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1. INTRODUCTION

Certain tactical problems take the form of inquiries into the best way of

getting from A to B, where A and B are positions in a continuous state space.

The optimal route from A to B is not necessarily a straight line: ocean

currents or winds may cause a ship to be routed indirectly to take advantage

of favorable areas, or certain regions may be threatening (typhoons, enemy

units) or even non-feasible (land). A "route" being a complicated

mathematical object, it should be expected that the time required for

computation of an optimal route will be significant, and that it will be

sensitive to the way in which the optimal routing problem is formulated and

solved. This technical report describes a somewhat unconventional approach

to formulation and solution. It includes a program demonstrating the

technique in a problem where a submarine is to be routed past several

listeners trying to detect it.

2. DISCRETE DYNAMIC PROGRAMMING VERSUS CONTROL THEORY

We will take the objective to be

minimize f(x(t),z(t),t)dt (1)

subject to some constraints on the control variables z(t). x(t) for 0 < t < T is the

route to be optimized, generally a vector. For brevity the arguments of x and

z will be omitted below, but each is nonetheless a function of time (t). f(x,z,t)

is the rate at which penalty is accrued at time t. For example f(x,z,t) might be

fuel used per unif time if the problem were to minimize fuel usage or rate of

being hit by AAA if the problem were to navigate an aircraft through defenses
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with as little risk as possible. The control variables z influence the state x

through the equation

dx / dt = g(x,z,t), (2)

where the function g (like the function f) is given. The simplest case is where

g(x,z,t) = z, in which case z can be interpreted as the controllable velocity

corresponding to x. This case is also the part of Control Theory that

corresponds to the Calculus of Variations.

The important feature of (1) is that it is an accumulation over time. This

fact is exploited in both discrete Dynamic Programming (DDP) and Control

Theory, the two commonly applied methods of solution. In DDP, the state

space is made discrete and the minimization is performed by exhaustion; DDP

owes its power to a clever ordering of the required minimizations, rather

than to any exploitation of analytic properties of f or g. DDP produces global

optima, an advantage, but it suffers from Bellman's curse of dimensionality-

the number of state variables and the coarseness with which each is measured

must be carefully controlled lest solution times rapidly become large.

Control Theory does not require that state variables be measured coarsely.

In fact, there would be nothing illogical about using double precision

arithmetic in manipulating them. Control Theory suffers instead from

having to solve two-point-boundary-value problems. Roughly speaking, in

applying Control Theory one easily obtains an optimal solution, only to

discover that the wrong problem has been solved. The main computational

effort comes in manipulating the wrong problem into the right one. Even

when an optimal solution to the right problem is obtained, it may only be a
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local optimum. Control Theory thus has its own difficulties, different from

those of DDP but equally serious.

It should be mentioned that Dynamic Programming is actually the more

general :f the two techniques, since the functional equation of (continuous)

DP can be used to derive the necessary conditions of Control Theory (Beilman

and Dreyfuss [1962], Jacobson and Mayne [1970]). Bellman's Principle of

Optimality appears to be the fundamental observation: if the optimal route

from A to B passes through C, then the parts from A to C and from C to B

must also be optimal for their respective problems.

The gist of the preceding paragraphs is that one can either begin by

imposing some sort of grid on the state space, in which case DDP is the

natural optimization technique, or one can begin by attempting to exploit

analytic properties of f and g, in which case the necessary conditions of

Control Theory are the natural result. If one chooses the latter, one must be

prepared for the possibility that optima may be local, rather than global.

Most current tactical decision aids employ DDP in route optimization.

Klapp [19791 describes the approach of the Fleet Numerical Oceanography

Center in routing ships, essentially the imposition of a network of grid points

on the ocean. The Naval Oceanographic and Atmospheric Research

Laboratory also plans to incorporate a tactical environmental ship routing

(TESR) function as part of the Tactical Environmental Support System.

Weissinger [1987], describes an approach to TESR wherein states are positions

in space-time. He estimates computation times from .25 hours to 15.8 hours,

depending on how coarse the grid is, on a HP9020 microcomputer. The U.S.

