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I. INTRODUCTION

Polyurethanes [such as Uralane 5753, based on methylene diisocyanate

and polybutadiene, and PRC 1535, based on toluene diisocyanate and poly

(tetramethylene oxide)] form phase-separated structures because of the

hydrogen-bonding capability of the hard segments, which are rich in N-H and

C=O groups. Dielectric relaxations have been studied '
2 in block

copolymers which are also microphase-separated. If the constituent phases

possess significantly different electrical parameters, then trapping of

charge carriers at the interfacial boundaries occurs and leads to low-

frequency dielectric dispersion phenomenon. This phenomenon in layered

dielectrics was first investigated by Maxwell, 3 was developed further by

Wagner 4 and by Sillars,5 and is referred to as the "MWS effect."

In block copolymers, the loss peaks from this MWS effect occur in the

10-2 to 10-4 Hz range when the temperature is between 30 and 601C in

styrene-butadiene-styrene tri-block copolymers and in butane diol

terephthalate - poly(tetramethylene oxide terephthalate) copolymer. 1,2

Highe- frequency relaxations exist due to microbrownian motion in the soft

phase, with loss peaks typically between 2000 and 300 0 K at I kHz. Since

the dipolar polarizability and relaxation time of the soft phase will be

affected by the degree of physical crosslinking provided by the hard phase,

the higher-frequency relaxation (1 kHz) is an indirect monitor of the

existence of crystal/amorphous interfaces. It is known that molecular

disorder at these interfaces is a prominent source of electronic traps in

the material.6- 8  Therefore, the kilohertz permittivity is expected to be a

measure of the electronic trapping capability.

The efficiency of charge-trapping is obviously a key parameter for

dielectrics. Since structural disorder, the basis for trap formation,

includes crosslinks, free-volume holes, impurities, partial charges on

chemical groups, and the disorder at the crystal/amorphous interface, there

are many ways to trap electrons. However, two-dimensional surfaces arising
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from pLhse separation are expected to provide a key feature of electron

trapping, because these phase-boundary networks help prevent an uninter-

rupted electron path parallel to the applied field, thereby reducing the

chances for an electron to acquire enough energy for impact ionization. In

addition to limiting the high-energy fraction of electrons, the strong

trapping limits the overall current, i.e., the dc conductivity. The capac-

ity of the traps to bind injected charge near electrode protrusions is a

critical feature of tne field-limited space charge (FLSC) theory. 9 - 13

These are the reasons for studying the microstructure-dependent interrela-

tion of the permittivity, dc conductivity, and the dielectric breakdown

st rength.

Phase-separated polymer microstructures are hypothesized to force

breakdown paths to assume more tortuous routes around trap-rich, two-

dimensional interphase boundaries, compared to polymers in which there are

only "point defects" (free volume holes and crosslinks). We expect that

higher crystallinity and more finely divided domains lead to lower dc con-

ductivity and to higher dielectric breakdown strength. The permittivity

could increase or decrease because of multipole interactions between the

microdomains.14,15

Phase-separated polyurethanes offer an opportunity to test this

hypothesis. For example, Fourier transform infrared (FTIR) spectroscopy

can be applied to the microscopic analysis of polymer dielectrics. 16  Spec-

tra show that both bonded and free N-H stretching vibrations exist in

Uralane 5753, indicative of the existence of both paracrystalline and amor-

phous regions. 17 - 19 Consistent with this hypothesis, we show below that

the dc conductivity in Uralane 5753 can easily vary by a factor of 2 when

thermal annealing is used to alter the microstructure. Trap-rich phase

boundaries in the polyurethane PRC 1535 are changed by thermal aging, and

the nominal dielectric breakdown is reduced. 19 A theory of phase growth

was devised in order to explain observed infrared spectral variations.19

It is desired to make permittivity and conductivity measurements that

reflect the degree of microphase separation and that correlate with the

6



FTIR results for the paracrystallinity. This report also shows the rela-

tion of the nominal dielectric breakdown strength to the other electrical

parameters. This approach assumes that the micros'ructure can be varied by

thermal aging at 120°C for up to 4.0 hr without the appearance of other

effects that cause variations in the electrical properties under test.

There are three possible competing effects during aging: (1) water desorp-

tion, (2) depolymerization, and (3) additional cure. To eliminate the

first possibility, water evolution analysis was performed. The second and

third possibilities were evaluated by mechanical tensile tests which would

show effects of any gross degradation.
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II. EXPERIMENTAL METHOD

Freshly cured, 60-mil-thick (nominal) slabs of Uralane 5753 were pre-

pared from its componencs, which are based on polybutadiene rnd methylene

diisocyanate. The material batches were GLL-017 (part A) and MM-056 (part

B). The slabs were allowed to post-cure for 2 weeks before commencing

thermal aging studies. The slabs were cured, stored, and tested under

ambient laboratory conditions of temperature and humidity. The aging was

done at 120'C in air for 0.5 or 4.0 hr. All tests were performed at room

temperature.

