
WjPC-TR-90-3067

AD-A229 932

METHODOLOGY DEVELOPMENT FOR THE VERIFICATION AND
VALIDATION OF FLIGHT CRITICAL SYSTEMS SOFTWARE

Ronald L. Braet

Frontier Technology, Inc.
4141 Colonel Glenn Highway
Beavercreek, OH 45431

October 1990

DTICI ELECTEII

Final Report for Period Dec 89 - Aug 90 SEC 0

Approved for public release; distribution unlimited

FLIGHT DYNAMICS LABORATORY
WRIGHT RESEARCH DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

AN TH Y P. DeTHOMAS J Chief
Project Engineer Avanced De elopment Branch
Advanced Development Branch Flight Control Division
Flight Control Division

FOR THE COMMANDER

H. MAX DAVIS, Assistant for
Research and Technology
Flight Control Division
Flight Dynamics Laboratory

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify Wmg7I1GT _ WPAFB, OH 45433-6533 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

LINCLASSI FIED

'CURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Form ApprovedREPORTOMB No- 0704-018

la REPORT SFCURITY CLASSIFICATION lb RFSTRICTIV(MARKINGS

UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT

N/A Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

FTI-9042-001 WIDC-TR-90-3067

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

FRONTIER TECHNOLOGY, INC. (If applicable) Flight Dynamics Laboratory (WRDC/FIGX)

I Wright Research Development Center
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)

4141 Colonel Glenn Highway WPAFB, OH 45433-6553
Beavercreek, OH 45431

8a. NAME OF FUNDING ISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Dept of Air Force ASD/PMRNBI ASD/PMRNB F33615-89-C-3610
Sc. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
WPAFB, OH 45433-6503 ELEMENT NO NO. NO ACCESSION NO.

65502F 3005 40 53

11. TITLE (Include Security Classification)

METHODOLOGY DEVELOPMENT FOR THE VERIFICATION AND VALIDATION OF
FLIGHT CRITICAL SYSTEMS SOFTWARE

12. PERSONAL AUTHOR(S)
BRAET, RONALD L.

fl3a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
FINAL I FROM 12/12/89o 8/12/90 1990 October 107

16 SUPPLEMENTARY NOTATION

This is a Small Business Tnnovative Research Program, Phase I report.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD j GROUP SUB-GROUP software flight critical systems, CASE, SOF,

I software verification and validation, s/w development

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
. The results of this conceptual design study have shown that there i§ _a

growing need to develop a methodology by which flight critical systems
software can be verified and validated for performance and safety impacts.
The nature of the evolving technology and its application to FCS software
verification and validation requirements has current V&V methods lagging
behind design methods and tools. It is recognized throughout government
and industry that FCS software V&V requires knowledgeable and skilled
individuals utilizing proper tools and techniques to successfully complete
the V&V effort in a timely manner. This report provides an overview of
the development process of flight critical systems and the roles of
verification and validation which go hand-in-hand with the development
process. It provides a conceptual design for a computer aided environment
to perform FCS software verification and validation.

'(I 1)I'",3 I~~lI ?I ')N AV iAIl A ()F AJSTRA(T 21 A 1,TRA(7 jtjkll'I(A',SdI AiU)N
I~ j i r ,''iii)lf liVl ', M[A,,v S Iw.:+l [i.t I rTl I .',,I IIN('.l S I"1 I Fl)

,'A' glf.,f ()I VI~' WJY 41fl INV)DUAll I |2)h II fPHIttNi (In~, f. Awjt ,.i'' Of f h t 0 '> r,'t.

AN',I'It()N7 1)1110I()AS (513) "')-
8

"4.i4 I, ,I :1 .;\,

0f) torn 1473, VIiN 86 #,€.. , t' i .1,. (, . '.'1I / I f, I '

IlJ\ClASS~ I F I ill

TABLE OF CONTENTS

Section Page

I. INTRODUCTION

1.1 Purpose ... 1
1.2 Scope ... 1
1.3 Docxrent Organization ... 3

II. EXECUTIVE SUI4%RY

2.1 Purpose Of The Work ... 4
2.2 Overview of Technical Approach .. 6
2.2.1 Step 1 - Requirements Analysis 7
2.2.2 Step 2 - Data Collection 4-A 8
2.2.3 Step 3 Verification and Validation Cqncept Design...... 9
2.3 Summary of the Results 11
2.3.1 Results of FCS Software V&V Requirements

Definition and Data Collection 1.. 1
2.3.2 Conqeptual Design for a V&V Methodology for FCS Software 17
2.3.3 CAV-ES FCS V&V Capabilities 21
2.4 Potential Applications Of The Effort 25

III. TECHNICAL DISCUSSIONS

3.1 Development Phases For Flight Critical Systems...................... 28
3.1.1 Overview .. 4 28
3.1.2 System Requirements/Design Phase 30
3.1.3 Subsystem Requirements/Design Phase 30
3.1.4 Software Requirements/Hardware Specification Phase 31
3.1.5 Basic Software Design Phase .. 31
3.1.6 Detailed Software Design Phase 32
3.1.7 Module Coding/Test Phase ... 32
3.1.8 Software & Software/Hardware Integration Phase 33
3.1.9 Subsystem Integration Phase .. 33
3.1.10 System Integration Phase ... 33
3.1.11 Flight Critical System Engineering 34
3.1.12 Flight Test Phase .. 35
3.2 Verification and Validation Of Flight Critical Systems Software 35
3.2.1 Overview .. 35
3.2.2 FCS Software Requirements Analysis 36
3.2.3 FCS Software Design Analysis ... 37
3.2.4 Code Analysis .. 38
3.2.5 Flight Critical Systems Software Test 39
3.2.6 FCS Software V&V Tools and Techniques 41
3.3 Task 1 Results: Requirements For FCS Software V&V 47
3.3.1 General Requirements for Flight Critical Systems 47

iii

3.3.2 FCS Design Trends Impact on Software V&V Requirements 47
3.3.3 Technology Ipacts on FCS Software V&V R equirmnts 50
3.4 Task 2 Results: Data Collection 50
3.5 Task 3 Results: Development of a FCS V&V Methodology 59
3.5.1 Technical Approach.... .. 59
3.5.2 Ccuter Aided V&V Fz.gineering System Design Overview 61
3.5.3 CAVES FCS V&V Capabilities .. 68
3.5.3.1 Aircraft Flight Critical Systems Analysis 68
3.5.3.2 ECS Software Design Verification 74
3.5.3.3 FCS Software Code Verification 78
3.5.3.4 Stand Alone and Dynamic Subsystem V&V 83
3.5.3.5 Integrated Systen Verification and Validation 84

Appendix Data Gathering Checklist ... 89

LO ESODl o! leemen Fo

2 NTIC
~s QRA&i:

MIC TAB

JuSt it loat1 --

istrtbutlon/
vallablltV CodeS

Avail /o

lot Special

iv

SECTION 1. 0

INTRODUCTION

1.1 PURPOSE

This document describes the Phase I SBIR study titled '7thodology

Development For Verification and Validation Of Flight Critical Systems

Software", Contract No. F33615-89-C-3610. This work was sponsored by the

Wright Research and Development Center, Flight Dynamics Lboratory, Flight

Control Division at Wright Patterson Air Force Base. The purpose of this

effort was to develop an approach for an innovative, integrated verification

and validation methodology which focuses on highly coupled flight critical

systems software.

1.2 SCOPE

Current trends in applications of advanced control and integration

technologies are bringing about the development of on-board systems that are

designed to enhance conbat effectiveness and survivability in ever increasing

hostile combat environments. Flight critical systems (including integrated

flight and propulsion control, integrated flight and ire control,

self-repairing flight control, vehicle management, pilot-vehicle interface, and

flight vehicle sensors) are being controlled and integrated in software. These

developments are putting an ever increasing load on the development,

verification and validation (V&V) of flight critical systems software. This

Phase I SBIR effort has researched and developed an innovative approach for

advancing the state of the art in the application of verification and

validation methodology. This methodology can be developed into a Computer

Aided Verification and Validation Engineering System (CAV2ES) hosted in a

workstation environment. FTI's approach provides a quantum improvement in the
effectiveness and efficiency of the software environment (containing methods,

disciplines, documentation, tools and controls) needed for verification and

validation of highly reliable, fault tolerant flight critical systems software.

1

The CAV2 ES environment offers many advantages over current V&V methods

and procedures. These advantages include:

o A highly autcmated system that speeds the V&V process by approximately

5 to 1, saving valuable time and money.

o A workstation environment which provides the user with a powerful

computational environment which can utilize imany of the more
sophisticated FCS design and analysis tools available.

o An environment easily adaptable to futuristic Air Force systems such as

hypersonic air vehicle, control of unmanned aerial vehicles, and even

battle management systems.

o The capability to evaluate designs and design excursions within the V&V

environment and transport the evaluations to other phases of V&V

efforts.

o Provides a CASE type working environment for transportation and

traceability of V&V requirements, design, and test analysis data.

o Is oriented specifically to performing software V&V, but is applicable

to development efforts.
o Provides a User Help Guide to specific V&V steps to be performed.

o Provides the capability to perform rapid prototyping through its tool

and interface environment.
o Can accept inputs from many external systems: (eg.,MEAD, TAE, ...)

through common interfaces defined for transporting external inputs.

o Can be used to aid in providing a flight critical systems engineering

function throughout FCS software development cycle.

The unique features of the Computer Aided Verification and Validation

Engineering System makes it a very cost effective environment to be used by the

flight critical systems analyst to perform the V&V process. These features

include:

o An integrated V&V tool set usable through all development phases.

o User friendly interfaces; point/click mouse, pull down windows, quick
views and transfer of data/cDrrparisons, common functionality between

tools, command driven and menu driven human interface.

2

o Provides hooks for adding future tools and a mans for interfacing and

driving real-time simulations.

o Offers an environment aiding automation of real-time testing.

o Usable by developers, V&V organizations, and research groups.

o Is an evolutionary system which acccmriodates new tools to meet the

growing user requirements.

1.3 Document Organization

This report contains the following sections:

o Section 1 is the Introduction.

o Section 2 is an Executive Summary of the approach taken in this effort

and the rsults of each task.

o Section 3, Technical Discussions, contains all of the details of the

work performed and presents the Computer Aided Verification and

Validation Engineering System conceptual design.

3

SECTION 2.0

EXECTIVE SURA

2.1 PURPOSE OF THE WORK

The applications of digital technology to Flight Critical Systems (FCS) has

allowed far reaching advances in air vehicles through vehicle optimization of

the air vehicle controllability, performance, safety, and mission

effectiveness. Flight critical systems (including integrated flight and

propulsion control, integrated flight and fire control, self-repairing flight

control, vehicle management, pilot-vehicle interface, and flight vehicle

sensors) are being controlled and integrated through software. The spectrum of

flight control technology has expanded beyond the classically recognized role

of stability and control and flying qualities and now includes technologies

covering functional, physical, and pilot-vehicle interfaces which impact

aircraft design options, ccmbat effectiveness, and survivability.

As shown in Table 2.1-1, there are a number of problem areas in the

verification and validation of flight critical system software. First,

implementation of most flight critical systems is being performed through

software. This means that an increasing share of the development effort and

costs will continue to be driven by software. Thus, thero is a very important

demand for a well disciplined, efficient software development, verification,

and validation methodology. This study specifically addresses verification and

validation methodology, but discusses tools and techniques which are equally

applicable during development.

Second, not only are these systems being developed with software being a

primary implementing factor, but also software has become the means by which

these flight critical systems are integrated. Thus, a well disciplined,

efficient software V&V methodology is required, more now than ever before to

both guide the development and conduct V&V of highly integrated FCS software.

4

TABLE 2.1-1 SOFTWARE PROBLEM AREAS IN
VERIFICATION AND VALIDATION OF FLIGHT

CRITICAL SYSTEMS SOFTWARE

EXPANDED ROLE OF SOFTWARE IN FLIGHT CRITICAL SYSTEMS
REQUIRES A WELL DISCIPLINED SOFTWARE V&V METHODOLOGY

INTEGRATION OF CRITICAL FLIGHT SYSTEMS THROUGH SOFTWARE
REQUIRES A RELIABLE V&V PROCESS TO ASSURE THAT SAFETY
OF FLIGHT REQUIREMENTS ARE MET

SHIFT TO HOLS REQUIRES DEVELOPMENT/UPDATE OF

- SOFTWARE TOOLS
- IMPLEMENTATION ENVIRONMENT
- VERIFICATION AND VALIDATION TECHNIQUES

FREQUENT CHANGES IN SOFTWARE DEVELOPMENT & DOCUMENTATION
STANDARDS REQUIRES FLEXIBLE SOFTWARE DEVELOPMENT AND V&V
APPROACHES THAT CAN BE UPDATED EFFICIENTLY

INCREASED COMPLEXITY OF INTEGRATED FLIGHT CRITICAL SYSTEMS
INCREASES THE MAGNITUDE/COST OF SOFTWARE DEVELOPMENT
AND V&V EFFORTS

V&V3

Third, the shift from assembly language and certain higher-order languages
(i.e., JOVIAL, etc.) to Ada as the accepted language for flight critical
systems is in process and is impacting current and future software development

in flight critical systems. Efforts are under way to improve the performance
of the software implementation technology used within Ada compilers to meet
flight critical systems requirements. These improvements, when achieved, will
enable the cost effective features of Ada to be used and more effectively
provide fault tolerant code which is essential for flight critical systems.
However, during this transition period, development of software tools, choice

5

of different implementation strategies and conversion from previous

implementation languages to Ada' s implementation structure and discipline will

put additional burdens in software development and V&V disciplines.

Fourth, changes in governmnt software development standards effect

required documentation levels, milestone reporting, etc., have also added to

the need of developing a disciplined software development and V&V methodology.

Previously used military standards applicable to software development

(MIL-STD-483 and MIL-STD-490) have been amended by MIL-STD-2167A.

MIL-STD-2167A has a formidable list of documentation requirements on software

which are impacting software development efforts on current flight critical

systems. Accountability to these software standards and tailoring of these

standards to specific applications is yet another area which must be factored

into a software development and V&V methodology.

Finally, the evolvement of highly integrated analog/digital and digital/

digital flight critical systems which are mechanized to provide redundancy and

the capability to reconfigure or provide graceful degradation with failure

insertions has complicated the verification testing of such systems. Coupling

these mechanizations with interfaces to sensors avionic systems, pilot

interfaces, and AI oriented vehicle management systems has made the cost of

software development one of the major drivers in system life cycle cost. In

this area alone a disciplined software verification and validation methodology

addressing all aspects of critical flight software development can reap

treendous savings.

2.2 OVERVIEW OF TECHNICAL APPROACH

The technical approach to the development of a methodology for verification

and validation of flight critical systems software was carried out in a three

step process. The first step, Task 1, was to perform a requirements analysis

to identify specific needs to be met in V&V of flight critical systems

software. The second task performed in conjunction with the first was a data

6

collection effort. The third step (Task 3) was the synthes s of a FCS software

V&V methodology which would meet the requirements defined in the reqirpxpants

analysis, Task 1. This process for the Phase I effort is shown in Figure

2.2-1.

DESIGN REOS

TASK PING FF DATA TST D T L

REOUIREMENTS T DATA CONCEPT

DEFINITION COLLECTION DEVELOPMENT

" PERFORMANCE o S/W DEVELOPMENT FUNCTIONS

SPECIFICATIONS TOOL SETS INTERFACES
o CONTROL LAW PERFORMANCE

" V&v FUNCTIONS ANALYSES TOOL ADAPTATION
o CODE ANALYSES TOOLS TOOLS

" V&V PHASING o TEST DATA D EAVAILABLE
ANALYSES TOOLS REVISIONS

SCUSTOMER o CODE VERIFICATION DEVELOPMENT
VISIBILITY TECHNIOUES APPLICABLE STDS

o SW DOCUMENTATION ADAPTATION
STANDARDS EQUIVALENCE

o REVIE','" AND AUDIT
STANDAROD

o AUTOMATEC DOCUMENTATIO
TOOLS

o SIMULATION &
EMULATION TOOLS

o SAFETY OF FLIGHT
TEST PROCEDURES

vjS o PERqCEIVEO) FUTURE
TEST REOUIREMENTS

DEFINITION BASE CONCEPT

Figure 2.2-1 Overview of Program Approach

2.2.1 Task 1 - Pequirements Analysis. The purpose of the requirenents

analysis task was to define a complete set of requirements which must be met in

the V&V of flight critical systems software. The complexity of flight critical

systems developmernt has outpaced the management and technical resources

supporting their acquisition. The rising complexity in hardware technology,

7

software technology, and the integration of systems stresses the capability to

design, build, and test such systems. An initial draft of the requirements

definition was prepared primarily from Frontier's experience in previous

software V&V efforts. This draft provided ; guide for areas of investigation

during the Data Collection task. The information gained from the data

collection task was then in turn used to update the requirements definition

resulting in a complete and cor.sistent set of requirements.

2.2.2 Task 2 - Data Collection. The approach taken in the data collection

task was to first develop checklists (see Appendix) to help organize the

acqu:isition of information on each element/function required in the software

verification and validation methodology. The checklists addressed specifics
about available software analysis tools and techniques available and current

perceptions/experiences in the development of FCS software. Included within

these checklists was a list of applicable Government standards which must be

met in the development of flight critical systems. Examples of such standards

include MIL-STD-483,-490, MIL-STD-2167A, MIL-STD-1521, ANSI/MIL-STD-1815A-Ada,
MIL-F-9490, MIL-STD-8457, to name a few. One of the problems besetting

software developers today is being knowledgeable in the requirements spelled

out in many standards and even more importantly, being able to meet the intent

of the standards in a cost effective manner.

Next, a catalog of applicable software tools used in all phases of

development and verification and validation of flight critical systems software

was prepared. This included control law analysis tools, software development

tool sets, documentation aids and tools, configuration management software

tools, and verification and validation software tools. As a starting point

this list was compiled from our knowledge and hands-on experience with many of

the tools. This list was then expanded through the information gained in

literature searches, surveys of software tools used by flight critical system

developers, and focused interviews of key government and industry experts.

