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ABSTRACT

Advanced elastic-damage and elastoplastic-damage models are presented within the

frameworks of both continuum damage mechanics and micromechanical damage

mechanics. Novel energy-based coupled elastoplastic continuum damage theories and

computational algorithms are proposed, including rate-dependent isotropic and anisotro-

pic damage models. Efficient constitutive algorithms and extensive experimental valida-

tion are also performed. In addition, novel finite deformation elastoplastic continuum

damage models are developed to account for large strains and high rates. On the other

hand, advanced and state-of-the-art two- and three-dimensional micromechanical aniso-

tropic damage models are proposed to physically simulate micromechanical microcrack-

ing kinetics (cleavage 1 and cleavage 2 processes) and damaged overall compliances for

concrete materials under tensile and compressive loadings. These results are innovative,

fundamental, and very useful in advanced damage modeling.
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PART I
On Energy-Based Coupled Elastopiastic Damage Theories:

Constitutive Modeling and Computational Aspects

LI. Introduction

The inelastic behavior of the mechanical constitutive responses of engineering

materials is in general related to the irreversible thermodynamic pro.esses involving

energy dissipation and stiffness variation due to physical changes in the microstructure.

Some commonly employed inelastic theories include, for instance, viscoelasticity, plasti-

city and damage mechanics. In the past two decades, in particular, the damage mechan-

ics approach has emerged as a viable framework for the description of distributed

material damage including material stiffness degradation, microcrack initiation, growth

and coalescence, as well as damage-induced anisotropy, etc.. Damage mechanics has

been applied to model creep damage (Hult [1974], Kachanov [1958][1981][1984],

Krajcinovic [1983a1, Leckie and Hayhurst [1974], Lemaitre [1984], Murakami [1981],

Rabotnov [1963]), fatigue damage (Chaboche [1974], Lemaitre [1971][1984], Marigo

[1985]), creep-fatigue interaction (Lemait- [1984], Lemaitre and Chaboche [1974],

Lemaitre and Plumtree [1979]), elasticity coupled with damage (Cordebois and Sidoroff

[1979], Ju et al. [1989], Kachanov [1980][1987a][1987b], Krajcinovic and Fonseka

[1981], Ortiz [1985], Wu [1985]), and ductile plastic damage (Cordebois and Sidoroff

[1982], Dragon [1985], Dragon and Chihab [1985], Lemaitre and Dufailly [1977],

Lemaitre [1984][1985][1986], Simo and Ju [1987a][1987b][1987c]). In addition, dam-

age mechanics has been introduced to describe the inelastic behavior of brittle materials

such as concrete and rock (Francois [1984], Ilankamban and Krajcinovic [1987],

Kachanov [1982], Krajcinovic [1983b], Krajcinovic and Fonseka [1981], Loland [1980],

Lorrain and Loland [1983], Mazars [1982][1986], Mazars and Lemaitre [1984], Resende

and Martin [1984], Simo and Ju [1987a][1987b]).
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Recently, micromechanical damage theories are proposed in the literature to model

non-interacting microcrack growth in an originally isot,,opic linear elastic brittle solid;

see, e.g., Wu [1985], Krajcinovic and Fanella [1986], Sumarac and Krajcinovic [19871

(which extends the work of Horii and Nemat-Nasser [1983] to a process model). In the

case of nonlinear elastoplasticity coupled with many distributed interacting microcracks,

nevertheless, such micromechanical derivation of microcrack kinetic laws presents

tremendous difficulties and challenges, and is an objective for future research. Further, as

was remarked by Krajcinovic [1985], a purely micromechanical theory may never

replace a properly formulated phenomenological theory as a design tool.

Continuum damage mechanics is based on the thermodynamics of irreversible

processes, the internal state variable theory and relevant physical considerations (e.g., the

assumption of distributed microcracks, homogenization concept, the definition of

micromechanical damage variable, kinetic law of damage growth, nonlocal damage char-

acterization and plasticity-damage coupling mechanism, etc.). A scalar damage variable

is suitable for characterizing (homogenized) isotropic damage processes. Nevertheless, a

tensor-valued damage variable (fourth order) is necessary in order to account for aniso-

tropic damage effects.

Many researchers in damage mechanics focused on the linear "elastic-damage"

mechanics for brittle materials; i.e., linear elastic solids with distributed microcracks. For

nonlinearly elastic solids and elastoplastic solids, nontheless, their methods are not appli-

cable in general. By contrast, some elastoplastic damage theories have been proposed

(e.g., Lemaitre [1984][1985][1986], Dragon [1985], Simo and Ju

[1987a][1987b][1987c]). However, it appears that the thermodynamic free energy func-

tion and the "damage energy release rate" proposed by Lemaitre [1985] may not be phy-

sically appropriate. In fact, the theory advocated by Lemaitre implies that the thermo-

dynamic force conjugate to elastoplastic microcrack evolution is simply the elastic strain

energy, i.e., plastic strains do not contribute to the microcrack growth process. On the

2



other hand, the theory proposed by Dragon [ 1985] does not offer thermodynamic damage

energy criteria, nor provide tangent moduli or numerical simulations or experimental

validations. Hence, coupled elastoplastic damage mechanics warrants further study.

It is important to clarify the term "damage" employed in the current literature. As

was pointed out by Krajcinovic, there are at least three different levels of scale of "dam-

age" in material mechanical responses: (a) Atomic voids and crystal lattice defects,

which require the use of non-continuum mechanics models at the atomic scale; (b)

Microcracks and microvoids, which require micromechanical damage models (to model

microstructural changes and individual microcracks grow' )r phenomenological con-

tinuum damage models (to model distributed microcracks); and (c) Macrocracks, which

warrant fracture mechanics models to model the growth of discrete macrocracks.

In this paper, novel energy-based (isotropic or anisotropic) coupled elastoplastic

damage theories are presented to characterize distributed microcracks (not ductile micro-

voids) in brittle damage modes (including "Cleavage 1", "Cleavage 2" and "Cleavage 3"

in the sense of Ashby [1979]). An outline of the paper is as follows. In Section 2, the

definitions of "damage variable" are reviewed; the homogenization concept and alterna-

tive nonlocal damage definition are discussed; and the basic hypotheses of damage

mechanics developed are summarized. In Section 3 energy-based isotropic elastoplastic

damage theories are given, which are capable of accommodating nonlinear elastic

response and general plastic response. The proposed theories can predict degradation in

both elastic and plastic material properties (such as elastic moduli and plastic flow

stresses). At variance with Lemaitre's formulation, a new free energy function and

proper "damage energy release rate" are constructed.

In contrast to previous work by Simo and Ju [1987a][1987b][1987c] (which features

an additive split of the stress tensor), this paper assumes an additive split of the strain

tensor into the "elastic-damage" and "plastic-damage" parts from the outset. It is shown

that the current "strain split" damage-plasticity formulation is physically more appealing

3



(analogous to the J -integral in nonlinear fracture mechanics) and results in more robust

tangent moduli than the "stress split" formulation. In addition, the plastic flow rule and

hardening law are characterized in terms of the effective stress quantities; namely, the

effective stress space plasticity. A rate-dependent damage mechanism is subsequently

developed to account for the microcrack retardation effects at higher strain rates.

Rational mechanism is also proposed to simulate the "mode I" microcrack opening and

closing operations.

The framework constructed in Section 3 is further extended in Section 4 to develop

simple energy-based fourth-order anisotropic damage models for brittle materials.

Recognizing the important role played by constitutive algorithms in constitutive theories

and modeling, computational aspects of the proposed elastoplastic damage models are

systematically explored in Section 5. In particular, new three-step operator split algo-

rithms are developed within the present framework. Application is made to a class of

inviscid and rate-dependent cap-damage models for concrete and mortar in Section 6.

Experimental validations are also given to illustrate the applicability of proposed damage

models and algorithms.
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1.2. A framework for damage mechanics

Physically, degradation of material properties is related to the initiation, growth and

coalescence of microcracks or microvoids. Some basic concepts pertaining to damage

mechanics are reviewed in this section.

2.1. Damage variable and homogenization. "Damage" can be defined as a collec-

tion of permanent microstructural changes concerning material thermomechanical pro-

perties (e.g., stiffness, strength, anisotropy, etc.) brought about in a material by a set of

irreversible physical microcracking processes resulting from the application of ther-

momechanical loadings (Talreja [1985]). The selection of a "damage" variable should be

based on proper micromechanical considerations. For several types of material micros-

tructure, microcracks develop in characteristic patterns and the microstructure can be

assumed to be statistically homogeneous. These patterned damage are observed in fibrous

composite laminates, concrete and ceramics (Weitsman [1987]). Several definitions of

damage are possible for consideration. For example,

(i) Define the second-order damage tensor D as a spatial average:

D="- I (b Qn + n Qb)(k) d (k) , (2.1)

in which b and n denote the displacement discontinuity vector (b - [u]) and the unit

normal vector across the k -th microcrack surface S (k) , respectively (Vakulenko and

Kachanov [1971], Dragon [1985]). The representative volume V is a proper statisti-

cal and micromechanical measure for observing or computing an overall constitu-

tive law. The minimum prescription for the representative unit cell is that the mag-

nitude of local wave-like fluctuations about the expected (mean) values of phase

variables should not depend on the size of the unit cell so that the system is macros-

copically homogeneous (Hill [1967][1972]). At the macroscopic level, V plays the

role of an infinitesimal material neighborhood with uniform state variables. At the

microscale, however, V plays the role of a "micro-continuum" with nonuniform

5



spatial variables (Eringen [1968], Ortiz [1987a]). However, as pointed out by

Krajcinovic [1985], the definition (2.1) is thermodynamically incorrect because it

leads to energy dissipation during unloading. Eq. (2. 1) is, nevertheless, a good index

for "added flexibility" (damage-induced inelastic strain) due to open microcracks.

(ii) Define the damage variable d. (in the normal direction n ) as

dosAd - (2.2)

where Ad is the damaged surface area (taking into account the microcrack area, the

micro-stress concentration and the interaction between microcracks) and AT is the

total cross-sectional area of a surface of a unit cell along a normal direction n (see,

e.g., Lemaitre [1984][1985]). The definition of a damage variable can also be

anisotropic to signify different oriented geometry and micro-defects in material

bonding; e.g., three changing principal normal directions of a three-dimensional

oriented microcrack.

(iii) Define the damage measure d as (assuming only one single microcrack)

d = a 3  (2.3)

where a is the radius of an assumed single spherical microcrack and V is the

volume of a representative unit cell in the mesostructure (see, e.g., Budiansky &

O'Connell [1976], Wu [1985], Krajcinovic [1987]). This definition is related to the

microcrack porosity (concentration ratio) within the unit cell. It is emphasized that

Eq. (2.3) can lead to a fourth order damage tensor representation. 0

The homogenization procedure can be applied not only to damage variables but also to

stresses and strains. For instance, one may write:

6=1cav;i dv (2.4)
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2.2. Alternative nonlocal damage characterization. As was noted earlier, the

state variables display non-uniform spatial fluctuations at the microscale. Therefore,

nonlocal continuum theory may be considered for damage mechanics; see, e.g., Bazant,

Lin and Pijaudier-Cabot [1987], Eringen [1983], Eringen [1987], Eringen and Edelen

[1972], Pijaudier-Cabot and Bazant [19871, Xia et al. [1987]. The essence of nonlocal

theory includes the characteristic length (1) and the "attenuation" (weighting) function

(o(x)). It is noted that nonlocal spatial averaging is fundamentally different from the

homogenization concept, although nonlocal theory might provide a unified foundation

for the homogenization concept. (o contains a crucial material parameter -- the charac-

teristic length which is generally influenced by the spacing, size and shape of inclusions

(or aggregates, fibers). In the event of inhomogeneous anisotropic materials, one could

replace the homogeneous isotropic attenuation function (o(x) by a fourth-order attenua-

tion tensor woijk (x) .

2.3. Effective stress concept and hypothesis of strain equivalence. Let us denote

by M a fourth-order tensor which characterizes the state of damage and transforms the

homogenized stress tensor a into the effective stress tensor aF; viz.,

- M- 1 : C (2.5)

For isotropic damage case, the mechanical behavior of microcracks is independent of

their orientation and depends only on a scalar variable d . Accordingly, M simply

reduces to (1 - d) I , where I is the rank four identity tensor, and (2.5) collapses to

- = C
Y -I -d(2.6)

The coefficient (I - d) dividing the stress tensor in (2.6) is a reduction factor associated

with the amount of damage in the material first introduced by Kachanov [19581. The

value d = 0 corresponds to the undamaged state, d = dc defines the complete local rup-

ture (dc E [0, I]), and d r (0, dc) corresponds to a partially damaged state. Local

stresses are redistributed to the undamaged material micro-bonds and therefore the
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effective stresses are higher ti-an the nominal stresses. In addition, Lemaitre introduced

the following hypothesis of strain equivalence:

"The strain associated with a damaged state under the applied stress is equivalent

to the strain associated with its undamaged state under the effective stress."

See Figure 1 for a schematic explanation.

Remark 2.1. Added flexibility. Due to the existence of microcracks, the flexibility

of a material increases. To see this, consider for simplicity the elastic-damage case (see

Figure 2). Let us denote by CO the undamaged stiffness and (1-d) CO the damaged

unloading stiffness (as will be derived in Eq. (3.15) of Section 3.2). It is assumed that all

microcracks close upon unloading and therefore no permanent deformation exists upon

complete unloading. Accordingly, the truly reversible (elastic) strain is obtained by fol-

lowing the unloading slope CO and is designated as ie . It is observed from Figure 2 that

the gap between point 0 and point A is actually the inelastic strain Ed due to microcrack

opening during the loading process. See also Ortiz [1985]. 0
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1.3. Energy-based isotropic elastoplastic damage models

The underlying concept of the energy-based elastoplastic damage models presented

in this section is that damage in a material is linked to the history of both elastic and plas-

tic state variables. The framework constructed in this section will be extremely useful for

the development of anisotropic damage models proposed in Section 4.

The fundamental problem of the ductile plastic damage formulation advocated by

Lemaitre [1984][1985][1986] is the non-optimal choice of the locally averaged free

energy potential. In particular, damage is associated only with the elastic strains and the

damage energy release rate is shown to be the elastic strain energy in Lemaitre [1985].

This treatment amounts to uncoupled plasticity and damage processes, thus in a sense

contradicting experimental evidence that plastic variables also contribute to the initiation

and growth of microcracks. By contrast, a new free energy function and damage energy

release rate are proposed in this section. The damage energy release rate (energy barrier)

controls the microcrack propagation and arrest. The damage loading/unloading condi-

tions are completely characterized by this energy barrier which is related to the local

debonding energy required to initiate or propagate microcracks. The notion of effective

stress and the hypothesis of strain equivalence are also utilized.

L3.1. Thermodynamic basis. Strain split

The split of the total strain tensor into the "elastic-damage" and "plastic-damage"

parts is assumed at the outset; i.e.,

E=e +EP (3.1)

It is emphasized that the "added flexibility" due to the existence of microcracks is already

embedded in ce and WP implicitly (see Remark 2.1). That is, ce (cP) includes not only

the truly elastic (plastic) strain but also the added deformation due to active microcracks.

Upon complete unloading, however, we assume that all microcracks are closed and no
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residual strain is induced by micro-defects. To introduce both damage and plasticity

mechanisms, let us consider the following locally averaged (homogenized) free energy

function:

(ce, q, d) (I - d) To(ce, q) (3.2)

where q denotes a suitable set of plastic variables and TO (ce , q) signifies the total poten-

tial energy function of an undamaged (virgin) material. One often assumes (although

unnecessary) that the elastic and plastic potential energy functions are uncoupled; i.e.,
To (e ", q) - teO(ce) + Tpo(q) .

Confining our attention to the purely mechanical theory, the Clausius-Duhem ine-

quality takes the form

-++o:i2> 0 (3.3)

for any admissible process. Taking time derivative of Eq. (3.2), substituting into (3.3),

and making use of standard arguments (Coleman and Gurtin [1967]) along with the addi-

tional assumption that damage and plastic unloading are elastic processes, we obtain

DT = (Il-d) aTO(34

and the dissipative inequalities

T°O(c ,q)d > 0 and NO :if' ----. i> 0. (3.5)

It is clear from Eq. (3.4) and (3.5) that the present framework is capable of accommodat-

ing nonlinear elastic response and general plastic response. Moreover, it is noted that the

effective stress is given by the expression

= 0 = ao(E, q) (3.6)

Remark 3.1. From Eq. (3.2) it follows that

10



_ y _- D(E e q d ) = To(ce ,q) (3.7)d

Therefore, we conclude that the undamaged energy function TO (Ce , q) is the thermo-

dynamic force (damage energy release rate) conjugate to the damage variable d . This is

at variance with Cordebois and Sidoroff [1982], Lemaitre [1984][1985][19861, who con-

sidered only the elastic part of the damage energy -- 'TO(ce). It is noted that by consider-

ing the elastic damage energy only is physically incorrect since plastic dissipation is not

properly accounted for. See also Chow and Wang [1987a] for more anomalies of elastic

damage energy release rate. 0

Remark 3.2. A different formulation based on an additive split of the stress tensor

was previously proposed by Simo and Ju [1987a][1987b]. In their work, the thermo-

dynamic damage energy release rate was shown to be ' ° (e) ; i.e., the total undamaged

stored energy function with the total strain tensor C as its argument. By contrast, the

damage energy release rate in the present formulation is TO (Ce , q) which is smaller than

To (E). It is interesting to notice that To (ce , q) is actually the local counterpart of the

global J -integral fracture energy in nonlinear elastoplastic fracture mechanics. This is

not the case for the alternative quantity TO (c) proposed by Simo and Ju [1987a][ 1987b].

0

1.3.2. Characterization of damage

A simple isotropic elastoplastic damage mechanism is characterized in this section

to describe the progressive degradation of mechanical properties of materials. Motivated

by Remark 3.1, we propose to employ the (locally averaged) undamaged energy function

TO (the damage energy release rate) to characterize the damage loading/unloading condi-

tions. For convenience, we define the notation 4 as

= '°(ce, q) (3.8)
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The state of damage in the material is then characterized by means of a damage criterion

g ( , rt) - 0 with the following functional form:

g( r) r, <-O0 , t r= 1R+ (3.9)

Here, the subscript t refers to the value at current time t r R+ , and rt signifies the dam-

age threshold (energy barrier) at current time t (i.e., the radius of the damage surface). If

r0 denotes the initial damage threshold before any loading is applied, a property charac-

teristic of the material, we must have r, > ro. Condition (3.9) then states that damage in

the material is initiated when the damage energy release rate ( t) exceeds the initial dam-

age threshold r0 . The above energy-based damage criterion is fundamentally linked to

the history of both elastic and plastic variables. A large body of current literatures, how-

ever, adopts certain stress-based damage criteria; see, e.g., Chow and Wang

[1987a][1987b] (which tried to remedy Cordebois and Sidoroff [1982]). It is noted that a

stress-based damage criterion in the presence of significant plastic flows is inherently

inadequate for predicting realistic plastic damage growth. To substantiate this statement,

let us consider for simplicity the perfect plasticity coupled with damage. The effective

stresses are constant and the homogenized stresses are decreasing; consequently, a

stress-based criterion will not predict significant damage accumulation ever under large

plastic deformations.

To describe the growth of microcracks and the expansion of damage surfaces, it is

necessary to specify the equations of evolution for d and r . As was mentioned earlier,

micromechanical derivation of microcrack kinetic growth laws is currently achievable

only in the case of originally homogeneous, linear isotropic elastic solids without micro-

crack interaction. In the case of general nonlinear elastoplasticity coupled with interact-

ing microcracks, such micromechanical derivation is not available yet. Hence, in this

section, a phenomenological description of the kinetics of microcrack growth is

attempted. For the isotropic damage case, we define the evolution equations as
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= iH(t ,d ,s ,a ,c ,p)
(3.10)

where s is the spacing of inclusions (fibers or aggregates), a the grain size, c the micro-

crack size, and p the porosity (e.g., water/cement ratio in concrete). In addition, t -a 0 is

a damage consistency parameter which defines damage loading/unloading conditions

according to the Kuhn-Tucker relations:

.t >_ 0, g( ,rt) < 0, jg( ,rt) = 0 . (3.11)

Conditions (3.11) are standard for problems involving unilateral constraint. If

g (,, r,) < 0 , the damage criterion is not satisfied and by condition (3.11)3 we have

4= 0 ; hence, the damage rule (3.10) implies that a = 0 and no further damage takes

place. If, on the other hand, 4 > 0 ; that is, further damage is taking place, condition

(3.11)3 now implies that g (k, rt) = 0. In this event the value of 4 is determined by the

"damage consistency condition"; i.e.,

g( ,r,)=g( ,r,)=0 = = (3.12)

So that r, is given by the expression

r, = max {r, ma } (3.13)

3.2.1. Elastic-damage tangent moduli. For isotropic ductile damage, the above

characterization of damage results in symmetric elastic-damage tangent moduli. In the

absence of further plastic flow, P a q - 0. Time differentiation of (3.4) along with the

damage rule (3.10) and the damage consistency concLion (3.12) then yield

( =(l-d) a 2%°(Ce ' q ) :i:-H kF (3.14)

where a ° (the effective stress) and, for notational simplicity, the subscript t has

been dropped. By taking the time derivative of Eq. (3.8), we obtain F= :: .
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Substitution into (3.14) then yields u= C(ce , q , d):£ , where C(£e , q , d) is the

elastic-damage tangent modulus given by

C(rEe ,-d) ay21o (Ce 'q) -H Q (3.15)
,( ,q, d) = [ (I -d e2 C

Note that C(ee , q , d) is a symmetric rank four tensor. It is often assumed that the

undamaged tangent modulus CO -2T2o/le2 is constant.

1.3.3. Coupled elastoplastic damage response

Once microcracks occur, local stresses are redistributed to undamaged material

micro-bonds over the effective area. Thus, true stresses of undamaged material points

are higher than nominal stresses. Accordingly, it appears reasonable to state that the

plastic flows occur only in the undamaged material micro-bonds by means of effective

quantities. In fact, this is simply the underlying notion of the effective stress concept.

Therefore, the characterization of the plastic response should be formulated in the effec-

tive stress space in terms of effective quantities Y and q. The homogenized stress tensor

a is replaced by the effective stress tensor a in the stress space yield criterion; i.e., the

"elastic-damage" domain is defined by f (a, q) < 0 . It is recognized that due to the

existence of microcracks the plastic flow stresses and plastic material properties degrade.

Use of effective quantities in the yield condition essentially has the net effect of lowering

the plastic strength and flow stresses of materials. By assuming an associative flow rule,

the rate-independent damaged plastic response is chardcterized as follows:

=5 -. .(a, q) (flow rule) (3.16a)

1 = X h(c , q) (plastic hardening law) (3.16b)

f (o, q) _< 0 (yield condition) (3.16c)

where X denotes the plastic consistency parameter and h signifies the vectorial hardening

function. It is interesting to notice that in spite of the normality rule assumption (3.16a)
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in the effective stress space a , the flow rule direction departs from normality in the

homogenized stress space a. Hence, the damage-perturbed yield criterion and damage-

induced non-associative flow rule (despite the associative flow rule in terms of a) are

accounted for in Eq. (3.16). Further, the loading/unloading conditions can be expressed

in a compact form by requiring that

f(cy,q)< 0, X 0, iff(a,q) = 0 (3.17)

. is determined by requiring that I =0 , the so-called plastic consistency condition.

Hence, during plastic loading one has

S + *=0 (3.18)

For simplicity, we shall assume uncoupled elastic and plastic potential energy functions;

namely, To (ce , q) _ o(Ee ) + 'I,(q). Therefore, from Eq. (3.4) we obtain

'---p - ._ a P: ( ..g--) (3.19)

aEe2

where use has been made of the flow r-ie (3. 16a). Thus, X is determined as

a a2TjO

-u (3.20)a . a2T° a"
e__ q oh

Substitution of (3.20) into (3.19) then yields - = Cep : i , where Cep is the effective

elastoplastic tangent modulus (a symmetric fourth-order tensor) given by

a2qTo _ _ _ _ I_ _ _ _ _ _ _a
Ce =a2 r C2 ° - cTj- ] a-cI ° "U - (3.21)

a/e - a2T a a --- * ,h c- r

To derive the elastoplastic-damage tangent moduli, we recall that a= (1 - d) a . Time

differentiation then leads to

= (l-d) &-d a= (I -d) CP : -kH a (3.22)

is;



where use has been made of Eq. (3.10) and (3.12). In addition, time derivative of Eq.

(3.8) along with Eq. (3.16) yield

k=ii : (i-i') + -U- o4i : i-i[i L: - ---- - h ] (3.23)

Substitution of Eq. (3.20) and (3.23) into (3.22) then renders iY = CeP : . Here CeP is

the elastoplastic-damage tangent modulus given by

CeP = (I - d) CeP - H [[ Q] +a 2 e L (3.24)

It is observed from Eq. (3.24) that CeP is in general a non-symmetric rank four tensor.

Nevertheless, in the particular event in which we have constant (linear) Co = a2lo/ace2

and von Mises J 2-plasticity, Cep in Eq. (3.24) is symmetric. The above coupled

elastoplastic-damage formulation can be readily extended to accommodate non-

associative flow rules (in the effective stress space a) by simply replacing f in Eq.

(3.16a) by a suitable plastic potential Q (Y , q).

Remark 3.3. A damage-perturbed yield criterion and damage-induced non-

associative flow rule in the homogenized stress space a was proposed by Dragon [1985].

It is noted, however, that two different yield functions are used in Dragon [19851 to

define the "genuine" yield potential and another damage-perturbed pseudo-potential,

respectively. The tangent moduli are always non-symmetric. Moreover, the correspond-

ing elastoplastic-damage return mapping algorithms are rather cumbersome due to two

simultaneous consistency conditions. 0

Remark 3.4. For the derivation of . in Eq. (3.20) we have assumed that

To (ee , q)_a T'(ee) + 'V,(q) . If this is not the case, the denominator in Eq.

(3.20),(3.21) should be replaced by the following expression:

a 2,o a2ao 2_q
[-: ":-- --- h-.- °h] 0 (3.25)

aC" -- a q



Remark 3.5. In the previous work by Simo and Ju 11987a][1987b], the formulation

hinges on an additive split of the stress tensor. As a result, their elastoplastic-damage

tangent moduli CeP are always non-symmetric even with Co constant. In addition, in the

case of nonlinear elasticity (either physically or geometrically) coupled with damage-

plasticity, the elastic and elastoplastic-damage tangent moduli (.a! C and CP) ar

too "soft" due to the fact that the argument of differentiation is the total strain tensor E

(see Eq. (24) in Simo and Ju [1987a]; see also Simo and Ju [1987c] for the finite defor-

mation case). These "soft" tangent moduli could lead to numerical difficulties when large

strains are encountered. By contrast, present formulation employs more robust (stiffer)

elastic tangent moduli j21o (Ce , q) and elastoplastic-damage tangent moduli Ce ' , witha£e 2

the elastic strain tensor ce as the argument of differentiation. This advantage together

with our J -integral-like damage energy release rate (TO (ce , q)) make the present formu-

lation computationally and physically more attractive. 0

Remark 3.6. (Selection of To (ce , q)). The specific forms of the undamaged free

energy function TO depend on the mechanical behavior and thermodynamic processes of

materials. From Eq. (3.5), it is observed that the thermodynamic forces conjugate to £.'

and il are aTO (or simply () and - --. , respectively. In fact, in Eq. (3.16a), the par-

tial derivative is taken with respect to a. Therefore, it appears rational to postulate that

-af (3.26)
a (_ T

By comparing Eq. (3.26) with (3.16b), we obtain the relation

h(cy, q) =- 7 f (3.27)

For demonstration purpose, let us assume that To (Ce , q) = TgP(:e ) + T (q) and consider

the von Mises plasticity with linear isotropic hardening. Thus, we have - = R (FP)
de-1
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with eP and R (e-P) signifying the equivalent plastic strain and yield radius, respectively.

Hence, we arrive at po = R (e--P) d 'P . For linear hardening, R (P)= Ro + 0 eP , with

Ro and 0 denoting the initial yield radius and slope, respectively. Accordingly,

p(e-P) =Ro P + 12 0 e-P 2 For other plasticity models, one could assume that

To = a: dc and compute To incrementally. On the other hand, the form of To hinges

on the particular hyperelasticity model employed; e.g., for linear elasticity case, one has

go(e )=l : Co : e .

1.3.4. Rate-dependent damage mechanism

Some experimental results (on rocks and concrete) show that the amount of micro-

cracking at a particular strain level exhibits rate sensitivity to the applied rate of loading

in a dynamic environment. Further, strain-softening and loss of strong ellipticity

phenomena associated with damage mechanisms impose numerical difficulties in finite

element computations. To account for rate dependency and to regularize the localization

problems, a viscous damage mechanism is presented in this section. It is noted that the

structure of this regularization is analogous to the viscoplastic regularization of the Per-

zyna type (Perzyna [1966]). In particular, rate equations governing visco-damage

behavior are obtained from their rate-independent counterpart Eq. (3.10) by replacing the

damage consistency parameter 4 by ga (g). Here I is the damage viscosity coefficient,

4(g) denotes the viscous damage flow function and g is defined in Eq. (3.9). With this at

hand, we write

d,= g t< (g) >nH( ,d,, s, a , c,p) (.8
;,=g < (g) > (.8

where <. > denotes the McAuley bracket. In the event of linear viscous damage

mechanism (i.e., (g) a g ), Eq. (3.28) then takes the form
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gt - g )H(1d ,,a ,c ,p) (.9
kt=g~ <g >-=gt< -r > (.9

The above viscous mechanism is capable of predicting retardation in microcrack

growth at higher strain rates. In addition, the inviscid damage characterization can be

recovered by letting g± go to infinity. On the other hand, as g± approaches zero we obtain

the instantaneous elastic response (in the absence of plastic flow).

1.3.5. Microcrack opening and closing

Although the damage models presented in Sections 3.3 and 3.4 are isotropic, they

can be easily extended to account for the "mode I" microcrack opening and closing

effects. Let us start by considering the spectral decomposition of the strain tensor (see

also Ortiz [1985])

£ Ei PiPi I pi=1 , (3.30)

where ei is the ith principal strain and pi the ith corresponding unit principal direction.

Let Q and Q+ , separately, be the regular and positive (tensile) spectral projection tensors

defined as

Q- pi Qpi ; Q+- 1i(Ci)piQpi (3.31)

where/-] ( e) is the Heaviside ramp function. We now introduce the fourth-order positive

projection tensor P with components

Pij'kl = aa aj, Qka Qlb , (3.32)

so that e+ can be expressed as (see also Ortiz [1985])
+ = P+: , i.e., £i =P (3.33)
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It is observed that P depends on the total strain E.

With these notations at hand, Eq. (3.4) is then rephrased to take into account the

active (open) microcracks under tensile extensions. Specifically, we write

o = (I - Dac ) : 'To (3.34)
jaEe

where Dac' _ d P + I IP" = d P + P + is the fourth-order active anisotropic damage tensor.

If all three principal strains Ei are tensile, then we have P + = I and Dac' = d I; i.e., the

local microcrack is open (active) in all three principal directions and we recover isotropic

damage under current state. If all Ei are compressive, then UP = 0 and Dac, = 0 ; i.e., the

local microcrack is entirely closed (passive) under current state. Clearly, other combina-

tions of tensile and compressive states will give rise to various microcrack opening and

closing situations.

The damage energy release rate T -O in Eq. (3.8) can also be modified as follows

to accommodate ductile and brittle (tensile) material damage:

TO (Ee , q) (ductile) (3.35)

Tyo (ce+ , q) (brittle)

where Ee, = p+ : P .

Remark 3.7. The above discussion on microcrack closure, Eq. (3.30)-(3.34), is

quite similar to the proposal of Ortiz [1985]. However, there are some subtle differences

between the two formulations. First, the explicit form of the positive orthogonal projec-

tion tensor ]P+ in Eq. (3.32) is more precise than that given in Ortiz [1985] (see Eq.

(3.60) therein). Second, the present discussion employs the description of stiffness

degradation through the active damage tensor Da' while Ortiz [1985] used the "added

compliance" characterization Cc (see Eq. (3.11)-(3.14) in Ortiz [1985]). Third, ]P+ in

Eq. (3.32) is a nonlinear, non-constant operator associated with the current total strain

tensor t . In Ortiz [1985], by contrast, there are really two distinct orthogonal projections

involved; see Eq. (3.9) and (3.60) therein. Specifically, the first one is associated with
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the current strain tensor E ; i.e., E+ = IP: . The other one is IP associated with the

current stress tensor a ; i.e., "+ = IP+ : a (see also Eq. (3.18) in Ortiz [1987b]). In gen-

eral, IP" is not equal to 1PI . It appears that this distinction was not made clear in Ortiz

[1985]. In addition, in a strain-driven algorithm, a is yet unknown before local constitu-

tive iteration. Hence, use of IP, introduces more computational efforts. Fourth, due to

the existence of two distinct orthogonal projections in Ortiz [1985], Eq. (3.1l)-(3.14)

therein seem unclear. In particular, Eq. (3.13) in Ortiz [1985] could be interpreted as

CC = ]PC+ : Cc :P+ (3.36)

Accordingly, the active "added compliance" Cc becomes a non-symmetric tensor and Eq.

