Progress Report

AD-A229 972

An Automatic Parallelization Tool For Sequential Programs

Jon Flower, Adam Kolawa
ParaSoft Corporation
2500 E. Foothill Blvd., Suite 205
Pasadena, CA 91107

(818) 792-9941

Contract: NOOO1l4-90~-C-0141

Topic Number SDIO-90-010
October 25, 1990

DTIC_

ELECTE
DECO 4 1330

,/AB

An Automatic Parallelization Tool for
Sequential Programs1

An Interim Report

J .W.Flowerz, A.Kolawa

ParaSoft Corporation
2500, E. Foothill Blvd.
Pasadena, CA 91107

Phone: (818)-792-9941
FAX: (818)-792-0819

1. Research sponsored by SDIO/IST and managed by ONR/NOSC under the SBIR program.
2. Principal Investigator

/

' 1. Overview

“ In this project we have been trying to improve a system called ASPAR - the “automatic, symbolic
parallelization” system. This is a software tool designed to automate the process of converting se-
quential C and Fortran programs for execution on parallel computers.

- Our strategy, as developed in our own internal research is to modify sequential programs by the
addition of calls to the Express runtime library. This is a set of library utilities specifically de-
signed to allow parallel programs to operate in a manner independent of the underlying hardware.
A set of abstractions is provided in which the physical machine topology can be hidden by a pro-
gramming interface in which the machine interconnections can be assumed to match the topology
of the data being manipulated. This ability is of central importance to our automated techniques:
multi-dimensional arrays can be mapped logically onto a similarly multi-dimensional parallel pro-
cessing network rcgardless of that machine physical interconnectivity.

A second important advantage of Express is its portability. Express programs can be executed
on a wide range of different parallel processing systems including nCUBE and INTEL hypercubes,
multi-headed Crays, transputer arrays and networks of UNIX workstations. This allows us to test
our methods on many different parallel architectures rather than concentrating on a single type of
system. As a result our tools will be of wide relevance in the parallel processing community. -

The preliminary version of ASPAR was able to generate parallel C programs from a standard
ANSI C program contained in a single source file. Our goals in the Phase I proposal were basically
to take this prototype and convert it into a beta-release product capable of dealing with large scale
applications written in C. Some efforts would also be directed towards an analysis of the techniques
required to implement Fortran and even Ada versions of the tool. e

2. Completed work, work in progress S

Several stages of the preliminary work plan have been completed or are in progress as described
in the following sections.

2.1 ASPAR Evaluation.

Our first goal in improving ASPAR was to evaluate its performance on typical algorithms. By this
method it was hoped that the strengths and weaknesses of the existing system could be analyzed
and any necessary modifications designed and implemented. To perform this evaluation we ana-
lyzed several algorithms in-house and also sent alpha-release copies of ASPAR to some of our de-
velopers.

In general the results were very encouraging. Despite obvious weaknesses in several areas every-
one was uniformly delighted by the abilities of ASPAR to perform both simple and complex op-
erations on their algorithms.

Atits simplest ASPAR was able to remove the tedious “loop range and array index modifications”
that plague the parallelization of simple grid based applications. This type of work is fairly straight-

forward but extremely error prone and the ability of ASPAR to perform it automatically is a great -
success. | :
v ' l e
Statement "A'" per telecon Dr. Keith

Brom8ly. WNaval Ocean Systems Center/
code 7601. San Diego, CA 92152-5000.

t2

VHG 12/03/90

In more complex areas ASPAR was able to parallelize quite complex algorithms by inserting ap-
propriate calls to Express routines to redistribute data. Even in cases where no obvious grid based
decomposition could be identified ASPAR was able to create parallel algorithms by continually
moving data to match distributed loop ranges.

2.1.1 An Example: Conjugate Gradient Matrix Inversion.

As an example of the types of opcrations performed by ASPAHR consider the problem of banded--
matrix inversion by the Conjugate Gradient algorithm. This problem has been extensively studied
in the parallel computing literature due 1o its central role in many applications. While the basic al-
gorithms are well understood the parallelization of a “banded” solver is by no means straightfor-
ward. Standard partitioning strategies, which work well for full matrices, must be modified to take
into account the banded nature. Obviously one solution is to fill in all the zeros and use a full matrix
solver but this is unacceptable.

