays;
into : IN OUT dymamic_arrays;
starting_at : IN counts) ;

-- Inserts one array into the middle of another.

-- Raises overflow if resultant array exceeds maximum_array.

-- Raises out_of_bounds if specified index is longer than array.

-- Raises index_overflow if array is not large enough to hold length value.

PROCEDURE remove (dynamic_array : OUT dymamic_arrays;
from : IN OUT dynamic_arrays,
starting_at : IN indices;
stopping_at . IN indices);

-- Removes a subarray from a array.

-- The array from which the subarray is removed is changec.

-- Raises out_of bounds if either specified index is longer than array.
-- Raises index_overflow if array is not large enough to hold length value.

PROCEDURE foreshorten (dynamic_array : IN OUT dynamic_arrays;
to : IN counts) ;
-- Foreshortens a array from the beginning.
-- Raises out_of_bounds if specified index is longer than array.
-- Raises index_overflow if array is not large enough to hold length value.

PROCEDURE truncate (dynamic_array : IN OUT dynamic_arrays,
to : IN lengths);
-- Truncates a array from the end.
-- Raises out_of_bounds if specified index is longer than array.
-- Raises index_overflow if array is not large enough to hold length value.

END dynamic_array_manager;
There are several things to notice about this example:

. The package is built around type Oynamic_Arrays. It is implemented as an open type
This means that the user has access 10 its structure.

83

. Several of the generic formai parameters are needed to define the class: Elements, Ranges,
Maximum_Array, and Maximum_Index_Length.

. Types Static_Ranges and Static_Arrays are neceded to allow conversions between static and
dynamic arrays.

. The other generic parameters provide values and operations needed by class.

. The subprograms in the visible part of the package specification are operations exported
by the class.

. Subtypes Lengths, Indices, und Counts are needed by several of these subprograms.

. The three exceptions are further declarations needed by a user of the package.

A.2 Example of Private Package

This example is a date managing package. The package specification is as follows:
PACKAGE date_manager IS

TYPE dates IS PRIVATE,;

maximum_year : CONSTANT := 10_000;
maximum_days_per_year : CONSTANT := 366;

TYPE years IS RANGE -maximum_year .. maximum_year;
-- Positive years are CE years. Negative vears are BCE years,
-- There is no year 0.

TYPE months IS (january , february , march , april
may , june , july , august ,
september, october |, november , december);
TYPE days IS RANGE 1 .. 31;

TYPE numbers_of_days IS RANGE -maximum_year * maximum_days_per_ vear
maximum year * maximum_days_per_year;

null date : CONSTANT dates;
date_overflow : EXCEPTION;

day_overflow : EXCEPTION;
invalid_date : EXCEPTION;

- -CONVERSIONS
FUNCTION date of (year : IN years;
month : IN months;
day : IN days)
RETURN dates;

-- Converts from years, months, and days to dates.
-- Raises invalid date if year, month, and day do not represent a

84

-- possible date.

PROCEDURE split (date : IN dates;
year OUT years;
month : OUT months;
day : OUT days);

-- Converts from dates to vears. months. and days.

--CURRENT DATE

FUNCTION current_date RETURN dates;
-- Returns the current date.

--ARITHMETIC OPERATIONS

FUNCTION "+" (left : IN dates;
right : IN numbers_of days)
RETURN dates;

-- Adds a number of numbers_of_ days to a date.
-- Raises date_overflow if resultant date is out of range.

FUNCTION " +" (left : IN numbers_of_days;
right : IN dates)
RETURN dates;

-- Adds a number of numbers_of days to a date.
-- Raises date_overflow if resultant date is out of range.

FUNCTION "-" (left : IN dates;
right : IN numbers_of days)
RETURN dactes;
-- Subtracts a number of numbers_of days from a date.
-- Raises date_overflow if resultant date is out of range.

FUNCTION "-" (left : 1IN dates;
right : IN dates)
RETURN numbers of days;
-- Subtracts one date from another and returns the number of
-- numbers_of days.
-- Raises day_overflow if number of days is out of range.

- -COMPARISONS

FUNCTION "<" (left : IN dates;
right : IN dates)
RETURN boolean;
-- Returns whether left is less than right.

FUNCTION “"<=" (left . IN dates;

right : IN dates)
RETURN boolean;

85

-- Returns whether left is less than or equal to right.

FUNCTION ">" (left : IN ° dates;
right : IN dates)
RETURN boolean;
-- Returns whether left is greater than righec.

FUNCTION ">=" (left : IN dates;
right : IN dates)
RETURN boolean; _
-- Returns whether left is greater than or equal to right.

PRIVATE
TYPE dates IS RANGE -maximum_year * maximum_days_per_year
maximum year * maximum_days_per_vear,

null_date : CONSTANT dates := O;

-- 1 represents January 1, 1 CE. -1 represents December 31, 1 BCE.
END date_manager;

There are several things to notice about this example:

. The package is built around type Dates, which is implemented as a private type. This
means that predefined assignment and equality are available to the user of the package.

. The subprograms in the visible part of the package specification are operations exported
by the class.

. Types Years, Months, Days, and Numbers_Of Days are needed by several of these
subprograms.

. The constant Null_Date and the three exceptions are further declarations needed by a user

of the package.

86

A3 Example of Limited Package

This example is a standard doubly linked list manager. The package specification is as follows:

GENERIC
TYPE items IS LIMITED PRIVATE;
WITH PROCEDURE assign (item : IN items;
to : OUT items) IS <;
WITH FUNCTION "=" (left : IN items;
right : IN items)
RETURN booclean IS <
WITH FUNCTION "<" (left : IN items;
right : IN items)

RETURN boolean IS <;
PACKAGE doubly linked list_manager IS

TYPE doubly linked lists IS LIMITED PRIVATE;

TYPE directions IS (forward, backward);
overflow . EXCEPTION;
no_list : EXCEPTION;
no_item : EXCEPTION;

out_of bounds : EXCEPTION;

- -STATE

PROCEDURE view (lisc : IN doubly_linked lists;
as : OUT doubly_linked_lists;;
-- Creates another view of the same lisct.

