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Abstract

Considerable attention has been paid to the development of nonparametric conditions

on P[XYj = zjj] that characterize a dL = 1 (locally independent, monotone, unidimen-

sional) latent variable representation for the binary items X = (X,...,Xj). Holland

and Rosenbaum (Holland 1981; Rosenbaum 1984; Holland and Rosenbaum 1986) focus on

the conditional association (CA) of subtest scores under strict unidimensionality, and Stout

(1987, 1990) treats the larger class of essentially unidimensional (dE = 1) models, focusing
on consistent estimation of 0 using proportion correct Xj in long tests. In the present

paper we investigate the intersection of these two approaches, using Stout's principle that

any reasonable set of items , can be embedded in an infinitely long sequence of items X

of the same character.

We introduce three concepts which are helpful in the search for such a characterization.

First, we consider only representations which are minimally useful in the sense that (1) the

latent trait 0 can be consistently estimated from the item responses; (2) 0 is monotonically

related to the test's "true score;" and (3) E is not constant in the examinee population.

Second, we argue that the condition Cov (Xi, Xj XJ) < 0 is a natural one to add to CA and
dE = 1 to ensure that the items are locally independent with respect to E. Third, we show

that the inonotonicity of the empirical ICC's P[Xj = lY[j - X,/J] is intimately related to

ICC monotonicity: this "manifest monotonicity" must hold if dL = 1 holds; and conversely

it can be used to verify monotonicity of the usual ICC's Pj(O) when dE = 1 holds.

We obtain a nearly complete nonparametric characterization of useful dL = 1 represen-

tations in terms of CA, dE = 1, manifest monotonicity, and the above negative covariance

condition. The negative covariance condition may not be strictly necessary for all dL = 1

representations, but we show With a small simulation study that it probably does hold for

dL = 1 models often considered in practice: the Rasch, 2PL and 3PL models.

Key Words: strict unidimensionality, essential unidimensionality, useful models, condi-

tional association, negative association, empirical item characteristic curves, monotonicity,

simulation.
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1 Introduction

Item response theory, IRT, is a modern attempt to model-and statistically analyze-

examinee responses on standardized achievement or aptitude tests. IRT modeling and anal-

ysis, which occurs at the level of individual test questions-items-is greatly facilitated by

the assumption of unidimensionality, i.e. that the latent trait 'driving' the item responses

is a one-dimensional, typically real-valued, random variable. Birnbaum (1968) and Lord

(1980) provide complete accounts of traditional unidimensional IRT. In this paper we are

concerned with a general characterization of (the distributions of) item response data for

which traditional unidimensional IRT representations exist.

For our purposes, a test is simply a vector of J items, or equivalently J binary (0/1) item

response val bles,'

r___ =(XI, X2,...XJ),

representing the correctness of responses of a randomly-chosen examinee to the J test items.

Let . represent an arbitrary fixed outcome of Xj, i.e. a response pattern; an IRT model

makes assumptions on the conditional distribution P[Xj = jj j_ = C which impose restric-

tions on the marginal distribution P[X.,j = jj] through the integral

= x2] = P[X_ j = xjjjO = 0] dF(O_).(1

Here F(j) is the sampling distribution of the latent trait or trait vector E) = (01. Od) in

the examinee population under discussion; thus our point of view is similar to that of Cressie

& Holland (1983).

We can estimate the marginal distribution P[, Xj = j] by examining the response data

from an actual test administration. We will call this the manifest structure of the test.

since it can be identified to arbitrary accuracy by increasing the manifest data: in this case.

by increasing the number of examinees observed. On the other hand neither the marginal

distribution F(O) nor the conditional distribution P[X_. = j = 0] is directly ol-s'rvable to

us, in the sense that neither quantity is fully identifiable without also increasi,.g the number

of items1 . These quantities determine the latent structure of the test.

'It is possible in principle to decide whether the Rasch model holds, without more items, using the special
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The representation in (1) does not itself restrict the distribution of item responses P[_x =

j.j] in any way. Standard IRT practice involves the imposition of additional conditions that

make (1) a restrictive, and hence meaningful, representation. It then becomes a meaningful

and important question to ask whether the model so proposed "fits" the observed response

data.

The traditional IRT assumptions are that local independence holds,

P [X_d = .a 1 I'Ij=l P[Xj = xj1 1_ = _]

j=l Pj(-)x,( 1 - Pj()) 1- , (
and that monotonicity holds,

P,(2) -= P[Xj = Ila= ] coordinatewise nondecreasing in 0, V j (M)

in the sense that if 0(1) < 0(') for all k = 1,2,...,d then Pj(0 (1)) < Pj(0(2) ) . When E is

one-dimensional, Pj(O) will be called an ittm characteristic curve, ICC.

One additional assumption is needed to make (1) restrictive, namely that the dimension-

ality d of Q is much smaller than the test length J (see for example Holland and Rosenbaum,

1986), that is:

d < Y. (D)

(In the development that follows, this is formalized by requiring that d remain fixed as J

grows.) The three assumptions, LI, M, and D form the foundation of item/test modeling in

traditional IRT. Appendix A gives examples to show that if any of these three assumptions

is completely omitted the resulting "model" will fit any distribution of binary data (hence

making it scientifically meaningless). The least d for which the representation (1) holds and
satisfies LI and M (and smoothness of the IRF's) we will denote dL. We will refer to the

case in which dL = 1 as the strictly unidimensional case.

Various special cases of the strict unidimensionality assumptions have been investigated

to see what properties they imply for the manifest distribution P[X a = .j] through (1).

Holland and Rosenbaum (Holland, 1981; Rosenbaum, 1984; Holland and Rosenbaum, 1986)

relationship of this model with log-linear models (c.f. Cressie and Holland, 1983; Tjur, 1982). However this

does not appear to be possible for other models, nor for the general question of unidimensionality prior to

parametric model selection which concerns us here.
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have shown that when the general dL= 1 assumptions hold, the items Xj must be con-

ditionally associated; this shows that dL = 1 is a restrictive and hence meaningful set of

conditions. Cressie and Holland (1983) (se also Tjur, 1982), have characterized the Rasch

model in terms of a suitably restricted log-linear model for P[Xj = .jj]. And de Finetti's

Theorem in classical probability theory may be used to characterize an infinite sequence of

items with identical item response functions by the property that the items themselves must

be exchangeable.

Stout (1987; 1990) capitalizes on the good 0-estimation properties of the proportion cor-

rect score = F Zj X., when J is large and dL = 1 holds, to produce a statistical test of

latent-trait unidimensionality. Stout's statistical test is tailored to his essential unidimen-

sionality condition (dE = 1) which, in contrast to strict unidimensionality, allows there to

be some minor dependencies among items as well as nonmonotonicities of individual ICC's.