The original C source code is shown in Figure 1.

/****** Solver for linear equations by CG method ******/ for(i=0i<elm;i++){

#include “stdio.h” X[i]=0.0;
#define SZ 400 P(i}=bbli};
#define BND 100 Rli]=bb[i];
#define ep (double)1.0e-14

double eps; sum1=0.0;

double ar[SZ][BND],bb[SZ] xx[SZ],P[SZ],X[SZ];
double R[SZ],newR[SZ],newP[SZ] KP[SZ],newX[SZ];

for(i=0;i<elm;i++)
sum1+=bb[i]"bb]i];

eps=ep*sumi;

k=1,rd=(double)100000.0;

while(rd>eps){

int elm,hbnd; band_multi(ar,P,KP,elm,hbnd);

void band_multi(A,x,b,elm,hbnd)

double A[SZ][BND],x{],b(l;

inti,j,band;
double sum;
band=hbnd*2-1;
for(i=0i<elm;i++){
sum=0.0;
if(i<hbnd)

for(j=0;j<band;j++)sum+=A[i](j]"x{i];

else
for(j=0;j<band;j++)sum+=
AL x[(j+1+(i-hbnd))];
biJ=sum;
}

b

main()

{
inti,j,k,elm,hbnd,param(2];
double sum1,sum2,rd,alpha,beta;
read_data(ar,xx,bb,param);
elm=param[0},hbnd=param(1];

sumi=sum2=0.0;
for(i=0;i<elm;i++)sum1+=R[i]'R{i];
for(i=0;i<elm;i++)sum2+=P[i}"KP][i];

alpha=sum1i/sumg;
for(i=0;i<elm;i++)newX[i]=X[i]+alpha*P[i];
for(i=0;i<elm;i++)newR[i]=R[i]-alpha*KP[i];
sum2=0.0;
for(i=0;i<elm;i++)sum2+=newR[i]*newRi};
beta=sum2/sum1;
for(i=0;i<elm;i++)
newPijl=newR{[ij+beta*P[i];
rd=sumi;
for(i=0;i<elm;i++){

Pli]=newP][i};

R[i]=newR[i];

X[i]=newX[i];

K++;

}
print_result{X);

Figure 1 Sequential Program for Conjugate Gradient Matrix Inversion

The basic algorithm is fairly straightforward, all of the code is shown except for the I/O routines:

read dataand print_result.

The results of applying ASPAR 10 this code are shown in Figure 2.

‘ESSEETFEFEHELEESSESSETIS$3T588583858888
/*$ AUTOMATICALLY PARALLELIZED PROGRAM $/

1*$ Decompose this as 1-D problem $
1*$ P1: proc.number of 1st dimension $
/*$ AS_procs:Number of processors £
1*$ AS_lgc:Logical processor location (logical no) $*
1°$ AS_lst.Table ot logical-physical proc.numb $/
1°$ AS_olst:Offset for undecomposed data $/

1*$ AS_cnt:No.of iteration afier parallelized $/
1"$835$$$$$$-—-EXPRESS header---$$ 3555335555555/
#define P1(1) /*-You may change it--*/

#tinclude <express.h>

struct nodenv env;

int AS_Igc[3].AS_procs(3].AS_Ist[100],

AS_type=123,AS ofst[3),AS_cnt(3}.AS_size(3);
{*******Solver for linear equations by C G method ******* /
#include "stdio.h”

#define SZ 400

#define BND 100

#define ep (double)1.0e-14
double eps;