PROCEDURE copy (list . IN doubly linked lists;
to : OUT doubly linked l1ists);
-- Makes a copy of the list.
-- Raises overflow if storage is exceeded.

PROCEDUTE create (list : OUT doubly linked_lists);
-- Allocates head and tail of list.
-- Sets current item to head.
-- Raises overfiow if storage is exceeded.

PROCEDURE destroy ~ (list : IN OUT doubly linked_lists);
-- Deallocates lisct.

FUNCTION is_null (1list : IN doubly_ linked_lists)
RETURN boolean;

-- Returns true if list does not exist.

FUNCTION 1is_empty (list : IN doubly linked_lists)
RETURN boolean:

R7

--WRITE

PROCE

PROCE

PROCE

--READ

PROCE

Returns true if list has no items in it.
Raises no_list if list does not exist,

DURE insert (item . IN items;
into : IN OUT doubly_linked liscs;
going : IN directions := forward);

Inserts item in order in list.

If at least one identical item already exists in list and direction
is forward, inserts new item after last identical item.

If at least one identical item already exists in list and directicn
is backward, inserts new item before first identical item.

Sets current item to item inserted.

Raises no_list if list does not exist.

Raises overflow if storage is exceeded.

DURE modify_currenc_item (within : IN OUT doubly linked_lists;
to : IN items;
going : I} directions := forward
Modifies current item in list with specified values.
If modification necessitates relocation of item in list, move
If at least one identical item already exists in list and dir
is forward, inserts new item after last identical item.
If at least one identical item already exists in list and direction
is backward, inserts new item before first identical item.
Raises no_list if list does not exist.
Raises no_item if there is no item at current location.

(L]

DURE delete_current_item (from : IN OUT doubly_linked lists;
going : IN directions := forward),

1f specified direction is forward and item is only item in lisct,

sets current item to tai..

Otherwise, sets current item to next item.

I1f specifieu direction is backward and item is only item in lisc,

sets current item to head.

Otherwise, sets current item to previous item.

Raises no_list if list does not exist.

DURE lccate (item . IN items;
found OUT boolean;
within : IN OUT doubly linked lists;
going : IN directions := forward;
again ; IN boolean := false);

Sets current item to item.

If icem is not found, within does not change.

If specified direction 1z forward, searches from head of list.
1f specified direction is carkward, s. irches from tail of lisz.
If again is true, searches for next item in same direction.

f8

-- Raises no_list if list does not exist.

FUNCTION curr:nt_item_in (list : IN doubly_linkec lists)
RETURN items;
-- Returns current item in list.
-- Raises no_list if list does not exist.
-- Raises no_item if there is no item at current location.

- -TRAVERSE

PROCEDURE set_to_head (list : IN OUT doubly_linked_lists);
-- Sets current item to head.
-- Raises no_list if list does not exist.

PROCEDURE set_to_tail (lisc : IN OUT doubly_linked lists):
-- Sets current item to tail.
-- Raises no_list if list does not exist.

FUNCTION at_head_of (list : IN doubly_linked lists)
RETURN boolean;
-- Returns true if previous node is head of list.
-- Raises no_list if list does not exist,.

FUNCTION at_tail of . (list ¢ IN doubly linked lists)
RETURN boolean;
-- Returns true if next node is tail of list.
-- Raises no_list if list does not exist.

PROCEDURE step_forward_in (list : IN OUT doublv_linked lists);
-- Sets current item to next item in list.
-- Raises no_list if list does not exist.
-- Raises out_of bounds if next position is tail of list.

PROCEDURE stetr_backward_in (lisc : IN OUT coubly linked lists);
-- Sets current item to previous item in list.
-- Raises no_list if list does not exist.
-- Raises out_of_bounds if previous position is head of lis:.

GENERIC
TYPE inputs IS LIMITED PRIVATE;
TYPE outputs IS LIMITED PRIVATE,

WITH PROCEDURE process (data : IN OUT items;
using . IN inputs;
updating : IN OUT ouctputs;
again : OUT boolean);
PROCEDURE traverse_forward_in (list : IN OUT doubly_linkec_iists;
using : IN inputs;

updating : IN OUT outputs);
-- Iterates forward over each item in list.
-- Raises no_list if list does not exist.

GENERIC

89

TYPE inputs IS LIMITED PRIVATE;
TYPE outputs IS LIMITED PRIVATE;

WITH PROCEDURE process (data : IN OUT items;
using : IN inputs;
updating : IN OUT outputs;
again : OUT boolean);
PROCEDURE traverse_backward_in (list : IN OUT doubly_linked_liscs;
using : IN inputs;

updating : IN OUT outputs);
-- Iterates backward over each item in list.
-- Raises no_list if list does not exist.

PRIVATE
TYPE node_kinds IS (head_node, component, tail_node);
TYPE contents (node : node_kinds := component);
TYPE content_links IS ACCESS contents;

TYPE contents (node . node_kinds := component) IS ILECORD
CASE node IS
WHEN head_node =>
firsc : content_links := NULL;
WHEN component =>
previous : content_links := NULL;

item : items;
next : content_links := NULL;
WHEN tail node =>
last : content_links := NULL;
END CASE;

END RECORD;

TYPE doubly_linked_lists IS RECORD
head : content_links := NULL;
current : content_links := NULL;
tail : content_links := NULL;

END RECORD;

null_list : CONSTANT doubly linked lists := (NULL, NULL, NULL);
END doubly linked list_manager;

There are several things to notice about this example:

. The package 5 built around type Doubly_Linked_Lists, which is declared as a limited
private type.
. The package is parameterized by the type [iems, which it imports. The operations it also

imports in the generic formal part are needed to support manipulaticn of objects of type
Items. This is because Items is imported as a limited private type to allow instantiation
with any type.

