DTIC FILE COPY'

AFOEHL REPORT 90-188EQ00086KEF

AD-A230 238

Source Emission Testing of the Rail Shop Media Blast Booth Hill AFB UT

ROBERT J. O'BRIEN, Capt, USAF, BSC

OCTOBER 1990

Final Report

Distribution is unlimited; approved for public release

AF Occupational and Environmental Health Laboratory (AFSC) Human Systems Division Brooks Air Force Base, Texas 78235-5501

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

Air Force installations may direct requests for copies of this report to: Air Force Occupational and Environmental Health Laboratory (AFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with the DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

Robert & O'Bring

ROBERT J. O'BRIEN, Capt, USAF, BSC Consultant, Air Quality Function

Sunal Conne

EDWIN C. BANNER III, Col, USAF, BSC Chief, Environmental Quality Division

REPORT D	Form Approved OMB No. 0704-0188								
gathering and maintaining the data needed, an collection of information, including suggestion	Public reporting burgen for this collection of information is estimated to average. I hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information. Operations and Reports, 1215 jefferson Davis Highway, Suite 1204, Artington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.								
1. AGENCY USE ONLY (Leave blan	DATES COVERED								
4. TITLE AND SUBTITLE Source Emission Testi Blast Booth, Hill AFB			5. FUNDING NUMBERS						
6. AUTHOR(S)									
Robert J. O'Brien, Ca	pt, USAF, BSC								
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER						
AF Occupational and E Brooks AFB TX 78235-		aboratory	AFOEHL Report 90-188EQ00086KEF						
9. SPONSORING/MONITORING AG Same as B1k 7	10. SPONSORING / MONITORING AGENCY REPORT NUMBER								
11. SUPPLEMENTARY NOTES									
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE						
Statement A. Unlimit	ed, approved for publ	ic release							
13. ABSTRACT (Maximum 200 word	(25)	A	······································						
Air Quality required	sion testing for part esting was performed testing for approval	iculates on the R on 29 and 30 Aug order compliance.	ail Shop Media Blast 90. The Utah Bureau of						
Action is recommended	were above the emiss to bring the media b	ion limits allowe last booth into c	d by the State of Utah. ompliance.						
14. SUBJECT TERMS Source Emission Testi	ng Media Blast Boo	 th Hill	15. NUMBER OF PAGES 59						
Particulates Air Pollution	Stack Sampling	O'Brien	16. PRICE CODE						
	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT						
Unclassified	Unclassified	Unclassified	SAR Standard Form 298 (Rev. 2.89)						

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

CONTENTS

		Page
	SF 298 Illustrations	i iv
Ι.	INTRODUCTION	1
II.	DISCUSSION	2
III.	CONCLUSIONS	6
IV.	RECOMMENDATIONS	6
	References	8
	Appendix	
	 A Request Letter B Personnel Information C State Regulations D Calibration Data E Field Data F Acetone & Distilled Water Blank Results and Particulate Emissions Calculations 	9 13 17 23 33 47
	Distribution List	55

Ati C ced C ation
ced 🖸
ation
tion/
ility Codes
11 and/or
pecial

Illustrations

Figure	Title	Page
1 2 3 4	Media Blast Booth Facility Grab Sampling Train ORSAT Apparatus Particulate Sampling Train	2 4 4 5
Table	Stack Emissions Test Results	6

iv

;

I. INTRODUCTION

On 29 & 30 Aug 1990, stationary compliance testing for particulate emissions was accomplished on the Toole Army Depot Media Blast Booth at Hill AFB by the Air Quality Function, Environmental Quality Division, Air Force Occupational and Environmental Health Laboratory (AFOEHL). This survey was requested by HQ Ogden ALC/EM via HQ AFLC/SGBE to satisfy Utah Air Conservation Regulation emission testing requirements. The request letter is found in Appendix A. Personnel involved with on-site testing are listed in Appendix B.

II. DISCUSSION

A. Background

Section 3.4.1, Utah Air Conservation Regulations, requires emissions testing of all sources with established emissions limitations at least once every five years. The media blast booth, last tested in 1983, was required to be retested by 11 Sep 1990 as directed in a Utah Bureau of Air Quality letter to Toole Army Depot dated 14 Feb 1990.

B. Site Description

The media blast booth is a 60' by 21' by 26' high facility located at the Hill AFB Rail Shop, adjacent to building 1701. Blasting is performed an average of 15 hours per week using aluminum oxide grit media. During media blasting, suspended particles are drawn out of the facility and through a connecting bag house. The fan, located on the cleanside of the bag house, then exhausts the cleaned air through a stack attached to the side of the media blast booth. A photograph of the exhaust stack is shown in Figure 1. Also during blasting, those particles landing on the floor of the media blast booth will fall through a grate and be carried to a cyclone where the large and small particles are separated. The larger particles are reused for media blasting while the smaller particles are exhausted through the bag house. The cyclone is located in the control room attached to the back-side of the media blast booth. The control equipment is manufactured by FARR (Model 3) and the bag house filters used are disposable Ten-K paper cartridges.

C. Applicable Standards

The source testing standards for particulate and visible emissions are defined in Utah Bureau of Air Quality Approval Order dated 13 Sep 1983. These standards are found in Appendix C of this report and summarized below.

1. Particulate Emissions: The outlet particulate loading shall not exceed 0.02 grains per dry standard cubic foot (gr/dscf) nor 5.31 pounds per hour (1b/hr).

Figure 1. Media Blast Booth, Hill AFB UT

2. Visible Emissions: No visible emissions from any point shall exceed 40% opacity.

D. Sampling Methods and Procedures

Particulate emissions testing was conducted in accordance with Environmental Protection Agency (EPA) Methods 1 through 5 found in Appendix A to Title 40, Code of Federal Regulations, Part 60 (40 CFR 60) as dictated by Utah Bureau of Air Quality Approval Order dated 13 Sep 1983. Three sampling runs, 62.5 minutes each, were conducted and the results averaged to determine a final emission rate.

The media blast booth facility has a 31.5 inch by 45.75 inch rectangular stack. Five sampling ports exist on the 45.75 inch side of the stack. The port holes are on the same horizontal plane located 10.92 feet downstream and 3.08 feet upstream from any flow disturbance. With an effective inside diameter of 3.11 feet, sampling ports are greater than one half duct diameters upstream and two duct diameters downstream from any flow

disturbance. Based on this information and the type of sample (particulate), twenty-five traverse points (5x5 matrix) were used to collect a representative particulate sample.

Prior to the first sample run on the stack, cyclonic flow was determined by using the Type S pitot tube and measuring the stack gas rotational angle at each point along the center traverse. Flow conditions are considered acceptable when the arithmetic mean average of the rotational angles is 20 degrees or less. Measurements show the stack air flow to be within acceptable limits. A preliminary velocity pressure traverse was also accomplished before the first sample run.

A grab sample for ORSAT analysis (measures oxygen and carbon dioxide for stack gas molecular weight determination) was taken during the first sampling run. ORSAT sampling and analysis equipment are shown in Figures 2 and 3. Flue gas moisture content, needed for determination of flue gas molecular weight, was obtained during particulate sampling.

Particulate samples were collected using the sampling train shown in Figure 4. The train consisted of a button-hook probe nozzle, heated glass-lined probe, heated glass-fiber filter, impingers, and a pumping and metering device. The probe nozzle was sized prior to the sample run so that the gas stream could be sampled isokinetically, (i.e., the velocity at the nozzle tip was the same as the stack gas velocity at each point sampled). Flue gas velocity pressure was measured at the nozzle tip using a Type S pitot tube connected to a 10-inch inclined-vertical manometer. Type K thermocouples were used to measure flue gas as well as sampling train temperatures. The probe liner was heated to minimize moisture condensation. The heated filter was used to collect particulates. The impinger train (first, third, and fourth impingers - modified Greenburg-Smith type; second impinger - standard Greenburg-Smith design) was used as a condenser to collect stack gas moisture. The pumping and metering system was used to control and monitor the sample gas flow rate. Equipment calibration data is presented in Appendix D.

Front half particulate matter (material collected on sampling train surfaces up to and including the filter) was determined for compliance purposes according to the procedures specified in EPA Method 5. Although not used in the emission calculations, back half particulate matter (material collected on sampling train surfaces after the filter) was determined at the request of the Utah Bureau of Air Quality. The method used for determining back half particulate catch is found in Appendix C. Field data from particulate sampling is presented in Appendix E. Emission calculations were accomplished using the "Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators" (EPA-340/1-85-018) developed by the EPA Office of Air Quality Planning and Standards, Research Triangle Park NC. Resulting emission calculations are presented in Appendix F.

Visible emission (opacity) readings were performed by the Utah Bureau of Air Quality.

E. Results

The table provides particulate emission test results for the media blast booth.

3

Figure 2. Grab Sampling Train

Figure 4. Particulate Sampling Train

Stack Emission Test Results

Run #	Average % Isokinetic Sampling Rate	Sample Volume (dscf)	Stack Gas Flow Rate (dscf/min)	Particula (lb/hr)	te Emissions (gr/dscf)
1	100.63	79.214	36,385	13.45	0.04
2	99.33	77.020	35,842	18.41	0.06
3	95.75	72.738	35,114	13.32	0.04
			Average =	15.06	0.05

Note: dscf = dry standard cubic foot dscf/min = dry standard cubic foot per minute lb/hr = pounds per hour gr/dscf = grains per dry standard cubic foot

III. CONCLUSIONS

The booth exceeded the Utah Bureau of Air Quality particulate emission standard of 0.02 gr/dscf in all three runs. Possible reasons for the excessive particulate emissions include:

1. The type of bag house filters used may not be adequate for this type of operation. For example, low permeable filters should be used when the particles being filtered are predominately small and the static electric charge of the filters should be opposite that of the particles.

2. The velocity of the exhaust gas passing through the bag house may be greater than required. The higher the velocity, the greater the amount of particulate matter passing through the filters will be.

3. A leak may have developed within the bag house filters.

4. Excessive blasting pressure and/or overly fine blasting media may increase the amount of small particles being generated.

IV. RECOMMENDATIONS

An evaluation of the entire media blast facility, including emission controls, needs to be performed. This evaluation includes the following:

1. Since the facility was below the same standards when last tested in 1983, determine if any operational and/or equipment modifications have been made since that time.

2. Determine if the proper bag house filters are used for this operation, e.g., evaluate filter material, construction, permeability, and static electric charge.

3. Determine if a slower velocity 'fan speed) can be used to effectively draw particulates through the bag house.

4. Routinely inspect the bag house filters to ensure optimum performance.

5. Evaluate actual blasting parameters, e.g., media type, media size, blasting pressure.

The media blast booth will need to be retested following your evaluation and implementation of corrective measures. AFOEHL will remain active in supporting the base's present and future needs.