This list of tools was entered into our Tools Data Base Management System for

ease of reference and quick recall.

B

The next step in the data collection process was to conduct in depth

interviews with key government and industry experts in the development of

flight critical systems. These interviews included personnel at Wright

Research and Development Center -- Flight Dynamics Laboratory, Air Force Flight

Test Center, NASA Dryden Flight Research Facility, MAir, General Dynamics,

Rockwell International, Honeywell, Softech, and High Plains.

The prepared checklist was used to guide the discussions on FCS software

verification and validation tools and techniques. At the con-letion of these

interviews, the raw data findings were prepared and provided to WRDC/FIGX. As

part of the data collection task, a Data Base Management System (DBMS) was

developed to help organize and record the many sources of data and the tools

and techniques identified. This DBMS was created on DBASE III+ and hosted on

an IBM compatible PC. New data is continuing to be added to this system and it

will serve as a reference source for proposed Phase II efforts.

2.2.3 Task 3 - Verification and Validation Concept Design. The third task in

our technical approach to development of a V&V methodology was to synthesize a

preliminary design in sufficient detail to demonstrate that the design is

technically sound and that V&V functions have been define to address the FCS

software V&V requirements. A variety of tools and techniques were considered.

The approach synthesized provides a user-friendly host environment for current

and future V&V tools applications.

The scope of tools and techniques will allow the user to assess development

of critical flight systems software from systems requirements definition on

through "iron-bird" validation testing leading to flight test. Features which

are included in the design are:

9

o Verification and validation activities performed in a series of steps

which are interfaced through the customer and coordinated with the

development phases of the flight critical systems software.

o Utilization of control systems analysis tools to verify flight

critical systems software in a manner which will address safety of

flight issues and provide a high level of confidence in the expected

performance of the system design and implementation.

o Use of both system level and statement level emulations for

verification of flight critical systems software design. System level

emulation will be used for analysis of performance, stability, and

redundancy management. Statement level emulation will be used to

exercise the code itself.

o Structuring a verification and validation approach to provide an

appropriate balance between external V&V ivities and developer V&V

efforts.

o The use of proven Independent Verification and Validation (IV&V)

techniques for evaluation of the prime contractor' s development

process and software design.

o Use of advanced hierarchial modeling techniques for the development of

topological network trees which are more easily understood than code

representations, and which constitute a deliverable data base to serve

as an effective tool for software change impact analysis.

o Analysis techniques which will provide an assessment of overall system

performance as well as verification of system/software design and

coding.

o Use of a structured data base of proven validation test procedures

which have been used to perform "iron-bird" validation testing of

highly integrated flight control systems. This data base addresses

tests of performance, redundancy management, mechanization, failure

mode and effects, aircraft systems and interfaces, and all other

matters effecting flight performance and safety of flight.

o Utilization of quick-look analysis tools applicable to ground based

simulation and flight test data and application of advanced data

reduction techniques.

10

A FCS software V&V methodology has been designed which provides these
features and is discussed in Section 3.5. Specific techniques and tools are

presented to address each of the phases involved in an V&V of flight critical

systems software.

2.3 SUM4ARY OF THE PESULTS

The results of this conceptual design study have shown that there is a

growing need to develop a methodology by which flight critical systems software

can be verified and validated for performance and safety impacts. The nature

of the evolving technology and its application to FCS software verification and

validation requirements has current V&V methods lagging behind design methods
and tools. It is recognized throughout government and industry that FCS

software V&V requires knowledgeable and skilled individuals utilizing proper

tools and techniques to successfully complete the V&V effort in a timely

manner. This report provides an overview of the development process of flight
critical systems and the roles of verification and validation which go

hand-in-hand with the development process. It provides a conceptual design for

a ccputer aided environment to perform FCS software verification and

validation.

2.3.1 Results of ECS Software V&V Reauirements Definition and Data Collection

The process of defining V&V requirements is iterative and was performed in
conjunction with our data collection effort. Initial draft requirements were
prepared and updated as new information was gained from our interviews with key

government and industry experts and through data gained in literature reviews.

Key to the definition of these requirements was having a sound understanding of

current FCS software development and V&V practices. Figure 2.3-1 is a

representation of the development process with specifications of verification

and validation levels.

A variety of accepted techniques are currently used to perform the V&V of

FCS software. These techniques are supplemented with tools (manual procedures

11

or software programs) to aid in the analysis tasks and the bookkeeping of the

results. Since the V&V of FCS software is normally performed as a parallel

effort with the development efforts, accepted techniques used in the V&V

efforts are driven by the timing availability of FCS software development

products. The current V&V tasks, applied techniques, and V&V objectives are

summarized in Table 2.3-1.

STUDIES tN-SERVICE

CONCEPT
DEVELOPMENT PRODUCTION

-------- - CERTIFICATION LEVEL -- ---- -- t- - ----

S
R E QU I R E M

E N T

T E T

Design
Riiw

lDESIGN
F"

Review-l-ve

- VA I ATO
LE EL -ARGET

- -

SYSTEMs SYSICEM

De~SYn

ReviewM

),tilDESrIGNM DTLE O~

I)esDgn
Review

1W

DESIGN

NSTS

Figure 2.3-1 FCS Develt and V&V Phases

CODIN

12

TABLE 2.3-1 V & V REQUIREMENTS

V&V TAS OBJECT VE/PuRpoSE APPLICABLE TENIJF_.S/TOOLs

syste Specification Evaluated to ensure that system o Requlrements Analysis
Verifications subsystem considered will o Docutnttion Review

fulfill mission goals and

objectives.

Control Law Analysis Assure control algorithms o Pequirements Analysis
adequacy. Verify equation 0 Control Law Analysis

accuracy; evaluate functional a Eatlation/Simulation

relationships and fixwional
performance (timing, sequencing,
etc.)

Evaluation of Evaluate for satisfactory o Review ManagemM Plan

Development Planning standards & practices, o a'DP Review
schedules, planning, controls,
reviews, audits, CH change
control, problem resolution, V&V

Evaluation of Preventive Measure. Sound o Document Peview

Software Develop--nt design, coding, and test - Standards

Methodology techniques recoe number of - Plans
errors made during development. - Configuration Management

Provisions

Software Pequirements Peqireffents evaluated for 0 Re mnts Analysis

Verification adequacy, asipleteness, 0 Critical Peireents
aceracy, testability, and Identification
traceability to higher level o Docatnertation Peview
specifications.

Softwar Design Evaluate development products o Design Analysis
to ensure technical viability o Performance Analysis
and contribute to refinement o Dozument Peview
process. Ensure software design 0 Top Down Programming

represents a clear, consistent 0 System level Enulation

and accurate translation of o Consistency Checer

software requirements. o Standardization

Code Correctness Test and evaluate developers o Code Analysis
code using irnvpexet tools. a Cararator
Code is dhecked for errors, 0 Compiler

caissions and inoomrrL trans- o Interface
lations. Evaluate logic, file o Dooent Reriew

structuring, execution paths and o Cross Eefexrenc
limitations, interfaces, etc. o Cross Assembler

Machine level open-loop tests 0 Simulation

ad unit and nmdule; closed-loop 0 Instruction Trace

at subsystn/syst em. Examine
timing.

Identify unexpected paths for o Sneak Analysis
information flow thr.ugh a pro-
gram by analyzing th" clue

characteristic of sneak paths in
network trees/flow graphs.

Software validation Detemrine vdiether all software o Test Plan/Proce<dre Peview
and system performance, inter- e Test Case Generation

o Development Testr face, functional and test o Hot-P -onch Silmulatol

o Systemi Tests e rrmexs are fulfilled. o ?4infram Siralation

" Flight Tests 0 lIn Bied Sp ailatir

o Control Lane - ry requireent is Ai ft Fliht

Rengosad-riuately tested

o Handl ir ultit iss - All subsystems aro prM-otly

" Functional Te-st jfnt Cgrated
- All system rnpines are,

a'iquite for -r fon xmunFI .i l

safety.

o Ie'tuviao'-y]lnf fu,, throi kvX)c X i'flt , r hi".- l it lni ,::

t4ungotwt' nt test il, that 11/l'N s!y, tm IMr t f . lirn 11 ld .irll.lt inn

I 1 3
-

13

As can be seen, a large number of techniques have been developed to aid in the

verification and validation of software. A deliverable Data Base Management

System (DBMS) was inplemented by FTI to help organize and record the many

sources of data and the tools and techniques identified in this effort.

Evolvement of Computer Aided Software Engineering (CASE) tools continues

towards providing software development with the environment of an integrated

tool set including planning, analysis, design, documentation, static analysis,

prototyping, dynamic analysis, simulation, and construction of executable

systems. Unfortunately, CASE tools have not reached the point where this broad

application of tasks has been integrated into one development environment.

Similarly, the use of CASE tools in a V&V environment offers great promise and

same CASE tools have been specifically designed to perform reverse engineering

on existing designs, a necessary V&V capability.

The near term trends in flight control systems (FLCS) are expanding the use

of real-time, on-board optimization and intelligent controls to achieve high

performance and provide for damage tolerance and self-healing designs. These

near term FICS already are addressing the inner-loop, outer-loop, and

redundancy management functions. FCS integration has an even more challenging

impact on software. Forecasts and projections for FCS in the 21st century

indicate a number of significant impacts on FCS software V&V as indicated

below.

o Significant increases in computer power will cause major expansion in

scope and character of onboard systems.

o Development of architectural branches within redundant systems will

add verification and validation complexity, embedded replicated or

dissimilar subchannels for self monitoring could reduce redundancy

management complexities at higher rates.

o Increased throughput and emerging new architectures are allowing

sensor fusion with information integration and display, requiring

expanded FCS verification and validation roles.

14

o Trends towards systems highly integrated through FIJS -- because of
mission and performance benefits -- leads to more testing at system

levels, interdisciplinary expertise, and pilot involvement.

o Increase of control effectors and reduction in actuator redundancy
levels for self repair/reconfigurable flight control increases the

complexity of validation testing.
o Decision-Aiding systens in a real-time environment require validation

of knowledge bases which currently have no accepted validation

methods.

The use of higher order languages (HOLs) eases the task of FCS design
process. HOLs allow the flight control engineer to more easily follow the
design through implementation in software. Current problems with Ada (tasking
and rendezvous) do not stop its use; the specific problem areas can be
avoided. However, there is still the question that once code is recompiled, it
is difficult to say that new code is good versus assembly language patches

approach.

FCS designers are moving towards providing control law block diagrams from
which code can be generated automatically. GE's program called FASTER directly
generates 1750A assembly code. Many of the linear analysis tools (Ctrl-C,
Matrix X, MATLAB, etc.) purport to generate code directly from block diagrams
which can then be used directly in simulations to test from design through
simulation. Tools of these types eliminate many of the coding errors which can
occur during the process of changing a flight critical design to code.

Future FCS systems will still have to address interfacing with existing,
older systems. There is a wide generation of computers currently fielded and
this will always be the case. Many of the older computers cannot support HOL.
Development contractors are moving towards using RISC computers. However,

currently there is not adequate support tools in this environment.

Transportable software is also being addressed. However, software

compilers are currently a problem here because there is no agreed to standard.

15

Also, timing is one of the most critical elements in flight critical software
and this effects transportability. Ccmmon module approches requires that the
developer look at real needs in V&V. Resources are currently being spent in

designing software test stations/tools that will test to requirements and using

language translators to implement new front-ends to these test stations/tools.
Control law filters have already been transported. Use of Ada will help

transportability in future developments.

Vehicle Management Systems (VMS) is the new focus in flight critical

systems. However, the designers must be realistic about what they propose and

use. It is cost prohibitive and not even possible to test all combinations

required to "adequately" validate a highly integrated FCS.

Redundancy & Monitoring (R&M) is another design area which drives V&V
requirements. From a design point, coverage of all failure mechanisms is the

problem here. There is the question of quad vs triplex systems. Triplex

systems can meet the 1 x 10- 7 requirement, but it is difficult to meet an

imposed requirement of fail-op, fail-op without going to a quad system. From a

cost and development viewpoint, a quad voter runs twice as long as a triplex
voter; software complexities at least double for every channel added due to

combinatorial considerations.

A number of lessons learned can be gained from past efforts in development

of flight critical systems software.

o In general, problems arise in specifications across on-board aircraft

systems. Understanding and documentation of interfaces between systems

are often lacking.
o The use of simulation for testing integrated systems is questionable. This

is particularly true in the area of sensors. The FCS testing is dependent

on models for high technology sensors and in this area modeling is very

difficult. Systems integration adds more combinations of conditions which

need to be tested.

o People who have tested systems have to put information gained back into the

loop. The problems that were encountered and how they were solved is often

not reported.

16

o One very large requirement is requirements and specifications for control

laws. There is a lack of a reasonable MIL-Spec for flight control; PIO

prediction is an example of this. Mil Prim Standard 8785-C is not

adequate; it is a back-up guide.

o Most errors are in design. These are generally found in systems

integration testing. B-2 put a lot of tine and money to get set up for

systems integration testing and that has paid off well.

2.3.2 Concetual Desian for a V&V Methodoloav for FCS Software

The FTI technical approach to the development of the flight critical

systems verification and validation methodology is based on a balanced

allocation of technical skills, proven V&V tools and techniques, and evolving

software developmental test methodologies. The implementation of our
methodology can provide a workstation environment providing the needed tools

and techniques for verification and validation of flight critical systems.

Proven V&V tools which can be used directly to meet the V&V requirements

will be reviewed as candidates to be used in the development of a Computer

Aided Verification And Validation Engineering System (CAV2ES). The CAV2 ES

will be hosted in a workstation environment and will provide the user with

ready access to those requirements, design, and development details needed to

assess the state of development of FCS software. Much of the early development
verification activities will utilize V&V tools hosted in the workstation

environment itself and will provide analysis data and results which can be

carried from one V&V stage to the next. The V&V methodology will also address

the validation test activities which take place when the FCS software

development progresses to the point where testing of software and subsystems

utilizes hotbench simulators, simulators requiring mainframes for comput°itional

support and finally when testing moves into an ironbird test environment.

The CAV2ES will provide an environment in which the flight control

engineer or software engineer can quickly and easily access and analyze design

information, software code, or generate data to verify and validate ECS soft-

ware. It will allow the engineers to deal with all phases of the development

17

cycle and tackle the problem of maintaining a continuity of

requirements/design evaluations across development phases.

The Computer Aided Verification and Validation Engineering System (see

Figure 2.3.2-1) will provide the following functions: V&V Executive (VEXEC),

Tool Interface Manager (TIM), User Interface (UI), Simulation Computer Inter-

face (SCI), Data Recording System (DRS), Data Base Manager (DBEM, Automatic

Pilot Functions (APF), and the Data Analysis System (DAS).

D TOOL
LIBRARYnou .I

TOOL AUTO

INTERFACE PILOT
MANAGER FUNCTION

z O
U vER MK C _M V V E XE C U T V E -1 r

30 11 ETWORK

> :y > -i--

DATA DATA DATA

ANALYSIS BASE RECORDINGI

SYSTEM MANAGER SYSTEM

nou

DATA BAS L
FILl'S

CA"/ ES

Figure 2.3.2-1 Co puter Aided Verification and Validation

Engineering System (CAV2ES)

18

To aid the FCS software analyst in performing V&V tasks, CAV2 ES retains
its own data base and library of tools. The data base is structured to be able

to store and retrieve the data items which are a product of executing the
verification and validation analysis tools. The tool library consists of two

parts, a generic tools set and an external tools set. The generic tool set is
a group of V&V tools which will perform basic V&V functions on FCS software.
The external tools set represents user selected or new tools which need to be
interfaced through the Tool Interface Manager.

The Tool Interface Manager (TIM) selects which interfaces are used with the
selected tools so that the output of the library tool is put into a standard
format acceptable to the Data Base Manager. If a new tool (external tool) is
to be interfaced to CAV2 ES, the TIM has an interface build capability which
aids the user in building a functional interface which converts data to a
format consistent with the existing data base.

The V&V Executive (VEXEC) monitors and coordinates the operation of
CAV2 ES functions. The VEXEC execution involves issuing commands to the Tool
Interface Manager, the Simulation Computer Interface, the Data Recording

System, the Data Base Manager, the Automatic Pilot Functions and the Data
Analysis System. It receives commands and sends responses to the user via the

User Interface.

The purpose of the User Interface (UI) is to provide direct access to the
various software tools functionalities, while relieving the user from needing

to be intimately knowledgeable about the software tools as stand-alone systems
and adapting to their various styles and syntax. This means that a user who
wants to obtain a time history plot of data generated by a simulation tool,
CTRL-C or MATRIX-X for example, does not need to know the particular commands
for the tool package for simulation and plotting. However, the UI does not

contine the experienced tool user to stay within the UI interface, but provides
a direct tool mode in which the user can execute tool comands within the
CAV2 ES environment to perform any simulation and plotting activity allowed by

the tool. The UI is built in a windows environment to provide quick expansion

or contraction of backup information, aiding in the verification and validation

19

process. The functionality of a tool can be accessed via point-and-click muse

operations on icons, menu, and form driven screens.

The Simulation Coiputer Interface (SCI) is used to communicate to the

simulation computers. GCxrunication may take place over serial lines to

various devices, over ethernet, and over direct bus links. The user may open a

terminal window for each of these connections and manually type commands. All

commands, along with responses, will be logged and sent to the DBM to be

recorded in a test execution log. Other subsystems of CAV2ES may also send

commands to the simulation computers. All commands indicate if a response is
expected. SCI will then pass along the ccmand and wait for the response, if

necessary.

The Data Recording System (DRS) is responsible for recording simulation

data (both real-tine and non-real-time) and transferring data to the data base

manager. The DRS receives its commands from the VEXEC. Before a test begins,
the VEXEC sends a list of ccmmands to be executed (recording script). The

real-time simulation recording takes place via a link (bus link or ethernet)

connected to the simulation computers via SCI. Proper synchronization is

critical if a valid set of data is to be recorded.