Air Force also incorporates some path optimization within its Mission
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Planning System software. Jones [1986] describe, how the WARPATH

algorithm computes an optimal route, and discusses alternatives. All of these

tactical route optimization programs find the shortest route through a

network, with the node and arc costs depending on the application (Deo and

Pang [19841). The coarseness of the network is a crucial consideration in

determining run times.

The coarseness inherent in the DDP approach suggests that some tactical

routing problems might be better founded on Control Theory. Construction

of such a prototype is the goal of the rest of this report. The technique is

somewhat novel and fully described in the Appendix. The main idea is to

eliminate the two-point-boundary-value problem, even at the cost of

temporarily producing solutions that are non-optimal. The technique is

roughly steepest-descent-a given route is gradually warped into something

optimal by making first-order corrections, with the current route being at all

times feasible. The initial route is a user input. The technique is employed to

solve a problem where a submarine attempts to go from A to B without being

detected, the objective being to minimize total radiated energy received by

enemy listeners. The application and the prototype software are described in

the next section.

As mentioned above, one of the weaknesses of Control Theory is that

optima may be local, rather than global. This is of particular concern if there

is reason to believe that the tactical problem is likely to have multiple optima.

This will be the case, for example, in problems where a vehicle is to be routed

past obstacles, since an "obstacle on the left" path cannot be warped into an

"obstacle on the right" path without passing over the obstacle. The more
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obstacles, the more local optima must be expected. In such problems, Control

Theory will be a useful approach only if there is some other reliable

mechanism for selecting a good starting point; i.e., a starting route that is

likely to lead to a route that is globally as well as locally optimal. In two

dimensional problems this mechanism may very well be the human user of

the decision aid, since humans are good at seeing relationships in two

dimensions. The division of effort would be that the human deals with

topological issues, while the decision aid (via Control Theory) deals with

detailed questions about direction and possibly speed. This is the approach

taken in JITTER, the program to be described in the next section. The

problem is first presented graphically to the user in such a manner that a

reasonable route can be selected. JITTER then assumes a starting point where

the speed along the inpvt route is constant, eventually warping it into

something that is locally optimal, possibly with variable speed.

3. SUBMARINE TRANSITS AND THE JITTER PROGRAM

Submarines radiate acoustic noise, with the amount of noise power

radiated being a strong function of submarine speed. In trying to get from A

to B without being detected by an enemy listener at C, a submarine may be

tempted to steer far away from C, but in doing so may be forced to go so fast

("me being constrained) that a remote detection by C may occur anyway. If

there are actually several enemy listeners, the best track can be expected to be

sinuous, but not so sinuous that its length forces extremely high speeds.

Determination of the best track in these circumstances is a rather subtle

problem, one that might reasonably be aided by a computer. This is the goal

of the prototype program JITTER.
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We will take the objective to be minimization of the total energy received

by all listeners. It could be reasonably argued that a better criterion would be

minimization of the maximum power received at any time by any listener.

The truth is somewhere in between (Boyd [19891), but there is little choice of

criterion if Control Theory is to be easily applied-the criterion must be total

received energy.

If there are n listeners, the power received by all of them at time t will be

taken to be

p(t)= {i / ri (t)2 }{l ± av(t)4}{1-Pcos(2Oi(t))},  (3)

where (see Figure 1):

ri(t) = di-stance to listener i

v(t) = submarine speed

Oi(t) = bearing to listener i, relative to the submarine's bow

o ER LISTENERS

SUBMARINE TRACK

Figure 1. A Submarine Passing through Three Listeners

The three factors in I I in (3) can be thought of as basic radiated power

followed by two correction factors. Division by ri(t) 2 in the first factor

6



represents the assumption of spherical spreading; effects of reflections and

refraction are being ignored. The constant si will depend on i if some listeners

are more sensitive than others. The power required to drive a submarine

increases roughly with the cube of speed. A small but increasing fraction of

this is radiated as speed increases, so v(t) is raised to the fourth power in the

