WeRC-TR-90-3067

METHODOLOGY DEVELOPMENT FOR THE VERIFICATION AND
VALIDATION OF FLIGHT CRITICAL SYSTEMS SOFTWARE

Ronald L. Braet

Frontier Technology, Inc.
4141 Colonel Glenn Highway
Beavercreek, OH 45431

October 1990

ELECTE
Final Report for Period Dec 89 - Aug 90 DEC 041330

o:

p———

Approved for public release; distribution unlimited

FLIGHT DYNAMICS LABORATORY

WRIGHT RESEARCH DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in conrection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nationms.

This technical report has been reviewed and is approved for publica-

tion.

ANTHONY P. DeTHOMAS
Project Engineer
Advanced Development Branch
Flight Control Division

) Advanced De¥€lopment Branch
Flight Control Division

FOR THE COMMANDER

bl

H. MAX DAVIS, Assistant for
Research and Technology
Flight Control Division
Flight Dynamics lLaboratory

1f your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WRDC/FIGX » WPAFB, OH 45433-6533 to help us maintain a current
meiling list.

Coples of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document,

UNCLASSITFTED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
OMB8 No. 0704-0188

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited
N/A
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
FTI-9042-001 WRDC-TR-90-3067

7a. NAME OF MONITORING ORGANIZATION
Flight Dynamics Laboratory (WRDC/FIGX)
Wright Research Development Center

6b. OFFICE SYMBOL
(If applicable)

62. NAME OF PERFORMING ORGANIZATION
FRONTIER TECHNOLOGY, INC.

Tb. ADDRESS (City, State, and ZIP Code)
WPAFB, OH 45433-6553

6c. ADDRESS (City, State, and ZIP Code)

4141 Colonel Glenn Highway
Beavercreek, OH 45431

8b. OFFICE SYMBOL
(If applicable)

ASD/PMRNB

83. NAME OF FUNDING / SPONSORING
ORGANIZATION

Dept of Air Force ASD/PMRNB

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F33615-89-C-3610

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
WPAFB, OH 45433-6503 ELEMENT NO | NO. NO ACCESSION NO.
| 65502F 3005 40 53

11. TITLE (Include Security Classification)
METHODOLOGY DEVELOPMENT FOR THE VERIFICATION AND VALIDATION OF

| FLIGHT CRITICAL SYSTEMS SOFIWARE .

12. PERSONAL AUTHORC(S)
BRAET, RONALD L.

15. PAGE COUNT
107

14. DATE OF REPORT (Year, Month, Day)
1990 October

13b. TIME COVERED

'13a.TYPE OFf REPORY
from 12/12/8%0 8/12/90

FINAL

16 SUPPLEMENTARY NOTATION
I This is a Small Business Innovative Research Program, Phase T report.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

software flight critical systems, CASE, SOF,
software verification and validation, s/w development

17. COSATI CODES
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

I * The results of this conceptual design study have shown that there is a
growing need to develop a methodology by which flight critical systems
software can be verified and validated for performance and safety impacts.

I The nature of the evolving technology and its application to FCS software
verification and validation requirements has current V&V methods lagging
behind design methods and tools. It is recognized throughout government
and industry that FCS softwarec V&V requires knowledgeable and skilled

l individuals utilizing proper tools and techniques to successfully complete
the V&V effort in a timely manner. This report provides an overview of
the development process of flight critical systems and the roles of

| verification and validation which go hand-in-hand with the development
process. It provides a conceptual design for a computer aided environment

to perform FCS software verification and validation. .. -
[20 (HSTRIBUHON/IAVAILARILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIHICATION
UNCLASSTFTED

NMuncaasanomnnmrp U SaMe as set Yot ustre

S0 Obbict YRSy

WRDC/FIGN

22H THLEPHONE (Indlude Areg coxde)

(5173) 255-84/74

a NAME OF RESPONSINLE INDIVIDEAL

P ANTHONY DETHOMAS

O form 1473, JUN 86 CEOLIRITY €1 AT AT s T

Proviais editions aee abisolete

UNCLASSTETED

TABLE OF CONTENTS

Section Page
I. INTRODUCTION
1.1 Purpose.....cce0-. cescsesscesenscsensensosrssassaans Ceeeeccscnnnns vessal
1.2 SCOP . v eeesesvecasssssssscssncssossoes cesecncasans cevesses cecceceane eeel
1.3 Document Organization......cceeeeecececess ceceessen ceesescacssatsesranees 3
II. EXECUTIVE SUMMARY

. . .

NN NNNONNDDNN
W W WWHNNDODN -
L]

III.

- - .
WWRRNNNNN RN S b s S S s 2

oo doannds W=

N = O

.
.

)
« o .
AU dHWN -

.
.

WWLWWWWWWLWWWWWWWWWWWWwWwwww

[

Purpose Of The Work....veeeeuas tessssssassane Cesesencenas ceeesana veesad
Overview of Technical Approach........ cessens P 6
Step 1 - Requirements AnalysiS....... P 7
Step 2 - Data Collection.......eee... e eeeenenen T T P Op S 8
Step 3 Verification and Validation Oonoept Desigris.q..oes ..‘;. 9
Sumary of the Results........e0vveveeeeenss cesenea .,,...,,. Neeecnaen 11
Results of FCS Software V&V Requ_mements Cma e s

Definition and Data COlleCLiON..cceeueceecrcacaaceiogsbosqonomeccsncas 11
Con ual Design for a V&V Methodology for FCS Software. I 17
CAV’ES FCS V&V Capabilities.......ceeeevenn.. cevecencessons e 21
Potential Applications Of The Effort.......... ceceaans rereeiieeaian. 25