Since we will be considering latent variable representations that are somewhat more

general than the traditional dL = 1 representation, it is worthwhile to ask what constitutes

a "useful" unidimensional latent variable representation. In a nonparametric setting we

propose that such a representation should satisfy the following definition. Note that what

we mean by "useful" here relates primarily to connecting an examinee's item responses

with an estimate of or inference about his/her latent trait score. For other purposes, other

definitions might be appropriate.

Definition 1.1 An IRT representation, in which LI may or may not hold, will be called

useful if and only if the following principles are satisfied:

U1 0 can be estimated from the observed values of X1, X2 ,..., Xj. At minimum

this should mean that there are functions tj(xl,.. .,xj) that consistently

estimate 0 in the sense that

tj(Xi,, X j) - 0

as the test length J grows. Moreover, consistent estimation should still be

possible even though any fixed small group of items items (YJ,..., Y0) in X

is dropped from A_.
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U2 Examinees with higher 0 values tend to score higher on the test. A very

weak condition along these lines is simply the requirement that the average

ICC 151(O) be increasing in 0 for each J; in other words

E[XJ[O = 0] is increasing in 0.

U3 0 is useful for categorizing examinees. In particular 0 should be able to

take on at the very least two distinct values, each with positive probability.

These principles are implicit in traditional IRT work, and are easily justified on practical

grounds:

First, 0 has little statistical value as a index o: ability, achievement, aptitude, or other

latent trait, if it cannot be estimated; hence U1. There is no hope that 0 can be estimated

with high precision unless J -- oo (e.g. the survey by Fienberg, 1986), so U1 represents, in

some sense, a minimal estimation condition. The principle that estimation of 0 should not

depend strongly on which particular items are used is central to what we mean by "latent

trait."

Principle U2 reflects the interpretation of 0 as a quantity of the latent trait, and of
the test as an instrument for measuring that quantity. It will be seen below (Theorem 2.2)

that U2 also makes it easier for the representation to satisfy U1. When specific parametric

models are constructed (recently, e.g., Jannarone, 1986; Sympson, 1987), there seems to be

considerable latitude available in violating U2 and still having a representation which satisfies

Ul; but for nonparametric purposes and for the purpose of interpreting 0, U2 is appropriate.

Note that U2 does not require individual ICC's to be monotone; this requirement is only

made of the test characteristic curve.

Principle U3 simply reflects the practical desire to use the test to diagnose, assess or

otherwise categorize examinees and examinee populations. If there is no variation in 0 then

there is no sensible way to use the test in this way. In terms of (1), U3 asserts that the

prior 0 distribution does not concentrate at a single 0 value.

Except for the special cases of the Rasch model and de Finetti's theorem, no other

characterizations of dL = 1 in terms of features of the manifest structure P[-ij = _j] seem
to be known. A general characterization is important for several reasons. First, it allows
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us to better understand the structure, identifiability and meaning of the representation (1)

under dL = 1. For example, a consequence of our work here is a better understanding of

how "far" each of the CA and dE = 1 approaches are from the general dL= 1 assumptions.

Second, it suggests that fit tests of the general dL = 1 representation are possible, without

resorting to specific parametrizations of the ICC's, prior 0 distribution, etc. Hence we could

distinguish between a lack of fit due to latent trait multidimensionality and a lack of fit due

to a poor choice of parametrization.

In this paper we review the nonparametric approaches of Holland/Rosenbaum and Stout.,

and consider some new conditions which bring us closer to a general characterization of strict

unidimensionality. Throughout this paper we embed the finite test XJ in an infinite sequence

of similar items

A__= (XI, X 2,...).

LI and other traditional IRT properties extend in a natural way to the infinite item sequence

X by requiring that they hold, in a consistent fashion, in every finite-length test X taken

from X.

In addition to the CA and dE = 1 assumptions, we argue that it is natural to require

Coy (Xi, XjI-Xj) < 0 to ensure that the items are locally independent with respect to 0. Also,

we show that the monotonicity of the empirical ICC's P[Xj = II"Xj - Xj/J is intimately

related to ICC monotonicity: this "manifest monotonicity" must hold if dL = 1 holds; and

conversely it can be used to verify monotonicity of the usual ICC's Pj(O) when dE = 1 holds.

(The result that dL = 1 implies manifest monotonicity has been discovered independently

by I. Molenaar (priv. comm.) and is based on Grayson's (1988) monotone likelihood ratio

result for proportion correct scores.)

Now consider representations in which expected values of the form E[f(.J)jO = 0]
are continuous, but LI may or may not hold. Within this class of "smooth" latent trait

representations, we can characterize useful dL = 1 as follows (a more formal statement of

the result is given in Section 4).

Characterization of dL = 1. For any infinite sequence of binary items X and latent trait

0, a useful dL = 1 representation (1) holds, if and only if the following conditions hold: CA.



dE = 1, manifest monotonicity, and

Cov(X, ,XjXj,O) < 0, Vi,j <J, V J. (2)

Moreover in many practical settings it appears that the covariance in (2) continues to be

negative if one omits the conditioning on 0, because Xj is "nearly sufficient" for 0. In

the Rasch model for example, (2) is guaranteed to be negative when 0 is omitted. A small

simulation study is reported in Appendix C, illustrating similar behavior in other logistic

IRT models. Thus, although (2) spoils a characterization in terms of the manifest structure

P[Xj = _.] alone, it appears we are quite close in practical situations.

2 Conditional association and essential independence

2.1 Conditional association

Holland and Rosenbaum have sought covariance conditions, or equivalently probability in-

equalities, in the distribution of Xj which must be satisfied if any dL " 1 model applies.

The starting place for their investigations may be taken to be coordinate-wise nondecreasing

functions f(y) of finite subtests Y = (Y,..., Yj0 ) taken from X. Examples include

The weighted average f(Y) = ±_JO aj1§, V ai >0;

" The "all or nothing" score f(Y) = I 1
J° Yj;

* The "at least one" score f(E) = max{Yj = 1,...J;

" Item scores f(Y)= Y.*

The coordinatewise nondecreasing functions are exactly those scoring methods which assign

more credit as examinees get more answers correct.

Under LI, any two such scoring methods will be positively correlated at each fixed ability

level 0 = 0 (Rosenbaum, 1984): for all finite subtests Y taken from X and all coordinatewise

nondecreasing functions f(y) and g(y),

Cov (f(Y),g(Y)10 = 0) > , (3)

8



for each possible 0. This condition can be converted into a condition on the latent structure

into to a condition on the manifest structure:

Theorem 2.1 (Rosenbaum, 1984; Holland and Rosenbaum, 1986). If X satisfies dL = 1,

then X is conditionally associated (CA): For every pair of disjoint, finite subtests Y and

Z in X, every pair of coordinatewise nondecreasing functions f(Y) and g(Y), and every

function h(Z),

Cov (f(Y),g(Y)Ih(Z) = c) > 0 V c E range(h). (CA)

Intuitively, a dL = 1 test possesses so much internal coherence (the item responses are

driven monotonically by the single latent variable 0) that all reasonable subtest scores must

be correlated, in any subpopulation of examinees selected by any criterion h(z) relating to

another part of the test.