The Data Base Manager (DBM) serves two purposes. First, to create and

maintain data base files and second, to conduct data transactions for other
CAV2 ES subsystems. The DBM is composed of two processes to serve these

purposes: Vexec Interface and Build Update. The interface process conducts

transactions while Build Update is used to create and maintain data base

files. To assist in performing these processes, a comercially available data

base managemcnt system, UNIFY, will be used.

The Automatic Pilot Functions (APF) subsystem provides the capability for

the CAV2 ES system to send pilot commands to the aircraft flight control

system. The APF provides the capability to provide flight test functions (FTF)

for testing of performance parameters and to fly fundamental maneuvers. VEXEC

obtains cormanded maneuvers from the test procedures via the Data Base

Manager. The APF sends these commands to the simulation computers and flight

control system via the SCI. The APF uses a transportable auto-pilot model

20

which may be hosted on the simulation computers (mainframes) or in the CAV2ES

workstation environment, dependent on the particular type of conmmnications
link used between the CAV2 ES and the simulation computers. This provides
flexibility in the choice of this communication link from one implementation to

the next.

The Data Analysis System (DAS) is designed to provide the validation
engineer the capability to examine the data recorded during a test and to
perform data reduction techniques on the recorded data. The recorded data can

be displayed both on a CRT and on a hardcopy device. Data displayed during
simulation execution will generally be plots of variables as a function of time

and mode switches. Post test data analysis can be performed providing

performance parameters of flight critical systems.

2.3.3 CAV2ES FCS V&V Capabilities

Capabilities to be included within the CAV2ES environment will provide

the flight control/software engineers the capability to assess the FCS software

design in terms of performance, stability, and redundancy management analysis.

It will provide both static and dynamic code analysis tools for verification

and validation of flight critical systems code. It will also provide the
capability to perform quick-look analysis of generated data. It will provide
the means to verify and validate FCS software through control of real-time

simulators driven by proven test procedures/test cases.

Aircraft Fliaht Critical Systems Analysis. The CAV2ES will provide the
capability to evaluate the adequacy of the control laws with respect to

performance and stability and to evaluate system mechanization with respect to

redundancy management, timing and bus loading. To perform these analysis, 3

general types of flight control analysis tools will be used: a linear analysis

and design tool, a nonlinear simulation tool, and a system level emulator.

Commercially available linear analysis and design tools provide a comprehensive

interactive control design and analysis software language system includinq

state-of-the-art primitives in classical and modern control synthesis, matrix

21

analysis, dynamic system analysis, parameter estimation, and graphical

presentation.

A general purpose non-linear aircraft simulation program incorporates

specific aircraft characteristic through user-defined modules for the
aerodynamic forces and rmments, the propulsion system, the control system,
etc. It can be run to trim the aircraft for any desired flight condition, to
generate linear state models for the trimmked flight condition, and to generate
tire history responses for user-defined inputs representing commands or

external disturbances.

A system level emulator can be used to analyze the correctness of module
logic and functions, bus loading, timing and redundancy management, as well as
analyzing the operational capabilities of a system and its conformance to

system requirements.

Software Design Verification. The objective of software design is to
confirm the technical adequacy of the desi Mich of this effort involves
manual review of requirements and designi .pecifications, requiring methodical

and diligent attention in matching requirements to design and in evaluating
designs. It is in this ar<,a where the application of CASE tools can provide
benefits in verification. In general, CASE tools leverage the requirements

analysis and design specification phases of the software development cycle
while more traditional tools are more applicable in the software implementation

phase.

FCS Software Code Verificatin. Specific static analysis techniques which

will be initially implemented will be selected as a part of the Phase II

effort. However, capabilities to perform software sneak analysis and to
perform instruction level emulator code execution are examples of static and
dynamic anal]ysis tools, respectively, which provide a strong code ver fication

tool base and are planned for implementation in CAV2ES.

Stand Alone, Dynamic Subsystem, and Integrated System V&V. The enqineering
and formal system and software testing utilizes a bottom-up philosophy.

22

Testing starts with a lowest level code (unit code) and progresses upward to

system-level testing. Verification of results is performed at each level

before progressing to the next level. Test plans and procedures are prepared

for each level of formal testing and test results are documented. Problems or
discrepancies detected during any phase of testing are documented,

investigated, and acted upon.

CAV2ES will be used to communicate to simulation computers and subsystems

to drive individual subsystem tests, integrated subsystem tests, and finally

system level tests. The Maneuvering-simulation Validation Automation (MVA)

system currently under development by FTI for SAAB-SCANIA will provide just

this type of capability. The design structure of CAV2 ES will incorporate

many of the features in the MVA system.

The CAV2 ES is an integrated V&V tool set to be used throughout FCS

software development phases. It's integration and application with the FCS
development phases is shown in Figure 2.3.3-1. It is usable by developers, V&V

organizations, and research groups. Its workstation provides the user with a
powerful computational environment which can utilize many of the more

sophisticated FCS design and analysis tools. CAV2ES provides a CASE type

working environment, user friendly interfaoes, and provides hooks for addition

of future tools. It provides a means for interfacing and driving real-time
simulations and offers an environment aiding automation of real-tire testing.

In short, the CAV2 ES is an evolutionary system which accommodates new tools

to meet the growing user requirements in verification and validation of flight

critical systems software.

23

I- -

Z/W
(1) OI2H 7 0

HI i I a;

D ~ zz.

U- WL

a LU

-i -1 -

0~' 4 0 5 coZ

0 , 1 S O
4

2 . 0

1> -- - -- Z --

0) oo M
.... 0- o

LL 2

00

I-0)

zz

HZ m ' . - I w 0

ft 0 2 0

z z 0>

02 *Lu 0 g0 0

0 0

(flD 9) EZ-' 090'D
or Z 1,t <9 g

z It .0,I~ T

00~~ < <-z3'E0 0Ir ;!p;, z - 0..-E >i2.

X >20

2.4 POTENTIAL APPLICATIONS OF THE CAV2 ES DEVELOPMENT EFFORT

The Computer Aided Verification and Validation Engineering System has many

commercial applications which will bring large savings to its users. A great
deal of interest has been expressed by government agencies and industry leaders
in providing new capabilities in the verification and validation of the

evolving flight critical systems. The CAV2 ES will be directly usable by

industry developers of systems which are flight critical and are driven by
software. It will also be usable by manufacturers of automated systems

controlled by software which can effect the performance of their product and

the safety of their user.

The aircraft manufacturers including General Dynamics, McAir, Rockwell,

Lockheed, Northrop, and Grumman all currently are faced with the problems of

developing and integrating flight critical systems as their major product

output. They have expended a large amount of resources in attempting to build

and maintain verification and validation capabilities to keep pace with the

increasing growth in the use of software in virtually all of their

applications. The CAV2 ES offers these industry leaders an inexpensive tool
which can be easily implemented and customized to meet their specific needs.

Of course, the commercial market extends beyond the United States market and

covers our NATO allies and supported neutral countries such as Sweden.

Corpanies such British Aerospace (BAE), Messerschmitt-Boelkow-Blohm (MBB),
SAAB-SCANIA, and GEC Avionics are all heavily involved in the same pursuit of

developing, verifying, and validating flight critical systems.

CAV2ES will be of use to the many subcontractors to the prime aircraft

manufacturers. These include: the developers of flight control systems such as

Honeywell, General Electric, and Lear Siegler; engine manufactures such Pratt
& Whitney, General Electric, and Rolls Royce; and other manufactures of

subsystems such as hydraulic actuators, braking systems, and the large number

of integrated avionics components going into modern day aircraft. All of these

developers of subsystems face the problem cf vorification and validation of

software used to control and interface their subsystems with othei- flight

25

critical systems. This requires the verification activities involved in the

early phases of design and development of software, and also requires that they

provide and a realistic environment with which to test their subsystems,

validating that they meet specified performance goals and safety requirements.

The interest and application of a CAV2ES in the government is readily

apparent by simply reviewing the many procurement and research activities being

announced on a daily basis. Examples of these include solicitation by: NASA

Ames Research Center (SBIR: 03.10 - "Development, Testing and Verification Of

Flight Critical Systems"); DARPA (SBIR: 90-087 - "Low Cost Reconfigurable

Generic Computer Workstations for Simulation Research/Development/Analysis");

Air Force (SBIR: A90-470 - Verification and Validation of Expert Systems); and

a recent procurement announced by the Avionics Laboratory titled "Advanced
Avionics Verification And Validation". The CAV2ES has capabilities which are

directly applicable to each of these and offers the flexibility to expand to

future required capabilities. The direct use of the CAV2ES by the many

research groups in the government organizations is not limited to WRDC but

extends to all government services engaged in the research and development and

testing of flight critical systems software.

CAV2ES offers a capability to the independent software development and

software verification and validation contractors who the government solicits to

perform IV&V activities on flight critical systems. For contractors such as

these, the CAV2ES offers a low cost test bed tool which can be applied at all

phases of verification and validation. CAV2ES is a tool which the SPOs can
offer or specify as a support tool with the knowledge that it is a tool which

can produce the type of products that are needed to validate FCSs safety

requirements.

Aside from the contractors who build flight critical systems, the CAV2ES

offers capabilities of interest to commercial manufactures of systems which use

software that can effect the user's safety. The car manufactures have braking

system, engine systems, and ride quality systems which are controlled by

software and could impact safety if failure occurs. Developers of robotic

26

controlled manufacturing processes also need a capability to develop, verify,

and validate software which is safe to use in a manufacturing environment.

In summary, the usefulness and numbers of applications of the CAV2ES is

very large including: all branches of the military government agencies

supporting the development of flight critical systems; the aircraft

manufacturers and their many subcontractors; the companies who provide

independent and consulting support in the verification and validation of flight

critical systems; and other commercial manufacturers who use software as an

automating and integrating mans in the development of their commercial

products. The resources saved on future FCS programs are many times the

CAV2 ES development costs.

27

SECTION 3.0

TECHNICAL DISCUSSIONS

3.1 DEVELOPMENT PHASES FOR FLIGHT CRITICAL SYSTE4S

3.1.1 Overview

The development process of fligit critical systems has many variations in

literature, but the basic states are universal. We choose to follow that

defined in Reference 1. The stages are:

o Study phase

o Concept phase

o System requirements phase

o System design phase

o Subsystem requirements phase

o Subsystem design phase

o SW requirements phase----------- W specification phase

o Basic software design phase

o Detailed software design phase

o Coding/module test phase ---------------- HW development phase

o SW integration on host computer phase

o SW integration on target coaputer phase ------- HW integration phase

o Subsystem integration phase

o System integration phase

o Flight test phase

o Production phase

o Postdevelopment support or in-service phase

28

Our main enphasis in this study starts at the system requirements phase and

carries through system integration up to flight test. Before embarking on a

discussion of the development. process, it is helpful to see how the roles of

verification and validation go hand-in-hand with the development process.

Figure 3.1-1 is a representation of the development process with specifications

of verification and validation levels. Starting at the bottom of the figure,

verification may be defined as the demonstration that each step in the

design/development process (left side of Figure 3.1-1) is correct and that the

software program is a correct rendition of the software design. Validation,

shown in the middle of the figure, may be defined as the demonstration of the

S uDEs IN-SERVICE

CONCEIT
(DEVELOPMENT PRODUCTION

------------------- CERTIFICATION LEVEL----- -- -- -- ---

CERTICATION FLGH

VALIDATION LEVEL -... -. --

I DE ~I 'II

REQLJ[REM l "
I T G FATION

Figre . 1.1
FU13S DTVE A I)P l.

A[......

s"

29w

%
-5T

[' 6,-
- -.

e,~ D - ERI FICAT ON (.J

E-))"'r F~eve',. MV DIG51 N
ON AR GET

tit:, ~~. A]! }_ BA I A " (

Figure 3.1-1
FC DEVELOPMNT

AND V&V PHASES

29

correct performance of the entire subsystem/system. With this brief

introduction to V&V, we will return to a discussion of the presented
development phases.

3.1.2 Systems Reauirements/Desicn Phase

The system requirements/design phase produces a System Specification

containing custcmer and other known requirements which must be later validated
during the system integration efforts. In addition to the System
Specification, a System Mechanization/Architecture document is normally

produced describing the entire system structure, connections between
subsystems, preliminary data, and design of the system. These documents then

form the bases for requirements and design of subsystems.

3.1.3 Subsystem Reauirements/Design Phase

During the subsystem requirements/design phase, each subsystem will
normally have a Subsystem Requirements/Design Specification containing:

o A functional description of the subsystem including a copy of the
specific subsystem functional requirements contained in the System

Specification

o The subsystem design concept and subsystem architecture

o Subsystem criticality classification

o Requirements on:
- Sensors and effectors

- Processors

- Displays and controls

o A detailed description of the subsystem's interface with all other

subsystems and with the system as a whole. Each subsystem will
generate requirements which will be implemented in software or

hardware. Detailed requirements for the hardware and software

components to be used to implement the subsystems will be derived from
the functional requirements during this phase. Soe requirements for

30

the hardware coaponents may be determined by use of certain software

ccuponents and by the design envirorment.
o The ccuputing power (speed and memory) required to execute the

software within the time allowed.

o The availability of a particular software development environment.

Also, certain functions might be required that can realized only

through equipment specific software.

o Built-In Test (BIT).

o Data format conversation.

o Specific sensor functions (e.g., Inertial Navigator, Display).

3.1.4 Software Reauirements/Hardware Specification Phase

Separation for subsystem functions between hardware and software coponents

is carried out for each subsystem during the Software Requirements/Hardware

Specification Phase. Precise boundaries between hardware and software cannot

be determined in an effective way prior to ccmpletion of the Subsystem
Requirements and Subsystem Design Phases. Results of the Software Requirements

and Hardware Specification Phase are normally recorded in:

" Software Requirements Documents (including descriptions and

derivations of all algorithms to be inplemented)

o Equipment Specifications
o An Interface Definition and Control Document

3.1.5 Basic Software Design Phase

The Basic Software Design Phase transforms the software requirements for a

subsystem into a software module design and a subsystem test design. Program
structure, program flow, module functions, and interfaces with other modules

are determined during this phase. Tining considerations are normally addressed

within a framing concept defining the module calling sequences based on

experience from existing similar systems. Bus load analysis should be

confirmed by rapid prototyping tests.

31

Results of the preliminary software design process should be contained in a

Software Design Specifications and a Software Test Requirements Document.

These documents are verified against the appropriate Software Requireennts

Document during formal review at the end of the Software Preliminary Design

Phase.

3.1.6 Detailed Software Design Phase

During the Detailed Software Design Phase, the internal module structure,

the algorithms to be implemented, and the data structures to be used are

completely defined. The internal module structure is described in functional

flows or pseudo-code. Also, module test procedures are prepared.

The following information developed during the Detailed Software Design

Phase is added to the Software Design Specification.

o Module descriptions

o Detailed func'. * I flows

o Detailed c-.L. lows

o DetaileI interface and data description

o Modu'e test specifications.

At the end of the Detailed Software Design Phase, a Critical Design Review

is held to confirm that:

o The design is ccmplete. All internal modules are present. All

interfaces are defined.

o All software requirements have been satisfied.

o The required software quality attributes are achieved.

3.1.7 Module Codina/Test Phase

The Software Design Document and Software Test Documnent form the basis for

module coding and test activities, respectively. During the Module Coding/Test

Phase, the modules are coded and commented; syntax errors are debugged, and

32

code inspection and code walk throughs are performed. All previously specified

module tests are prepared. Test stubs and drivers are established. Static and
dynamic module tests are executed. Detected errors are corrected.

The Software Design document is updated to be reflective of the implemented
design and a listing of source code is added to the documentation. The
Software Test Document procedures are completed to form a module test report.

3.1.8 Software and Software/Hardware Integration Phase

During this phase, the process is to integrate the individual modules into

a working subsystem. This is normally accomplished on a host development

computer. Inputs and outputs to each module are simulated and the modules are

successively integrated one at a time into a software subsystem. When all

modules are integrated, the software subsystem is moved to a target computer

and the code is retested. Software/Hardware test procedures are filled in and
bound to provide a Software/Hardware Integration Test Report.

3.1.9 Subsystem Integration Phase

At this point the subsystem code is moved to the target computer (flight

computer). The software carponents that handle the hardware interfaces to the

flight computer are integrated one at a time and tested. Finally, the

Subsystem Test Procedures are executed on the flight computer and a test report

of results is prepared.

3.1.10 System Integration Phase

The System Integration Phase is performed in a similar manner to the

subsystem integration. Subsystems are integrated individually into the system

and tested. The end task of the system integration is to validate that the
overall system satisfies the system requirements in the System Specifications.

The system tests performed at this phase are normally very extensive and cover

all of the functional and performance capabilities to be achieved at the

different points in the flight envelope. When the system has been adequately

33

validated for system safety properties, and handling qualities and performance,
the system is moved into flight test.

3.1.11 Flight Critical System Engineering

One function which is particularly important in system testing, but extends
back to the beginning of the system design is that of flight critical systems

engineer With the growth in integration of flight critical systems, there is
a growing need to provide a flight critical systems engineering function to

administer to the needs of the flight critical portion of the aircraft. The
functions which fall into FCS engineering can be summarized as follows:

" Allocate aircraft requirements to Vehicle Management System (VM) flight

critical requirements. This includes definition of architecture,
redundancy levels, fault coverage requirements, functional partitioning,

iteration rates, system time delays, information flow, through-put and

memory requirements, avionics system interface requirements, and flight

test aids requirements.

" Administer to external interfaces of flight critical systems. This
includes providing a support function in terms of interface definition,

expertise/consulting on interfaces during development of FCS and
providing a configuration control function.

o Provide development services in terms of requirements interpretation
during design, a "fireman' s" role during detailed design, and in general
provide coherent progressive processes for system development.