(3.14) in Ortiz [1985] might be questionable because o"+ is not equal to IP, : a. In the

present proposal, on the other hand, only one orthogonal projection IP+ (see Eq. (3.32)) is

needed and no confusion ever arises. 0

21



1.4. Energy-based anisotropic elastoplastic damage models

The energy-based damage models developed in Section 3 are extended in this sec-

tion to account for anisotropic britle microcracking effects. In view of the significance

of tensile extensions in brittle damage processes, proper damage characterization via ten-

sile spectral decomposition is employed.

To illustrate the physical motivation of the proposed energy-based anisotropic brit-

tle damage model, consider the idealized situation of a cylinder subject to unconfined

increasing uniaxial compression. The objective is to simulate the "splitting mode". By

properly including the tensile radial and hoop strains contribution to damage and screen-

ing out the compressive axial strain contribution, the proposed mechanism would predict

progressive microcracking parallel to the the axis of loading (normal to the piane of ten-

sile lateral strains) and ultimate failure of the specimen. This is a typical failure mode in

many rock-like materials such as concrete. Note that a damage model based on tensile

stresses could not possibly predict such a failure mode.

1.4.1. Thermodynamic basis

The proposed damage characterization is based on the concept of effective stress

and features a simple and effective construction of the fourth-order transformation tensor

M in Eq. (2.5). In fact, one could define M I - D (see also Cordebois and Sidoroff

[19821). The damaged secant (unloading) stiffness tensor then takes the form C =

(I - D) CO , where CO is the undamaged linear elasticity tensor. It is observed that the

damaged stiffness C possesses a one-to-one correspondence with the fourth-order dam-

age tensor D . Hence, one could equivalently define C as the anisotropic damage vari-

able. In addition, it is realized that M E C CO -I

As a point of departure, we postulate the following locally averaged free energy:

T(ce, q , Q a Yea (e Q + Tpd N Q = 'h Ee : C : Ce + Tpd(q, Q (4.1)
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The Clausius-Duhem inequality then leads to

C] +[Ce C ip L L - t 0 (4.2)

Therefore, we obtain the following stress-strain relation

r = D = C : Ce (4.3)

along with the following damage and plastic dissipation inequalities

fDd-i:C :e-- : C>0 (4.4)

DP-o: Cy i - a i>0(4.5)

In addition, from Eq. (4.4) and the fact that

- eGC + -(4.6)= Y - U -yfC = -2-

we conclude that -- Ce ®e +- is the thermodynamic force conjugate to the

damaged secant (unloading) stiffness C . This thermodynamic force physically defines

the "anisotropic damage energy release rate" and will be used to characterize damage

evolution.

In particular, we shall assume that 'Pd is linear in D (or C); e.g.,

Ppd (q , Q)- (I - D) : I ] 'p(q) (4.7)

where 'fl(q) S 'P,?(q) , the undamaged plastic free energy potential. Accordingly, we

have -p= ',(q) CO . Eq. (4.6) can then be rephrased as

_ _ = Ce Gee + '(q) CO-1 (4.8)
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L4.2. Characterization of brittle damage

To account for the nature of irreversibility during microcracking processes, a dam-

age criterion in terms of the anisotropic damage debonding-energy release rate (-Y) is

proposed as follows

g -(-Y,s ,a ,c ,p)-rj < 0 (4.9)

where d is a function of the arguments. The damage process is then characterized in

terms of the following irreversible, dissipative equations of evolution

(4.10)4 ,g 0, pg-o

Eq. (4.10) can be regarded as the Kuhn-Tucker conditions of the following "principle of

maximum damage energy dissipation": "For a given local strain history, the actual dam-

aged modulus C is the modulus that renders maximum damage energy dissipation". This

principle is analogous to the principle of maximum plastic dissipation.

To properly include the anisotropic damage energy release rate - Y in the damage

criterion (4.9) and the damage evolution equations (4.10), it is essential to define the

characteristic damage measure t such that

P + CO P+ (4.11)

where P + is defined in Eq. (3.32). For an isotropic linear elasticity tensor CO ,this war-

rants the following definition of

6CG I[IP+CO I'i+-I ej : [P+CO P*]'ej (4.12)

in which ej is the j ih unit base tensor of the identity tensor I , and K and G are the bulk

and shear moduli, respectively. With this notation at hand, Eq. (4.9) is recast as follows

g __d(,s ,a ,c ,p)-r, -< 0 (4.13)



In addition, we define H and r, =iH . From Eq. (4.13), it is observed that

;, a k H in the event of damage loading. Hence, we obtain , = . The anisotropic dam-

age (microcrack) evolution equation (4.10) then becomes

C=- kH P+CO ]P+  (4.14)

It is emphasized that only tensile extensions in the principal directions contribute to

microcrack growth according to Eq. (4.14). Physically, this treatment corresponds to

anisotropic (oriented) brittle microcrack propagation. Clearly, the crucial quantities are

and IP+ . Note that .- (IP+ : E) * J : owing to the nonlinear nature of F + .

Remark 4.1. The anisotropic damage evolution rule (4.10) can be viewed as an

extension of an earlier Proposal in Ortiz [1985] (for mortar). There exist, nevertheless,

several significant ufferences between the two formulations, which are as follows. (i)

Ortiz [ 1985] assumed that the rate of irreversible (plastic) deformation is coaxial with the

total rate of inelastic deformation (consisting of contributions of increasing damage and

ir,.;reasing permanent deformations). This assumption is not utilized in the present for-

mulation. (ii) Ortiz's formulation [1985] focused on the rate of "added compliance" ten-

sor while the present proposal focuses on the rate of "damaged secant (unloading) stiff-

ness" tensor. It is emphasized that the two procedures are not equivalent. (iii) The "per-

fectly brittle" and "plastic microcracking" damage models in Ortiz [1985] are really

stress-based. That is, the damage criterion and damage flow rule are based on the current

stress tensor (u or c'+); see Eq. (3.30),(3.34),(3.41),(3.47) in Ortiz [1985]. In particular,

plastic (permanent) strains do not contribute to the damage criterion O(Cr, gt) in Ortiz's

models. As previously discussed in Sec. 3.2, stress-based damage criterion is inherently

inadequate for coupled damage-elastoplasticity when plastic deformation is significant.

0

Remark 4.2. Within the present context, plastic response can be characterized

independently from the damage evolution in terms of effective stress quantities exactly as
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in Section 3.3. 0

Remark 4.3. A rate-dependent anisotropic damage mechanism can be constructed

analogous to the formulation proposed in Section 3.4. In essence, we have the following

evolution equations (see Eq. (3.28)):

S= - gt < (g ) > H P CO ] (4.15)

g < 0(g) > H 0 (4.16)

Remark 4.4. The "mode I" microcrack opening and closing mechanisms can be

easily accommodated within the proposed anisotropic damage framework. First, we

define the "total stiffness loss tensor" as

Cd 0 (-C) dt (4.17)

Then we define the "active stiffness loss tensor" Cdt (due to open microcracks) and the

"active damaged secant stiffness tensor" Ca" as follows:

act-PCd F (4.18)

Ca  - a -Ct (4.19)

The stress/elastic-strain relationship then takes the form

a = Ca t : Le (4.20)

If all three principal strains Ei are tensile, then we have Cac' = C. On the other hand, if

all &i are compressive, then Cac' = Co ; i.e, the local microcrack is entirely closed under

current state. It is noted that Ortiz 11985] proposed similar treatment to accommodate the

active "added compliance" tensor. The results of the two treatments, however, are not

equivalent since the inversion procedure destroys the equivalency. [

Remark 4.5. The anisotropic damage model presented in this section is based on

tensile brittle failure mode. For some brittle materials such as concrete, however, both

tensile and compressive failure modes can occur. To accommodate this phenomenon, Eq.

26



(4.14) can be modified, following an approach in Ortiz [1985] (see Eq. (3.18) therein), as

follows to account for both tensile and compressive strain contributions:

C=-k+H+I+C° I+-k-H-i-C° IP- (4.21)

where the superscripts "+" and "-" signify the tensile and compressive damage evolution

quantities, respectively. In addition, F -  I - 1P+ . Therefore, tensile and compressive

microcrack initiation and growth can develop simultaneously and separately (at different

rates). 0

Remark 4.6. Due to anisotropic damage evolution, an originally isotropic material

becomes fully anisotropic, and the associated Poisson's ratio becomes a second-order

anisotropic tensor. El
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1.5. Computational algorithms for damage models

Numerical integration algorithms for the proposed elastoplastic-damage evolution

equations are systematically explored in this section within the context of the finite ele-

ment method. Use of the "operator split method" leads to a class of simple and efficient

constitutive algorithms. In particular, new three-step operator split algorithms are

presented for the proposed damage models. Strain softening and localization issues con-

cerning damage models are also addressed.

1.5.1. Inviscid isotropic damage algorithm

We first summarize the locally averaged elastoplastic-damage rate constitutive

equations:

d, =4H

; 1 =

Ft>_O g( ,r)!_O, g( t ,r)=O

- [ ( 1-d) aT (ce , q) (5.1)
Tt ace

ip -.- ,( , q)

(I=Xh(a, q)

i >O, f(o,q)5O, Xf(,q)=O

where is the damage energy release rate.
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From an algorithmic point of view, the problem of integrating the evolution equa-

tions (5.1) amounts to updating the basic variables { a , d , Cp , q ) in a fashion con-

sistent with the constitutive model. It is important to realize that during this updating pro-

cess the history of strains t - E = Vsu(t) is assumed to be given.

Equations of evolution (5.1) are to be solved incrementally over a sequence of given

time steps [t, , t+] c 1R, , n = 0, 1, 2, . Thus, the initial conditions for Eq. (5.1) are

{ a,d ,cP , q It= {a,:n ,d, ,ERcq. (5.2)

In accordance with the notion of operator split, we consider an additive decomposition of

Eq. (5.1) into the following elastic, plastic, and damage parts.

Elastic part (5.3a) Plastic part (5.3b) Damage part (5.3c)

d=0 d=0 {H

Hif f g, =t=0
otherwise

k iffgt =gt =0
r=0 r=0 r= 0  otherwise

je 2 a.e2 aCe

P =0 £ =-.a (a, q) ip =0

i = 0 = h(o, q) 4=0

It is noted that the three columns of (5.3) do indeed add up to Eq. (5.1), in agreement

with the notion of operator split (see Chorin et al. [1978]). Further, the first two columns

of Eq. (5.3) define the classical elastoplastic problem (with damage variable d fixed) and

the corresponding computational algorithm reduces to the elastic predictor/ plastic
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corrector scheme. In what follows we give a step-by-step efficient integration procedure.

5.1.1. Elastic predictor. An algorithm consistent with problem (5.3a), referred to as

the "elastic predictor" in the sequel, is given by the following process.

(i) Strain update: Given the incremental displacement field u,+ , the strain tensor

is updated at Gauss points as

n+1 = En + VSun+1  (5.4)

(ii) Elastic trial stress: By merely performing function evaluation (no iteration), we

obtain

,ril d' = dn (5.5)
agT[ c +#  I -h =e q ) , n.r+Y

ri 1  d,= (1a-d) TiP("+l-E'q) -t (1-d (5.6)

5.1.2. Plastic corrector. To develop an algorithm consistent with the plastic part

(5.3b), the plastic yield condition is checked first.

(iii) Check for yielding:

f , qtr41 {< 0 elastic =: go to step (v) (57)

n +1,q ) > 0 plastic =*- return mapping

(iv) Plastic return mapping corrector: In the case of plastic loading, predictor

stresses and internal variables are "returned back" to the yield surface along the algo-

rithmic counterpart of the flow generated by (5.3b). One typically employs either the

closest-point-projection or cutting plane algorithms (see, e.g., Simo and Ju [1987a,b]).

Once the plastic consistency condition (in effective stress space) is enforced, state vari-

ables at the end of plastic corrector phase become

( n+1 dn I Q +1 I qn+l )(5.8)

It should be noted that all existing return mapping algorithms for elastoplasticity become

directly applicable (with no modification) in our elastoplastic-damage formulation.
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5.1.3. Damage corrector. To complete the product formula algorithm, it remains

to develop an algorithm consistent with the damage part (5.3c) which operates on initial

conditions (5.8) to produce the final state ( o+ , dnl, Ek+j , qn+l ) .

(v) Damage evolution: Compute "damage energy release rate" Zn+t according to

.+1 ---"To (En"+ I, q. + 1) (5.9)

where cg+l M,+ - E9+1 . The damage variable d,+, and damage threshold r.+t are

then given by

{d. if n+1 - rn <0
dn+1  dn + ( n+l - 4n) Hn+1 otherwise (5.10)

r,+1 -max { rn ,+1 } (5.11)

n+= (1 - dn+l) on+1  (5.12)

It is emphasized that no iteration is required in the damage correction phase. Although

plasticity and damage are coupled in rate equations (5.1), the algorithmic treatment

renders uncoupled plasticity and damage algorithms. The simplicity and efficiency of the

overall procedure are noteworthy.

L5.2. Rate-dependent isotropic damage algorithm

The rate-dependent damage mechanism described in Section 3.4 can be efficiently

implemented to obtain consistent and accurate incremental solutions. In this section, a

one-parameter family of unconditionally stable integration algorithm is presented. Let

us assume that damage loading is taking place; i.e., g s E t - r. > 0. By applying the

generalized mid-point rule to Eq. (3.29) we have

a £e (1-a) *C;eO(,+at a- E e+l + (l n) ; n+at =- T(En'+a , q" +)

rn+-Oaarn++(1--a) r. ; dn+a=dn +Atn +a gn+a Hna (5.13)

rn4-a rn + Atn +i gn+a S r. + Atn+a ( n+a - rn +o)



where a E [0, I] and Ag, a =g (t,, - t,). The amount of expansion experienced by

the damage surface during the time step is computed from (5.13) by solving for r,+1 :

[1 - (1-a) Ali,.+] r, + Agna k+l , (a -(5.14)
rn +a -1 + a Agtn4ca

From elementary numerical analysis, we note that algorithm (5.13),(5.14) is uncondition-

ally stable for a > / and second order accurate for a = 1 . Typically, the value a = 1

corresponding to a backward-Euler finite difference scheme is employed. We will restrict

our attention to this case in the ensuing development. The elastic predictor and plastic

corrector are identical to the previous derivation shown in Section 5.1 . Only the damage

corrector phase needs modification to account for rate dependency. The numerical

integration scheme for rate-dependent damage corrector is summarized for convenience

in Box 1 for the fully implicit case (a = 1).

It is interesting to examine two limiting values g -- 0 and . - of the damage

viscosity coefficient, and their effect on the evolution of rn+ and gn+ .

(a) For . - 0 (so that Ap-,+ - 0), we obtain rn+ - rn and gn41 -- (tn+1 - r.)

Hence, no further damage takes place during the time increment and (in the absence of

plastic flow) one has instantaneous elastic response.

(b) For . -4 -o (so that Agt,+ -- 00), we have r,+ 1 -4 n+l , gn+l - ' 0 , and

Ad,+, = An+j Hn+l . This situation corresponds to the rate-independent damage charac-

terization. Hence, as p. -- *- we recover the inviscid damage model characterized in Sec-

tion 3.2. Note that since 0 < . < cc we must have r. 5 rn+, - tn+, ; namely, the expan-

sion of the damage surface is properly bounded between the instantaneous elasticity and

the inviscid damage limit.
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BOX 1. Rate-dependent damage corrector algorithm

(1) Compute current "damage energy release rate" ,,+ according to

t,+I =- IF°(c1g+1, q.+,).

(2) Check the damage loading criterion: g (,+j , r,,) = +, - r, > 0 ?

YES : rate-dependent damage loading. Proceed to (3).

No : no further damage within this time step. Exit.

(3) Compute r,+, and Agji+ 1 gn+ 1 "

AJ-tn+I = 11 At,+I

[ rn + An+1 4n+i
r.+- [ 1I + A'.+1

Agn + I gn + I - Arn + -- AgIn +I 4+ n
1 +Aa1 A,+- (:.+i - r,,)

(4) Update damage parameter and stress:

Adn+l = A.n+ g,+, Hn+l

d., = d, + Ad,+,

yn+l = (I - d.+l) Fn+I

1.5.3. Anisotropic damage algorithm

The operator splitting methodology developed in Section 5.1 can be immediately

extended to accommodate anisotropic brittle damage mechanism outlined in Section 4.2.

The three-step operator split is as follows.
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Elastic part (5.15a) Plastic part (5.15b) Damage part (5.15c)

S= VS =(t) o=o

*=O = '-O H +C,, r'+ iffg,=,=o
f -Ootherwise

0 0 k iffg, =it=0
r = 0 r =0 "= 0  otherwise

C: i y=-c:V iC=::

eA = c,-=--(C, q) ip =0

4=0 q = i h(a, q) i=O

Computationally, the only modification needed concerns the anisoropic damage correc-

tor, now involving an eigen-calculation to compute the positive (tensile) projection of the

strain tensor.

5.3.1. Anisotropic damage corrector. Step (v) outlined in Section 5.1 is modified

as follows.

(v) Damage evolution:

(a) Perform the spectral decomposition:

I Ei Pi ®pi (5.16)

(b) Compute Q,,+, and Q++I :

Qn+ i Pi P Q+.I- -(Ei) P Qpi (5.17)

Recall that H ( •) denotes the Heaviside step fuction.
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(c) Compute the projection tensor F*IP and the elastic tensile strain tensor ,+e+.

Pfk = Qa QjI Qka Qlb ; R+gl = AP+: (5.18)

(d) Compute the damage energy release rate 1+1 according to Eq. (4.12).

(e) Update anisotropic secant (unloading) stiffness modulus according to Eq.

(4.13),(4.14):

.fCn ifd(,+1 ,s ,a ,c ,p)-r,,5 0
Cn+l Cn -( n+l- n)Hn+ 1 ]P++l CO]FP+ otherwise (5.19)

(f) Update the damage threshold r,+1 and Cauchy stress o,+i:

r,+ 1 = max ( r,, G+l } (5.20)

o,,+l = C,+1 : e+1  (5.21)

Remark 5.1. A rate-dependent anisotropic damage algorithm can be constructed

parallel to the rate-dependent isotropic damage algorithm given in Box 1 of Section 5.2.

0

1.5.4. Strain softening and localization

It is now well known that there are uniqueness, well-posedness and numerical con-

vergence problems associated with apparent "strain-softening" computations due to the

loss of material strong ellipticity. As a result, finite element computations exhibit spuri-

ous mesh sensitivity when the mesh size goes to infinitesimal. These numerical

difficulties may be overcome by means of the nonlocal damage theory (see, e.g, Eringen

and Edelen [1972], Bazant et al. [1987], Xia et al. [1987]), or the viscous damage model

presented in Section 3.4. The nonlocal damage characterization is physically very

appealing at the microscale. However, experimental determination of the characteristic

length I and the weighting function c may be major problems. Recently, nevertheless,

Bazant and Pijaudier-Cabot [1988] proposed an interesting method to determine the
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characteristic length from experimental data. Further, nonlocal computation is to some

extent incompatible with local finite element calculation and further enhancement in con-

sistency and accuracy is needed. On the other hand, the proposed viscous damage

mechanism is not only suitable for accommodating dynamic rate effect but also offers a

possibility for controlling loss of ellipticity.

In particular, following a line of argument due to Valanis [1985], it can be shown

that a viscous damage model of the type (3.29) satisfies the positiveness condition in

Valanis [1985] and therefore leads to well-posed initial-value problems. To this end, we

take differentiation of the relation c = (1-d) a and use Eq. (3.29) to obtain

=(1-d) CeP : i-g<g >Ho (5.22)

We recall that = °(e ,) and Cep is the effective elastoplastic tangent stiffness

given in Eq. (3.21). At a state defined by (E, d , r) , for two different stress rates 61 , 62,

and two different strain rates E1 and C2, it follows from (5.22) that

(61 - 62) : (l -i 2 ) = ( - d) (il - i 2 ) : Cep _ (i1 -i 2) > 0 , (5.23)

provided that the undamaged elastoplastic tangent modulus CeP is positive definite and

d < I . Thus, the material is positive in the sense of Valanis [ 1985].

In recent years, the applicability and limitations of distributed damage models to

brittle materials such as concrete have been questioned by some researchers (see, e.g.,

Read and Hegemier [1984]). The fundamental question is to what extent the softening

that is observed experimentally (for a boundary-value-type sufficiently large specimen) is

a manifestation of local material behavior or, on the contrary, a global structural

(boundary-value) effect brought about by fracture (macrocracks) and strain localization

(such as shear band formation). To answer this question, we really should separate the

issue into two parts. The first part concerns the boundary-value-type experimental testing

36



of specimens. The second part focuses on the local constitutive behavior (not boundary-

value problem) within the framework of the unit cell based "meso-mechanics", the con-

cept of characteristic length, together with the self-consistent method or homogenization

technique. It is noted that, in the case of concrete, the characteristic length is approxi-

mately three times the aggregate size according to Bazant and Pijaudier-Cabot [1988],

and a unit cell contains approximately 30-100 aggregates according to Krajcinovic and

Fanella [1986].

For a sufficiently large (bigger than the unit cell) experimental specimen, the

observed force-displacement curve indeed represents the global boundary-value-type

response, rather than the local stress-strain behavior of a material element. In fact, in this

boundary-value problem, there are three factors contributing to the apparent softening

which is observed experimentally. These factors include: (a) The nucleation and growth

of many distributed microcracks in the specimen, leading to local material softening in

the sense of unit cell based meso-mechanics; (b) The strain localization phenomenon,

resulting from the loss of ellipticity and stability of materials (see, e.g., Ortiz [1987b]);

(c) The formation and propagation of global boundary-value-type macrocracks which are

the direct products of microcrack coalescence in the specimen. It should be realized that

the so-called "critical stress intensity factor" and "fracture toughness" in fracture mechan-

ics literature are in fact also boundary-value-type global specimen properties, not local

material properties. Based on the above statements, this writer agrees with those

researchers who concluded that true material softening is less than the apparent global

softening observed in experiments. Therefore, strictly speaking, the global force-

displacement curve should not be directly interpreted as the local stress-strain curve of a

material element.

On the other hand, within a statistically representative unit cell (meso-mechanics),

distributed microcracks and strain softening (at the meso-scale) do make sense since dis-

tributed microcracks (within the unit cell) do induce stiffness degradation and strain
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softening. One can factually apply the self-consistent method or the homogenization

technique to compute the degradation of elastic and plastic material properties of a unit

cell. These computations are, of course, related to the scale of the characteristic length of

a material. Further, the so-called "size effects" (see, e.g., Sabnis and Mirza [1979],

Bazant [1984], Fanella and Krajcinovic [1988]) are also closely related to the scale of

characteristic length.

In summary, distributed damage models are suitable for modeling distributed

(many) microcracks and material responses (not necessarily softening) in structural

members before macrocracks become globally dominant. After the microcracks coalesce

to form macrocracks, one can switch to fracture mechanics approaches provided that he

takes into account: (i) the damage process zones in front of macrocracks (i.e., the

macrocrack-microcrack interactions), and (ii) the damage-induced stiffness degradation

and anisotropy in many (distributed) unit cells. Without these accounts, the resulting

fracture calculations are not realistic nor meaningful. Conversely, direct application of a

distributed damage model to solve a problem involving a single dominant macrocrack (in

a boundary-value setting) is not likely to yield accurate results regarding macrocrack

geometry and macrocrack opening displacement. Finally, distributed damage models are

not suitable for predicting localization instability in materials.
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1.6. Application to concrete and mortar. Experimental validation

Concrete is a three-phase cementitious composite material composed of aggregate,

mortar and interface zone (see, e.g., Mehta [1986]). Each of the three phases is itself

multi-phase in nature. For example, each aggregate particle may contain several

minerals, and mortar is actually a mixture of cement paste and sand particles. Further,

concrete has microcracks in the interface zone even before a structure is first loaded due

to bleeding, shrinkage, cement hydration heat, etc.. The interface zone between the

aggregate particle and mortar is typically 10 to 50 gim thick around large aggregate and is

in general weaker than either aggregate or mortar. Due to this strength-limiting phase, the

strength of concrete is considerably lower than that of mortar or aggregate.

Under compressive loading, microcracks initiate and propagate in the interface zone

at low stress level, signifying a low energy barrier TO in the interface. These microcracks

become unstable and propagate until they are arrested by cement paste matrix which has

a higher value of debonding (damage) energy barrier TO . When the stress level is above

50% of the ultimate strength, matrix (mortar) microcracks initiate and gradually spread

until they join the microcracks originating from the interface zone. The coalesced crack

system then becomes continuous. The crack system may be arrested by aggregate, but

may also leads to rupture of local materials. Most stable microcracks are of the size of

aggregate facets. Hence, aggregate size is closely related to the characteristic length of

concrete. Considerable damage energy is needed for the formation and extension of

matrix microcracks under a compressive load. By contrast, under tensile loading much

less damage energy is required to initiate and propagate microcracks in matrix and inter-

face zone. Therefore, concrete fails in brittle fashion in tension mode and is much

tougher (more ductile) in compression failure mode. It is also recognized that plasticity

(permanent deformation) in concrete is primarily due to the extended microcrack sur-

faces which are not completely closed even under unloading.
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Without resorting to multi-phase mixture theories and models, we employ either

isotropic or anisotropic damage models in the following sections to simulate microcrack

initiation and growth in the interface zone and mortar matrix of concrete. Experimental

validation involves both rate-independent and rate-dependent concrete testing data. In

addition, microstructural factors such as the average aggregate size/spacing ratio is con-

sidered in the microcrack kinetic equations.

1.6.1. Experimental validation of isotropic damage model

The isotropic energy-based damage mechanism developed in Section 3 is special-

ized in this section to capture basic features of the behavior of concrete and mortar within

bounds of experimental error. A two-invariant cap plasticity model originally proposed

by DiMaggio and Sandier [1971] (see also Sandier, DiMaggio and Baladi [1976];

Sandier and Rubin [1979]; Simo, Ju, Pister and Taylor [1988]) is employed to account

for the plastic behavior of concrete. In view of the present shortcomings of experimental

techniques and the wide scattering in available experimental data for concrete and mor-

tar, a precise quantitative evaluation of the predicting capabilities of a given constitutive

model does not seem to be warranted. Instead, it is felt that an overall qualitative repro-

duction of the main features of material behavior should play a dominant role in material

modeling.

In particular, the kinetic law of microcrack growth Eq. (3.10) reduces to the follow-

ing form:

d=(k +V2)'(,c ,p) (6.1)

where k =a/s is the average aggregate size/spacing ratio. Note that if aggregates are

infinitely far away from one another, then k is 0. On the other hand, if aggregates are in

contact, then k is I . The bigger k is, the higher the aggregate/cement interface area den-

sity is and hence the faster the microcrack density grows. Certainly, Eq. (6.1) is not a

micromechanical kinetic equation. For exponentially growing progressive damage, the
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evolution function i is assumed to be

i( ,,c ,p) - (1 A ) + A B exp [B (,0- )] (6.2)

Here A and B are characteristic material parameters (implicit functions of c and p), and

ko denotes the characteristic initial damage threshold. These parameters can be estimated

in a systematic manner from suitable experimental data. The average aggregate

size/spacing factor k is taken as 0.7 for the following concrete specimens.

6.1.1. Color-qdo concrete data. The data for the following examples are taken

from the well-documented experimental program conducted at the University of

Colorado (see Scavuzzo et al. [1983]) on a systematic three dimensional testing of con-

crete (f 'c = 4 ksi). The program consists of six major series of non-conventional mul-

tiaxial cyclic stress-strain curves. It is noted that replicate tests were run for some experi-

ments, which enable us to assess the relative consistency of experimental data. The

numerical results reported below not only include fitting of the model to complicated 3-D

stress paths but, in addition, predictions of material behavior obtained by exercising the

model against experimental results.

Circular stress path tests. Tests 3-3 and 3-4 are replicates concerning the following

loading paths. The specimens are first subjected to hydrostatic monotonic loading to a

specified deviatoric plane, followed by deviatoric loading along the triaxial compression

path until completion of the specified circular path. The model parameters are obtained

by optimal fitting with respect to test 3-3. These model parameters are then employed in

the subsequent simulation intended to predict the behavior observed in the replicate test

3-4 under significant experimental data perturbations. In spite of considerable data corr-

uption, good overall predictive capability of the model is observed, as illustrated in Fig-

ures 3 and 4. To demonstrate the effect of the aggregate size/spacing factor k on damage

growth, three hypothetical k values (k = 0.1, 0.5, 0.9) are further employed to simulate

test 3-3; see Figure 5. It is clear that as k increases, microcrack density increases and
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therefore stress response degrades.

Cyclic simple shear tests. Tests 2-3 and 2-4 are intended - ,,e concrete

response to deviatoric simple shear cycles with stress reversal about the hydrostatic state.

Material parameter estimation is performed with respect to test '7 1, and prediction is

exercised for test 2-3 (replicate). The results are shown in Figures 6 and 7. The overall

qualitative agreement between simulations and experiments is satisfactory.

6.1.2. Uniaxial compression tests. In this example, we perform two replicate

uniaxial unconfined compression tests of mortar (with f 'c = 12 ksi). The composition of

mortar is as follows: cement 649 g, water 195 g, sand 150 g, plasticizer 9.1 ml . Ottawa

sand with a fineness modulus of 2.11 is employed. The gradation is as follows: 33.33%

retained on sieve #30 , 77.77% retained on sieve #50 and 100% retained on sieve #100.

Material parameters are obtained by optimal fitting with respect to test 'Ml' and predic-

tion is carried out for test 'M2'; see Figures 8 and 9. The effect of the inclusion

size/spacing factor k (sand concentration) on damage growth can be seen again from Fig-

ure 10 in which three hypothetical k values (k = 0.1, 0.5, 0.9) are employed to simulate

test 'MI'.

1.6.2. Experimental validation of rate-dependent isotropic damage model

Two dynamic uniaxial compression concrete tests (Suaris and Shah [1983][1984])

are considered in this section based on the rate-dependent isotropic damage algorithm

given in BOX 1. Two different constant strain rates are employed: fast loading

( = 0.088 sec- 1) and slow loading (i= 1.0e--6 sec-1). The static uniaxial compressive

strength is estimated to be 6.8 ksi.

Figure 11 shows experimental and simulated results at two strain rates. Good quali-

tative and quantitative agreement between the model and the experimental data is

obtained. The rate enhancement of stress response due to the viscous damage mechanism

is clearly demonstrated. That is, growth of microcracks is retarded at higher strain rates.
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1.6.3. Experimental validation of anisotropic damage model

The fourth order anise-opic damage mechanism presented in Section 4.2 is

employed next to simulate anisotropic damage growth in mortar. We recall from Eq.

(4.21) in Remark 4.4 that tensile and compressive strains can independently contribute to

microcrack evolution. The uniaxial unconfined compression mortar tests previously con-

sidered in Sec. 6.1 are taken as examples again in this section. Under uniaxial compres-

sion, the fourth order anisotropic damage mechanism reduces to an orthotropic damage

mechanism and the reproduction of the "splitting mode" of cylindrical specimens is

sought.

Since the tensile strength f 't is approximately one-tenth of the compressive

strength f 'c , it appears reasonable to assume that the compressive microcrack growth

rate (in the axial direction) is approximately 10% of the tensile (mode 1) microcrack

growth rate (in the lateral direction). As a consequence of the orthogonal eigen-

projections (! and IP-) and different growth rates, microcrack develop in the lateral and

axial directions progressively and independently. In particular, microcracks form rapidly

along axes parallel to the axis of loading, reduce the lateral stiffness gradually, and ulti-

mately lead to the splitting failure mode. Experimental and numerical results for tests

'MI' and 'M2' are shown in Figures 12 and 13. In addition, the apparent Poisson's ratios

for tests 'MI' and 'M2' are displayed in Figures 14 and 15. It is emphasized that micro-

crack growth and stiffness degradation in the lateral direction is much much faster than

that in the axial direction due to our anisotropic damage mechanism.