double R[SZ/P1],newR[SZ/P1},newP{SZ/P1],KP[SZ/P1],
newX{SZ/P1];
void band_multi(A x,b,elm,hbnd)
int elm,hbnd;
double A[SZ/P1][BND].x{],b{];
{
intij,band;
double sum;
band=hbnd*2-1;
/°$ PARALLEL $*/
AS_set_range(0,elm-1,0,1);
for(i=0;i<AS_cnt0};i++){
sum=0.0;
if(i+AS_ofst{0)<hbnd)
I*$ Sequential: Data-Decomp Strategy2 $*/
for(j=0:j<band;j++)
sum+=A[i}[j)*x[j];
else
1*$ Sequential: Data-Decomp Strategy?2 $*/
for(j=0:j<band:j++)
sum+=Afi](j]°x[(j+1+(i+AS_otst[0}-hbnd))};
bli]=sum;
}
}
main()
int i,j,k,elm,hbnd.param(2),
double sum1,sum2 rd alpha beta;
/°$$$3$88$$ Initialization for EXPRESS $$$3353$88°/
exparam{&env),;
AS_procs{0]=env.nprocs;
exgridinit(1,AS_procs);
exgridcoord(env.procnum,AS_Igc);
exconcat(AS_lgc,4,AS_Ist,4 NULLPTR LALLNODES,
NULLPTR,BAS_type
/'S$$$$$$$$$$$S$$$S$$$$$$$$S$$$$$$$$$$$ /
read_data(ar,xx.bb,param);
elm=param{0].nbnd=param(1};
/°$ PARALLEL $%/
AS_set_range(0.elm-1,0,1);
for(i=0;i<AS_cnt0];i ++){
X[i}=0.0;
P(i+AS_olst{0]]=bbi];
R{i}=bbfij

double ar{SZ/P1][BND].bb[SZ/P1].xx[SZ/P1}.P[SZ], X[SZ/P1);

/*$ CONCATENATEP $*/
AS_size[0)=sizeot(*P)"AS_num(0};
exconcal(&P[AS_ofst{0]) AS_size{0},P,AS_size[0],

NULLPTR,env.nprocs AS_Ist,8AS _type):
sum1=0.0;

/*$ PARALLEL $*/

AS_set_range(0,elm-1,0,1);
for(i=0;i<AS_cnt{0};i++)
sum1+=bb(i]"bbfi);

/*$ COMBINE sum1 by PLUS $*/
excombine(&sum1,f_add,sizeoksum1) 1 ALLNODES,

NULLPTR,8AS_type);
eps=ep sumi;
k=1,rd=(double)100000.0;
while(rd>eps){
band_muiti(ar,P,KP .eim hbnd),
sum1=sum2=0.0;

/*$ PARALLEL $*/

AS_set_range(0,elm-1,0,1);
for(i=0:i<AS_cnt{0]:i++)sum1+=R[i]°R(i];

/*$ COMBINE sum1 by PLUS $*/

excombine(&sum1,!_add sizeof(sum1),3 ALLNODES,
NULLPTR,8AS_type);

/"$ PARALLEL $*/

AS_set_range(0.elm-1,0,1);
for(i=0:i<AS_cnt{0];i++)
sum2+=P[i+AS_ofst[0]]"KP(i};

7*$ COMBINE sum2 by PLUS $*

excombine(&sum2,t_add,sizeot(sum2) 1 ALLNODES.
NULLPTR,8AS_type):
alpha=sum1i/sum2;

/*$ PARALLEL $*/

AS_set_range(0,eim-1,0,1);
for(i=0;i<AS_cnt{0];i++)
newX{i}=X[i]+alpha‘P[i+AS_ofst{0]);

1*$ PARALLEL $*/

AS_set_range(0,eim-1,0,1);
for(i=0:i<AS_cnt{0])i++)newR(i}=R(i}-alpha*KP[i];
sum2=0.0;

/*$ PARALLEL $*/

AS_set_range(0.elm-1,0,1);
for(i=0.i<AS_cny0]:i++)sum2+=newR[i}*'newR]i;

7*$ COMBINE sum2 by PLUS $*/

excombine(&sum2,!_add sizeof(sum?2),1 ALLNODES.
NULLPTR,8AS_type):
beta=sum2/sum1;

/°$ PARALLEL $*/

AS_set_range(0,eim-1,0,1);
for(i=0:i<AS_cnt{0}ii++)

newP(i}=newR{i)+beta*P[i+AS_ofst[0]];
rd=sumi;

/*$ PARALLEL $/

AS_set_range(0,elm-1,0,1);

for(i=0;i<AS_cnt{0];i++){
P(i+AS_ofst[0]]=newP[i]:
Rlij=newRl(i};
X[i]=newX[i};

/°$ CONCATENATE P $%/
AS_size|0]=sizeof(*P)*AS_num{0];
exconcat(8P[AS_ofst{0]], AS_size[0].P,AS_size|0].
NULLPTR.env.nprocs AS_Ist,8AS _type),

K++;

print_result(X);

Figure 2 Conjugate Gradient code parallelized by ASPAR

2.1.2 Successes of the Existing System.

The most dramatic success of ASPAR is that the program shown in Figure 2 is a correct, fully par-
allel conjugate gradient matrix inverter. All aspects of the displayed code, including the comments,
were automatically inserted by the system.