" Provide expertise in system level testing by assuring that the testing
level is established at the level the requirements are generated

supporting system or subsystem level and provide a system level test

leadership role.

The role of the flight critical systems engineering function then is to
provide expertise and control functions in the requirements, design,

implementation, and test of all FCS on the aircraft.

34

3.1.12 Flight Test Phase

The task of the Flight Test Phase is to carry out all testing required to

certify safety and performance characteristics in the actual flight environment.

3.2 VERIFICATION AND VALIDATION OF FCS SOFTWARE

3.2.1 Overview

The purpose of verification and validation is to provide systematic assurance

that FCS computer programs will perform their mission requirements efficiently

and correctly. The V&V effort serves as a program acceptance tool in providing

higher confidence in software reliability, compliance between specifications and

code, and adherence to accepted standards. When performed by an independent

party, independent V&V (IV&V) provides the customer better visibility into the

development effort, a second source of technical expertise, better document

quality and reduced frequency of operational change.

Proper performance of V&V on FCS software requires an understanding of

software V&V tools and techniques. It also requires a strong theoretical

background, and experience in FCS design and analysis. This background and

experience are needed for use of proper analysis techniques and putting enough

emphasis on critical functions. There are unique problems associated with the

design and development of dic tal flight critical systems. For example, in some

cases, direct discrete design is required as opposed to discretization of an

analog design. However, it is also necessary to account for pure time delays

introduced by the digital design. In a Digital Flight Control System (DFLCS),

the validity of the design should be verified throughout the operating envelope.

Simple frequency response measurements are not generally adequate for this

purpose, particularly where variable gain scheduling is utilized (and if

task-tailored control laws or reconfigurable control laws are to be implemented).

The V&V process is designed to address each critical phase of the software

development process. Software development is comprised of many subactivities or

35

tasks and the V&V process assures that each development task has been completely

and correctly performed. A comprehensive V&V effort to assure software

reliability will include the following basic tasks:

1. Requirenents analysis: assure that software requirements nave been
correctly derived from system requirements and that the

hardware/software interface requirements are copatible.

2. Design analysis: assure that the proposed design is feasible and that

proposed mathematical equations and algorithms will satisfy the software

requirements.
3. Code analysis: assure that developed code is a correct implementation

of the software design.

4. Testing: assure proper operation of program modules, software

interfaces, and system performance.

A detailed description of each V&V activity is presented in the following

paragraphs.

3.2.2 FCS Software Peguirenents Analysis

The definition of software requirements is one of the most critical phases of

the software development process. Verification of software requirements is

performed to ensure that system and interface requirements (documented in the

system and subsystem specifications) are correctly allocated to software

requirements (documented in the Computer Program Development Specification). The

criteria employed in this evaluation include completeness, correctness, and

testability.

Several techniques have been successfully applied to the verification of

software requirements. These techniques include:

o Independent derivation of software requirements from system/subsystem

requirements.

36

o Comparison to standard reference systems or similar systems previously

developed.

o Functional simulations and modeling of process allocation.

o Timing and sizing analysis, and the establishment of budgets for flight

critical system parameters.

o Development of a requirements chart which identifies interrelation-

ships between requirements.

A V&V test criteria is selected for use in confirming prcper inplementation

for each valid software requirement. The results of this analysis are presented

in a Software Requirements Analysis Report and any problems detected are

documented and acted upon.

3.2.3 FCS Software Desian Analysis

After system and subsystem requirements have been allocated down to software,

the software design phase can begin. This is the process of translating software

requirements into a basic software design and then a detailed software design.

It is imperative to verify that the proposed software design satisfies all the

software requirements.

The software design defines both the executive control logic and algorithms

to perform each software function. A balance of analysis techniques must be

selected to verify both of these elements of the software design. The following

design analysis techniques have proven effective in detecting design errors:

o Correlation and traceability between design elements and software

requirements.

o Functional simulation to assess design integrity and process allocation.

o Independent derivation of equations and algorithms.

o Comparison with standard references and models.

o Comparison with methods which have been proven in operational systems.

o Mathematical and logical analysis.

37

Design analysis techniques to be utilized for any particular function are

dependent upon the nature of the function (such as signal filtering, gain
scheduling, device interfacing). For example, logic analysis techniques are
appropriate for executive control functions while mathematical methods are more
suited for numerical functions. The proposed design of each software function is
verified by using the selected method to determine the extent to which it

satisfies the corresponding software requirements. Control logic is similarly
verified to ensure proper interaction between software functions.

3.2.4 Code Analysi

Analysis of the developed program code is performed to ensure that the coded
representation of the software design corresponds to the verified design. The
goals of the program analysis are to ensure that the coding is correct, that
development standards have been followed, and that no latent errors have been
introduced into the software by the coding process. The following program
analysis techniques are examples of those employed to identify coding errors:

o Version comparisons

o Text editing and syntax analysis
o Standards auditing

o Equation reconstruction

o Data structure analysis

o Flowcharting and logic reconstruction

o Manual code inspection

o Software sneak analysis

Software tools, which are programs designed to assist the analyst, are employed
to automate many of the above program analysis techniques. Software tools can be
used to help identify actual or potential errors in the developed code, and
reformat and consolidate information. They present a reliable, cost-effective

means to greatly reduce the manual program analysis techniques.

38

To maximize the visibility of the software development, program analysis is

performed in parallel with the code development. This is achieved by analyzing

the incremental code deliveries and modifications introduced in the updated

program versions. This method has proven to be an effective technique for

identifying major coding problems and for correction early in the code

development process. Any discrepancies between the final code and the verified

software design are documented and acted upon.

3.2.5 Flight Critical Systems Software Test

To complete the validation, tests are performed to determine compliance with

software and system requirements. A comprehensive test plan is developed prior

to testing and tests are planned to achieve the following objectives:

1. Verify that individual software functions satisfy the corresponding

software requirements.

2. Verify that the software/software and hardware/software interface

functions are properly implemented.

3. Verify that the operational system possess the required system

capabilities and satisfies the appropriate performance requirements.

Tests are planned at module, interface, and system -levels for both nominal

and extreme conditions within the required performance limits. Test procedures

are developed to provide a detailed specification of the exact steps to be used

in performing the test. The results of the test planning activity are presented

in a Test Plan/Procedures document. Comprehensive planning is the foundation

upon which effective testing is based.

Testing is conducted by following the exact procedures specified in the Test

Plan/Procedures. Software tools are employed during the tests to provide a

testing environment, an acceptance criteria, and analysis aid. Test results are

39

recorded, and any anomalous results are confirmed by analysis, documented and

acted upon.

Testing of FCS software generally occurs at five major levels during software

integration and test phases of a system development. These are:

1. Execution on the host computer.

(Module Testing)

2. Execution on an emlator of the target computer.

(Module & Interface Testing)

3. Execution on the target computer.

(Mxule & Interface Testing)

4. Integrated system simulation testing.

(Interface and System Testing)

5. Flight testing.

(System Testing)

These five levels are normally used in most FCS software development; the last

three levels are always required. Execution on a host computer usually refers to

a development type environment, where code can be examined in a static

environment, modules can be tested, and structure of the code can be tested for

proper interfaces between modules.

When the target computer is not available, the target computer is emulated on

a host computer. This emulation testing uses identical instruction sets, word

sizes, etc. yet provides a host computer user friendly environment in which test

drivers and analyzers can be "wrapped around" the emulator.

Execution on the target computer provides the actual computer environment for

the software execution. Individual modules are tested and integrated to a

complete subsystem/system to allow end-to-end testing. Execution on a target

computer in conjunction with some external inputs (real and modeled hardware

devices) is often referred to as "hot-bench" testing. One of the primary

functions of "hot-bench" testing is to check external interfaces and software

functional performance to realistic real-time inputs.

40

Integrated system simulation testing is performed to check the FCS software

in the full range of operational conditions. In this phase of testing, prototype

or actual flight computers are brought into a hot-bench, iron-bird, and/or test

rig environrent. The environment is made to present the operational environment

as close as is practical. This environment includes high-fidelity aerodynamics,

sensors (normally simulated), hydraulics and actuators, cockpit, instrumentation,

and outside view presentations for pilot-cueing. The closed-loop tests that are

run are generally pilot-in-the-loop operations to verify performance, flying
qualities, and to confirm proper functional dynamics and mode sequencing. In

addition to these tests, "pilot confidence" testing is performed where the pilots
fly realistic missions and push the simulated aircraft to its safety limits.

Flight testing is directed toward confirmation of performance requirements

and demonstrating flight safety. Considerable instrumentation is needed to

collect data which can be analyzed and correlated with analytical and simulator

predictions.

3.2.6 FCS Software V&V Tools and Techniaues

Table 3.2.6-1 broadly sumarizes FCS software V&V tasks, applicable V&V tools
and techniques, and the V&V objectives. An extremely large number of tools have

been and continue to be developed to aid in the verification and validation of

software. A variety of these tools (static and dynamic) are listed in Table

3.2.6-2. Static tools examine some aspect of specifications, designs, or code

without executing the code. These tools are grouped into a list of those which

examine a specific property and those which examine more general and extensive
properties. A dynamic tool performs some function to aid in testing the software

when the program is actually executed. A timing analyzer that monitors and

records execution times for functions is an example of a dynamic tool.

Techniques are "standards and procedures" used in development, test, and

maintenance of sottware. Table 3.2.6-3 presents some standard techniqucs used.

Development and maintenance techniques are included since substantial software

reliability can be obtained by attemtion to systematic developmJent and

documcrntation.

41

TABLE 3.2.6-1 V & V REQUIREMENTS

V&V TASKS CB 'VE/pri1POSE APPLJCABLE TE I.S/TOOLS

System Specification Evaluated to ensure that system/ o Requirements Analysis
Verifications subsystem considered will o Documentation Reviewfulfill mission goals and

objectives.

Control Law Analysis Assure control algorithms o Requiremnts Analysis
adequacy. Verify equation o Control Law Analysis

acclracy; evaluate functional o Emlation/Simulation
relationships and functional

performance (timing, sequencing,
etc.)

Evaluation of Evaluate for satisfactory o Review Mag Plan
Development Planning standards & practices, 0 CPDP Review

schedules, planning, controls,
reviews, audits, C4 change
control, problem resolution, V&V

Evaluation of Preventive measure. Sound o Document Peview
Software Development design, oding, and test - Standards
Methodology techniques reduce number of - Plans

errors made during developrent. - Configuration Management
Provisions

Software iemts eqirements evaluated for o Requirements Analysis
Verification adequacy, completeness, o Critical uirements

accuracy, testability, and Identification
traceability to higher level o Dooaentation Review
specifications.

Software Design Evaluate development products o Design Analysis
to ensure technical viability o Performance Analysis
and contribute to refinement o Docament Review
process. Ensure software design o Top Down Programming
represents a clear, consistent o System level mulation
and accurate translation of o Consistency Checker
software requirements. o Standardization

Code Correctness Test and evaluate developers o Code Analysis

code using irdependent tools. 0 Comparator

Code is checked for errors, 0 Compiler
onissions and incorrect trans- o Interface Checker
lations. Evaluate logic, file o Doament Review
structuring, execution paths and o Cross Reference
limitations, interfaces, etc. o Cross Assentler
Machine level open-loop tests o Simulation
and unit and module; closed-loop o Instruction Trace
at subsystem/sys-tem. Examine
timing.

Identify unexpected paths for o Sneak Analysis
information flow through a pro-
gram by analyzing the clues
characteristic of sneak paths in
retwork trees/flow graphs.

Software Validation Determine whether all software o Test Plan/Procedure Review
and system performance, inter- o Test Case Generation

o Development Tests face, functional and test o Hot-Bench Sirulator
o System Tests rirem nts are fulfilled. o Mainframe Simulation" Flight Tests

o Iron-Bird Sinulat iono Control e - Every rcquirent is o Aircraft Flihit"adequately
tested

" Handling Quantities All subsystems are proprly
" Functional Tests integrated

- All system responses are
adequate for rvrfornssnc and
safety.

o Reny Innur, thrnT0Qt i viK~Po'1Wnt o -tcm Li r [rtn
lasaient te:;tinr, tItIt PSL/EM fy te iets r, I 'd 1 , io
Fa ,I Iu re t '- ,' sm LJ i ilt it r - font r f | i i t,$ -T

If im l ,- I i,- a l ':;If; Oi

,t. ~tft;42l'h it .: In hn .

42

TABLE 3.2.6-2 VERIFICATION AND %WALIDATION TOOLS

BULCLOhI_1 TATC Or L T S TT YNAMI. TO 0 1

C!R-ULAR REFERENCE CHECKEN ACCURACY ANALYZER DATA FLOW PAT ING

COE COVMPAPA
T

OR DOCCUMENTATION AND EMULATION

CONSTRUCTION SYSTEMS
CROSS-REF ERENCE CHECKER SIMULATIONS

DATA BASE ANALYZER EDTCP * CCMPUTEN

fLOW CHAWIER FURMAL LANGUAGES WITH * YBARD

SYNTAX ANALYZERS
INTERFACE C1ECKEP - TEST BED IlRON B.BD)

MODULE INVOCATION * REOJIr'EMENTS TEST DATA GENERA-OR

PROGRAM FLOW ANALYZER - EDECIFICATIONS TLST DRIVER

SET/USE CHECKER * PROGRAM DESIGN TEST EXECUTION MONTO
r

UNITS CONS!STINCY CHECKER * PROGRAM CODE TEST AECORD GENERACR

UNREACHABLE CODE VECTOR SNFAK-PATH ANALYZER TIMING ANALYZEP

DYMUCLIC EVAt UAIO

THEOREM PROVE P_

TOOL DEFINITIONS
Accuracy analyzer - analyzes numerical calculations for req'd accuracy
Circular reference checker - modules calling each other
Code comparator - differencing between versions
Cross-reference checker - calling of modules; external variables called
Data bases analyzer - module accesses to data bases; unused elements
Data Flow Pathing - trace execution sequene for variable (s) in flow
Documentation & constructions - Auto documentation; Consistent data pool
Editor - Analyze/extract information/relationships from source programs
Emulations - System level model generated from requirements, not design
Flow charter - show logical construction of program
Formal Languages - Program structures and rules
Interface Checker - Check Range, limits, scaling of variables
Module Invocation Tree - Establishes call hierarchy with system
Program flow analyzer - statistics on usage; estimate execution time
Set/Use checker - Checks for variables: set, not used; & used before set
Simulations - Test characteristics, algorithms, functions, performanc
Sneak-Path Analyzer - Looks for unexpected paths
Symbolic evaluator - reconstructs equations relating output to input
Test data generator - produces test cases to exercise the system
Test driver - controls the execution of a program
Test execution monitor - collects data and compares to expected results
Test record generator - analyzes, reduices, and format.s results
Theorem prover - axicms used prove as.sert ions stated for a path
Timinq analyzer -monitors/records run time of functions and routines
Units consistency checker - variablo expressions (units) checked
Unreacbible code detector - looks for 2.ode which cannot be executed

4

TABLE 3.2.6-3 1
DEVELOPMNT AND V&V TECHNIQUES

Abstractions and hierarchies to reduce coplexity: abstractions such as
trees are used to make the design simple and clearly defined

Checkout (debug) testing: function/module testing before integration
Constructive design approaches: (eg. formal design language)
Critical Design Review: oral demonstration of detailed design
Data flow diagram, structure chart: shows flow of data in program and

hierarchial organization
Descriptions or documentation
Design guidelines, test guidelines, & coding guidelines
Design standards, coding standards
Functional capabilities list: module description of functions to perform
Integration testing: code test after modules are assembled; I/O structure
Organization as finite automata: provides clear structure of functions for

FLCS
Qualification audit
Singularities and extremes testing
Symbolic execution: performed on special functions such as mode logic
Systems concept review: oral demo of initial concepts, trade-offs, etc.
Validation testing: final dew in simulation environment

44

Evolvemnt of Computer Aided Software Engineering (CASE) tools continues

towards providing software development with the environment of an integrated

tool set which includes planning, analysis, design, documentation, static

analysis, prototyping, dynamic analysis, simulation, and construction of
executable systems. (See Referenmoe 2) Table 3.2.6-4 presents some of the

applicable CASE tools that are Ccarercially available. These tools span the

gamut from powerful linear systems analysis, prototyping and code generation to

those which provide aids in the form of a data dictionary, creating data-flow

diagrams, process specifications, and graphic documentation of design.
Evolving CASE tools are providing ways to help manage the complexity of

large-scale software systems. The tools, like the methods they implement, are

not final solutions but are aids to providing a more friendly software

development and test environment.

Table 3.2.6-4 REPRESENTATIVE CASE TOOLS, METHODOLOGIES, AND LIFE CYCLES

CASE TOOL METHODOLOGY LIFE CYCLE

TEAMWORK OS/2.3.0 DeMARCO, WARD/ PLANNING, ANALYSIS
SCHLAIR, CONSTANTINE DESIGN

EXELERATOR 1.84 YCURDON, GENE/SARSON PLANNING, ANALYSIS
DESIGN

POSF 4.0 YOURDON, GANE/SARSON, PLANNING ANALYSIS
CONSTANTINE, FINKELSTEIN, DESIGN, CONSTRUCTION
INFORMATION ENGINEERING

TRACEBUILDER II TRACES SOFTWARE ALL PHASES OF
RED'S FORWARD S SOFTWARE DEVI[.OPML[N'
BACKGROUND

I r. I (I A [) ;'y T Mk",, t 1N4 AII M()I)IL ING, C("C L ' A .H ,'.

I r,; r S'i: &M BUIL, P. I -10 D It, A , N;

(F NFU AT ION , i T'I

45

Besides attempting to ease the software programmer's burden, code
reusability is another issue which CASE developers are targeting. Software now
constitutes 90% of an electronic systems functionality (vs. 10% during the
1960s). With so nmuch code being written, CASE tool manufacturers are
developing tools to tackle reusability problems. These tools are part of a
larger system of front-end tools to streamline the programming process and make

it more efficient.