TECHNICAL DISCUSSIONS

Development Phases For Flight Critical Systems....... ceriasinenens vee28
OVeIViEeW. c it eeeecnsseoeassensassacnsscnacnnans eeenas Neeesesensonanas 28
System Requ;Lrements/Demgn Phase...ccevevveenn. ceeaces i ecaecencscncnns 30
Subsystem Requirements/Design PhaS@..ceeeeceesseccccsceasoecnoncsonns 30
Software Requirements/Hardware Specification Phase O 1 |
Basic Software Design Phase........ Ceeeesesecssasacatessscncatananens 31
Detailed Software Design Phase...... G eeeccenncneacceacenonacnancnnens 32
Module Coding/Test PhaSe....ceccesccsssssscesscesscaccssccsassannnnes 32
Software & Software/Hardware Integration Phase 33
Subsystem Integration Phas€......cvceese cieenas Ceecaceccsastennasaons 33
System INtegration PhaS...eeeeeeessestscsrssasesssscescsssanssanenases 33
Flight Critical System Engineering 34
Flight Test PhasS@..uecieerccesencasscsossatscsosacososacasaasacenaneoes 35
Verification and Validation Of Flight Crltlcal Systems Software...... 35
OV BV W 44t cevnsossssosssostssesassaassasossesontscesasesonnsesonss 35
FCS Software Requnements Analy31s 36
FCS Software Design AnalysSiS.....cceeeeee Ceeesesceineasatacaaanaeans 37
Code ANALlYSiS..ieeeeeeeeecsasecssssasassesssososascanssscencanasensss 38
Flight Critical Systems Software TesSt......ceocececaene Cesseesasennas 39
FCS Software V&V Tools and TeChnNiqUesS..cceeeeeteeeeneeeneccccncsannns 4]
Task 1 Results: Requirements For FCS Software V&V......vvveeenenennns 47
General Requirements for Flight Critical Systems......cccieeeeiennnns 47

iii

3.3.2 FCS Design Trends Impact on Software V&V Requirements............ ves-47
3.3.3 Technology Impacts on FCS Software V&V Requirements.............. ee..50
3.4 Task 2 Results: Data ColleCtionN.cceeesancncocecracacns Cetesesnncas eessD0
3.5 Task 3 Results: Development of a FCS V&V Methodology..... ceacnses ee..59
3.5.1 Technical Approach.....cceecee. Geeesessescasnseasscensan cecencscsnsasna 59
3.5.2 uter Aided V&V Erngineering System Design Overv1ew 61
3.5.3 CAVSES FCS V&V Capabilities........ cetedetensesvocaene Ceeccenvenenn 68
3.5.3.1 Aircraft Flight Critical Systems Analysis....... ceeoes ceteeenn ceeeves 68
3.5.3.2 FCS Software Design Verification....eeeeeeeeeeneeocanens Ceeececcnanas 74
3.5.3.3 FCS Software Code Verification..ccevesecssecccescscscssscacesscnseeesld
3.5.3.4 Stand Alone and Dynamic Subsystem V&V, ...eesecesccccosvae teesecsecnen 83
3.5.3.5 Integrated System Verification and Validation........... Ceessseneanss 84
Appendix Data Gathering ChecklisSt.....ieeeees. ceeans cecsesecenetssecacenanns 89

Asasssion For
TNTIS GRAXI ér
DTIC TAB

Unannoumoced 0
Justifioat 10D e

»y.
Pistribution/

Availability Codes
Avail and/or
IDist Special

Al |

iv

SECTION 1.0
INTRODUCTION

1.1 PURPOSE

This document describes the Phase I SBIR study titled "Methodology
Development For Verification and Validation Of Flight Critical Systems
Software", Contract No. F33615-89-C-3610. This work was sponsored by the
Wright Research and Development Center, Flight Dynamics Lcboratory, Flight
Control Division at Wright Patterson Air Force Base. The purpose of this
effort was to dewvelop an approach for an innovative, integrated verification
and validation methodology which focuses on highly coupled flight critical
systems software.

1.2 SCOPE

-, Current trends in applications of advanced control and integration
fechnologies are bringing about the development of on-board systems that are
designed to enhance cambat effectiveness and survivability in ever increasing
hostile combat environments. Flight critical systems (including integrated
flight and propulsion control, integrated flight and 1ire control,
self-repairing flight control, wvehicle management, pilot-wvehicle interface, and
flight wvehicle sensors) are being controlled and integrated in software. These
developments are putting an ever increasing load on the development,
verification and validation (V&V) of flight critical systems software. This
Phase I SBIR effort has researched and developed an innovative approach for
advancing the state of the art in the application of wverification and
validation methodology. This methodology can be developed into a Computer
Aided Verification and Validation Engineering System (CAVZES) hosted in a
workstation environment. FTI’s approach provides a quantum improvement in the
effectiveness and efficiency of the software environment (containing methods,
disciplines, documentation, tools and controls) needed for verification and
validation of highly reliable, fault tolerant flight critical systems software.

The CAVZES environment offers many advantages over current V&V methods
and procedures. These advantages include:

o

A highly automated system that speeds the V&V process by approximately
5 to 1, saving valuable time and money.

A workstation environment which provides the user with a powerful
computational environment which can utilize many of the more
sophisticated FCS design and analysis tools available.

An environment easily adaptable to futuristic Air Force systems such as
hypersonic air wehicle, control of unmanned aerial vehicles, and even
battle management systems.

The capability to evaluate designs and design excursions within the V&V
environment and transport the evaluations to other phases of Vav
efforts.

Provides a CASE type working environment for transportation and
traceability of V&V requirements, design, and test analysis data.

Is oriented specifically to performing software V&V, but is applicable
to development efforts.

Provides a User Help Guide to specific V&V steps to be performed.
Provides the capability to perform rapid prototyping through its tool
and interface environment.