. The subprograms in the visible part of the package specification are operations exported
by the class.

90

Type Directions is needed by several of these subprograms.

The package contains two iterators, Traverse_Forward_In and Traverse_Backward_In. These
are generic procedures instantiated with the types to be input and output and a procedure
Process t0 be executed at each node of the linked list. Process allows the data at each
node to be updated or read, passes in and out information t0 be used or acquired at each
node, and contains an out parameter Again to signal the iterator to abort the traversal if
it is set to Faise.

The constant Null_List and the four exceptions are further declarations needed by a user
of the package.

A.4 Example of Opaque Package

This example is a network traversal simulator, which simulates the movement of any sort of object

(e.g., trains, cars, messages, water) over any sort of network (e.g., tracks, roads, wires, pipes). The package
specification is as follows:
WITH
calendar;
GENERIC

TYPE directions IS (<),

TYPE states IS (<);

TYPE datum_ids IS RANGE <;

TYPE node_ids 1S RANGE <;

TYPE node_indices IS RANGE <;

TYPE lengths IS RANGE <;

TYPE tolerances IS RANGE <;

TYPE data IS PRIVATE;

WITH FUNCTION backward RETURN directions;

WITH FUNCTION forward RETURN directions;

WITH FUNCTION neither RETURN directions;

WITH FUNCTION starting RETURN states;

WITH FUNCTICN stopping RETURN states;

WITH FUNCTION normal RETURN states;

WITH FUNCTION deadlocked RETURN states;

WITH FUNCTION datum_id_of (datum : IN data)

. RETURN datum_ids;

WITH FUNCTION directicn_of (datum : IN data)
RETURN directions;

WITH FUNCTION length_of (datum : IN data)

: RETURN lengths;

WITH FUNCTION tolerance_of (datum : IN data)
RETURN tolerances;

WITH FUNCTION next_node_index_of (datum : IN data)

RETURN node_indices;

91

WITH FUNCTION at_destination (datum : IN data)
RETURN boolean:

WITH FUNCTION exit_time of (datum : IN data)
RETURN calendar.time;

WITH PROCEDURE process (catum : IN OUT data;

node__icd : IN node_ids;

state : IN states)
null_datum ¢ IN data;
null node_id : IN node_ids;
null_node_index : IN node_indices;

PACKAGE network _manager IS
-- This package simulates the mcvement of any number of data items on a
-- network of any configuration. All data items are added to and removed
-- from their nodes on a first-in-first-out basis.
-- Generic formal subprogram Process is called in the following situations:
-- o when a data item is added to a node,
-- o when a data item is transferred from one node Zo another,
-- o when a data item is removed from a node,
-- o when a data item cannot be transferred due to deadlock.
-- Process receives the current state of the node as either starting,
-- stopping, normal, or deadlocked. It should then take the action
-- appropriate to the application.
TYPE nodes IS PRIVATE;
TYPE node_groups IS ARRAY(node_ids RANGE <) OF nodes;
null_node : CONSTANT nodes;
overflow : EXCEPTION;
no_riode : EXCEPTION;

PROCEDURE create (node : OUT nodes);
-- Creates a new node.
-- Raises Overflow if available storage is exceeded.

PROCEDURE destroy (node : IN OUT nodes);
-- Destroys node.

92

PROCEDURE connect (node : IN nodes;

named : IN node_ids;

of length : IN lengths;

with tolerance : IN tolerances;
to_follow : IN node_groups;
to_precede . IN node_groups) ;

-~ Initializes node with a name, a length, and a tolerance.
-- Connects node with others, both in front and behind.

-- If there is no other node, it should be set to null.

-- Raises No_Node if node does not exist.

-- Raises Overflow if available storage is exceeded.

PROCEDURE add (datum : IN data;
to : IN nodes) ;
-- Adds a new data item to node designated by to.
-- Raises No_Node if node does not exist.
-- Raises Overflow if available storage is exceeded.

PROCEDURE enable (node . IN nodes) ;
-- Allows execution of node.
-- Raises No_Node if node does not exist.

PROCEDURE disable (node : IN nodes) ;
-- Suspends execution of node.
-- Raises No_Node if node does not exist.

PROCEDURE start (node . IN nodes) ;
-- Initiates execution of node.
-- Raises No_Node if node does not exist.

PROCEDURE stop (node . IN nodes) ;
-- Terminates execution of node.
-- Raises No_Node if node does not exist.

PRIVATE
TYPE node_objects;
TYPE nodes IS ACCESS node_objects;

null_node : CONSTANT nodes := NULL;
END network_manager;

There are several things to notice about this example:

. The package is built around type Nodes. It is implemented as an opaque type.
. The package “withs” package Calendar. This is because Calendar is at a lower level of
abstraction.

93

. Several of the generic formal type parumeters are auributes of the class: Directions,
Node_Ids, Lengths, Tolerances, and Data.

. The other generic formal type parameters are needed for the imporied operations; functions
Backward, Forward, Neither, Starting, Stopping, Normal, and Deadlocked are needed as
values of generic formal types Directions and States; and the generic formal object
parameters are other values needed by the class.

. The remaining generic formal subprograms are imported operations needed by the class.

. The subprograms in the visible part of the package specification are operations exported
by the class.

. Type Node_Groups is needed by several of these subprograms.

. Constant Null_Node and the two exceptions are other declarations needed by a user of the
package.

A.5 Example of Closed Package

This example is a package to log messages in a concurrent system. It is implemented as a closed
package, the definition of the log type being hidden in the package body. Consequen:ly, ai! that appears
in the interface are operations. The package specification is as follows: ‘

PACFAGE log manager IS

PROCEDURE create_log;
-- Creates log in memory.