1.6.4. Experimental validation of rate-dependent anisotropic damage model

We re-examine the rate-dependent concrete tests previously discussed in Section

6.2 by a rate-dependent anisotropic damage model (see Remark 5.1). Again, microcracks

develop rapidly along axes parallel to the axis of loading, and the splitting failure mode

is obtained. Experimental and numerical results for two different rates (e 0.088 sec- '
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and £ = 1.Oe-6 sec- 1) are shown in Figure 16. The capability of the proposed mechan-

ism to simulate rate dependency and "splitting modes" of cylindrical concrete specimens

is noteworthy.
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1.7. Closure

A number of energy-based isotropic and anisotropic damage models have been pro-

posed in this paper to characterize microcrack initiation and growth in ductile and brittle

materials. Thermodynamics basis, general nonlinear response, strain rate dependency,

damage threshold, damage kinetic law, microcrack opening and closing, coupling of

damage and plasticity, and anisotropic (brittle) damage mechanism have been presented

within the general framework of damage mechanics, unit cell and homogenization con-

cept. Damage initiation and propagation are linked to the (locally averaged) "total

undamaged strain energy" TO (ce , q), which is checked against the debonding energy

(current damage threshold) required for unstable microcrack growth. It is noted that in

the current literature damage models are either simply elastic-damageable or containing

improper elastoplastic-damage thermodynamics and mechanisms.

Another essential purpose of the present work is to demonstrate that the proposed

classes of elastoplastic-damage constitutive equations are well suited for large scale com-

putation in spite of their sophistication. Use of the operator splitting methodology leads

to three-step integration algorithms which, in addition to isotropic and anisotropic dam-

age, are capable of accommodating general elastic-plastic response.

Experimental validation of the proposed models against concrete and mortar speci-

mens are also given. We observe good qualitative and quantitative agreement between

experimental data for concrete and mortar and the proposed models. In particular, soften-

ing behavior is well captured. Micromechanically based damage theories will be objec-

tives of our future research.
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1.9. Figure captions and figures

Figure 1. Hypothesis of strain equivalence.

Figure 2. Illustration of added fle.oibility. Le and e denote the truly elastic strain

and added deformation due to microcracks, respectively.

Figure 3. Comparison of the experimental and isotropic simulated (fitted) data for

Colorado concrete test 3-3.

Figure 4. Comparison of the experimental and isotropic simulated (predicted) data

for Colorado concrete test 3-4.

Figure 5. Demonstration of the effect of the aggregate size/spacing factor k on the

damage growth and stress response for test 3-3.

Figure 6. Comparison of the experimental and isotropic simulated (fitted) data for

Colorado concrete test 2-4.

Figure 7. Comparison of the experimental and isotropic simulated (predicted) data

for Colorado concrete test 2-3.

Figure 8. Comparison of the experimental and isotropic simulated (fitted) data for

uniaxial compression mortar test 'Ml'.

Figure 9. Comparison of the experimental and isotropic simulated (predicted) data

for uniaxial compression mortar test 'M2'.

Figure 10. Demonstration of the effect of the aggregate size/spacing factor k on

the damage growth and stress response for test 'M 1'.

Figure 11. Comparison of the experimental and isotropic simulated dynamic

stress-strain curves for uniaxial compression test of concrete specimens.

Figure 12. Comparison of the experimental and anisotropic simulated (fitted) data

for uniaxial compression mortar test 'M 1'.

Figure 13. Comparison of the experimental and anisotropic simulated (predicted)

data for uniaxial compression mortar test 'M2'.
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Figure 14. Apparent Poisson's ratio for the mortar test 'MI'.

Figure 15. Apparent Poisson's ratio for the mortar test 'M2'.

Figure 16. Comparison of the experimental and anisotropic simulated dynamic

stress-strain curves for uniaxial compression test of concrete specimens.
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PART II
On Energy-Based Coupled Elastoplastic

Damage Models at Finite Strains

11.1. Introduction

Continuum energy-based damage modelz coupled with elastoplasticity at finite

strains are proposed within the framework of damage mechanics. For a literature review

on damage mechanics, see, e.g., Krajcinovic [1984][1986]. The proposed theories are

natural extensions of the infinitesimal damage-elastoplasticity models previously

developed by Ju [1988]. The thermodynamic elastoplastic-damage models are based on

the effective stress concept, damage threshold loading/unloading conditions, and multi-

plicative split of finite kinematics. The models are linked to the history of "damage

energy release rate" (Po r') within representative volumes (unit cells). Further, the

energy-based characterization of damage is particularly well suited for large scale com-

putti,-3.

The proposed formulation falls into the category nf phenomenological damage

models as opposed to micromechanically inspired models (see, e.g., Krajcinovic and

Fanella [1986], Sumarac and Krajcinovic [1987], Wu [1985]). In a forthcoming paper,

however, feasible thermodynamic micromechanical damage theories will be proposed.

An outline of this paper is as follows. The energy-based elast,-plastic-dainage con-

stitutive equations are derived in Sec. 2, including thermodynamic basis, characterization

of damage, coupling of damage and plasticity, and anisotropic microcrack

opening/closing mechanism. Both spatial (Eulerian) and material (Lagrangian) descrip-

tions are discussed. In particular, a physically meaningful "damage energy release rate" is

derived for finite strains. In contrast to previous work by Simo and Ju [1987c] (which

features an additive split of the stress tensor), this paper assumes a multiplicative split of

the deformation gradient from the outset (see Simo [1988]). It is shown that the present

framework is physically more appealing and computationally more robust. Simple and
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efficient computational integration algorithms for proposed models are given in Sec. 3.

In particular, a three-step operator split algorithm is developed. As a result, .he plastic

and damage parts are algorithmically uncoupled in spite of the damage-plasticity cou-

pling in its rate form. An interesting numerical experiment of a notched specimen involv-

ing damage coupled with plastic flow is presented in Sec. 4.
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1.2. Energy-based elastoplastic damage models at finite strains

In this section, we describe the basic elements of damage mechanics, thermo-

dynamic basis of damage mechanism, characterization of damage, coupled elastoplastic-

damage response, and anisotropic microcrack opening/closing mechanism.

11.2.1. Background

'Damage" can be defined as a collection of permanent microstructural changes con-

cerning material thermomechanical properties (e.g., stiffness, strength, anisotropy, etc.)

brought about in a material by a set of irreversible physical microcrack/microvoid

processes resulting from the application of thermomechanical loadings (Talreja [1985]).

The selection of a "damage" variable should be based on prope. micromechanical con-

siderations. Several definitions of damage have been proposed in the literature for con-

sideration. For example, one can define the second-order "damage" (inelastic strain) ten-

sor D as a spatial volume average:

D- 27 I ((b Qn + n Qb)(k) dS(k) (2.1)

in which b and n denote the displacement discontinuity vector and the unit normal vector

across the k-th microcrack surface S(k) , respectively (Vakulenko and Kachanov [1971],

Kachanov [1980], Horii and Nemat-Nasser [1983]), and V is the volume of a representa-

tive unit cell in the mesostructure (with a characteristic length I). As pointed out by

Krajcinovic [19851, the definition (2.1) is thermodynamically incorrect because it leads

to energy dissipation during unloading. Eq. (2.1) is actually a good index for "added

flexibility" (damage-induced inelastic strain) due to open microcracks or microvoids. In

fact, a feasible thermodynamic micromechanical damage tensor can be the fourth-order

"damaged secant moduli" as suggested in Simo and Ju [1987a,b], Ju [1988].

Alternatively, one could define the damage variable dn (in the normal direction n)

as
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dn Ad (2.2)

where Ad is the damaged surface arca (taking into account the microcrack area, the

micro-stress concentration and the interaction between microcracks) and AT is the total

cross-sectional area of a surface of a unit cell along a normal direction n (see, e.g.,

Lemaitre [1984)[1985]). Or, one may define the damage measure d as (assuming only

one single microvoid)

d a3  (2.3)

where a is the radius of an assumed single spherical microvoid (see, e.g., Budiansky &

O'Connell [1976], Krajcinovic [19871).

Throughout this paper the effective stress concept and hypothesis of strain

equivalence are employed (see Kachanov [1958], Lemaitre [1971], Lemaitre and Cha-

boche [1978]). The effective stress concept plays an essential role in the coupled

damage-plasticity response presented in Sec. 2.4.

11.2.2. Thermodynamic basis. Multiplicative split

In this section, we describe the thermodynamic basis of an isotropic phenomenolog-

ical finite deformation damage model. It is noted that if there are a large number of

microcracks or microvoids so that their orientations are randomly distributed within a

unit cell, then isotropic damage model is a reasonable representation. The extension to a

simple yet effective anisotropic damage mechanism is given later in Sec. 2.5.

The multiplicative kinematic split of the deformation gradient tensor F into the elas-

tic and plastic parts is assumed from the outset:

F = Fe FP (2.4)
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It is emphasized that "added flexibility" due to the existence of microcracks or micro-

voids is already embedded in Fe and FP implicitly. By using the Lagrangian tensors

(material description), we consider a locally homogenized general free energy potential

(E , EP , Q, -1) of the following form:

W(E, EP ,Q ,d)-(1 -d) TO(E ,EP ,Q)- (1 -d)[ I'o(E, EP) + T'p(Q) ] (2.5)

Here E = (C - 1) and EP = -(CP - 1) denote the total and plastic Lagrangian strain

tensors, respectively, with C = FT F and CP -FPT FP . In addition, d designates the

damage variable, Q is a suitable set of plastic variables, and OJo signifies the total poten-

tial energy of an undamaged (virgin) material. In Eq. (2.5), TO is assumed to be uncou-

pled into the sum of TO and TpI .

Within the context of the purely mechanical theory, the Clausius-Duhem inequality

reduces to

-P0 4 + S E 0 (2.6)

where P0 is the mass density in the reference configuration and S is the symmetric Piola-

Kirchhoff stress tensor. Standard procedures (Coleman and Gurtin [1967]) along with

the additional assumption that damage and plastic unloading are elastic processes then

lead to

a'Pg(E , EP)S = P0 (I - d) AF( '(E.7)0E (2.7)

together with the damage and plastic dissipative inequalities

p0o 9 (E, EP, Q) 0 (2.8)

- P- " - Q- -0 (2.9)

It follows from (2.8) that the thermodynamic flux conjugate to the damage variable d is

simply the total undamaged free energy function TO (E , EP , Q); i.e., the "damage
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energy release rate". This is at variance with Lemaitre [1984][1985][1986], which con-

sidered only the elastic part of the undamaged free energy. Moreover, the "effective

stress" S (over the effective resisting area) is given by the expression

S = -'=P 'e(EEPJ')
dE , EP (2.10)

Remark 2.1. The spatial counterpart of the material description outlined above can

be obtained by employing standard push-forward operations with the deformation gra-

dients. For instance, the spatial counterpart of (2.7) reads

% = po (l - d) aY, 4(e , eP , F) (2.11)de (.1

Here 'i is the Kirchhoff stress, e and eP are the Eulerian strain tensors, and 'VO denotes the

stored energy function in terms of the Eulerian strains and deformation gradient. 0l

Remark 2.2. In the case of anisotropic damage due to microcrack opening and

closing, (2.11) can be replaced by (as will be shown in Sec. 2.5)

-V (e , eP , F) ] (2.12)po I -Dac) :a ede (.2

Remark 2.3. A different finite strain damage-plasticity formulation based on an

additive split of the stress tensor was previously proposed by Simo and Ju [1987c]. El

11.2.3. Characterization of damage. Elastic-damage moduli

An energy-based characterization of isotropic damage mechanism at finite strains is

discussed in this section. Motivated by Eq. (2.8), we employ the locally averaged free

energy To to characterize the damage loading/unloading conditions. For convenience, let

us define the notation 4 as (in a material description)

, - p0 (E, , Q) (2.13)
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A damage criterion is then introduced by requiring that at any time t

g ( r,) - , r, :9-0 E t ., (2.14)

where rt signifies the damage threshold (energy barrier) at current time t . If ro denotes

the initial damage threshold before any loading is applied, a property characteristic of the

material, we must have r, > r0 . Condition (2.14) then states that damage in the material

is initiated when the damage energy release rate ( ) exceeds the initial damage threshold

r0 . The above energy-based damage criterion is fundamentally linked to the history of

both elastic and plastic variables. One should realize that a stress-based damage criterion

in the presence of significant plastic flow is inherently inadequate for predicting realistic

plastic damage growth.

To describe the growth of microcracks (microvoids) and the expansion of damage

surfaces, equations of evolution for d and r are specified as follows

d t = E(d, , t , s , a)

t (2.15)

where s and a are the inclusion spacing and inclusion size, respectively. Furthermore,

the irreversible nature of damage is captured by enforcing that the damage consistency

parameter . satisfy the (Kuhn-Tucker) unilateral restrictions

i >>.0, g( t ,r,)O0, g( ,rt)=0 (2.16)

One can show that these conditions are in fact optimality conditions for a principle of

maximum damage dissipation (see Simo & Ju [1987a,b]). One can determine . and r, by

requiring that during the damage loading

g(E,r)-g( ,r1 )=O . = < > (2.17)

so that

r, =maxar x, x } (2.18)
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where < e > is the McAuley bracket. A spatial version of the above characterization of

damage can be carried out in exactly the same fashion.

2.3.1. Elastic-damage tangent moduli. In the absence of further plastic flow, the

relation between strain rate and stress rate is obtained as follows. In a (damage) loading

process, one has

PO(I1-Id) ,P(EE_) , EP E,P) (2.19)=p(1d) A 2  :--0 dE

From Eq. (2.10) and (2.13), we realize that =S:E . Hence, we obtain

S = A(E , EP , d) : E, where A is a symmetric rank four tensor referred to as the elastic-

damage tangent modulus at finite strain, and given by

a)2je0E , Ep ) _=SS(.0
A(E, EP , d) = po (I - d) DE2 E' G,(2.20)

The expression for the elastic-damage modulus in a spatial description follows at once

from (2.20) by a push-forward operation, and is recorded in Box 1 along with a summary

of the isotropic damage model. Note that q a * Q is the push-forward of Q.

Remark 2.4. (Viscous damage model). The damage model outlined above is rate

independent. Typically, in the softening regime, lack of uniqueness will arise if such an

approach is employed. To account for rate sensitivity of damage growth and to regularize

the localization problems, one may consider a viscous damage mechanism. Essentially,

one replaces the damage evolution equations (2.15) with the rate-dependent counterpart:

g,= < g( ,rj) > E(d, ,,s , a)

(2.21)
9t= l < g(,r) > []
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BOX 1. Isotropic elastic-damage at finite strains

Material (Convected) Spatial

(i) Multiplicative split and stress response: F = Fe FP

=0-(E , EP alVe(e , eP, F)
P0 E P0_ _e_

S=(1 - d)(

(ii) Damage evolution: p a Po TO(E, EP ,Q) = po V' (e, eP , F, q)

d= -(d , ,s , a) ; :.>_0

g -- -r !0 ; ig =0

(iii) Elastic-damage modulus: (similar in a material description)

a -- p 0 (I - d ) ---- .

(iv) Plasticity: See Box 2.

11.2.4. Coupled elastoplastic damage response. Tangent moduli

Within the proposed framework, plastic response is characterized in the so-called

effective stress space in terms of the effective stresses. We refer to Ju [1986], Simo & Ju

[1987a], Ju [1988] for discussions of these notions. It is emphasized that use of effective

quantities in the yield condition has the net effect of lowering the plastic strength and

flow stresses of materials.

81



2.4.1. Yield condition. In a spatial description, one assumes a yield condition that

depends on the current effective stress z" and a suitable set of internal plastic variables q.

Since this function may depend on z through its invariants or deviator, one needs to

include explicitly the dependence on the spatial metric tensor, denoted by g. Accord-

ingly, one writes

g , q) < 0 (2.22)

One could also define the yield condition entirely in the strain space by postulating at the

outset the form O(e , eP , q , F) 5 0 . Alternatively, one may think of this strain space

form as emanating from (2.22) through the stress-strain relation (2.11).

In a material description, the yield condition consistent with material frame indiffer-

ence takes the form

(D(E, EP , Q) < 0 (2.23)

2.4.2. Flow rule and hardening law. Although more general formulations are

possible, we shall restrict our attention to the case of an associative flow rule. In view of

the (material) plastic dissipative inequality (2.9), the evolution equations for EP and Q

need to be defined. Specifically, let us assume an evolution equation for EP of the form

(see Simo and Ju [1987c], Simo [1988])

=_, M_- : EP (2.24)dE

where

a2T f(EF) _ g2
M - 1 P0 E (2.25)

aE AP aEP

Furthermore, y is a plastic consistency parameter that determines the irreversible nature

of the plastic flow according to the Kuhn-Tucker conditions

y>0, c(E,EP ,Q)<0, 'c(E,EP ,Q)--0 (2.26)
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Equivalently, one can rephrase the above flow rule as follows

SP -- M: FP =- L EE, (2.27)

Eq. (2.24),(2.25),(2.27) in fact correspond to the case of "maximum effective plastic dis-

sipation" in the strain space. The characterization of the effective elastoplastic response

is completed by prescribing the evolution of the internal (plastic) state variable Q accord-

ing to a rate equation of the form

Q = ,H(EEF ,Q) (2.28)

One refers to the function H as the generalized hardening modulus. The spatial formula-

tion can be obtained by the standard push-forward procedures.

2.4.3. Elastoplastic-damage tangent moduli- The plastic consistency parameter '

is determined by enforcing the so-called plastic consistency condition. Explicitly, upon

loading ( , > 0) one must have 'D(E, EP , Q) = 0 and 4'(E, EP , Q) = 0. Direct applica-

tion of the chain rule and use of the flow rule yield the following expression for ,

/= d M_ I d 4 d(2.29)

DEP CIE

By inserting (2.29) into the flow rule (2.27) and using the rate form of (2.10), we obtain

S= E , where AkP is the effective elastoplastic tangent modulus given by (see Simo

[1988])

XeP _ Ao - r (2.30)d(D M_l dO 0 o

with AO --Po a2'f'O/aE 2 • To derive te elastoplastic-damage tangent moduli, we first

recall that S = (I -d)S. Time differentiation then leads to

§=(l d)s dS=(1-d)AeP :E-kZ (2.31)
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where use has been made of Eq. (2.15) and (2.17). In addition, time derivative of Eq.

(2.13) along with Eq. (2.24),(2.28) yield

P= -o : " -PO Y H] (2.32)

Substitution of Eq. (2.29) and (2.32) into (2.31) then renders S = AO- E. Here Ae' is

the elastoplastic-damage tangent modulus given by

1Z(O l : -POT0 • H)
AIP =(I-d)ATeP-[ [S GS] + Po : -j,-P -9z -H [S Qo1 (2.33)

It is observed from Eq. (2.33) that AeP is in general a non-symmetric rank four tensor

unless S - For easy reference, basic equations derived in this section have been

summarized in Boxes I and 2. Note that L, ; denotes the Lie derivative of the effective

spatial contravariant tensor iP ; i.e.,

L, iP - F StP FT (2.34)

Remark 2.5. A damage-perturbed yield criterion and damage-induced non-

associative flow rule in the homogenized stress space u was proposed by Dragon [1985],

Dragon and Chihab [1985]. It is noted, however, that two different yield functions are

used in Dragon [19851 to define the "genuine" yield potential and arother damage-

perturbed pseudo-potential, respectively. The corresponding elastoplastic-damage return

mapping algorithms are iather cumbersome due to two simultaneous consistency condi-

tions. 0

Remark 2.6. In the previous work by Simo and Ju [1987c], the formulation relies

on an additive split of the stress tensor. The elastoplastic and elastoplastic-damage

tangent moduli are too "soft" due to the fact tha, the differentiation involves the store

ec:-gy function To0(E) with E as its argument (see Eq. (2.22) in Simo and Ju [1987c]).

These "soft" tangent moduli could lead to numerical difficulties when large strains are
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encountered. By contrast, present formulation employs more robust (stiffer) tangent

moduli with E and EP as arguments of the store energy function i°(E , EP) in every dif-

ferentiation. This advantage together with our J -integral-like damage energy release rate

(Po Tpo (E , EP , Q)) make the present formulation physically and computationally more

attractive. 0J

11.2.5. Anisotropic microcrack opening/closing mechanism

Although the damage model presented in Sec. 2.3 and 2.4 are isotropic, they can be

easily extended to account for anisotropic "mode I" microcrack opening and closing

effects and the damage-induced anisotropy. The treatment here is similar to the previous

proposal of Ortiz [1985] for (infinitesimal deformation) microcracks. A spatial descrip-

tion is (.n.ployed in this section. Let us begin by considering the spectral decomposition

of the strmn tensor

e = pi ei pi , IP 1 (2.35)

where ei is the ith principal spatial strain and pi the ith corresponding unit principal

direction. Let Q and 4' , separately, be the regular and positive (tensile) spectral projec-

tion tensors defined as follows

Q pi0pi ; Q0+- fi4(ei)pifpt (2.36)

where/- ( * ) is the Heaviside ramp function. In addition, we define the fourth-order

positive projection tensor F + with components

PijkJ- Qia+ t l; ka 1b (2.37)

With these notations at hand, Eq. (2.11) is then rephrased to take into account the

anisotropic active (open) microcracks under tensile extensions. Specifically, we write

't=P0 (I - Dacl) : °(e , eP , F) (2.38)
e-



BOX 2. Elastoplastic-damage constitutive model

Material (Convected) Spatial

(i) Multiplicative split and stress response: see (i) in Box 1

(ii) Damage evolution: see (ii) in Box 1

(iii) Tangent tensors:

A°-PO a°- o

=E AP m -P0 e aeP

(iv) Plastic flow rule:

Fi2 =/M- I : d'(E , EP/ ,4) Lv CP m-1 : 0(e eP ,qF)
dE de

SP -M:ip LiP =-m :LVeP

(v) Hardening law:

Q=(H(E,EP ,Q) Lvq= h(e,eP ,q,F)

(vi) Loading/unloading conditions:

(vii) Elastoplastic and elastoplastic-damage tangent moduli: see Eq. (2.30),(2.33)

where Da' = d !F I P = d IP* 1P* is the fourth-order active anisotropic damage tensor.

If all three principal strains ej are tensile, then we have FI = I and Dc' = d I ; i.e., the
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local microcrack is open (active) in all three principal directions and isotropic damage is

recovered. On the other hand, if all ej are compressive, then I = 0 and Dac = 0 ; i.e.,

the local microcrack is entirely closed (passive) under current state. Clearly, other com-

binations of tensile and compressive states will give rise to various microcrack opening

and closing situations.
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11.3. Computational integration algorithm

We now focus on the algorithmic treatment for the proposed elastoplastic-damage

mechanisms. A spatial setting is adopted here and a general isotropic/anisotropic three-

step elastic-plastic-damage return mapping algorithm is presented.

In accordance with the notion of operator split, the elastic-plastic-damage rate equa-

tions can be consistently and efficiently integrated by a three-step return mapping algo-

rithm. The three-step operator split results in an "elastic predictor/ plastic corrector /

damage corrector" algorithm. In particular, the "plastic corrector" utilizes the cutting

plane algorithm (see, e.g., Ortiz and Simo [1986]) with damage value fixed. By contrast,

in the "damage corrector" phase, plastic internal variables are fixed. The details are

given in the following step-by-step integration procedures.

3.1. Elastic predictor. The initial conditions at Gauss points for the elastic predic-
tor are d , d, be, qn , with be =Fe FeT .

(i) Geometric update: given the incremental displacement field u

+n+i= + u ;Fu = I + V.u (3.1)

F,+, = Fu F. (3.2)

(ii) Elastic predictor: by using hyperelastic potential and multiplicative split. Set

initial iteration count k = 0.

be+(?) = Fu be FT  ; q,+) = Fu. qn ; d0+ =dn  (3.3)
= 2 Po a~V°(gn+I , be;. (0) , F. +1) 0(e,+1 , eg+(?) , F.(+)

dg P0 de

where eA+(?) = (be 1 (0) - b-11) with b,+, a Fn+1 FT+1 •

3.2. Plastic corrector: damage is fixed in this phase and computations are per-

formed in the effective space.
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(iii) Check for yielding:

0b(gn + I, be- () q, ) , F. +1) !5 TOL ? (3.5)

YES: Set( - )n+1 = ( * ),.+ . GO TO (v) (3.6)
NO: Continue

(iv) Plastic return mapping corrector:

(a) Compute plast " consistency parameter:

Ay~k+ =) / 4 m- g h] (3.7)

(b) Update state variables:

b ( k+ ) = ; (k ) _ 2 A y,(k)) J()(
-in+1 i+ - 2+,lI)c" (3.8)

rg In+1
(k)

bnz +? ) be- (k) - 2 Ay, kI) m 1 : )- ,+ 39

q, kAl = q~k+)i + Ay~k+Al) hk+ (3.10)

Setk -- k+ ; GOTO(iii) (3.11)

At the end of this step, the state variables become I '-n+, d , bl qn+l } It should

be noted that all existing return mapping algorithms for elastoplasticity become directly

applicable (with no modification) in our elastoplastic-damage formulation.

3.3. Damage corrector: to produce the final state { n+l , dn+l, be+l , qn+l •

Plastic variables arefixed in this phase.

(v) Damage evolution:

(a) Compute "damage energy release rate" ,+j according to

4.+, a P0 W° (gn+l , bn+,9 Fn+j, q,+) (3.12)

(b) Update the isotropic damage variable and damage threshold r,+"

dnl d, if ,, +I- r, 5_0 (.3

= dn + ( n+j - t,,) -. +1 otherwise (3.13)
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r,+, a max { rn, + }(3.14)

(c) Update Kirchhoff stress:

(1-dn+,) tn+t if isotropic

(1-dn)'~i (3.15)=  (I - Dg ) : v.n+I if anisotropic

For details pertaining to the computation of Dac1 , we refer to Eq. (2.35)-(2.37) in Sec.

2.5. It is emphasized that no iteration is required in the damage correction phase.

Although plasticity and damage are coupled in rate equations, the algorithmic treatment

renders uncoupled plasticity and damage algorithms. The simplicity and efficiency of the

overall procedures are noteworthy.

Remark 3.1. It is well known that there exist uniqueness, well-posedness and

numerical convergence problems associated with apparent "strain-softening" computa-

tions due to the loss of local strong ellipticity. As a result, finite element computations

exhibit spurious mesh sensitivity when the mesh size goes to infinitesimal. In view of the

concepts of homogenization (unit cell) and characteristic length, a nonlocal damage

theory may be considered to overcome these numerical difficulties; see, e.g, Bazant et al.

[1987][1988], Pijaudier-Cabot and Bazant [1987]. Nevertheless, nonlocal computation is

to some extent incompatible with local finite element calculation and further enhance-

ment in consistency and accuracy is needed. On the other hand, the viscous damage

mechanism outlined in Remark 2.4 may be considered to accommodate dynamic (rate)

damage effects and to control loss of ellipticity. 0
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II.4. Numerical experiment

The performance of proposed elastoplastic-damage constitutive models is illustrated

through a numerical experiment in this section. Our finite element treatment relies on a

mixed variational formulation of the Hu-Washizu type. The four-node element with bil-

inear isoparametric displacement field and constant (current) volume is employed. A

combination of BFGS updates and line search with periodic re-factorizations are used for

the proposed models.

II.4.1. Selection of Ws°

In order to carry out evolution of damage, selection of the spatial "damage energy

release rate" (the undamaged total potential energy function) Po N& (g , be-, F , q) has

to be addressed. In general, the specific form of VO depends on the mechanical behavior

and thermodynamic processes of materials. In particular, from Eq. (2.9), it is seen that

the spatial thermodynamic force conjugate to q is actually -- q . Therefore, it is

rational to postulate that

49(g, be- ' , q, F) (4.1)
I (-

By comparing Eq. (4.1) with (2.28), we realize that

h(g, be-' , q, F) at(g, b e- ' , q ,F) (4.2)

The von Mises J 2-flow theory with isotropic linear hardening is considered for the effec-

tive plastic response in what follows. This leads to dV' = R (-)P with P and R ()de-

signifying the equivalent plastic strain and yield radius, respectively. We then arrive at

V=p R (e-P) de' . For linear isotropic hardening, one writes
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_( Yo (4.3)

with Yo and '1 denoting the initial effective yield stress and linear hardening slope,

respectively. As a result, we obtain

V p(e-p) "(y. ep + I n e- 'p2  (4.4)

On the other hand, the form of Ve° hinges on the particular hyperelasticity model

employed. We shall consider the following hyperelastic store energy function with

uncoupled volumetric and deviatoric parts

VeO(g, be- I , F) = K (J lnG - J + 1) + I~ (gb- - 3 ) (4.5)

where E= J det F , .o = initial shear modulus, K = initial bulk modulus, and

b, =- J 2 3 be :g.

11.4.2. Quasi-static damage propagation of a notched specimen

Consider the quasi-static damage propagation (including microcrack and macro-

crack growth) in a notched specimen under tension and plane strain condition for the pro-

posed elastoplastic-damage models. Of particular interest is the coupling between the

plasticity and damage mechanisms. Due to the energy-based characterization of damage,

the model predicts higher (faster) damage accumulation in the presence of plastic flow.

This is in agreement with experimental observations and the so-called "plastic correc-

tion" procedure typically employed in fracture mechanics.

A finite element mesh consisting of 288 elements is shown in Figure 1. For

exponentially growing progressive damage, the evolution function E is assumed to be

_ (1 -A ) + A B exp[B (to- k)] (4.6)

Here A and B are characteristic material properties and 40 denotes the initial damage

threshold. These material properties can be estimated in a systematic manner from
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suitable experimental data. The numerical values of ithe (metallic) material properties

used in computation are taken as E = 206.916 GPa, v = 0.29, A = 0.85, B = 14 GPa-1, O

= 0.0004 GPa, Y0 = .45 GPa, and rj = 100 GPa.

The specimen is under displacement boundary control. As the magnitude of the con-

trol displacement is increased, one observes a corresponding increase in value of the

damage variable d in those elements ahead of the notch tip. Eventually, complete dam-

age (corresponding to d = .995) is obtained. Thus, crack propagation is characterized as

the locus of points for which the damage variable d = 0.995. Figure 2 shows the global

load-deflection curve of the loading histories. It is observed that the number of fully dam-

aged elements increases as the crack mouth opening displacement (CMOD) increases.

The relationship among the number of fully damaged elements (ahead of the notch

tip), the number of plastically yielded elements (ahead of the notch tip), and the time-step

count is summarized in Table 1. Note that the number of yielded elements is always

higher than that of fully damaged elements; and that the latter number increases with the

former number. This illustrates the strong coupling between plasticity and damage

mechanisms, and demonstrates the fundamental role played by plastic flow in damage

growth. Such a mode of response is in qualitative agreement with available physical evi-

dence. The damage contours of the specimen at the 15th and 20th load steps are shown

in Figures 3 and 4, respectively. In addition, the yielded zone at the 20th load step is

displayed in Fig. 5. Finally, at the end of the experiment, an interesting macrocrack path

and yielded zone are recorded in Figures 6 and 7, respectively. The capability of the pro-

posed models to simulate damage initiation and growth as well as crack propagation is

demonstrated.
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Table 1. Number of fully damaged elmts vs. load steps

Step No. "cracked" No. yielded

3 0 1

5 0 2

6 1 3

9 2 5

1 3 7

12 4 7

14 5 8

19 6 10

21 7 11
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H.5. Closure

Energy-based isotropic and anisotropic elastoplastic damage models at finite strains

have been presented in this paper to characterize progressive damage and crack growth.

The proposed framework is capable of accommodating general nonlinear elastoplastic

response, anisotropic microcrack opening and closing, and the coupling of damage and

plasticity. Damage initiation and propagation are linked to the homogenized "damage

energy release rate" Po 4P . The loading/unloading criterion compares Po 4& with the

current damage threshold (debonding energy level) to determine whether unstable

microcrack growth will occur. It is noted that the proposed damage models are

compatible with general finite strain elastoplasticity formulation previously proposed by

Simo [ 1988].

An essential purpose of the present work is to demonstrate that the proposed classes

of elastoplastic-damage constitutive equations are suitable for large scale computation.

In particular, use of the operator splitting methodology leads to a three-step integration

algorithm which algorithmically uncouples the coupled plastic and damage responses.

This is possible because of the effective stress concept. A numerical experiment is also

given to illustrate the potential applicability of the proposed models.
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11.7. Figure captions and figures

Figure 1. Finite element mesh (288 elements) of a notched specimen. Due to sym-

metry, only 1/4 configuration is shown. Dimensions are in terms of cm.

Figure 2. The global load-deflection (CMOD) curve.

Figure 3. The damage contours at the 15th load step. Lines a , b , c , d , e denote

damage values = 0.2, 0.4,0.6,0.8,0.95, respectively.

Figure 4. The damage contours at the 20th load step. Lines a , b , c , d , e denote

damage values = 0.2, 0.4, 0.6, 0.8, 0.95, respectively.

Figure 5. The yielded zone at the 20th load step.