The performance of the method is summarized by the data shown in Figure 3. The data shown was

Speedup
g 1+ 300 x 97

1T~ #<— staring efficiency = 0.97

1 2 4 8 16
Number of Nodes

Figure 3 Performance of automatically parallelized matrix - .verter

The performance of the Conjugate Gradient is shown for matrices of order 200
and 300 with bandwidth 97. Data collected from an nCUBE/10

collected by running the program for matrices of order 200 and 300 with bandwidth 97 in both cas-
es. The initial data point, for a single processor, shows the comparison between the original sequen-
tial program running on a single node and the new parallel program running on a single node.

These results are extremely good. Despite the somewhat irregular nature of the sequential algo-
rithm ASPAR was able to successfully generate a parallel code whose efficiency is greater than
50% on up to 16 nodes.

2.1.3 Problems with the Current System.

Perhaps the most obvious defect with the code shown in Figure 2 is its illegibility. Despite the in-
sertion of automated comments which describe the parallelization strategies being implemented
the resulting C code is messy and hard to read. The Express system calls have many arguments
whose relationship to the underlying decomposition schemes is obvious only to those intimately
familiar with the system.

While this is not necessarily a bad feature in cases such as this where parallelization has been ac-
complished successfully it is a problem in those cases where only partial success is achieved. In

these cases we must be able to make available to the user enough information to complete the pro-
cess successfully and this is hindered if the generated code is too complex.

A second, and more serious problem surrounds the routines omitted from Figure 2: read data
and print_result.

Originally it was intended that ASPAA would use the parallel I/O constructs found in the Express
runtime library. In common with other utilities these routines are tailored to match the underlying
abstraction of machine architecture. For example, one can ask to read an array and simultaneously
distribute it over a two-dimensional processor dccomposition. The problems in attempting this type
of solution for ASPAR are

. Generalizing the I/O modes for arbitrary decomposition strategies, including
higher-dimensional grids is difficult.

. Support for “parallel” high speed 1/O devices is difficult.

. Any “complex” I/O statement in the original sequential program is impossible to
parallelize.

This latter problem is the most serious. Simple format I/O can, in principle, be dealt with although
this requires solutions to the first two problems indicated above.

The last problem is extremely difficult to solve. A simple sequental file containing an array of in-
teger values is easy enough. Consider, however, an I/O statement of the following type

int i, j;

float A[{10], B[10](20];

fscanf (fp, "%4d %d %f %f\n", &i, &3j, &A[1i], &B{i]I[3j1):;

This code is obviously quite complex especially when one adds the fact that the arrays A and B are
distributed among the processors, quite possibly in totally different ways.

A simple solution to this type of difficuity is to disatlow it in any program presented io ASPAR.
Since this type of construct is actually reasonably rare in large scale C programs this might be ac-
ceptable. Fortran, however, often contains this type of code.

Another cause of problems with programs presented to ASPAR was caused by the “static” nature
of the analysis performed. This problem is similar to that faced by most compiler technologies
when the exact runtime behavior of a code cannot be determined at compile time because of dala
dependencies.Analogously we found that ASPAR could only successfully parallelize programs
whose runtime data decompositions were known at compile time. This problem was caused by an
apparent mismatch between ASPAR's knowledge of the underlying structure of an algorithm and
the abilities of the Express runtime system to support those ideas. While most combinations could,
in principle, be created the work involved was often prohibitive.

A final problem concerned programs whose data decomposition requirements varied during the
course of the application. The original ASP/.H had no way to track data distribution dynamically
and thus had to periodically transform an existing data decomposition to some standard form in
order to proceed.