Our statement of Theorem 2.1 is an easy extension of Holland and Rosenbaum's result

for finite length tests to infinite item sequences. Note also that for finitely many binary (or

indeed discrete) random variables Z1, Z 2,..., ZM, conditioning on a scalar-valued function

h(Z) is equivalent to Holland and Rosenbaum's practice of conditioning on vector-valued

h(Z). Seminal special cases of (3) and CA were developed by Holland (1981).

CA represents a wide variety of probability inequalities which can be tested in the man-
ifest distribution P[X = xj]. When CA fails the items cannot be treated as having a

dL = 1 latent representation. Applications to studying the internal coherence of a set of

items may be found in Rosenbaum (1984) or Holland and Rosenbaum (1986). Related work

appears in Holland (1981), Rosenbaum (1985), Rosenbaum (1987), and Rosenibaum (198S).

An application of CA to assessing the dimensionality of standardized tests for tile National

Assessment of Educational Progress is described by Zwick (1987).

2.2 Essential independence

A successful approach to identifying unidimensional latent structure outside the strict dL= 1

framework has been pursued in the seminal work of Stout (1997, 1990), and extended by

Junker (1988, 1991). The main idea, which borrows from both the "large sample theory"

9



tradition in mathematical statistics and the "factor analysis" tradition in psychometrics, is

that of essential independence2 .

For any (infinite) sequence of dichotomous items X = (XI,X X 2, 2 ,...), define bounded

item scores to be functions Aj(Xj) such that for some M < oc, IAj(%)i < V for a!l

j. We will call a bounded item score an ordered item score if moreover Aj(O) < A,(1).

Define a bounded test score to be the average of the first J bounded item scores Aj =

7 _j=1 Aj(Xj). Finally, we will say the ordered item scores are asymptotically discriminating

if I j=1 {Aj(1) - Aj(O)} is positive and boinded away from 0 as J --+ o.

The infinite item sequence X is essentially independent (EI) with respect to 0 if and only

if

lim Var (AjjO = = 0 (El)
J-oo

for all bounded test scores Aj. When EI holds, Aj is a consistent estimator of the "true

score" Aj(_) = E[-AO , as J -- oo. In particular, for a sequence of dichotomous items

X, El implies that the proportion correct score X consistently estimates values of the test

characteristic function P j(_), as J -- oc.

The item sequence X is essentially unidimensicnal, for whica we shall write dE 1, if

and only if (a) X is EI with respect to a unidimensional 0; and (b) the items are locally

asymptotically discriminating, LAD: for every set of ordered, asymptotically discriminating

item scores, the "true score" Aj(O) is nondecreasing in 0, in the strong sense that to every

0 there corresponds an interval No containing 0 and an CO > 0 such that
Aj(t) - A j(0) > co, V t E Nog, t 0 0, V J. (LAD)

t-9

If no such unidimensional 0 exists, we write dE > 1.

It is not apparent from the above discussion, but Stout (1987) and Junker (1988, Section

3.2), make it clear that dE = 1 can be checked from the marginal distribution of X. A

statistical procedure for testing the hypothesis that a set of J items ,Yj comes from a dE = 1

item sequence has been developed by Stout (1987) and refined by Stout and Nandakumar

(Nandakumar, 1987, 1990; Nandakumar and Stout, 1990).

When dE = 1, Aj(O) may be inverted to produce estimates of 0 directly:
2 Actually, we use Stout's strong essential independence, with some minor changes in terminology to match

Junker (1991). Any of the three variations of El could be used; cf. Corollary 2.1 in Section 2.3.
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Theorem 2.2 (Stout, 1990). If the item sequence X satisfies dE - 1 with respect to 0 then
for any set of asymptotically discriminating item scores.

V f > 0, lim P [;A'(AJ)-0 < =0] =1, (4)J--oo

where Aj 1(u) is the inverse function for the "true score" -ij(O).

Indeed, under the conditions of Theorem 2.2 and some mild smoothness conditions, the
maximum likelihood estimate of 0 calculated as though LI were true is also consistent for

0 (Junker, 1991). Moreover the latent trait with respect to which dE = 1 holds is unique.

up to a monotone transformation (Stout, 1990). It is valuable to think of El as the greatest

possible weakening of LI under which LI-based trait estimation/prediction schemes could

be expected to work. In this sense, the study of El is the study of robustness of ability
estimators to variations from an LI latent structure. Clarke and Junker (in progress) pursue

this matter in a more general setting.

2.3 Combining CA and dE = 1

The following lemma tells us that under dE = 1, for any finite subtest Y in _, we
may approximate expected values of the form E[f(y)O] with expected values of the form
E[f(Y)lad < :Yj _ Oj, as J --4 oc. We assume for the remainder of the paper that

P[Cl® = 0] is continuous in 0 (5)

whenever C is an event depending on only finitely many X's. Condition (5) implies that
E[f(Y)l® = t] is continuous in t for any function f(Y) of finitely many items.

Lemma 2.1 Suppose X satisfies El and LAD with respect to some unidimensional E), and

assume (5). If f(Y) is a function which depends on only finitely many (fixed) items Y =

(1Yi,... Y' ) from X, then for ev'ery set of bounded asymptotically discriminating item scores

A, (A',) and for each 0 there exist tj --* 0 for which

lim E [f(Y) lA12(Aj)- 01 < ] = E[f(Y) 10 = 9].

11



proof. We give the proof in the case that E is continuous, but a similar argument may be

given for discrete numerical 0.

For any event C, let 1c take the value 1 if C is true and 0 if C is false, and let E[f(Y); C]

= E[f(Y)Ic]. We may decompose the expectation on the left above as

E [f(E) Joq41(Ai) - 01 < e]

_ E[fY();1O-01 < e E[f(Y); A!'j(;Q)-01 <Ec P[I)-01 < e]
P[IO- O < E] E[f(Y); IO- 01 < E] P[IA 4 (Ai)- 01 < E]

= 1(E)-iI(E). in1().

Note that for any rate = Ej -+ 0, I(ej) --, E[f(h)IO = 0], as J -- o, using the continuity

condition (5) and the integral mean value theorem. The idea now is to choose f = EJ -+ 0 so

that II -+ 1 and III -+ 1 as J + co. We will look at II explicitly; note that III is a special

case of II. We have
1() 1-E{f(Y)[II..-1,( )_o1 < 0 -1.io<)]

II()=E{f(y. 1 <e};

one can apply Theorem 2.2 to show that the numerator on the right tends to zero for each

fixed E > 0 as J -- co; a simple diagonalization argument now yields a rate ej -+ 0 for which

II --- 1. A similar argument works for III, and a further diagonalization completes the proof.

0

We can use Lemma 2.1 to gain information about the latent structure of an item sequence

X from the manifest condition CA. Proposition 2.1 shows that CA and dE = 1 together give

the same local association condition (3) as dL = 1 alone.