Figure 6. The macrocrack path (d = 0.95) at the end of simulation.

Figure 7. The yielded zone at the end of simulation.
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PART III
On Two-Dimensional Self-Consistent Micromechanical

Damage Models for Brittle Solids

III.1. Introduction

Micromechanical (or mesomechanical) damage models for microcrack-weakened

brittle solids are presented within the context of the self-consistent method and damage

mechanics. For simplicity, only two-dimensional problems are considered. Though

phenomenological continuum damage models provide a viable constitutive framework

for efficient modeling of brittle solids (e.g., concrete, mortar and brittle composite

materials), they typically do not offer insightful descriptions of mesostructural micro-

crack kinetics. Further, use of several fitted "material parameters" in damage evolution

equations only renders vague and averaged information on underlying microcracking

processes at the mesoscale (Krajcinovic and Fanella [1986]). Therefore, micromechani-

cal damage theories, which incorporate mesostructural and micromechanical information

into the damage mechanics framework, are warranted.

For a literature review on continuum damage mechanics, see, e.g., Krajcinovic

[1984][1986], Ortiz [1985], Ju [1989]. On the other hand, micromechanical damage

theories ("process models") are limited in the current literature. Some valuable examples

are Wu [1985], Krajcinovic and Fanella [1986], Sumarac and Krajcinovic [1987,1989],

Fanella and Krajcinovic [19881, and Krajcinovic and Sumarac [1989]. In addition,

micromechanical "non-process" damage models (i.e., no microcrack growth) were pro-

posed, for instance, by Budiansky and O'Connel [1976], Hoenig [1979], Horii and

Nemat-Nasser [1983], and Kachanov [1987] for static stable microcracks. Some single

crack stress and crack opening displacement analyses (boundary-value problems) were

proposed by, fo: instance, Willis [19681, Sneddon and Lowengrub [1969], Hoenig

[1978][1982], and Mura [1982]. Moreover, certain valuable non-process, strong micro-

crack interaction analyses (not quite damage constitutive theories) were proposed , e.g.,
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by Horii and Nemat-Nasser [1985a], Chudnovsky, Dolgopolsky, and Kachanov

[1987a,b], and Kachanov [1987].

An outline of this paper is as follows. Two-dimensional microcrack opening dis-

placements, effective overall (secant) compliance moduli and thermodynamic basis are

given in Sec. 2 for initially linear elastic (isotropic or anisotropic) brittle solids within the

context of the unit-cell based self-consistent method. It is assumed that distributed

microcrack concentration justifies the use of effective continuum medium theory. The

microdefects are considered as line microcracks, and microcrack interaction is assumed

to be weak or at most moderate. Thus, effects of strong microcrack interaction and exact

locations of microcrack centers are not accounted for in this paper (see Kachanov

[1987]). Localization failure modes are not considered, either. In Sec. 3, mode I, mode

11 and mixed mode discrete microcrack kinetic equations are examined based on mesos-

tructural microcrack geometry and fracture mechanics stability criteria for brittle

"cleavage " deformation processes (Ashby [1979], Sumarac and Krajcinovic [1987]).

No phenomenological (fitted) "material parameters" are used in kinetic equations of

microcrack growth. Further, loading/unloading stress paths are permitted, and micro-

crack status changes from opening to closing (or vice versa) are trivially accommodated.

In Sec. 4, we present efficient computational algorithms for the proposed micromechani-

cal damage models. Mode I uniaxial tension, mode II uniaxial compression, and mixed

mode tension/compression numerical simulations are also presented in Sec. 4.
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11.2. Basic framework of self-consistent elastic-damage models

In this section, we present thermodynamic basis of damage mechanics, derive and

summarize symmetric or non-symmetric "displacement transformation matrices" B' and

anisotropic overall (secant) elastic-damage compliance moduli S for brittle materials.

The matrix material is assumed to be perfectly linear elastic.

III.2.1. Thermodynamic basis

It has been shown (see, e.g., Simo and Ju [1987], Ju [1989]) that there exists a one-

to-one correspondence between the fourth-order elastic-damage secant compliance tensor

S and the fourth-order anisotropic damage tensor D (signifying volume average micro-

crack density, sizes, orientations and opening/closing status). Therefore, it is rational to

treat the secant compliance 9(5) itself as the anisotropic damage variable. Within the

framework of the unit-cell based homogenization concept for inhomogeneous effective

continuum medium, let us define the homogenized (volume-average) complementary

free energy function as (see also Krajcinovic and Sumarac [1989])

X = 1/ C: S(D)" (2.1)

where o is the volume-average stress tensor (Hill [1965]). By the Clausius-Duhem ine-

quality for isothermal process, we have (with c denoting the volume-average strain)

if : -> 0 (2.2)

where (according to (2.1))

=6': S : G+ 1/2o: JS : o (2.3)

The standard Coleman's method then lead to the following macroscopic stress-strain law

and the damage dissipative inequality:

E =: o (2.4a)

/2 C: S : ( _> 0 (2.4b)
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From Eq. (2.4b), it is observed that the evolution S plays an essential role in microcrack

energy dissipation and evolutions (i.e., "process models"). During a damage loading pro-

cess (in which some microcracks increase their lengths), the total strain tensor E is amen-

able to an additive decomposition: £=P +id, with P and P denoting the elastic and

inelastic (damage-induced) strains, respectively. It is assumed that id Z 0 upon complete

unloading; that is, the residual strain at zero stress is negligible for brittle materials. The

elastic-damage secant compliance tensor is also suitable for an additive decomposition:

= So + Sd, with So and Sd denoting the virgin undamaged elastic compliance and the

damage-induced additional compliance, respectively (see, e.g., Mura [1982], Horii and

Nemat-Nasser [ 1983]).

It is emphasized that once a material contains distributed microcracks, the material

becomes inelastic due to its load-path dependency. There are different stress-strain

curves corresponding to different load paths leading to same final stress state. Under

some loading/unloading paths within the context of "non-process models", a damaged

material may exhibit iinear and reversible response within a limited range. However, one

should not regard t&e damaged material as a perfectly elastic one. For example, when

damage state 55 is fixed (i.e., no microcracks increase their sizes or opening/closing

status) and no frictional slip occurs, the overall response remains linear and reversible

and therefore we have E= DX/aly and S = a2X/aC2 (symmetric). Nevertheless, this is not

true when damage state is not fixed or when frictional slip is taking place. In addition, the

differentiation of (2.4a) renders elastic-damage tangent compliance tensor R'9 under

damage loading condition:

SaSg S + (2.5)ida,g _ Cg+ -T

From (2.5), it is clear that 9 9n * S in general.

Assuming moderate microcrack concentration and microcracks being away from

unit-cell boundaries, we have = z , where ar signifies the remotely applied stress
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field around unit-cell boundaries (Hill [1965]). Therefore, the microcrack-induced inelas-

tic strain may be approximately expressed as (Vakulenko and Kachanov [1971],

Kachanov [1980], Horii and Nemat-Nasser [1983])

-" 2 [ (b n + n b) dS (2.6)

where V is the representative volume of a unit-cell, Y is a summation operator over all

active (open or sliding) microcracks, b denotes the crack opening displacement vector,

and n signifies the normal vector associated with b. For two-dimensional line micro-

cracks, Eq. (2.6) can be rephrased as (with A denoting the area of unit-cell surface):

,,A- (bOn + n Ob) dl (k)2.7)

As was pointed out by Krajcinovic [1985], the alternative definition of the damage

variable in terms of i'd in (2.6) or (2.7) is thermodynamically incorrect. The reason is

obvious as follows. During "mode I" elastic unloading, b decreases and the damage vari-

able (defined by Eq. (2.6) or (2.7)) changes its state, thus leading to energy dissipation

even under "mode I" elastic unloading. Therefore, though Eq. (2.6) is an acceptable

measure of the damage-induced inelastic deformation, it is not a good choice for aniso-

tropic damage variable. The derivation of appropriate "thermodynamic force" conjugate

to the "rate of change of the microcrack density" will be given in the next section.

IH.2.2. Elastic-damage secant compliance

In a two-dimensional setting (e.g., plane strain), Eq. (2.4a) can be rewritten using

Voigt's notation (see Fq. (22) in Horii and Nemat-Nasser [1983])

i =S ij tj ; i,=1,2,3 (2.8)

where F, = Ell, F2 = E22, e3 = 2 12, 11 = 011, 12 = 022, 13 = 012, and S is a three by three

elastic-damage secant compliance matrix. For open microcracks, the secant compliance
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is in fact the unloading compliance. Therefore, the secant compliance S is symmetric

(though anisotropic) according to Sec. 2.1. In the case of mode II frictional sliding on

closed microcrack faces, by contrast, the elastic-damage secant compliance S is non-

symmetric (S3ij * Sji) during either loading or unloading processes. In addition, coordi-

nate transformation matrices g and g' relating the secant compliance matrices S and S' (in

global and local Cartesian coordinate systems, respectively) are available from Eq. (24)

in Horii and Nemat-Nasser [1983]:

S 'ij -g 'im g *jn S,, ; Sij -gmi gj S 'non (2.9a)

cos20 sin20 12 sin20 cos20 sin 20 sin20
[g'] - sin 20 cos20 - / sin20 ; [g] sin 2O cos 20 - sin2e (2.9b)

-sin20 sin20 cos20 /2 sin20 1/2 sin20 cos20

It is remarked that the "local" (primed) coordinate system is the intrinsic coordinate sys-

tem associated with a particular microcrack such that the y '-axis is parallel to the micro-

crack unit normal vector n, see Fig. 1. Within the context of the self-consistent method, it

remains to determine the crack opening displacement b' across an isolated line-

microcrack embedded into an "equivalent" two-dimensional anisotropic homogeneous

elastic solid. First, from the geometric compatibility condition, we obtain

a3,e-1 +  a - _ - 3 =  0 (2.10)

For an open microcrack, substitution of (2.8) into (2.10) then yields (Lekhnitskii (1950])

-' A U , -,4 -)

S'1 -- 2 1 3 4U + (2 S 12 + S"33) -.U

--2023 + =o (2.11)DX 3 a y"

where U is a proper stress function. The characteristic equation of (2.11) takes the form:

P, "'1 ' - 2 S 13
1"3 + (2 9' 12 + Y 3 3 ) 2 - 2 9-' 23 ;L'+ Y' 2 2 = 0 (2.12)
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Of course, the elastic-damage secant compliance moduli S'ij are yet unknown in accor-

dance with the self-consistent method. According to Lekhnitskii [1950] and Sih et al.

[ 1965], the displacement jump across an (k -th) open mnicrocrack (under mode I or mixed

IM1 mode loading) in an anisotropic homogeneous elastic solid can be expressed as:

bfk)' =2 4a_(k)2-X'29S'II [(r', S' 2 +r' 2 S'0?c2+(S I +S'2t3(k) (2.13a)

bS) =21 S2 ?2 + r'IS 2 + r 2 S' ) (k) 3b
b Na (" 2 '.P 22 [{';"'T + -7l~~] '2+ [r'?+s'7J[r'J+s'J] -,3 (2.3b

where X'J = r', + is', (j = 1, 2), with s'I, S'2 >0, are the roots of the characteristic

equation (2.12). Eq. (2.12) is a fourth order equation and can be solved analytically.

Further, let us define the 2 by 2 "displacement transformation matrix" B(k)' as:

S'I(s'1 + s' 2 ) 9 1 1 (r', s'2 +r'2 s 'I) (k
[B(kY] = 2  's 2 r 2 ' 2 1 2 1  ... 72j (2.14)

so that (2.13a,b) may be recast as

bi (k)'= - ,I(k )2 -x 2B,3k Y &2 j (2.15)

From Eq. (2.14), it appears that B(k)Y is a non-symmetric matrix since the off-

diagonal components B f )Y and B If' may not always be equal; see also Eq. (14)-(15) in

Sumarac and Krajcinovic [1989]. This observation, however, is incorrect since it can be

proved that B fl'=B t) is guaranteed for an open microcrack. To see this, we note that

r + +s '=(r 'I + i s 'I ) (r 'I - iS 'I ) = V! X' (2.16a)

r + s= (r '2 +i S' 2 ) (r '2 -i S 2 )= V2 V4  (2.16b)

where V 3 and V 4 are two complex roots of (2.12) conjugate to the roots VI and X'2,

respectively. Since V'l. X'2, X' and X'4 are the roots of (2.12), they must satisfy

X1 X2 3 X '4 22/ P~I1 (2.17)



Therefore, we arrive at

(r'? + s "?) (r'j + s 'I) = 2 /" 1 '1 (2.18)

r', s'2+ r'2s 'I =S'22 [r',+s"] [r'+s'](2.19)

Hence, B f)' = Be)' and B(k)' is always symmetric for an open microcrack. For a closed

microcrack under mode 1I frictional sliding, Eq. (2.13ab) and (2.14) must be appropri-

ately modified; see Horii and Nemat-Nasser [1983] (p. 162 therein) for an approximate

treatment. Essentially, one may set B 'Y = B [)' =bk = 0, and replace O'22 and i'21

by i'22 - and a' 21 + gtsgn (i' 21) o 2 , respectively. Here, gt is the coefficient of fric-

tion, and cyf2 is the compressive normal stress transmitted across the closed crack (see

Eq. (28) in Horii and Nemat-Nasser [1983]). Further, the matrix B(k)' is non-symmetric

as a direct consequence of frictional slip.

Using the fact that n'l = 0 and Eq. (2.7),(2.8),(2.13a,b), we arrive at

S fk) =S k) ) = S Jfk)' = S k)' = S Ifk)' = 0 (2.20a)

S =k), =t a (k)2  S + S2 R a) 2 B: ) (2.20b)A 22

Slik) = a ()2 xa (k)2

S ) = A-- (s 'I +s '2) S'11 = X B fj)' (2.20c)

S ick a(k)2  r'I s' 2 +r' 2s'I P22 = X a (k )2 B11" (2.20d)

= T_ "r'?+s"1 r' + si 22

= 7, a(k)2  r= a(k)2 B (2.20e)

where Sd(k)' denotes the k-th microcrack-induced "additional inelastic compliance".

From Eq. (2.20d) and (2.20e), it is realized that Sg k)' = S:k)' for an open microcrack.

By contrast, Silk)' = Sg k )" = 0 and S~g k )' *Sjk)' for a closed sliding microcrack (see

Eq. (32) in Horii and Nemat-Nasser [1983]). Thus, Sd(k)' is symmetric and non-

symmetric, respectively, for an open and a closed microcrack. In addition, the inelastic
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compliance Sd due to an ensemble of microcracks within a unit-cell can be expresses as

S= g S = <S(k)> (2.21a)

in which N signifies the total number of active (open or sliding) microcracks per unit-cell

surface, and < e > represents the expected value. In the limit (a large number of

microcracks per unit-cell), the summation operator can be replaced by the integral opera-

tor over all active microcracks:

Sd=N dS(k)p(O,a)dQ (2.21b)

where p (0, a) is a joint probability density function of orientation and crack size, and 0

is the domain of all active microcracks. It is emphasized that Sd depends on the yet unk-

nown elastic-damage secant compliance S. Consequently, the self-consistent method

demands iterative schemes to solve strains and compliances. Since E = i + Pd the

elastic-damage secant compliance takes the form: S= S + Sd (S).

Remark 2.1. For mode II frictional sliding, secant compliance moduli are non-

symmetric and hence Eq. (2.1l)-(2.12) should not be used. Instead, according to (2.8)

and (2.10), one should use the following equation to solve complex roots:

P1 ' - (S' 13 + S31) ,' 3 + ('12 + S"21 + 9-'33) V2 - (S'23 + S 3 2 ) )L' + S'22 = 0 (2.22)

That is, Eq. (2.22) should be utilized in conjunction with Eq. (2.20a-e) for open micro-

cracks, and together with Eq. (32) in Horii and Nemat-Nasser [1983] for closed micro-

cracks, respectively. To carry out the self-consistent scheme, a general non-symmetric

anisotropic matrix iteration algorithm is warranted. In addition, numerical integration

scheme for (2.21 b) is needed. These issues will be addressed in Sec. 4. 0

Moreover, the "thermodynamic force" conjugate to the "rate of change of the micro-

crack density" can be derived straightforwards. Let us define

Si (k )  A Sd(k) or Sd(k) ira(k) 2 S (k) (2.23)1J

LI 1 L



where i, j = 1, 2, 3. In the spirit of thermodynamics, we may consider statistical area-

average damage by treating a(k) and n(k) as random variables (not necessarily perfectly

random); see also Wu [1985]. Therefore, the area-average values may be replaced by

their appropriate expected values. Hence, we have

<S >=So+< Sd >=SO +N < ica(k)2 S*(k) > = So + < (k) S*(k) > (2.24)A

in which o(k)._- N 7 a (k)2

n w h i.e, the non-dimensional microcrack area-concentration

parameter per unit surface (see Budiansky and O'Connel [1976]). The time derivative of

(2.24) then yields (see also Wu [1985])

< § >= < (k) S-(k) > + < 0o(k) > < DS* (k) >:< >(.5
--S*--(k) <  (2.25)

Note that <6(k)> in general includes both effects of initiation of new microcracks (N)

and growth of existing microcracks (a). From (2.25), we obtain

<S>= l-<W(k) k> < > :<6(k)> <S-(k)> (2.26)

where I is the fourth-order identity tensor. Substitution of (2.26) into the damage dissi-

pation inequality (2.4b) then leads to

V2 : I - < CO() > < >?T- : < 6(k) > < S*(k) > :y 2 0 (2.27)

where a is now a vector of three components (t, 2,1 t3) for two-dimensional case. From

(2.27), it is observed that the "thermodynamic driving force" 4 conjugate to the rate of

change of the microcrack area-concentration parameter < 6(k) > is simply

S1/2 O: I - < o(*) > < a I > ]: < S*(k) > ]: (2.28)

The above result is at variance with that given in Wu [1985] (Eq. (38) therein, i.e.,

/ C : < SO(k)> o). The latter work, although interesting and valuable, indeed
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misses some terms in (2.28) and hence results in some anomalies regarding thermo-

dynamic "strain energy release rate density" t. For example, t given in Wu [1985] may

decrease while E increases, thus predicting no further damage in the post-peak (soften-

ing) branch of the macroscopic (unit-cell) stress-strain curve.

Remark 2.2. In the case of three-dimensional isotropic damage, the damage tensor

D reduces to a scalar variable d. By definition, the scalar damage variable d is the

microcrack volume-concentration parameter <dk)> <Na(k)3/V> . Therefore, we

have (for three-dimensional elastic-damage):

1 So ; Sd= d So (2.29)

Analogous to (2.24), we can identify that

1S*(k) > = so = < S > (2.30)

Therefore, 4 defined in Wu [ 19851 renders

4=1/20- < S > • o= '/o'¢ (2.31)

while 4 given by (2.28) leads to

4 = : ' -- < S > - 1/2= - --Z-d (2.32)

However, o/(1-d) is precisely the so-called "effective stress" 6 (Kachanov [1958]).

Denoting the undamaged virgin elastic stiffness by Co, we then arrive at

V2 a, : = V2 (C° : E): -F () (2.33)

where 'F° (C) is the undamaged strain energy density defined in Ju [1989]. 0
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1I.3. Microcrack evolution equations

It is likely that brittle materials (such as concrete, crystals, polycrystalline ceramics,

etc.) have initial microcracks along some weak planes (e.g., the aggregate-cement inter-

face in concrete) even before specimens are first loaded. Before the initial (existing)

microcracks are arrested by some higher energy barriers (such as the cement paste in nor-

mal strength concrete), they propagate approximately along the same weak planes in a

self-similar manner. The problem can be significantly simplified by assuming that

activated initial microcracks grow to certain characteristic final lengths along weak

planes (Zaitsev [19831, Krajcinovic and Fanella [1986]). For example, initial micro-

cracks on aggregate-cement interface planes of concrete may grow from 2 a 0 (initial

crack length) to 2 af (the aggregate facet size) in an unstable manner. Inevitably, there

are randomness in initial and final microcrack lengths, orientations and center locations

in brittle materials. As a consequence of the two-stage approximation of weak-plane

microcrack lengths (either 2 a 0 or 2 af), the problem of keeping track of weak-plane

microcrack growth in a representative unit-cell reduces to a series of microcrack stability

checks. Thus, classical fracture mechanics stability criteria can be used as tools to deter-

mine whether an initial microcrack will be activated. This procedure, nonetheless, can

not accommodate nucleation of new microcracks along different weak planes.

A microcrack kinetic algorithm based on fracture criteria (see, e.g., Krajcinovic and

Fanella [19871) is intrinsicly stress-controlled. This type of mechanism, however, can

only depict the ascending portion of a macroscopic stress-strain curve, not the descend-

ing ("softening") portion. Before a "point" on a stress-strain curve reaches the peak, a

stress-controlled loading criterion is qualitatively equivalent to a strain-controlled one.

In the "softening" branch, however, a stress-controlled loading criterion will not suffice

since the stress level is decreasing. In fact, in the descending branch of a stress-strain

curve, there must be significant number of microcrack nucleations, and hence the

"cleavage I" process assumption is no longer valid. These and related issues should be
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further investigated in the future.

Restricting our attention to the "cleavage 1" deformation processes in this work, we

consider the following three types of damage modes under biaxial loadings: (1) mode I

(open) microcrack growth only, (2) mode II (closed) microcrack growth only, and (3)

mixed modes I and II (open/ closed) microcrack growth. In particular, excellent mode I

tensile damage kinetic equations were presented by Krajcinovic and Fanella [1986] and

Sumarac and Krajcinovic [1987], whereas valuable mode 11 compressive damage kinetic

equations were proposed by Fanella and Krajcinovic [1988]. Their presentations were,

nontheless, restricted to monotonically increasing loading cases. Therefore, no

unloading/reloading stress paths or microcrack opening/closing effects were permitted in

their presentations. The restriction on status change from opening to closing (or vice

versa) can be removed by checking the sign of individual local normal stress. The

corresponding symmetric or non-symmetric damage-induced inelastic compliance com-

ponents can be obtained from Eq. (2.20a)-(2.20e) for open microcracks, and from Eq.

(32) in Horii and Nemat-Nasser [1983] for closed microcracks. It is remarked that in

general Eq. (2.22) should be used to solve complex roots. On the other hand, the restric-

tion on "monotonically increasing loads" can be removed by computing and checking

whether there are undergoing microcrack growth (excluding those previously propagat-

ing and currently 'rested microcracks). If there is no "angle fan" domain in which addi-

tional microcrack growth is now taking place, then the current incremental load step is in

an unloading state. Therefore, "active microcrack growth" is the valid current loading

condition, regardless of prior existence (or non-existence) of certain "angle fans" where

microcracks previously experienced growth.

Accordingly, the additional inelastic compliance Sd takes the form:

Sd =Sd + Sff+ Sf (3.1)
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where Sd denotes the compliance contribution from undergoing microcrack growth, S d

signifies the contribution from arrested microcracks having initial sizes 2 a6 k) , and S/

represents the contribution from arrested microcracks having final sizes 2 a/k) due to pre-

vious microcrack growth. In particular, if Sd = 0, then the current load level is not high

enough to cause further damage and therefore all existing microcracks are arrested.

Finally, Sd is added to So to obtain the secant compliance S. In what follows, for compu-

tational simplicity, it is assumed that all initial and final microcracks are of uniform sizes

2 a 0 and 2 af , respectively. For non-uniform initial microcrack sizes, we refer to Krajci-

novic and Fanella [1986]. Microcrack kinking will be addressed in Sec. 3.3.

Remark 3.1. If all microcracks are open and arrested with non-uniform sizes, then

overall loading and unloading responses are linear and reversible (but not perfectly elas-

tic). By contrast, if some microcracks propagate, then the loading response is nonlinear.

Moreover, in mode II or mixed mode I/H with friction, some microcracks may be open

and some closed. Therefore, the resulting loading and unloading responses are nonlinear

for either "process models" or "non-process models". 0

Remark 3.2. In the case of mixed mode I/1l loadings, the strain energy release rate

G' for a microcrack along a weak plane should include both mode I contribution G '1 and

mode II contribution G'2 • In terms of secant compliance, G' may be expressed as (Sih

et al. [1965], Rice [1975], Sumarac and Krajcinovic [1989]):

G'= G'i + G'2=Ci)'K'iK' ; i ,j = l,2 (3.2a)

B'22 B 021 (k)
[C(k)1=4 (k) (3.2b)

B'12 B'11_J3.b

Therefore, we have

G= 1/2 [B 11Y Ki"2 + (B )" + B fI)')K" K' Vn + B f' Kl1] (3.2c)

120



I is noted that K'1 and K'1 represent the mode I and Il stress intensity factors at a par-

ticular orientation, respectively. The expressions for B55k)" are given in Eq. (2.14) for an

open microcrack, and in Horii and Nemat-Nasser [1983] for a closed microcrack. The

computed G' value is then compared against a given mixed mode critical strain energy

release rate G, to determine whether a microcrack will propagate. C

1H.3.1. Mode I microcrack growth

Under uniaxial or biaxial tensile loads, microcracks primarily grow in "mode I"

fashion. Let us define the (global, homogenized) axial tensile stress by 't2 = q and the

lateral tensile stress by Tj = q * respectively. The normal stress T'2 on the face of a typi-

cal microcrack at 0-angle then reads

;' 2 =q cos2 0+q* sin2 0 > 0 (3.3)

According to Eq. (3.2c), one should compute K'1 , K'1 and G' even in the case of

uniaxial or biaxial tension. However, since "mode I" is the primary concern (Sumarac

and Krajcinovic [1987]), it is computationally simpler to use the mode I fracture cri-

terion. In addition, strictly speaking, the "stress intensity factor" used in the microcrack

growth stability criterion should take into account direct microcrack interaction effects:

f = K'f - Kfc = 0 (3.4a)

where K'f/ is the mode I effective stress intensity factor, and Kif is the mode I critical

stress intensity factor for a weak plane. We refer to Horii and Nemat-Nasser [1985a] and

Kachanov [1987] for the derivation of K'ftf and K'fif for line microcracks under vari-

ous geometric configurations. Alternatively, within the applicable range (moderate

microcrack concentration) of the self-consistent method, one may employ the simple

"single crack" stability criterion (Krajcinovic and Fanella [1986]):

f = K't - Kk = 0 (3.4b)
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where K'j = 7'2 " 0 is the mode I stress intensity factor for a typical microcrack.

Naturally, exact microcrack interaction effects on K'fff (or Kf'hft ) depend on exact

microcrack geometries such as number of interacting cracks, relative center locations,

relative spacing, relative orientations, inner-tip or outer-tip, etc. In practice, however, it is

not feasible to keep track of microstructural configuration for each microcrack.

By using (3.4b), the mode I microcrack stability criterion can be recast as

f = ?2 -n"60 - Kk = 0 (3.5)

For computational simplicity, let us assume that the lateral tension q * is constant and the

axial tension q is bigger than q*. The value of q does not have to be monotonically

increasing as long as q > q* ; i.e., unloading paths are permitted. In particular, from Eq.

(3.3) and (3.5), we have

q K c -q* tan20 (3.6a)q=-VnT a o COS20

Clearly, the first cracks to become activated are those for which q is a minimum, and are

oriented in the plane 0 = 0 given the assumption that q* <Kfc/4ri-o . Therefore, the

corresponding minimum value of q is

Kk (3.6b)

The microcrack growth kinetic sequence proceeds as follows. Note that q * < qo.

(a) As q < qO, all microcracks are stable and of initial size. Since all microcracks are

open, perfectly randomly oriented and of equal size, the overall response is isotro-

pic. Though the response is linear and reversible under the present stress level, the

material state is really elastic-damage. In fact, the current elastic-damage compli-

ance S is bigger than the virgin undamaged elastic compliance S.

(b) As q = q0 > q* , those microcracks in the plane 0 = 0 become unstable and increase

their lengths from 2ao to 2af. It is assumed that there exists a higher energy
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barrier in the matrix so that microcracks become arrested once they reach 2 af-.

(c) As q -qI > qO, microcracks in the angle domain (-01 , 01) become activated and

increase in size from 2 a 0 to 2 aj. The material behaves anisotropically and the

elastic-damage compliance increases. 01 value depends on q, , qO and q*

Specifically, in view of Eq. (3.5)-(3.6b), 01 can be obtained by solving

qi cos2o0 + q* sin2o 1 
= q0 (3.7)

Thus, we arrive at

cos01 = V[(qo-q")/(q1 -q) or ±01 =cos- 1 ['(q q" )/(qi - q')j (3.8)

The compliance contributions Sd and Sd in Eq. (3.1) can be computed (integrated)

through Eq. (2.20a-e) and (2.21b):

S d = L g(k)T Sd (k)'(0, af ) g(k) d 0 (3.9)

I _ _C L gk)T Sd(k)'(0,a0)g(k) dO (3.10)

where 1/nt is the assumed uniform probability density function of microcrack orien-

tation. Certainly, other probability density functions may be used when appropriate.

For notational compactness, the integration bounds (-7t/2, -41) and (01, n/2) are

written together in (3.10) and in what follows. Readers should interpret the notation

(±61, ±7/2) as the sum of two integration domains: (-7/2, -01) and (01, x/2). Note

that Eq. (3.9) and (3.10) are somewhat at variance with Eq. (42) in Sumarac and

Krajcinovic [1987] and Eq. (55) in Sumarac and Krajcinovic [1989].

(d) As q0 < q < ql , the unloading case is taking place. There is no further microcrack

growth because the apparent "active angle fan" shrinks. Therefore, Sa = 0 . It is

emphasized that the actual "angle fan" (featuring 2af size) does not reduce owing

to the irreversible nature of damage. Therefore, the elastic-damage compliance

remains its previous value.
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(e) As q > q I , more microcracks are activated. The "angle fan" domain (-0 , 0 ) can

be computed from (3.8), with q I replaced by q. However, only the microcracks

within domains (-0, -01) and (01, 0) are actually experiencing unstable growth.

Hence, the compliance contribution Sd should be obtained from (2.20a-e) and

(2.21b) with (-0, -01) and (01, 0) as integration bounds:

Su d= -N 0 g(k)T Sd(k) (0,af)g(k) d (3.11)

In addition, Sf and S/ in (3.1) now take the form:

S = N -2 g(k)T Sd(k)'(Oa0)g~k) d6 (3.12)

SI= -. g(k)T Sd (k)'(6, af) gk) d 6 (3.13)

(f) At some higher stress level q = q, , K, at 0 = 0 reaches the critical stress intensity

factor Kk of the matrix energy barrier. Therefore, microcracks having size 2 af

will resume to propagate through the matrix, and eventu4 ily lead to final failure:

qc :-- K (3.14)

As was commented by Sumarac and Krajcinovic [1987], the above scheme impli-

citly assumes that ultimate failure prefers "runaway cracks" in comparison with "locali-

zation modes". Numerical simulations by using both the self-consistent method and the

"Taylor's model" will be given in Sec. 4.2.

111.3.2. Mode II microcrack growth

Under uniaxial or biaxial compressive loads, microcracks are closed and primarily

grow in "mode II" fashion. Fanella and Krajcinovic [1988] proposed excellent kinetic

equations for flat penny-shaped interface microcracks in concrete under mode II loading

by using the "Taylor's model"; i.e., microcrack interaction effects are completely
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ignored. Our procedure here basically follows their treatment. However, the self-

consistent method is employed here and weak microcrack interaction is taken into

account through the damage-induced stiffness degradation and anisotropy. Mode II

microcrack kinking into brittle matrix is considered in Sec. 3.3. Further, microcracks

under consideration are line microcracks in stead of penny-shaped microcracks. It is also

noted that unloading/reloading is permitted in our treatment.

In accordance with Eq. (3.2c), the mixed mode fracture criterion should be used.

Nonetheless, since there is no mode I action under uniaxial or biaxial compressive loads,

it is equivalent to employ the mode II fracture criterion only. Consequently, K'1 (or

K,'ff) will be compared against Kfic for a microcrack to determine whether it will pro-

pagate or not. Further, due to frictional sliding of closed microcracks, Eq. (2.22) should

be utilized to solve complex roots of characteristic equations; see Remark 2.1.

Let us denote by q and q* the axial and lateral compressive stresses, respectively.

q is assumed to be constant and q > q*. The normal stress ,, and shear stress 't on

the face of a typical microcrack at 0-angle are (Fanella and Krajcinovic [19881):

an = '-2 = q cos20 + q * sin2 0 > 0 (3.15)

,cs c'3- gT I =F() q-1+ _1k)1 q(3.16)

*0 where compression is taken as positive and F (0) ±sin0 cosO - g cos20 . According to

Coulomb's law of friction, microcrack surfaces will slide relative to each other when

,ts 0 is met. Therefore, (3.16) can be solved for the upper and lower bounds (--s2 and

±0, ) of microcrack orientations for given values of q and q

1± +±-4C 1 (C+.I ) , q _[2 g( I +.t)+lIq (3.17)

where C1 iq*/(q -q). Only those microcracks within (±Os, :0s2) will experience

relative frictional slip on their faces. Note that if q =0 (uniaxial compression) or if
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q -4*- , then F(0)=0 and 0s 1=tan-1 ., Os2=7t/ 2 . That is, microcracks within the fan

(-tan-., tan-1 g) will never slide and therefore will not contribute to Sd .