speed correction factor (an ulterior motive here is that raising something to

the fourth power doesn't require an exponentiation). The parameter 0a is set

to .0003 in JITTER, which corresponds to doubling the radiated power,

relative to small speeds, when the speed is 7.6 knots. The third correction

factor is needed because power is usually not radiated equally strongly in all

directions. The parameter 1 must be such that 51 < 1. When P > 0, power

tends to be radiated most strongly broadside. 13 is arbitrarily set to .5 in

JITTER, which corresponds to broadside radiation being three times as strong

as bow/stern radiation. The submarine is assumed to be oriented in the same

direction as its velocity vector. The model sketched above is correct in its

tendencies for a non-cavitating submarine, although the parameters would of

course need to be adjusted in a real application. A more detailed description

of radiated noise can be found in Ross [1976].

P(t) as given by (3) depends ,n submarine position x(t) (needed to

compute ri(t)) and velocity z(t) (needed to compute v(t) and Oi(t)), so the path

optimization problem is in the class described in Section 2. JITTER uses the

optimization method described in the Appendix to solve it. The step size is

dynamic; as long as the forecast improvement agrees with the actual

improvement, JITTER will gradually increase it. If the forecast and actual

improvements disagree sufficiently, the step size is reduced. The current
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route and the objective function are continuously displayed, and the user is

invited to stop the program whenever convergence has occurred, possibly

restarting it on a different route that connects the same two points. The

reader is invited to try using JITTER, which is included on the attached

diskette.

One of tne more interesting features of JITTER solutions is the presence

of "kinks" (discontinuities in velocity) on the optimal route in problems

where the input average speed is low (5 knots, say). These kinks are at first

surprising but actually reasonable, since:

1) Velocity is the contol variable, and optimal control problems often
involve discontinuities in control variables.

2) Tite submarine would like to avoid exposing its sides to close
listeners because f3 > 0. Therefore sharp turns through significant
angles ana bow-on approaches to obstacles shouJt be expected.

Real submarines can't make sharp turns, so any proferred "solution" with

sharp turns in it is of course only a rough guide to what should actually be

done. Kinks disappear when the input average speed is high (20 kt, say). The

kinking problem could be avoided by making velocity a state variable and

letting the control variables be (say) rudder angle and acceleration.

To run JITTER, an MS-DOS computer with either an EGA or VGA

graphics board is required; the program tests for the right hardware and will

terminate if conditions aren't satisfactory. The 8087 chip is not required, nor

is a color display (but by all means choose a color display if one is available).

JITTER first reads the chart scale and listener locations from the file

SITES.DAT that is included on the diskette (along with a file SITES.EXE that

can be used for changing SITES.DAT if desired). JITTER echoes this data to
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the screen, asks for an average speed input, and then produces a map on

which the user inputs a candidate route in a connect the dots fashion. The

solid disks on the map represent the listeners, with the -'rea of each disk being

proportional to the listener's sensitivity (there is no special significance if a

submarine track penetrates one of these disks). Once calculations start, the

current route is displayed using line segments of alternating color, each of

which corresponds to a fixed amount of time, so an impression of speed can

be got from the lengths of the segments. Calculations will be interrupted

when JITTER senses that no further improvement is possible, in which case

the user can either terminate the program or input another candidate route

that connects the same initial and terminal segments. In the latter case,

JITTER displays the smallest measure of effectiveness (received energy) that

has been achieved by previous tries.

It should be mentioned that decisions aids like JITTER could deal with

moving listeners, as long as the track that each listener follows is known.

The main complication would be graphical, rather than mathematical, since

it would become difficult to display the listener tracks while asking the user to

input a reasonable starting solution.

Other points worth noting about JITTER

1) The vertical dimension reads downwards! This is the author's
revenge on submariners, who are forever plotting transmission loss
curves in that manner.

2) The most likely reason for a division by zero termination is a leg of
zero length The easiest way to do this is to fail to move the cursor
between inserts.

3) Don't route the submarine directly over one of the listeners. If you
d-), JITTER will respond by lengthening the segment that passes over
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the listener, rather than avoiding the listener. This action "works"
because distances are only evaluated at the ends of line segments; the
phenomenon could be avoided by increasing the number of line
segments, but doing so would slow the program down.