2.2 Designing a better ASPAR.

Because of the weaknesses mentioned above we decided to make the following general improve-
ments to the ASPAR system:

. Support for programs built from multiple source files.
. A more sophisticated I/O subsystem.
. Alternative interfaces to the Express runtime system to provide more and easier to

understand support.
2.2.1 Support for Multiple Source Files

The simplest improvement required is to provide support for programs consisting of more than one
source file. This requires implementation of an ASPAR “linker” which builds a data-base contain-
ing information about the program being parallelized. The information in this data-base is then
used by a second ASPAR pass which performs the linking operations to resolve information con-
tained in separate files and produce an overall parallelization strategy.

Once the overall decomposition strategy has been decided each of the individual source files which
makes up the program is converted to parallel form.

This tool has been successfully completed.
2.2.2 /0O Interface

The best solution to the I/O problems discussed above is a “remote procedure call” mechanism in
which sections of the original source code are executed, in tact, on some processor which has ac-
cess to the physical medium on which the data is stored.

Our original idea was to use the advanced I/O modes of Cubix to accomplish parallel I/O as shown
schematically in Figure 4. The call to fscanf, for example, in the parallel program running on

— Host Computer

——— Nodes ——]

' £ f(...
i~ File Server < fscani(

Figure 4 I/O to a parallel program using Cubix I/0 modes

the nodes generates a request to “read data” in the file server process running on the node attached

to the physical disk. This process reads a certain amount of data, without processing it, and returns
it to the calling node which then processes it according to the format specifier finally distributing
it to other nodes according to the Cubix I/O mode. The problem with this mechanism is that all the
intelligence resides in the parallel computer node. This means that to use ASPAR effectively
would require that we deduce all possible file formats at compile time - a hopeless task. Note that
there are already problems with a single call to fscanf. If this were an element in a more complex
I/O procedure the problem would be even more complex.

Our solution to this problem is to replace the I/O call in the node program with a routine which
invokes a procedure on the file serving node. This procedure is generated automatically by AS-
PAR by taking the I/O statements from the original sequential program and encapsulating them in
an Express protocol harness. The overall picture is rather more like that of Figure 5.

F Host Computer Nodes
- fscanf (.. -4\ invoke_IO
read IO...

Figure 5 Parallel I/O generated as a remote procedure call

The call to £ scanf in the nodes has been replaced by something which merely causes the original
sequential code to be executed on the file server. This call obviously interprets the file format in
exactly the same way as the original sequential program did. Once the daia has been converted into
the internal memory of the file server it is sent back to the calling node where a second procedure
call reads and distributes the incoming data.

This method has several important advantages

. All the internal file format processing is carried out on the file server which is
(presumably) similar in capability to the machine on which the original sequential
program ran. As a result there are no ambiguities about which element of a
distributed array get which data - there are no distributed arrays in the fileserver
node.

. The multiplexing of data required when redistributing the data into the individual
memories of the node processors is identical in function to the internal data
redistributions required by other ASPAR operations although the original source of
data is the filc server rather than another node processor. Since Express treats the
file serving node as just another node this difference is transparent.

. The call to read_I0 need not necessarily follow immediately after the call to
invoke_ I0.Inparticularthe invoke IO call may be moved to anearlier “time”
in the programs execution to allow the disk I/O to be overlapped with computation
in the node processors.

. The mapping of remote procedures to file servers can be made dynamic allowing
the use of either a conventional file system or some optimized parallel I/O resource.

. The 1/O statements can take any form supported by the file server’s compilers. This
is often important in leading edge parallel processing systems where compiler
techinology often lags somewhat behind workstations and other file serving
machines.

We are currently creating a functional specification for this I/O interface and will complete a pre-
liminary implementation within Phase I of this project.

2.2.3 An alternative Express Interface

In most applications, especially those in which ASPAR was able to successfully parallelize the in-
put program the Express message passing primitives were found to be adequate. In examining the
failures, however, we have identified the following two issues:

. The interface must be made “dynamic” in the sense that ASPAR should be allowed
to request any decomposition at any time without regard for where the data might
currently be located.

. The interface should be simplified so that the end user can comprehend the
communication strategy implemented or partially implemented by ASPAR.

To achieve these two goals we have designed a new set of Express utilities built around the two
functions: exlayout and exdist.

exlayout allows the programmer to “register” the current data distribution of any data object.
The distribution may be global, in which case each node has a copy of the same data, local in which
case nodes have independent subsets of the whole or any mixture of the two extreme cases.

exdist uses the information registered in the most recent call to exlayout to redistribute data
among the parallel computing nodes according to some user-specification. Any combination of ex-
isting and required decompositions is allowed and the data movement is accomplished in a time
which grows only logarithmically with the number of nodes in the system.