Proposition 2.1 Suppose the item sequence X satisfies CA and dE = 1, and suppose that

(5) holds. Then (3) holds:

Cov (f(Y),g(Y)[0 = 0) _> 0

for all 0, all coordinatewise nondecreasing f and g, and all finite tests Y' taken from X.

Remarks. By modifying the proof of Lemma 2.1 we could also conclude conditional asso-

ciation given E = 0, i.e., if Z were a finite test from X disjoint from Y and h(Z) were any

function, then

Cov (f(E), g(E)Ih(Z), = 9) > 0.

12



proof. Let Y C Xjo be an arbitrary finite test, for fixed J0 , let W = (Xj 0 +1 , X J0+2,..)

and, for this proof, let Pj() = E[-! Ej WjIOJ. Using CA and a sequence ej obtained from

Lemma 2.1,
0 < Coy [(), gmI IT;' (T) - 0j <ej

-* Cov(f(Y),g(Y)e - 0)

as J - oo. El

Let us digress briefly to indicate another way in which CA and dE = 1 interact well.

Two alternative definitions of El have been proposed by Stout (1990), one involving the full

sequence X but taking absolute values of covariances,

lim ( J) EEICOV (Xi, X10)I1 = 0, (6)
l<i<j<J

and another involving "nonsparse subtests" which, in the present context, is equivalent to

considering only those asymptotically discriminating item scores for whict. -j(O) = 0 and

Aj(1) E {0,1}, and requiring

lim (J ) Cov(A(Xi),A(Xi)1O) = 0. (7)J-00( 2 <i<j<i

It is not known in general whether these three definitions are equivalent. However, under

CA they are:

Corollary 2.1 If CA and LAD hold for X, then all three definitions of EI are equivalent.

proof. Condition (6) implies El as defined in Section 2, which in turn implies (7), since

each condition is a special case of the preceding one. For the converse directions, observe
that if LAD holds (for the restricted case of Aj(Xj) E {0, 1} Vj), then by Proposition 2.1.

Cov(Xi,XjIO) > 0, Vi,j. In this case, (6) becomes a special case of (7), and we are done. 0

Returning to our main development, the next proposition complements Proposition 2.1 by

characterizing LI in terms of quantities that could in principle be approximated by manifest

quantities E[f (Y)jaj < Xj : 5j] as in Lemma 2.1 under El and LAD.

Proposition 2.2 The item sequence X satisfies LI with respect to 0 if and only if the

following two conditions hold:

13



For all 9, all nondecreasing f and g, and all finite tests Y taken from X,

Coy (f(Y),g(h)IE = 0) 0; (8)

For all O, i, and j,

Cov(Xi,X;I® = 9) K_ 0. (9)

Remarks. Note that (8) says that X is associated (as defined by Esary, Proschan and

Walkup, 1967), given 0 = 0, for all 0-indeed (8) is exactly the same as (3).

proof. That LI implies (8) follows from Esary, Proschan and Walkup (1967); (9) is trivially

satisfied under LI with Cov(Xi,Xj10) 0_ 0. For a proof of the converse, in unconditional

form, see Newman and Wright (1981) or Joag-Dev (1983). 0

3 Two new conditions

Propositions 2.1 and 2.2 suggest that if we require both CA and dE = 1 in the item sequence

X, we are not far away from a strictly unidimensional representation. Indeed, by Proposi-

tion 2.1, we know that CA and dE = 1 will guarantee (8). In this section we will explore

conditions on P[X.j = j] that will guarantee (9) also. We also show that it is possible to

check for monotone ICC's-a condition not explicitly provided for by CA and dE = 1-by

examining the "empirical ICC's" P[Xj = I -Xj - Xj/J].

3.1 CA, dE = 1, and useful unidimensional models

It can be seen from Theorem 2.1 and the discussion following the definition of essential

independence that CA and El are both necessary conditions for the sequence of items X to

have a dL = 1 representation. In this section, we consider several "thought examples" which

suggest to what extent these two conditions suffice to characterize dL = 1. \We restrict

our attention to useful dL = 1 models, as defined in Section 1. Because LAD formalizes

principle U2 and Theorem 2.2 satisfies principle U1, any dE = 1 model in which 0 varies

in the examinee population is useful in the sense of Definition 1.1.
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Example 3.1 CA is not a guarantee that a useful dL = 1 model exists. Suppose (XI,X 2,...)

are independent (unconditionally). Then CA follows from a result of Esary, Proschan and

Walkup (1967). Now, any 0 that we can estimate using principle U1 will, according to

the 0-1 Law of probability theory (e.g. Ash, 1972, p. 278), fail to vary from examinee to

examinee. This violates principle U3; hence no useful latent trait model for this CA se-

quence exists. (Of course this is no surprise, since a fully independent sequence of response

variables-e.g. coin flips-should intuitively not be able to tell us anything useful about a

latent trait anyway!) 0

Example 3.2 dE; = 1 is not a guarantee that a useful dL = 1 model exists. Stout (1990,

Example 2.3) gives a model for a sequence of "paragraph comprehension" questions which

is a useful dE = 1 model. We shall show that no useful dL= 1 model can be formulated

for this sequence of paragraph comprehension items. Indeed, if items Xi and Xj refer to

the same reading passage we expect Cov (Xi, Xj10 = 0o) j 0 for some 0o. Now suppose, by

way of contradition, that there exists a unidimensional latent trait r with respect to which

LI and LAD hold; in particular Cov(X,,XjIr) = 0. Now by Stout's unique trait theorem

(Theorem 3.3 of Stout, 1990), r would be a monotone-indeed invertible-transformation

of 9, r = g(O). But, taking t, = g(Oo),

0 = Cov (Xi, X Ir = t,)

= Cov(X,,Xjlg(o) = g(0 ))

= Cov(XXjE = O,)

0 0.

This contradiction shows that no such -r can exist, i.e. no useful dL = 1 model exists for the

sequence of paragraph comprehension items. 0

Example 3.3 CA and dE = 1 together may not guarantee that a useful dL = 1 model

exists. Let X be an item sequence satisfying dE = 1 with respect to E me unidimensional

0. We may imagine the 0 in this dE = 1 representation as being the first coordinate of the

latent trait vector 0 = (0, 02, 03,. .. , d) needed for a dL = d representation:

0]X =K l = P[... = ,1 .a = f_1 = O)dO_
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for each J, where, by LI with respect toe = (0, 02, 03,... Od),

J

P[X = 1__= _1 = 1I P(-)XJ(1 - P(-))I-.,
j=1

In general, although dE = 1 means that

lim (() ECov (Zi, Zj 10 =9) = 0
J <i<j<

for every nonsparse subsequence Z from X, the individual covariances

Cov (Zi zj10 = 0) = Cov(P(0), P,(a)IE = 0)

may be positive or negative, depending on how the traits 02, 03,..., Od interact with 0.