Fundamentally, CASE tools ist meet several criteria in order to be

successfully adapted as part of a software developer's tool kit. These
criteria include:

o Break down cczrclexity of requirements and designs into manageable

coiponents.
o Presentable to several audiences including end-users and contracting

organizations.
o Cheaper than buildinQ the real thin as compared to conventional

software development approach.

o Quantitative and Verifiable with respect to requirements traceability

and performance criteria.

o Graphically oriented to provide more easily understood graphical
illustrations of design.

46

3.3 TASK 1 RESULTS: RFIPZ4NTS FOR FLIGHT CRITICAL SYSTEM4S SOFTARE V&V

3.3.1 General Reauirements for FliQht Control Systems

General requirements for flight critical systems are generally broken into

two parts: mission requirements and safety requirements. For example, flight

control/engine control is normally first driven by safety requirements and

secondly by mission requirements. For most other systems, mission requiremaents

are given more design attention relying on flight control (and the pilot) to
provide the needed margins of safety. Ccmmonly used specifications for

probability of loss of an aircraft due to a flight control system failure is:

Ploss < 1 x 10- 7 per flight hour (military aircraft)

Ploss < 1 x 10- 9 per flight hour (civil aircraft).

With the advent of digital flight control systems, these failure probabilities

have been applied to the total digital system including the software. To

achieve these numbers for the entire flight control system safety, the prob-

ability of aircraft loss due to software failure must be even lower to achieve

this high safety margin. Emphasis in past and current developments has been

placed on fault avoidance and fault tolerance techniques in software design.

With the advent of the highly coupled flight critical systems, this

distinction between flight control and other flight critical systems regarding

safety consideration is diminishing and fault avoidance/tolerance issues must

be applied in all flight critical systems.

3.3.2 FCS Design Trends Inmact On Software V&V Requirements

Design techniques which are currently used to address safety aspects of FCS

software include fault avoidance and fault tolerance. Fault Avoidance

techniques apply structured design methods that incorporate rigorous

47

quality control and systematic testing of the software to insure that the

probability of a software "bug" being introduced or remaining undetected during

the software design and development process is extremely low. One technique of

fault avoidance is the use of very small and very simple modules which are

relatively easy to verify. It is ccmmonly assumed that high integrity can be

achieved through use of such techniques. In practice, however, no matter how

carefully the software is designed, it is impossible to establish that it is

completely error free because: (1) the larger number of possible states

preclude exhaustive testing; and (2) the usual statistical analysis methods

which are useful in hardware development are not applicable to software

development. Therefore, Fault Tolerance is introduced into design to cope with

faults which are not discovered during design and implementation process. A

good fault tolerant design should prevent any remaining faults from having a

catastrophic effect on the system.

Flight control systems requirements have and will continue to drive safety

aspects in software design. While requirements for digital flight control are

not unique, collectively, they represent the most demanding requirements in

guidance and control applications. Real-time closed-loop operations,

mtilti-mode design, bandwidth variations, multi-loop design, and tight

interface/reliance on sensor systems are some of the characteristics of flight

controls which drive overall software design complexity. These factors along

with the trends in aircraft systems and avionics systems design toward the

increased use of relaxed static stability and integrated avionics/control

functions, place even more importance on software fault avoidance and fault

tolerance.

The near term trends in flight control systems (FLCS) are expanding the use

of real-time, on-board optimization and intelligent controls to achieve high

performance and provide for damage tolerance and self-healing designs. These

near term FLCS already are addressing the inner-loop, outer-loop, and

redundancy management functions shown in Table 3.3-1.

48

TABLE 3.3-1 NEAR TERM TRENDS IN FCS FUNCTIONS

FUNCTIONS

INNER-LOOP OUTER-LOOP REDUNUANU , MANAGEMENT

a
" RELAXED STATIC STABILITY * TF/TA!OA * ANALYTiC REn'J';,'JANCY

" GUST LOAD ALLEVIATION * Al BASED DECISION MAKING . a BASED TECHNIQUES

* RIDE QUALITY * INTEGRATED CONTROL

* FLUTTER MODE CONTROL * OPTIMAL FLIGHT PATH CONTROL

* INTEGRATED CONTROL

FCS Intecration has an even mre challenging impact on software. Table

3.3-2 summarizes sane of the areas related to integration and the related

impacts of fault tolerance.

Table 3.3-2 EXAMPLES OF IMPACTS OF INTEGRATION CONCEPTS ON (CPLEXITY

CONCEPT DESCRIPTION CRUCIAL FUNCTION

IMPACT

DISPERSED.INTEGRATED SHARING OF STRAPDOWN MORE COMPLEX FCS
ALGORITHMS FOP SENSOP

FLIGHT/NAVIGATION SENSORS NAVIGATION SENSORS WITH NORITIO. RENACH
NORMALIZATION. AEDUNDANC'y

FLIGHT CONTROL MANAGEMENT, & SURVIVA(3LE
DISPERSION

INTEGRATED FLIGHT/ SHARING OF INFORMATION FLT CRUCIAL ENGINE CTRL

PROPULSION CONTROL BETWEEN ENGINE AND FLIGHT

CONTROL SYSTEMS, VECTORED
THRUST

FLIGHT PATH MANAGEMENT REAL TIME OPTIMAL CONTROL LOW ALTITUDE AUTO FLIGHT
FOR TF/TA.COMPLEX ROUTE MANAGEMENT IS CRUCIAL,
DECISIONS AT LOW ALTITUDE SENSOR BLEND CONCEPTS-

FLT CRUCIAL. HUGE TERRAIN
DATA BASES (eg OTM) AHE
FLIGHT CRUCIAL

VEHICLE MANAGEMENT o I F P C u COMPLE (ITY

SYSTEMS o UTILITIES SYS1EMS MGM T o HIGHLY INI 14A(.]IVL

o INTE3 CONTROL FLINCIiONS o HLCONF IGURATION
o INTEG MAINI/DIAGNOSTICS

49

3.3.3 Technologv In:acts on V&V Reguirements

Technology advancents in flight critical systems software design and in

software verification and validation testing have been significant over the

past 15-20 years. The developmenu and use of digital systems in flight

critical systems applications have pushed verification and validation

techniques to meet the demands of testing increasingly complicated systems. A

numrrer of accepted validation testing methods are used, but verification and

validation technology generally lags the advances being made in the development

of FCS software. Currently, convenient verification and validation methods and

tools are lacking for multi-channel and highly integrated systems.

Trends and projections in flight control system design and impacts on

validation have been presented in Reference 3 and are summarized in Table

3.3-3. The trends presented in the table are very realistic and provide moti-

vation for developing improved FLCS verification/validation techniques

simultaneously with evolving flight critical systems concepts. It has long

been advocated that many of the complications associated with V&V of FCS

software can be avoided by anticipating the V&V requirements early in the

design process and by using many of the evolving structured V&V techniques and

tools discussed in Section 3.5.

3.4 TASK 2 RESULTS: DATA COLLECTION

The primary efforts involved in the data collection task were to perform

literature reviews on FCS software development and V&V methods and to conduct

numerous focused interviews with FCS developers and key government FCS
experts. In order to help organize and focus these efforts, FTI developed

checklists (see Appendix) addressing the classes of information to be

gathered. The checklists addressed specifics on current developmental

approaches used for FCS software, available software analysis tools and

techniques being used, facilities and support requirements, problems most often

encountered during development, experiences in the development of FCS software,

and perceptions of what FCS software development prourams would require because

50

Table 3.3-3 Forecasts/Projections for FCS in 21st Century Indicate

(source AGARD W09)

Significant increases in computer power will cause major expansion in
scope and character of onboard systems
Development of architectural branches within redundant systems will

add verification and validation complexity

Redundancy in management functions (e.g., voting planes, etc.)

embedded in special purpose HM isolated fran FLCS will change

verification and validation complexity

Highly fault-tolerant HW designs that provide "dynamic redundancy"

changes the scope and complexity of verification and validation

efforts
Embedded replicated or dissimilar subchannels for self monitoring

could reduce redundancy management complexities at higher rates

Increased throughput and emerging new architectures are allowing

sensor fusion with information integration and display, requiring

expanded FCS verification and validation roles

Trends are towards systems highly integrated through FLCS because of

mission and performance benefits -- leads to more testing at system

levels, interdisciplinary expertise, and pilot involvement

Increase of control effectors and reduction in actuator redundancy

levels for self repair/reconfigurable flight control

High bandwidth FCS for active vibration and load control have

associated characteristics which impact other FCS
Hypersonic vehicles require VMS to have total vehicle energy/thermal/

trajectory management integrated with FLCS
Decision-Aiding systems in a real-time environment require validation

of knowledge base which currently has no accepted validation methods

Interfaces and internetting to unmanned vehicles leads to additional

complexities and ver 4£ ication and validation requirements

Boundaries between non flight critical and flight critical systems are

projected to dissolve with increasing integration of systems

51

of the latest technology being incorporated into FCS. The checklists also

included a list of applicable Government standards which address FCS software
development. A catalog of applicable software tools used in development,
verification and validation of flight critical systems software was prepared
and included in the checklists to aid with tool identification.

Literature searches were performed including review of publications and

recent articles at the AFTECH Library, review of software development and
flight critical systems technical journals, and a Defense Technical Information

Center search on related subjects. Hundreds of related article abstracts were
scanned for appropriate subject material. In order to provide an orderly way

of tracking and retaining pertinent information gained from these reviews a
Data Base Management System (DEMS) was implemented. This DBMS was used then to
help organize and record the many identified sources of data, tools and

techniques. This DBMS was created on DBASE III+ and hosted on an IBIM

ccopatible PC.

A number of the reports and documents specifically directed at flight

critical systems development and its verification and validation were
identified. Two very recent AGARD reports, "Language Support Environments For

Guidance And Control Systems" - Final Report Working Group 08, and '"Validation
Of Flight Critical Control Systems" - Report of GCP Working Group 09, were very
helpful and current on many of the flight critical systems requirements, flight

critical systems trends, development approaches, and verification & validation
practices. The "Handbook - Volume I Validation of Digital Systems in Avionics

and Flight Control Applications" and the "Digital Systems Validation Handbook

Volume II", (References 4 and 5, respectively) both published by the US DOT are

also excellent sources of material for verification and validation testing
practices used in modern flight critical systems. Another informative

reference that serves as a good primer on flight control software validation is
the "Digital Flight Control Software Validation Study", (Reference 6) an AFFDL

technical report. Discussions of recent Computer Aided Software Engineering
tools were presented in several articles; the book by A.S.Fisher titled "CASE"

gave an excellent summary of where CPSE tools are now and their current trends.

52

In depth interviews were conducted with key government and industry experts

in the development of flight critical systems. These interviews included
personnel at right Research Development Center Flight Dynamics Laboratory, Air

Force Flight Test Center, NASA Dryden Flight Research Facility, McAir, General
Dynamics, Rockwell International, Honeywell, Softech, and High Plains. The

prepared checklist was used to guide the discussions on FCS software
verification and validation tools and techniques.

Comments gathered from the above sources have been summarized below in
terms of V&V Drivers, Development and V&V Methodologies, Higher Order
Languages, Development and V&V Tools, Validation Testing, Future FCS Software

Considerations, and Problems/Lessons Learned.

FCS SOFTWARE V&V DRIVERS

o FCS move to digital impleentation increases complexity of V&V effort.

o Increased systems integration accomplished through software.

o Move to Ada requires update of V&V tools and techniques.
o Complexities of Failure Management / Self Healing requires careful test

planning to get adequate testing coverage.

o Maintenance of FCS software requires extensive V&V capabilities.

o Move towards transportability (MIL-STD-1750 kills this area).

o Integration of software with hardware complicates V&V testing.

FCS SOFTWARE DEVELOPMENT
o 2167A waterfall chart represents how development/test is performed.

o Rapid prototyping is useful early design aid.
o Projects organized along the lines of how the development proceeds

are desirable. One good example is:.

- Aerodynamic Stability and Control

- Control Law Design and Analysis

- Flight Critical Systems Engineering

- Flight Control Mechanization and Software

- Flight Control Hardware Design

53

- Flight Control Systems Test

- Flight Control Operations

o Flight Critical Systems Engineering function is an increasingly

important function to administer to needs of flight critical portion

of aircraft. It provides a continuum of understanding across the

development organization.

o Quality Functional Deployment is good formal planning and documenting

why you have done what you have done.

o Some developers feel strongly that the software development should be

kept with the flight control engineers. In principal, other developers
agree, but that the software engineer is better equipped to write

software -- therefore training software engineers in the development of
FCS software is mandatory.

USE OF HIGHER ODER LANGUAGES (HOLS)
o HOLs are in general good. However, once code is reccmpiled, it is

difficult to say that new code is good versus an assembly language

patches approach.

o One advantage of HOL is that it allows the system analyst (flight

control engineer) to read or even develop the code. This avoids the

problem of miscommunication between the designers and the software

implementors.

o The proper place to standardize is the language. Ada has some problems

(Ada tasking, rendezvous, etc.), but you do not have to use all of the
capabilities of the language.

FC$ SOFTARE DEVELOPMENT AND V&V TOOL$

O FCS software development is moving towards provision of control law

block diagrams to the FLCS houses for automatic code generation. GE's

program called FASTER directly generates 1750A assembly code.

o FLCS Tools used:

- Ctrl-C

- Matrix X

- GenAir: Generic Aircraft, a McAir tool. This uses general

54

control laws and general aircraft configuration performance. Used

for mission performance evaluation.

- Modular Design & Analysis Tools

- Nonlinear aircraft model simulation

- MTLAB, EASY5, MATRIXx, CTRL-C

- Use of script files: set of camiand files that go to simulation

computers

- Recording system for all parameters in the simulation system.

o Test tools that use actual flight boxes and automate testing are

evolving. The Fully Automated Tester and Error Reporting (FATER) is an

example which compares control laws in Fortran versus assembly.

o TAE (Transport Application Executive) is a NASA Goddard Flight Center

tool used in Simulated Rapid-Prototyping Facility (SRF) of the WRDC

Flight Dynamics Laboratory. It has standard I/O for a program and runs

on a dozen different computers.

o FCS Integration Tools/Methods Include:

- Basic documentation tools.

- A lot of simulation for R&M testing.

- In-house fault tree analysis.

- 1553 analysis tools.

- Flow diagrams & analyzing timing between functions.

FCS VALIDATION TESTING

o Utilizes a bottom-up philosophy.

o Starts with lowest level code and progresses to system-level testing.

o Provides verification at one level before progressing to the next.

o Test plans/procedures are prepared for each phase/level of testing.

o Test results documented, discrepancies documented, investigated and

acted upon.

o Approach ensures system operates as designed and is flight worthy.

55

o Provides total visibility of system development whici allows better

management control.

o Handling qualities quantitative solutions have failed.

o Integrated system V&V evaluates system functional requirements:

- closed loop test environment simulates the dynamic

behavior of the air vehicle

- actual flight hardware is used where practical

- verifies closed loop dynamic response

- used for handling qualities evaluation

- evaluate pilot vehicle interface evaluation

- used for failure management evaluation

- evaluates failure modes and effects tests

o The ability to test back-to-back software (ie. previous OFP vs updated

OFP) offers many benefits during validation.

FUTURE FCS SOI E CONSIDERATIONS
o Future FCS systems will most likely have to address interfacing with

existing systems. A wide generation of FCS corrputers exists. Some

older ones cannot support HOLs.

o Development contractors are moving towards using.

- RISC coputers; currently there is not adequate support tools

in this environment.

- Ada language programing.

o Transportable software is being addressed.

- Software coipilers are currently a problem here.

- Timing is one of the most critical elements in flight

critical software and this effects transportability.

o Vehicle Management Systems WVMS) is the new focus in FCS

- Developers must be realistic about what they propose and use.

- The combinatorial considerations make it imp)ossible to test

all combinations

o Developers are looking at real needs of common Module approach.

- Designing test stations that will test.

56

- Using language translators for new front-ends to test tools.

- FLC filters have already been transported.

- Ada will help "Comon Module' s" in the future.

o Redundancy & Monitoring (R&M)

- Test coverage is the problem here.

- There is the question of Quad vs Triplex. Triplex can meet the

1 x 10- 7 problem, but it is difficult to meet a requirement of

fail-op, fail-op without going to a Quad system --

is this requirement unduly inposed on flight critical systems?

- A quad voter runs twice as long a triplex voter.

- Software ccmplexities at least double for every channel added.

o Total System Integration

- New techniques are being used for robust control laws,

multi-axis, integrated flight propulsion methods, multi-thrust

vectoring, and self repairing.

- Need a manageable way of dealing with reconfiguration & fault

isolation, reconfiguration control, and advance control design

software.

PPDBLE AND LESSONS

o Problems arise in specifications across flight critical systems
interface.

o Use of simulation for testing interate systems is questionable.

- Can not simulate EO and radar devices that well. Models can

be built for it, but usually they are single thread.

- Sensors & integration depend on models for high

technology sensors. modeling is very difficult.

o Use of simulation for V&V

- Organizations: people and equipment have to be planned and adequate.

- There is always a reluctance to change a simulator once things

are up and running. Some flexibility is required.

57

o People who have tested systems have to put information back into the

loop. The problems that were encountered and how they were solved is
not reported. Only the mod part/results seem to get published.

o Result of flying aualities testing has produced much disinformation.

o One very large need is requirements & specifications for control laws.
- There is a lack of a reasonable MIL-Spec for flight control.

- PIO prediction is an example of this.

- Mil Prime Standard 8785-C is not adequate, it is a back-up

guide.

o Design group practices could be improved:

- Mst think ahead as to the way things will be tested.
- Lack of documentation: integrated system documentation

defining how systems work together is needed.

o Most errors are in design. These are generally found in systems

integration testing.

- B-2 put a lot of time and money to get set up for systems

integration testing and that has paid off well.
- Verification of software is done very well. Few code errors

now appear. Automating tests is easy.