The combination of exlayout and exdist yields an extremely powerful and very high level
interface to interprocessor communication. The particular abstraction used allows the programmer
to be entirely free of conventional “message passing” ideas. Instead the system call exdist can
be considered to be responsible for bringing the data required for the next operation to this proces-
sor regardless of its original location in the parallel machine. Note that this very powerful concept
is equally at home on distributed memory machines in which the physical data movement is essen-
tial for correct operation of the algorithm or shared memory machines with caches in which it is
essential for good performance to pre-fetch and cache data which will be used in the upcoming op-
erations.

As well as solving many of the communication related problems with the original ASPAR we be-
lieve that these concepts will have extremely far reaching effects in many parallel processing are-
nas. Already mentioned is the “caching” problem of many advanced architectures. Other important
areas include the visualization of parallel zlgorithms and the optimization of internal communica-
tion patterns. We will have more to say about these ideas in the next few sections.

We are currently completing the specifications for these two functions and will complete initial im-
plementations in Phase I work.

2.3 User Interface and Visualization Tools.

In using ASPAR and its related tools we have identified several important areas in which interac-
tions between human and user must be presented

. Before attempting to use ASPAR it is important to understand the operation of the
sequential algorithm and the way in which it operates on its internal data.

. While using ASPAR it is necessary to be able to observe the changes being made
to the user code and also to graphically visualize any problems which prevent
ASPAR from completing its task. In particular this requires sophisticated data
analysis and dependency analysis tools which can visually display the interactions
between the various conflicting requirements of a particular parallelization scheme.

. After ASPAR has parallelized the application it is necessary to be able to visualize
the parallel operations taking place. This is required in order to understand and
optimize the performance of the parallel program and also to validate the ordering
assumptions and dependency violations that may have been introduced in
parallelization.

We are currently completing the design of five new tools which will be able to support this type of
data analysis. Together they should provide a sophisticated user interface to help the programmer
through the parallelization process.

2.3.1 Sequential program analysis: mapv
The mapv tool is provided to support visualization of the algorithmic behavior of a sequential pro-
gram with regard to its data access patterns. The utility operates in two modes:

. User directed.

. ASPAR directed.

In the former mode the user “insaruments’ the sequential program by including directives to mon-
itor accesses to particular variables or arrays. Upon completion of the sequential program a data--
base is created which contains time-stamped markers relating to the access patterns of the applica-
tion.

In the ASPAR directed mode the user program is instrumented automatically by ASPAR by ana-
lyzing the data structures upon which the automated parallelization would operate.

The analysis tool presents a “playback” of the access patterns to each independent data object al-
lowing the user to observe the “patterns” of access and correlate them with the appropriate lines of

10

the original source code. The speed at which the data is played back can be controlled by the user
until a suitable visualization of the algorithm has been achieved.

This utility will be used to give an idea of the locality or otherwise of a program’s data access re-
quirements. In this way the user can understand the decizions that ASPAR mzkes about which data
objects to distribute among processors and which to maintain as global cbjects, known in every
node. The interrelationships between distributed objects can also help in understanding the com-
munication system calls required by ASPAR.

In cases where ASPAR fails to parallelize an algorithm mapv will help in understanding the rela-
tionships cause failure.

A preliminary implementation of mapv is complete. We are designing and implementing new fea-
tures and expect this tool to be complete by the end of Phase I research.

2.3.2 Algorithm Structure and Dependency Analysis: ftool

During the parallelization process it is necessary for the user to be able to visualize the overall
structure of the program being parallelized and the relationships between data objects which affect
the performance and possibilities of a parallel algorithm.

ftool is designed to provide these services in a multi-window tool which will be able to display
the original source code together with various types of abstracted “flow-chart” which show the
overall algorithmic structure. It is expected thac at least some of the available options will be com-
patible with standard CASE technology tools and will therefore facilitate the use of this new tech-
nology on parallel programs.