Now suppose X satisfies CA also. Then by Proposition 2.1,

Cov(Xi,Xj10 = O) > ,V i Y j; (10)

in fact the stronger condition (3) holds. Thus, not only is 0 the dominant trait for X,

but the "minor traits" needed for LI to hold are concordant with 0, in the sense that they

interact with 0) so as to keep the local inter-item covariances nonnegative.

Under CA and dE = 1, therefore, there is enough coherence among the items that

covariances between items, given 0 = 0, are nonnegative. Indeed it is quite plausible that

under these conditions, for some tests, some of the inequalities in (10) will be strict (despite

its plausibility we have not been able to construct an example in which this may rigorously

be shown). But if any of the inequalties (10) are strict for a dominant latent trait 0 with

respect to which dE = 1, then there cannot exist any other unidimensional trait 7 with

respect to which a useful dL = 1 model exists; this follows by the same argument as in

Example 3.2. 0

3.2 CSN: A natural negative covariance condition

Thus some condition in addition to CA and dE = 1 seems to be needed to get a useful dL = 1

model. When LI holds, we know that (3) holds also: Cov(f(Y),g(Y)1O = 0) > 0 for all

finite subtests Y and nondecreasing functions f and g. As indicated in Example 3.3, there
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may be some situations in which EI and CA hold but the implied coherence among items is
so tight that LI cannot also hold. What is needed is a condition that loosens this coherence

so that, despite (3), individual item pairs have zero covariance.

An interesting condition derived by Joag-Dev and Proschan (1982) implies that when LI

,vith respect to O does hold, then

Cov(Xi,X3I-J, 0) < 0 (LCSN)

for all i < j < J. This says that, under LI, the items are "not too tightly bound together"
even though (2) holds: each Xi and Xj are sufficiently free of one another among examinees

of the same ability that when Xi increases from one examinee to the next, Xj is free to

decrease so that the test score Xj may be kept constant. The abbreviation LCSN stands

for locally, covariances given test scores are negative.

However, LCSN is a condition on the latent, not the manifest, structure. To obtain a

natural manifest structure analogue to LCSN it is useful to consider the special case of the
locally independent Rasch model. Here Xj is sufficient for E, i.e. (X 1 ,X 2 ,...,Xj) are

independent of E given Xj. One consequence of this is that

CoV (Xi,Xj17,7) = Cov (X,,XjJXj, 0), (11)

in which case LCSN is equivalent to the manifest condition

Cov (X,, XIYj) < 0 (CSN)

for all i < j < J. Here CSN should be read as covariances given test scores are negative. In

practice it may be necessary to allow (CSN) to be violated for very small values of J. e.g.

J < 10.

Because Xj is not sufficient for 0 outside the Rasch model, CSN is an imperfect substitute

for LCSN. It is valuable to know how closely related LCSN and CSN are under LI. Suppose

LI and hence LCSN holds. To examine CSN one might consider the decomposition

Cov(X,,X, jXj ) = E[Cov(X,,XIj, ) 1Xj] +Cov [E[XI 01j,0,E[X,I1 s,®I-Yj]

The first term on the right is nonpositive, by LCSN. The second term may be negative or

positive, but should be small since under dL = 1 the (posterior) distribution of 0 given Xj
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should have very low variance, as J grows. Some preliminary work of B. Clarke and J. K.

Ghosh (Clarke, priv. comm.) points toward a proof of this assertion. This suggests that in

most dL = 1 models

Cov(X,,XjIXj) ; E [Cov (Xi,XjIXj, O) X¢] (12)

for longer tests, even though Xj is not sufficient for 0. In particular when Cov (Xi, Xj IT)

fails to be negative for a LI model, we at least expect it to be near zero. Thus one might

consider, not CSN, but rather a condition like

Cov(X, Xjl-7j) 0+ Ej (13)

for suitably chosen cj > 0; this is similar to including an indifference region in a test of

the null hypothesis CSN against a general alternative. The plausibility of CSN and (13) in

locally independent two parameter and three parameter logistic IRT models is illustrated in

a small simulation in Appendix C.

3.3 MM: Manifest monotonicity

When one desires to check M in practical situations, a condition like the following is often

used. Let Tij = Xj - X,/J; we will say manifest monotonicity, MM, holds if

E[Xu'IXuj is nondecreasing in Xij (MM)

for all i < J (and all J). This intuitively appealing monotonicity check is intimately related

to dL = 1 latent structure, in that

(a) LI, M => MM;

(b) EI, LAD, MM => M; and hence

(c) under LI and LAD, MM 4 M.

Assertions (a) and (b) are proved in Proposition 3.1, and (c) is an immediate corollary. Mole-

naar (priv. comm.) has independently discovered (a), and we report examples of Molenaar

and Snijder in Appendix B that indicate the limitations of the method of proof for (a).
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Lemma 3.1 If LI and M hold for an item sequence X and latent trait 0, then 0 is stochas-

tically increasing in S = Xia:

V a < b V c: P[O > clS = a] :_ P[O > clS = b] (14)

whenever the conditional probabilities are defined.

proof. We may apply Grayson (1988), Theorem 2, to the subtest (X 1 ,..., X-1, X,+1

Xj) to see that the score S = Xia has the monotone likelihood ratio property
Rab(O) P[S = bjO]_

Rab(O) P[S = a1] nondecreasing in 0, V a < b, (15)

whenever the conditional probabilities are defined. To establish (14) (for any score S satis-

fying (15)), we may write its left hand side as

+00'[' P[S = alO]dF( O)

P[0 > clS = a] = 
=__

U- P[S = aIO]dF(0)

= P[T>c]

where T is a random variable with density proportional to P[S = alt] -dF(t). (I.e., T =

[01S = a].) On the other hand, the right hand side of (14) may be written as

P[O > clS =b] ' ']-- P[S b[0]dF(0)

J P[S = blO]dF(O)

-+00 P[S = alORb(0)dF(0)

+ P[S = alO]Rb(O)dF(O)

E[Rb(T)1 T>c

SE[Rb(T)]

for the same random variable T (where 1c is the function that takes the value I when C is

true and 0 otherwise). Hence (14) is equivalent to the assertion that

P[T > c]. E[Rob(T)] _ E[Rb(T)I{T>c}]

which follows from property (P3) of Esary, Proschan and Walkup (1967), since g(T) = I{T>c)

and h(T) = Rab(T) are both nondecreasing functions of T. 0
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Proposition 3.1

(a) LI, M =:' MM

(b) El, LAD, MM and (5) = M

proof. (a) Note that

E[XijXj] = E[E[XjjXj,EO]X-,j]  (16)

= E[P(E)jXj]

by LI. This last expectation is nondecreasing in Xij by M and Lemma 3.1, using a result of

Lehmann (1955).

(b) Let 0(1) < O(2); then there exist sequences a(j) < /3() and a(2) < 3(2) with3(l) < a(2)

for all large J, such that {a() < Xjj _ /3(1)} = {I5'(Xij) - 0(01 < c(')} from Lemma 2.1.