The water content of the Uralane samples was monitored with a DuPont

water evolution analyzer. Mechanical properties were determined on 2-in.-

diameter discs of Uralane by using an Instron in the compression mode

(1 in./ min crosshead speed and a 200-lb load cell). FTIR difference

spectra of the thermally aged specimens relative to their original state

were obtained. Transmission spectra were obtained from small slices

microtomed off the aged material.

Dc conductivity measurements were performed on 3.25-in.-diameter disks

of the 60-mil Uralane. Disk-shaped brass electrodes and a guard ring were

used, the smaller electrode being 2 in. in diameter. The applied voltage

was between 0 and 500 V, corresponding to an electric field of from 0 to

3.3 kV/cm. The current was registered with a Keithly 610 C electrometer

and was in the range of 1 to 10 pA (0.32 to 3.2 pA/cm 2 ). The current rose

monotonically, stabilized, and was record-d about 30 sec after each

increase in voltage. Each sample was remounted and measured three times in

order to verify that there were no nonreproducible contact problems.

The real part of the permittivity was measured from 50 Hz to 10 kHz by

a noncontacting electrode technique previously described. 2 0 - 22 The two

embedding fluids were air and vegetable oil. A General Radio 1615 A ca-

pacitance bridge was used in conjunction with a sample cell conforming to

ASTM D-150.
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The nominal dielectric breakdown strength, Fb, was measured according

to ASTM D-149. The voltage is increased at 600 V/sec to breakdown. Flat

sheets were tested which were about 60 mils thick and which extcnled beyond

the cylindrical brass electrodes of 1-in. diameter. These readings are

tyoically at least an order of magnitude lower than the intrinsic material

property (Fb(°)) made with recessed electrodes,23-25 encapsulatea elec-

trodes,26 or injected electrodes.27,28 Th., value is reduced because pre-

breakdown discharges occur in the Fluorinert embedding fluid near the

intersection of the electrode edges and the sample. We plan to apply one

Df these methods in the future.

These experiments were performed in order to test the working hypoth-

esis. As polymer microstructure becomes more finely divided, it can store

more charge through interfacial r olarization. The real nart of the permit-

tivity can increase or decrease, due to multipole interactions, as noted

above.
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ill. EXM-ERIMENTAL hESULTS

The moisture evolution analyzer was calibrated with sodium tungstate

,theoretical water content 10.92%). Sixty-minute heating times at 18U°C

were employed on all moisture analyzer tests. The result for sodium

tungstate was 10.72%. The results for the unaged, 0.5-hr aged, and 4.0-hr

aged Uralane were 0.040%, 0.036%, and 0.012%, respectively. The mechanical

test results are shown in Fig. 1. There is no significant difference

between the mechanical results.

The infrared survey spectrum shows a bonued N-H stretching resonance

at 3327 cm- 1 and shoulders corresponding to free N-fl stretching at 3370 and

3 cm I. The initial difference spectrum at time zero (Fig. 2a) is flat,

p.:ected. After 0.5 hr of heating at 120"C in air. there is a pro-

nou,:e.:d decrease in absorbance at 3309 cm- 1 (Fig 2b), corresponding to a

decrucLed volume or perfection of paracrystalline regions. (The difference

between 33J9 arid 3327 cm-  is inconsequential in such a broad bard, whose

wilth refiects a wide range of intermolecular environments.) After 4.0 hr

of' aging (Fig. 2c), the 3309 cm- 1 band has returned to zero absorbance, but

there are sma i ncreases at 3354 and 3424 cm- . Evidently there are more

hard -;egments "dissolved" in the soft phase, with N-H vibrations at the

"'ree" (nornYdrogen bornded) resonant frequencies. Since we expect the

tot.,.l number ot hrd segments to be conserved, we must consistently infe"

that the average hard-domain absorptivity (per segment) must not be con-

served. Our irtepretation is that, between 0.5 and 4.0 hr, the para-

cr'ystal:s start to reordr (increasing their 3309 cm- 1 absorbance) but with-

out some of the segments that were orignally pr'esent in the paracrystals.