As well as showing program structure ftool will also be able to interactively display the results
of ASPAR’s analysis of the code. This will include formal descriptions of the dependency analysis
performed by ASPAR together with displays that indicate the interrelationships between various
data objects that affect the success, failure or performance of an automatically parallelized pro-

gram.

A possible extension to ftool would be an interactive dialog system which allowed the user to
give ASPAR “hints” about strategies which may not be apparent from its static data analysis. An-
other possibility is to use £t ool’s displays to indicate suitable interfaces to “‘canned” parallel pro-
cessing libraries.

A preliminary implementation of ftool is complete. We are designing and implementing new
features and expect a fully functional version of this tool to be complete by the end of Phase I re-
search. Some of the advanced features mentioned in the last paragraphs of this section will be de-
ferred until Phase II.

2.3.3 Interface Construction and Validation: HNtool

An important issue in constructing parallel programs concerns the *“parallel programming model”
to be used. Many machines have their own programming styles as do the various software packages
that execute on them. Express itself supports two completely separate programming models and
a whole range of variations of these two.

Il

To help the user in building a parallel version of a large scale application a tool is required which
can compare the existing code against the available programming models and give advice about
the performance/maintenance payoffs involved in implementing a particular strategy. Note that
this type of analysis is orthogonal to that implemented by ftool and ASPAR. These latter tools
operated on the code with assumptions of a basic~lly tightly coupled architecture. HNt ool (tenta-
tive name only) operates in a rather more loosely coupled world in which the basic building blocks
are large program fragments.

As an example consider a significant image analysis package. In such a system probably 80-90%
of the total code 1s related to the interactive and/or batch user interface and the display and storage
of image data. As such it probably uses system calls tailored to a particular display device or im-
aging system which will almost certainly not be available to the nodes of a parallel processing sys-
tem. On the other hand most of the compute time is probably spent in the few hundred or thousand
lines of code that implement the image processing algorithms. This code is usually amenable to
parallel processing and could be parallelized without difficulty by ASPAR.

The coals of this tool are to identify and classify the various pieces of an application with respect
to a suitable target processor. The various trade-offs associated with various partitioning strategies
should be analyzed and displayed to the user. Once a suitabie decomposition of the work-load has
been developed a suitable interface between the various pieces of code should be generated auto-
matically.

This type of activity is usually undertaken by a human being with a thorough knowledge of the un-
derlying program. Even after a suitable decomposition has been decided, however, the task of
building the interface between the various pieces is often extremely troublesome - simple but bu-
g-ridden. It is our hope that most of this difficulty can be removed by this tool.

An important improvement in parallelization possibilities to be gained from this type of tool is that
the problems associated with maintaining both a sequential and parallel version of a large scale ap-
plication should be dramatically reduced .ince the interfaces between various “blocks” are con-
structed automatically and ASPAR perfurms the parallelization of the compute intensive portions
of the code most of the tricky work will be accomplished automatically.

We have complete a preliminary design for this tool but do not expect to implement it until Phase 11
of this project.

2.3.4 Parallel Data-Flow Analysis: Datamon

An obvious extension of the mapv concept will allow us to visualize the flow of data in the paral-
lelized version of any application. This utility will be used as a visual guide and documentation
system for the parallel processing constructs used by ASPAR. In many cases it wiil also provide
key ideas in optimizing parallel algorithms.

It is important to note that, in common with the data redistribution scheme described in 2.2.3, this
tool is not “‘message based”. There already exist several tools which can display the individual mes-
sage transactions between processors. This does not, however, necessarily lead to any great under-
standing of the underlying parallelization methods. Dat amon (tentative name only) will be used
to display the data distribution at various points in the program - a much more intuitive scheme that
observing 1nessage in transit.

One important capability will be to integrate tais utility with mapv to allow users to observe the
differences in behavior between the sequential and parallel programs.

We are currently working on a specification for this utility and also an interface between it and the
closely related mapv. We do not expect to implement any design until Phase II.

2.3.5 Parallel Communication Optimization: Dataopt

The preliminary version of ASPAR that existed at the beginning of Phase I research used the stan-
dard Express runtime system to implement its parallelization strategies. As as been indicated we
are now supplementing this with alternative, more powerful, methods.

One trade-off to be considered, however, is that of performance.