References

- 1. Code of Federal Regulations. Vol 40, Parts 53-60, The Office of the Federal Register National Archives and Records Service, General Services Administration, Washington DC, July 1989.
- Quality Assurance Handbook for Air Pollution Measurement Systems Volume III, Stationary Source Specific Methods, U.S. Environmental Protection Agency, EPA-600/4-77-027-b, Research Triangle Park, North Carolina, December 1984.
- 3. Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators, U.S. Environmental Protection Agency, EPA-340/1-85-018, Research Triangle Park, North Carolina, May 1987.

APPENDIX A Request Letter

DEPARTMENT OF THE AIR FORCE HEADQUARTERS OGDEN AIR LOGISTICS CENTER (AFLC) HILL AIR FORCE BASE, UTAH 84056-5999

29 MAY 1990

REPLY TO EM

to

SUBJECT Stack Test for Particulate Emissions - Media Blast Booth, Bldg 1701

HQ AFLC/SGBE USAF OEHL/CC IN TURN

1. Atch 1 is Utah Bureau of Air Quality's letter requiring that the media blast booth stack in building 1701, Rail Shop, be tested for particulate emissions using EPA Test Method 5. This test is to be conducted prior to 11 Sept 90. Atch 2 is the State Approval Order (Air Permit) stipulating air emissions limit not to exceed 0.02 Grains/DSCF or 5.31 lbs/hr.

2. Media blast booth in Rail Shop is used for grit blasting locomotive & generators using aluminum oxide grit media. Blast booth is equipped with media recovery/recycle, classifier cyclone, dust collector, an exhaust fan and a stack. Dust collector filter elements were last changed 7 May 90. The stack is rectangular measuring approximately 42" X 37" and 24' high. Five (5) sample ports each 5" diameter are providec formple ports elevation is about 20' above grade. Rail Shop will provide access scaffolding to sample ports.

3. Request OEHL support in performing this test to demostrate compliance with the permit conditions. Our point of contact is Jay Gupta, OO-ALC/EME, AV 458-7651.

James R. VanOrman

JAMES R. VAN ORMAN Director of Environmental Management

Atch
 State's letter 14 Feb 90
 Approval Order 13 Sept 83

cc: USAF Hospital Hill/SGB

lst Ind, SGBE

0 6 JUN 1990

TO: USAF OEHL/CC

I believe this to be an important requirement; however, this is an Army facility. Request your support, if possible.

tore JONN JOYCE, Lt Col, USAF, BSC Chief, Environmental Quality Office of the Command Surgeon

COMBAT STRENGTH THROUGH LOGISTICS

APPENDIX B Personnel Information

1. AFOEHL Test Team

Maj Ramon Cintron-Ocasio, Chief, Air Quality Branch Capt Paul T. Scott, Consultant, Air Quality Meteorologist Capt Ronald Vaughn, Consultant, Air Quality Branch Capt Robert O'Brien, Consultant, Air Quality Branch Sgt Stanley Dabney, Technician, Environmental Quality

AFOEHL/EQA Brooks AFB TX 78235-5501

Phone: DSN 240-3305 Commercial (512) 536-3305

2. Hill AFB on-site representatives

Mr Jay Gupta	00-ALC/EME
Mr Steve Rasmuson	00-ALC/EME
	DSN 458-7651
	COM (801) 777-7651
Mr Andy Golson	SDSTE-MAI-R
Mr Parley Tingey	SDSTE-MAI-R
	DSN 458-5913

3. State of Utah representative

Colleen Delaney

288 North 1460 West P.O. Box 16690 Salt Lake City UT 84116-0690 COM (801) 538-6722

COM (801) 777-5913

Appendix C State Regulations

A. Matheson Governor

nes O. Mason, M.D., Dr.P.H. Executive Director 801-533-6111

UNISIONS

Community Health Services Environmenial Health Family Health Services Health Care Financing || OFFICES

Auministrative Services Community Health Nursing Congement Planning Meaicar Examiner Siste Health Laboratory

STATE OF UTAL DEPARTMENT OF HEALTH DIVISION OF ENVIRONMENTAL HEALTH

150 West North Temple, P.O. Box 2500, Salt Lake City, Utah 84110-2500

September 13, 1983 533-6108 Kenneth Lee Alkema, Director Room 474 801-533-6121

Larry Fisher Tooele Army Depot Tooele, Utah 84074

> RE: Approval Order for Sandblasting Room (Bldg. 1701), Tooele County

Dear Mr. Fisher:

On August 6, 1983, the Executive Secretary published a notice of intent to approve baghouse controls for the sandblasting room in Building 1701, Tooele County. The 30 day public comment period has expired, and no comments were received.

This air quality approval order authorizes the baghouse controls and sandblasting operation as proposed in your notice of intent dated June 16, 1983, with the following operating conditions:

1. All emission control equipment shall be properly installed, maintained, and operated as proposed in the notice of intent dated June 16, 1983.

2. No visible emissions from any point shall exceed 40% opacity.

3. The baghouse shall be stack tested within 180 days of startup. EPA test methods 1 - 5 shall be used. The outlet particulate loading shall not exceed 0.02 gain/dscf nor 5.31 lb/hr. A pretest conference shall be held between the Bureau of Air Quality, Tooele Army Depot, and the tester.

4. The Executive Secretary shall be notified upon startup as an initial compliance inspection is required.

Sincerely,

Brent C. Bradford Executive Secretary Utah Air Conservation Committee

MRK/ads cc: EPA Region VIII (J. Philbrook) Tooele County Health Dept. 3830

ATCH-2

3.3.6 Exemptions and Waivers. Exemptions and waivers from the requirements of this paragraph 3.3 may be made by the Committee to the extent permitted under Federal Law.

3.3.7 Reconstruction. A reconstructed source will be treated as a new source for purposes of section 3.3 if it otherwise meets the definition of a major source. Reconstruction will be presumed where the fixed capital cost of the new components exceeds 50 percent of the fixed capital cost of a comparable entirely new stationary source. Fixed capital cost means the capital needed to provide all the depreciable components.

3.4 Emission Testing

3.4.1 Emission testing will be required of all sources with established emission limitations at least once every five years. Sources approved in accordance with Section 3.1 will be tested within six months of start-up. Sources for which emission limitations are established pursuant to Section 3.2.1 which do not require modification will be tested within one year of the effective date of these regulations. In addition, if the Executive Secretary has reason to believe that an applicable emission limitation is being exceeded (i.e., through visible emission observations and monitoring data, etc.) he may require the owner or operator to perform such emission testing as is necessary to determine actual compliance status. The Committee may grant exceptions to the mandatory testing requirements of this paragraph 3.4.1 which are not inconsistent with the purposes of these regulations.

3.4.2 At least 30 days prior to conducting any emission testing required under any part of these regulations, the owner or operator shall notify the Executive Secretary of the date, time and place of such testing and, if determined necessary by the Executive Secretary, the owner or operator shall attend a pretest conference

3.4.3 All tests shall be conducted while the source is operating at the maximum production or combustion rate at which such source will be operated. During the tests, the source shall burn fuels or combustion of fuels, use raw materials, and maintain process conditions representative of normal operations, and shall operate under such other relevant conditions as the Executive Secretary shall specify. 3.4.4 The Executive Secretary may reject emissions test data if they are determined to be incomplete, inadequate, not representative of operating conditions specified for the test, or if the State was not provided an opportunity to have an observer present at the test.

3.5 Emissions Industry. The owner or operator of a stationary source of air pollution which emits 25 tons per year or more of air contaminant must submit a report of emission to the Executive Secretary at least annually. Emission inventory reports shall include the rate and period of emission, specific plant source of air pollution, composition of air contaminant, type and efficiency of air pollution control equipment and other information necessary to quantify operation, pollution emission and evaluate pollution control.

3.6 Prevention of Significant Deterioration of Air Quality (PSD)

3.6.1. Area Designations. All areas of the State shall be designated as Class I, II, or III.

a. Pursuant to section 162(a) of the federal Clean Air Act the following areas are designated as mandatory Class 1:

(1) Arches National Park

(2) Bryce Canyon National Park

(3) Canvonlands National Park

(4) Capitol Reef National Park

(5) Zion National Park

b. Pursuant to section 162(b) of the federal Clean Air Act, all other areas of the State are designated as Class II unless redesignated as provided in section 3.6.2 or are designated as non-attainment areas. 3.6.2 Area Redesignation.

a. Within the restrictions and requirements of this paragraph, the Committee may submit to the Governor for decision a recommendation to redesignate areas from any class to any other class.

b. In accordance with Section 162(a) of the Clean Air Act, areas designated as Class I under paragraph 3.6.1(a) may not be redesignated.

c. In accordance with Section 164(a) of the Clean Air Act, the following areas may be redesignated only as Class I or II.

(1) An area which as of August 7, 1977, exceeded 10.000 acres in size and was a national monument, a national primitive area, a national preserve, a national recreation area, a national wild and scenic river. a national wildlife refuge, a national lakeshore or seashore; and (2) A national park or national wilderness area established after August 7, 1977, which exceeds 10,000 acres in size.

d. Except as provided in paragraphs 3.6.2.b, c, and f, the Committee may submit to the Governor for decision a recommendation to redesignate areas of the State as Class III if:

(1) There has been compliance with the requirements of paragraphs 3.6.2.e;

(2) Such redesignation will not cause, or contribute to, concentrations of any air pollutant which exceed any maximum allowable increase permitted under the classification of any other area or any national ambient air quality standard; and

(3) Any permit application for any major source or major modification which could receive an approval order only if the area in question were redesignated as Class III, and any material submitted as part of that notice of intent were available, insofar as practicable, prior to any public hearing or redesignation.

In accordance with Section 164 of the Clean Air Act, redesignations to Class III may be approved by the Governor only after consultation with appropriate committees of the legislature and if units of local government representing a majority of the residents of the proposed area to be redesignated enact ordinances concurring in the redesignation.

e. Prior to submittal to the Governor of a recommendation to redesignate any area:

(1) Notice shall be published in each daily newspaper in the affected area and written notice shall be made to local government units, other states. Indian governing bodies, Federal Land Managers whose lands may be affected by the proposed redesignation and public hearings shall be conducted in the affected areas. Such notice shall be made at least 30 days prior to the public hearing and include a statement of the availability of the discussion outlined in paragraph 3.6.2.e(2). Prior to the issuance of a notice under this paragraph respecting the redesignation of any Federal lands, a written notice shall be given to the appropriate Federal lands, a written notice shall be given to the appropriate Federal Land Manager who shall be afforded opportunity (not to exceed 60 days) to confer with the Committee respecting the redesignation and to submit written comments and recommendations. In recommending redesignation of any area with respect to which a Federal Land Manager

schedule. Compliance must be achieved as expeditiously as practicable but no later than December 31, 1983 or such later date as may be specified by Congress or EPA under the Clean Air Act.