PROCEDURE destroy_log;
-- Removes log from memory.

PROCEDURE log " {item : IN string);
-- Adds entry to log.

PROCEDURE dump_log (to : IN string);
-- Writes log to disk.

END log_manager;

There are several things to notice about this example:

. The type around which this package is built is hidden in the package body.
. The subprograms in the visible part of the package specification are operations exported
by the class.

94

APPENDIX B. MODEL VENDORS/POINTS OF CONTACT (POC)

Each of the models included in this study are undergoing continual revision as developers receive
feedback from their users. For additional information about a model or package, the designated
vendor/point of contact listed in Table B-1 should be contacted.

TABLE B-1. MODEL VENDORS/POINTS OF CONTACT (POC)

MODEL VENDOR/POG
Ada COCOMO Mr. Bernie Roush

NASA Johnson Space Center
Mail Code ™ 7

Houston, TX 77058
(713)483-9092

PRICE S Dr. Robert E. Park
PRICE Systems
General Electric Company
300 Route 38, Bldg. 146
Moorestown, NJ 08057
1-800-GE-PRICE

SASET Mr. Steve Gross
Naval Center for Cost Analysis
Department of the Navy
Washington, DC 20350-1100
(202) 694-0173

SoftCost-Ada Mr. Donald Reifer
Reifer Consultants, Inc.
25550 Hawthorme Blvd, Suite 208
Torrance, CA 90505
(213) 373-8728

95

TABLE B-1. COST MODEL POINTS OF CONTACT (Continued)

SPQR/20

SYSTEM-3

DoD:

Mr. Wane Hadlock
Software Productivity Research, Inc,
P.0. Box 1033

1972 Massachusetts Avenue
Cambridge, MA 02140
(617) 495-0120

Mr. Wayne Stanley

Computer Econcmics, Inc.
Suite 109

4560 Admiralty Way

Marina del Rey, CA 90292-5424
(213) 827-7300

Lt. Paul Marsey
Wright-Patterson AFB
(513) 255-6347

96

TABLE B-2. ADA COCOMO IMPLEMENTATIONS POINTS OF CONTACT (POC)

PACRAGE

ROC

BMO*

COSTAR

COSTMODL

GECOMO

Lz. Darrish
Headquarters BMO-ACS
Norton AFB, CA 92409-6468

(714) 382-4713 Autovon: 876-5836

Mr. Dan Ligett
Softstar Systems
28 Ponemah Road
Amherst, NH 03031
(603) 672-0987

Mr. Bermnie Roush

NASA Johnson Space Center
Mail Code FM 7

Houston, TX 77058

(713) 483-9092

Ms. Susan Boers

GEC Software

1850 Centennial Park Drive,
Reston, VA 22091

(703) 648-1551

Mr. Peter Sizer
132-135 Long Acre *
London WC2E England
44-1-240-7171

Suite 300

*

Currently does not include Incremental Development.
Restricted use to Government only.

97

98

APPENDIX C. HARDWARE REQUIREMENTS
Table C-1 summarizes the hardware requirements for each of the models. All of the models are

available on an IBM PC (or compatible). Additional details concerning hardware requirements are provided
in the following text.

TABLE C-1. HARDWARE REQUIREMENTS

IBM PC ZENITH-248 PRIME vax MODEM

r 1 I R i .

COSTMODL ' x I | | ! !
| ! :] S

PRICE S X | | x l I x
{ i | t !

SASET X ! l F (f
| |) | '

SoftCost-Ada I- X ! ! ! X l |
SPQR/20 X | ! { |
|]]

SYSTEM-3 | x f X [[| |
L | | i

X = Available to DoD and Commercial users

99

19

5”

COSTMODL: COSTMODL runs on IBM PCs and compatibles. A hard disk and 640K bwvtes of
memory are required. Any monitor may be used, but a color monitor is preferred since color is
used to differentiate between different classes of data.

PRICE S: PRICE S runs on a PRIME minicomputer operating under PRIMOCS. 11 addition,
PRICE S can be accessed via a time-sharing system with an office terminal and standard modem.

SASET: SASET may be hosted on any IBM PC or compatible with a minimum of 512K bwtes cof
memory, one disk drive, and an 8088/86, 80186, 80286, 80386 microprocessor running PC-DOS or
MS-DOS, version 2.0 or higher. The model functions with either a color or monochrome monitor.
A hard disk and printer arc optional.

SoftCost-Ada: SoftCost-Ada runs on an IBM PC, PC/XT, PC/AT, PS2 or compatibic with a
minimum of 256K bytes of memory and a coior or monochrome display. The sv iem requires PC-
DOS or MS-DOS, version 2.0 or higher. A minimum of one floppy disk drive is requircd. A hard
disk drive and printer are optional. SoftCost-Ada may also be hosted on the Digital MicroVax 11
or VAX 11/780 with VMS version 4.6 or higher.

SPQR20: SPQR/20 runs on an IBM PC, XT, AT, or compatible with 512K bvies of memory and
a color or monochrome display. Two floppy disk drives or a fioppy disk drive and a hard disk
drive are required.

SYSTEM-3: SYSTEM-3 runs on an IBM PC, XT, AT, Zenith 248 or ~ompatibles with a minimum
of 512K bvtes of memory and a color or monochrome displav. The system recuires PC-DOS or
MS-DOS, version 2.0 or higher. A minimum or one floppy disk drive is required.

100

APPENDIX D. CONTRACTUAL ARRANGEMENTS AND COSTS

Tables D-1 and D-2 summarize the availability and cost of models apnlied in the test case study.