A microcrack with relative sliding faces will exhibit mode II microcrack growth

once its crack tip stress intensity factor KI (or K'fff) reaches the critical value KIjc

along a weak plane. Accordingly, the mode II stability criterion can be expressed as

ts = Kfic (3.18)

From (3.16) and (3.18), we can solve for the q value needed to activate unstable ,: ,d- II

microcrack growth from 2 a0 to 2 a- at a specific orientation 0:

Kfic + [1+ )q (3.19)
q=.ta o F(O)

As in the previous section, an unstable microcrack propagation will be arrested by the

matrix having a higher critical stress intensity factor Kfic . Again, the first microcracks

to increase in size are those for which q is a minimum. Thus, critical angles ±00 for the

first microcrack growth are (Fanella and Krajcinovic [1988]):

±00= ±tan-'(g+-.t+ 1T) (3.20)

The corresponding threshold value of qO is

S K c + [i + A-] q* (3.21)

Therefore, mode II microcrack kinetic sequence is as follows.

(a) As q < qO , no microcracks will increase in size. Nevertheless, microcracks

oriented within the "angle fans" (±Os ,-0s2) will slide.

(b) As q = q0 , those microcracks in the plane -00 become unstable and change their

lengths from 2ao to 2af.
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(c) As q -qI > q0, microcracks within the "angle fans" (±0,, 0,,2) become unstable

and grow from 2 a 0 to 2 af. The sliding "angle fans" (-0s 1, ±0s2) also increase.

The values of (±0,, +0,,2) can be obtained from Eq. (3.19):

tan(+0ul' ~~ 2)=.!.' 1+ -4C(21)

u C2 (C2 +9 ' q 2 qo (3.22)

where C2-[Kfc/N o]+ gq* }/(q-q *). Since all microcracks are closed, the

"displacement transformation matrix" B(k)' in Eq. (2.14) must be modified.

Specifically, B41)' and B J)' are set to 0, while Bf )' and B f)' are available from

Eq. (32) in Horii and Nemat-Nasser [19831 together with Eq. (2.22) in Remark 2.1.

The inelastic compliance Sd attributable to stable sliding microcracks having initial

size 2 a 0 can be computed as follows:

S~.[j N, g(k)T SSd(k)'(,a)g()dO+'(,ao)g(k)dO] (3.23)

Further, Sd in (3.1) reads

U -J-0± g(k)T Sd(k)'(O ,af)g(k) dO (3.24)

(d) As q0 < q < q I, the unloading case occurs. Therefore, Sd = 0 and

S==Sid L.a2-dd g(k)T Sd(k)'(0,af)g(k)dO (3.25)

where ('O, L.old, ±0,2.od) is the previous range of unstable microcrack growth

(assuming sliding). The domain of sliding microcracks also reduces and the new

values of ±, and ±0, 2 may be obtained from (3.17). Hence, it follows that

t d ' ~ [ el,:,. +J g(k)T Sd(k)'(Oao) g(k)d01 (3.26)

It is noted that the new value of Sd is smaller than its previous value given by (3.23)

because the sliding domain shrinks. As a consequence, the unloading compliance is

smaller than its previous value.
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(e) As q > q I , more microcracks are activated. Both new sliding and unstable angle

domains, (±Os 1,-+ 0 s2) and (- 0 1, ±0.2), increase. The corresponding Sf' and Sd+ Sf

can be computed by using (3.23) and (3.24), respectively.

II.3.3. Mixed Mode I/II microcrack growth

Under combined tensile and compressive loads, some microcracks are closed while

others are open. In addition, some open microcracks may become closed during

loading/unloading processes. Open microcracks grow in mixed mode fashion whereas

closed microcracks grow in "mode II" manner. The mixed mode fracture criterion given

in Eq. (3.2c) is used to determine microcrack stability. To facilitate numerical analysis,

however, it is further assumed that the cross term (B A)' +B f)" ) 1 K' 11 in (3.2c) can be

neglected. Accordingly, (3.2c) can be recast as (Kanninen and Popelar [1985]):

[2+.j2+ l 12= 1

where KIc and Kic denote critical stress intensity factors of a homogenized unit-cell.

Nonetheless, since all initial microcracks are assumed to be along weak planes, it is more

rational to write

+ L.7c = 1 (3.27b)

where Kfc and Kfic are critical stress intensity factors of weak planes. Again, it is

emphasized that Eq. (2.22) should be employed to solve complex roots.

Let us consider a typical combined loading case in which the axial compressive

stress is denoted by q and the lateral tensile stress is denoted by q*. Moreover, q* is

assumed to be constant (relatively small) while q is varying from 0 to a certain value.

Due to obvious symmetry of the problem, we will derive formulas only for 0 within the

(O,ir/2) domain. During actual numerical intergration of compliance components, how-

ever, both positive and negative 0 bounds should be included. The stresses a,, (= ?2)
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and 't' 3 (= ('12) on the face of a typical microcrack at 0-angle are

n= -'2= - q cos20 + q* sin20  (3.28)

''3= (- q - q ) sin0 cosO (3.29)

where tension is taken as positive. The "angle boundary" separating the domains of open

and closed microcracks can be found by setting a,, = 0. Hence, we obtain

tan 20b = 4 ; tan- 1 ( q ) (3.30)

q

The upper and lower bounds for open microcracks are nt/2 and 0b, respectively.

For closed microcracks (Yn < 0), the sliding shear stress reads

s= '3- 9t 2 =-F(0) [q + l+ 7-Y] q'] (3.31)

where F (0) - sinO cosO - l cos20. The criterion for microcrack surface-sliding is

,s = - (q + q* ) sin0 cos0 + g (q cos2O - q* sin2O) 5 0 (3.32)

The 0-bound can be obtained by setting r, = 0:

tan6 I -1± I +4H 1 (}t- H 1) (3.33a)

where H1 E g q * I(q + q * Since we require that 0, > 0, there should exist only one Os:

Os = tan -l + r4i +4H 1 (I-H )2H, ) (3.33b)

This 0, value is, in fact, the lower angle bound for closed microcrack sliding. The upper

bound is simply Ob given in (3.30) since sliding shear stress 't, is negative at the Ob

plane. Only those microcracks within (±()0, ±Ob) will exhibit relative frictional slip on

their faces. Again, it is noted that as q* = 0 (uniaxial compression) or as q -.- , then

F(0)=0 and Os =tan-11, 0b = t/2. As q increases from 0, Os and Ob also increase but

never exceed tan-'g and t/2, respectively.
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For closed microcracks, the mixed mode fracture criterion (3.27b) reduces to the

mode H fracture criterion. Therefore, as in the previous section, a sliding microcrack

will experience mode II microcrack growth once its crack tip stress intensity factor K'

reaches the critical value Kfic along a weak plane. Accordingly, mode II stability cri-

terion requires the following loading level q for a specified 0

q = K'q -[aoF,]q((334Kf4n a F 

The first microcracks to propagate are those for which q is a minimum:

0G/= tan-I(g + -4gi2i-1) (3.35)

where it has been assumed that i q * Kftc /- o. If Of'> b (opening/closing boun-

dary), then set 0d = 0 b. The corresponding threshold value of q U is

qff = .aoF(Od) 1+ q (3.36)

The mode II angle bounds for unstable weak-plane microcrack growth, (0.i1, 0n 2),

can be obtained from Eq. (3.34):

1± +1-4H 2(H+i ) , Kfc , Kfic2H2 ,o (qao )_4-iz't +Vql (3.37a)

where H2 Ktic In _-o gtq * }/(q +q* If g q* <Kfic I'Fa (typically), then

there are two roots 0,1 and 0t/2. On the other hand, if i q* > Kfic / R (unlikely), then

there is only one root Oil:

tanO.'=_ 1 -l4H 2 (H 2 +9) (3.37b)2H2

Note that 01i1 and 0/1 (or simply 011) should fall within the sliding range (0,, b); see

Figure 2 for a schematic plot.
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For open microcracks, a mixed mode fracture criterion such as (3.27b) may be used

to check microcrack stability. For convenience, let us define a a Kfic / Kkf. Hence,

(3.27b) can be rephrased as

a 2 (K '1 )2 + (K '1t)2 = Kfi (3.38)

Substitution of (3.28), (3.29) into (3.38) then renders the microcrack stability condition:

a 2 (- q cos20 + q* sin 2 6)2 + (q + q * )2 sin 2 cos 2 = K= j (3.39)ira0

or, equivalently,

(, 2 q* 2 - q -2----q) tan2o+ (CE2 q 2  )=0 (3.40)
7t a, 0 iKa 7Eao

From (3.40), we can express q in terms of tan0, q*, a, and Kiohtao (analogous to

(3.34)), and solve for threshold values O6n and q6' corresponding to first microcracks to

increase in size from 2 a0 to 2 a1 within (Ob, xr/2) domain.

In order to define the unstable "angle domain" for a given q value, we have to solve

Eq. (3.40). Obviously, (3.40) is amenable to exact solutions. Due to the constraint that

0 > 0, there are at most two real solutions to (3.40): OJ and Gf. We recall that the other

two negative 0 solutions will be accounted for during actual numerical integration of

compliance components. These angle bounds should fall within the (0 b, n/2) range. Oth-

erwise, we should disregard O0n and/or On. In the event that both roots are feasible, then

unstable open microcrack growth domain is defined by (0n, e0" ) assuming that

q * <Kfc/-1 If there is only one feasible root 07' to (3.40), then the unstable growth

domain is defined by (Ob, 0-) for open microcracks. See Figure 2 for a schematic

representation. Typically, qF < qff and there is only one feasible root to (3.40).

Therefore, the mixed mode kinetic evolution for open and closed microcracks

proceeds as follows.
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(a) As q < qff and q < q8, all microcracks are arrested. At the very beginning, q =0

and q* >0, thus all microcracks are open. As q increases, some. previously open

microcracks become closed. Microcracks oriented within the "angle fans"

(±Os , ±Ob) will slide and therefore the overall response is nonlinear. Further, the

"stick" domain increases as q increases.

(b) As q = qf or q = q6', those microcracks in the plane ±O' (closed) or ±O" (open)

become unstable and change their lengths from 2ao to 2 af. Note that the mode II

and mixed mode microcrack growth generally do not initiate at the same time.

(c) As q a q I > qgf or q - q I > qT, microcracks within the "angle fans" (±0G,, 11'2)

or (+01, ±On) become activated. The sliding "angle fans" (±O,, ±b) also increase.

We refer to (3.33b), (3.37a,b) and (3.40) for these load-dependent angle values. For

open microcracks, the "displacement transformation matrix" B(k)' is given in Eq.

(2.14). For closed microcracks, B(k)' is given in Horii and Nemat-Nasser [19831. It

is important to recall that the resulting Sd and S are non-symmetric in nature. The

inelastic compliance S, 11 attributable to stable mode II sliding microcracks having

initial size 2a0 can be computed by

S'll=N[ g(k)T S(k)'(0,a o)g(k d0+f g(k)T Sd(k)'(G,ao)g(k)dOj (3.41)

while Se" due to unstable closed microcracks can be obtained by

C= 2 - g(k)T Sd(k)'(0 ,af) g(k) dO (3.42)

In addition, Sd 'n attributable to stable mixed -node open microcracks having initial

size 2ao takes the form

Sdn = l[,' g(k )T 5(k)'(O,ao) g(k) dO + g(k)T Sd(k)'(O,ao)g(k)d0] (3.43)

while S dI attributable to unstable open microcracks can be obtained by
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S d = N f g~k )r Sd (k )'(0 , af ) g~k ) d 0 (3.44)

If there is only one feasible root to (3.40), the integration limits in (3.43) and (3.44)

should be replac d by (±O!, ±I /2) and (±Ob, ±0 "), respectively.

(d) As q o < q < q I, the unloading case occurs and Sd ! = St"' = 0. Further, for sliding

closed microcracks, we have

sP=s &I N 2 g(k)T Sd(k)'(0,,a)g(k) d0 (3.45)

where (+0 old, ±01 2,olad) are the old ranges of mode II unstable microcrack growth

at the previous load step. Note that if O82,,od > Ob,.ew , then 01.,ld in (3.45) should

be replaced by 0b.,,, since some microcracks now become open and the

corresponding compliance contribution should belong to open (mixed mode) region.

The domain of sliding closed microcracks also reduces and the new values of ±O,

may be obtained fror, (3.33b). Hence, it follows that

S _l= N [-'" g(k)T Sd(k)(,a 0) g(k) d 0 + " g(k)T Sd(k)'(0,a 0) g(k) d 0] (3.46)

For open microcracks, we have

S_S d,,I = N ±e_ .'M g(k)T Sd(k)(O,af )g(k) d0 (3.47)

where (±Od~. o/d, ±k0,, 0od) is the old range of mixed mode unstable microcrack

growth at the previous load step. We have assumed that O//zWa < Obww. The

domain of open microcracks increases and therefore Sd'm should be updated:

N~ ~ wd g(k )T d+ g, )T Sd(k)'(O,a o) g(k) dO] (3.48)

(e) As q > q I , more microcracks are activated. The mode II sliding and unstable angle

domains, (±,, ±b) and (±O'O, ±O,, ), increase. Similarly, the mixed mode unstable

angle domain, (±On, +0 ) or (±Ob, ±Oum ) increases. The corresponding S l,
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[S&'+Sj"'], Si"n and [Sin+Sjii values can be computed by using (3.41)-(3.44),

respectively.

Remark 3.3. Mode II weak-plane (interface) microcracks having the size 2 af are

arrested by higher energy barrier of matrix material. However, if axial compressive stress

is increased to a certain level, these microcracks may kink into brittle matrix in a stable

fashion and eventually align with the axial compressive load direction; see, e.g., Nemat-

Nasser and Horii [1982], Horii and Nemat-Nasser [1985b,1986]. The kinking threshold

stress qkin, can be obtained from (see, e.g., Zaitsev [1982,19831):

qkink = 2 _IKfC i0y - 1+ q (3.49)
2____ - LF F (0)1

The angle bounds for initiation of stable kinked microcracks, (Ok 1, 0 k 2), can be expressed

analogous to (3.37a):
1 +"F1--4H3(H3 +i) ;34'Kk "CKfc (3.50)

tan~kl,k2= 2 3  9) , (q+q')2>4[, lta q - 1-*]2 N- p ](350
2H 3  X afa

where n 3- Kf/2 N' - tq*}(q +q) For gq < 4 -Kfrc/2 4x_'-, there are

two real roots. Note that 0kI and ek2 should fall within (0,it, 01{-2); see Figure 2.

Assuming stable microcrack kinking, the "kink length" 1 can be related to the slid-

ing shear stress ts; see, e.g., Zaitsev [1983], Horii and Nemat-Nasser [1986], Fanella and

Krajcinovic [1988]. For cementitious composites below the brittle-ductile transition

point, a simple formula may be used (Zaitsev [1983]):

I 4 a/ts cos 20 (3.51)
iKe

where c, is available from Eq. (3.31). Finally, the additional compliance contribution

S9,& due to kinked microcracks can be computed by

S=j N ±e,2g(k)TSd(k),(O 1)g(k)dO 0 (3.52)
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11.4. Computational algorithms and numerical simulations

In this section, computational algorithms are given for the proposed self-consistent

damage models. In addition, three detailed numerical simulations are presented. These

include a mode I uniaxial tension test, a mode II uniaxial compression test, and a mixed

mode tension/compression test of brittle materials. Due to lack of plane strain experi-

mental data at this stage, however, actual experimental validation is not presented. Exten-

sive experimental verification of the proposed models should be performed in the future.

Nevertheless, the presented numerical simulations demonstrate the potential capability of

the proposed micromechanical damage models to qualitatively explain and model physi-

cal behavior of brittle materials, without resorting to any fitted "material parameter" com-

monly utilized in phenomenological continuum damage models.

1H.4.1. Computational algorithms

A self-consistent kinetic damage model naturally requires iterative schemes to

obtain the yet unknown elastic-damage compliance S corresponding to specified area-

average stresses a or remote stresses oa . As mentioned in Sec. 2.1, it is assumed that

o = o in our problems. For mode I, mode II and mixed mode damage models discussed

in Sec. 3, fortunately, the "sliding angles" ±, , "unstable angles" ±0, and "kink angles"

±Ok are independent of the iterative processes in finding compliances S for sequentially

applied loads q. Therefore, the computational schemes involved in solving the proposed

stress-controlled micromechanical damage models proceed as follows.

(1) For a given load q , compute "unstable angles" ±0, according to (3.8) for mode I,

(3.22) for mode II, as well as (3.37a,b) and (3.40) for mixed mode. "Sliding angles"

±O, are computed according to (3.17) for mode II and (3.33b) for mixed mode. In

addition, "kink angles" ±Ok are calculated according to (3.50). The "unstable" and

"kink" angle domains should be stored as history variables. They depend on q

only, independent of iterative steps in the following.
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(2) Solve S iteratively for a specified load q . The natural initial guess for the current

is the previous secant compliance Sold . At the first loading step, we use the virgin

elastic compliance SO as an initial guess; see also Horii and Nemat-Nasser [1983, p.

168]. For each trial compliance (n), we have to solve Eq. (2.22) so that displace-

ment transformation matrix B(k)' , crack opening displacements, and inelastic com-

pliance Sd(k)' can be evaluated. As noted before, the secant compliance S is in gen-

eral a non-symmetric matrix when frictional sliding of microcrack faces is present.

Eq. (2.22) is simply a fourth order algebraic equation and is amenable to a closed-

form exact solution. Further, we only need to solve (2.22) once (for each trial com-

pliance g(n)) at the orientation plane 0=0. For other orientations, the local roots

VJ can be expressed by the roots Xj at 0=0 (Lekhnitskii [1950, p. 51]):

X i. cos0-sin0 X, X cosO-sino (4.1)=cos0 + j sin0 ' cos + ).j sin0

where Xi are the complex conjugate roots to Xj . Once the roots of (2.22) in every

desired orientation are obtained from closed-form solutions, B(k)' , Sd(k)' and Sd(k)

for each microcrack contribution can be obtained from (2.9a), (2.14) and (2.20a-e)

in Sec. 2.2, and from Eq. (32) in Horii and Nemat-Nasser [1983].

(3) Obtain the damage-induced compliance Sd in (2.21b) by numerical integration.

Here, we use Simpson's rule with 201 integration points at various orientations
between (-nt/2, xr/2). The compliance contributions from S d, Sd , Sf and S, can

be computed by using (3.9)-(3.13) for mode I, (3.23)-(3.26) for mode 11, (3.41)-

(3.48) for mixed mode, and (3.49)-(3.52) for kinked microcracks.

(4) Obtain new trial compliance 9("+l) by adding Sd to So . Compare this new trial

compliance P(M+l) with the previous trial 9(n) . If the relative error is smaller than a

preset tolerance, then the iterative process is said to be converged. On the other

hand, if the relative error is unacceptable, then use 9("1) as a new estimate, and go

back to Step (2) to re-iterate until convergence is reached. This iterative procedure
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leads to superlinear rate of convergence, and typically requires only 5 to 7 itera-

tions. The convergence criteria we employ here are based on L 2 and L . norms. In

particular, we check the following (TOL = 10-6):

I (n)_..(n+1) 12 <TOL or I ,Q,)_ Qs+1)
I Sgn+) I- I i) 1, <TOL (4.2)

If (4.2) is satisfied, then convergence is reached. Set S- +0) and go to Step (5).

(5) Apply the next load qn,, . Set converged elastic-damage compliance S in Step (4)

to Sold and go to Step (1).

III.4.2. A uniaxial tension test

A mode I uniaxial tension test is considered in this section (see also Sumarac and

Krajcinovic [1987]). For comparison purpose, the results of the self-consistent method

are compared with those of Taylor's model. The virgin material is assumed to be isotro-

pic linear elastic with Young's modulus E° = 4000 ksi (27600 MPa) and v0 = 0.2.

Moreover, Kc is taken as 5 ksi-in. 1/2 (5.5 MN/m 3 2), and ao=0.6aj.

Two different initial microcrack area-concentration parameters ?re considered: o =

0.1131 and 0.2262. Recall that by definition <co> =N 7t <a 2>/A . Although the max-

imum allowable value of co is 1 for the self-consistent model, actual brittle materials fail

at co less than 1. At the beginning (q -<qo) and the asymptotic end (q =-*) of the loading

sequence, damaged materials are isotropic because microcrack orientations are perfectly

random and microcrack sizes are uniform. Thus, both the self-consistent model and

Taylor's model can be computed analytically for q -qo and q =-*; see Horii and

Nemat-Nasser [1983], and Sumarac and Krajcinovic [19871. The integration formulas

for Taylor's model are analogous to the self-consistent model (3.9)-(3.13) with Sd(k) '

replace by (plane strain condition):

S - 2ta 2 (l-V' 2 ) (-i +83i) " i,j=1,2,3 (4.3)AE o



The relative difference in lateral compliances (dotted line) and axial compliances

(solid lines) between the self-consistent model and Taylor's model for two values of ini-

tial damage wo are shown in Fig. 3a ,3b. Notice that the responses of two models are not

equivalent even at q 1q, - 1 due to initial (pre-existing) damage. It is also noted that as q

approaches - (not feasible), the final microcrack area-concentration parameters of

become 0.3142 and 0.6283, respectively. Further, the relative difference between the

self-consistent model and Taylor's model depends on the degree of mean microcrack

area-concentration <co>. See Fig. 4a,4b where the relative difference in compliances

between the two models are plotted vs. <co>. For low damage concentration (<0o>

smaller than 27%), the relative difference in compliances is less than 107c; see Fig. 4a.

For moderate damage (<co> between 27% to 45%), the relative difference ranges from

10% (at q/q 0 = 1.04) to approximately 30% (at q/q 0 
= 2.5); see Fig. 4b. Thus, it appears

that use of Taylor's model is acceptable for low damage concentration, in agreement

with the finding reported in Sumarac and Krajcinovic [1987].

Fig. 5a,5b display normalized stresses versus normalized strains computed by the

two models for the same two values of Coo. Again, the relative difference is smaller than

10% for <w> less than 27%. In addition, the averaged stress-strain behavior is qualita-

tively reasonable for the self-consistent damage modcl. The ratios of S 22 /S 1 1 versus the

normalized axial stresses qlqo are exhibited in Fig. 6a,6b. In Fig. 7a,7b, the ratios

S 2 2/S 11 are plotted against the microcrack area-concentration parameter <co>.

IH.4.3. Uniaxial compression and biaxial tension/compression tests

A mode II uniaxial compression test and a mixed mode biaxial tension/compression

test are considered in this section. The virgin brittle composite material is assumed to be

isotropic linear elastic with Young's modulus EO = 6000 ksi (41400 MPa) and v° = 0.2.

Fracture toughness properties of weak plane (interface) and matrix are taken to be Kf =

0.15 ksi-in. 112 (0.165 MN/m3/2), Khic = 0.3 ksi-in. 1/2 (0.33 MN/rn 312), and Kfr = 0.525
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ksi-in. 112

(0.578 MN/m3/2). The initial and final microcrack lengths on weak planes are taken as af

= 0.375 in. (0.953 cm) and a0 = 0.225 in. (0.572 cm). The coefficient of friction on

microcrack faces is 0.6. In addition, q* = 0 for the uniaxial compression test, q * = 0.1

ksi (0.69 MPa, tensile) for the mixed mode test, and Awo = 0.2262.

The axial load q is gradually increased from 0 to a certain peak value. For the

uniaxial compression test, all microcracks are closed throughout the loading sequence.

By contrast, for the tension/compression test, a small lateral tension is applied at the very

beginning and all microcracks are initially open. As q increases, more and more micro-

cracks change states from open to closed. Therefore, for the mixed mode test, some

microcracks are open and grow in mixed mode, while others are closed and grow in

mode II fashion during the loading sequence. After mode II microcracks kink into

matrix material, however, kinked microcracks are considered as "tension cracks" and

aligned with the axial loading direction. In both tests, kinked microcracks are assumed to

grow in a stable fashion.

The macroscopic axial stress vs. the axial (2-direction) and lateral (1-direction)

strain curves are plotted in Fig. 8 for the plane strain uniaxial compression test. The

mode II microcrack propagation and kinking threshold stresses are found to be qf' = 1.27

ksi (8.76 MPa) and qkik = 1.48 ksi (10.21 MPa). Fig. 9 depicts the "active microcrack

area-concentration" parameter <o> (defined as Nic<a2 >IA) vs. the axial load q. It

is emphasized that "no-slip" microcracks are excluded from <oa > since they do not

contribute to either strain or secant compliance. Moreover, no-slip and sliding angle fans

areflxed throughout the loading process. That is, 0s1 =tan-Ig and 0, 2 =t/2 . As a conse-

quence, <o > is fixed before mode II microcrack propagation occurs. Fig. 10 displays

S'1 and S 22 vs. <(&>. It is observed that the lateral compliance component S 11 is

much larger than the axial compliance component 9-22 because of the formation of many
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kinked microcracks. S-12 and S2 1 vs. <or> are given in Fig. 11. Notice that S 21 is

larger than 9-12 due to sliding microcrack displacements. Furthermore, Fig. 12 exhibits

the shear compliance component S33 vs. <COa >.

For the mixed mode tension/compression test, the response is initially isotropic at q

= 0 and q* = 0.1 ksi (0.69 MPa, a small lateral tension) because all microcracks are ini-

tially open and of uniform size. Later, as q increases, some microcracks become closed

and even become stuck (no-slip). Thus, S and <wa > slightly decrease before mode II

microcrack propagation starts. From numerical computation, the mode II microcrack pro-

pagation threshold stress is found to be qU = 0.95 ksi (6.56 MPa), the microcrack kink-

ing threshold stress qia = 1.17 ksi (8.07 MPa), and the mixed mode threshold stress qF

= 1.28 ksi (8.83 MPa). This implies that mode II microcrack growth in closed domain

occurs well before mixed mode microcrack growth takes place in open domain. Eventu-

ally, it is numerically observed that 0LL2 = 0b = 0n. The macroscopic axial stress vs. the

axial and lateral strain curves are plotted in Fig. 13. Fig. 14 shows <or > vs. the axial

load q. Fig. 15 displays S9-1 and $22 vs. <W >. Again, 9"11 is much larger than S-22

because of kinked microcracks. 9-12 and S21 vs. <orz> are shown in Fig. 16. Fig. 17

gives the shear compliance component 9-33 VS. <wa>. Note that S'1 1 , S22 and S33

slightly decrease at the beginning due to the increase of "no-slip" microcrack domain.

By comparing Fig. 8 with 13, it is seen that microcrack propagation and kinking

threshold stresses qL( and qki,,k as well as the peak stress significantly decrease in the

presense of a small lateral tension q *. In addition, the lateral strain of the biaxial tension/

compression test is higher than that of the uniaxial compression test.
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111.5. Closure

Following the framework proposed by Krajcinovic and Fanella [1986], the proposed

micromechanical brittle damage models do not require the use of additional fitted

'material parameters" other than well-defined elastic constants and mesostructural frac-

ture toughness of constituent phases. Thermodynamic basis, effective averaged field

equations, microcrack opening displacements and damage-induced inelastic compliance

are given within the context of two-dimensional self-consistent method. It is emphasized

that secant compliances are generally non-symmetric.

Fracture mechanics stability criteria together with mesostructural geometry are

employed to characterize microcrack evolutions under mode I, mode II and mixed mode

loadings. Simple and efficient computational algorithms are presented. In addition, three

detailed numerical simulations are given. Finally, it is emphasized that loading/unloading

stress paths and microcrack opening/closing status changes are easily accommodated

within the context of the proposed damage models.

141



11.6. References

Ashby, M. F. [1979], "Micromechanisms of fracture in static and cyclic failure," in: R.

A. Smith, ed., Fracture Mechanics, Current Status, Future Prospects, Pergamon

Press, Oxford, Vol. 1.

Budiansky, B. and R. J. O'Connel [1976], "Elastic moduli of a cracked solid," Int. J.

Solids & Struct., Vol. 12, pp. 81-97.

Chudnovsky, A., A. Dolgopolsky and M. Kachanov [1987a], "Elastic interaction of a

crack with a microcrack array - I: Formulation of the problem and general form of

the solution," Int. J. Solids & Struct., Vol. 23, No. 1, pp. 1-10.

Chudnovsky, A., A. Dolgopolsky and M. Kachanov [1987b], "Elastic interaction of a

crack with a microcrack array - II: Elastic solution for two crack configurations

(piece-wise constant and linear approximations)," Int. J. Solids & Struct., Vol. 23,

No. 1, pp. 11-21.

Fanella, D. and D. Krajcinovic [1988], "A micromechanical model for concrete in

compression," Eng. Fract. Mech, Vol. 29, No. 1, pp. 49-66.

Hill, R. [1965], "A self-consistent mechanics of composite materials," J. Mech. Phy.

Solids, Vol. 13, pp. 213-222.

Hoenig, A. [1978], "The behavior of a flat elliptical crack in an anisotropic elastic

body," Int. J. Solids & Struct., Vol. 14, pp. 925-934.

Hoenig, A. [1979], "Elastic moduli of a non-randomly cracked body," Int. J. Solids &

Struct.; Vol. 15, pp. 137-154.

Hoenig, A. [1982], "Near-tip behavior of a crack in a plane anisotropic elastic body,"

Eng. Fract. Mech., Vol. 16, No. 3, pp. 393-403.

Horii, H. and S. Nemat-Nasser [1983], "Overall moduli of solids with microcracks: load

induced anisotropy," J. Mech. Phys. Solids, Vol. 31, No. 2, pp. 155-171.

142



Horii, H. and S. Nemat-Nasser [1985a], "Elastic fields of interacting inhomogeneities,"

Int. J. Solids & Struct., Vol. 21, No. 7, pp. 731-745.

Horii, H. and S. Nemat-Nasser [1985b], "Compression induced microcrack growth in

brittle solids: axial splitting and shear failure," J. Geophys. Res., Vol. 90, pp. 3105-

3125.

Horii, H. and S. Nemat-Nasser [1986], "Brittle failure in compression: splitting, faulting

and brittle-ductile transition," Phil. Trans. R. Soc., Vol. 319, pp. 337-374.

Ju, J. W. [1989], "On energy-based coupled elastoplastic damage theories: Constitutive

modeling and computational aspects," Int. J. Solids & Struct., in press.

Kachanov, L. M. [1958], "Time of the rupture process under creep conditions," 1VZ

Akad Nauk, S.S.R., Otd Tech Nauk, No. 8, pp. 26-3 1.

Kachanov, M. [1980], "Continuum model of medium with cracks," J. Eng. Mech. Div.,

ASCE, Vol. 106, No. EM5, pp. 1039-1051.

Kachanov, M. [1987], "Elastic solids with many cracks: A simple method of analysis,"

Int. J. Solids & Struct., Vol. 23, No. 1, pp. 23-43.

Kanninen, M. F. and C. H. Popelar [1985], Advanced Fracture Mechanics, Oxford

University Press, New York, and Clarendon Press, Oxford.

Krajcinovic, D. [1984], "Continuum damage mechanics," Appl. Mech. Rev., Vol. 37: 1-

6, pp. 397-402.

Krajcinovic, D. [1985], "Constitutive theories for solids with defective microstructure,"

in Damage Mechanics and Continuum Modeling, ed. by N. Stubbs and D. Krajcino-

vic, ASCE, pp. 39-56.

Krajcinovic, D. [1986], "Update to continuum damage mechanics," Appl. Mech. Update,

pp. 403-406.

Krajcinovic, D. and D. Fanella [1986] "A micromechanical damage model for concrete,"

Eng. Fract. Mech., Vol. 25, No. 5/6, pp. 585-596.

143



Krajcinovic, D. and D. Sumarac [1989] "A mesomechanical model for brittle deforma-

tion processes: Part I," J. Appl. Mech., Vol. 56, No. 3, pp. 51-56.

Lekhnitskii, S. G. [1950], Theory of Elasticity of an Anisotropic Elastic Body, by the

Government Publishing House for Technical-Theoretical Works, Moscow and Len-

ingrad, 1950; and by Holden-Day, Inc., San Francisco, 1963.

Mura, T. [1982], Micromechanics of Defects in Solids, Nijhoff, The Hague.

Nemat-Nasser, S. and H. Horii [1982], "Compression-induced nonplanar crack exten-

sion with application to splitting, exfoliation, and rock burst," J. Geophys. Res., Vol.