This latter change tends to decrease the 3309 cm- 1 absorbance. The

resulting change nE ir 3309 cm - 1 is zero. The increases near 3424 and

3354 cm-1 come from the hard segments that are "dissolved" in the soft

phase as a result of the "shaking out" process which perfected the

pa-acrysta is.
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Fig. 2. FTIR difference spectra for Uralane
5753 aged at 1200C in air for (a)
0.0 hr, (b) 0.5 hr, and (c) 4.0 hr
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Figure 3a shows the raw data points for three successive current-

voltage measurements on the as-cast Uralane. It is noted that the currents

range from I to 10 pA, the voltages from 0 to 500 V, the current density

2from 0.32 to 3.2 pA/cm , and the fields from 0 to 3.3 kV/cm. The solid

curve in Fig. 3a is a least-squares curve fit to I = aV + bV2 . The curve

is virtually linear (ohmic response). The conductivity is a(V) =

(L/A)*(dl/dV), where L is the sample thickness and A is the electrode

area. There is a modest decrease (Fig. 3b) in the conductivity over the 0

to 500 V range. Apparently some of the trapping centers are more effective

at the higher fields in this measurement. The zero-field conductivity is

about 0.15 fempto mho/cm, in essential agreement with the manufacturer's

specification of 0.11 fempto mho/cm.

Figure 4a shows the raw data points for the 0.5-hr, 120'C aged

Uralane. The overall currents are higher, and now there is an appreciable

nonohmic response. At zero voltage the conductivity has only increased

from 0.147 to 0.165 fempto mho/cm. Over the entire 0 to 500 V range, how-

ever, the conductivity almost doubles (Fig. 4b), in sharp contrast to Fig.

5b. This behavior is consistent with the working hypothesis that there are

fewer paracrystalline regions, fewer traps, and a less inhibited current

flow in this thermally aged sample.

Figures 5a and 5b (at 4.0 hr) show that the current and conductivity

have subsided from their values in Figs. 4a and 4b (at 0.5 hr), although

both quantities are still uniformly higher than in the unaged sample. This

is consistent with the FTIR results: The paracrystalline regions have been

largely restored, but with some of the hard segments now "dissolved" in the

soft phase. If the absorptivity (per segment) is assumed to have gone up

in order to achieve the flat response at 3309 cm-I, then the paracrystals

would evidently be more perfect. So while there are more paracrystals,

interfaces, and electron traps in the 4.0-hr aged sample compared to the

0.5-hr aged one, the paracrystals are more perfect, and there are fewer

traps in the 4.0-hr aged sample compared to the initial state.

14
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Figure 6 shows the frequency-dependent permittivity (real part) for

the initial material (top), the 0.5-hr aged sample (bottom), and the 4.0-hr

aged sample (middle). The successive values at 1.0 kHz are 3.48, 3.09 (0.5

hr), and 3.27 (4.0 hr). The dielectric constant of the oil used in this

two-fluid procedure was observed to be a flat function of frequency, with a

value, 3.08, conforming to the value obtained in other experiments and sup-

porting our confidence in the accuracy of these measurements. The linear

response in the log-log plot was analyzed by least-squares curve fitting

(solid lines in Fig. 6). The equation log (real part of permittivity) =

a - b * log(frequency in kilohertz) has the following sets of parameters:

Time a b

0.0 hr 1.251 0.0279

0.5 1.131 0.0227

4.0 1.185 0.0272

This relaxation has been attributed to the microbrownian motion of the

polybutadiene segments in a styrene-polybutadiene-styrene copolymer. 2  In

Fig. 6 there is a distribution of relaxation times, because an attempt to

fit the data with a single Debye relaxation was not successful.

Figures 7 and 8 show crossplots of the dc conductivity and the nominal

dielectric breakdown strength, both plotted against the real part of the

permittivity at 1.0 kHz. The dc conductivity is a decreasing function of

the real part of the permittivity (Fig. 7), consistent with the working

hypothesis. The more finely divided the dielectric, the more charge can be

stored by interfacial polarization, affecting the permittivity via multi-

pole interactions between the domains. Along with this, a more finely

divided dielectric has more interfacial area with electron traps which

decrease the conductivity. In Fig. 8, the average of six dielectric break-

down measurements is plotted along with the standard deviation. There is

not much variation in the Fb value, compared with the measurement's stand-

ard deviation, but there is a small increase in Fb with increasing permit-

18
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tivity (Fig. 8), consistent with our basic hypothesis. We plan to imple-

ment the procedure for Fb (o) and expect to observe a stronger variation of
Fb(o) with the permittivity.