4.10 Abrasive Blasting.

4.10.1 Visible Emission Standards,

a. No person shall, if he complies with performance standards outlined in Section 4.10.3 or if he is not located in an area of nonattainment for particulates, discharge into the atmosphere from any abrasive blasting any air contaminant for a period or periods aggregating more than three minutes in any one hour which is a shade or density darker than 40% opacity.

b. No person shall, if he is not complying with an applicable performance standard in Section 4.10.3 and is in an area of nonattainment, discharge into the atmosphere from any abrasive blasting any air contaminant for a period or periods aggregating more than three minutes in any one hour which is of a shade or density no darker than 20% opacity.

4.10.2 Visible Emission Evaluation Techniques Visible emission evaluation of abrasive blasting operations shall be conducted in accordance with the following provisions:

a. Emissions from unconfined blasting shall be read at the densest point of the emission after a major portion of the spent abrasive has fallen out, at a point not less than five feet nor more than twenty-five feet from the impact surface from any single abrasive blasting nozzle.

b. Emissions from unconfined blasting employing multiple nozzles shall be judged as a single source unless it can be demonstrated by the owner or operator that each nozzle, evaluated separately, meets the emission and performance standards provided for in this Section 4.10.

c. Emissions from confined blasting shall be read at the densest point after the air contaminant leaves the enclosure. 4.10 3 Performance Standards.

4.10.3 Performance Standards,

a. To satisfy the requirements of Section 4.10.1, any abrasive blasting operation may use at least one of the following performance standards:

(1) Confined blasting;

(2) Wet abrasive blasting;

(3) Hydroblasting; or

(4) Unconfined blasting using abrasives as defined in Section 4,10,3,b.

b. *Abrasives*, Abrasives used for dry unconfined blasting referenced in paragraph 4.10.3.a shall comply with the following performance standards:

(1) Before blasting the abrasive shall not contain more than 1% by weight material passing a #70 U.S. Standard sieve.

(2) After blasting the abrasive shall not contain more than 1.8% by weight material 5 micron or smaller.

Abrasives reused for dry unconfined blasting are exempt from b(2), but must conform with b(1).

c. Abrasive Certification. Sources using the performance standard of Section 4.10.3.a(4) to meet the requirements of Section 4.10.1 must demonstrate they have obtained abrasives from persons which have certified (submitted test results) to the Executive Secretary at least annually that such abrasives meet the requirements of Section 4.10.3.b.

4.11

· · · · · · ·

Regulation for the Control of Fluorides from Existing Plants.

a. The owner or operator of the Chevron Chemical Company Phosphate Fertilizer Plant located in the Wasatch Front Air Quality Control Region shall not after July 1, 1983, discharge, or cause the discharge of fluoride into the atmosphere in excess of the following:

1. Wet Process Phosphoric Acid Plants. The fluoride emissions exclusive of tank farm emissions shall not exceed 148 g/metric ton of equivalent P.O. feed.

2. Superphosphoric Acid Plants. Total fluoride emissions shall not exceed 5 g/metric ton of equivalent P₂O₂ feed.

3. Ammonium Phosphate Plants. Total fluoride emissions shall not exceed 508 g/metric ton of equivalent total product.

b. Prior to the commencement of operation of any existing Triple Superphosphate Plant or Granular Triple Superphosphate Storage Facility located in the Wasatch Front Air Quality Control Region, Chevron shall submit a notice of intent to the Executive Secretary and obtain appropriate emission limitations.

c. Within 180 days following the effective date of this section, the owner or operator of the Chevron Phosphate Fertilizer Plant shall conduct testing to determine compliance with the emission limitations listed in subparagraphs a 1-3. d. Compliance with the emission limitations shall be determined as follows:

1. Emissions from all sources in the plant or process for which compliance is being demonstrated with potential emissions greater than .2 pounds per day fluoride shall be included in the demonstration of compliance.

2. All tests shall be conducted while the source is operating at the maximum rate at which such source will be operated. During the tests, the source shall use raw materials and maintain process conditions representative of normal operations and such other relevant conditions as the Executive Secretary shall specify.

3. Fluoride shall be measured according to Method 13A or 13B, Appendix A, Part 60, Title 40, of the Code of Federal Regulations.

4. Flow rates shall be measured according to Method 1, Appendix A, Part 60, Title 40, of the Code of Federal Regulations.

5. Fugitive emissions from the sources covered in this Section 4.11 shall be estimated using methods and procedures which have been approved in advance by the Executive Secretary.

6. The Executive Secretary will be notified at least 30 days prior to the testing of any source.

7. Analysis, calculations, and preliminary results of all testing shall be made available to the Executive Secretary during any testing period.

8. Reports of all compliance testing must be submitted within 30 days of the completion of such testing unless otherwise approved by the Executive Secretary.

9. Records of all compliance testing shall be kept for a period of two years following such testing.

e. Subsequent emissions testing shall be conducted in accordance with Section 3.4 of these regulations.

4.12 — National Emission Standards for Hazardous Air Pollutants.

The provisions of 40 Code of Federal Regulations (CFR) Part 61, National Emission Standards for Hazardous Air Pollutants, are incorporated into these regulations by reference. References in 40 CFR Part 61 to "the Administrator" shall refer to the Executive Secretary of the Committee. See Appendix C.

20

Scott M. Matheson Governor

James O. Mason, M.D., Dr.P.H. Executive Director 801-533-6111

DIVISIONS Community Health Services Environmental Health Family Health Services Health Care Financing and Standards

OFFICES

Administrative Services Health Planning and Policy Development Medical Examiner State Health Laborctory

STATE OF UTAH DEPARTMENT OF HEALTH

DIVISION OF ENVIRONMENTAL HEALTH 150 West North Temple, P.O. Box 2500, Salt Lake City, Utah 84110

533-6108

Alvin E. Rickers, Director Room 428 801-533-5121

October 19, 1981

Utah Method for Analyzing the EPA Method 5 Back Half Particulate

In paragraph 4.1.3 of EPA Method 5, insert "distilled" before the word water and add to the end of the paragraph the following: "Take a volume of distilled water equal to the volume of water charged to the impingers directly from the container used to fill the impingers and place it in a clean sample container, cap the container and label "back half water blank"".

After following the procedure of paragraph 4.2 Method 5 transfer the impinger water from the graduated cylinder or (if the moisture determination was made gravametrically) directly from the impingers to a clean sample container. Mark liquid level, cap and label the container "back half water". Then rinse the first three impingers and connecting glassware including the back half of the filter holder, with acetone. Place the rinse in another sample container, mark liquid level, cap and label "back half wash".

When the evaporation of the back half wash is to begin follow the procedure called for container #2 in paragraph 4.3 of Method 5. The same procedure is to be followed for the back half water except that the water should be evaporated in an oven in which the air temperature is held at 105°C rather than at ambient temperature. The back half water blank should be determined by the same procedure used for the acetone blank listed in paragraph 4.3 and 6.6 and 6.7 of Method 5. Back half particulate is the sum of the weights of the residues of the back half water and back half acetone rinse minus the water and acetone blanks.

Back half particulate is not to be added to the front half particulate captured in the probe and filter. Back half particulate should be reported separately and not used to determine compliance with State regulations.

i1

Appendix D Calibration Data

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Pre Hel

Date 13	Aug 90	J	luc = 5,Ø	М	eter box	numbe	r <u>10</u>	atech :	2
Barometric	pressure.	$P_{b} = 30$	<u>0,12</u> in.	Hg C	alibrate	d by	Scett	9 Va	ughn
Orifice manometer	Wet test meter	Dry gas meter	Wet test meter	Inlet	gas met Outlet	Avg	Time		-
setting (ΔΗ), in. H ₂ 0	(V _w), ft ³	$(v_d),$ ft ³	(t _w), °F	°F	(t _d), °F	°F	min	Y	$\frac{\Delta H e}{\ln \cdot H_2^1} O$
0.5	5	4.984	79 85 542.0	88 5435	16 81 53,5	541.¢	i3,1	1.0001	1.948
1.0	5	5.006	\$\$ 543.5	88 895485	87 81 541.0	544.8	9.2	¢.9987	1.932
1.5	10	10,080	82 542.0	89 94 5015	815475	547.ø	15.Ø	0.9976	1.908
2.0	10	1	\$2 542.5	Cit	⁸⁴ 545	550,75		0.9871	1.932
3.0	10	10,175	83 543 0	97 10 585	88547	57.75	10.7	0.9932	1.928
lac 4.0	10	10.280	83 83 543 Ø	100 - 100	89549	501.5	9.2	0.9838	1.8947
							Avg	0.973	1.924
	<u> </u>			<u></u>				_415	1.264
$ \begin{array}{c} \Delta H, \\ \text{in.} \\ H_2 0 \\ \end{array} $	$Y_i = \frac{1}{v_d}$	$\frac{V_{w} P_{b}(t_{d})}{P_{b} + \frac{\Delta H}{13.6}}$	+ 460)) (t _o + 46(— ДН@ _і	$= \frac{0.0}{P_{b}(t)}$	<u>317 ΔΗ</u> d + 460	$\frac{1}{2}$	<u>v</u> v	$\left[\frac{\Theta}{\Omega}\right]^2$
0.5 0.0368	Y = (4.98)).12×541) 4\(30.1568)	542.0)		- (30,12		(542 (5	21)Z	SET 1.748
1.0 0.0737	1 - (5)(30 1 - (5)(30	12 (544.75		(,	0317 Xi.6	2 5	43.5X	<u>1.2)</u>]Z	- 1,932
1.5 0.110	Y, = (10)	30.12×547	·0) 2 (542.4)	يخ	31711.5	the second s	2)(5)]2 _	1.9076
2.0 0.147	$= \frac{10}{10.72}$	2.2/550 2 5/30.261	5) (5425)	() ()	0317)(2.	0)	(542	5(13.1)]2	- 1.9320
3.0 0.221	. (10/30	12/552.7 51/30.341	3430)	K	0317 (20)		543 X 10	- 2(1	1.9283
4.0 0.294	- (10)3 - (10)20	0.12 X 554.5 X 30.414)(543)	(103	17(4)		3×9.2) 10) ² =	1.8947

^a If there is only one thermometer on the dry gas meter, record the temperature under t_d.