Table D-1 summarizes the availability of each model to DoD and commercial users. Availability through

request means that a potential user can receive the model at no cost by contacting the model POC. The

model is received on diskettes that are provided by the requesting agency. Table D-2 shows the DoD rates

for each of the models. Separate “ommercial rates apply to PRICE S and System-3. Additional costs may

be associated with user training, which is required for some of the models. Also, rates will vary depending

upon the type of licensing agreement procured (annual, site, corporate, etc.).

I

COSTMODL: COSTMODL is available to all DoD and commercial users. Version 5.0
of COSTMODL is available by contacting Bernie Roush at NASA- Johnson Space Center.
Version 5.0 implements the complete Ada COCOMO model and the Incremental
Development model which were introduced by Dr. Boehm at the November 1987 COCOMO
User's Group Conference. It does not include the enhancements to the Ada mode! that
Dr. Boehm introduced at the 1988 COCOMO User’s Group Conference. Enhancements
will be incorporated in Version 6.0. Requests should be accompanied with three 360K
5.25" disks. Implementors are currently soliciting feedback on the package’s user interface.
After upgrades, COSTMODL will be available from

NASA/COSMIC

The University of Georgia
Computer Services Annex
Athens, GA 30602

(404) 542-3265

There is 2 nominal handling charge for the program.

PRICE S: PRICE S is part of the PRICE system of models that includes PRICE SZ for
software sizing, and PRICE SL for software life-cycle costs (maintenance, enhancement, and
growth acuvities associated with life-cycle support). Government users can use the PRICE
S package on a time-sharing basis at $82 per hour (through 11/91) by contacting Lt Ken
Nelson of the Aeronautical Systems Division at Wright Patterson AFB. Commercial users
can use the PRICE S package on a time-sharing basis at S15/hour of connect time and

COSTMODL
PRICE S
SASET
SoftCost-Ada
SPQR/20

SYSTEM-3

CQOSTMODL

PRICE S

SASET
SoftCost-Ada
SPQR/20

SYSTEM-3

TABLE D-1. CONTRACTUAL ARRANGEMENTS

PURCHASE LEASE TIME SHARE REQUEST
F 1 1 1
| | l X I
[|]
I ¢ 1
l X X |
|
X |
|
T 1
X | |
] }
1 1
X | |
! |
1 1]
X | |

! ! B

TABLE D-2. LEASE/PURCHASE RATES (DoD)

FIRST UNIT EXTRA UNIT TIME SHARE

— T T 1
] No Cost l | '
| | !
i I $82/Hour |
4 ‘ |
No cost, but | l I
controlled accessl l l
| | i
1 i 1
$8,000 | $1,000/Copy | l
| ! |
T i i
| $5,000 | Negotiable l |
{ ! ! i
I 14 B 1
| $9,550/Year ! $800/Copy | J|

L |

102

$0.060/resource unit of CPU time by contacting PRICE Systems at Moorestown, New
Jersey, but they must also pay an access fee of $40,000/year for one unit or $60,000/year
for unlimited access. Commercial users can also lease the PRICE S package for installation
on their own PRIME minicomputer at $60,000/year for one user at a time or $80.000/vear
for unlimited access. A one week training course is mandatory and costs $1,312.50 (through
11/91) for a government student or $1,750 for a commercial student. These costs include
refresher training, manual updates, technical assistance, and newsletter at no additional
charge.

SASET: SASET is presently being used by the U.S. Air Force Cost Center and the Naval
Center for Cost Analysis. Availability to DoD users on a broader basis is an issue that will
be decided by Mr. Steve Gross and the Naval Center for Cost Analysis. There are presently
no plans to market the SASET model, but Martin Marietta Corporation mav market a
derivative model.

SoftCost-Ada: SofiCost-Ada is available for a monthly or annual licensing fee. The
SoftCost-Ada PC version annual licensing fee for one unit costs $8,000. The price for
additional copies is $1,000. A site license is $11,000. The SoftCost-Ada Vax version costs
$8.000 for the first license (4 users) and $1,000 for each additional license (4 users). Prices
include a telephone help line and system upgrades at no additional charge. SoftCost-Ada
Vax version site licensing agreements are negotiable. A GSA contract is being negotiated
which will result in a discount for DoD users.

SPQR/20: A SPQR/20 one time licensing fee for purchasing one unit costs $5,000. Site
licenses and multi-volume purchases are negotiable.

SYSTEM-3: The Svstem-3 annual rate for government users is $9,550/ear for one unit;
additional units (two and three) are $800/year and S600/vear for four or more units. The
System-3 annual licensing fee for commercial users is $12,500 for one unit; additional units
(two through four) are $2,000/vear. In addition, further price reductions are available for
blocks of (ive, ten. 25 and 50 units. System-3 has a training course available. This course
is strong:v recommended and costs $790/person when given at the CEI facility. Training
at the customer’s facility (up to 20 persons per session) is S4500/session plus travel and
living expenses for CEI personnel. Commercial training costs are $5,800/per session plus
travel and living expenses. Prices include a telephone help line and system upgrades at no
additional charge. '

103

104

APPENDIX E. SCOPE OF COVERAGE: LIFE-CYCLE PHASES AND ACTIVITIES

With the exception of SPQR/20, each model included in this Ada costing study generates an
effort expenditure summary in terms of the software cost elements encompassed by the estimate
and by life-cycle phase. SPQR/20 provides estimates only in terms of the software project activity.
However, these activities can be mapped to lifc-cycie phases. Table E-2 shows the range of life-
cycle phases covered by each model. Phases are mapped to technical reviews and audits [DOD-
STD-2167A] in order to provide a basis for comparison of models in terms of life-cycle coverage.
Blocks depicted in Table E-1 are labelled using the same phase terminology prescribed by each
model. It is evident from the table that phases are not defined in a standard way across all
models. All of the models cover the operational or maintenance phase in addition 10
development. Operational support, following successful completion of a software acceptance
review (FQR), estimated for each model is provided in Table E-1.