4) The user's first input will be "average speed as the crow flies," this
input being used only to calculate the arncunt of time available. The
actual average speed of the submarine on the initial track will be
greater than this to the extent that the track is longer than the
shortest distance between A and B.

5) The source code in Turbo Pascal is available from the author (408-
646-3127).
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APPENDIX

Consider the problem of minimizing

0O f(x, dx / dt, t)dt (Al)

where x(O) and x(T) are given. x and dx/dt depend on t, but this dependence

on time is suppressed in the notation. This is the classical fixed end point

problem of the Calculus of Variations. We first approximate (Al) by a sum.

Let T = N5, where N is a large integer, let xi = x(i8); i = 0, ..., N, and let

ii = (xi - xi- 1)/8, i = 1, ..., N. Then the problem is to minimize

N1(0) = S ,(xiyi,i3) (A2).
i=1

by choosing x], ... , xn- 1 optimally, with xO and XN given. The method described

below is a first order gradient method (Bryson and Ho [19691) wherein xi is

modified to xi + (xui and i is modified to xi + xij, i = 0, ..., N. a is a small

scalar and uO = UN 0, with ui being otherwise arbitrary for the moment.

Letting

N

J(ax) = 6,f(x i + auixi + a,i3), (A3)
i=1

fi - f(xi, -,ii8), and (A4)

fi= - i f(xi,ii ,is), (A5)
dxi

* (A2) is the simplest discrete version of (Al), but it is unsymmetric with respect to time

because ii involves xi- but not xi,. A symmetric version is actually used in JITTER, but
otherwise JITFER's method is as described here.
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we have that the derivative of J with respect to a, evaluated at a = 0, is

N

J" = , (filui + fik ). (A6)
i=1

The symbol t) i is being used to symbolize the backward difference

(ui-ui-l)/5; with k below similarly being the backward difference of g. Note

that fl and are vectors of the same dimension as x, and that the products in

(A6) are inner products.

Let gj; i= 0,...,N, so that fi = gi. Using summation by parts,

we have

N N N

,5y filui = (giui = UNgN - U0 g0 - (51gi-i. (A7)
i=1 i=1 i=1

Using (A7) and the fact that uO = UN = 0, (A6) is

N
]' = 3hiui, where (A)

i=1

hi- gi-1. Recall that the quantities ui are still unspecified, except that

Nu
i= 0 because UN- 0 0 - If J' is to vanish regardless of how ui is

specified, it follows that hi must be constant for i = 0, ..., N. (A8) therefore

determines the optimal trajectory to within a (vector) constant. Finding the

constant that is consistent with the boundary conditions is a two-point-

boundary-value problem, with erroneous constants corresponding to

trajectories that are optimal but not feasible. However, an iterative method

where all trajectories are feasible can also be based on (A8), since for any

feasible trajectory the (generally nonconstant) quantities hi determine an

improving direction. Specifically, let gto = 0 and
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zi =h-hj; i= 1,...,N., where (A9)

1 N
N Subtracting each hi from the average h forces UN to be 0, as

required. Substituting (A9) into (A8), we have

N

I'= .5,hi(h-hi)= NQ, where (A10)
i=1

-- 1 N
Q=hh- - i=lhhi. Since Q50, with equality possible only when hi is

constant (that is, hi is independent of i), (AO) results in a negative value for J'

unless the trajectory is already locally optimal.

An all feasible gradient method is now clear:

1) guess a feasible trajectory xi; i = 0, ..., N

2) let Xi = (xi-Xi- 1)/8;i=1,...,N

3) use (A9) to determine ui;i = N

4) let ui = I = l u j ;" " =1.,N - 1

5) let xi =x i + au i ;i= l ,...,N-1

6) replace xi with xi and go to 2).

The only remaining issues are the usual ones in first order methods:

determination of the step size a and the stopping criterion. Since ol' is a

forecast of the decrease to be expected with each modification, a natural

dynamic step size method would increase (decrease) ox if the forecast
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improvement is (is not) approximately equal to the actual improvement.

This is the method used in JITTER.
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