Can accept inputs from many external systems: (eg.,MEAD, TAE, ...)
through common interfaces defined for transporting external inputs.

Can be used to aid in providing a flight critical systems engineering
function throughout FCS software development cycle.

The unique features of the Computer Aided Verification and Validation
Engineering System makes it a very cost effective environment to be used by the
flight critical systems analyst to perform the V&V process. These features

include:

o

An integrated V&V tool set usable through all development phases.

User friendly interfaces; point/click mouse, pull down windows, quick
views and transfer of data/comparisons, common functionality between
tools, command driven and menu driven human interface.

o0 Provides hooks for adding future tools and a means for interfacing and
driving real-time simulations.
Offers an environment aiding autcmation of real-time testing.

o . Usable by developers, V&V organizations, and research groups.
Is an evolutionary system which accommodates new tools to meet the
growing user requirements.

Document Organization

This report contains the following sections:

Section 1 is the Introduction.
Section 2 is an Executive Summary of the approach taken in this effort
and the results of each task.

0 Section 3, Technical Discussions, contains all of the details of the
work performed and presents the Computer Aided Verification and
Validation Engineering System conceptual design.

SECTION 2.0
EXECUTIVE SUMMARY

2.1 PURPOSE OF THE WORK

The applications of digital technology to Flight Critical Systems (FCS) has
allowed far reaching advances in air wehicles through vehicle optimization of
the air wvehicle coontrollability, performance, safety, and mission
effectiveness. Flight critical systems (including integrated flight and
propulsion control, integrated flight and fire control, self-repairing flight
control, wvehicle management, pilot-wvehicle interface, and flight wehicle
sensors) are being controlled and integrated through software. The spectrum of
flight control technology has expanded beyond the classically recognized role
of stability and ocontrol and flying gualities and now includes technologies
covering functional, physical, and pilot-vehicle interfaces which impact
aircraft design options, cambat effectiveness, and survivability.

As shown in Table 2.1-1, there are a number of problem areas in the
verification and validation of flight critical system software. First,
implementation of most flight critical systems is being performed through
software. This means that an increasing share of the development effort and
costs will continue to be driven by software. Thus, therc is a very important
demand for a well disciplined, efficient software development, verification,
and validation methodology. This study specifically addresses verification and
validation methodology, but discusses tools and techniques which are equally
applicable during development.

Second, not only are these systems being developed with software being a
primary implementing factor, but also software has become the means by which
these flight critical systems are integrated. Thus, a well disciplined,
efficient software V&V methodology is required, more now than ever before to
both guide the development and conduct V&V of highly integrated FCS software.

TABLE 2.1-1 SOFTWARE PROBLEM AREAS IN
VERIFICATION AND VALIDATION OF FLIGHT
CRITICAL SYSTEMS SOFTWARE

- EXPANDED ROLE OF SOFTWARE IN FLIGHT CRITICAL SYSTEMS
REQUIRES A WELL DISCIPLINED SOFTWARE V&V METHODOLOGY

- INTEGRATION OF CRITICAL FLIGHT SYSTEMS THROUGH SOFTWARE
REQUIRES A RELIABLE V&YV PROCESS TO ASSURE THAT SAFETY
OF FLIGHT REQUIREMENTS ARE MET

+ SHIFT TO HOLS REQUIRES DEVELOPMENT/UPDATE OF

- SOFTWARE TOOLS
- IMPLEMENTATION ENVIRONMENT
- VERIFICATION AND VALIDATION TECHNIQUES

- FREQUENT CHANGES IN SOFTWARE DEVELOPMENT & DOCUMENTATION
STANDARDS REQUIRES FLEXIBLE SOFTWARE DEVELOPMENT AND V&V
APPROACHES THAT CAN BE UPDATED EFFICIENTLY

* INCREASED COMPLEXITY OF INTEGRATED FLIGHT CRITICAL SYSTEMS
INCREASES THE MAGNITUDE/COST OF SOFTWARE DEVELOPMENT
AND V&V EFFORTS

vV8v3

Third, the shift from assembly language and certain higher-order languages
(i.e., JOVIAL, etc.) to Ada as the accepted language for flight critical
systems 1is in process and is impacting current and future software development
in flight critical systems. Efforts are under way to improve the performance
of the software implementation technology used within Ada compilers to meet
flight critical systems requirements. These improvements, when achieved, will
enable the cost effective features of Ada to be used and more effectively
provide fault tolerant code which is essential for flight critical systems.
However, during this transition period, development of software tools, choice

of different implementation strategies and conversion from previous
implementation languages to Ada’s implementation structure and discipline will
put additional burdens in software development and V&V disciplines.

Fourth, changes in government software development standards effect
required documentation lewvels, milestone reporting, etc., have also added to
the need of developing a disciplined software development and V&V methodology.
Previously used military standards applicable to software development
(MIL-STD—483 and MIL-STD-490) have been amended by MIL-STD-2167A.
MIL-STD-2167A has a formidable list of documentation requirements on software
which are impacting software development efforts on current flight critical
systems. Accountability to these software standards and tailoring of these
standards to specific applications is yet another area which must be factored
into a software development and V&V methodology.

Finally, the evolvement of highly integrated analog/digital and digital/
digital flight critical systems which are mechanized to provide redundancy and
the capability to reconfigure or provide graceful degradation with failure
insertions has complicated the verification testing of such systems. Coupling
these mechanizations with interfaces to sensors avionic systems, pilot
interfaces, and AI oriented vehicle management systems has made the cost of
software development one of the major drivers in system life cycle cost. In
this area alone a disciplined software verification and validation methodology
addressing all aspects of critical flight software development can reap
tremendous savings.