Then

E[XIE = 0(l)] = lim E[Xijac(1) < Xij </3(1)]

< lim E[Xila " X j </3(2)]

= E[XiIE = 0(2)

where the middle inequality follows from the fact that

= .,¢ () E[X,[X.j=c]P['X,.j=c]

](1) <

(2) - J:
< ( 2) E[XIX.j=CP[X.j=cl

0 (2)
, () P[X,j=cPX.] c

C= 
Q

= E[XI4 ) -< X1 < /3(2)]

(under MM, the second ratio of sums above is a weighted average of larger conditional

probabilities than the first one). 0

Corollary 3.1 Under LI, LAD and (5) we have

MM ,, M
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4 Characterization of dL = 1

The previous two sections may be summarized in the following theorem.

Theorem 4.1 If X is an item seqence satisfying dL 1 and if LAD holds with respect to

the latent trait E, then each of the conditions CA, dE = 1, LCSN and MM hold.

We show in this section that the converse is also true: the four conditions CA, dE = 1,

LCSN and MM guarantee a useful dL = 1 representation; hence these conditions characterize

useful dL = 1 representations. Moreover the converse implication is still true if LCSN is

replaced with its manifest analogue condition CSN.

The main problem with obtaining these two converses of Theorem 4.1 is that our negative

covariance criteria CSN and LCSN use conditioning on fixed values of Xi only, whereas

Lemma 2.1 gives approximations to (8) and (9) which require conditioning on intervals

a j<j, /j. The next lemma connects these two forms of conditioning. We will assume

that for each J and i < J there exist differentiable gij such that

E[XIXj]- gj(Xj) (17)
supi'J,, lgt j(u)[ < M < 00

and that for each J, i < J, and 0 there exist differentiable gijo such that

E[XI-Xj, = 0= giJo(-j)

supi.Ju [gij(u)I < M0 < 0o J
The conditions (17) and (18) are maximum discrimination conditions on item-test'regres-

sions; most likely they would be acceptable in practice. In particular, note that (17) and

(18) do not hide a monotonicity assumption.

Lemma 4.1 (a) Suppose CSN holds, and suppose (17) also holds. Then for any constants

Qj < 32 for which the covariances are defined, and for which 3.7 - aj - 0,

lim sup Cov (Xi, Xj jai !_ Xj <1 0.j) <0 . (19)
j--
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(b) Suppose LCSN holds, and suppose (18) also holds. Then for any constants aj <_ 0j

for which the covariances are defined, and for which /j - aj - 0,

lim sup Cov (Xi, Xj jai .5 xj !_ fj, O) 0 0. (20)
J--o

proof. We will do part (a) only; part (b) is virtually identical. We have

Cov(X,X 3 Ij <Xi <3.j) = E [Cov(X,X 3 I Y') I (21)
+Cov [E[XiIX], E[XX] 1aj < -Xj < 3j]

The first term on the right is evidently nonpositive for J large. Let us drop the conditioning

on aj < Xj < 3j from the notation for brevity; then the second term in (21) is

Cov[E[X,-Xj],E[Xj-Xj]] = Coy X[g-j(j), g(Xj)]
< {jVargaj(j) arg j)}

by the Cauchy-Schwarz inequality. Now applying Taylor's theorem,

Vargij(Xj) <_ [maxlg'j(u)j 2 . VarXj

so that conditioning on crj : Xj J __j, which forces Var X --+ 0 and hence Var gij((Xj) -- 0

as J -- o0, also forces the second term in (21) to go to zero, completing the proof. 0

Now we are ready to state and prove the two converses to Theorem 4.1. The formal

statement of our characterization of useful dL = 1 models is

Theorem 4.2 Suppose X is an item sequence and 0 is a unidimensional trait, and suppose

(5), (17) and (18) hold. Then

(a) CA, dE = 1, LCSN, MM t* dL = 1, LAD

(b) CA, dE = 1, CSN, MM = dL = 1, LAD

Remarks. In the implications "= " in (a) and (b), 0 is the trait with respect to which

dE = 1 holds, and the theorem asserts that in fact dL = 1 holds with respect to this E). In

the implication ".=" in (a), 0 is the trait with respect to which dL = 1 holds. In both cases,

0 is unique up to monotone transformation (Stout, 1990, Theorem 3.3).
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proof. It is more convenient to prove (b) first.

Part (b), "=*": There are three conditions to check on the right: LI, M, and LAD.

LAD follows from dE = 1 by definition. M follows from MM and dE = 1 via Proposi-

tion 3.1(b). LI follows from CA, dE = 1 and LCSN, using Proposition 2.1, Proposition 2.2,

and Lemma 4.1(a), since (19) implies that under CSN and dE = 1 we have Cov (Xi X, 10) <

0 for all i, j and 0.

Part (a), "=": Again we must check LI, M and LAD. LAD and M follow as before.

LI follows again, using Proposition 2.1, Proposition 2.2, and Lemma 4.1(b), since now (20)

implies that under LCSN Cov(Xi,Xj10) < 0 for all i, j, and 0 (a conditional [given 0 = 0]

form of Lemma 2.1 is needed to show this, but this is straightforward).

Part (a), "=": This is Theorem 4.1, but we state the proof for completeness. We must

check MM, CA, El, LAD and LCSN. MM and CA follow from dL = 1 by Proposition 3.1(a)

and Theorem 2.1, respectively. El follows from LI trivially, LAD is assumed on the right,

and LCSN follows from LI via a conditional form of Theorem 2.8 of Joag-Dev and Proschan

(1982). 0

Theorem 4.2(a) gives a complete characterization of dL = 1 representations among
"smooth" representations satisfying the mild monotonicity condition LAD-this is essen-

tially the class of useful dL = 1 representations, assuming that the distribution of 0 is not

concentrated at one point. The characterization is of interest because the conditions MM,
CA and El, are all conditions on the manifest structure P[AX = x.j] of. LCSN is not itself

a "manifest" condition, but it appears to be quite close to its natural manifest structure

analogue CSN in practice. Theorem 4.2(b) gives reasonably general conditions on the man-

ifest structure of X which are sufficient to guarantee a "useful" dL - 1 representation. Note

that overly restrictive assumptions, such as detailed knowledge of the forms of the ICC's or

of the distribution of 0, are not needed in this approach.

It is important to point out that Theorem 4.2 is possible only through the use of an

infinite item sequence X. The constraints put on the latent structure of a finite set of items

= (X 1,... , Xj) by the distribution of _ are not strong enough, in general, to guarantee

a particular form for the latent structure. The principal difference between the finite case

and the infinite case X is that, whereas a latent trait may be only imperfectly estimated
using -, it can be known with complete accuracy using X (see Levine, 19S5, for a related

23



discussion about the limits of our ability to know E from Xj for finite J). Thus the use

of (conceptually) infinite sequences of items seems absolutely vital to clarify model-building

and model-identification issues (see also Stout, 1990, for a discussion of this point).