A breakdown of software cost elements encompassed by the model estimates is provided in
Table E-3. Activities are described using the exact terminology of the model. A separate estimate

given in terms of person-months of effort is provided for each cost element.

TABLE E-1. OPERATIONAL SUPPORT ACTIVITIES

|
] COSTMODL: Annual maintenance I
|
PRICE S: Operational support for user-specified [
ilength l
!
SASET: Operational support for user-specified I
length I
SoftCost-Ada: Operational support for user-specified
length
SPQR/20: Up to 5 years of operational support
SYSTEM-3: 15 years of operational support

105

LIFE-CYCLE PHASES

.
v

SCOPE OF COVERAGE

TABLE E-2.

CoSTnuol

PRICE S

SASET

SOFICOST
ADA

sPan/20

SYSIEM-3

C/A SRR SOR SSR POR (oRr e PCA (11}

r - 1
e (oo e B e - -/
}| c*Plans & | Product | | 1] |
I Reqts | Design | Programming | Integ. and Test || Msint. |
[———— SO S 1 - — S T P — -

]* 68X of Total €ffort €stimated by the Model |

| |

| |
[| D —- llllllllllll | B TTTTET T | A | A 1 YT -—llllllllld
system	Sys/Softuare]	Software	Preliminary	Detsil	Codes	csct	system		oper	
Concept	Requirements		Requirements	Design	Besign	Test	Test	integration		T8E
I t _ _ _ I	ond Test*]]									
=) D | . | DY ST, |- 1 1 1—)

| I |
| dllll!llllll-qnl. lllllllll L— T | mlllvdl) T T -— 1
| System | Requirements|| Software | Preliminary | Detail |Code|Check|unit|Pal/ |System Tast|}] Meint. |
| Reqts | Allocation ||Requirements] Design | Design | Jout [rest|rar | end " |
I _ 1 I | (N | linteg] inteo* || |
{ G | SO x —l -1 1 1 1 1 14)

| |
r~ ||-llll—~ llllllllllll | T A | T T q—l)
| Systempefinition || software | Architectural | Detall | Implemt. | Software | System || o&s |
| J|Requirements| Design | Design | | Testing | Testing || |
. _— Pl 1 1] 1 1 1)

! |
——l |||||| T - T T L - ~— 1
Planning j|Requirements]| Design | Code | Integration & Test || Meint. |
———————— —- llllllllll . —1 1 b— J

| !
|||||||||||||||||||||| e e R R | At
C/A - SOR i SDR - PDR [poR-COR} cOR-CUT | cui-fal J§ oke |
llllllllllllllllllllllll —n)ll||ltlll..||||||l||l\l|ll..lllb\llllll.— P § |lll|lll..|..l|lll!——lll!\llll_

* Resources expended during this phase are not included in the case study.

106

TABLE E-3. SOFTWARE COST ELEMENTS ENCOMPASSED BY MODEL ESTIMATES

MODEL ACTIVITY
COSTMODL . Requirements Analvses
Product Design
. Programming

. Test Planning

. Verification and Validation

. Project Office

. Configuration Management/
Qua.ity Assurance

. Manuals

PRICE s . Software Design
. Programming
. Documentation
Systems Engineering and Program
Management
. Quality Assurance
. Configuration Management

SASET _ . Software Engineering
. Systems Engineering
. Quality Assurance
. Test Engineering

SoftCost-Ada . Software Development

. Software Management

. Software Configuration Management
. Software Quality Evaluation

SPQR/20 . Planning l
. Requirements l
. Design
. Coding
Integration/Test
. Documentation
. Management

SYSTEM-3 . Systems Engineering
. Project Management
. Design
. Programmers
. Quality Assurance
. Configuration Management
. Test
. Data Manipulation

107

108

APPENDIX F. GENERIC UNITS & TEMPLATE GENERATOCRS

Two techriques that directly support reuse are the use of generic units and the use of
template generators. These two are similar in that each is used to reduce the amount of coding
required by a programmer. In the case of a generic unit, a unit (e.g., a subprogram) is writien
with the use of parameters in place of data types or subprogram declarations. To instantiate the
unit requires only that actual data types or declarations replace the parameters. Template
generators provide the structure for a segment of code. The structure is based on patterns of
program statements that repeat. In this case, the programmer fills in the portions of the template
unique to a particular use. Generic units and template generators are each described in more

detail in this appendix

Generic Units .

Generic units in Ada are templates that are filled in by the generic instantiation. Generic
units can be either packages or subprograms. All generic units contain a generic formal part in
which generic formal parameters are specified. The generic formal parameters are the “wildcards”
in the template. Upon instantiation, matching actual parameters must be supplied for the generic

formal parameters. These matching actual parameters are either supplied explicitly or by default.

There are three kinds of generic formal parameters:

. generic formal types
. generic formal objects
. generic formal subprograms.

Gencric formal types allow a generic unit to be parameterized for a given type. Generic
formal objects act as either constants or global variables, depending on their mode. .\ generic
formal object of mode in will behave like a constant in the generic unit; a generic formal object
of mode "in out® will behave like a global variable. Generic formal subprograms allow procedures

and functions required by the generic unit to be imported by that unit. In general, generic formal

109

parameters allow entities 10 be passed 10 a generic unit from above, by the unit that “withs” and

instantiates the generic unit, rather than from below, by "withing" a lower-level unit.

The following is a typical example of a generic unit:

generic _

type Items is limited private;
with procedure Assign (Item : in Items;

To : out Irems);
with function "=" (Left : in Items;

Right : in Items)

return Boolean is <

with function r"<" (Left : in Items;

Right : in Items)

return Boolean is <;
package Doubly Linked List Manager is

-- package specification

end Doubly Linked_List Manager;

In this instance Doubly_Linked_List_Manager is parameterized by the type Items, which
defines the components of the linked list. In addition, the package needs the subprograms Assign
and "=" because type Items is limited private, and "<" because the items in the list need 1o be

ordered. There are no generic formal objects in this example.