2.2 OVERVIEW OF TECHNICAL APPROACH

The technical approach to the development of a methodology for verification
and validation of flight critical systems software was carried out in a three
step process. The first step, Task 1, was to perform a requirements analysis
to identify specific needs to be met in V&V of flight critical systems
software. The second task performed in conjunction with the first was a data

S

collection effort. The third step (Task 3) was the synthesis of a FCS software
V&V methodology which would meet the requirements defined in the requirements

analysis, Task 1. This process for the Phase I effort is shown in Figure
2.2-1.

DESIGN REQS

T
TASK 1 I 225@ TASK 2 TASK 3 @
REQUIREMENTS DATA CONCEPT
DEFINITION — COLLECTION ::> DEVELOPMENT
0 PERFORMANCE o S/w DEVELOPMENT « FUNCTIONS
TOOL SETS - INTERFACES
SPECIFICATIONS o CONTROLLAW . PERPORMANCE
0 V&Y FUNCTIONS ANALYSES TOOL - ADAPTATION
o CODE ANALYSES TOOLS - TOOLS
0 V&V PHASING o TESTDATA - AVAILABLE
ANALYSES TOOLS - REVISIONS
0 CUSTOMER o CODE VERIFICATION . DEVELOPMENT
VISIBILITY TECHNIQUES - APPUCABLE STDS;
o $/W DOCUMENTATION . ADAPTATION
STANDARDS - EQUIVALENCE
o REVIEYr AND AUDIT
STANDARDS
o AUTOMATEC DOCUMENTATION
TOOLS
o SIMULATION &
EMULATION TOOLS
o SAFETY OF FLIGHT
TEST PROCEDURES
vOoIDS| © PERCEIVEU FUTURE
TEST REQUIREMENTS

f} CONSTRAINTS]

DATA DESIGN
BASE CONCEPT

DELIVERABLES:

REQS
DEFINITION

Figure 2.2-1 Overview of Program Approach

2.2.1 Task 1 - i Analysis. The purpose of the requirements
analysis task was to define a complete set of requirements which must be met in
the V&V of flight critical systems software. The complexity of flight critical
systems development has outpaced the management and technical resources
supporting their acquisition. The rising complexity in hardware technology,

software technology, and the integration of systems stresses the capability to
design, build, and test such systems. An initial draft of the requirements
definition was prepared primarily from Frontier’s experience 1in previous
software V&V efforts. This draft provided A quide for areas of investigation
during the Data Collection task. The information gained from the data
collection task was then in turn used to update the requirements definition
resulting in a complete and corisistent set of requirements.

2.2.2 Task 2 - Data Collection. The approach taken in the data collection
task was to first develop checklists (see BAppendix) to help organize the
aoquisition of information on each element/function required in the software
verification and validation methodology. The checklists addressed specifics
about available software analysis tools and techniques available and current
perceptions/experiences in the development of FCS software. Included within
these checklists was a 1list of applicable Government standards which must be
met in the development of flight critical systems. Examples of such standards
include MIL-STD-483,-490, MIL-STD-2167A, MIL-STD-1521, ANSI/MIL-STD-1815A-Ada,
MIL-F-9490, MIL-STD-8457, to name a few. One of the problems besetting
software developers today is being knowledgeable in the requirements spelled
out in many standards and even more importantly, being able to meet the intent
of the standards in a cost effective manner.

Next, a catalog of applicable software tools used in all phases of
development and verification and validation of flight critical systems software
was prepared. This included control law analysis tools, software development
tool sets, documentation aids and tools, configuration management software
tools, and wverification and validation software tools. As a starting point
this 1list was compiled from our knowledge and hands-on experience with many of
the tools. This 1list was then expanded through the information gained in
literature searches, surveys of software tools used by flight critical system
developers, and focused interviews of key government and industry experts.
This list of tools was entered into our Tools Data Base Management System for
ease of reference and quick recall.

The next step in the data collection process was to conduct in depth
interviews with key government and industry experts in the development of
flight critical systems. These interviews included personnel at Wright
Research and Development Certer -- Flight Dynamics Laboratory, Air Force Flight
Test Center, NASA Dryden Flight Research Facility, McAir, General Dynamics,
Rockwell International, Honeywell, Softech, and High Plains.

The prepared checklist was used to guide the discussions on FCS software
verification and wvalidation tools and techniques. At the connletion of these
interviews, the raw data findings were prepared and provided to WRDC/FIGX. As
part of the data collection task, a Data Base Management System (DBMS) was
developed to help organize and record the many sources of data and the tools
and techniques identified. This DBMS was created on DBASE III+ and hosted on
an IBM compatible PC. New data is continuing to be added to this system and it
will serve as a reference source for proposed Phase II efforts.

2.2.3 Task 3 - Verification and Validation Concept Design. The third task in
our technical approach to development of a V&V methodology was to synthesize a
preliminary design in sufficient detail to demonstrate that the design is
technically sound and that V&V functions have been defined to address the FCS
software V&V requirements. A variety of tools and techniques were considered.
The approach synthesized provides a user-friendly host environment for current
and future V&V tools applications.

The scope of tools and techniques will allow the user to assess development
of critical flight systems software from systems requirements definition on
through "iron-bird" wvalidation testing leading to flight test. Features which
are included in the design are:

Verification and validation activities performed in a series of steps
which are interfaced through the customer and coordinated with the
development phases of the flight critical systems software.

Utilization of control systems analysis tools to verify flight
critical systems software in a manner which will address safety of
flight issues and provide a high level of confidence in the expected
performance of the system design and implementation.

Use of Dboth system level and statement level emulations for
verification of flight critical systems software design. System level
emulation will be used for analysis of performance, stability, and
redundancy management. Statement level emulation will be used to
exercise the code itself.

Structuring a verification and validation approach to provide an
appropriate balance between external V&V . - ivities and developer V&V
efforts.