Quality Assurance Handbook M4-2.3A (front side)

25

POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units)

Plant Prst H.11 258	Pretest Y 0, 793		, T T	V P. (t + 460)		$V_{d} (P_{b} + \Delta I_{1})/t_{w} + 460$	/ //0.61 /	10 (21.23) (544)	9.87 (24.23+ 2.9/13.6) 539	10 (24,23) (545,75)	10 (23-23) (54-77) 12233 >	9.97 (23.23 + 3.0/2.6) 5375	0130
Plant	Pretes				Υ.	-				1.0117	1 0145	Ĥ	Y = 1.0130
ech 2					Vacuum	setting,	3u .ut		-	11.9	4		
Nut	er F		.	-	Time	(e) (e)		544 10 CC		10.55	10 11		
SYF 40 Meter box number //4 fech 2	Dry gas meter number		leter	Inlet Outlet Average	(t ¹),			Stit		545.15 10.55	547.75 11 CT		
Meter b	Dry gas m	ture	Dry gas meter	Outlet	, (t ^d),	0 4				isi			
11- JV	n. Hg	Temperature		Inlet	(r ^q)	-		r o Ç oz	90				
Date 20 S	4.4.3 in		Wet test	meter	(t [°]),	9F		465 11	79 - 2 7	C.85 C 31	71 537.5		
	$re, P_b = \frac{1}{2}$	olume	Dry gas	meter	(^P)	ft		4.89		7.442	9.97		
Test number One	Barometric pressure, $P_b = \frac{2\gamma + 3}{2}$ in	Gas volume	Wet test			ft		10 .			10		
Test	Barom	Orifice	Banometer	Setting,				3.0	c Ar	>	3, 0		

^a If there is only one thermometer on the dry gas meter, record the temperature under t_d where

26

 $V_{w} = Gas$ volume passing through the wet test meter, ft³. $V_d = Gas$ volume passing through the dry gas meter, ft³.

 r^{-1} = Temperature of the gas in the wet test meter, $^{\circ}F$. ۳<u>ء</u>

= Temperature of the inlet gas of the dry gas meter, °F. rd.

= Temperature of the outlet gas of the dry gas meter, $^{\circ}$ F. °q t $t_d =$ Average temperature of the gas in the dry gas meter, obtained by the average of t_d , o_f . $\Delta H = Pressure differential across orifice, in. <math>H_2O$.

 Y_{i} = Ratio of accuracy of wet test meter to dry gas meter for each run.

0.9 434 <- Ypint -> 1.0427 Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; 0.493 ± 0,04965 tolerance = pretest Y ±0.05Y.

 P_{b} = Barometric pressure, in. Hg.

 $\theta = Time$ of calibration run, min.

Quality Assurance Handbook M4-2.41

TYPE S PITOT TUBE INSPECTION DATA FORM

#6B Pitot tube assembly level? _____ yes _____ no Pitot tube openings damaged? ____ yes (explain below) ____ no $\alpha_1 = \underline{\bigcirc}^{\circ} (\langle 10^{\circ} \rangle, \alpha_2 = \underline{\bigcirc}^{\circ} (\langle 10^{\circ} \rangle, \beta_1 = \underline{\bigcirc}^{\circ} (\langle 5^{\circ} \rangle, \beta_1 = \underline{\bigcirc}^{\circ} (\langle$ $\beta_2 = \underline{/}^{\circ} (<5^{\circ})$ (1.0625) $\gamma = 0^{\circ}, \theta = 0^{\circ}, A = 1/16^{\circ}$ (in.) $z = A \sin \gamma = 0.0$ em (in.); <0.32 cm (<1/8 in.), $w = A \sin \theta = 0.0$ cm (in.); <.08 cm (<1/32 in.) $P_{A} \frac{17/32 (0.53)}{(1.53)}$ (in.) $P_{b} \frac{17/32 (0.53)}{(0.53)}$ (in.) $D_{+} = 0.375$ em (in.) Comments: CONSTRUCTED 1AW 40.CFR 60 APP A METH 2, FIG. 2.2. ASSIGNED BOSELINE COEFFICIENT = 0.84 Calibration required? yes ι no

Quality Assurance Handbook M2-1.7

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Ambient te		<u>26</u> °C Baron Reference: n	nermocouple numb netric pressure nercury-in-glass other	29.232/ 29.175 in. Hg
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference *
D	ICE BATH	0	0.6	0.6
	ROOM TEMP	24	25.5	0.5

^aEvery 30°C (50°F) for each reference point. b Type \rightarrow f calibration system used. $C \left[\frac{(\text{ref temp, °C + 273)} - (\text{test thermom temp, °C + 273})}{\text{ref temp, °C + 273}} \right]$ 100<1.5%.

* MUST BE WITHIN I'C OFREF

Quality Assurance Handbook M2-2.10

STACK TEMERATURE SENSOR CALIBRATION DATA FORM

Date <u>19</u>	Oct 88	Tł	nermocouple numb	sinck er <u>Pi</u>
Ambient te	mperature_	°C Baron	netric pressure -	29.232 in. Hg
Calibrator	GARRISON/ SCOTT		nercury-in-glass	NBS
Reference point number ^a	Source ^k (specif y)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, %
0°	ICE BATH	0.3	0.6	0.1
100*	BOILING WATER	9 <i>8</i> .9	100.6	0.5
_	GLYCFRO	174.0	177.2	0.7
a	C (50°E) 5	r each referen	-	

^aEvery 30°C (50°F) for each reference point. ^bType of calibration system used. ^c $\left[\frac{(ref temp, °C + 23) - (test thermom temp, °C + 273)}{reftemp, °C + 273}\right]$ 100 \leq 1.5%.

Quality Assurance Handbook M2-2.10

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Date 19	0188	Th	ermocouple numb	smck er <u>P7</u>			
Ambient te	mperature _	°C Barom	etric pressure	2 9.232 in. Hg			
Calibrator	GARRISON/ SCOTT	Reference: mercury-in-glass MBS					
Reference point number ^a	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, %			
0°	ICE BATH	0,3	0.3				
100°	BOILING. WATER	98.9	100.6	0.5			
~	GLYCEROL	174.6	177.8	0.7			
		1					
	<u> </u>						

^aEvery 30°C (50°F) for each reference point. ^bType of calibration system used. ^c $\left[\frac{(ref temp, °C + 273) - (test thermom temp, °C + 273)}{ref temp, °C + 273}\right]$ 100<1.5%.

Quality Assurance Handbook M2-2.10
STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

NUTECH #2 Date 3 JAN 89 Thermocouple number INLET / OUTLET Ambient temperature <u>26</u>°C Barometric pressure _____ in. Hg Calibrator GARAGEN Reference: mercury-in-glass MSTM 63F other

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, %
NLET				
-	HOT WINTER BATH	43.5	43	.5
-	ROOM TEMP	26	26	0
urler				
-	BATH	43.5	42	
-	ROOM	26	26.5	.5

^aType of calibration system used. ^b $\left[\frac{(ref temp, °C + 273) - (test thermom temp, °C + 273)}{ref temp, °C + 273}\right] 100 \le 1.5\%$.

Quality Assurance Handbook M5-2.5 * MUST BE WITHIN 3°C OF REFERENCE

NOZZLE CALIBRATION DATA FORM

Nozzle	<u> </u>	lozzle Diam	eter ^a	Ь Б	
dentification number	mm (1n.)	D ₂ , mm (in.)	D ₃ , mm (in.)	ΔD, ^b mm (in.)	D c avg
#* L	0.252	0, 252	0.253	0.001	0. 152
	. :				
			}		

where:

^aD_{1,2,3}, ⁼ three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

 ΔD = maximum difference between any two diameters, mm (in.). $\Delta D \leq (0.10 \text{ mm}) 0.004 \text{ in.}$

С

b

Stash themo PI Interestion P7

 $D_{avg} = average of D_1, D_2, and D_3$.