The benefit of using the Express primitives directly is that they are individually optimized for the
hardware on which they execute and thus provide very high performance. The higher level re-dis-
tribution primitive exdist, while also amenable to optimization for individual architectures is,
by nature, more general and thus incurs higher overheads.

It is our intention to provide a “learning” mechanism for the programs parallelized by ASPAR in
which the parallelized application records the various changes made by the redistribution functions
and allows optimization to be performed off-line as a post-processing stage. We will build a system
that can match the patterns of internode communication against the standard Express library and
suggest suitable changes which might speed-up a particular piece of code.

An important berefit of this approach is that we expect to be able to offer an “optimization service”
in which user’s can give us their programs output and ASPAR built data-base and allow us to op-
timize communication patterns for a particular piece of target hardwere. Such a service might typ-
ically involve a two-tiered approach. In the first stage only optimizations which result in portable
code might be used while the second level would allow for hardware specific but non-portable op-
timization.

An important side-effect for ParaSoft would be access to the communication patterns for a wide
range of applications which would allow us to extend the library of “canned” communication util-
ities in useful ways.

We are currently designing and implementing the “instrumentation” package required to obtain the
necessary information for this tool. We expect a preliminary version of the instrumented code to
be available by the end of Phase I research but will defer implementation of the optimization pro-
cesses and tools until Phase II.

2.4 Other Languages.

The pre-processing system required for parsing C programs and linking various source files togeth-
er is now complete. We are currently examining the possibilities and requirements for an extension
to Fortran/77.

It is hoped that a simple “front-end” will suffice to generate the data-base in a format suitable for
ASPAR while a new “back-end” will be able to convert the input source code by the addition of
Fortran calls to the Express runtime system.

13

We expect to have a preliminary Fortran interface built by the end of Phase I research.

3. Remaining Phase I work

As has been seen we have currently spent most of our efforts on the design of the various pieces of
technology required to create a version of ASPAR which meets our needs. In the remaining
months of Phase I research, however, we expect to complete the following pieces of software:

. A simple, but complete, I/O interface to ASPAR through the remote procedure call
mechanism described in 2.2.2. No optimization for overlapped or parallel [/O
systems will be performed.

. An preliminary implementation of the exdist/exlayout system calls together
with the mechanisms for the internal monitoring and dynamic modification of data
distributions. We will also attempt to perform rudimentary instrumentation of this
system to allow for further development in Phase II.

. A complete version of the mapwv utility fc <amining the data access patterns of
existing sequential programs. We will create a multi-window interface allowing
visualization of several interrelated data structures and complete cross-referencing
with the original source code.

. A complete version of the £t ool utility for presenting the decisions and factors
which affect the parallelization schemes adopted by ASPAR.

. A preliminary Fortran pre-processor.

Together with these “tools” we will also continue to modify the internals of ASPAR to reflect in-
formation derived from attempting to parallelize new programs.

4. Conclusions

Surprisingly, one of the most exciting things to come from the research performed so far has not
been the growing success rate of ASPAR itself, which was expected, but the enormous growth of
related ideas which it has produced. Many of the tools described in Section 2.3 have either been
created directly as a consequence of our preliminary research or have been significantly extended
because of it. The data distribution schemes described in 2.2.3 are completely new and, we believe,
extremely important to programmers completely outside the range intended by our first design of
ASPAR.

Another new and extremely important area of concern to emerge from this work is Fortran/90. Our
original targeting of the C language was made so that we would be forced to solve many of the
complex problems presented by such a sophisticated language. Fortran/77, by comparison is a
much simpler language and although it has its own idiosyncracies we expect the benefits of using
ASPAR to be much larger. Even more important than this, however, is the emerging standard for
Fortran/90. Even though the standard has still to be finalized several vendors are already working
on compilers for various features - Thinking Machine’s compiler for the Connection Machine is an
important example where sequential code written in Fortran/90 can be executed in parallel without
change. We believe that this language will have a big impact on the high-performance and super-
computing world which can be significantly enhanced by the existence of tools such as ASPAR

14

which can generate portable parallel programs from Fortran/90 source. This is an area in which we
would like to invest a large amount of Phase II effort.

Overall we believe that the project is currently exceeding its original goals although some of these
achievements have been in areas which were not anticipated at the time of the original proposal.

15