58

3.5 TASK 3 RESULTS: DEVEL)P1 OF THE FCS V&V MTHODOLOGY

3.5.1 Technical Aiproach

The FTI technical approach to the development of the flight critical

systems verification and validation methodology is based on a balanced

allocation of technical skills, proven V&V tools and techniques, and evolving

software developmental test methodologies. The implementation of our

methodology will provide a workstation environment providing the needed tools

and techniques for verification and validation of flight critical systems.

This approach will address the growth in the use of software as the

implementating and integrating media for the development of highly integrated

flight critical systems. Our overall technical approach for developing and

implementing the methodology is illustrated in Figure 3.5.1-1.

It is built to address the flight critical systems software development

tasks and will provide timely evaluations for each development milestone. Our

approach addresses each of the development phases and breaks out the

verification and validation tasks, tools, and techniques which most

appropriately can be used to evaluate the development efforts at that phase. A

large data base of analysis, verification, and validation tools is available.

Appropriate tools will be chosen to address the V&V requirements. Those tools

which can be used directly to meet the requirements will be candidates to be

used in the development of a Computer Aided Verification And Validation

Engineering System (CAV2ES) which can be applied to the current development

environment phase. For each tool evaluated that does not meet specific

criteria, deficiencies which must be corrected will be identified and estimates

of the effort required to correct these deficiencies will be made.

The CAV2ES will be hosted in a workstation environment and will provide

the user with ready access to those requirements, design, and development

details needed to assess the state of development of FCS software. Much of the

early development verification activities will utilize tools hosted in a

workstation environment and will provide analysis data and results which can be

carried from one stage to the next. The V&V methodology will also address the

59

()SO (IPOR()co (2TF~ SYSTEM FICA

SYSI
Sfl0TS NSTTIl

CONCEPT

DEVELO'MESET ETOOLCTION

--- -- -- -- CERTTFICATION LEVEL -- - - - -

CETlCfON FIGHT FCS
RUIEENT TTSINPU!

-- ---- VAUDATION LEVEL- -- - - -

SY=STE34 SYSTEM
R QUTREMENT F2nEGRATION

DESIGN

U E
SUBSYSTEM SUBSSTEM

REOUIREMENT INTEGRATION

SUSSTM
DESGN

VEWCATION LEVE a

HARDY^

ChowBASC SWSWITECSUSSYST

DpagnR DEIGN OYEOS

Dellaed Cr" DEAILM ODUT
MEETS E W ESGN TETSIOn

SYSTCMIBEIIA

SIAULATION REYWESMATRSIUAIN
-- IT R T

FOA C~ ~ PERFORMANC CRSSRFEECE - OLUE

CTRL-E Si NO ME T IA U TO
FLOWCHARER -ECULTRA

FAUTTLLE ANC REVIEWAI0 NTERFACIENCEES -HB

NUMERICAL CH MFECTIKS

R/M EMUULATON S D ACDM D SERUED'SETE

TECISO TABLESIQUES DATAANALS EST DATA

I A *I- REIEWSG ANAYSI ED TO ER TSTUDAIVER

CONT 4ROHL LO L CLOW-DIAION TEMUELCTONITO

DATA F IOWS DBMS

SYMBOLIC EVALUATIONI

I

60

SYSTEM FCA

q~ OR 0 CDR 0 TT FPA (soRPHASE I FLIGHT CRITICAL SYSTEM SO
ICA AND DOCUMENTATION DAT

IN SEPVICEPH

PRODUCTION
-- - ETICATIONLEVEL.....

FLICHT
TESTS FCS VAX WORKSTATION MAINFRAME SIM

- -VLIAIO EVL- --- -- INPUTS ENVIRONMENT ENVIRONMENT

SYSTEM I DATA ANALYSISI]INTECIATION OI.-LO

I FS AALYISDYNAMIC SUBSYSTE INT

rMDOCUMENTATION II ANLYISSV TESTING I
'*MN 4ER7O CPEROANCE All INCREMENTAL. CLOSED

LOOP FU CTIONAL
EI. AllO A C-

STEM
OFP SUBSYSTEMICN

VAV TESTING
V ER IFC A T O N LEV EL. - -. - -.. -......

: "
SW/HW NemC AOPSADL

w 1I. ON TARGET

BA~CSW W OEECHARVAN OTBENCH

DESGN ON HOST SUSSTalSMLlO

DETAILED N4OD'JLE
SW DESK4 TESTS

MODULE
OD0C

YES V&V TASKS I TECH4NIQUES I TOOLS

NO TS E%^LUATION ~

-MEET$ -

CRIERI o

TOOLS 8TECHNIQUES DATA BASE - -- --

$4E VE Ws COMPARTOR SIMUL ATIONS *

WALK(T.WOUG.HS CROSS-REFERENCE -COMPUTER ---

HIEORACHCLMOE FLO-CARTER EMULATORS .- .
TOONAPSEllAC CHKER H YBRID

FUNCTIONAL DECOM SET/USE CHKER -TEST BED- -
DEC-SION~ TABLES SNAKPATH ANAL TEST DATA G EN -
TI MING ANALYSIS EDITOR TETDIE

ICONTROL FLOWS CONDITION GENER TEST EXEC LMONITOR
DATA I ow S DBM-

SYM80LIC [VALUATION
1

I

60

PHASE 1 FLIGHT CRITICAL SYSTEM SOFTWARE REPORT FIGURE 3.5.1 -i
AND DOCUMENTATION DATA BASE V&V METHODOLOGY

DEVELOPMENT APPROACHI

VAX WORKSTATION MAINFRAME SIM IRONBIRD FLIGHT TEST
ENVIRONMENT ENVIRONMENT ENVIRONMENT ENVIRONMENT

DATA ANALYSIS

*FAULT .O
*COMpAAITIVE

6 NEPORtT GENERATE FLGTTS

DYNAMAIC*SUBSYSTEI INTEGRATED SYSTEM I . AXOLINO QUALITIESFCS ANALYSISI V DI motRSOE
* CONTOL ~ -V&V TESTING VV TESTING I *MOERSNE

* PEFORMNCE NALYO~ *SYS .NTEROPERASILITY* SASLfITYMNE ALY I INCREMENTAL CLOSED _,VIE~UAT
LOOP FUNCTIONAL * INUDOU. IITIES
EWk.UATION CAL DYENAMIC 1, SPONSE

OFP SUBSYSTEM E^UTO

&va TESTING I

UNI1T LIE
OwF STANDALONE II

I4OTBENCHII
SIMULATOR I

-WEAKNESSES
-RECOMMENDATIONS

-REV SIONS

Aj CHANGE IMPACTS
-SOP ISSUES

vaY TASKS i TECHNIQUES I TOOLSDEINCCRS
- ~ - -REO'D CORLS

* * ~~~FUTURE IMPACTS ________
- - ON FIGS VaV

- ARCHITECTURE BRANCH

REDUNDANCY

- REPLICATED/DISSIMILAR
SUBCHANNELRAM ________________

- HIGHLY INTEGRATED
VVAPOC

FCS/VS/PVIGOALS & BENEFITS

- SELF-REPAIR &
~ ERECONFIGURATION *SYSTEM OPERATES AS DESIUNED

~ ~ -Al SYTEMSAND IS FLIGHT WORTHY

= - -~- SINIFCAN INCEAS *HIGH DEGREE OF CONFIDENCE THAT FCS
-:SIGNIICA N T CPUPOW RES WILL MEET ALL SAFETY OF FLIGHT ISSUES AND

IN CP -POWER PERFORMANCE REQUIREMENTS

*EARLY IDENTiFICATION OF AMOIGUOUS. ILL -DEFINED
- - - .~ -AND iNADEOUATE SOFTYARE REQUIREMENTS EARLY
- - ___________________________AND CONTINUED IAMPHASIS ON TEST PLANNING

DETECTION AND CZCRDECTION OF MUPAOPE ALT
- -- - -MECHANIZED DESIGNS AND CODE

IMPROVED CUSTCvEA VISILir TY I.o THE~ -DETAILED STATUS :XTHE SOFT-~RE 0Eli.LOPMENT
* - --- -ACTIVITY AS T '-CC;ESSES

- - * -fle, EDICE D INCICE NCE S Of SOF T ARE E ARORS ONCE -Tot*

- -- ~-SYSTEM IS OPEPA7 CNAL

____ ' - -EASE OF MAINTEkANCE ONCE TmE SYSTEM IS
____ OPERATIONAL

NA 'LIDATIO N DATA AN*,YSI5 TOOLS' TECHNIQUES
APPLICABLE TO - -G I TEST

------- - - DEMONSTRATED f THOOOLOGY EASILY IMPLEMENTED
- a -s -ACROSS FLIGHT1 CQ TICAL SYSTE MS

validation test activities which take place when the development progresses to
the point where testing of software and subsystems utilizes hotbench
simulators, simulators requiring mainframes for camputational support and
finally when testing moves into an ironbird test environment.

Review/selection of tools and techniques will be an ongoing activity. This
activity will address impacts on V&V requireents as future flight critical
systems software designs take advantage of the growth in coputational power
due to computer advancements and in new design approaches which can be utilized
because of this growth. Increases in levels of redundancy for increased
safety, use of highly integrated FCS/Vt/PVI to improve mission performance,
and use of self-repairing design techniques in FLCS are but a few of the trends
which will complicate the verification and validation of FCS software.

The proposed V&V methodology will provide the user a means for early
identification of ambiguities and errors in requirements generation and design,
yet also provide the means of assessing whether or not the FCS operates as

required and is flight worthy.

The specific details of the CAV2 ES will be presented in the next section.

3.5.2 CowDuter Aided Verification and Validation Enaineering System

The FCS V&V methodology design will be implemented in a workstation
environment denoted as the Computer Aided Verification and Validation
Engineering System (CAV2 ES), see Figure 3.5.2-1. The CAV2ES v11 provide
an environment in whic . the flight control engineer or software engineer can
quickly and easily access and analyze design information and software code, or
generate data to verify and validate FCS software. It will allow the engineers
to deal with all phases of the development cycle and tackle the problem

maintaining a continuity of requirements/design cvaluations across these

phases.

The Computer Aided Verification and Validation Engineering System will
provide the following ftinctions: V&V Executive (VEXEC), Too! Interface Manager
(TIM), User Interface (UI), Simulation Conputer Interface (SCI), Data Recording

61

l. TOOLLILIEILI 4 4 WILIBRARY

---------------------------- ---------

I I

TOOL
AUTO

I INTERFACE PILOT

MANAGER FUNCTION

M-nC> AETWORK

DATA DATA DATA I
ANALSIS ASERECORDINGI

ISYSTEM MANAGER SYSTEM

----- ----- --------- 1

I Z ..

- - - -

I IDATA 1BASEI
FILES

CAVES

Figure 3.5.2-1 Cczputer Aided Verification andi Validation

Engineering System (CAV 2ES)

System (DRS), Data Base Manager (DBvD, Automratic Pilot Functions (APF), and the

Data Analysis Sy-,ten (DAS).

In addition to the CAV 2ES primary functions, it also retains its own data

base and library of tools. The data base is structured to be able to store and

retrieve the data itemis which are a product of executing the verification and

validation analysis tools. The tool library consists of two parts, a generic

tools set and an external tools set. The generic tool set is a group of V&V

62

tools which will perform basic V&V functions on FCS. The external tools set

represents user selected or new tools which need to be interfaced through the

Tool Interface Manager.

The Tool Interface Manager (TIM) selects which interfaces are used with the

selected tools so that the output of the library tool is put into a standard

format acceptable to the Data Base Manager. If a new tool (external tool) is

to be interfaced to CAV2ES, the TIM has an interface build capability which

aids the user in building a functional interface which converts data to a

format consistent with the existing data base.

The V&V Executive (VEXEC) monitors and coordinates the operation of

CAV ES functions. The VEXEC execution involves issuing comands to the Tool

Interface Manager, the Simulation Computer Interface, the Data Recording

System, the Data Base Manager, the Automatic Pilot Functions and the Data

Analysis System. It receives comrands and sends responses to the user via the

User Interface.

VEXEC is comand driven via the User Interface (UI). The user interfaces

with the VEXEC by means of conands transformed through the UI. VEXEC assists

in selection of: V&V tools, data analysis techniques, and data bases to be

used. VEXEC can also assist in start up and shut down of simulations and

facilities to be exercised via the Sinulation Corputer Interface. It can

direct the loading of simulation software in simulation computers, and can also
control the initialization of the data recording system and other CAV2ES

subsystems.

For V&V static analysis, VEXEC controls the Loading and execution of the

selected V&V tools, selected FCS software, design structures and code, and the

data analysis and output presentations from the results. For dynamic analysis,

VEXEC controls the loading and execution of flight test plans and corresponding

test procedu.es/test cases which comprise them. Execution of the test

procedures/test cases can be performed autmanmtically or single stepped. All

actions performed by the VEXEC (as a part of static tools execution or dynamic

63

execution) and all user inputs are recorded in a test execution log which is

available on-line for review.

The purpose of the User Interface (UI) is to provide direct access to the
various software tools functionalities, while relieving the user of needing

intimate knowledge about the software tools as stand-alone systems and adapting
to their various styles and syntaxes. This means that a user who wants to

obtain a time history plot of data generated by a simulation tool, ACSL for
example, does not need to know the particular commands for the tool package for

simulation and plotting. However, the UI does not confine the experienced tool

user to stay within the UI interface, but provides a direct tool mode in which
the user can execute tool commands within the CAV2ES environment to perform
any simulation and plotting activity allowed by the tool. The UI provides both

menu driven and command driven (for the more experienced user) capabilities to

the user. The UI provides an open, custmizable, flexible environment. The UI

is built in a windows envirorment to provide quick expansion or contraction of

backup information, aiding in the verification and validation process. It is
also graphically oriented in terms selection of options and in presentation of

specification and design information. The functionality of a tool can be

accessed via point-and-click mouse operations on icons, menu, and form driven

screens. Program structures are presented by schematic designs and network

trees; the data displays offer great flexibility in manner of display and in

customization.

The Simulation Coaputer Interface (SCI) is used to comunicate to the

simulation computers. Cmmunication may take place over serial lines to

various devices and over ethernet or bus link. The user may open a terminal

window for each of these connections and manually type ccmmands. All camrands,
along with responses, will be logged and sent to the DBM to be recorded in a
test execution log. Other subsystems of CAV2 ES may also send commands to the

simulation computers. All commands indicate if a response is expected. SCI

will then pass along the command and wait for the response, if necessary.

The Data Recording System (DRS) will be responsible for recordinH

simulation data (both real-time and non-real-time) and transferring data to tlie

64

data base manager. The DRS receives its commands from the VEXEC. Before a

test begins, the VEXEC sends a list of commands to be executed (recording

script). The start test signal tells the DRS to begin executing the recording

script. The abort signal tells the DRS to stop recording and ignore any

recorded data. The real-time simulation recording takes place via a link (bus

link or ethernet) connected to the simulation computers via SCI. Proper

synchronization is critical if a valid set of data is to be recorded.

The Data Base Manager (Dm) serves two purposes. First, to create and

maintain data base files and second, to conduct data transactions for other

CAV2ES subsystems. THE DEM is composed of two processes to serve these

purposes: Vexe_Interface and Build_Update. The interface process conducts

transactions while Build-Update is used to create and maintain data base

files. To assist in performing these processes, a camnercially available data

base management system, UNIFY, will be used. UNIFY uses a Host Language
Interface (HLI) to operate at both of these levels. Briefly, UNIFY's HLI is a

library of standard data base management function queries, reports, etc. that

can be called from standard Higher Order Language (HOL) programming language

statements. The modules and functions of the DB4 processes will therefore be

written in a chosen HOL.

The Automatic Pilot Functions (APF) subsystem provides the capability for

the CAV2ES system to send pilot commands to the aircraft flight control

system. The APF provides the capability to perform initial condition trimmed

(ICr) to specified flight conditions, to provide flight test functions (FTF)

for testing of performance parameters (e.g., steps, doublets, sine wave, etc.),

to fly fundamental maneuvers, and landing approaches. VEXEC obtains comanded

maneuvers from the test procedures via the Data Base Manager. The APF sends

these commands to the simulation computers and flight control system via the

SCI. The APF uses a transportable auto-pilot model which may be hosted on the

simulation computers (mainframes) or in the CAV2ES workstation environment,

dependent on the part icular type of ccmmunications link used between the

CAV2ES and the simulation computers. The communications link must be fast

enough to provide realistic commarinds and feedback for the autopilot to providk

65

proper control inputs. This provides flexibility in the choice of this

communication link from one implementation to the next. There is no intent to
provide "pilot modeling" in this module, but simply provide the capability to
fly in a controlled manner and to provide controlled inputs which would

normally be supplied by a pilot. This module allows elimination of the pilot

from many closed-loop tests.

The Data Analysis System (DAS) is designed to provide the validation

engineer the capability to examine the data recorded during a test and to

perform data reduction techniques on the recorded data. A sepa.-ate data set is

created for each test case executed. The DAS may be used to examine the data

in any of the data sets. The recorded data can be displayed both on a dynamic

display (bitmapped graphics CEU) and on a hardcopy device. Data displayed

during simulation execution will generally be plots of variables as a function

of time and mode switches. Post test data analysis can be performed providing

performance parameters of flight critical systems. Additionally, the user may

specify what variables are to be displayed for a given data set.

The application of the CAO2ES in FCS software development and in its

verification and validation is shown pictorially in Figure 3.5.2-2. The
CAV2ES can be used in the early phases of FCS software development efforts to

perform FCS analysis and to aid in requirements and design analysis as

discussed in Section 3.2. As the ECS development progress, CAV2ES provides

the analysis tools and techniques to verify requirements and design, to perform

OFP subsystem testing at the unit, module, and subsystem levels. Software

tools can be hosted to aid the user in evaluation of system reliability.

Development of analytical techniques are becoming available to aid in

performing this task. The fault tree approach is one tool/technique which will

be evaluated to include in the tool library. Other techniques will also be

reviewed.