87, 6805-6821.

Ortiz, M. [1985], "A constitutive theory for the inelastic behavior of concrete," Mech. of

Materials, Vol. 4, pp. 67-93.

Rice, J. R. [1975], "Continuum mechanics and thermodynamics of plasticity in relation

to microscale deformation mechanisms," Constitutive Equations in Plasticity, A.

Argon, ed., MIT Press, Cambridge Mass.

Sih, G. C., P. C. Paris and G. R. Irwin [1965], "On cracks in rectilinearly anisotropic

bodies," Int. J. Fract. Mech., Vol. 1, No. 3, pp. 189-203.

Simo, J. C. and J. W. Ju [1987], "Stress and strain based continuum damage models.

Part I: Formulation," Int. J. Solids & Struct., Vol. 23, No. 7, pp. 821-840.

Sneddon, I. N. and M. Lowengrub [1969], Crack Problems in the Classical Theory of

Elasticity, Wiley, New York.

Sumarac D. and D. Krajcinovic [1987], "A self-consistent model for microcrack-

weakened solids," Mech. Mater., Vol. 6, pp. 39-52.

Sumarac D. and D. Krajcinovic [1989], "A mesomechanical model for brittle deforma-

tion processes: Part II," J. Appl. Mech., Vol. 56, No. 3, pp. 57-62.

Vakulenko, A. A. and M. L. Kachanov [1971], "Continuum theory of medium with

cracks," Mekh. Tverdogo Tela, Vol. 4, pp. 159-166.

144



Willis, J. R. [1968], "The stress field around an elliptical crack in an anisotropic elastic

medium," Int. J. Eng. Sci., Vol. 6, pp. 253-263.

Wu, C. H. [1985], "Tension-compression test of a concrete specimen via a structure

damage theory," in Damage Mechanics and Continuum Modeling, ed. by N. Stubbs

and D. Krajcinovic, ASCE, pp. 1-12.

Zaitsev, Y. [1982], Deformation and Strength Models for Concrete Based on Fracture

Mechanics, Stroiizdat, Moscow.

Zaitsev, Y. [1983], "Crack propagation in a composite material," in Fracture Mechanics

of Concrete, pp. 251-299, edited by F. H. Wittmann, Elsevier, Amsterdam.

145



HI.7. Figure captions and figures

Figure 1. The local (primed) and global Cartesian coordinate systems.

Figure 2. An example of domains of mode II microcrack face sliding, unstable

microcrack growth, and mixed mode unstable microcrack growth. 0 b separates the open

region from the closed region.

Figure 3. The ratios of compliances computed by using the self-consistent and

Taylor's models in axial (solid line) and lateral (dashed) directions vs. the normalized

stress q/qo. Part (a) is for wo = 0.1131, and (b) for o- = 0.2262.

Figure 4. The ratios of compliances computed by using the self-consistent and

Taylor's models in axial and lateral directions vs. the evolving microcrack concentration

parameter c) for wj = 0.1131 (a) and 0.2262 (b), respectively.

Figure 5. The normalized stress vs. the normalized strain computed by using the

self-consistent and Taylor's models for wo = 0.1131 (a) and 0.2262 (b), respectively.

Figure 6. S22/S-11 ratio vs. the normalized stress computed by using the self-

consistent and Taylor's models for wo = 0.1131 (a) and 0.2262 (b), respectively.

Figure 7. S'22/S'11 ratio vs. the microcrack concentration parameter 0 for 0)0 =

0.1131 (a) and 0.2262 (b), respectively.

Figure 8. The axial stress q vs. the axial (F2) and lateral (I) strains for the uniax-

ial compression test.

Figure 9. The "active microcrack area-concentration" parameter <(& > vs. the

axial stress q for the uniaxial compression test.
Figure 10. 9'01 and S"22 VS- <(& > for the uniaxial compression test.

Figure 11. S-12 and S-21 vs. <W > for the uniaxial compression test.

Figure 12. 33 vs. c > for the uniaxial compression test.
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Figure 13. The axial stress q vs. the axial (F2) and lateral (FI) strains for the biax-

ial tension/compression test.

Figure 14. The "active microcrack area-concentration" parameter <W, > vs. the

axial stress q for the biaxial tension/compression test.

Figure 15. T1, and 9-22 vs. <o& > for the biaxial tension/compression test.

Figure 16. S'12 and S'21 vs. <o > for the biaxial tension/compression test.

Figure 17. S"33 vs. <o > for the biaxial tension/compression test.
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* I

Figure 1. The local (primed) and global Cartesian coordinate systems.
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Figure 2. An example of domains of mode II microcrack face sliding,
unstable microcrack growth, and mixed mode unstable microcrack growth.
0 b separates the open region from the closed region.

149



Figure 3. The ratios of compliances computed by using the self-
consistent and Taylor's models in axial (solid line) and lateral (dashed)
directions vs. the normalized stress q /q 0. Part (a) is for wo 0. 113 1, and (b)
for o 0.2262.
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Figure 4. The ratios of compliances computed by using the self-
consistent and Taylor's models in axial and lateral directions vs. the evolv-
ing microcrack concentration parameter a) for ow0 = 0.1131 (a) and 0.2262
(b), respectively.
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Figure 5. The normalized stress vs. the normalized strain computed by
using the self-consistent and Taylor's models for wo =0.1131 (a) and 0.2262
(b), respectively.

CD

CD)

0 ~

CO0

U0.
01

CDl

0O C/E-

0 0 0 0 0 01U

154



0n

C0

IO
C"J

CDH

E-

0 C/

ul 0

10

rz
C) /) E-4

(N 0 co KG N

0 bl b oprx

p 155



Figure 6. S-22/Sl , ratio vs. the normalized stress computed by using the
self-consistent and Taylor's models for o0 = 0.1131 (a) and 0.2262 (b),
respectively.
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Figure 7. S 22/S I ratio vs. the microcrack concentration pa' imeter 0)
for wcj 0.1131 (a) and 0.2262 (b), respectively.
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Figure 8. The axial stress q vs. the axial (V2) and lateral (F-) strains

* for the uniaxial compression test.

0o

CN

00

r--i

0

C)C14

CI) C)

z
H

- C )

- LO

C)I O)O
1

/ 0
/ 1,-.

/ I
/

/

LI

0 NO " 0

* ~(is ~) b

* 160



Figure 9. The "active microcrack area- concenltration"' parameter <wa >

vs. the axial stress q for the uniaxial compression test.
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Figure 10. S11I and 9-22 VS. <07a> for the uniaxial compression test.
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Figure 11. S-12 and $21 vs. <Woa > for the uniaxial compression test.
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Figure 12. S33 VS. <O a > for the uniaxial compression test.
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Figure 13. The axial stress q vs. tfle axial (j2) and lateral (I) strains

for the biaxial tension/compression test.
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Figure 14. The "active microcrack area-concentration" parameter

<(,)a> vs. the axial stress q for the biaxial tens ion/compres sion test.
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Figure 15. S~and -22 VS. <wa > for the biaxial tension/compression

test.
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Figure 16. S 12 and S 21 VS. <wal> for the biaxial tension/compression

test.
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Figure 17. S-33 VS <wa > for the biaxial tension/compression test.
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S

PART IV

* On Three-Dimensional Self-Consistent Micromechanical

Damage Models for Brittle Solids. Part I: Tensile Loadings

IV.1. Introduction

Three-dimensional micromechanical anisotropic damage models for microcrack-weakened brit-

tle solids are presented within the framework of the self-consistent method and damage mechanics.

The self-consistent method is employed in this work to account for weak or moderate interac-

tion between flat elliptical microcracks in fully anisotropic media. Phenomenological (continuum)

damage models are now popular and provide a convenient constitutive framework for modeling the

progressive degradation of mechanical properties in solids. See Krajcinovic (1984, 1986, 1989),

Bazant (1986) and Murakami (1987) for a literature review on continuum damage mechanics.

However, phenomenological damage models typically can not surrender insightful descriptions

of microstructural microcrack kinetics. Therefore, the underlying "damage evolution" equations

are often heuristically postulated. Further, use of several (or many) fitted "material constants" in

damage evolution equations is a weak link. Thus, micromechanical damage theories are desirable

and warranted.

In the current literature, micromechanical "process" damage models are very limited. Some

valuable examples are Wu (1985), Krajcinovic and Fanella (1986), Sumarac and Krajcinovic (1987,

1989), Fanella and Krajcinovic (1988), Krajcinovic and Sumarac (1989), and Ju (1991). On the

other hand, micromechanical "non-process" damage models were proposed by Budiansky and

O'Connell (1976), Hoenig (1979), Horii and Nemat-Nasser (1983), and Kachanov (1987), etc.,

for stationary microcracks. Though their methods are attractive, no microcrack growth is allowed

and therefore no microcrack kinetics exists at all. It is noted that in order for a constitutive theory

to possess predictive capability, a "process" damage model is necessary.

There are several approaches to micromechanically derive overall elastic-damage moduli of
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microcrack-weakened brittle materials. These include the Taylor's method (e.g. Krajcinovic and

Fanella (1986), Fanella and Krajcinovic (1988), and Ju (1990)), the self-consistent method (e.g. Bu-

diansky and O'Connell (1976), Horii and Nemat-Nasser (1983), Sumarac and Krajcinovic (1987),

and Ju (1991)), the differential scheme (e.g. Roscoe (1952, 1973), McLaughlin (1977), and Hashin

(1988)), the Mori-Tanaka method (e.g. Mori and Tanaka (1973), Benveniste (1986), and Zhao, Tan-

don & Weng (1989), and the direct strong microcrack interaction method (e.g. Kachanov (1987)

and his other work). In particular, the Taylor's model completely neglects the effects of micro-

crack interaction and assumes that a microcrack is embedded in an undamaged matrix. Clearly,

the Taylor's model is applicable to dilute microcrack distribution. The self-consistent model indi-

rectly considers weak microcrack interaction effects by using the (yet unknown) overall effective

anisotropic moduli to evaluate microcrack opening displacements and damage-indu-ed inelastic

moduli. Emanating from somewhat different viewpoints, the differential scheme and the Mori-

Tanaka method provide alternative avenues to accommodate weak microcrack interaction as well

as microcrack-induced inelasticity and anisotropy. All effective medium methods (such as the self-

consistent method, the differential scheme, and the Mori-Tanaka method) are only valid for weak or

at most moderate microcrack concentrations. Furthermore, some comparisons and assessments for

the self-consistent method and the differential scheme were presented by Horii and Sahasakmontri

(1990), Laws and Dvorak (1987), and Nemat-Nasser and Hori (1990).

By contrast, the direct strong microcrack interaction model (Kachanov (1987)) is more desir-

able for higher microcrack concentrations. However, the method and required numerical compu-

tations are very involved. An effort to extend the work of Horii and Nemat-Nasser (1985) and

Kachanov (1987) to account for strong microcrack interaction, microcrack growth and nucleation

("cleavage I and 2" process models (Ashby (1979)), as well as to embed statistical aspects into

micro-macro constitutive theories (not random realizations or Monte-Carlo simulations) is cur-

rently undertaken by the authors. These statistical aspects include: (a) probability and conditional

probability density functions of microcrack locations, orientations, lengths, and -elative configura-

tions; and (b) ensemble and volume averages of stresses and strains, etc.
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For distributed three-dimensional penny-shaped flat microcracks embedded in brittle matrix,

several micromechanical analyses were proposed in the literature. For instance, in the event of sta-

tionary elliptical (or penny-shaped) microcracks and isotropic damage, the self-consistent method

was employed by Budiansky and O'Connell (1976), and Horii and Nemat-Nasser (1983) in deriv-

ing effective moduli. Further, for non-stationary penny-shaped microcracks and anisotropic dam-

age, three-dimensional "cleavage 1" process models were considered by Krajcinovic and Fanella

(1986) and Fanella and Krajcinovic (1988). However, the latter analyses were limited to the Tay-

lor's model.

In the present study, three-dimensional self-consistent process damage models are proposed

to account for weak or moderate microcrack interactions. Tensile, compressive, and combined

tensile/ compressive triaxial loading/ unloading conditions are considered. Both open and closed

microcracks are studied. Mode I, Mode II, and Mixed Mode microcrack growth are examined. The

damaged materials are taken to be fully anisotropic in general (with 21 oreven 36 independent com-

pliance components); and both "cleavage 1" and "cleavage 2" deformation processes are discussed.

Flat microcracks are assumed to be elliptical or circular in shape. Moreover, microcrack opening

displacements in fully anisotropic solids (not transverse isotropy nor orthotropy) are evaluated by

applying Hoenig's analytical solutions (Hoenig (1978,1982)). Microcrack-induced inelastic strains

and compliances are subsequently derived in Sec. 3. The kinetic equations of "cleavage 1" pre-

existing microcrack growth in anisotropic materials are formulated based on the concept of fracture

energy release rate at crack tips in Sec. 4. To reduce the complexity in evaluating the energy release

rate in an anisotropic medium, a simplified formulation is developed to detect unstable microcrack

growth under mixed mode condition. Simple and efficient computational algorithms for the pro-

posed micromechanical models are given in Sec. 5. Moreover, in Sec. 6, numerical simulations

are compared with the experimental data reported by Gopalaratnam and Shah (1985).

In this paper, the first part of a sequence of two, only tensile loadings and "cleavage 1" defor-

mation processes are considered. Therefore, all microcracks are assumed to be open in this paper.
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In the cases of uniaxial/ triaxial compression or combined compression/ tension loadings, some

microcracks are closed (while some microcracks are open) and may experience frictional sliding

and Mode II growth. In addition, microcrack kinking and new microcrack nucleation ("cleavage

2") are very important phenomena ,inder compressive loadings. The self-consistent micromechan-

ical damage models for such events are more complicated, and will be considered in detail in Part

II of this work. Finally, it is noted that the proposed framework can be modified to accommo-

date the differential scheme (instead of the self-consistent method) to account for weak microcrack

interactions and concentrations.
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IV.2. A framework of micromechanical damage mechanics

* In this section, a brief summary of the thermodynamic basis of damage mechanics is given.

The general analysis procedure involved is subsequently presented. The virgin (undamaged) matrix

material is assumed to be linearly elastic.

IV.2.1. Thermodynamic basis

There exists a one-to-one correspondence between the fourth-order elastic-damage compli-

* ance tensor S and the fourth-order anisotropic damage tensor 6; see, e.g. Simo and Ju (1987), and

Ju (1989a,b). Therefore, the secant compliance S can be viewed as an anisotropic damage ten-

sor. Within the framework of the homogenization concept for inhomogeneous effective continuum

medium, the volume-average complementary free energy function can be expressed as

x = 1& : &(1)

where 6 is the volume-average stress tensor.

By applying the Coleman's method to the Clausius-Duhem inequality for isothermal process,

we arrive at the following macroscopic stress-strain law and the damage dissipation inequality:

i=s':- ; -& > 0 (2)

where Z denotes the volume-average strain tensor. It is clear from Eq. (2) that the evolution of S

plays an essential role in the microcrack energy dissipation and the overall stress-strain response.

This also constitutes a major motivation for the development of "process damage models".

Furthermore, it is assumed that the strain tensor Z and the overall compliance tensor S are

amenable to an additive decomposition:

?='+V" ; S=S°+S" (3)

where Z and i" denote the elastic and the damage-induced inelastic strains, respectively. Similarly,

S0 and S signify the undamaged elastic and the damage-induced inelastic compliance, respectively.
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Implicitly, it has been assumed that Z' - 0 upon complete unloading; i.e. the residual strain at zero

stress is negligible for brittle materials.

IV.2.2. Analysis procedure

The general analysis procedure follows the self-consistent homogenization approach outlined

in Horii and Nemat-Nasser (1983). The interactions between microcracks are indirectly taken

into account through changes in effective material properties by evaluating microcrack opening

displacements over all active microcracks and by performing the volume average computations.

Since microcrack growth has preferred orientations and microcrack responses vary according to

external loadings, damaged materials are generally macroscopically anisotropic even though vir-

gin materials might be initially isotropic. Therefore, the relationship between the macro-stress and

macro-strain can be derived based on micromechanical analysis and the homogenization concept.

Let us start by considering a representative volume V (Hill (1966)), which contains a set of

microcracks and is loaded on its external surface S. The volume average of the damage-induced

inelastic strain, F,, can be expressed by means of microcrack opening displacements u ) as

- 1 ;-(uin, +ujn,)(dSOk) (4)

where i, = 1, 2, 3, and n() is the unit outward normal vector at the k-th microcrack surface S ().

In addition, we assume in this work that the (volume averaged) macro-stress tensor 6" is approxi-

mately equal to the far field (applied) stress tensor or'; i.e. a" - o'. Since microcrack opening

displacements are functions of externally applied stresses, Eq. (4) can be rephrased as

F" = S'(S) : (5)

Note that the microcrack-induced inelastic compliance S' is a function of the yet unknown overall

compliance S. The detailed derivation of these compliances will be given in Sec. 3.

Typically, the orientations and sizes of penny-shaped microcracks in a representative volume

can be viewed as random variables and can be represented by a joint probability density function
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p(a, 0, 0). Here, a denotes the microcrack size, and (0, 0) designate the two Euler angles defin-

ing the orientation of a flat penny-shaped microcrack. The probabilistic ensemble average of the

inelastic compliance contribution due to a single (the k-th) microcrack can be written in the form

< S*O') > = I s*Ok)(a' 0, 0) p(a, 0, O) dQ (6)

where Q is the statistical domain of active microcracks defined by (a, 4', 0). If the three geometric

random variables, a, 4, and 0 are statistically independent, then the joint probability density function

p(a, 4', 0) is equal to the product of three independent probability density functions as

p(a, 4, 0) = p(a)p(')p(O) (7)

However, care must be exercised so that the following normalization condition is met:

j p(a, 0,O) df? = jp(a) p(O) p(O) dfQ - 1 (8)

If there are N microcracks in the representative volume, the total microcrack-induced inelastic

compliance is as follows

= N, < S* ) > = N, I S*(k)(a' 0, 0) p(a, 0, 0) dQ (9)
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IV.3. Damage induced compliance tensor

The overall effective compliance tensor S in general becomes anisotropic when microcracks

exist. Therefore, the displacement discontinuities across microcrack surfaces in a general anisotropic

elastic solid must first be evaluated in order to apply the self-consistent method (or the differential

scheme). A method to determine the opening displacements of a flat elliptical microcrack in a gen-

eral three-dimensional anisotropic elastic material was proposed by Hoenig (1978, 1982). Hoenig's

analysis is briefly reviewed in what follows. There are, however, some misprints and minor errors

in Hoenig's work (1978, 1982). These minor errors are properly corrected in this section. The

results of Hoenig's analysis will subsequently be applied to obtain the inelastic compliance S" due

to open microcracks. A "non-process" damage model is therefore constructed.

0
IV.3.1. Microcrack opening displacements in anisotropic elastic media

The underlying concept of Hoenig's analysis (1978) is to derive a relationship between the

* Al -surface integral of a microcrack and the total work done by remote stresses acting through the

microcrack opening displacements. The opening displacements can then be related to external

stresses o,'. Let us begin by considering a single elliptical microcrack with a and b being its

semi-axes, as shown in Fig. 1, in a fully anisotropic elastic body uniformly loaded at far field. The

primed coordinate system is based on the elliptical microcrack orientation, with z'-axis parallel to

the outward normal direction n. The double-primed coordinate system is based on the radial plane

to a typical point s on the rim F of the elliptical microcrack. The displacement discontinuities

between surfaces of a microcrack take the form (Hoenig (1978, 1982), based on Eshelby's inclusion

solutions):

V a2 b2
va- V 2k 7 (10)

where i, k = 1, 2,3, C'- I is an unknown matrix which has to be determined, and ik is the remote

loading stress in the elliptical microcrack coordinate system.

The work done by the applied stress through the displacement discontinuities of microcrack
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surfaces can be evaluated by using Eq. (10):

1 f2
WIV a3k u/j dS = r(ab)'Ck3 3j (11)

where S1 is the surface area of a microcrack, and 3' = C 1 3,. The integration in Eq. (11) can

be carried out because C~j represents material properties only and is not a function of location. As

shown by Budiansky and O'Connell (1976), the M-surface integral can be expressed either in an

integral form of J-integral (Rice (1968)), or by the derivative of W as

l = jp(s) lmJ" (s, )ds = a--aW (12)
r

where p(s) is the perpendicular distance from the origin to the tangent line to curve F at a given

point s (see Fig. 1). In addition, J"(s, b) is the well known J-integral in two dimensional fracture

mechanics. Substitution of Eq. (11) into Eq. (12) then leads to

2ra O3/3 = p(s)imJ (s,)ds (13)

where - b/a. Therefore, one has to evaluate the i-integral so that the C'-matrix can be deter-

mined.

The i-integral for a line slit in an anisotropic material can be formulated by using Lekhnit-

skii's theory of anisotropic elasticity (Lekhnitskii (1950)). After some straightforward but lengthy

algebraic manipulations, the asymptotic solutions of related stress and displacement fields in the

vicinity of microcrack tips (in the double-primed line microcrack coordinate system, Fig. 2) take

the form (Hoenig (1982)):

022 -cosRe"+' Esin 0] (14)

0 =2 -1 [3 (15)
21 R  [ cos 0" + ji sin 0"

0'23 R E ] (16)/2rr"Re " = cos 0" + pi, sin 0"
r23

-ReI pijN- Ki cosO" + j sin" (17)
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Here, the subscripts i, J, 1 = 1,2, 3, and the primed quantities are evaluated in the local line micro-

crack coordinate system. Moreover, p, are the roots of the characteristic equation

/4(/2)l2(1) - 13(p)13( ) = 0 (18)

with 1i defined as

12() M /s - 2AM4, p + A1
/3(3) - (AM 14 + A. )112 + (Ms + M,) - M2,(19)

,,,4 it ,, 3 2 2 +M ) M
14(0L) -Al- - 2MIii _ + (2M + Al )p2 - 2M p + "

where
3 3 (20)
'33

Moreover,
13(1i)

*A '2(= )(21)/2(pi)

Eq. (18) is a sixth-order polynominal and in general has three pairs of complex conjugate roots.

Only the three roots with Im[pi] > 0 are used in the analysis. Further, pi, in Eq. (17) are defined

as
P~t Al;p~ A1 2  16Al/' p + 1 -A'll + Af' 5)

p2 - ' + Pi- A114, + .'(-, +Pi (22)

pP3 = M2 + - M ,+ + A1)Pi A i

with i = 1,2, 3. The matrix N in Eqs. (14) through (17) is also related to the roots of Eq. (18):

N -[l -P A (23)-A, -A2 -A3J

Finally, the A', in Eqs. (14) through (17) are the stress intensity factors corresponding to Mode II,

I, and III as (in line microcrack coordinate system)

K 2  KI (24)
K 3  KIII

On the other hand, the J-integral can be recast as (Rice (1968))

= lim 1 a" (6 - r", 0) u,(r", ir) dr" (25)
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where i = 1. 2, 3, with the understanding that 1 = x", 2 = y", 3 = z". By substituting Eq. (14)

*through (17) into Eq. (25), we have

J"= {Kn Im [pliNj'k Ik] + K, Im [p2jNk Kk] + Km Im [P3jN 'Ik] } (26)

From Eqs. (10) and (17), it can be shown that

Im [pi. Nj'Kk] =VT'a73' (27)

Therefore, the J-integral in the double-primed coordinate system reads

0 ira-j,, a{Im [pij N l] }-,3" (28)
2 k

By introducing the following transformation matrix R,,, 3,' vp%-es can be related to !3 values

in terms of the elliptical microcrack coordinate system in Fig. 1:

cos ' sine' 0
(- 2 cs 2 4'+sin 2  '/4 0 0 __ cos 2 0' + sin2 0 (29)

Ssin 0' -yt cos 6' 0

* 3, =/i; (30)

Substitution of Eqs. (30) and (28) into Eq. (13) then renders the final form of the C, matrix:

f f 1 1 f:"-L -.= - ]{Ira[pkl,, ] }- RiR,,d '  (31)
0 ' 4

Consequently, the opcning displacements of a flat elliptical microcrack in a general anisotropic

material are now completely defined by Eqs. (10) and (31).

IV.3.2. A single microcr-3ck induced inelastic compliance

By substituting Eqs. (10) and (31) into Eq. (4) and performing integration over the ellipti-

cal microcrack surface, we obtain the following inelastic strain components due to a single (k-th)

microcrack (in local elliptical microcrack coordinate system):

v :;(k) = -a ( ( n + C['" 3,n' (32)

In the primed (local) coordinate system, onc may choose n' = n2 = 0 and n' 1 for n' vector.

In addition, the Voigt's notation is tdopted for stresses and strains as r1 = aO , 72 = 022, 73 = U33,
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74= 02 3, T5 = 31 , T6 = o,12, and el = f I,, e2 -- '2 2 , e 3 = 633, e4 = 2f23, e5 = 2 (31, e 6 = 2E12.

Therefore, the non-vanishing components of inelastic strains in Eq. (32) can be rephrased as

1----.. + 732 '7" + 431 )N) W (33)
Ce3 a3" 33 C32 T4 3-1t -

V" (k) = 4 7 C 23  "3 +1-i. -I- j +t,2 " (34)

Ve, '-k) =47r a3 "0-1(k)_ 4 + -,_Ic,)_,'(35
"'"L _2_" + '' 1 (35)13 T3  12  1 11 T)

Consequently, the local inelastic compliance induced by a single elliptical open microcrack em-

bedded in anisotropic solid takes the following matrix form:

0 0 0 0 0 0

0 0 0 0 0 0
- k) , 0(k) _ )

-(k)  32 4 31 0 (36)S T Ta (k) 5~1) _ j(k)0
0 0 023 C22 21 0

Clk '' '-13 C12 11

0 0 0 0 0 0.

It is worth noting that in the special case of a penny-shaped microcrack embedded in an isotropic

material, the integrand in Eq. (31) can be greatly simplified:

Im[pN-  2] 0 2 0 (37)

1 0 E2(1+v)

where E is the current Young's modulus and v is the current Poisson's ratio, respectively. Hence,

we obtain

-- 2( )  0 2 -v 0(38)

_0 0 2
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Further, the nonvanishing components of S'*°k) in this case are

1 16(1 - V2) a3
33 V 3E

1 32(1 - V2) a3
44 = V 3E(2 -v)(39)

4) 1 32(1 - v 2)a3
S5i = ts- 3 (2 a, a

which coincide with the solutions found by Horii and Nemat-Nasser (1983).

IV.3.3. Overall compliance due to distributed microcracks

The inelastic compliance due to a single elliptical microcrack in global (unprimed) coordinate

system is related to that in local (primed) coordinates by the following transformations (see also

Fig. 3):
/-(k)  Si. : r ,(k)
=-ikJI'" and kilkL (40)

Here, the transformation matrices T' and T are

cos2 4 sin2' 0 0 0 sin 24

cos 2 0sin2 4' cos 2 0cos2 4' sin 2 0 sin 20 cos4' - sin 29 sin 4 - cos 2 0sin24

sin 2 0 sin2 0 sin2 0 cos 2 4 cos 2  - sin 20 cos4' sin 20 sin4 - sin2 0 sin 24
T1 = (41)

- sin 20 sin2 , - sin 20 cos 2 4 sin 2e cos 20 cos4' - cos 20 sin 0 sin 20 sin 20

sin 0 sin 20 - sin 0 sin 20 0 cos O sin 4 cos O os 4 -sin 0 cos 24

- cos o sin 20 cos 0 sin 24 0 sin 0 sin 4 sin 0 cos 4 cos 0 cos 24

and

cos2 4' sin 2 4 0 0 0 sin 24

cos2 0 sin2 4 cos2 0 cos2 4' sin2 0 sin 20 cos 4 - sin 20 sin 4 - cos2 0 sin 24

sin2 0 sin2 04 sin2 0 cos2 4' cos2 0 - sin 20 cos 0 sin 20 sin 4 - sin2 0 sin 24
T= (42)

- sin 20 sin2 4 - sin 20 cos 2  sin 20 cos 20 cos 0 - cos 20 sin 0 sin 20 sin 24

sin 0 sin24 - sin 0 sin 24 0 cos 0 sin 4 cos 0 cos' - sin 0 cos 20

- cos sin24 cos 0 sin 2 0 sin 0 sin 4' sin 0 cos 4 cos 0 cos 2S
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Let us now consider an ensemble of microcracks. The lengths and orientations of microcracks

are assumed to be randomly distributed. Accordingly, the total inelastic compliance tensor S" can

be determined from Eq. (9). In particular, in the special case of penny-shaped microcracks with

uniformly distributed and statistically independent geometric random variables (a, 0 and 0), the

joint probability density function in Eq. (7) can be written as

p(a, 0, 0) = p(a) p(O) p(O) = 1 (43)

where ao.. and a0. are the maximum and minimum initial radii of penny-shaped microcracks,

respectively. It can easily be shown that Eq. (43) indeed satisfies the normalization condition dis-

cussed in Eq. (8). Thus, S" takes the following form (for penny-shaped microcracks)

N , ~ 2 o J J Tki(O, 0) Tj(0, 0) S'* (a, 4, 0) sin 0 da do dO (44)31i V 27r(ao. - ao.) 118
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IV.4. A process damage model

Based on the linear elastic fracture mechanics and the self-consistent method, a micromechani-

cal "process damage model" is proposed to analyze kinetic equations of penny-shaped "cleavage 1"

microcrack growth under tensile loadings. At a certain stress level, some microcracks in preferred

orientations become unstable and increase in size. Two simplifications of microcrack growth are
made here. First, the microcrack growth process is assumed to be instantaneous (Krajcinovic and

Fanella (1986)). That is, once a microcrack becomes unstable, it reaches a certain final size (cor-

responding to a characteristic length or an energy barrier) immediately. Second, the penny-shaped

microcrack growth is assumed to be in a self-similar fashion.

IV.4.1. Fracture criterion for a microcrack

Typically, there are many pre-existing microcracks along the matrix-inclusion interfaces (or
interphases) or the inter-granular planes of brittle materials, assuming that the fracture toughness

of the matrix material is significantly stronger than that of the interface (or interphase). In par-
ticular, for matrix-inclusion composites, fracture criteria for interface (or interphase) microcrack

growth should preferably be based on bimaterial (or interphase) properties. Although some valu-

able progress was recently made by Qu and Bassani (1989) and Bassani and Qu (1989), their analy-

sis only provided necessary and sufficient condition for non-oscillatory two-dimensional line crack

solutions on the interface between two anisotripic dissimilar materials. Therefore, non-oscillatory

micromechanical bimaterial analysis is not guaranteed for a given two-dimensional interfacial mi-

crocrack (even if microcrack interaction is totally ignored). General bimaterial analysis for a three-

dimensional microcrack is not yet available. Hence, in what follows, bimaterial interfacial micro-

crack analysis is not pursued. However, the fracture toughness at the matrix-inclusion interface is

employed to determine the criterion of microcrack growth. An alternative choice is to use an inter-

phase microcrack model; see, e.g. Achenbach and Zhu (1989) for a simple one-dimensional linear

elastic extensional and shear springs numerical model for periodically spaced fibers in a matrix

material. Nevertheless, very involved numerical solutions of local interphase stresses, displace-

ments and microcrack interactions (if non-periodic fiber array) are needed to implement interphase

models.

When a penny-shaped microcrack of radius a in a homogenized anisotropic body is subjected

to remote loadings, the energy release rate G at each point along the edge of the microcrack (in
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local or primed microcrack coordinate system) can be evaluated from Eqs. (28) and (30):

G'(a, 0, (f) = -{Im [p.j jV7'l 1RiCRtt-C7 -e'pa3q (45)

We will consider triaxial loadings, with q denoting the axial tension and q* denoting the lateral

stress, respectively. The corresponding stresses in local coordinate system are expressed as

F' =qcos2 O+q* sin 2 0, 4 E (q- q*)sin0cosO, f' E 0 (46)

where q and q" are taken to be positive when they correspond to tensile stresses.

It should be pointed out that the value of energy release rate G' varies along the edge of a penny-

s. '%ped microcrack due to material anisotropy. This implies that microcrack instability starts at a

certain point on the edge of the microcrack and gradually propagates from this point to other points

along the edge. However, the assumptions of instantaneous and self-similar microcrack growth are

introduced to simplify the process. Essentially, we assume that an microcrack starts to grow when

the average value of G' over the microcrack edge reaches a critical value Gf (which is a material

property of the matrix-inclusion interface or the inter-granular plane). Namely, the fracture criterion

of a microcrack can be written as

j' j (a, 0., 0')ds = G'(a, 0., 0')do' (47)

where 0,, define(s) the critical orientation-bound(s) of unstable microcrack growth region for a

given microcrack size a and under given stresses q and q*. Nevertheless, if the self-consistent

(yet unknown) overall moduli are involved in Eq. (47), it becomes extremely difficult to obtain

solution(s) for 0,,. It is emphasized that the determination of 0,, is crucial to the integration of

overall moduli S (see Eq. (44)).