The use of proven Independent Verification and Validation (IV&V)
techniques for evaluation of the prime contractor’s development
process and software design.

Use of advanced hierarchial modeling techniques for the development of
topological network trees which are more easily understood than code
representations, and which constitute a deliverable data base to serve
as an effective tool for software change impact analysis.

Analysis techniques which will provide an assessment of overall system
performance as well as verification of system/software design and
coding.

Use of a structured data base of proven validation test procedures
which have been used to perform "iron-bird" validation testing of
highly integrated flight control systems. This data base addresses
tests of performance, redundancy management, mechanization, failure
mode and effects, aircraft systems and interfaces, and all other
matters effecting flight performance and safety of flight.

Utilization of quick-look analysis tools applicable to ground based
similation and flight test data and application of advanced data
reduction techniques.

10

A FCS software V&V methodology has been designed which provides these
features and is discussed in Section 3.5. Specific techniques and tools are
presented to address each of the phases involved in an V&V of flight critical
systems software.

2.3 SUMVARY OF THE RESULTS

The results of this conceptual design study have shown that there is a
growing need to develop a methodology by which flight critical systems software
can be wverified and validated for performance and safety impacts. The nature
of the evolving technology and its application to FCS software verification and
validation requirements has current V&V methods lagging behind design methods
and tools. It is recognized throughout government and industry that FCS
software V&V requires knowledgeable and skilled individuals utilizing proper
tools and techniques to successfully camplete the V&V effort in a timely
manner. This report provides an overview of the development process of flight
critical systems and the roles of verification and validation which go
hand-in-hand with the development process. It provides a conceptual design for
a computer aided enviromment to perform FCS software wverification and
validation.

2.3.1 Results of FCS Software V&V Requirements Definition and Data Collection

The process of defining V&V requirements is iterative and was performed in
conjunction with our data collection effort. Initial draft requirements were
prepared and updated as new information was gained from our interviews with key
government and industry experts and through data gained in literature reviews.
Key to the definition of these requirements was having a sound understanding of
current FCS software development and V&V practices. Figure 2.3-1 1is a
representation of the development process with specifications of verification
and validation levels.

A variety of accepted techniques are currently used to perform the V&V of
FCS software. These techniques are supplemented with tools (manual procedures

11

or software programs) to aid in the analysis tasks and the bookkeeping of the
results. Since the V&V of FCS software is normally performed as a parallel
effort with the development efforts, accepted techniques used in the V&v
efforts are driven by the timing availability of FCS software development

products. The current V&V tasks, applied techniques, and V&V objectives are
summarized in Table 2.3-1.

STUDIES IN-SERVICE
CONCEPT
DEVELOPMENT PRODUCTION
—————— «\-————— CERTIFICATION LEVEL — — — —f — — — — — —
CERTIFICATION FLIGHT
REQUIREMENT TESTS
—————— 3;———— VALIDATION LEVEL~——-f~————-
SYSTEM - SYSTEM
REQUIREMENT INTEGRATION
SYSTEM
DESIGN

\

SUBSYSTEM - SUBSYSTEM
REQUIREMENT INTEGRATION
SUBSYSTEM
DESIGN
- ‘\—‘ —_— Xg VERIFICATION LEVEL - — — — — — —
Preliminary SW REQ - SW/HW INTEG
Design Review HW DESIGN - ON TARGET
Crnucal BASIC SW - SW INTEC
Desiyn Review DESIGN ON HOST
Detarled Critical DETAILLD MODULE
BDesign Review SW DESICN TESTS
MODULE
CODING

Figure 2.3-1 FCS Development and V&V Phases

12

TABLE 2.3-1 V & V REQUIREMENTS

V&V TASKS

OBJECTIVE/PURPOSE

APPLICABRLE TECHNIQUES/TOOLS

System Specification
Verifications

Evaluated to ensure that system/
subsystem considered will
fulfill mission goals and
objectives.

¢ Requirements Analysis
o Docurentation Review

Control lLaw Analysis

Assure control algorithms
adequacy. Verify equation
accuracy; evaluate functional
relationships and functional
performance (timing, sequencing,
etc.)

Requirements Analysis
Control Law Analysis
o Brulation/Simulation

[o 2]

Evaluation of
Development Planning

Evaluate for satisfactory
standards & practices,

schedules, planning, controls,
reviews, audits, CM change
control, problem resolution, V&V

o Review Management Plan
o CPDP Review

Evaluation of
Software Development
Methodology

Preventive Measure. Sound
design, coding, and test
techniques reduce muber of
errors made during development.

o Doamrent Review
- Standards
- Plans
- Configuration Management
Provisions

Software Requirements
Verification

Requirements evaluated for
adequacy, coapleteness,
accuracy, testability, and

Requirements Analysis
Critical Requirements
Identification

00

traceability to higher level o Docurentation Review
specifications.

Software Design Evaluate development products o Design Analysis
to ensure technical viability o Performance Analysis
and contribute to refinement o Docurent Review
process. Ensure software design o Top Down P
represents a clear, consistent o System Level Emulation
and accurate translation of o Consistency Checker
software requirements. o Standardization

Code Correctness Test and evaluate developers o Code Analysis
code using independent tools. o Camparator
Code is checked for errors, o Campiler
anlssions and incorrect trans- o Interface Checker
lations. Evaluate logic, file o Doamemt Review
structuring, execution paths and o Cross Reference
limitations, interfaces, etc. o Cross Assembler
Machine level open-loop tests o Simulation
and unit and module; closed-loop o Instruction Trace

at subsystem/system. Examine
timing.