Quality Assurance Handbook M5-2.6

Appendix E Field Data

PARTICULATE SAMPLING DATA SHEET		РРЕБ ВОХ ТЕМР ВОХ ТЕМР ВОХ ТЕМР НЕАТЕЯ SET ТЕМР 5.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2		VP H, M-CK-Y C, K, Y C, K, Y C, K, Y (M) (M) (M)	シー・シー・ ニー ミックション ション ション	Co Co Co Co Co Co Co Co Co Co	$H = \begin{bmatrix} 5130.1 \\ 5130.1 \\ 1 \end{bmatrix}$ $H = \begin{bmatrix} 5130.1 \\ 5130.1 \\ 1 \end{bmatrix}$ $H = \begin{bmatrix} 5130.1 \\ 510.1 \\ 1 \end{bmatrix}$ $H = \begin{bmatrix} 5130.1 \\ 510.1 \\ 1 \end{bmatrix}$ $H = \begin{bmatrix} 5130.1 \\ 1 \end{bmatrix}$	VELOCITY HEAD VP) VP) VP) VP) VP) VP) VP) VP) VP) VP)		142-1 CCCCCCC1111	ASTATIO PRESERTION ASTATION AS	
Schematic of fact cross section Equivious $R_{\rm e} = 0_{\rm e} + 460$ $R = 0_{\rm e} + 460$ $R_{\rm e} = 0_{\rm e} + 460$ $S_{\rm e} = 0_{\rm e} + 460$ $R_{\rm e} = 0_{\rm e} + 460$ $S_{\rm e} = 0_{\rm e} + 460$ $R_{\rm e} = 0_{\rm e} + 460$ $S_{\rm e} = 0_{\rm e} + 460$ $R_{\rm e} = 0_{\rm e} + 460$ $S_{\rm e} = 0_{\rm e} + 460$ $R_{\rm e} = 0_{\rm e} + 460$ $S_{\rm e} = 0_{\rm e} + 460$ $R_{\rm e} = 0_{\rm e} + 40$ $R_{\rm e} = 0_{\rm e} + 40$ $R_{\rm e} = 0_{\rm e} + 160$ $R_{\rm e} = 0_{\rm e} + 100$ $R_{\rm e} = 0_{\rm e} + 160$ $R_{\rm e} = 0_{\rm e} + 100$		┟╾┾╼			6) /	111 211		10 ² 0		275	-,-,-	3'5
Scileuritions Scileurions Scileurions β_{ij} β_{ij} β_{ij} γ_{ij} γ_{ij} β_{ij} β_{ij} β_{ij} γ_{ij} γ_{ij} β_{ij} β_{ij} β_{ij} γ_{ij} γ_{ij} β_{ij} <	i li	<u> </u>				i c	-) 's	1,1		41		،- ر
λ_{ikj} λ_{ikk} $\lambda_{$		1-	+		7 / F	627.		14		7-7	U U	
Schematic OF STACK CROSS SECTION Equations R_{ab}^{a} (12) </td <td> </td> <td><u> </u></td> <td></td> <td></td> <td><u>, '</u></td> <td>121</td> <td>11.</td> <td>~ _</td> <td></td> <td><i>L</i> 7</td> <td>ĴЛ</td> <td></td>		<u> </u>			<u>, '</u>	121	11.	~ _		<i>L</i> 7	ĴЛ	
Bit Solie AMBENT TEMP R_{12} P_{12} P_{12} P_{12} P_{12} P_{12} R_{12} P_{12} P_{12} P_{12} P_{12} P_{12} P_{12} R_{11} P_{12} P_{12} P_{12} P_{12} P_{1		+	. 1		~	. 4	- 1	~		с c		
Schlenk Tic OF SYACK CROSS SECTION Real Privations $R = 0F + 400$ $R = 0F + 400$ $R = 0F + 400$ $STACK CROSS SECTION$ $R = 0F + 400$ $STACK CROSS SECTION CROSS SECTION R = 0F + 400 P = 0F + 400 $		+				· .				ان اد		-1 -
Scilematric of stack cross sectorEquationsAmelian temp n_{ikj} <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>6.1</td> <td></td> <td>って</td> <td></td> <td>-</td>							•	6.1		って		-
Schewartic OF STACK CROSS SECTIONReal FunctionsAndle ht Tewn $R = 0F + 400$ $R = 0F + 400$ $STACK CROSS SECTION FREESR = 0F + 400STACK CROSS SECTION FREESR = 0F + 400STACK CROSS SECTION FREESR = 0F + 400STACK CROSS SECTION FREESR = 0F + 400P = 0F + 400R = 0F + 400P = 0F + 400$		-h	╋		+	2				- ه . د		, , ,
Alg SCHEMATIC OF STACK CROSS SECTION EQUATIONS $R = ^{o}F + 400$ $^{o}R = ^{o}F + 400$ $^{o}R = ^{o}F + 400$ $R = ^{o}F + 400$ $^{o}R = ^{o}F + 400$ $^{o}R = ^{o}F + 400$ $R = ^{o}F + 400$ $^{o}R = ^{o}F + ^{o}F +$	+	+-	+-		+		- 1			רע. גע		
Schematric of STACK CROSS SECTIONEQUATIONSAMBLENT FEMP $R_{\rm eff}$ $R_{\rm $		+			┼	1.1.1	-	-+ c				
ScileMATIC OF STACK CROSS SECTIONEQUATIONSAMBLENT FEUP $R = 0^{\text{F}} + 400$ $R = 0^{\text{F}} + 400$ $S = 0^{\text{F}} + 400$ $S = 0^{\text{F}} + 300$ $R = 0^{\text{F}} + 400$ $R = 0^{\text{F}} + 400$ $R = 0^{\text{F}} + 300$ $R = 0^{\text{F}} + 300$ $R = 0^{\text{F}} + 400$ $R = 0^{\text{F}} + 400$ $R = 0^{\text{F}} + 300$ $R = 0^{\text{F}} + 100$ $R = 0$			T		<u> </u>	1-	4.7			14		
ScileMATIC OF STACK CROSS SECTIONEQUATIONSEQUATIONSMABLENT FEMP $R = 0^{\text{F}} + 400$ $R = 0^{\text{F}} + 400$ $S = 0^{\text{F}} + 400$ $S = 0^{\text{F}} + 30^{\text{F}}$ $S = 0^{\text{F}} + 30^{\text{F}}$ $R = 0^{\text{F}} + 400$ $R = 0^{\text{F}} + 10^{\text{F}} + 10^$	<u> </u>]				11	1.1	2.6		11		15. 2
Schewartic OF STACK CROSS SECTIONEQUATIONSEQUATIONSAMBENT FEMP $0_{R} = 0_{F} + 460$ $0_{R} = 0_{F} + 460$ $STATION PRESS\beta_{R}^{1}\gamma_{L}\gamma_{L}\gamma_{L}\beta_{L}^{1}\gamma_{L}<$	L	1			┣—	6173				רי ב י		11.
Sciewaric of synck cross sectionEquationsAMBIENT FUP $32 \text{ (EWARIC OF SYNCK CROSS SECTION0 \text{ R} = ^{\circ}\text{F} + 4603 (Table of the section of$		\mathbf{n}	1	1	+	1 5 1	-] _			3 r 4		, i
Scientif of Struct CR0SS SECTIONEquations α_{MB} if the formation of the fold α_{MB} if the fold						.,	1.1.	1.2		r. 12		2.5
AllSCHEMATIC OF STACK CROSS SECTIONOR = 0 F + 460STATION PRESS 0 R = 0 F + 460 0 R = 0 F + 460 2 T m 2 C m 1 All 1 C 1 T m 1 Vp 1 H model FER BOX TEMP 1 All 1 C 1 C 1 T m 1 Vp 1 All 1 C 1 C 1 C 1 C 1 All 1 C 1 C 1 C 1 C 1 All 1 C 1 C 1 C 1 C 1 All 1 C	TEMP (OF)	BOX TEMP (°F)	0UT (0F)			SAMPLE VOLUME (cu ft)	DIFF. PRESS. (H)	HEAD (Vp)	(Ts) (0R)	(oF)	PRESECRE	•
Sciewaric of stack cross sectionEQUATIONSAMBIENT FEMP $Sciewaric of stack coss section^{\circ}R = ^{\circ}F + 460^{\circ}R = ^{\circ}F + 460^{\circ}Station PRESSH = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tm \cdot vpH = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot VpH = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Vph[d_{J}(J)]f = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tm \cdot vpH = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Vph[d_{J}(J)]f = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tm \cdot vpH = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Vph[d_{J}(J)]f = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot VpH = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Vph[d_{J}(J)]f = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot VpH = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Vph[d_{J}(J)]f = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot VpH = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Vph[d_{J}(J)]f = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot VpH = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Vph[d_{J}(J)]f = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot VpH = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tp \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot Cp \cdot A \\ 2 & Ts \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot Cp \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Cp \cdot Cp \cdot Cp \cdot Dp + Cp \cdot Tp \end{bmatrix}^{2} \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Dp + Cp \cdot Tp = \begin{bmatrix} 5130 \cdot Fd \cdot Dp + Cp \cdot Dp$	MPINGE	SAMPLE	EMP	GAS METER T		GAS	ORIFICE	VELOCITY	КТЕМР	STAC	ASTATIC	┝─
Schewartic OF STACK CROSS SECTIONEQUATIONS $0_{R} = 0_{F} + 460$ $h[d] \mathcal{D} $ <t< th=""><th>(Fd)</th><th>(), St.</th><th>DRY GAS</th><th>c Kuz</th><th></th><th>_!</th><th>f.tot che</th><th></th><th>х. Эн Хн</th><th>i ni</th><th></th><th></th></t<>	(Fd)	(), St.	DRY GAS	c Kuz		_!	f.tot che		х. Эн Х н	i ni		
SCIEMATIC OF STACK CROSS SECTION SCIEMATIC OF STACK CROSS SECTION OR = OF + 460 $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $H = \left[\frac{5130 \cdot E4 \cdot Cp \cdot A}{C0} \right]^2 \cdot \frac{Tm}{Ts} \cdot Vp$ $\frac{7}{7} \cdot \frac{100}{7} \cdot \frac{100}{$	-	AREA 5.2	ZZLE	· ctury		91 (J) X	125t 7. che Cher			□.,) 	;{ 	
ScileMATIC OF STACK CROSS SECTION $ \begin{array}{c} $		1	PROBE	HJIN-CK	5	S. Luck				<u></u>		
$3CiteMATIC OF STACK CROSS SECTIO: EQUATIONS$ $\circ R = ^{\circ}F + 460$ $H = \left[\frac{5130 \cdot Fd \cdot Cp \cdot A}{C_{\circ}} \right]^{2} \cdot \frac{Tm}{T_{s}} \cdot Vp$ HEATER BOX TEMP $AMBIE NT TEMP$ $AMBIE NT TEMP$	TING	IEATER SET	PROBE H	- : 1	1, <	120	+		-1			
SCIIEMATIC OF STACK CROSS SECTION $^{\circ}R = ^{\circ}F + 460$ $^{\circ}R = $			'			Г	ſ				2	Bla
SCHEMATIC OF STACK CROSS SECTION EQUATIONS $^{\circ}R = ^{\circ}F + 460$ $^{\circ}R = ^{\circ}F + 460$		BOX TEMP	HEATER	d >		ů	4				Ĩ I	
SECTION EQUATIONS $^{O}R = ^{O}F + 460$ STATION PRESS	in	5		Ve								-
SECTION EQUATIONS							It				-	() -
SECTION EQUATIONS			I STATION				11				-	j t
			STATION									<u>د</u> ر

72		oF	in Hg	ц.			u .	sq ft	1)	IMPINGER	OUTLET TEMP (OF)	50	50											
	AMBIENT TEMP	STATION PRESS		HEATER BOX TEMP	PROBE HEATER SETTING	PROBE LENGTH	NOZZLE AREA (A)		DRY GAS FRACTION (Fd)	SAMPLE	ВОХ ТЕМР (0F)	2.6 257	2:1 26.2											
	AMBIEI	STATIC		HEATE	PROBE	PROBE	NOZZL	c	DRY G.	TEMP	0UT (0F)	BC.	0.50 55		Cr L									
										GAS METER T	AVG (Tn) (R)				11									
			T ^m Vo							GAS	IN (0F)		9 83						+-		-+	_		
SHEET		-	P.A 2							GAS	SAMPLE VOLUME (cuft)	72465	7.26.581			438 77 = 151	5036							
PARTICULATE SAMPLING DATA SHEET	EQUATIONS	$^{\circ}R = ^{\circ}F + 460$	H = 5130.							ORIFICE	DIFF. PRESS. (H)	$\overline{\mathcal{A}}, \overline{ll}$	1.48	11. 2.9		2	5 - A1.							
ICULATE SAM	ECTION									VELOCITY	HEAD (Vp)	J/ .	3.2				1 1/51							
PART	K CROSS S									TEMP	(Ts) (0R)													
	SCHEMATIC OF STACK CROSS SECTION									STACK TEMP	(oF)	77	1 <i>i</i> L		41212		-+-							
	SCHEM									1 GHATIC	PRESECRE (m H20)	Ċ.	1											
	-					MBE R	BER			SAMPLING	TIME (min)	0 0	تر ر ب	· · · · · · · · · · · · · · · · · · ·										
	RUN NUMBER H	DATE		PLANT	BASE	SAMPLE BOX NUMBER	METER BOX NUMBER	Qw/Qm	Co	TRAVERSE	POINT	<i>τ</i> .	15											FORM