Because generic units are templates, multiple instances of them can be created by
parameterizing them in various ways. The linked list above is a good example of this. One can
create as many instances of a linked list for as many types of data as one likes by simply
instantiating the generic unit with each type that one needs. Clearly, generics provide < to0ol which
allows the programmer to create multiple instances of patterns detected in the application.

Template Generators

In Ada, generics were intended as a means of enhancing reuse among software components.
A generic unit is a template for a package or subprogram. Generics work particularly well for
abstract data types, such as linked lists, where a generic package can be instantiated with the type

out of which the linked list is to be constructed. However, generics do not cover all cases in

110

which a template is required. This is particularly the case when the structure of various library

units is the same but the content is different. As an example, consider the foliowing two

subprogram bodies:

procedure Update Units (Using : in Units) is
Unit : Unicts;
begin

Choose(Unit, From ~> Units_Table, Having => Using.ld);
if Unic.Id = Null_1d then
Insert(Using, Into => Units_Table);

else
raise Duplicate_Key;
end if;
end Update_Units;
procedure Update_Personnel (Using : in Personnel) is
Person : Personnel;
begin :

Choose(Person, From => Personnel_Table, Having => Using.Name);
if Person.Name = Null Name then
Insert(Using, Into => Personnel_Table);

else
raise Duplicate_Key;
end if;
end Update_Personnel;

Notice that they both have a common structure. We might wish to take advantage of this
commonality and construct a generic procedure that would embody the common flow of control,
but which would be instantiated with the differences in content. Unfortunately, however, other
than the flow of control, practically everything else would have to be passed as a generic

parameter. This practically nullifies any advantage that would accrue from using a generic unit.

The interface would appear as follows:

generic
type Records is private;
type Keys ‘1S private;

Table : in Tables;

Null Key : in Keys;

with procedure Choose (Rec : out Records;
From : in Tables;
Having : in Keys);

with procedure Insert (Rec tin Records;
Into : in Tables):

with function Key_Of (Rec :in Records)

111

return Keys;
procedure Update (Using : in Records) ;

The generic formal parumeters Records and Keys are necessary in order to make Update general
for all records in the daiabase. The constants Table and Null_Key and the procedures Choose
and Insert are needed in the body of Update. The function Key_Of is necessary because Update
does not know the structure ot Records and hence has no way of extracting the key field i-om the

record.

Given this information, the body would appear as follows:

procedure Update (Using : in Records) is
Rec : Records;
begin

Choose(Rec, From => Table, Having => Key 0f(Using)).
if Key Of(Using) = Null_Key then
Insert(Using, Into => Table);
else
raise Duplicate_Key;
end if;
end Update;

In order to instantiate Update, matching functions for Key_Of would have to be written:

function Id_Of (Unit : in Units)
return Ids is

begin

return Unit.Id;
end Id_Of;
function Name_Of (Persom : in Personnel)

return Names is

begin

return Person.Name; '
end Name Of;

Assuming the other information is all available globally, Update would then be instantiated

as follows for Units and Personnel:

procedure Update Units is new Update(
Records => Units,
Keys => Ids,

112

Table => Units_Table,
Null Key => Null Id,
Choose => Choose_Unit,
Insert => Insert Unit,
Key 0f => Id_0Of);

procedure Update_Personnel is new Update(
Records => Personnel,
Keys => Names,
Table => Personnel Table,
Null_Key => Null Name,
Choose => Choose_Person,
Insert => Insert_Person,
Key Of => Name_Of);

If one has t0 go to this much trouble to make a library unit generic, it is probably not worth
the effort The conclusion is that payoffs from using generics do not arise unless a substantial
portion of the conteat of the library unit is genericizable in addition to its structure. Nevertheless
it would be helpful 1o have a means of taking advantage of a common structure. The fact that
generics will not necessarily help in this regard does not mean that having some kind of
templating mechanism is not a useful concept. It only highlights the necessity of having a tool

which usefully provides templates for library units which share only a common structure.

Let us explore this in more detail. What is needed is a toof that would produce procedures
Update_Units and Update_Personnel automatically. One approach that could be taken is to
define the template by writing a procedure in which the variant items are indicated by means of
symbols. A separate file of substitutions for these symbols could then be created. A tool could
read both files, replacing the symbolis in the first file by the substitution-instances in the second.

In that way Update_Units and Update_Personnel could be generated automatically.

Below is an example of this technique. First a template for Update_Units and

Update_Personne! might be constructed as follows:

procedure <procedure_name> (Using: in <type_1>) is
<variable_1> : <type_l>;
begin
Choose(<variable_'), From => <table>, Having =>
Using.<key>);
if <variable_1>.<key> = <constant_l> then
Insert <Using, Into => <table>);
else

113

raise Duplicate_Key;
end if;
end <procedure_name>;

Then a file of substitution-instances would be created for each procedure 10 be instantiated.

The one for procedure Update_Units might look like this:

procedure_name Update_Units
type_1 Units
variable_1 Unit

table Units_Table
key Id

constant Null_Id

A tool could easily read this file, store the equivalencies in memory, and generate Update_Units

by substituting the values in the right column for the symbols in the left.