Identify unexpected paths for
infommation flow through a pro-
gram by analyzing the clues
characteristic of sneak paths in
network trees/flow graphs.

o Sneak Analysis

Software Validation

Determine whether all software
and system performance, inter
face, functional and test

Test Plan/Procedre Review
Test Case Generation
Kot -Bench Simulatox

[
o
o Development Tests C o
o0 System Tests requirements are fulfilled. o Mainframe Similation
o Flight Tests o Iron-Rird Simlation
o Control Lane - FEvery requirement. js © Aircraft Flight
ark tely tested
Response A
o Handling Quantities - All subsystems are properly
¢ Functional Tests integrated
- All system respanses arv
adequate for performanoe and
safety.
o Revhindancy Insure, through independent G Syntem Devel bmalataen

Minagement
o Faljure Minagement

Tozl Dewe lopoent
S Maant ercey

testing, that MM system mect o

desim pesmirement 5 for worst
cas ombinat ion of faclare;
jraform patamet ric arnslyors of

pithological pathe.

Prejgare a o roftware ool et e
Ald in the perforrieny of VW
Ao oment tasd e

¢ i Bard Simolatian
o N

13

As can be seen, a large number of techniques have been developed to aid in the
verification and validation of software. A deliverable Data Base Management
System (DBMS) was implemented by FTI to help organize and record the many
sources of data and the tools and techniques identified in this effort.

Evolvement of Computer Aided Software Engineering (CASE) tools continues
towards providing software development with the environment of an integrated
tool set including planning, analysis, design, documentation, static analysis,
prototyping, dynamic analysis, simulation, and construction of executable
systems. Unfortunately, CASE tools have not reached the point where this broad
application of tasks has been integrated into one development environment.
Similarly, the use of CASE tools in a V&V environment offers great promise and
sane CASE tools have been specifically designed to perform reverse engineering
on existing designs, a necessary V&V capability.

The near temm trends in flight control systems (FLCS) are expanding the use
of real-time, on-board optimization and intelligent controls to achieve high
performance and provide for damage tolerance and self-healing designs. These
near term FICS already are addressing the inner-loop, outer-loop, and
redundancy management functions. FCS integration has an even more challenging
impact on software. Forecasts and projections for FCS in the 21st century

indicate a number of significant impacts on FCS software V&V as indicated
below.

o] Significant increases in computer power will cause major expansion in
scope and character of onboard systems.

o) Development of architectural branches within redundant systems will
add verification and validation complexity, embedded replicated or
dissimilar subchannels for self monitoring could reduce redundancy
management complexities at higher rates.

o] Increased throughput and emerging new architectures are allowing
sensor fusion with information integration and display, requiring
expanded FCS verification and validation roles.

14

o) Trends towards systems highly integrated through FLCS -- because of
mission and performance benefits -- leads to more testing at system
levels, interdisciplinary expertise, and pilot involvement.

o] Increase of control effectors and reduction in actuator redundancy
levels for self repair/reconfigurable flight control increases the
complexity of validation testing.

o Decision-Aiding systems in a real-time environment require validation
of knowledge bases which currently have no accepted validation
methods.

The use of higher order languages (HOLs) eases the task of FCS design
process. HOLs allow the flight control engineer to more easily follow the
design through implementation in software. Current problems with Ada (tasking
and rendezvous) do not stop its use; the specific problem areas can be
avoided. However, there is still the question that once code is recampiled, it
is difficult to say that new code is good versus assembly language patches
approach.

FCS designers are moving towards providing control law block diagrams from
which code can be generated automatically. GE’s program called FASTER directly
generates 1750A assembly code. Many of the linear analysis tools (Ctrl-C,
Matrix X, MATLAB, etc.) purport to generate code directly from block diagrams
which can then be used directly in simulations to test from design through
simulation. Tools of these types eliminate many of the coding errors which can
occur during the process of changing a flight critical design to code.

Future FCS systems will still have to address interfacing with existing,
older systems. There is a wide generation of computers currently fielded and
this will always be the case. Many of the older camputers cannot support HOL.
Development contractors are moving towards using RISC computers. However,
currently there is not adequate support tools in this environment.

Transportable software 1is also being addressed. However, software
compilers are currently a problem here because there is no agreed to standard.

15

Also, timing is one of the most critical elements in flight critical software
and this effects transportability. Common module approches requires that the
developer look &t real needs in V&V. Resources are currently being spent in
designing software test stations/tools that will test to requirements and using
language translators to implement new front-ends to these test stations/tools.
Control law filters have already been transported. Use of Ada will help
transportability in future developments.

Vehicle Management Systems (UWMS) is the new focus in flight critical
systems. However, the designers must be realistic about what they propose and
use. It is cost prohibitive and not even possible to test all combinations
required to "adequately" validate a highly integrated FCS.

Redundancy & Monitoring (R&M) 1is another design area which drives V&V
requirements. Fram a design point, coverage of all failure mechanisms is the
problem here. There is the question of quad vs triplex systems. Triplex
systems can meet the 1 x 1077 requirement, but it is difficult to meet an
imposed requirement of fail-op, fail-op without going to a quad system. From a
cost and development viewpoint, a quad voter runs twice as long as a triplex
voter; software complexities at least double for every channel added due to
combinatorial considerations.

A number of lessans learned can be gained from past efforts in development
of flight critical systems software.

o In general, problems arise in specifications across on-board aircraft
systems. Understanding and documentation of interfaces between systems
are often lacking.

o The use of simulation for testing integrated systems is questionable. This
is particularly true in the area of sensors. The FCS testing is dependent
on models for high technology sensors and in this area modeling is very
difficult. Systems integration adds more combinations of conditions which
need to be tested.

o People who have tested systems have to put information gained back into the
loop. The problems that were encountered and how they were solved is often
not reported.