Therefore, for practical applications, further simplification is introduced here. That is, the

penny-shaped microcrack fracture criterion is based on the Taylor's model (no microcrack interac-

tion). As a consequence, the average energy release rate 0' for an isotropic virgin material can be

easily obtained:

V (2_\22] 4 r212 2]
=1 E 2(2 ) 2 v r = T3a [K1 + K '  (48)

where Mode I and II stress intensity factors K, and K11 are defined as

1 ,2 4 V f (49)
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Accordingly, the microcrack fracture criterion takes the form
E 1h'2 + 1r2

G ( / ,, + (50)

If we are concerned with interface microcracks in brittle composites, it should be noted that the

critical interfacial stress intensity factors for Mode I (K') and Mode II (K" ) are different in gen-

eral. Therefore, it is reasonable to modify the isotropic microcrack fracture criterion Eq. (50) (cor-

responding to a "circle") as follows (corresponding to an "ellipse", Kanninen and Popelar (1985)):

h 2LY + ( f',.] \2 (51)

Kif1Kif~)=

IV.4.2. Microcrack kinetics

Under a given load level, some microcracks in preferred orientations and sizes may reach the

fracture criterion (51) and start to grow. The preferred orientations can be solved in closed form as

follows (see also Krajcinovic and Fanella (1986)). From Eqs. (46), (49) and (51), we arrive at

(q* sin 2 + qcos2 0)2 + () (-q) 2 sin2Gcos2O=- -(Knj) (52)

After some derivations, the solutions of Eq. (52) can be expressed as

tan2 = -A 2 - A AIA3 = f(a,q,q,*,K ,iI'., v) > 0 (53)
2A1

where

A4 _= q -2_ (54)(+)1C 4a)
A2=ak -(K.)(q2+q 2LK[ - q*q (55)

A3 =Kjnf ( q aa (56)

Therefore, the critical angles O defining the range of unstable microcracks are

0, = tan - 'f(a, q, q', Kii, , v) (57)
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Note that the conditions of existence of solutions 0, are

A2 -4A IA3
> 0 A 2+V/A1

4 AA 3 >0 (58)

Assuming that the lateral loading q" is small such that q* alone will not cause microcrack

instability; i.e.
.2 7r if 2

[qu2 -aa(KI,)2 <0 (59)

-2 _ (22 i)21 < 0 (60)

Then, f in Eq. (53) takes only the form

f(a, q, q*, IKI, V)> 0 (61)
2A1

In addition, the maximum angle 0,,., at which microcracks with maximum initial size ao,, become

unstable, can be evaluated as follows

0 , = tan - ' f(ao, , q, q-, K", Kif, v) (62)

Similarly, the angle 0,,., at which all microcracks become unstable, is evaluated by using aoin:

Ou = tan- If (ao. , , q, q-, Kf, KiL, v) (63)

Let us assume that q" is constant and q is varying but greater than q'. From Eq. (57), it is clear

that the first microcracks to become unstable are oriented along 0 = 0 direction and with maximum

initial size a0 ,. The corresponding axial threshold load is defined as qo.

For simplicity in practical applications, we will further assume that once an initial interface

(or inter-granular) microcrack starts to propagate, it grows along the interface (or inter-granular

plane) from ao to a characteristic final size a/ (effective inclusion or grain size) instantaneously

(Krajcinovic and Fanella (1986)). Microcrack kinking into the matrix material is not considered in

Part I. In Part II of this work, however, microcrack kinking into matrix under compression will be

fully accounted for. In essence, a microcrack could either have its initial size a0 or its final size a1

in the following treatment.

Therefore, the microcrack growth kinetic sequence proceeds as follows.
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(i) As q < q0, all microcracks are stable and of initial sizes. The damage-induced inelastic moduli

can be computed by Eq. (44).

(ii) As q = q0 > q*, those microcracks in the plane 0 = 0 with maximum initial size ao., become

unstable and increase in size until reaching a characteristic length af (e.g the aggregate facet

size). For simplicity, it is assumed that af = ao/p, where p is a scalar between 0 and 1. In

general, p should be a random variable.

(iii) As q = q, > q0, more microcracks become activated. The compliance contributions from

stable and unstable microcracks, S3' and S!, respectively. can be computed and integrated as

follows.

S33  A =- 2ir (ao _ ao,[ Jl aon.* S: (a, 0, 0) sin Oda dob dO

+jin j 2 1- ao(G)°< S.((a, ,) sin Oda q do] (,

V 2r(a0  - ao,)p3 LJO.Io0  .
+ j 0- J SIk)(a, 4,0) sin Oda do dO (65)

where S J) is given by Eq. (40), and ao(O) is the minim0) microcrack size for a specified

orientation 0 such that a microcrack becomes unstable. Specifically, ao(O) can be determined

from Eq. (52)

K if 2 K if2
ao(O) = Ilk K1,c (66)

4 1C (q sin 2 0 + q2 cos2 9)2 + K 2 (2)2 (q2 - q 2) sin2 0 cos2 0

Furthermore, it is noted that 0.., 0, m and ao(O) are functions of applied stresses q and q*.

(iv) As q < qj, the unloading case is taking place. There is no further microcrack growth and

S"u = 0. Therefore, the elastic-damage compliance S remains its previous value.

(v) As q > qj, more initial microcracks are activated. The computations involved are similar to

those in step (iii). "Localization modes" are not considered in this work.
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IV.5. Computational algorithm

The self-consistent analysis requires the use of the yet unknown overall compliance S. There-
fore, the proposed damage model naturally requires iterative schemes to obtain S corresponding

to a specified stress &. Efficient numerical algorithms are warranted to compute the C' matrix in

Eq. (31) for every edge point of a microcrack, to determine stationary and unstable microcrack
regions, to compute the statistical average of microcrack-induced inelastic compliance 9, and to

iterate and update S" until proper convergence is reached.

For numerical integrations in Eqs. (31) and (44), the Gauss quadrature formula is found to be

efficient for our analysis. In addition, it is found that use of 20 Gauss points for a single integral

operator is sufficiently accurate. In fact, the relative difference between using 20 and 256 Gauss

points is in the order of 10- 8.

The computational algorithm employed in this work proceeds as follows.

(i) Determine the critical angles 0, and 0, at given loading stresses, q and q*, from Eqs. (62)

and (63). The unstable angle domains should be stored as history variables.

(ii) Compute the single microcrack-induced inelastic compliance S, 1) by numerical integration:

(a) Make an initial guess for the current overall compliance. The natural guess is the previous

overall compliance S,. At the first loading step, we use the virgin elastic compliance SO as

an initial guess.

(b) For a trial S,,+ compliance, evaluate C' matrix for every (discretized) microcrack orien-

tation by using Eq. (31). This involves the numerical solution of roots of the sixth-order

equation (18) and the numerical integration around the microcrack edge (Eq. (31)).

(c) Obtain the single microcrack-induced compliance S' -0 ) in local coordinate system from

C'; see Eq. (36) for details.

(d) Perform tensor transformation to obtain S"°k) in global coordinate system; see Eq. (40).

(iii) Obtain the updated inelastic compliance tensor S"; see Eqs. (44), (64) and (65) for details. The

triple integral is computed by using the triple Gauss integration scheme.

(iv) Obtain the new trial overall compliance S, | by adding S" to So . Compare this S, with

the previous trial S,. If the relative error is smaller than a preset tolerance, then the iterative
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process is converged. Otherwise, use S,+1 as a new estimate and go back to step (ii)-(b) to

re-iterate until convergence criterion is reached. This iterative scheme leads to superlinear rate

of convergence and typically requires 6 to 8 iterations. The convergence criterion employed

here is based on the L00 norm with TOL =10-7:

II S - ,, Il. < TOL (67)

I n+I 1100

(v) Apply the next loading step and go to step (i).
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IV.6. Numerical results and experimental validation

As an illustration, the proposed self-consistent micromechanical damage model is applied to

concrete specimens under tension loadings in this section. Three different uniaxial tension tests

are considered, and the numerical predictions are compared against experimental data reported by

Gopalaratnam and Shah (1985). Following Krajcinovic and Fanella (1986), the microcrack number

density Nc/V needed in Eq. (44) can be expressed as

- = 1- (68)
V mDaxa1- 4

where Dm.x is the maximum aggregate size, a,, is the volume shape factor, f, is the volume fraction

of coarse aggregates, and j' = 2~D (with Dmin denoting the minimum aggregate size), respec-
Dmax

tively.

As in Krajcinovic and Fanella (1986) and Zaitsev (1983), we take Kif', = 2KiA,, f, = 0.33 and

a,, = 4. In addition, the elastic Young's moduli E, Poisson's ratios v, maximum aggregate sizes

Dmax, initial and final microcrack size ratios p, aggregate size ratios j, and the critical threshold

stresses qo for "cleavage 1" microcrack growth are given in the figure captions of Figures 4, 6

and 8. The stress-strain predictions of the self-consistent damage model are also compared with

experimental data in Figures 4, 6 and 8. It is observed that model simulations agree very well with

the ascending curves (up to the peak tensile strengths) of experimental data. However, because the

proposed damage model is stress-driven (fracture mechanics based), strain softening (descending)

portions of the stress-strain curves cannot be simulated. Further, axial compliances S33 versus

axial stresses q for three tests are plotted in Figures 5, 7, and 9. The elastic compliances S3 are

also appended in Figures 5, 7, and 9 for comparison purpose.

In the above three tests, microcrack concentrations are relatively low and ultimate tensile stress

levels are low, too. Therefore, these are not the most ideal tensile experiments for model validation.

However, these tests are the only tensile micromechanical concrete tests available to the authors

at this stage. Moreover, due to the relatively low initial microcrack concentrations, the differ-

ences between the self-consiste- t model and the Taylor's model are relatively small in these three

cases. Therefore, the (Taylor's) micromechanical damage model for concrete under tension pro-

posed by Krajcinovic and Fanella (1986) was adequate for these tests. However, when microcrack

concentration becomes moderate and ultimate stress level becomes higher for other specimens or

materials, the differences between the two micromechanical damage models are more significant

191



(due to higher microcrack interaction). To illustrate this point, let us consider the fourth uniaxial

tension test with moderate initial microcrack concentration and higher ultimate tensile strength.

The micromechanical material properties employed together with the predictions of macroscopic

stress-strain responses by the two models are shown in Fig. 10. It is observed that the damage-

induced inelastic compliance S" obtained by the self-consistent model differs significantly from

that of the Taylor's model in the simulation.

In the above model predictions, only "cleavage I" micrograck growth is considered. Micro-

crack kinking into the matrix and new microcrack nucleation along matrix-inclusion interfaces are

not accounted for. When concrete specimens are under compressive loadings, however, microcrack

kinking and new microcrack nucleation are important for ultimate material failure. These issues

and related micromechanical damage models will be further investigated in Part II of this work.
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IV.7. Conclusion

A three-dimensional self-consistent micromechanical damage model for microcrack-weakened

brittle solids under tension is presented. The microcracks are assumed to be elliptical or penny-

shaped. Their sizes and orientations are taken as random variables. The microcrack-induced inelas-

tic compliance is derived by adopting Heonig's method to obtain microcrack opening displacements

for very general anisotropic materials. Micro-macro integration procedures are also presented to

obtain overall compliances and macro-strains. A process damage model is cons' acred, which fea-

tures predictive capability of macroscopic stress-strain responses. The fracture criterion for micro-

cracks embedded in an anisotropic solid is discussed. Moreover, microcrack kinetic sequences are

presented within the context of "cleavage 1" microcrack growth processes.

Efficient computational algorithms are given in detail for the proposed method. To illustrate

the potential capability of the proposed model, numerical results are obtained and compared with

experimental data of concrete specimens under tensile loadings. For low microcrack concentra-

tions and low ultimate stress levels, the self-consistent model yields results similar to those of the

Taylor's model. For moderate microcrack concentrations and higher ultin-ate strengths, neverthe-

less, the self-consistent damage model indirectly accounts for microcrack interaction effects and

thus renders the progressive damage phenomena more appropriately. Of course, computational

cost of the self-consistent damage model is also higher than that of the Taylor's model. Therefore,

judgement should be exercised as to the choice c the appropriate damage model for a particular

brittle material under certain loading conditions. It is emphasized that not a single fitted material

parameter is employed in the proposed model. The compressive responses and underlying micro-

crack kinetics (including microcrack kinking and nucleation) of brittle solids within the context of

the self-consistent method are the focal points of Part II of this work. More numerical results and

experimental validation will also be given in Part II.
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IV.9. Figure captions

Figure 1. The elliptical microcrack coordinate system.

Figure 2. The line microcrack tip coordinate system.

Figure 3. The local (primed) and global Cartesian coordinate systems.

Figure 4. The numerical results compared with experimental data (Example 1).

E = 4952 (ksi), v = 0.3, Dm, = 0.375 (in.), p = 0.3, j = 0.9, qo = 400 (psi).

Figure 5. The numerical compliance values S33 versus the axial stresses q for Example 1.

Figure 6. The numerical results compared with experimental data (Example 2).

E = 5000 (ksi), v = 0.3, D, = 0.375 (in.), p = 0.3, j' = 0.7, qo = 400 (psi).

Figure 7. The numerical compliance values S33 versus the axial stresses q for Example 2.

Figure 8. The numerical results compared with experimental data (Example 3).

E = 4815 (ksi), v = 0.3, D,,, = 0.375 (in.), p = 0.3, 5' = 0.9, qo = 350 (psi).

Figure 9. The numerical compliance values S33 versus the axial stresses q for Example 3.

Figure 10. Comparison of numerical simulations obtained by using the self-consistent and

the Taylor's models.
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Figure 1. The elliptical microcrack coordinate system.

199

• • •• m~ m nlm~n~m 
n nmnnlm



3-D Self-Consistent Damage Models. Part I: Tensile Loadings

y

r
9 9

Crack 0 " x"

Figure 2. The line microcrack tip coordinate system.
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Figure 3. The local (primed) and global Cartesian coordinate systems.
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Figure 4. The numerical results compared with experimental data (Example 1).

E = 4952 (ksi), v = 0.2, D,, = 0.375 (in.), p = 0.3, = 0.9, qo = 400 (psi).

202



3-D Self-Consistent Damage Models. Part I: Tensile Loadings

C)

C%

a..

..

E Effective
0

........ Elastic

I I I II

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Axial stresses q (ksi)

Figure 5. The numerical compliance values $33 versus the axial stresses q for Example 1.
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Figure 6. The numerical results compared with experimental data (Example 2).
E = 5000 (ksi), v = 0.2, D._, = 0.375 (in.), p = 0.3, ' = 0.7, qo = 400 (psi).
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Figure 7. The numerical compliance values 933 versus the axial stresses q for Example 2.
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Figure 8. The numerical results compared with experimental data (Example 3).

E = 4815 (ksi), v = 0.2, D.,,, = 0.375 (in.), p = 0.3, =0.9, qo = 350 (psi).
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Figure 9. The numerical compliance values $33 versus the axial stresses q for Example 3.
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Figure 10. Comparison of numerical simulations obtained by using the self-consistent
and the Taylor's models. (E = 4815 (ksi),uv = 0.2, D... = 0.375 (in.),

=0.4, a~=2, p = 0.5, 5'= 0.6, qo = 300 (psi)).
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PART V

On Three-Dimensional Self-Consistent Micromechanical Damage

Models for Brittle Solids. Part II: Compressive Loadings

V.I. Introduction

In Part I of this study (PART IV of this report), a three-dimensional self-consistent microme-

chanical process damage model is proposed to account for "cleavage 1" microcrack deformation

processes under tensile loadings for brittle solids (Ashby (1979)). Further, in Part I, all microc-

racks are assumed to be open and pre-existing (due to initial imperfections or previous loadings)

at the matrix-inclusion interfaces of composites or at the intergranular planes of polycrystalline

solids (such as ceramics). Under uniaxial or triaxial compressive loadings, however, some (or all)

microcracks are closed and may experience frictional sliding and even Mode II growth ("cleavage

1" processes). In addition, under higher compressive loads, some microcracks may kink into the

matrix or the neighboring intergranular planes, and new microcrack nucleation ("cleavage 2" pro-

cesses) may occur for certain preferred orientations and sizes. Therefore, the self-consistent (or

other effective medium theories) micromechanical process damage models for such deformation

kinetics are warranted. Part I of this work is devoted to this effort.

Due to microcrack opening displacements under applied loads, inelastic strains and inelastic

compliances (or stiffnesses) develop in addition to elastic material responses. The microcrack open-

ing displacements for a single elliptical open flat microcrack embedded in a fully anisotropic solid

(with a symmetric compliance matrix containing up to 21 independent components) have been de-

rived in Part I of this work. Due to frictional sliding of closed microcracks, nevertheless, the overall

moduli of brittle solids become non-symmetric and anisotropic (with up to 36 independent compli-

ance components). Therefore, in this sequel, we will derive fundamental solutions of microcrack

opening displacements for a single penny-shaped closed microcrack embedded in a non-symmetric

anisotropic solid. This derivation is very crucial to the construction of microcrack-induced inelastic
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compliances and strains.

Some relevant literatures on micromechanical damage theories are briefly reviewed in what fol-

lows. By applying the self-consistent method, Budiansky and O'Connell (1976) obtained isotropic

overall moduli for microcrack-weakened solids containing open, elliptical, and perfectly randomly

distributed microcracks. When some of the microcracks are closed and experience frictional slid-

ing, Horii and Nemat-Nasser (1983) presented two-dimensional (line microcracks), self-consistent

analysis for non-symmetric anisotropic solids. The foregoing work, however, are limited to non-

process models; i.e. no microcrack changes its size during loading. Based on the theory of linear

elastic fracture mechanics and the aforementioned work, Sumarac and Krajcinovic (1987) pro-

posed a two-dimensional, self-consistent, anisotropic, process microcrack model for brittle solids

under tension. Further, three-dimensional process damage models were given by Krajcinovic and

Fanella (1986) for concrete under uniaxial tension, and by Fanella and Krajcinovic (1988) for con-

crete under uniaxial and triaxial compression. These process models, nontheless, ae only "Taylor's

models"; i.e. microcrack interaction effects are entirely ignored. In addition to Mode I and Mode

II microcrack growth, Krajcinovic and Fanella also considered microcrack kinking and resulting

inelastic compliances under compression. Microcrack kinking in brittle solids has been discussed

in several other literatures; see, e.g. Zaitsev (1983), Nemat-Nasser and Horii (1982), Horii and

Nemat-Nasser (1985, 1986).

An outline of this paper is as follows. In Section 2, we show that due to frictional sliding of

closed microcrack faces the overall compliance matrix is inherently non-symmetric. It is recalled

from Part I (Ju and Lee (1990)) that fundamental microcrack opening displacement solutions due

to Hoenig (1978, 1982) are only valid for anisotropic solids with symmetric moduli. By modify-

ing Hoenig's solutions, we re-derive relevant microcrack opening formulas presented in Part I to

accommodate non-symmetry and anisotropy. This is indeed a powerful tool and therefore non-

symmetric inelastic compliances can be systematically obtained. In fact, the presented framework

is capable of treating combinations of open and closed microcracks under combined tensile and
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compressive loads. Consequently, a self-consistent formulation of mixed loadings is rendered.

Mixed Mode and Mode II microcrack growth k"cleavage 1") processes are subsequently presented

in Section 3. In particular, fracture criterion for a closed sliding penny-shaped microcrack is dis-

cussed. Detailed and systematic microcrack kinetic equations for mixed open/ closed microcracks

are also given.

In Section 4, microcrack kinking criterion under compression and approximate solutions of

kinked microcrack opening displacements are given along the lines of Fanella and Krajcinovic

(1988). Moreover, inelastic compliances due to kinked microcracks are derived within the frame-

work of the self-consistent method. It is noted that "cleavage " process alone may not be sufficient

to satisfactorily capture overall material responses and deformation processes. In fact, nucleation of

new microcracks ("cleavage 2") along weak planes is an important aspect of many brittle solids un-

der higher loadings. Therefore, a simple Zener-Stroh type microcrack nucleation model is proposed

in Section 5 based on the critical shear stress nucleation criterion. Finally, numerical procedures

and some experimental validations for the proposed models are presented in Section 6.

211



V.2. Formulation of microcrack induced inelastic compliances

The microcrack induced inelastic compliances due to open microcracks have been derived in

Part I of this work, where inelastic compliance matrices are symmetric and anisotropic (with 21

independent components). When microcracks are closed and sliding under compression, effec-

tive compliances are no longer symmetric. Such non-symmetry was shown, for instance, by Horil

and Nemat-Nasser (1983) for two-dimensional analysis with closed line microcracks embedded

in an anisotropic body. In this section, attention is focused on the derivations of non-symmetric

compliances and corresponding microcrack opening displacements for penny-shaped microcracks

embedded in most general anisotropic materials (with 36 independent compliance components).

The derivation of microcrack opening displacements are based on modification of Hoenig's (1978,

1982) work. In particular, the Al-surface integral, the work done by external loads through open-

ing displacements, and Lekhnitskii's (1950) theory of anisotropic elasticity are employed for this

purpose.

V.2.1. Non-symmetry of compliance matrix due to closed sliding microcracks

As was discussed in Part I (Ju and Lee (1990)), the inelastic strains induced by microcrack

opening displacements take the form
= E /,! (u n + un' dSk) (1)

T V J(k) 2 ' I

where the prime indicates that the values are evaluated in the local (microcrack) coordinate system;

see Figures 1 (a) and 1 (b). Further, V is the volume of the representative element (unit cell), and u',

is the opening displacement in the i-th direction. For convenience, we will use the Voigt's notation

in what follows. That is,
Fl = S,* (2)

where el = f 1, e2 = f22, e3 = f33, e4 = 2£23, e5 = 2(31, and e6 = f32; T1 = 011, 72 = a22, r3 = a33,

T4 = 0'23, T5 = 0"31, and "6 = a12; and S" is the microcrack induced compliance matrix. As shown in

Part I, the displacement jumps across the penny-shaped microcrack surfaces can be expressed as

u:(x', y') = 2 Via2 - (X'2 + y'2) clij'& (3)
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where C'-1 is a function of components of the compliance matrix. It is recalled that C-1 and S'

were given by Eqs. (31) and (36) in Part I for strictly open microcracks and symmetric compliance

matrix.

Let us begin by assuming that a microcrack is subjected to (compressive) normal and shear

loadings. Let )7 be the coefficient of friction of microcrack surfaces. Due to compressive normal

stress (f < 0), the microcrack is closed. Moreover, the contact stresses transmitted across micro-

crack surfaces are presented by a vector .c; i.e. fc is the normal contact stress, and fc and fc

are the shear contact stresses, respectively. The unknown transmitted (contact) stresses, f-c can be

determined from the following two conditions.

(i) If the microcrack is closed and no frictional sliding occurs; i.e.
IT'I -77"3 and I TS' -17r3 (4)

then
0 c - _,C - 1 -,c =- 1  (5)

1/ -- '0r13  T73, "4  =74, T5  7T5

(ii) If the microcrack is closed and experiencing frictional sliding; i.e.

either -I1 > -rlf;c or I-'I > -77f3" (6)

then
-,) -, -,c a d -,c "g-'" -' (7)ui3 =0 ; r4 = -sgntr4)rr 3  and r5 = -sgntr)r7i/r(3

where sgn(F') = -1, 0. or 1, depending on whether ' is negative, zero, or positive.

When the first condition (i) is met, there is no displacement jump across microcrack surfaces.

Therefore, no microcrack induced inelastic compliance matrix exists. On the other hand, when

microcrack surfaces undergo frictional sliding, there is no normal displacement jump (u' 0),

and Eq. (3) leads to
- 7"5 ) + C,2( 1C) + C3,jI 3 i-) =0 (8)

Thus, the normal contact stress i is compressive and equal to=C C33' + +C' i
- sgn(i)7C32' - sgn(f)rjC3y' < 0 (9)
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By choosing the local microcrack coordinate system to be n' = n= 0 and n' = I and integrating

Eq. (1) over microcrack surfaces, the only two non-vanishing strain components are (for a single

penny-shaped microcrack contribution)

= 14 a 3 LC21 I - ) + CjI (r - 4c) + Cj'( -_ (10)

and
"= f+C12 (r4 _4) 1-3 73 DC5 -- a [C,, (35- a) - + -

From Eqs. (2), (10) and (11), the only non-vanishing components of a single closed microcrack

induced inelastic compliance matrix are
. 14r -3 

1CiI 4;r 3

$ V 3 a '-v'lJ " S5 = a [C 1 - C3
13 H1] (12)

1 4 r 1 4, T (13)
S5= I---a 3 [C- I-C<'H] ; = I 4rV a 3 [Cf'-C;'Hll (13)

14 3 , 1 4rs=, Y- - 2 [c',' - c; 'Hi] • 5 =, .- T"~- [c',71 - 'H] (14)

where

- sgn(f4)i7C.' - sgn(s)7C27' (15)
H 33- sgn(ri)7C32 - sgn(f)C7 15)1
C - sgn(f),TC,'-' - ,-'

= - - sgn()C (16)

C3 - sgn(4)rtCj'1 - sgn(f)r7C' 1

The other components SI- = 0. Therefore, it is clear that the inelastic compliance matrix S, and the

overall compliance matrix .,,, in general, do not remain symmetric when frictional slidings occur

on closed microcrack surfaces. It is noted that when microcracks experience frictionless sliding,

i.e. 77 = 0, Eqs. (12) to (16) show that S = 0, S; = 0, and S,; = S. and the symmetry of S'*

recovers. It can be easily shown that the inelastic compliance matrix, S,, reduces to Horii and

Nemat-Nasser's (1983) solutions if two-dimensional analysis is performed.

V.2.2. Solution of a single microcrack opening displacements

The non-symmetry of overall compliance matrices has been shown in the previous section when

some microcracks are closed and undergo frictional sliding. Therefore, the method of obtaining
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microcrack opening displacements (or simply C~j components) in anisotropic materials as described

in Part I of this work (Ju and Lee (1990)) cannot be directly applied. Certain modifications have

to be made to accommodate the non-symmetry of compliance matrix. It is emphasized that the

framework developed in this section is valid for both open and closed penny-shaped microcracks.

The solution procedure outlined in what follows is based on Lekhnitskii's (1950) theory of

anisotropic elasticity. Once the characteristic equation to the non-symmetric compliance is ob-

tained, Hoenig's solutions (1978, 1982) for analyzing displacements and stress fields of penny-

shaped microcracks can be modified to evaluate microcrack induced inelastic compliance.

We shall consider a general anisotropic linear elastic body under equilibrium conditions in

the absence of body forces. Assume that the generalized plane deformation condition, defined

by Lekhnitskii (1950), is met. Hence, equations of equilibrium in the two-dimensional line crack

coordinate system, Fig. 1(c), are (in Voigt's notations):

f1 +Y =0

-f, + z , =0 (17)

ix ay"l

with
-,3 " + 3 4~~ f4" -~ + Sn")71 1 + Si +T 3" (18)

S33

Further, the constitutive equations for the line crack are

Fit = kl, f i (19)

where Sll 3 Se' in general. We introducing two stress functions, F(x", y") and I(x", y"), such that

stresses are
- = F - l (20)
1 y= 5y'f ax "

2F ,, al _,, a
= "TS - ' = - (21)
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By substituting Eqs. (20) and (21) into the constitutive equations (19) and then utilizing compati-

bility conditions, we obtain the following two differential equations:

3LF(x", y") + L 2A(x", y") = 0
(22)L4 F(x", y") + L(1)9P(x", y") = 0

where L, are the i-th differential operators defined by

a,2  a2
L 2 = AI- -(M + A;4)aa" + 3A"- (23)

L(= + I2+(M+A + (AG +,) + MAl, (24)3' 0 M,,6)3 a ,ay,, 4 M65) OXz,,aya + '93"z
a 3  

& 9 3  
0 3

L(2 _-- + (AIr + A " (AI4' +.Af'. - + MA15 ' (25)

"94  a4  a4 if ,1 MtA~+(All" AI +Af ) WM +A1 +A1 (26)
a1 xI ya (Xf2,9yf2X,,Oy,,

The newly introduced coefficient matrix AI, is defined as

-" E3"5 - for ij = 1,2,4,5,6 (27)

After some simple algebraic manipulations to Eqs. (22), two independent sixth-order partial

differential equations of the stress functions, F(x", y") and q1(x", y"), respectively, can be written

as
(L 4 L2 - L(')Lt)) F(", y") = (3 3 (28)
(L 4 L 2 - L(')L(2) %P'(x", y") = 0

The characteristic equation of these two differential equations is given by (with p denoting the

roots)

14(W1) 12() - 41)(A) 42)(,1) = 0 (29)

where ,(pQ) functions are

12(=) A- 1 5 P2 - (AI45 + A154)p + AJ,4 (30)

3)(p) A'5 13- (A' + 14 5), 2 + (AG + M)p - A124 (31)
11)p A15tt J3 _t 2A14, +t tl tP2

l2)(p) = -_ (A, + At)p2 + (M5 + AI")p - A142  (32)

14(p) - pAff4 - (If 6 + Af;)p 3 + (M '2 + Af2j + AIZ) p2 (Af I + Af~l2)1, + 31u (33)

216



Notice that Eqs. (30) - (33) are the non-symmetric counterparts of Eqs. (19) in Part I for symmetric

compliance. In addition, Eq. (29) is a sixth-order polynomial equation and has six roots. These

roots Mi govern the structure of stress functions. The theorems in Lekhnitskii (1950), defining the

nature of these six roots, are valid even for a non-symmetric compliance matrix S". Accordingly,

these roots pi are always complex and occur as three pairs of complex conjugates. By taking the

three distinct roots /i (i = 1,2, 3) with positive imaginary parts (Im(i) > 0), the stress functions

can be expressed as

F(x", y") = 2 Re F(z') (34)

%P = 2 Re 3 A dF(z,)] (35)

where

-"-~ x" +1, y", and Ai = (36)

The equilibrium aid compatibility conditions are automatically satisfied if these two equations,

(34) and (35) are used to represent stresses in Eqs. (20) and (21). It can be shown that the pij matrix

takes the following form:

pli = A'i/ i + A1'2 - Al 6/ + A,(-M4 + Mls/1012 M, ( ,,1

p2i = 2'11 P - + A, - + M (37)I',/1 /

P3 =Al"1p + - - MA + Ai -+ M45
Pi Pi

It is observed that Eqs. (37) are the same as Eqs. (22) in Part I (Ju and Lee (1990)). Consequently,

similar to Part I of this work, the C' -matrix can be derived as

C [ = f {Im [pkN-] }-' RkiR,jdo' (38)

where N, and R are
"-PI -I12 -113]

N -[1 1 1 (39)

R ( 2co2€,+ in ,)-/Y[3 Cos 0 sin' 0

RE 2 ey 2co 2  0,-1/40 V3 2 cos2 0' + sin 2 O' (40)
sin cos 0' 0
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Therefore, the inelastic compliance matrix S'ij induced by a single closed sliding microcrack

(embedded in an anisotropic solid with non-symmetric overall compliance) is now completely de-

fined by substituting Eq. (38) into Eqs. (12)-(14). If some microcracks are open while others are

closed (such that the overall compliance is still non-symmetric), then the inelastic compliance ma-

trix S'j induced by a single open microcrack is completely defined by Eqs. (31) and (36) in Part I

of this work, with the understanding that the characteristic equation (29) in Part 11 should be em-

ployed instead of Eq. (18) in Part I. Of course, if all microcracks are open and therefore the overall

compliance is symmetric, then Eqs. (31) and (36) in Part I together with Eq. (18) in Part I can be

employed to evaluate the inelastic compliance matrix S'*,, as outlined in Part I of this work. In

fact, if the overall compliance is symmetric, then 11) and 1() are equal and hence the derivations in

this section yield exactly the same results as in Part I.

Finally, the inelastic compliance matrix S" due to many distributed microcracks can be obtained

by using Eqs. (40)-(44) in Part I. Therefore, the overall compliance matrix is obtained by simply

adding S* to the elastic compliance So. A "non-process" micromechanical damage model is hence

completed. Extensions to account for microcrack kinetics (i.e. "process damage models") will be

discussed in the following sections.
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V.3. Cleavage I microcrack growth

As discussed in Part I of this work, if fracture criterion is met for some microcracks under

certain loadings, then those microcracks will grow in size. This is precisely the "cleavage 1" de-

formation process and is certainly different from non-process damage models. As in Part I, it is

assumed that microcrack growth along the weak plane (an interface or inter-granular plane) is in-

stantaneous (from its initial size ao to a final size a1 ) and is in a self-similar fashion. Microcrack

kinking into the matrix material will be considered in Section 4. Further, as noted in Section 4.1 of

Part I, the Mixed Mode fracture criterion is defined by comparing the average value of the energy

release rate G' over the entire edge of a penny-shaped microcrack against a critical value. The

difficulty in determining the average value of G' in self-consistent analyses is also stated in Part I.