0.28
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Fig. 8. Nominal dielectric breakdown strength of Uralane
5753 graphed against the real part of its
permittivity at 1.0 kHz
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IV. SUMMARY AND CONCLUSION

Structural irregularities in polymers lead to localized electron

states (traps) and ultralow electron mobilities. Under high fields near

electrode protrusions these traps can be ionized, and the mobility dra-

matically increases. The electric field near the protrusions is thereby

limited, and space charge is injected into the polymer in order to satisfy

the Laplace equation.9- 13 Electron-phonon scattering limits the energy

that the injected electrons can pick up. Nevertheless, at around 60% of

the intrinsic transition (ionization) field (10 MV/cm), more than 1% of the

injected electrons acquire energies above 1 eV, and electron impact

ionization leads to tree formation and dielectric failure.10 The effect of

hot (above 2.5 eV) electrons on organic dielectrics has been demon-

strated. 29

The existence of phase separation and polymer microstructure with

varying degrees of irregularity in some block copolymers is known to cause

characteristic effects in dielectric relaxation spectra. We hypothesized

that polyurethanes with phase-separated domains would also exhibit

characteristic effects in the conductivity and permittivity. In addition,

substantial effects of microstructure on Fb or Fb(o) were anticipated. We

tested this hypothesis on the polyurethane, Uralane 5753. Thermal aging

(0.0, 0.5, and 4.0 hr at 1201C) was used to vary the microstructure, as

verified by FTIR. The changes were small, as verified by mechanical-

property tests. The water content of the samples was less than or equal to

0.040% in all cases.

The working hypothesis found support in the correlation of the dc

conductivity with the real part of the permittivity (Fig. 7). More finely

subdivided (phase separated) polymers accumulate more charge due to the MWS

effect. (The multipole interaction allows the permittivity to increase or

decrease.) Traps at crystal/amorphous interfaces also reduce the conduc-

tivity in more highly phase-separated material. The correlation between Fb

21



and the real part of the permittivity was much less satisfying (Fig. 8),

because Fb is not as good a measure of dielectric integrity as Fb(o)

However, Fb did show a slight increase as the real part of the permittivity

increased.

The conclusion is that small changes in domain characteristics lead to

significant electrical effects, even in the absence of perceptible mechani-

cal-property changes. More phase-separated materials draw less operating

current and are therefore expected to be subjected to fewer energetic

electrons which can potentially initiate failure during electrical aging.
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LABORATORY OPERATIONF

The Aerospace Corporation functions as an "architect-engineer" for national security
projects, specializing in advanced military space systems. Providing research support, the
corporation's Laboratory Operations conducts experimental and theoretical investigations that
focus on the applicat' ii of scientific and technical advances to such systems. Vital to the success
of these investigations is the technical staff's ,vide-ranging expertise and its ability to stay current
witi new developments. This expertise is enhanced by a research program aimed at dealing with
the many problems associated with rapidly evolving space systems. Contributing their capabilities
to the research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reertry fluid mechanics, heat transfer
and flight dynamics; chemical and electric propulsion, propellant chemistry, chemical
dynamics, environmental chemistry, trace detection; spacecraft structural mechanics,
contamination, thermal and structural control; high temperature thermomechanics, [as
kinetics and radiation; cw and pulsed chemical and excimer laser development,
including chemical kinetics, spectroscopy, optical resonators, beam control, atmos-
pheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmospheric
optics, light scattering, state-specific chemical reactions and radiati. . signatures of
missile plumes, sensor out-of-field-of-view rejection, applied laser spectroscopy, laser
chemistry, laser optoelectronics, solar cell physics, battery electrochemistry, space
vacuum and radiation effects on materials, lubrir-ation and surface phenomena,
thermionic emission, photosensitive materials and detectors, atomic frequency stand-
ards, and environmental chemistry.

Electronics Research Laboratory: Microelectronics, solid-state device physics,
compound semiconductors, radiation hardening; electro-optics, quantum electronics,
solid-state lasers, optical propagation and communications; microwave semiconductor
devices, microwave/millimeter wave measurements, diagnostics and radiometry, micro-
wave/millimeter wave thermionic devices; atomic time and frequency standards;
antennas, rf systems, electromagnetic propagation phenomena, space communication
systems.

Materials Sciences Laboratory: Development of new materials: metals, alloys,
ceramics, polymers and their composites, and new forms of carbon; nondestructive
evaluation, component failure analysis and reliability; fracture mechanics and stress
corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures
as well as in space and enemy-induced environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray physics,
wave-particle interactions, magnetospheric plasma waves; atmospheric and ionospheric
physics, density and'composition of the upper atmosphere, remote sensing using
atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis;
effects of solar activity, magnetic storms and nuclear explosions on the earth's
atmosphere, ionosphere and magnetosphere; effects of electromagnetic Pnd particulate
radiations on spac systems; space instrumentation.