The CAV2ES provides an environment in which the V&V engineer can use the

inputs of previous verification efforts including requirements analysis, design

analysis, and code analysis to quickly generate test cases for execution cf the

FCS software. Within this envirornient, the process of generating test cases;

66

* z

0 w

0 L

z~zo

0-- - - - -- - -- - - - - - - - -

zz
0 cl w

020

LLz

IL -

67w

can be eased by providing help or advisory instructions for testing of specific

subsystem/system segments. Also, test cases previously used for achieved

specified test objectives can be quickly pulled from the test case, data base

and used as examples. These examples can then be quickly tailored to meet
specific design test specifications, if required. Following this, CAV2ES can

provide an effective "test directors" workstation which uses a data base of

proven test procedures to perform hotbench testing, dynamic subsystem testing

and finally integrated system validation testing in an ironbird environment.

CAV2ES not only provides the test directors control capabilities over the
testing, but also supplies data reduction and analysis tools to analyze the

test results. Finally, the CAV2ES can be used to support flight test by

examining (real-time simulation) flight scenarios prior to flight test to

predict flight test results. These same analysis tools can also be used to

reduce flight test data and ompare them to predicted results.

3.5.3 CAV2ES FCS V&V Capabilities

Capabilities to be included within the CAV2ES envirorment will provide

the fligit control/software engineers the capability to assess the FCS software

design in terms of performance, stability, and redundancy management analysis.

It will provide both static and dynamic code analysis tools for verification

and val-dation of flight critical systems code. It will also provide the

capabiliry to perform quick-look analysis of generated data. It will provide

the means to verify and validate FCS software through control of real-time

simulators driven by proven test procedures/test cases. Specific V&V

capabili' les and techniques/tools to be applied will be presented below in an

order which would correlate to the flight critical system software development.

3.5.3.1 Aircraft Flight Critical Systems Analysis

The CAV2ES will provide the capability to perform verification and

validaticn testing of FCS software by evaluating the adequacy of the control

laws with respect to performance and stability and to evaluate system

mechanization with respect to redundancy management, timing and bus loading.

To perform these analysis, 3 a types of flight control analysis tools

68

will be used: a linear analysis and design tool, a nonlinear simulation tool,

and a system level emulator. Figure 3.5.3.1-1 depicts these tools. The

non-linear simulation will be used to evaluate large amplitude characteristics

of digital ECS and to provide state space models for linear analysis. The

linear analysis tool will be used to evaluate stability and performance

margins, and sample data properties of the closed-loop control system. The

system level emulator will be utilized to verify that the implemented code

represents the system design with sufficient accuracy to meet system

performance requirements. Outputs of the system level emulator can be used to

provide inputs for rigorous exercising of operational flight code, when

available, on an instruction level enulator of the target flight computer. A

more detailed discussion of each of these types of tools follows.

Non-LI. near Control Laws

Simulation a Performance

* Stability

4 Design
4V .System Mechanization

Ssystem 1 eJ F Redundancy mgmt.
Level * Timing
Emulator a Bus loading

Cooeale Code Execution Results]
Emulator

Figure 3.5.3.1-1 Performance, Stability & Mchanization Tools

69

Control Law Analvsis

The control law analysis must insure that digital FLCS meets the flying and

handling requirements within the maneuvering flight envelope of the aircraft,
as specified by the system specification and the MIL-SPECs. This effort

includes control law specification assessment, non-linear simulation, and

control law evaluation.

Usage of the nonlinear simulation and linear analysis tools for control

system analysis and evaluation is depicted in Figure 3.5.3.1-2. A general

purpose non-linear aircraft simulation program incorporates specific aircraft

characteristic through user-defined modules for the aerodynamic forces and

moments, the propulsion system, the control system, etc. It can be run to trim

the aircraft for any desired flight condition, to generate linear state models

for the trimmed flight condition, and to generate time history responses for
user-defined inputs representing commands or external disturbances.

Camnercially available linear analysis and design tools provide a

ccmprehensive interactive control design and analysis software language system

including state-of-the-art primitives in classical and modern control

synthesis, matrix analysis, dynamic system analysis, parameter estimation, and

graphical presentation. System analysis tools that are significant for
investigation of digital flight control systems are continuous to discrete

transformation, time and frequency responses, stability and performance
robustness computations, MIL-F-8785C analysis report generation and conputation

of control requirements.

Performance and Stability Analysis

There are two characteristics of the DFLCS which are critical to aircraft

safety of flight. These are the aircraft response to pilot and turbulence

inputs, and the ability of the flight control system to cope with deviations

from the model on which it is based. Of particular importance for this

70

TEST DATA NONLINEAR SIMULATION TOOL AIRCRAFT MODEL

* IRON BIRD 0 TRIM MAP 0 CONFIGURATION

4 HOT BENCH * AERODYNAMICS

• FLIGHT 0 TRIM AT FLIGHT CONDITION 0 STRUCTURAL/
AERO-ELASTIC DYN.

9 LINEAR MODEL EXTRACTION a CONTROLLER

0 TIME HISTORY a TIME HISTORY RESPONSE

FILES

0 STATE MODEL FILES 0 TIME HISTORY FILES

LINEAR ANALYSIS/DESIGN TOOL
CONTROL LAW MATRIX ANALYSIS DYNAMIC SYSTEM STATISTICAL UTILITY
SYNTHESIS AND OPERATION ANALYSIS ANALYSIS UTILITY

0 LINEAR QUADRATIC 0 ELEMENT BY 0 TIME RESPONSE 0 MAXIMUM LIVELI
-

0 GRAPHICS
ELEMENT FUNCTIONS HOOD PARA. ESTI.

- STATE FEEDBACK - CONTINUOUS SIN. - INTERACTIVE
* SQUARE MATRIX - DISCRETE SIN. • EQUATION ERROR

- LOG FUNCTIONS PARA. IDENT. - BATCH
* FREQUENCY RESPONSE

- OUTPUT 0 MATRIX PROPERTIES 0 KALMAN FILTERING - SPLINE CURVE
FEEDBACK 4 TRANSFER FUNCTION FITTING

* MATRIX DECOMPOSI- 0 FAST FOURIER
- FIXED STRUCTURE TION AND FACTORI- 6 TRANSFER ZEROS TRANSFORM 0 FILE HANDLING

ZATIONS
- CONTINUOUS Z 0 SINGULAR VALUES 0 ERROR ANALYSIS 0 CONTINUOUS TO
DISCRETE * MATRIX DIFFERENTIAL DISCRETE MODEL

EQUATION SOLUTIONS 0 CONTROL CAPABILI- - CORRELATION TRANSFORMATION
0 QUADRATIC COST ITY/OBSERVABILITY COEFFICIENT

ANALYSIS 0 OTHER OPERATIONS 0 STATE MODEL FROM
4 STABILITY - F-RATIO TRANSFER FUNCTION

* POLE PLACEMENT 0 MATRIX BUILDING ROBUSTNESS
FUNCTIONS - MEAN& VARIANCE

* PERFo ROBUSTNESS
- TIME DELAYS

* MIL-SPEC ANALYSIS

Figure 3.5.3.1-2 Nonlinear Simulation and Linear Analysis Tools

analysis is the effect of discretization on the stability and performance

robustness of the aircraft. As was discovered in the AFTI/F-16 DFLC design,

for the low frequency carponents of system response discretization of the

analog design may be used. However, the narrow structural notch filters

require direct discrete design in order to avoid problems arising from

aeroservoelasticity and the warping of filter characteristics. Algorithms for

performance and stability robustness ccputations are available for evaluation

71

of FICS software design. Table 3.5.3.1-1 outlines a number of tasks which can
be performed to evaluate the stability and performance of digital control laws

using linear analysis/design tools.

Table 3.5.3.1-1 Control Law Analysis Tasks

DISCRETIZATION ANALYSIS DISTURBANCE REJECTION ANALYSIS

@ dIscretlzatlon errors * transient response for step wind gust

* equivalent transfer function error * RMS tracking accuracy for random turbulence

disturbance rejection robustness based on
singular value analysis

STABILITY ANALYSIS CONTROL REQUIREMENTS

a continuous and discrete closed loop * control surface position and rate for
elgenvalues deterministic and stochastic Inputs

e multIloop phase and gain margin based
on singular value analysis

PERFORMANCE ANALYSIS

e transient response for pilot Inputs

* tracking performance robustness based on
singular value analysis v-w

System Mechanization Analysis

The systen Mdanization analysis verifies that the code inplements the
system design with sufficient accuracy to meet performance requirements. To
perform this analysis and validation, the requirements contained in Software

77

lechanization Doaments, together with the aircraft dynamics would be

implemented in a system level emulation structure. The emlation can then be

utilized for redundancy managnt analysis, timing and bus loading analysis.

The structure of a typical system level emulator is illustrated in Figure

3.5.3.1-3. Use of the amulator requires that the DFLCS requirements/design be

implemented (modeled) and that the appropriate aircraft dynamics be added.

This type of emulator can be used to analyze the correctness of module logic

and functions, bus loading, timing and redundancy manageient, as ill as

analyzing the operational capabilities of a system and its conformance to

system requirements.

EXECUTIVE

I" nitial values 9 I nitial values
e Failures a Analysis select e Command inputs

FLC__ Aircraft Dynamics
* Control laws * Aircraft

* f l Actuators

* AMUX processing Intercept s Sensors

S it Jte * Selectors/monButors Software l Power

Documen i Start-up s Hydraulics
e Executive

a BIT

Analysis Output

a Timing
e Bus and memory loading

* Failure states

Figure 3.5.3.1-3 System Level Emulator

73

The executive controls the simulator and sets failures, initial values,

aircraft flight conditions, and selects the type of analysis to be performed.

The DFLCS emulation consists of modules with processing modes and communication

links of sufficient detail to accommodate the desired component failure

conditions to be injected by the user.

Typical questions which are addressed through use of an emulator are:

o Are there deficiencies in the Mechanization Document?

o Does the detailed software design faithfully represent the

Mechanization Document requirements?

o What happens in the case of certain failures which appear simultaneous

to the software (e.g. latent failures)?

o Is the design susceptible to particular cases of interchannel skew?

o Is mode transition accomplished smoothly among the asynchronous

channels? (same for failure detection and reconfiguration, and for

failure reset).

o Do all tasks get serviced by the executive within timing requirements?

o Is there adverse coupling between the Failure Manager and Control

Laws, e.g., are failure latching and control law configuration handled

smoothly by the flight control executive?

o What is the minimum acceptable time to detect and isolate various

types of failures? Is that time requirement met by the design?

o What are typical inter-channel differences and are threshold

selections tolerate of these?

o Does the persistence-counter design provide for a reasonable trade of

resistance to false alarm for speed of detection?

3.5.3.2 FCS Software Design Verification

Software design analysis activities are directed at verifying:

o the allocation of system and software requiremnts to software

components

o the adequacy of the design to meet the requirements

o compatibility of t-he software with both external and intenial

interfaces.

74

The primary aim of the design verification is to confirm that the

recommended design will perform the function specified in the Requirements

Specification.

The approach to software design verification is illustrated in Figure

3.5.3.2-1. The approach is to evaluate the system requirements documentation,

progressing through develmzint outputs and approved baseline design

documentation. Analysis of the system and software requirements is the initial

step of design verification and is normally addressed as part of the ECS and
control law analysis discussed in Section 3.5.3.1. The system specification,

Part I design specification, interface compatibility documents, trade studies,

and other documents provide inputs for verification of the requirements
allocation. Requirements are analyzed to confirm that: all functional,

interface and test requirements are corpletely specified in quantitative terms;

requirements are logical, consistent, testable, and traceable; all data base

and data requirements are clearly stated; all equations have been

scientifically verified; and timing and sizing estimates have sufficient margin

for growth. Upon reviewing the requirements documentation, and the FCS
software development and management plans, a requirements ccupliance checklist

may be used to verify tha, the given design adequately addresses all system

requirements. Example requirements compliance checklist and software design

ccmpliance checklist are presented in Figure 3.5.3.2-2.

The next step in the verification is to confirm the technical adequacy of

the design. This process is to verify that the total design has been expressed
in writing and that adequate analysis, simulation and evaluation have been

performed to evaluate the design as to risk, expected performance, cost and

reliability. The design should address performance capabilities, system and

software architecture, operational sequences, information flow, timing and

other parameters. Design elements are analyzed for ambiguities,

maintainability, expandability adequate decormposition of design coponents

ensuring a top-down design and that testability and maintainability

considerations are embedded within its structure.

75

Verify Requirements Allocation

a Review Documentation o e m s l d
s Trace Requirements a Requirements Evaluated for
a Review Trade Studies a Adequacy

I Perform Independent Studies a cmlta Traceability

Accuracy
Testability

Verify Design Concepts

a Review Documentation

a Perform Algorithm Analysis Verification of Design Concepts
Documentation a Analyze Architecture

a Review Trade Studies to Ensure
* System Specs a Perform Independent Trade Studies @ Compliance with

* CP Dev Specs 4 Analyze Life-Cycle Costs Requirements
e FeasibilityeDFLCS Dev & a Practicality

Management a Testability
Plan CPDP

* ICDs
* CP Product Component Compatibility

Specs S Review Documentation

* Trade a Review Trade Studies Verification
Studies a Perform Independent Trade Studies of Verfaces

e Analyze Hardware/Software/ Pi lot of Interfaces
' Interaction to Ensure

a Analyze Communication s Compliance with
Requirements

Feasibility
a Practicality
a Testability

Figure 3.5.3.2-1 Approach for Performing Software Design Analysis

76

8,,, go, aI 4wA,,Ie

,--. ,, - ,,,,0,

U 3 - Z -@0
, NI N M b ,, r

f", i ,, aCC

w '4

* " o.i o-, -- . - -

C - U -- a. * -' N C

. U o.-

- t. .- 3 - - - °- .~
" . ,.-. -a. + .6- .- 4I

C . , .'--~ - I '5 O,"0

C : ." I* .. 03 ,, o= .- - o , -

" .C r4

0 ---Coa

Figure4. 3.5..2- Exml Aeuleet andesig Comlinc Cheklst

774

-. -a. I. l I .
-- oz

r ii ki

:6v
w

ma - a - 1 3 ; -

Figur 3..32- Exa.l ReurmnsadDsgopineCekit

77-

Particular attention is directed to design strategies which involve
external interfaces such as the hardware/software/pilot iteraction. The

design is examined to ensure that all external interface requirements have been

addressed.

As can be discerned from the description of the design verification tasks,

much of this effort involves manual review of requirements and design

specifications, requiring methodical and diligent attention in matching

requirements to design and in evaluating designs. It is in this area where the

application of CASE tools discussed in Section 3.5 can provide benefits in

verification. In general, CASE tools leverage the requirements analysis and

design specification phases of the software development cycle while more

traditional tools are more applicable in the software inplementation phase.

CASE tools can be applied from an independent viewpoint to evaluate

reqirments/design relations. They can provide structured analysis of these
designs/requirements relations to ease the evaluation process of the analyst.

CASE tools can yield trendous benefits in revealing many requirements (and
surprises) before implementation begins. Some CASE tools also provide reverse

engineering capabilities which will take inplemented software back to graphic
structured design representations. In this form, verification of design to

design specification and traoeility of requirements to design can be

performed more easily.

For this effort, Frontier will evaluate currently available tools and

incorporate one or two of the most applicable tools. Teamwork, Battlemap and

Tracebuilder II are exanples of CASE tools that are applicable in this design

verification task.

3.5.3.3 FCS Software Code Verification

The ct - 'Live of this software code verification is to evaluate the code

for technical correctness, efficiency and adequacy. Tools and techniques to

aid in performing software code veiification are many and varied. The general

classes of tools and techniques were discussed in Section 3.5. The code

78

analysis will utilize tools and techniques that allow for test repeatability,

since multiple versions/updates of the code are a natural part of any FOS

software development effort. The code analysis will emphasize the software
interfaces and sequencing logic. Past experience shows that these areas tend

to be very error-prone. The code will be examined using both static analysis
and dynamic execution analysis. Static analysis provides statisics on syntax,

structural relationships, and cross-references, while dynamic execution
analysis will allow evaluation of actual code execution results. The code will

also be examined for efficiency. Areas of code that have high utilization will
be identified with a timer analyzer tool and then will be further scruntinized

for efficiency in coding to minimize run time. Routine and module size is
anGLher area which must be monitored. Unplanned trade-offs often occur when

sizing and timing constraints reach their limit.

Specific static analysis techniques which will be initially implemented

will be selected as a part of the Phase II effort. However, capabilities to

perform software sneak analysis and to perform instruction level emulator code

execution are examples of static and dynamic analysis tools, respectively.
Both provide a strong code verification tool base and are planned for

implementation in CAV2 ES. A description of the use of these follows.

Software Sneak Analysis (SSA). SSA methodology is based on the development

of topological network trees which provide a clearly understandable functional
representation of FCS software performance, and which are useful throughout the
life of the FCS software. Software sneak analysis outputs include a

comprehensive, understandable software network tree database. Instead of
basing the development of network trees strictly on NASA developed techniques

or other sneak methodologies, FTI builds a network tree database from
hierarchial models in a manner that clearly reflects a program function, in a

format understandable to hardware, software, and systemn engineers. This
database is one of the major benefits offered by a software sneak analysis

approach. Initially each line of executable source code is converted to one or
more models as shown in Figure 3.5.3.3-1. The modelling process is
hierarchial. For instance, in a background executive, the main program may be

79

represented only as an impedance. In lower level trees, this model will be

expanded to include all execution paths.

UACH LINE OF CODE IS INCLUDED IN ONE OR IIORE NODELS:
(IMEDANCE) (RELAY COIL-CONTACTS)

FUNCTIOAL GROUP CALL

(POWRGROUND) (SWITCH)

START END TEST. SELECT

Figure 3.5.3.3-1 Models for Code Representation

The next step in the SSA process is to use pathfinding programs in order to

fully trace all possible program execution paths. The programs assist in
connecting all source code hierarchial models and displaying them in the
software network trees. A unique SSA tool--hierarchial data cross

references-are then generated to assist in determining sneak data paths by

helping trace data flow across all module interfaces.

