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I. INTRODUCTION

The dependence of the threshoid voltage, subthreshold I-V
characteristics, and radiation response of n-channel AlGaAs/GaAs MODEFTs
(modulation doped field-effect transistors) on acceptor doping density has
been described previously (Refs. 1-4). These analyses have now been
extended to describe the dependence of MODFET high channel carrier density
I-V characteristics on acceptor doping density. The effect ot acceptor
doping density on the experimental threshold voltage and device capacitance

is explicitly addressed.

The band structure of a typical AlGaAs(n)/GaAs heterojunction with
Schottky barrier, L at the gate, and a spacer layer at the interface
under bias Vg, is shown in Fig. 1. In the depletion layer approximation,
the donors and acceptors are assumed to be completely ionized in the doped
AlGaAs layer d, the spacer layer a, and in the depletion layer W. The
doping densities Np and NA are assumed constant. The quasi-two-dimensional
electron eigenstates at the interface are solved for using a trian- ilar
potential well, and only the lowest subband is included in the calculation.
A delta-function channel charge distribution at the average channel width
is assumed. Band bending from the interface at (d + a) to the edge of the
depletion region (W + d + a) is the difference of the position of the
conduction band relative to the Fermi level in the GaAs far from the
interface (Eg/2 + ¢bulk)’ and the Fermi level E. relative to the bottom of

the two-dimensional channel.

Under the restrictions imposed by these assumptions, Poisson's
equation may be integrated across the structure to obtain the applied gate
voltage as a function of device geometry, doping densities, and channel
charge ng:

2
Vg = ¢m - AEC + Ef‘ + (q,g)[-NDd /2 + (NAN + ns)(d + a)]) (1)
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where

AEF = conduction band offset

In tnhe one-subband approximation, the Fermi level Ef may be calculated as
Ep = Ey/q + (kT/q)ln[exp(nhan/mlkT) - 1] (2)

where the first gquantum level EO may be calculated in the triangular-well

approximation and is given by
Ey = (9°/8m)) (4E;m) #<)2"3 (3)
0 1 il

The field E; at the interface is

E, = (q/e)(ns + NA) (4)

Substitution of Egs. (2-4) into Eg. (1) yields

Vg = Vg v flng) (5)

where
V.= ¢ - AE -(qu)NDd /2 (6)

The function f(ns) may be written as

Fing) = (q/e)(d + a)(NgW + ng) + Co(N W + ns)e“/3

+ (kT/g)in[exp(ng/n,) - 1] (7)




where

= (962/8m,q) (4qPm| /n7e)2/3 (8)

(@]
<
|

[-1.7 = 109 V—cmu/3]

A

Planck constant divided by 2Zn

m; = longitudinal effective mass of the carriers

We have retained terms containing the depletion width W in the definition
of F(ns) because the depletion width is implicitly a function of the

channel charge ng-

The quantities g, e, k, and T are the elemental charge, AlGaAs(GaAs)
permittivity (assumed identical), Boltzmann constant, and absolute

temperature.

Similarily, charge density n, is a function of physical constants and
the effective carrier mass:

n, = nK2/mlkT (9)

and is equal to -8.4 « 101 em2.

A discussion of the dependence of the depletion widtn W on acceptor
density has been given elsewhere (Ref. 1). In section Il we describe the
mathematical properties of the function f(ng), in the high channel carrier
density region, and exploit the results to describe the characteristics of

these devices.




I11. HIGH DENSITY REGION

A. DEFINITION

We define the high density region such that ng » n, over the whole

channel. 1In this region Eq. (7) may be expanded in a Taylor series in ng

about n,. The results of this approximatiocn to first order are shown in
Fig. 2 for two extremes of acceptor doping density. The solid lines are
the results of Eq. (7), and the dashed lines are the result of the first
order expansion in ng about n,. Above n, (8.4 « 1017 cm'2), the expansion
is quite good. Much below n, (< 3.0 x 1011 cm'2), the first order
expansion departs from the exact result and approaches a constant.
Substitution of the first order expansion for f(r.) in Eq. (5) and
inverting to find ng as a function of Vg yields

ng = ng + K‘1[Vg - Vy - £(n,) 1/ (KT/q) (10)
where K is a constant that depends on the device geometry, doping
densities, depletion width, and physical constants. This form for ng is
different than previously assumed (Ref. 5), which ignores the contribution
from n, and from f(nc) and assumes that the reciprocal of K is the AlGaAs
layer capacitance per unit area per unit charge times the absolute
temperature in electron volts. In our formulation, near saturation, K is

given by:
K = (a/kT)(q/e)(d + a) + (2/3)Co(a/kT)/(NyH + n) /3 + 1.58/n (1)

B. DEVICE CAPACITANCE

The derivative of Eq. (10) with respect tc V_, yields the device

g
capacitance per unit area, which may be written in the following form

(Ref. 6):

C = e/(d + a + Ad) (12)

area
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CHANNEL CARRIER DENSITY [cm 9]

Function f(ns) versus Channel Carrier Dencity ror
Two Extremes -t Acceptor Density. The solid curves
are the exact results of Eq. (2); the dashed lines

are the rcsults of the linear approximation, described
in text.
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where Ad Is invoked to account for the discrepancy between the AlGahs layer
capacitance ¢/(d + a) and the device capacitance. Taking the derivative of
Eq. (10) and using Eq. (12) to solve for Ad yields
. . 12 )
6d = e 39)CH (NW + n) 2+ 1.58(kT/q)(erq) 1 (13)
For low acceptror densities (-1015 em”™?), ad levels off at a value of -89 A,
which is in good agreement with values cited in the literature (Ref. 5).
As the acceptor density increases, Ad decreases. At an acceptor density of

1017 em™3, ad decreases to - 74 &.