114

REPORT DOCUMENTATION PAGE Form Adpronsd es

Pt urgen for hh ealachon @ (nlenvalion i SEDrued .
~ ”n;- ..“" iy ' ® ~1mnmni:-vnn=mm?; ﬂ. p Gaa o g v
._m ot "-2-6.‘:-*'--01_“ Itorvaton = Repora, 1215 Jefersen Deves Magrouy, Sute 1304, na’a Py
1. AGENCY USE ONLY (Lssve Bank) 2. REPORT DATE 3. REPORAT TYPE AND DATES COVERED

. July 1990 Final REport
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

"Software Reuse Methods MDAQ03-87-D=-0056

¢.AUTHOR(S)
Steve Goldstein

7. PFERFORMING DRGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
ITT Research Institute REPORT NUMBEHR
4600 Forbes Boulevard
Lanham, MD 20706

5. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING AGENCY
REPORT NUMBER
AJPO
3 E 114

The Pentagon
Washington, DC 20301-3081

11. SUPPLEMENTARY NOTES

128 DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

UNLIMITED
i P L A S .
Lismeeamnn Uodiooagued

13. ABSTRACZT (Mapmusn 200 words)

,// Givern the increasing number of computerized, software-driven
systems being designed and implemented throughout the Department of Defense
(DOD) and industry, reusability of software has become a critical endeavor.
To better prepare software engineers and computer programmers CO address the
challenge of software reuse, the U.S. Army Communicationms and Electronics
Command (CECOM) has undertaken a program to investigate different software
reuse methods. Thi¢ effort will provide guidelines on reuse strategies for
software developers. This report examines reusability characteristics,
domain analysis, domain-independent approaches, domain-specific/9pproaches,

cost/benefit analysis for software reuse, and reuse metrics. [oy

14. SUBJECT TERMS 15. NUMBER OF PAGES
SOFTWARE REUSE, REUSE METHODS, DOMAIN APPROACHES, COST BENLFIT 117
ANALYSIS, REUSE METRICS. 16. PRICE CODE

17. SESURTT Y CLASSF ICATION & SECUR™ Y C| CATION) IV TV
OF REPORT BT AGE o IATION " SE ABSTRACT 20. LMITATION OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7540-01-280-5500 Stancarg rorm 29¢, (e, <-89)

Presoriosd Dy ANS! Sac. Z%-1
20601

.

| =2 !

T

The Repor. Documentation Page (RDP) 1s usec in announcing and cataloging reports. ! is Important
that this information be consisten: with the rest ¢ the report, particularly the cover anc titie page.
Instructions tor filing in each biock of the torm toliow. & is important to stay within the lines to meet

optica! scanning requirements.

Block 1. Agaency Use Only (! eave blank).

Block 2. Beport Date. Full publication gate
including day, month, and year, it avaiiable (e.c.
1 Jan 88). Must! cite at least the vear.

Block 3. Jype of BR7 nont anc Datec Covered.
State whetner repor. is intenm, final, etc. it
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A titie is taken from
the pan of the repor; that provides the mos!
meaningtul anc compiete intormation. Wnen a
report is preparec in more than one volume,
repea! the primary title, add volume numbe:,
a2nd include subtitie tor the specific volume. On
c.assified documents enter the tilie
classification in parentheses.

Block £ Zundinz Numbere To include contract
anc gren. numbders; may include program
elemen number{c), projec: number(s;, tasx
number(s), anc work unit number(s). Use the
foliowing labels:

C - Contract PR - Project

G - Grant TA - Task
PE - Program WU- Work Unit
Element Accession No.

Block 6. authoric}. Namels’ ¢f parson!s;
responsisie o7 writing tne repor, performing
tne research, or crecitec with the conten: of the
report. I editor or compiler, this shouic foliow
e name(s;.

Biock 7. Bedarming {raznizotiop Name's) ans

£ddress(es} Sei-expianatory.

Block 8. Pardom 2052

Number Enter the unique zlphanumeric repon
numoer(s) assignec by the organization
psiorming the repor.

Bic-i g, e~/ itarins Anens
NzTieic; anc Azaressies: Seli-expianatony.
Block 10. y: rinn /] Aaniearine Anpe .
Report Numoer. (I known;

Block 11. Sunnlemeniany Nates Enter

informatior. not incluoeg elsewhere such as:
Pregared ir. cooperation wiin...: Trans. ol...; 70
be publishec in.... When & repor: is revised,
include & stztemen: whether the new report
suoersedes or supplements the oicer repon

Block 12a. Distrinytion/Availahility Statemernit
Denotes public availability o: limita:.ons. Cite
any availability to the public. Enter aoditional
limitations or special markinas in ali capita's
ie.g. NOFORN, REL, ITAR;.

DOD - See DoDD 5250.24, "Distribution
Siatements or. Technical
Dozcuments.”

DOE - Ser authoritiec.

NASA - See Handoook NHE 2200.2.
NTIS - Leave blani.

Biock 12b. Distrinution Code,

DPOD - DOD - Leave blank.

DOE - DOt - Enter DOE distributior. categories
from the StandzrZ Distribution for
Unclassifiec Scientific anc Technical
Reporns.

NASA - NASA - _Leave blank.

NTIS - NTIS - Leave biank.

Block 13. Abstract. incluge & briet {(Maximum
200 worgs; tactua! summzn of the mos!
significant intormation coniainec in the report.

Block 14. Subjes Jerme, Keywords or phrases
10entifying major subjects in the renon.

Eloci: 15. Numbe- of Pazes Enter the total

number o' pages.

Block 1€. Brize Tode Enter appropriate price
code (NTIS oniy;.

Blocks 17. - 18. Segurty Cioegificatione,
Seli-explznatory. Enter U.S. Security
Ciassification in accordance with U.S. Security
regulations (i.e., UNCLASSIFIZD). If form
conta:ns classif 22 information, stamp
classiiication on the top anc boscm of the page.

Block 20. Limis2tic” of Abst-ast. This block
must be compieter «¢ assign & limitztion to the
abstract. Enter eitri2- UL (unlimited) or SAR
(same as report;. Ar. entry in this block is
necessary il the abstra=t is tc be limiteg. l¢
blank, the abstrac: is assumes 1o be unlimitec.

Stancars Form 298 Back (Rev 2-£8;