16

o One very large requirement is requirements and specifications for control
laws. There is a lack of a reasonable MIL-Spec for flight control; PIO
prediction is an example of this. Mil Prime Standard 8785-C is not
adequate; it is a back-up guide.

0o Most errors are in design. These are generally found in systems
integration testing. B-2 put a lot of time and money to get set up for
systems integration testing and that has paid off well.

2.3.2 I 1 i r a V&v 1 for S

The FTI technical approach to the development of the flight critical
systems verification and validation methodology is based on a balanced
allocation of technical skills, proven V&V tools and techniques, and evolving
software developmental test methodologies. The implementation of our
methodology can provide a workstation environment providing the needed tools
and techniques for verification and validation of flight critical systems.

Proven V&V tools which can be used directly to meet the V&V requirements
will be reviewed as candidates to be used in the development of a Computer
Aided Verification And Validation Engineering System (CAVZE.S) . The CAV’ES
will be hosted in a workstation environment and will provide the user with
ready access to those requirements, design, and development details needed to
assess the state of development of FCS software. Much of the early development
verification activities will utilize V&V tools hosted in the workstation
environment itself and will provide analysis data and results which can be
carried from one V&V stage to the next. The V&V methodology will also address
the wvalidation test activities which take place when the FCS software
development progresses to the point where testing of software and subsystems
utilizes hotbench simulators, simulators requiring mainframes for comput itional
support and finally when testing moves into an ironbird test environment.

The CAVZES will provide an environment in which the flight control
engineer or software engineer can quickly and easily access and analyze desiagn
information, software code, or generate data to verify and validate FCS soft-
ware. It will allow the engineers to deal with all phases of the development

17

cycle and tackle the problem of maintaining a continuity of
requirements/design evaluations across development phases.

The Computer Aided Verification and Validation Engineering System (see
Figure 2.3.2-1) will provide the following functions: V&V Executive (VEXEC),
Tool Interface Manager (TIM), User Interface (UI), Simulation Computer Inter-
face (SCI), Data Recording System (DRS), Data Base Manager (DBM), Automatic
Pilot Functions (APF), and the Data Analysis System (DAS).

0000 -+ [0

AUTO

TOOL

INTERFACE
MANAGER

PILOT
gFUNCTION

— — "

Z 282

—~ , =

USER m< ¢ m<cC &_—

:U(}) ‘ V&V EXECUTIVE [por

oM . 2cy NETwoRK
» D >

O Omg

m My

DATA
ANALYSIS

DATA

i RECORDING
SYSTEM

BASE
MANAGER

SYSTEM

000001

Co L e e e o

DATA BASE
fiLES

CAES

Figure 2.3.2-1 Computer Aided Verification and Validation
Engineering System (CAVzES)
18

To aid the FCS software analyst in performing V&V tasks, CAV2ES retains
its own data base and library of tools. The data base is structured to be able
to store and retrieve the data items which are a product of executing the
verification and validation analysis tools. The tool library consists of two
parts, a generic tools set and an external tools set. The generic tool set is
a group of V&V tools which will perform basic V&V functions on FCS software.
The external tools set represents user selected or new tools which need to be
interfaced through the Tool Interface Manager.

The Tool Interface Manager (TIM) selects which interfaces are used with the
selected tools so that the output of the library tool is put into a standard
format acceptable to the Data Base Manager. If a new tool (external tool) is
to be interfaced to CAV?ES, the TIM has an interface build capability which
aids the wuser in building a functional interface which converts data to a
format consistent with the existing data base.

The V&V Executive (VEXEC) monitors and coordinates the operation of
CAV’ES functions. The VEXEC execution involves issuing commands to the Tool
Interface Manager, the Simulation Computer Interface, the Data Recording
System, the Data Base Manager, the Automatic Pilot Functions and the Data

Analysis System. It receives cammands and sends responses to the user via the
User Interface.

The purpose of the User Interface (UI) is to provide direct access to the
various software tools functionalities, while relieving the user from needing
to be intimately knowledgeable about the software tools as stand-alone systems
and adapting to their various styles and syntax. This means that a user who
wants to obtain a time history plot of data generated by a simulation tool,
CIRL-C or MATRIX-X for example, does not need to know the particular commands
for the tool package for simulation and plotting. However, the UI does not
contine the experienced tool user to stay within the UI interface, but provides
a direct tool mode in which the user can execute tool commands within the
CAVES environment to perform any simulation and plotting activity allowed by
the tool. The UI is built in a windows environment to provide quick expansion
or contraction of backup information, aiding in the verification and validation

19

process. The functionality of a tool can be accessed via point-and-click mouse
operations on icons, menu, and form driven screens.

The Simulation Computer Interface (SCI) is wused to communicate to the
simulation computers. Communication may take place over serial lines to
various devices, over ethernet, and over direct bus links. The user may open a
terminal window for each of these connections and manually type commands. All
commands, along with responses, will be logged and sent to the DBM to be
recorded in a test execution log. Other subsystems of CAV2ES may also send
commands to the simulation computers. All commands indicate if a response is
expected. SCI will then pass along the command and wait for the response, if
necessary.

The Data Recording System (DRS) is responsible for recording simulation
data (both real-time and non-real-time) and transferring data to the data base
manager. The DRS receives its cammands from the VEXEC. Before a test begins,
the VEXEC sends a list of cammands to be executed (recording script). The
real-time simulation recording takes place via a 1link (bus link or ethernet)
connected to the simulation camputers via SCI. Proper synchronization is
critical if a valid set of data is to be recorded.

The Data Base Manager (DBM) serves two purposes. First, to create and
maintain data base files and second, to conduct data transactions for other
CAVZES subsystems. The DBM is composed of two processes to serve these
purposes: Vexec Interface and Build Update. The interface process conducts
transactions while Build Update is used to create and maintain data base
files. To assist in performing these processes, a commercially available data
base management system, UNIFY, will be used.