C. EXPERIMENTAL THRESHOLD VOLTAGE

MOLFET threshold voltages are determined experimentally by extrapolat-
ing the saturation current, or square root of the saturation current,
versus gate voltage to zero. The gate voltage Intercept is the experiment-
ally determined threshold voltage. We may approximate the experimental
threshold voltage by solving Eg. (10) tor the gate voltage when Mg is equal
to zero. This ylelds a threshold voltage which differs from the strong
inversion definition of threshold voltage (Ref. 1). The difference between
this approximation for the threshold voltage and the strong inversion
threshold voltage 1s given by

Vep = f‘(nc) - r‘(nth) - q“c'car‘ea (14)
where the channel charge at threshold ngy 1s equal to the acceptor density

Ny, times the average channel width 2, which may be calculated in the

V!
triangular-well approximation using variational functions (Refs. 7, 8).

This definition of threshold has been described elsewhere (Hef. 1).

I Fig. 3 the threshold voltage difference, Eq. (14}, 1s plotted
versus acceptor density. Each term in Eq. (14) is plotted separately. At
low acceptor densities (- 101& cm'3) the difference may be as much as
0.25 V. This difference decreases as the acceptor density lncreases. As

this difference depends on the acceptor density, a comparison of

LR
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experimental threshold voltages may not be appropriate if acceptor

densities differ by a significant amount.

D. 1-V CHARACTERISTICS

In the gradual channel approximation, charge control is determined by

the effective potential in the channel:

V(x) = Vg = Ve(x) (15)
where Vc(x) is the channel voltage under the gate at point x. Using Eq.

{10) we solve for the carrier density in the channel:

ng(x) = ng + K[V = Vg = Flng) = Vo(x)1/(kT/q) (16)
The form of Eq. (16) allows the source-drain current to be calculated in

the usual way (Rcf. 5). The result is
Iyp = a(Z/Luling + [(Chpea/a) (Vg=VYg-L(ng) 1HV(L)-V,(0)]

2 2
- (C /q)[VC(L)—VC(O)]] (17)

area
where u is the channel mobility and Z/L is the gate-width to gate-length
ratio. For a grounded source, in the limit of zero source-drain resis-

tance, we recover the usual dependence on drain voltage.

In the development of Eq. (17) we have assumed that each point in the
channel has a carrier density greater than Ng- This places a limit on the
bias conditions for the applicability of Ej. (17). Evaluating Eg. (16) at
the drain contact and using the condition that n (L) must be greater than
ney» ylelds the following limitations on the bias conditions for a grounded
source and zero source-drain resistance:

8
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where Vp is the drain voltage. Shown In Fig. U4(a) is Iyg versus Vi for a
grounded source and zero source-drain resistance for various acceptor

doping densities and the Jdevice parameters shown. The heavy dots indicate
the point at which the calculation {s no longer vaiid by virtue of Eq. (18).
As the acceptor density lncreases, the current at a given drall, vo.lage
decreases and the limit of the appiicabllity of the calculation decreases,
in drain voltage, for a given gate voltage. A similar graph is showh 1o
Fig. 4(b) in whicnh Ipg versus Vi is shown for a given acceptor density an
various gate voltages. As the gate voltage decreases, the current at a
given drain voltage decreases, as expected, and the -2gion Ot applicabiiity
ot the calculation, in drain voltage, decreases. 1uls result impiles that
using an equation of the form given in Eq. (17), which results from a
linearization of F(ns) above n,, to infer the nature of the saturation
characteristics in MOLFETs, in which the drain portion of the channe: has a

channel carrier density much less than n,, is suspect (Ref. 5).

14
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IT1.  SUMMARY

We have developed a triangular-well, one-subband depletion layer model
to describe the high channel density operation of MODFETs. The eftects of
acceptor density on the [-V characteristics in the high channel density
region has been investigated. The depletion layer charge, dud to lonized
acceptors, is shown to account for the discrepancy betweern the device
capacltance and the AlGdaAs layer capaclitancee, as descriped in the [itera-
ture (Ret'. o). The depletion layer charge also accounts for the aiscrep-
ancy between the theoretical threshold voitage, in the strong lnversion
model (hef. 1), and the ¢xperimental threshold voltage, as determined by
extrapotation of the source-drain current. Therefore, comparison of
threstiold voltage characteristics, particularly for devices with appreci-
aply different acceptor densities, should be based on a consistent
description of threshold that accounts for ionized acceptors, 1.<., the

strong inversion model.
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