	AIR POL	LUTION	PARTIC	ULATE AN	ALYTIC	AL DATA		
BASE Hill AFB		DATE	Ang	70		RUN NUMBER		
BUILDING NUMBER		2'		SOURCEN	UMBER	/		
	0			.1		nst Facili	ty Vent	
۱.				CULATES				
	ITEM			WEIGHT ภา)		TIAL WEIGHT (gm)	WEIGHT PART	ICLES
FILTER NUMBER			0.4	294	, ,	916	0.1378	
ACETONE WASHING Half Filter)	S (Probe, Front		95.5	711		4438	acetone rinse 0, 0336	
BACK HALF (if need	not included total keigh						0. 022 0. <u>22</u>	<u>ר</u>
			Total W	leight of Partic	culates Col	lected	0, 2 2 14	ĝin
11.		·····	WA	TER			· · · · · · · · · · · · · · · · · · ·	
	ITEM		FINAL V (gn		INI	TIAL WEIGHT (פחה)	WEIGHT WA (gm)	TER
IMPINGER 1 (H20)			162	m	<u>ب</u>	00	- 38	
IMPINGER 2 (H20)			210	ml	a	00	10	
IMPINGER 3 (Dry)			10	ml	()	10	
IMPINGER 4 (Silica Gel)			219.39		20	ジ ロ	19.3	
			Total Weight of Water Co				1.3 am	
111			GASES			1		
ITEM	ANALYSIS 1	AN.	ALYSIS 2	ANAL	YSIS 3 	ANALYSIS		
VOL & CO2	0	Ø)	0			AVERAGE 0	
VOL ~ 02	19,4	1	1.4	19.	4		19.4	
VOL " CO								
VOL - N ₂								
		Vol % N2	= (100% - %	C0 ₂ - % 0 ₂ - %	5 CO)	L	- -	
EORM								

AMD FORM FEB 84 651 REPLACES OFHL 20, MAY 78, WHICH IS OBSOLETE.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					PART	PARTICULATE SA	SAMPLING DATA	N SHEET				47	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RUN NUMBER		SCHEMA	FIC OF STAC	<u>K CROSS SI</u>	ECTION	EQUATIONS			AMB	ENT TEMP	• • •	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	μ						Ъ.	a				oF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		40					L	٢		STAT	LON PRESS		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		10					H				20.14	in Hg	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	J	1201				I	 1		. V 3 H	TER BOX TEMP		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-this						ť			IE HEATER SETTI		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	H.II AF	ũ		stac h			L tot che	シン					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SAMPLE BOX N	UMBER		۲۲				5	1	L	BE LENGTH		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BOX	MBER	1 T						0	NO7	AREA (4)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.1	7				8.00+				25.2		
Autic Pup Autic Pup Fluit Luc ($1/k$) $1/k$ ($1/k$ ($1/k$) $0.5 J$ RAVERS STATE STATE STATE STATE $0.6 J$ $0.5 J$ RAVERS STATE STATE STATE STATE $0.6 J$ $0.5 J$ RAVERS STATE STATE <td></td> <td></td> <td></td> <td>\mathcal{F}</td> <td></td> <td></td> <td>Pulicities</td> <td>c) 1</td> <td>1</td> <td><u> </u></td> <td></td> <td>: F</td>				\mathcal{F}			Pulicities	c) 1	1	<u> </u>		: F	
ANVERSE ANVERSE ANVERSE Include Include Mark reprint Include Mark reprint Mark repreprint Mark repreprepreprint <th <="" td=""><td></td><td></td><td></td><td>ن مر</td><td></td><td></td><td>- -</td><td>)</td><td></td><td></td><td>0.51</td><td></td></th>	<td></td> <td></td> <td></td> <td>ن مر</td> <td></td> <td></td> <td>- -</td> <td>)</td> <td></td> <td></td> <td>0.51</td> <td></td>				ن مر			- -)			0.51	
EASE AMPLING STACK TEW VELOCITY ORF GAS GAS GAS GAS GAS GAS SAMPLE SAMPLE <th< th=""><th>ů</th><th></th><th></th><th></th><th></th><th></th><th>1011110</th><th></th><th></th><th>DRΥ</th><th>GAS FRACTION (F</th><th>d)</th></th<>	ů						1011110			DRΥ	GAS FRACTION (F	d)	
MI TIME PRESUME (TP) <	TRAVERSE	SAMPLING	STATIC	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS MET		SAMPLE	IMPINGER	
$135h_{5}$ 1 36 12 72.85_{5} 96 87 200 27 200 27 200 27 200 27 200 27 200 27 200 27 200 <	POINT	TIME (min)	PRESSURE (in H20)	(0F)	(Ts) (0R)	HEAD (Vp)	DIFF. PRESS.	SAMPLE VOLUME			BOX TEMP	OUTLET TEMP	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12.2560					(11)	75851		+		(-1-)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	2.2	/	1 76		38		730.42		52	+		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	N.S.		()		: 3:3	1.4.1	72255	30	ن نون			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	75		6		110	1.63	734.15	31	ر. بې	25	6:2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10	×.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1/1	3.11	736.2	33	ن ت ت	344	é Ci	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ι	5.7	2	<u>بر</u> ی		121	1.24	738.13	<i>YS</i>	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	240	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L L	15	1	17		.70	3.21	740.30	- 31	6.7		60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 125	F	20		<i></i>	3.65	K-2 6/12	_ 1	Yc.		c o	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	10	7			- 42	3.46	245.42	Ji	27		5.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				200		140	1.47	74 2 17	25	<u>ځې</u>	-7	ŝÜ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9r			<u>, rr</u>	1.0.1	51-1-52	162	5/	-+-	54	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	31.		21			1 - 2 · U /	154.50	46			212	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	27.5	5	27		1.1	1.1.1	71.1.35	100	17.	+-	, , , , , , , , , , , , , , , , , , , ,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1]	36	10	63		<u> + </u>	J	۰Ł.,	10.0	136	+.	¢ %	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	1.28	10	- 2 - 2		11-1	i i	761,005	103	35	" [1.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	1:1;	S	ά Δ		1.5	S	772.65	101	46	1-	6.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F	12.5	11	62		1.8	. <i>ب</i> ز؟		107	36		50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×2/	1 22		36		1.7	ي ر		108	- 6	1	64	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	<u></u>	0,2			8.50	112 482	ie 8		1	30	
$\frac{5}{5} - \frac{5}{65} - \frac{7}{11} - \frac{7}{79} - \frac{3}{2} + \frac{1}{11} + \frac{7}{27} - \frac{1}{2} + \frac{7}{11} + \frac{7}{27} - \frac{7}{29} + \frac{7}{10} + \frac{7}{10} + \frac{1}{25} + \frac{7}{25} + \frac$		1					12.10 12.10	98.0	106_	1.56		6.5	
FORM 22 1 11 11 11 11 2.4 1 11 57 1 745. /8/10/51 1/1/1 25/ 27/91		2:21	4	70		1			5,1		227.47	- 2	
	•					ł		87.47	- C ~ -		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10	

				PARTICULA	ATE SAMP	RTICULATE SAMPLING DATA SHEET	SHEET				シレ
RUN NUMBER H J DATE PLANT BASE SAMPLE BOX NUMBER METER BOX NUMBER	H C VUMBER	SCHEWA	SCHEMATIC OF STACK CROSS SECTION	ROSS SECTION		$e gua Tions$ $^{\circ}R = ^{\circ}F + 460$ $H = \begin{bmatrix} 5130 \cdot I \\ - 5130 \cdot I \end{bmatrix}$	N	Ts. vp	AMBIEN STATIO HEATE PROBE PROBE NOZZL	AMBIENT TEMP STATION PRESS HEATER BOX TEMP PROBE HEATER SETTING PROBE LENGTH NOZZLE AREA (A) CP	oF in Hg oF sq ft
ů									DRY GA	DRY GAS FRACTION (Fd)	
TRAVERSE POINT NUMBER 25 31/ 31/ 35 35 30 ALFORM	samplind Time (min) 575 () 6.0 () 1.5 () 2.5 () 2.5 () 2.5 () 18	STATIC PRESSURE (In H20) II II II II II II II II II I	(0F) (0F) 75 75 75 75 76 76 76 76 76 76 76 76 76 76			ORFICE DIFF. PDES. PRES.	645 548 548 548 512 512 512 512 512 512 512 512	Gas METER TEMP Gas METER TEMP (OF) (OF) (OR)	56399	SAMPLE BOX TENT OF DS 155 247 155-1-47 1844	IMPINGER OUTLET TEMP (ら)

.

[AIR POL	LUTION PARTICU	JLATE AN	ALYTICA	L DATA			
BASE		DATE			RUN NUMBER			
Hill AFB		27 Aug 9) ()		#2			
BUILDING NUMBER		J	1		Facility	Ven t		
1.		PARTIC	ULATES		TIAL WEIGHT	WEIGHT PARTICLES		
	ITEM	(gr		ļ	(gm)	(gm)		
FILTER NUMBER		0.50	70	0.3	273	0.2197		
ACETONE WASHING Hall Filter)	S (Probe, Front	43.70	53	93.	6250	0. 0 794		
BACK HALF (if need	not included total weigh					0, 0 - 04		
		Totul W	eight of Parti	culates Call	ected	0,299j em		
И		WA1	FER		······	ł		
	ITEM	FINAL W		INIT	IAL WEIGHT (gm)	WEIGHT WATER (gm)		
IMPINGER 1 (H20)		180	ml	न्रे	00	- 70		
IMPINGER 2 (H20)		202	ml	Â	00	2		
IMPINGER 3 (Dry)	IMPINGER 3 (Dry)				0	3		
IMPINGER 4 (Silica Go	219	219.89 200			1 1, 8			
		Total We	Total Weight of Water Collected			4.8 em		
	······································	GASES	(Dry)		······			
ITEM	ANALYSIS 1	ANALYSIS 2	ANAL	- YSI5 3	ANALYSIS 4	AVERAGE		
VOL ~ CO ₂				i				
VOL 7 02								
VOL % CO								
VOL % N2								
	······	Vol % N ₂ = (100% - % (co ₂ - % o ₂ -	% CO)		~		