Sneak paths, sneak indications, and sneak labels are determined through

topograph identification and clue application techniques. Sneak timing

problems are discovered through interrupt sequencing and operations analysis.

Figure 3.5.3.3-2 illustrates the six basic topographic patterns common to all

languages. Each network tree is composed of one or more of these topographs.

Each pattern (topograph) has an associated clue list which is used by the

analyst to alert him to potential sneak conditions.

80

SSA IOPOGRPArS

T T

Figure 3.5.3.3-2 Software Sneak Tc~ographs, Ccnvn to All

Languages, Alert the Analyst to Possible Sneak Conditions

In addition to applying tcpograph specific clues, a list of application

clues are used to help detenune sneak conditions. An example of sneak

conditions is given in Figure 3.5.3.3-3.

The network tree modelling technique is specifically designed to provide

maximun visibility of code function so effects of changes on overall system

function can be easily determined.

81

SERA SNEAK
CIJNOITIONS AR(V II0(141:

-r MI.EFINED STATES
--AS---"I' IN CASE STATEMENT

ou) o "-"'" - (JUPL ICATE M

44)

/ 2AC I--0 I
I I d I;-C 2-C Sic

-iVAR IABLIE REDEF INEFD
BEFORE USE

Figure 3.5.3.3-3 Examples Fran F-16 DFLCS SSA Program

Instruction Level Emulator

To evaluate program correctness, the FCS software will be executed and its
response to given stimuli will be assessed against acceptable limits through
instruction level emulation. The 1750A simulator is an example of an
instruction level emulator which will be employed to execute the software for

82

two levels of correctness testing. The basic level of correctness testing will

exercise all FCS software in a routine-by-routine bottom up fashion. Emphasis

here will be on inputting nominal, limit and erroneous data into the routine

and evaluating the output for acceptable content and/or arithmetic

correctness. Instruction paths will be traced, aiding in the identification of

dead code, and in calculation of timing estimates for each routine. As bottom

up correctness testing continues, the interfaces between routines will be

exercised with regard to control and data passing. The second level of

correctness testing will be functional. Those software implemented functions

identified as critical and/or suspect from the design analysis offort, software

sneak analysis, or other techniques will be executed extensively on the 1750A

simulator. The function's response to the test data will then be evaluated

against acceptable limits. For both levels of correctness testing, the HOL

compiler and linker will be used to allow test drivers, stubs and data

extraction hooks to be linked in with the FCS software in order to augment

emulation testing capabilities.

3.5.3.4 Stand Alone and Dynamic Subsystem Verification and Validation

The engineering and formal system and software testing utilizes a bottom-up

philosophy. Testing starts with a lowest level code (unit code) and progresses

upward to system-level testing. Verification of results is performed at each

level before progressing to the next level. Test plans and procedures are

prepared for each level of formal testing and test results are documented.

Problems or discrepancies detected during any phase of testing is documented,

investigated, and acted upon.

The stand alone verification and validation is the first level of testing

involving actual flight hardware. The objective of this testing is to insure

that the Operational Flight Program (OFP) is functionally correct. Ideally,

this testing should be automated to the maximum extent possible to allow for

rapid retesting when future updates are made. The testing verifies

requirements specified in Software Requirements Specification, provides

open-loop functional evaluation, and supports computer software configuration/

hardware integration testing. This test environment uses engineering test

83

stations containing models to drive different subsystems containing flyable

hardware tests. Test files provided by CAV2ES are used to drive tests. The
results of these tests are then compared to predicted results and test reports

are autonatically generated.

The next step in the V&V testing is to integrate individual "subsystem"

tests to provide dynamic rather than static inputs between tested subsystems.

This can be done to different levels as illustrated in Figure 3.5.3.4-1.
Flyable subsystems are incrementally integrated via engineering test stations.
This type of testing provides added testability of integrated subsystems and
reduced hotbench or iron-bird simulation requirements. CAV 2ES will be used
to communicate to simulation cczpiters and subsystems to drive individual and

integrated subsystem tests. The Maneuvering-simulation Validation Automation
(MVA) system currently under developrent by FTI for SAAB-SCANIA will provide

just this type of capability. The design structure of CAV2ES can incorporate

many of the functions in the MVA system.

3.5.3.5 Integrated System Verification and Validation (ISW)

Integrated system verification and validation testing provides a closed

loop test environment that simulates the dynamic behavior of the air vehicle.

Actual flight hardware is used where practical to verify closed loop dynamic

responses. This test envirorrent is used to perform pilot-in-the-loop handling
qualities evaluation, pilot vehicle intexface, and failure modes and effects

tests. This test configuration is represented in Figure 3.5.3.5-1. The

CAV2ES will be used to provide a test directors work station environment for

conduct of these types of tests.

84

0

0>

0 0a

.0

LLC

Lu LL

a:

CO,
ui-

85O

The entire system test and evaluation process is represented in Figure
3.5.3.5-2. This includes the FCS and software along with airplane subsystem

tests. The culmination of all these tests is flight testing.

In summary, the CAVES is an integrated V&V tool set to be used

throughout FCS development phases. The specific tools and techniques discussed

for implementation will provide the user the capability to analyze the FCS
software design and code, to allow him to easily generate test cases, and to

execute these test cases in various test environments. It provides the
capability for performing reliability analysis through user selected

techniques. The user is able to call on analysis data generated fron different
V&V analysis phases as input to his current task. It is usable by developers,

V&V organizations, and research groups. Its workstation provides the user with
a powerful computational envirorment which can utilize many of the more
sophisticated FCS design and analysis tools. CAV2ES provides a CASE type

working environment, user friendly interfaces, and provides hooks for addition

of future tools. It provides means for interfacing and driving real-time
simrulations and offers an environment to approach automatic generation of test

cases while also aiding automation of real-tine testing. CAV2ES is an

evolutionary system which accmrdates new tools to meet the growing user
requirements in verification and validation of flight critical systems

software.

86

Isv&v

SIMULATOR
DOME

CREWSTATION

AC MISC.
E.O.M. Ulu MODELS

(AD.1 00) (GOULD)

* :~ ~,< 000

Figure 3.5.3.5-1 Integrated System Verification and Validation

87

0A
5. ~

w
Z z> 0 -

I.-~ 0 0.c .4 z

(0 pl I.-~ ZZg U m CQ z < 11

;j~

cl))

z * -. U)0 --

0 z D

o - - a a
Z- < ui 0

m ~ ~ : c(5 UJP tU -* UJZfl<

SI.- a2 S3 F cr z c

Cl) Z) ~j-i<)) 88A

Appendix

Data Gathering Oiecklists

89

OUESTIONNAIRE TOPICS

TYPES OF SOFTWARE DEVELOPED

DEVELOPMENT PROCEDURES/METHODOLOGY

MANAGEMENT OF DEVELOPMENT EFFORT

FLIGHT CRITICAL SYSTEMS DEVELOPED BY THESE METHODS

DEVELOPMENT LANGUAGES

SOFTWARE TOOLS AND TECHNIQUES

STANDARDS, PRACTICES AND GUIDELINES

VERIFICATION AND VALIDATION TECHNIQUES

QUALITY ASSURANCE TECHNIQUES

IMPACT OF GOVERNMENT STANDARDS

GENERAL FACILITY DATA

FLIGHT CONTROL SYSTEMS REQUIREMENTS ISSUES

GENERAL PROBLEM AREAS IN DEVELOPMENT

SYSTEM DEVELOPMENT ERRORS AND STATISTICS

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431

90

TYPES OF SOFTWARE DEVELOPED

Flight Control
Avionics Architecture
Engine Control
Command, Control, Comm
Analytical Models
Simulation

DEVELOPMENT PROCEDURES/METHODOLOGY

Waterfall
Spiral
Prototyping
Hierarchical Phase Model

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431

91

SOEwPw DEvEx~~ u~ Pf MSES
System Pequirements
Systems analysis and design
Software analysis and design
Coding and checkout
Software integration testing
Software/System qualification
Software Maintenance

REVIES AND TESTS

Stage Reviews Tests

1. Requirements Systems require-

ments review

2. System design Software concept --

3. Software design Preliminary design --

review

4. Coding -- Module tests

5. Integration Critical design Integration tests

review

6. Qualification Qualification Validation tests

Audit or functional on operational

Configuration audit hardware

7. Installation Physical configura- Validation tests
tion audit and

Formal qualification On iron-bird
review simulation

L8. Maintenance Change reviews Re-validation tests

92

MANAGEMENT OF DEVELOPMENT EFFORT

o Background of software designers: control engineers? software engineers?

o What aspects of software project management functions are used:
Management
- Project Planning
- Project Control
- Project Communications
Documentation
- Engineering Documentation (2167, PDL, etc.)
- Formal Management Documentation (2167, SDP, S/W Dev Plan,CM Plan,

QA Plan
- Informal Documentation (reports, guidance/policy papers, minutes,

etc.)
Configuration Management
- Baseline Identification (Tech descrip of all S/W items)
- Control & Tracking of S/W Access and Change
- Control of S/W releases

FLIGHT CRITICAL SYSTEMS DEVELOPED BY THESE METHODS

F-16 DFCS
F-15 E
AFTI/F-16
F-15 STOL
X-29
F-18
PAGUS
X-31
F-117

DEVELOPMENT LANGUAGES

Ada
Jovial J73 (MIL-STD 1879B)
Assembly
CMS-2

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431

93

SOFTWARE TOOLS AND TECHNIQUES

Proprietary Tools

Flight Control Analysis Tools
- Matrix-X
- CNTRL-C
- MATLAB

CASE tools

Abstractions and hierarchies to reduce ocmplexity: abstractions such
trees are used to make the design simple and clearly defined.

(1Mackout (debug) testing: function/module testing before integration
Constructive design approadies: (eg. formal design language)
Cr4:tical design Review: oral demonstration of detailed design
Dat flow diagram, structure chart: used in preliminary design
Descriptions or docmentation
Design guidelines, test guidelines, & ooding guidelines
Design standards, coding standards
Functional capabilities list: ndule description of functions to perform
Integration testing: code test after modules are assembled; I/O struct.
Organization as finite automata
Qualification audit
Singularities and extremes testing
Symbolic execution: performed on special functions such as mode logic
Systems concept review: oral demo of initial concepts, trade-offs, etc.
Validation testing: final demo in simulation enviroxwnt

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431

94

TOOM
Accuracy analyzer - analyzes numerical calculations for red accuracy
Circular reference checker - modules calling each other
CAE
Code comparator - differencing between versions
Cross-reference checker - calling of nodules; external variables called
Data bases analyzer - module accesses to data bases; unused elements
Data Flow Pathing - trace execution sequence for variable (s) in flow
Documentation & constructions - Auto documentation; Consistent data pool
Editor - Analyze/extract information/relationships from source programs
Emulations - System level model generated from requirements, not design
Flow charter - show logical construction of program
Formal Languages - Structured and rules.
Interface Checker -Check Range, limits, scaling of variables
Module Invocation Tree - Establishes call hierarchy with system
Program flow analyzer - statistics on usage; estimate execution time
Set/Use checker - Checks for variables: set, not used; & used before set
Simulations - Test characteristics, algorithms, functions, performance
Sneak-Path Analyzer - Looks for unexpected paths
Symbolic evaluator - reconstructs equations relating output to input
Test data generator - produces test cases to exercise the system
Test driver - controls the execution of a program
Test execution monitor - collects data and compares to expected results
Test record generator - analyzes, reduces, and formats results
Theorem prover - axioms used prove assertions stated for a path
Timing analyzer - monitors/reoords run time of functions and routines
Units consistency checker - variable expressions (units) checked.
Unreachable code detector - looks for code which cannot be executed

General

Specific Static Tools Static Tools Dynamic Tools

Circular reference checker Accuracy analyzer Simulations

Code comparator Assembly code verifier 4 Computer
0 hybrid

Consistency checker Assertion checker 0 Test bed (iron bird)

Cross -reference checker Documentation and 0 Monte Carlo

Data base analyzer C sys Test data generator

Formal lalguag("s with Test driverllow chnz'ter sy ta 11;13fl zers

- hiterface checker a Requirements 'Vest executiOl monitor

Program flow analyzer 0 Specifications Test record generator
ef c Program design 'iminp, analyzer

Set/use checker a Program code

Stmaidard< checker Snenk-palh :inmlI.\ , r
[.lulls coii,,t (tncy checker ,ViiltelC i'\:,lilO

hinrv:ichihl deeti
c

cde de'tectue
cod W hcO fl'9II 5I Ov"'

95

STANDARDS, PRACTICES AND GUIDELINES

- Design standards
- Coding Standards
- Documentation Standards
- Engineering Development Standards

VERIFICATION AND VALIDATION TECHNIQUES

- Review & Walkthrough
- Units Consistency Checks
- Data Flow Charts
- Interface Format Checks
- Decision Tables
- Set/Use Checks
- Type Consistency Checks
- Timing Test/Analysis
- Numerical Accuracy/Precision Analysis/Test
- Symbolic Evaluation
- Testing
- Control Flow Diagram
- Petri Nets
- Correctness Proof
- Scaling Analysis
- Table of Events
- Simulation

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431

96

QUALITY ASSURANCE TECHNIQUES

- Software Inspections
- Software Reviews
- Software Audits
- Document Reviewed for

-- Consistency
-- Traceability
-- Clarity, readability
-- Structure
-- Completeness with respect to H/W & S/W

- Standards, Practices, and Conventions
- Configuration Management
- Quality Factors and Criteria
- Code Control and Media Control
- S/W Quality Assurance Standards

IMPACT OF GOVERNMENT STANDARDS

MIL-STD-2167A
MIL-STD-2168
MIL-STD-F-9490D
MIL-STD-483
MIL-STD-490
DI-S-30567A (CPDP)
MIL-STD-1521A

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431

97

GENERAL FACILITY DATA

General Data: Company, laboratory name, address, key
contacts. etc.

Computer Data: Host processors, distributed processors, I/F
diagrams, size of memory.

Cockpits: Type (i.e., fighter, transport, generic)
displays (analog, CRT, etc.) controls (i.e.,
stick, wheel, force-feel, etc.).

Graphics Data: kesolutions, colors, update rates, features.
etc.

Special Equipment: As available from contractors containinz
data on special test support or software
development equipmuat.

Software Library: Program names and functions.

Facility Problems: The contractor's estimation of areas of
weaknesses and needed enhancements for
flight critical software test.

Facility Plans and Goals: New equipment expected, desired, or in
procurement.

Processor Requirements: What processors will be used to host
in-house S/W development, memory
requirements, timing data.

S/W Requirements: Operating systems, languages (HOL and
Assembly) FC Development tools for
development test and demo. Emulators, etc.
of all stages of development showing, S/V
test and support requirements.

Contractor S/W.: Those software development, tests and demo
packages that are required to support flight
critical system development and verification
including software availability from
contractor with lease-rent-buy cost data.

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, Oil 45431

98

FLIGHT CONTROL SYSTEMS REQUIREMENTS ISSUES

o Requirements. Methods should:
- Be problem driven and applications based
- Handle H/W and S/W interactions in concurrent mechanizations
- Address complexity and reliability concerns explicitly and

quantitatively
- Effect component integration during design
- Provide provision for quality assurance
- Natural transition for system reqs to software design to H/W-S/W

implementation and integration

o Integrated support environment is needed.
o S/W development environment will need to be incorporated into a

system prototype facility.
o Different levels of abstraction appropriate for different phase of

development and post-development

o MOST IMPORTANT REQUIREMENTS
o Satisfaction of fast real-time constraints
o High reliability
o High availability/survivability
o Supportability/ease of modification/ease of test

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431

99

GENERAL PROBLEM AREAS IN DEVELOPMENT

What measures of fault tolerant design are used?

What measures of fault avoidance design are used?
Structured design methods; QA; systematic testing; small,
simple modules.

Methods of countering impact of:
- Increased use of relaxed static stability
- Integrated avionics and control functions
- Other: complex FCS Algorithms for sensor, sensor blending

SYSTEM DEVELOPMENT ERRORS AND STATISTICS

Types of errors
Ease of finding
Measures of Performance
Gathering of statistics

Frontier Technology, inc. 4141 Colonel Glenn Beavercreek, Oil 45431

100

(5) software integration testing and
(6) software/system qualification

ID C a,

- 0.

PU

C C z Ej

m

_a . - ,

o) OC 0C ;E -0a

- o ,--t Za-0 CL0

CX 0 aa ia~- U U-0 aa

U* C-

00 4,

O '. ,,

C

aES

0 c 0

__~~~ v. o 0 u ' ,nc

c E

aU o-' t "a a

o . ° .a t. &

0' 00 0' 0 *a

~J ~ £~t101

REE9R1ES

1. "LAUAGE SUPPORT ENVIRONMENT FOR GUIDANCE AND CONTROL SYSTEMS", Final

Report Working Group 08, NATO Advisory Group For Aerospace Research and

Development, March 1990.

2. Fisher, Alan S., "CASE, USING SOFTWARE DEVELOPIeT TOOLS", John Wiley and

Sons, 1988.

3. "VALIDATION OF FLIGHT CONTROL SYSTEMS", Draft Report of GCP Working Group

09, NATO Advisory Group For Aerospace Research and Development, April 1990.

4. "HANDBOOK - VOLUME I, VALIDATION OF DIGITAL SYSTES IN AVIONICS AND FLIGHT

CONTROL APPLICATIONS", US DOT/FAA/Cr-82/115, September 1986.

5. "DIGITAL SYSTEMS VALIDATION HANDBOOK - VOLU1ME II", US DOT/FAA/Cr-88/10,

February 1989.

6. "DIGITAL FLIGHT CONTROL SOFINARE VALIDATION STUDY", AFFDL-TR-79 3076,

June 1979.

102
U.S. Government Printing office 548-076