5 Discussion

In this paper we have combined the conditional association (CA) approach of Holland and

Rosenbaum and the essential unidimensionality (dE = 1) approach of Stout to produce a

nearly complete nonparametric characterization of useful dL = 1 representations for dichoto-

mous IRT data. The three principles U1, U2 and U3 for a useful representation require

that the latent trait 0 can be consistently estimated from the item responses: that 0 is

monotonically related to the test's "true score;" and that 0 is not constant in the examinee

population.

In Section 2 we reviewed the CA and dE = 1 conditions. A crucial feature of our
analysis was the embedding of the finite-length test A into an infinite sequence of items

X which extends the features of the observed set of items Xj. This embedding is needed

for two reasons: first, several authors have observed that estimation of traits to arbitrary

precision-and hence identification of latent structure-cannot be expected to work unless

the test length is allowed to grow without bound; and second, the embedding is needed to

discuss Stout's notions of essential unidimensionality. Moreover in many practical settings.

the embedding can bp justified as a continuation of the usual process used to manufacture

items (c.f. Stout, 1990). Under CA, all three definitions of dE = 1 proposed by Stout are

equivalent, and CA and dE = 1 together bring us close to a dL = 1 representation.

In Section 3 we developed two further conditions which seem to be needed to obtain a

characterization of strict unidimensionality. First, the negative covariance condition CSN

(Cov(Xi, Xj Xj) < 0) is a natural one to add to CA and dE = 1 to ensure that the items

are locally independent with respect to 0. CSN is guaranteed to be true in the Rasch

model, and a simulation in Appendix C shows that CSN is also plausible in two-parameter

and three-parameter logistic models. Second, monotonicity of the empirical ICC's P[X. =

I [Xj - Xj/J] is intimately related to ICC monotonicity: this "manifest monotonicitv" must

hold if dL = I holds; and conversely it can be used to verify monotonicity of the usual ICC's
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PJ(O) when dE = 1 holds.

In Section 4 we showed that useful dL = 1 representations may be characterized by the

conditions CA, dE = 1, manifest monotonicity, and a local version of CSN. If the local CSN

condition is replaced with CSN itself, we obtain a fairly general set of sufficient conditions

on the manifest structure P[AXj = X] as J --* oo, for a useful dL = 1 representation to

hold. These conditions have the agreeable property that parametric forms of the ICC's are

not needed to check dL = 1.

It is important to note that some form of monotonicity or ICC smoothness is needed to

avoid meaningless models; an example in Appendix A, due to Suppes and Zanotti (1981),

illustrates this. Our preferred "nonparametric" condition has been Stout's local asymptotic

discrimination LAD condition. In parametric settings, a general monotonicitv condition such

as LAD might be dropped in the face of other smoothness available from the parametric form

of the model. However such a condition is often plausible, even if the ICC's are not monotone.

and greatly enhances the interpretability ot the model.

The results of this paper bring us quite close to a characterization of useful dL = 1
representations solely in terms of the distribution of the manifest item response data. This is

valuable for two reasons. First, it is hoped that presenting them stimulates further discussion

of the basic components of IRT modeling. For example, the local form of CSN in the

characterization above suggests that both a positive covariance condition like CA, and a

negative covariance condition like CSN seem needed to properly understand the general

dL = 1 assumptions. Second, such a characterization suggests practical nonparametric

tests of fit for the general dL = 1 representation. But the practical application of the

characterization theorem requires one to deal with a potentially difficult multiple inference

problem: testing CSN involves combining J(J) statistical tests, and CA involves even

more statistical tests. Understanding this multiple-inference problem and exploiting possible

dependencies among the tests to reduce the problem is an important future step in this

research.
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A The "necessity" of LI, M and D

The assumptions LI, M and D can be-and sometimes are-weakened but not dropped: if

any one of them is completely dropped, the resulting version of (1) can be made to fit any

distribution of dichotomous items. Two of the examples which show this are known in the

literature, but we repeat them here for completeness. Example A.3 appears to be new.

Example A.1 d = 1 and LI hold, but M dropped. (Suppes and Zanotti, 1981). Here

we allow the ICC's to be arbitrarily rough and nonmonotone; our goal is to represent an

arbitrary distribution P[Xj = 1j] as in (1). Let 0 = _J' 2-jXj, i.e. E is the base-two

fraction O.X1X 2 ... Xj. Then the ICC's may be written as

P[Xi = 1101 = l{mt(23.6) mod 2=1}1

where "Int (t)" is the integer part of t, and 1c equals I when C is true and 0 when C is false.

The likelihood may be written as usual as under LI, and the distribution of 0 is described

by a probability mass function

f(0)= P[_.= gj], if 31j: 0= 2 JI2-1 x,;
S0, if A3 1J.

Finally, (1) becomes

J

P[A = = P,(0)"'(1 - P,(0)),- 1f(0).
9:f(0)$o j=l

This example can be modified to allow infinitely many items, items with more than two

response categories, and items with continuous responses. 0
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Example A.2 LI and M hold, but d = J. (Holland and Rosenbaum, 1986; Stout, 1990).

To write the representation (1) in this setting, we put E) = Xj, so that each component

Oj - xj records exactly the response to the jth item. The ICC's may be written as

P[X = 118] = 1{0,=,},

which are certainly coordinatewise nondecreasing in 0; the multivariate distribution of 0 is

exactly the same as for X:

f(8-) = P[(9 = i_1 = P[X = C-]

Here, (1) becomes

J

P__j = ilil = E 1I Pi(-)T'(1 - pj())l1--,f(f),
_ j=1

Example A.3 d = 1 and Al hold, but LI dropped. Here we set 0 = 1-I' X3 . The ICC's

P[j= 110]= 1, if 0= 1;

S0, if 0= 0

remain monotone, but the joint likelihood cannot be written as under LI. Instead,

{ P[X=1j], if0=0and Ex, <J;
j = = P[A= ], if 0 = 1 and Z' x= J;

0, otherwise

and the probability mass function for 0 is

f(0) = P[E[ X, = JIlP[ZJ x, < j]

Finally. the representation (1) is simply written as

1

P[ ij = zi]= E P[-__ = 1flO1f(O). t
0=0

It is worth remarking that each of these examples is very much degenerate, as a piece of

psychometric modeling. In Example A.1 and Example A.2 the latent variables chosen are
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not latent at all, in that they are completely determined by the examinee's responses (and

thus represent no broader sense of a psychological construct than the examinee's responses

themselves). In Example A.3 the problem is the "opposite": here 0 captures virtually nothing

about the examinee's response behavior. The examples should be taken as indications of

how quicky the modeling process can devolve if the assumptions LI, M and D are weakened

too much.