AMD FORM 651 REPLACES OFHL 20, MAY 78, WHICH IS OBSOLETE.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					PART	PARTICULATE SA	SAMPLING DATA SHEET	SHEET				1/2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	SCHEMA	TIC OF STA	CK CROSS SI	ECTION	EQUATIONS				AMBIEN	r TEMP	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		i					$^{\circ}R = ^{\circ}F + 460$	0		4			<u>н</u> о
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	с л	00 00					<u> </u>	۲	,			0 0 0	:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PLANT	ské T	1701				ä				HEATER	BOX TEMP	
AFR Stack F: $bc = 0.5$ Procent control Procent control unument F: $bc = 0.5$ F: $bc = 0.5$ Procent control Procent control unument F: $bc = 0.5$ F: $bc = 0.5$ Procent control Procent control unument F: $bc = 0.5$ F: $bc = 0.5$ Procent control Procent control unument F: $bc = 0.5$ F: $bc = 0.5$ Procent control Procent control unument F: $bc = 0.5$ F: $bc = 0.5$ Procent control Procent control unument F: $bc = 0.5$ F: $bc = 0.5$ Procent control Procent control unument F: $bc = 0.5$ F: $bc = 0.5$ Procent control Procent control unument Procent control Procent control Procent control Procent control unument Procent control Procent control Procent control Procent control unument Procent control Procent control Procent control Procent control unument Procent control Procent control Procent control Procent control unument Procent control Procent control Procent control Procent control Procent control Procent control Procent control Procent c	Beaul Bla	st Facility	۲ ۲				- - -	 -	1				
Midel n $\gamma_{1,0}$ k $P_{1,0}$ k $P_{1,0}$ k $P_{1,0}$ k $P_{1,0}$ k $P_{2,1}$ k $P_{2,2}$ k	BASE			,			1 4 402 5 - 2 1 1	רי עדיו ווא	CL S	•	PROBE	HEATER SETTI	NG
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A I I H	FR			1		P: +0+ -	E O			10000		
Ter BOX NUMBER For $\frac{1}{4}$ For \frac		Nach			K,				101		PHOBE	LENG H	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	METER BOX NU	MBER		<u>т</u> Л					•		NO 7 7 1 6	1 2 ADE (A) 2	
Ome Total and the second of the	Nute			4 !	Muter		ر ۱۹۰۰ د				1 7 7 O V		
RVERSE STACK TEMP PULL $\Gamma_{1,1}^{-1} - 0$ PULL $O_{1,1}^{-1} - 0$ RAVERSE STACK TEMP VELOCITY	1 . ·			μ ~				(· ')					•
SAMELIA MANUE STACK TEMP VELOCITY ORIFICE GAS GAS METER TEMP SAMELE MANUE SAMELE SAME SAME	Co			>			+	0. K. 1515 H	!		DRY GA), X4 S FRACTION (F	(P
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TRAVERSE	SAMPLING	1VAL TIL	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS	METER TEN	a	SAI PLE	IMPINGER
λ_{-5} γ_{-1} <t< td=""><td>POINT NUMBER</td><td>TIME (min)</td><td>PRESEVIRE (JATTAD)</td><td>(oF)</td><td>(Ts) (0R)</td><td>HEAD (Vp)</td><td>DIFF. PRESS.</td><td></td><td>IN (0F)</td><td>AVG (Tm) (PR)</td><td>0UT (0F)</td><td>ВЭХ ТЕМР (0F)</td><td>OUTLET TEMP (OF)</td></t<>	POINT NUMBER	TIME (min)	PRESEVIRE (JATTAD)	(oF)	(Ts) (0R)	HEAD (Vp)	DIFF. PRESS.		IN (0F)	AVG (Tm) (PR)	0UT (0F)	ВЭХ ТЕМР (0F)	OUTLET TEMP (OF)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								5					,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			۲ ۲	31			9 47 E	71	×0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5.0	~	80		7-1	12		۶۶				· ~ !
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	7.5	12	10		2.2	11 2001	~1	Å 7				_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	+	0.01-	4	31				7	90				56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				< 3				4-			T		1.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4							1 L.	100		1		, , , , , , , , , , , , , , , , , , ,
1 ± 5 12 81 1.8 8 ± 44 1.05 8 ± 44 1.05 82 ± 47 257 259 6 $2 \leq 5$ 12 81 1.8 82 ± 47 247 ± 60 $904 \leq 8$ 3 2 ± 47 260 3^{0} 10 81 1.2 551 $914 \leq 8$ 3 247 ± 60 37 3^{0} 10 81 1.2 551 $914 \leq 8$ 3 247 ± 60 924 35 247 ± 60 37 37 314 256 304 916 $912 \leq 87$ 914 37 314 256 324 46 35 247 ± 60 912 247 ± 60 915 914 912 247 ± 60 912 247 ± 60 915 247 ± 60 915 247 ± 60 915 914 916 915 916 912 912 912 912 912 912 912 <		0.0 2		8/			1 4 4	1.	16			* <i>*</i>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	۴. ۲	كر. يزيز	17	81		1.8	141	12	1		ー	ה וי	60
+7.5 8.2 8.1 1.05 4.80 904 5.8 1 8.1 1.2 5.51 112 8.8 1.2 5.51 112 8.8 1.2 3.3 2.47 2.60 35 1.0 81 1.2 5.51 112 88 13 3.247 2.60 35 1.2 81 1.2 5.51 116 81 3.5 2.46 3.6 3.47 2.60 3.47 2.60 3.245 3.247 2.60 3.247 2.247 2.247 2.2	(1 F)	て	4	81		1.3	8. 2 4 1 v. 1		4 L		ょ	i _	60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- + 7. 5	* *	<i>`</i> ~		1.05	4.80	104				47 2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	10	<u> </u>		۲. ۲	13.12	4				47	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- + -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		X×		1	-	90	+		Τ	4.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ا » ^۲ ک		18					47		1		4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11-	+0	t.	×		1 .	3 04		94		1		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.44	+ 1	81		0. 6. 1	2.99		94		۲	1	Ļ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+ - +	۲	27		0.15	3.45	m	95		i2	ト	12
$\frac{5}{1} = \frac{5}{5} = \frac{7}{12} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{12} = 1$		47.5	<u>۲</u> ۱	7 %		-	<u>t, 18</u>	4) 21 21	9 L			_	
$\frac{1}{5}$		1	^	24			4	<u>, , , , , , , , , , , , , , , , , , , </u>	x a			2	
	-1		1 2	+ -×		-,			1 2 1				\downarrow

				PART	ШĻ	SAMPLING DATA SHEET	SHEET			7/7	
RUN NUMBER Date Plant Base	#	SCHEWA	FIC OF STA	SCHEMATIC OF STACK CROSS SECTION	ECTION	EQUATIONS $^{\circ}R = ^{\circ}F + 460$ $H = \left[\frac{5130.1}{2} \right]$	Co 2	Ts. Vp	AMB STA HEA PRO	AMBIENT TEMI- STATION PRESS HEATER BOX TEMP PROBE HEATER SETTING	oF in IIg oF
SAMPLE BOX NUMBER METER BOX NUMBER Qw/Qm Cu	UMBER MBER								PRO NOZ Cp	PROBE LENGT 1 NO22LE AREA (A) Cp DRY GAS FRACTION (Fd)	u l
	SAMPLING (min) E.E.S	static HRESSURE (in H20)	STACK TEMP STACK TEMP SCI SCI COR COR COR COR		velocity HEAD (Vp) U. ÷ ÷ J. 29 J. 29	онгесе DIFF. PHESS. (H) (- 34 (- 34 (- 34) (- 34)(SAMPLE SAMPLE VOLUME (auft) 9444.05 9444.05 9444.05 9444.05	GAS METER IN AVG IN AVG (0F) (0F) 35 97 1 1	ETER TEMP AVG OUT (Tm) (oF) (OR) (OF) (ST) ST ST ST ST ST ST ST ST ST ST ST ST ST	SAMPLE BCX TEMP (OF) 243 254 243 26/ 2443 26/	

AIR POLLU	TION PARTICU	LATE AN	LYTICA	L DATA		
BASE DA				RUN NUMBER		
HILL AFIZ	24 Aug 90			<i>#</i> 3	······································	
BUILDING NUMBER	Ŭ			st Facilit	Va I	
1.	PARTIC	ULATES	()/4	, ruciii	y len l	
ITEM	FINAL W		INIT	TIAL WEIGHT	WEIGHT PARTICLES	
FILTER NUMBER	0.39	74		2576	0,1098	
ACETONE WASHINGS (Probe, Front Half Filter)	105.15	509	j 0 5	. 0507	0.0989	
BACK HALF (Is needed) not included in total weight	1				0, 0233	
	fotul We	ight of Parti	culates Coll	ected	0.2086 am	
11.	WAT	ER				
ITEM	FINAL W (gm)		INIT	TAL WEIGHT	WEIGHT WATER (gm)	
IMPINGER 1 (H20)	169	ml	۶.	C.C. ml	- 31	
IMPINGER 2 (H20)	228	ml	<u>ک</u>	00 m)	28	
IMPINGER 3 (Dry)	/	<u> m </u>		0	1	
IMPINGER 4 (Silica Gel)	220	220g		titi g	20	
	Toml ₩e	ight of Water	Collected		18 em	
m	GASES	(Dry)				
ITEM ANALYSIS	ANALYSIS 2	ANAL	YSIS 3	ANALYSIS	AVERAGE	
vol - ۲ Co2						
VOL ~ O2						
VOL 5 CO						
VOL . N2						
Vol	% N ₂ = (100% • % (% CO)			

AMD FORM 651 REPLACES OFHL 20, MAY 78, WHICH IS OBSOLETE.

	PREL	IMINARY SURVEY DATA S (Stack Geometry)	HEET NO. 1
BASE Hill AFB	PĹ	Bend Blust F	acility Bldg 1701
DATE 29 Aug 90 SOURCE TYPE AND MA)	APLING TEAM <i>AFOEHL</i>	Acility Blog 1701 IEQA
SOURCE TYPE AND MA	VE	t Bld's 1751 De stack diameter	
SOURCE NUMBER	, ins	IDE STACK DIAMETER = 31, 5'' W= 45.75 TYPE FUE	$h_{e} = 37.3$ Inches
RELATED CAPACITY		TYPE FUE	L IJ/A
DISTANCE FROM OUTSI	DE OF NIPPLE TO INSID	E DIAMETER	Inches
NUMBER OF TRAVERSE	ES NU	MEER OF POINTS TRAVERSE	
	LOCA	TION OF SAMPLING POINTS ALO	NG TRAVERSE
POINT	PERCENT OF DIAMETER	DISTANCE FROM INSIDE WALL (Inches)	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)
1	1/10	3.15	6.15
<u> </u>	3/10	9.45	12.45
3	5/10	15.75	18.75
4	7/10	22.15	25.05
<u> </u>		28.35	31, 35

PRELIMINARY SURVEY DATA SHEET NO. 2 (Velocity and Temperature Traverse)						
BASE Hill AFB	<u></u>	DATE 29 Aug 90				
BOILER NOMBER	Blast Facility	Bid. 170 (
BASE Hill AFB BOULER-MOMBER INSIDE STACK DIAMETER L= \$1.5" W= STATION PRESSURE 3() STACK STATIC PRESSURE	45.75" Dx = 37.	s Aren = 10.6 ft^{+}	Inches			
30	17		In Hg			
-,	75 41		In H20			
JEUR LING LEAR						
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	× VVp	STACK TEMPERATURE (⁰ F)			
	1.0	12	70			
)	1, 2	.3				
<u>(()</u>	11	3				
÷1	1.6	7				
5	1.5	<i>C</i>				
	FIS (5	ACFM = 38	1			
	Fle FIM = 1.	3-1				
	Fre Eger =	1.34				
1,2212	Pia = 0.19	<u> </u>				
			-			
	AVERAGE					

OEHL FORM 16

----- ---

.