For simplicity, the following Mixed Mode fracture criterion is used:

(i) (if )]=I (41)

where I I and KIi are the Mode I and Mode H critical stress intensity factors at the interface (or

other weak plane), respectively.

For open microcracks under tensile loadings, microcrack growth kinetics has been outlined in

Section 4.2 in Part I. In the following sections, we consider a Mode II fracture criterion for closed

sliding microcracks under compression and mixed open/ closed microcrack growth kinetics under

various loading conditions. The derivations basically follow the work of Fanella and Krajcinovic

(1988).

V.3.1. Fracture criterion for a closed sliding microcrack

When a microcrack is closed and undergoes frictional sliding, there is no Mode I component

and therefore Eq. (41) reduces to the Mode II fracture criterion:

1: = Ic (42)

For a penny-shaped microcrack, the Mode H stress intensity factor can be calculated from shear
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stress as
4 [, + sgn(i) r (43)

Attention is focused on triaxial loadings, with q denoting the axial compression and q* denoting

the lateral stress, respectively. Compression is taken as negative here. Thus, the normal stress f

and the shear stress f4 can be calculated from loading stresses as

f' = q sin2 0 + q cos 2 0 (44)

T = (q - q*) sin 0 cos 0 (45)

where 0 defines the microcrack orientation. As previously indicated, the normal stress T must be

in compression if a microcrack is closed. Moreover, the sliding condition requires that

[ T3 nIa (46)

By substituting Eqs. (44) and (45) into Eq. (43) and letting ', = Kx',, we arrive at
K =f ( 2- V q - q*) sin 0 cos 0 + sgn( ;)77(q* sin 2 0 + qcos2 0)[ (47)

n1C 2 _- - r

Since microcrack sizes randomly vary within the range [ao., ao,6.], the maximum microcrack size

ao. should be used in Eq. (47) instead of a in order to determine the critical domain of unstable

microcrack growth. Therefore, Eqs. (42) and (47) render the orientations 0,, at which the largest

microcracks become unstable (under Mode II) and increase in size:

[(q - q*) ( q - q*)2 - 4 Ki_2 -q ii) (2- 7-'q) (80 = tan-1 ... .. ....E ) ( C (48)

2 Q)- q

The above equation is exactly the same as Eq. (15) in Fanella and Krajcinovic (1988). As they

pointed out, the unstable microcrack growth begins at a preferred orientation 0,,, which is deter-

mined by minimizing the axial compression q in Eq. (47):

U02= tan-' [7+ 2"+ (49)
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The corresponding axial compressive stress is denoted by qo. The q value in Eq. (48) is assumed

to be greater than q0.

In addition, at a specified microcrack orientation 0 within the range [0.,1 0"j, the minimum

microcrack radius ao(O) required to activate Mode IH growth can be evaluated from Eq. (48):

7r (2K 2

ao(O) 4 (50)
[ q - q*1 sin 0 cos 0 + 17(q, sin2 0 + q cos2 0)]2

V.3.2. Mixed open/ closed microcrack kinetics

"Cleavage 1" open microcrack kinetics under tensile loadings within the context of three-

dimensional self-consistent analysis has been presented in detail in Part I. When combined triaxial

compressive/ tensile loadings are applied, microcrack kinetic equations are more complicated. In

particular, under combined compressive/ tensile loadings, some microcracks are open (in Mixed

Mode) while others are closed (either undergoing frictional sliding or frictional sticking- no dis-

continuities). In this section, we investigate microcrack kinetics in various loading conditions. It

is assumed that the lateral stress q" is held constant while the axial stress q varies.

Case I. If the axial loading q and the lateral confinement q* are both tensile (positive), we refer

to Section 4.2 of Part I for the appropriate microcrack kinetics.

Case II. If both the axial and lateral stresses are compressive (q < 0 and q" < 0), the normal

stress 13 is always negative for any orientation and therefore all microcracks are closed. The sliding

condition, Eq. (46), then leads to

!q - q* sin 0 cos 0 + 77(q" sin 2 0 + 9 cos2 0) = 0 (51)

The angles 0ol2 defining the sliding domain are obtained by solving the above equation (51)

0°1,= tan-' [(q - q)± -  q)2 - 4 2qq] (52)

Eq. (51) can be recast in the following form:

*tan 0(iqtan 0 + 1)q =q ta9~(53)
tan 0 - 2
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The minimum value of q is obtained at 0 = tan [,q+ /j+ 1], at which frictional sliding of mi-

crocrack faces first begins. Clearly, this angle 00 is exactly the same as 0,,. in Eq. (49). This implies

that both sliding and Mode II growth of the largest microcracks begin from the same orientation

O0. Furthermore, there are three different possibilities (domains) regarding microcrack states (see

previous equations for definitions of various angles):

(i) Microcracks are closed, without frictional sliding, and stationary (no growth) if 0 < 0 < 0,1
7r

or 0.2 < 0 < . Microcrack sizes are irrelevant in this case. These microcracks have no

contribution whatsoever to inelastic strain or compliance.

(ii) Microcracks are closed, with frictional sliding, and stationary if 0, _< 0 < 09, 0 2 <50 < 0"

(sizes irrelevant), or 0, < 0 < 0,, and a < ao(O). The inelastic compliances due to these

microcracks can be easily evaluated by using Eqs. (12), (13), (14), and (38). One should employ

the initial microcrack sizes ao in the aforementioned equations. Specifically, one needs to

perform the following integrations (assuming uniform probability):
./s = I__ l ____ [tt/' = $ )a ,~snd d

zv to. 27r a. k
V 27r(ao., - ao0) J.J Ja..) , ,, 0) sin Oda do dO

+ j S-()(a, 0, 0) sin Oda do dO + j f f:0 Sk)(a, 0, 0) sin Oda d6 dO (54)

(iii) Microcracks are closed, with frictional sliding, and undergoing Mode 11 growth if 0,, < 0 < U2

and a > a0(0). Similar to (ii), The inelastic compliances due to these unstable microcracks can

be integrated by using Eqs. (12), (13), (14), and (38). Nevertheless, one should employ the

final microcrack sizes a1 in those equations (a1 = ao/p, see Part I). Specifically, one needs to

perform the following integration:

ao,,)p -i: f (a,o4, 0) sin Oda do$~ (55)" =V 2r(a0=. - ao,,.)p 3 [l j 0 fw) (55

See Fig. 2(a) for a schematic representation. To obtain the overall compliance matrix, simply add

S" and S' to the elastic compliance S).

222



Case 111. If the axial stress q is compressive (negative) and the lateral stress q" is tensile (pos-

itive, but relatively small), then the condition i3 = 0 yields

0,, = tan- q (56)

If Om < 0 < 2, Eq. (44) indicates that the normal stresses are tensile and therefore microcracks

are open. On the other hand, if 0 < 0 < 0m, then microcracks are closed. As a consequence, we

have mixed open/ closed microcracks in a representative volume element.

For closed microcracks, the frictional sliding condition (46) yields the critical sliding angle

bound:

O = tan-' [(q - q*) + VJ(q - q*)' +47q ' q] (57)

There is only one solution for 0, since we require 0, > 0. This 0, value is in fact the lower angle

bound for closed microcrack sliding under combined compression/ tension loading. The upper

angle bound for frictional sliding is simply Om given in (56). The Mode II fracture criterion and

stable/ unstable microcrack domains of closed microcracks are similar to previous formulas. For

open microcracks, similarly, the Mixed Mode fracture criterion and stable/ unstable domains are

previously given in Section 4 of Part I.

Moreover, there are five different possibilities (domains) regarding microcrack states (see pre-

vious equations for definitions of various angles):

(i) Microcracks are closed, stick and stationary if 0 < 0 < 0, These microcracks have no contri-

bution to S" at all.

(ii) Microcracks are closed, sliding and stationary if 0, < 0 < 0,,, 0,, <0 < 0. (sizes irrelevant),

or 0 <_ 0 < 0, and a < ao(O) (see Eq. (50)). The inelastic compliances due to these

microcracks can be evaluated by using Eqs. (12), (13), (14), and (38). The initial microcrack

sizes ao should be used in the aforementioned equations. In particular, one needs to perform

the following integrations:

1V= 2N I ( L. I" .S,,(ka, , 0) sin Oda do$ dO
27r(ao. - a0..) L19.2
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+ er a S,&)(a, 0, 0) sin Oda do dO + Oa,q,)sinoda do dO (58)

0 .J 1  1"

(iii) Microcracks are closed, sliding and unstable if Ou < 0,<_ O 2 and a > ao(O) (see Eq. (50)).

The inelastic compliances due to these unstable microcracks can be again integrated by using

Eqs. (12), (13), (14), and (38). The final microcrack sizes a1 should be adopted. In particular,

one needs to perform the integration in Eq. (55).
(iv) Microcracks are open and stationary if 0' < 0 < L, or 0' < 0 < 0' and a < a'(O)

(see Eqs. (62), (63) & (66) in Part I). The inelastic compliances due to these microcracks can

be evaluated by using Eq. (36) of Part I and Eq. (38) of Part II. The initial microcrack sizes a0

should be used. We need to perform the following integrations:[Ar Is -,
= - iC o o)[~~J ,,k(,~ 0) sin Oda do dOV2r(a0== - a0.)

'9 ,2?r .a'"(0)1
+1 J 0 S(a, 0, 0) sin Oda do d0 (59)

0um

(v) Microcracks are open and unstable if Om < 0 < Om, or 0m < 0 < Om and a > a'(O) (see

Eq. (66) in Part I). The inelastic compliances due to these microcracks can be evaluated by

using Eq. (36) of Part I and Eq. (38) of Part HI. The final microcrack sizes af should be used.

The following integrations should be performed:

S ,\ _'CIo o J I Ss,(k)(a, , 9) sin Oda do dO= V 27r(ao - ao.) p J ,, a, t(8)

e0m 2+f 19-Jf S-( )(a, 1e,0) sin Odado dO] (60)

See Fig. 2(b) for a schematic representation. To obtain the overall compliance matrix, simply add

up all inelastic compliances and the elastic compliance S'.
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V.4. Microcrack kinking under compression

In Section 3, "cleavage 1" microcrack growth along certain weak planes are presented for brittle

solids such as concrete, rocks, and ceramics. Those microcracks (with lengths aj) are assumed to

be arrested at the edge of inclusion particles (or grain4) due to higher energy barriers offered by the

matrix material or grains along different orientations. Under higher compression, however, it has

been experimentally observed that those arrested microcracks may resume to propagate (kink) into

the matrix material in a non-self-similar fashion. In particular, for concrete and rocks, microcrack

kinking under compression were investigated by Nemat-Nasser and Horii (1982), Horii and Nemat-

Nasser (1985, 1986), and Zaitsev (1983), etc. These kinked microcracks tend to line up in the

direction parallel to the axial compression. Further, they typically grow gradually with increasing

axial compression in a stable manner until certain lengths are attained, at which unstable growth

begins and results in ultimate failure of the material.

The difficulties involved in analyzing kinked microcracks in three-dimension were discussed

in detail by Fanella and Krajcinovic (1988). As they pointed out, there are no closed form solutions

available for sliding and opening displacements for either three-dimensional or two-dimensional

problems. Instead, approximate "equivalent two-dimensional microcrack systems" are available

in the literature; see, Horii and Nemat-Nasser (1986), Zaitsev (1983), and Fanella and Krajcinovic

(1988), etc. In particular, Fanella and Krajcinovic (1988) assume that a three-dimensional kinked

microcrack can be approximated by a series of two-dimensional kinked cross-sections. The slid-

ing and opening displacements of a three-dimensional kinked microcrack are approximately deter-

mined by averaging two-dimensional solutions along the rim of a 3-dimensional microcrack, Fig.

3(a) & 3(b) (see also Kachanov (1982)). The inelastic compliances induced by microcrack kinking

can then be derived. In this section, we follow the procedures outlined in Fanella and Krajcinovic

(1988) as well as the self-consistent framework.

V.4.1. Microcrack kinking criterion and approximate openings

For completeness, we summarize the relevant kinking equations given by Fanella and Krajci-
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novic (1988) in what follows. By minimizing the sliding shear stress acting on any cross-section

located at an angle 3' (see Fig. 3(a) and 3(b)), it is found that the onset of kinking occurs when

= , 0 = 00 = 0,, and a1 = a!. (the largest microcrack radius). The corresponding axial

(compressive) kinking threshold stress q0is

= (2- v)/,Kf - 8Vafq (sinOocosOo+r/sin2 0o) (61)
8 /" (sin 00 cos 00 - r7cos 2 00)

where K' is the critical Mode I stress intensity factor of the matrix material. It is assumed that the

entire penny-shaped microcrack rim will start to kink once Eq. (61) is satisfied at 3' = 0.

The orientation bounds for which the largest microcracks kink can be obtained from

Ok,. = tan- [ .(q - q*) ± /(q - q*) 2 - 4(Al - v/q*)(,41 - r/q)] (62)

' a (AI - 17q')

where
A V(2 - v)Kcc (3

ml 8-a-8 (63)

Moreover, the minimum microcrack size needed to activate kinking for a specified loading and

orientation 0 (between 0k, and 0k2) is given by

3rr (2 - v)Kfc 2

ak (0) = - Ic2 (64)a 6( 4 =- (q - q*) sin 0cos0 - YI(q" sin2 + q cos20).]64

Instead of modeling the shear stress induced kink opening load as a concentrated load, Fanella

and Krajcinovic (1988) assume that the tension is uniformly distributed on the equivalent 2-dimensional

microcrack surface over a length of 2akaf sin 0 (see (Fig. 3(c)) such that displacement singularities

due to the point load is eliminated. The value a, is determined by matching the Mode I stress

intensity factor of the equivalent microcrack to the one numerically computed in Horii and Nemat-

Nasser (1985). The average 2-dimensional kink microcrack opening (due to shear induced tensile

load only) for an arbitrary cross-section at an angle 3' is (Tada (1973), Fanella and Krajcinovic

(1988))
,k('c) CO 4.815-) 2

r4E F (af , 0, l)( - c)cosflI (65)
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where v and E are the Poisson's ratio and Young's modulus of the matrix material, respectively; 1

is the kinked length which will be given later; and F, is defined as

sin-i ( 0
k 1 Sfsin 9 + 1)2 - (aa sin 0)2 + ( kaf sin 0) In akal sine69

F," (a,0,1ckkaf snG1 ) Vakkfsn ) k a af ginol (66)F1 (a1l,O, l) -- (66)

Notice that only elastic material properties of the matrix are employed to evaluate the 2-

dimensional average kink opening in Eq. (65) since kinked microcracks exist in the matrix only.

However, within the context of the self-consistent method (at variance with Fanella and Krajci-

novic (1988)), the microcrack-induced anisotropy of overall moduli does indirectly affect the kink

opening because the shear stress fc transmitted across interface microcrack surfaces is a function

of overall moduli; see Eqs. (7) and (9) for details. In addition, the sliding shear stress [f4 - f4 1

varies along the interface microcrack rim, too. Finally, the average 3-dimensional displacement

components along the interface microcrack rim can be shown to be (in the interface microcrack

coordinate system)

il = 0

-i2k _ 9.6(1 - v2)

2 72 E F, (al 9, 1l) cos 0( 4 + sgn(4)7- (67)

k 9.( rE Fj(af, 0, 1) sin 9(f4 + gn7)7-c

V.4.2. Inelastic compliance due to kinked microcracks

In order to derive the kinked microcrack induced inelastic compliance, the shape of kinked

microcrack has to be determined so that the integration of microcrack opening over the entire mi-

crocrack surface can be performed. Since the kink length varies along the rim of the interface

penny-shaped microcrack, it is impossible to determine the 3-dimensional kinked microcrack shape

in closed form. Therefore, in the present study, it is assumed that kinked microcracks are elliptical

in shape. The two axes of an ellipse are taken as a1 and I (at 8 = 0) of a particular kinked micro-

crack. The loadings acting on a kinked microcrack surfaces actually have two components - (a) the

normal tensile force due to frictional shear stress [4' - f 1, and (b) the lateral confinement loading
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q'. Specifically, the normal tension P at 3' = 0 is evaluated from the shear stress as

P = _2af (f4 - f) cos 0 (68)

where f and :C are previously given in Eqs. (45) and (7), respectively.

The solution of stress intensity factor of a line crack subjected to a concentrated load P acting

at the center of the crack was given by Tada (1973). Assuming stable kinked microcrack growth,

the Mode I critical stress intensity factor (of the matrix) at the kinked microcrack tip under the

concentrated force P and uniform lateral loading q" can be obtained as follows

S2a 1( - c)cos0 + v/-iq (69)

Consequently, the kink length I (at 3' = 0) can be derived from Eq. (69):

I (, +sgn(q*)\/(Kf)- +8q'a1 (i4 - fC)cosO)) 2

1T, 2q (70)

where sgn(q') = -I or 1, depending on whether q" < 0 or q" > 0. If there is no confinement

loading (q" = 0), the kink length is re-derived from Eq. (69):

= l (2af(U4 - cos) (71)

The inelastic compliance components induced by a kinked microcrack under loading P only

are now derivable from Eqs. (67) and (70) or (71): (in the local interface microcrack coordinate

system)
0 0 0 0 0 0

0 0 7B'cos' 0  -B';cos 2 0  0 0

S" k A" 0 0 rB",sin2 0 -B'; sin 2 0  0 0 (72)

0 0 -Y1B', sin 20 B';sin20 0 0

0 0 0 0 0 0

-0 0 0 0 0 0

where

1 4.8a 1/(1 - v 2)

V 7r E F, (at, 0, 1) (73)

and
B '"_=_C _1 ;3iC'32  (74)B'3 _ T)C ,2' B2  -l 17c -3'2 o '
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On the other hand, the inelastic compliance components induced by a kinked microcrack due

to lateral load q' only should be accounted for, too. To this end, we first note that the normal

displacement jump of an elliptical shaped crack embedded in an isotropic matrix under uniform

normal load is available from Budiansky and O'Connell (1976, p. 86): (in the kinked microcrack

coordinate system)
ilk 4(1 _ V2)  b q2 (75)

u3 E E(k) 2 - q

where E(k) is the complete elliptic integral of the second kind; and k, a and b are defined as

S b a=a' b=l, if l<a ;

k2 a-=,- (76)
a2  =1, b=af, ifl>a!.

Therefore, the only non-zero component of the inelastic compliance matrix induced by a kinked

microcrack under the load q" is (in the kinked microcrack coordinate system):

S,=k 1 16(1 - v2) ab27r (77)33, = _V 3E E(k)

It is emphasized that the inelastic compliance in Eq. (77) is evaluated in a different coordinate

system from those in Eq. (72). Therefore, a proper coordinate transformation must be performed

before these two inelastic compliances can be summed up. The kinked microcrack induced inelastic

compliance matrix is

_ ' I fOk2 [2, ,W
3-k = -' I ) e, 27r jao. S k(I, a/p, 0, 0) sin OdadodO (78)23 ,V 2r.,(ao. - ao..) 9,, 10 .a€o) 1

where S*f is the sum of S k and Sk in the global coordinate. Furthermore, the normal displacement

of a kinked microcrack must retain a positive value since it is in an opening mode. The inelastic

compliances due to many distributed kinked microcracks can be integrated straightforwards based

on single microcrack expressions. It is noted that the procedures presented in this section are at

variance with those presented in Fanella and Krajcinovic (1988).
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V.5. A simple process model for rnicrocrack nucleation

Our presentation so far is limited to the "cleavage l" microcrack growth and kinking processes.

Many brittle solids (such as concrete, rocks and ceramics), however, exhibit the "cleavage 2" mi-

crocrack nucleation phenomenon under higher loadings. That is, in addition to the growth and

kinking of pre-existing microcracks, brittle solids may experience nucleation of new microcracks

along preferred orientations, depending on the externally applied loads. These newly nucleated

microcracks, of course, may grow in size later under higher loads.

To accommodate the foregoing mixed "cleavage 1" and "cleavage 2" deformation processes,

a simple Zener-Stroh type microcrack nucleation mechanism under compressive loadings is incor-

porated into the proposed micromechanical process models. We refer to Stroh (1954, 1955) as well

as Smith and Barnby (1967) for details. It is noted that a dilute (non-interactive) micromechanical

microcrack nucleation model was proposed by Stojimirovic et al. (1987) for polycrystalline MgO

ceramics.

The proposed "cleavage 2" model is based on the "critical shear stress criterion" of the Zener-

Stroh type (under compression). It is assumed that the failure (debonding) stress Thmd of the inter-

facial (or inter-granular) bond between the matrix and the inclusion (or between crystalline grains)

is lower than failure stresses of the matrix and inclusion materials, That is, new microcracks are

assumed to nucleate only at the interfaces (or inter-granular planes). The sizes of newly nucleated

microcracks are proportional to the inclusion (grain) sizes (Ashby (1979)). Due to lack of a precise

micromechanism to determine sizes of nucleated microcracks, it is further assumed that nucleated

microcracks have the same initial sizes as pre-existing microcracks with the same statistical size

distribution. The shear stress f,' has previously been given in Eq. (45). By letting f = "rs,, the

domain [0,,1, 1 O-, in which shear stresses exceed the critical debonding stress, is determined:
tan -(q - q) ± /(A9q- ) )2 -_4T2n) (79)

From Eq. (79), it is observed that microcrack nucleation first starts along the preferred orien-

tation On = 450, and that the nucleation domain later expands from the 450 line. Once these new
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microcracks are generated, they are immediately checked against the criterion for frictional sliding.

It is noted that, for any coefficient of friction 77> 0, we have 0, = tan - [i+ v/'772 + I] > 0, ( 0 o=

the first sliding orientation). Therefore, nucleated microcracks are initially in frictional stick (no-

slip) until the loading further increases so that the frictional sliding domain overlaps the microcrack

nucleation domain. That is,

08' < O"2 = tan (-(q - q-) + / (q - qm - 4r nd) (80)

where 0,, is the lower angle limit of the frictional sliding domain. Subsequently, the microcrack

fracture (growth) criterion and kinking criterion are applied to those newly nucleated (sliding) mi-

crocracks to check their stability. Accordingly, depending on the loading levels, the states and the

corresponding domains of newly nucleated (sliding) microcracks are (assume 0 < 0, < 00): (a)

frictional sliding with initial sizes ao for 0, 1 < 0 < 0, 1, or 0,,1 < 0 < n2 and a < ao(O); (b)

frictional sliding with Mode II growth (a = a1 , the inclusion facet sizes) for 0, < 0 0 k, and

a > ao(0), or Ok, < 0 < 0,, and ao(O) _ a < ak(O); and (c) microcrack kinking for Ok_, 0 < 0n2

and a > ak(O), etc.

In addition, the inelastic compliances induced by the newly nucleated microcracks are

9.1 = S~n+ g~+ g-n(81)

where the superscnipts s, u and k indicate the compliance contributions from the sliding microcracks

(a = a0), the Mode II growth microcracks (a = af), and the kinked microcracks, respectively. More

specifically, we have

V [- ,, . S2(a O - ad d0 + 1, 1 J.0)sinOdad

+ - J S((ap, ,, ) sin OdadddO + fJ Sd"(l, alp, 0, 6) sin 0dadod]
0 a,(a)

(82)

Moreover, the average number (or density) of nucleated microcracks is needed. Obviously, the

total number of pre-existing and nucleated microcracks is related to the total number of inclusions
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(or grains) and their shapes. Therefore, the number of nucleated microcracks N. has to be within

the range

nr/2 (83)

where Nj, N, and N, are the average number of facets on each inclusion (or grains), the average

number of inclusions (or grains), and the average number of pre-existing microcracks, respectively.

For instance, if N = 7 and N, = 3N. (Krajcinovic and Fanella (1986)), then the number of

nucleated microcracks obeys 0 < N, < 4N,(0. 2-oni
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V.6. Numerical procedures and experimental validation

In this section, we address the numerical procedures and computational algorithms involved

in the proposed micromechanical models. Further, some comparisons of model predictions against

experimental data are performed.

V.6.1. Numerical procedures

Thecomputational algorithm needed to carry out the proposed micromechanical models under

compressive loads is similar to that presented in Section 5 of Part I of this work. However, some

modifications are warranted to implement the proposed models in Part II. Basically, at each loading

step, the domains (angle bounds) defining various states of microcracks (e.g. frictional sliding,

Mode II growth, Mixed Mode growth, kinking, and nucleation, etc.) must be determined and stored

as history variables. Then, one needs to compute various microcrack-induced inelastic compliances

by numerical integrations. Namely, one has to compute the inelastic compliance contributions from

open (stable or mixed mode growth, S"), closed (sliding or Mode II growth, Sc), kinked (Sgk), and

nucleated (Sg") microcracks. The sum of individual inelastic compliances in global coordinates is

then added to the eiastic compliance 9o. That is,

S= o +S So + .c + Sk +Sn (84)

where SO' is the sum of S."m in (59) and ."" in (60); , c is the sum of S* in (58) and S"" in

(55); Ssk is given in (78); and S is given in (82).

Subsequently, an iterative procedure to find the overall compliance is performed as outlined in

Part I.

V.6.2. Experimental validation

In this section, the proposed self-consistent micromechanical damage models are applied to

concrete specimens under compressive loadings. In particular, three model simulations are carried

out; i.e. a uniaxial compression test, a triaxial compression test, and an axial compression with

small tensile lateral confinement. The Taylor's model analyses are also performed and compared

with the proposed models under same loadings. Further, model predictions of uniaxial and triaxial

compression tests are compared with available experimental data (Newman and Newman (1972)).

The material properties used in these simulations are: the maximum and minimum aggregate sizes
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= 0.75 in. (1.905 cm) and 0.19 in. (0.4826 cm), respectively; the initial microcrack size ratio

p = 0.72; the volume fraction of coarse aggregates f,, = 0.39; the shape factor of aggregate a,, = 5;

the Young's modulus of virgin material E = 5, 800 ksi (40,020 MPa) ani _: -qoi s ratio v = 0.2;

the critical stress intensity factors of the interface and matrix (Kif , lif and KIf) = 300 psiv/ln (0.'.

MN/rn31/ 2), 150 psi v/in (0.165 MN/m 3/2), and 450 psiVi-n (0.495 MN/m3/ 2), respec"iveiy. Most of

these values are taken from Newman and Newman (1972), Fanella and Krajcinovic (1988) and the

references therein.

Figure 4 exhibits the experimental data of a uniaxial compression test (no post-peak curve)

and model predictions (stress-strain curves) of both the present and the Taylor's models. It is ob-

served that the analytical results agree well with experimental data (up to the peak strength point).

The difference between the Taylor's and the present models is small because the initial microcrack

density parameter wi = - < a3 >= 10.3%w, (Budiansky and O'Connell (1976), u;, = 0.5625 -

the maximum allowable density for the self-consistent method) is relative small. When the initial

microcrack density parameter w, increases, the differences between the two analytical results be-

come more significant; see Fig. 5 for the case of wi = 14.70%w,. In addition, Fig. 6 depicts the

results of the proposed model for three different w, values. To further demonstrate the differences

between the self-consistent and the Taylor's models, the overall compliance components . 33, 313,

and S31 (normalized by the corresponding elastic compliance components) are plotted against the

normalized microcrack density parameters wi/w, in Figs. 7, 8 and 9, respectively.

To illustrate the effects of microcrack nucleation under uniaxial compression, the self-consistent

prediction in Fig. 4 (with nucleation mechanism) is re-computed without nucleation mechanism;

see Fig. 10 for details. The critical debonding shear stress rc,,d is taken as 3.0 ksi (20.67 MPa).

The density of newly nucleated microcracks is taken as 50% of the initial microcrack density. It is

seen that microcrack nucleation is important in the higher loading regions.

For triaxial compression test (with compressive lateral confinement q* = -0.5 ksi, the results of

the self-consistent model, the Taylor's model (both with nucleation mechanism), and experimental

data are displayed in Figure 11. It is observed that the present model renders good agreement with

the experimental data.

On the other hand, if a very small tensile lateral stress (q" = 0.1 ksi or 0.689 MPa) is applied

in addition to axial compression, the model predictions are very different from those of uniaxial

and triaxial compression tests. See Fig. 12 for detailed stress-strain curves. In fact, by examining
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the model predictions of three loading conditions in Figs. 4, Fig. 11, and Fig. 12, the effects of

lateral confinement to material responses become apparent. This is primarily due to the Mode II

microcrack growth and kinking meclh. isms presented earlier. That is, the Mode II fracture and

kinking threshold stresses and the kink lengths are quite different in uniaxial compression, triaxial

compression, and axial compression with a small lateral tensile stress. As a consequence, the peak

strengths and stress-strain curves (no post-peak portions) are significantly different in three loading

cases. See also the discussions in Fanella and Krajcinovic (1988).
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V.7. Conclusion

*Within the framework of the self-consistent method, three-dimensional micromechanical dam-

age models are presented for brittle solids under compressive loadings. Due to frictional sliding of

closed microcracks, the damaged overall compliance matrices are non-symmetric in nature. The so-

lutions of microcrack opening displacements in non-symmetric anisotropic solids are constructed.

In addition to "cleavage 1" Mode II microcrack growth under compressive loadings, microcrack

kinking and microcrack nucleation ("cleavage 2") mechanisms are also incorporated into the pro-

posed models. Therefore, the proposed micromechanical damage models are physically meaning-

ful. Moreover, experimental validation confirms the applicability of the proposed models to a class

of brittle cementitious composite materials.

As commented in Part I, the differences between the self-consistent and Taylor's models are

small for relatively low microcrack densities. At moderate microcrack density levels, however,

the differences between the two models become more significant. Therefore, we conclude that
Taylor's model is acceptable for low microcrack density levels, and the self-consistent model is

more desirable for moderate microcrack concentrations.
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V.9. Figure captions and figures

Figure 1. (a) The local (primed) and global Cartesian coordinate systems, (b) the elliptical

microcrack coordinate system, (c) the line microcrack tip coordinate system.

Figure 2. (a) Domains of sliding, Mode I growth, and kinking of microcracks under triaxial

compression, (b) domains of open, mixed mode growth, sliding, Mode II growth, and kinking of

microcracks under combined compression/ tension.

Figure 3. (a) 3-dimensional kinked microcrack, (b) 2-dimensional kinked microcrack system,

(c) approximate equivalent 2-dimensional microcrack system.

Figure 4. Comparison of the self-consistent, the Taylor's, and experimental stress-strain

curves for a uniaxial compression test; wi = 10.3%w.

Figure 5. Comparison of the self-consistent and the Taylor's simulated stress-strain curves

for a uniaxial compression test; wi = 14 .7%w.

Figure 6. Three simulated stress-strain curves for uniaxial compression by using the self-

consistent method.

Figure 7. The normalized compliance 3 33/S 3 vs. the normalized microcrack density pa-

rameter w /L,;.

Figure 8. The normalized compliance 3 13/ 1 3 vs. the normalized microcrack density pa-

rameter wi /w .

Figure 9. The normalized compliance 9 31/S 1 vs. the normalized microcrack density pa-

rameter wil/,

Figure 10. Comparison of simulated responses by using the self-consistent method with

and without, respectively, the microcrack nucleation mechanism for a uniaxial compression test;

W, = 10.3%w,.

Figure 11. Comparison of the self-consistent, the Taylor's, and experimental stress-strain

curves for a triaxial compression test; w, = 10.3%wc; q" = -0.5 ksi.

Figure 12. Comparison of the self-consistent and the Taylor's simulated stress-strain curves

for axial compression with very small tensile lateral stress; w, = 10.3%w,; q" = 0.1 ksi.
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Figure 2. (a) Domains of sliding, Mode II growth, and kinking of mnicrocracks under
triaxial compression, (b) domains of open, mixed mode growth, sliding,
Mode II growth, and kinking of mnicrocracks under combined compression!

tension.
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Figure 6. Three simulated stress-strain curves for uniaxial compression

by using the self-consistent method.
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Figure 7. The normalized compliance 933/S33 VS. the normalized microcrack

density parameter w./w,.
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Figure 8. The normalized compliance 913/9,03 vs. the normalized microcrack
density parameter w,/wc.
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Figure 9. The normalized compliance S3 1/93 vs. the normalized microcrack

density parameter wi/wc.
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Figure 11. Comparison of the self-consistent, the Taylor's, and experimental stress-strain

curves for a triaxial compression test; wo = 10.3%wc; q' = -0.5 ksi.
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Figure 12. Comparison of the self-consistent and the Taylor's simulated stress-swrain
curves for axial compression with very small tensile lateral stress;

0 ui = 10. 3%w,; q" = 0. 1 ksi.
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