B Limits on generalizing MM

Molenaar (priv. comm.) has independently discovered Proposition 3.1(a), and reports coun-

terexamples indicating the limitations to extensions of this result. Example B.1 shows that

the method of proof of Lemma 3.1 cannot be extended to the polytomous case. Exam-

ple B.2 shows that, in Proposition 3.1(a), we cannot replace the "delete average" Yij

I ZJ X2 - XI/J with the more natural average over all items Ti.

Example B.1 (I. Molenaar). The monotone likelihood ratio property (15) of Grayson

(1988) does not extend to polytomous items. Let 0 < E < 1 and consider a single graded-

response item X taking the three values 0, 1 or 2, with
30, 0< 0< 1/4

P[X > 119] = 3 1 1/4 0 < I

0, 0 < 0 ___1/4

P[X >210] = 3(0 -), 1/4<0< 1/2
I + 0, 1/2 < 1

In this case, for 0o = 1/4 and 01 = 1/2, the likelihood ratio

P[X = X10o] (22)
P[X = x10 1]

is not monotone in x. For one may calculate

00_= 1/4 01 = 1/2 Ratio

P[X = 010] 1/4 1/8 2

P[X = 110] 3/4 1/56 42

P[X = 210] 0 6/7 0
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Here the ratio (22) is not monotone in x. A consequence of (15) in the proof of Lemma 3.1

would be that the likelihood ratio (22) is monotone in x; since it is not, the proof of Lemma 3.1

cannot be extended to the polytomous case. 0

Example B.2 (T. Snijder). P[Xj = i-XY = s] need not increase with s, and hence we

may not replace Xij with Xj in Proposition 3.1(a). Consider three dichotomous item, and

a two-point distribution for 0, P( = 00) = P( = 01) = 1. Let

Pj (Oo) e, j =1,2,3;
1

P,() =2'

P2(01) = 1-c; and

P3 (01 ) = 1- .

It follows that, as E --+ 0,

P[Xi=lIXj=1/31 = (1-E) 2 + E

3(1 - E)2 + 1 - 4
c+ 2c 2

PCXi, =1I'Xj=2/3] + 1E 2 - 0.

Hence for small c.> 0, P[X = lIXj = 1/3] > P[X1 = lIYj = 2/3]. 0

C An illustration of CSN

We have argued in Section 3.2 that the CSN condition

Cov(Xi,XjXj) < 0

is a reasonable one to look for in dichotomous test data, to ensure that the local (given

0 = 0) association between items is not too strong, under CA, for LI to hold.

To illustrate the plausibility of CSN in common dL = 1 IRT models, a small simulation

study was performed. Item characteristic curves were taken to be of the logistic form

1

Pj(O) = cj + (1 - cj) 1 +exp{-1.7a(O - b,)} (23)
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All three of the popular ICC models based on (23) were considered: the Rasch model (one

parameter logistic, 1PL) in which cj =_ 0 and aj - 1; the two parameter logistic model (2PL)

in which cj = 0; and the three parameter logistic (3PL) model in which all parameters are

free. Free parameters were generated as appropriate for each model as follows.

" aj = 0.5 + 0.5(j mod 3) + aj, where aj is N(0, 0.0625) [normal, mean zero, variance

0.0625] noise, truncated so that 0.5 < aj : 1.5;

* bj = -2.0 + 4.0,--1 +3j, where 3j is N(0, -) noise;

" cj = 0.2 + "y,, where -y, is N(0,0.01) noise, truncated so that 0.0 < cj < 0.4.

For each of the three models, a 2000-examinee test administration was simulated, for varying

test lengths J. Examinee abilities were sampled from a N(0, 1) distribution and responses

were generated according to the corresponding locally independent IRT model.

The Mantel-Haenszel (M-H) one-sided z-test for

Ho: Cov (X,,XjIXj) _< 0 vs. Hi: Cov(X,,Xj jj) > 0

combined across Xj categories, was performed for each pair i, j. The number of tests for

which the Mantel-Haenszel z exceeds 1.28 (corresponding to a nominal level p < 0.10) is

tallied, and these particular tests are displayed in detail.

Note that, since (2 ) statistical tests are performed-one for each pair (i.j)-even if

H0 is true, one would normally expect some significantly positive covariances because of
"icapitalization on chance." Hence there is a severe multiple inference problem, paralleling

a similar problem with the CA condition. Understanding this multiple-inference problem

and exploiting possible dependencies among the tests to reduce the problem is an important

future step in this research.

The results for the Rasch model are displayed in Table 1 and Table 2. Since LCSN and

CSN are equivalent under the Rasch model, Ho is always true: hence the nine large M-H z's

in Table 1 are exclusively due to Type I error (capitalization on chance). Hence Table 1 may

be taken as a baseline: if in another model the number of large M-H z's is smaller than for

the Rasch model, we may be confident in Ho, and hence (13).
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The results for the 2PL simulation are displayed in Tables 3 and 4, and for the 3PL

simulation in Tables 5 and 6. Remarkably, fewer large M-H z's were found for these models-

where the equivalence of LCSN and CSN is not known theoretically-only two large M-H Z's

were found for the 2PL simulation, and four were found for the 3PL simulation. Moreover,

there are no large M-H z's for the longer tests, suggesting the validity of (12) as J -* 00.

J # M-H tests # M-H z's above 1.28
10 45 0
20 190 0
40 780 9
80 3160 0

Table 1: Number of large positive associations for 2000-examinee Rasch simulation (J = test
lepgth).

z j M-H z Nominal p 6&AH ln(61 fH)
32 7 1.403 0.080 1.634 0.491
36 1 1.779 0.038 3.172 1.154
36 8 1.434 0.076 1.640 0.495
37 5 1.497 0.067 2.142 0.762
37 7 2.401 0.008 6.083 1.805
37 27 1.347 0.089 1.295 0.259
38 7 1.502 0.067 2.539 0.932
39 6 1.408 0.080 1.196 0.179
40 34 1.503 0.066 3.343 1.207

Table 2: Details for 40-item Rasch simulation (', MH = est. common odds ratio across X¥
categories).
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J # M-H tests # M-H z's above 1.28
10 45 1
20 190 1
40 780 0
80 3160 0

Table 3: Number of large positive associations for 2000-examinee 2PL simulation (J = test
length).

J i j NI-H z Nominal p &MH ln(&MH)
10 7 1 1.683 0.046 2.981 1.092
20 18 4 1.460 0.072 2.227 0.801

Table 4: Details for 10- and 20-item 2PL simulations (&MH = est. common odds ratio across
Xj categories).

J # M-H tests # M-H z's above 1.28

10 45 0
20 190 4
40 780 0
80 3160 0

Table 5: Number of large positive associations for 2000-examinee 3PL simulation (J test
length).

i j M-H z Nominal p &MH ln(&rH)

3 1 2.358 0.009 1.570 0.451
4 1 2.435 0.007 1.654 0.503
4 3 1.777 0.038 1.300 0.262

20 1 1.568 0.058 1.411 0.344

Table 6: Details for 20-item 3PL simulation (6AMH = est. common odds ratio across \j
categories).
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