Appendix F Acetone & Distilled Water Blank Results and Particulate Emissions Calculations

BLANK ANALYTICAL DATA FORM

Plant H, 11 AFB, UT.			
Sample location <u>Rail Shup bldg 1701 -</u>	Media Alus	t Busty	
Relative humidity	- <u> </u>		
Liquid level marked and container sealed			
Density of acetone $(\rho_a) = 0,796$			g/ml
Blank volume (V _a)		450	ml
Date and time of wt 75(P40 1600	Gross wt	97142,1	mg
Date and time of wt 10 Sep 90 0 800	Gross wt	97141, 9	mg
Average	gross wt	97142.0	mg
	Tare wt	97140.5	mg
Weight of bl	ank (m _{ab})	1.5	mg

$$C_a = \frac{m_{ab}}{V_a \rho_a} = \frac{(1.5)}{(450)(0.786)} = 0.0042$$
 mg/g

Note: In no case should a blank residue greater than 0.01 mg/g (or 0.001% of the blank weight) be subtracted from the sample weight.

	Filter number				ers	Filte
mg	Gross wt	wt	of	time	and	Date
mg	Gross wt	wt	of	time	and	Date
mg	Average gross wt					
mg	Tare wt					
mg	Difference wt					

<u>Note</u>: Average difference must be less than ± 5 mg or 2% of total sample weight whichever is greater.

Remarks _____

Signature of analyst Robert & U'Bruin

Signature of reviewer

Quality Assurance Handbook M5-5.4

BLANK ANALYTICAL DATA FORM

Plant <u>Hill AFB, UT</u>			
Sample location Media Alast Bouth at R	ail ship bling	1701	
Relative humidity			·····
Liquid level marked and container seal	ed		
Density of $\frac{1}{acetone} (\rho_a)$		1.0	g/ml
Blank volume (V _a)		500	ml
Date and time of wt 11 Str 91 1600	Gross wt	987337	mg
Date and time of wt 13 Stp 96 0744	Gross wt	98733.7	mg
Avera	ge gross wt	917337	mg
	Tare wt	987325	mg
Weight of 2	blank (m _{ab})	1,2	mg

$$C_a = \frac{m_{ab}}{V_a \rho_a} = \frac{(1,2)}{(500)(1,0)} = \frac{0,0024}{0,0024} mg/g$$

<u>Note</u>: In no case should a blank residue greater than 0.01 mg/g (or 0.001% of the blank weight) be subtracted from the sample weight.

	Filter number			ers	Filte
m	Gross wt	of wt	time	and	Date
m	Gross wt	of wt	time	and	Date
m	Average gross wt				
m	Tare wt				
m	Difference wt				

Note: Average difference must be less than ±5 mg or 2% of total sample weight whichever is greater.

Remarks

Signature of analyst <u>Robert & O'Brusy</u>

Signature of reviewer _____

Quality Assurance Handbook M5-5.4

TROM THE	12 F		
RUN MUNEER		* VOL MTR STD = 79,214	
θiΞ		STR PPES ASS = 30.12	
	2 11.	VOL HOH GAS = 0.06	
METER BOY YA .9930	2 111.	X MOISTURE = 0.00 NOL DRY GAS = 0.000	
DELTA HP 5.8500	F illi	X NITROGEN = 80.60 Mol WT DRY = 20.75	
985 PREES 1 32.1320		MOL WI WET = 20.77 VELOCITY FPS = 60.51	
METER VOL 7 79.8630	P N	STACK AREA = 10.00 Stack ACFM = 36/304.	
MTR TEMP FC 31,0000	5	* STACK DSCFM = 36 385. % isokinetic = 100.63	
N OTHER GAG Removed before			
DRM GAS NETER D 0.0000		END OF FIELD DOTA	
9TATIC 404 im 2 9168	2 41-		
97038 TEMP. 70.0000			
NL. BRTER P		unas. Luisaa	
1.3000		XPOM *MASS	
		PUN NUMBER	
227 W _ 2 2 2			
697 t = 2,5			₹EN
10년 1월 1919년 - 1월 11		MOL MTR STE ?	
		79.214	RUN
10 ABR=8.1		STRCK DSCFM ?	
		36,305,80	RUH
		FROMT 1/2 MC ?	=:··
1. 1827 8.8888		221.40 BACK 172 MG 2	P():
N C 193EN 1 19,4686		6.00	Bilit;
2,-000 	29. 29.	F GR/BSCF = 0.04	
¥66 gT 37°€P?		F MG/MMM = 98,73 F LB/HF = 13,45	
ុំ សិត្រិតំ	# 11 A	F KG/HR = 6,10	
橋約20年29,73 約40年2月2月277			
SGRT FSTE I			
고 있었다. 가 가 가 있었다. 한편 같은 것 같은 한편 같은 것	Доци.		
TINE MIN	- : -		
62.5000 NOIZLE IIP 7	2004 2004		
.2520 STE DIG INCH I	골 ⁴ 가.		
9929 30 FT 1	₽" <u></u>		
12,0000	File		

40 8 2	PMETU Fo		
RUN NUMBER Two		* VOL MTP ST5 = 77.020	
METER BOX Y?	PUN	STK FRES ABS = 32.12 VOL HOH GAS = 0.23	
,9930 Delta Hi	-	% MOISTURE = 0,29 MOL DRY GRS = 0,997	
5,9900 BAR PRESS C		% NITROGEN = 80.60 Mol NT DPY = 29.70	
30.1960 METER VOL 2		MOL WT WET = 28.74 VELOCITY FPS = 60.97	
79.9450 MTR TEMP F?	-	STACK AREA = 10.00 Stack Acem = 36.504.	
97.0000 % OTHER GAS REMOVED BEFORE DRY GRS METER ?	₽ <u></u> jik.	* STACK BSCFM = 35.842. % ISOKINETIC = 99.33	
0.0000 STATIC HOH IN ?	₽ijĶ	END OF FIELD DATE	
9100 Stack temp.			
81.0000 ML. WATER 2			
4,9000		NPOM "MA	XESF101
SRT 1 = 3.5		RUN NUMBER Two	Ritk
IMP. % HOH = 0.3		VOL MTR ETD ?	
: ROM=0,3		77.02 Stack DSCFM ?	₽98
3 0022		35/842.00 FRONT 1/2 MG 7 299.10	Piji.
- 2022 - 9999.9 	REN	627.00 BACK 1/2 MG 1 0.00	RUN RUN
19,4626 19,4626 19,4626			
0.0000 Mol wit othern	P1/3,	F GR/DSCF = 0,96 F MG/MMM = 137.14	
6,0026	2000	F LB/HF = 18.41 F KG/HF = 8.35	
M⊌⊴ =20,70 MW w£T=10,74			
BORT FSTS O			
24,9944 718日 約10 つ			
62,5000 NOZZLE DIA ?	2.2		
2520. STY DIA INJU P	<u>유민원</u>		
AREA 30 FT A	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		
10,0000	Plys.		

XRON ** RUK NUMBER THREE METER BOX VI DELTA H? 5.6300 EAR PRESS 2 23.9800 METER VOL 2 74.8400 MTR TEMP F? 88.0600 X OTHER GPS REMOVED BEFORE DRY GAS METER 2 0.0600 STATIC HOH IN ? 9100 STACK TEMF. 81.0000 ML, WATER 2 18.9000	ETH S" RU: RU: RU: RU: RU: RU: RU: RU: RU: RU:	* VOL MIR STI = 72.739 STK PRES ABS = 29.91 VOL HOH GAS = 0.85 MOL JEY GAS = 0.959 MOL JEY GAS = 0.959 MOL WI DRY = 29.78 MOL WI DRY = 29.78 MOL WI WET = 28.65 VELOCITY FPS = 56.68 STACK APEA = 10.00 STACK APEA = 10.00 STACK DSCFM = 36.406. * STACK DSCFM = 36.406. * STACK DSCFM = 75.114. % ISOKINETIC = 95.75	
		XPOM *MA	ISFLO.
S47 N = 3.€		RUN NUMBER 74REE	
189, % 90 8 = 1.2		: :. <u>-</u>	RUN
1 - 30e = 112		VOL MTR STD ? 72.738	
1 (62) 2.9999	₽94.	STACK DSCFM ? 35/114.00 FRONT 1/2 MG ?	Pik
1 00746ENT 19.4000	₽° th,	208.60 BRCK 1/2 Mg 2	RIF
% 00 0 0,0000	₽ <u>(</u> *).	0.60	RUP
000 NT STARTS 0000-0	DUX)	F GR/DSCF = 0.04 F MG/MMM = 101.27	
MWH =28,78 MW WET=38,65		F LB/HR = 13.32 F KG/HR = 6.04	
SQRT PSTE 0 24,7367	011		
2497051 TIME MIN 7 62,5000	유년 자 우년자		
NGCCLE 919 0 .2520	रूप हुपुरा		
STK DIE INCH ?	ू इन्ह		
9REA 30 FT 0 10.0002	₽ ₀ %		

Distribution List

	Copies
HQ AFSC/SGPB Andrews AFB DC 20334-5000	1
HQ USAF/SGPA Bolling AFB DC 20332-6188	1
HQ AFLC/SGBE Wright-Patterson AFB OH 45433-5001	2
7100 CSW Med Cen/SGB APO New York 09220-5300	1
Det 1, AFOEHL APO San Francisco 96274-5000	1
USAFSAM/TSK Brooks AFB TX 78235-5301	1
USAFSAM/ED/EDH/EDZ Brooks AFB TX 78235-5301	1 ea
Defense Technical Information Center (DTIC) Cameron Station Alexandria VA 22304-6145	2
HSD/XA Brooks AFB TX 78235-5000	1
HQ USAF/LEEV Bolling AFB DC 20330-5000	1
HQ AFESC/RDV Tyndall AFB FL 32403-6001	1
USAF Hospital Hill/SGB Hill AFB UT 84056-5300	1
HQ Ogden ALC/EM Hill AFB UT 84056-5000	4

* U. S. GOVERNMENT PRINTING OFFICE: 1990--561-051/20174