The Automatic Pilot Functions (APF) subsystem provides the capability for
the CAVzES system to send pilot commands to the aircraft flight control
system. The APF provides the capability to provide flight test functions (FTF)
for testing of performance parameters and to fly fundamental maneuvers. VEXEC
obtains commanded maneuvers from the test procedures via the Data Base

Manager. The APF sends these commands to the simulation computers and flight
control system wvia the SCI. The APF uses a transportable auto-pilot model
20

which may be hosted on the simulation computers (mainframes) or in the CAVES
workstation enviromment, dependent on the particular type of communications
link used between the CAV2ES and the simulation computers. This provides
tlexibility in the choice of this communication link from one implementation to
the next.

The Data Analysis System (DAS) is designed to provide the validation
engineer the capability to examine the data recorded during a test and to
perform data reduction techniques on the recorded data. The recorded data can
be displayed both on a CRT and on a hardcopy device. Data displayed during
simulation execution will generally be plots of variables as a function of time
and mode switches. Post test data analysis can be performed providing
performance parameters of flight critical systems.

2.3.3 CAV2ES FCS V&V Capebilities

Capabilities to be included within the CAV’ES environment will provide
the flight control/software engineers the capability to assess the FCS software
design in terms of performance, stability, and redundancy management analysis.
It will provide both static and dynamic code analysis tools for verification
and validation of flight critical systems code. It will also provide the
capability to perform quick-look analysis of generated data. It will provide
tre means to verify and validate FCS software through control of real-time
simulators driven by proven test procedures/test cases.

Aircraft Flight Critical Systems Analysis. The CAVZES will provide the
capability to evaluate the adequacy of the control laws with respect to
performance and stability and to evaluate system mechanization with respect to
redundancy management, timing and bus loading. To perform these analysis, 3
general types of flight control analysis tools will be used: a linear analysis

and design tool, a nonlinear simulation tool, and a system level emulator.

Commercially available linear analysis and design tools provide a comprehensive
interactive control design and analysis software language system including

state-of-the-art primitives in classical and modern control synthesis, matrix

21

analysis, dynamic system analysis, parameter estimation, and graphical
presentation.

A general purpose non-linear aircraft simulation program incorporates
specific aircraft characteristic through wuser-defined modules for the
aerodynamic forces and moments, the propulsion system, the control system,
etc. It can be run to trim the aircraft for any desired flight condition, to
generate linear state models for the trimmed flight condition, and to generate
time history responses for user-defined inputs representing commands or
external disturbances.

A system level emlator can be used to analyze the correctness of module
logic and functions, bus loading, timing and redundancy management, as well as
analyzing the operationel capabilities of a system and its conformance to
system requirements.

Software Design Verification. The objective of software design is to
confirm the technical adequacy of the desie— Much of this effort involves
manual review of requirements and des:qn opecifications, requiring methodical
and diligent attention in matching requirements to design and in evaluating
designs. It 1is in this arca where the application of CASE tools can provide
benefits in wverification. In general, CASE tools leverage the requirements
analysis and design specification phases of the software development cycle
while more traditional tools are more applicable in the software implementation

phase.

FCS Software Code Verification. Specific static analysis techniques which
will be initially implemented will be selected as a part of the Phase II
effort. However, capabilities to perform software sneak analysis and to

perform instruction level emulator code execution are examples of static and
dynamic analysis tools, respectively, which provide a strong code verification
tool base and are planned for implementation in CAVZES.

stand Alone, Dynami¢ Subsystem, and Integrated System V&V. The engineering

and formal system and software testing utilizes a bottom-up philosophy.

22

Testing starts with a lowest level code (unit code) and progresses upward to
system-level testing. Verification of results is performed at each level
before progressing to the next level. Test plans and procedures are prepared
for each 1level of formal testing and test results are documented. Problems or
discrepancies detected during any phase of testing are documented,
investigated, and acted upon.

CAVZES will be used to comunicate to simulation computers and subsystems
to drive individual subsystem tests, integrated subsystem tests, and finally
system level tests. The Maneuvering-simulation Validation Automation (MVA)
system currently under development by FTI for SAAB-SCANIA will provide just
this type of capability. The design structure of CAV2ES will incorporate
many of the features in the MVA system.

The CAV?ES is an integrated V&V tool set to be used throughout FCS
software development phases. It’s integration and application with the FCS
development phases is shown in Figure 2.3.3-1. It is usable by developers, V&V
organizations, and research groups. Its workstation provides the user with a
powerful computational environment which can utilize many of the more
sophisticated FCS design and analysis tools. CAVZES provides a CASE type
working environment, user friendly interfaces, and provides hooks for addition
of future tools. It provides a means for interfacing and driving real-time
simulations and offers an environment aiding automation of real-time testing.
In short, the CAVZES is an evolutionary system which accommodates new tools
to meet the growing user requirements in verification and validation of flight
critical systems software.

23

(83,AvO)

WILSAS ONIHIINIONST
ZO._.<0_4<> ONV NOILYOIdI43A
d3aiv 431Lndwoo

I-€°€'2 34NOI4

J¥al

|
!
#

|
1
f
|
i

y3I0YNYK

PILSAS ‘ nN31548
ON10u023y § Isve SiSaTvny
ﬁ vive v.vG
.

SIMUL ATION
COMPUTER
INTERFACE

NOILDNN S
10V1g

BIDYNYN
30viy LN

oiny 1004

w0 [D000

SN3lsASENS
IYYMQEYH

3002

XYOMLIN
! _ I _
|
| “ HOLYINWIE |
__ “ HON3810H
! | wve]
| ! | INOIVONYLY ¢30 ©
] ! \ 3I000N ©
| i | 11NN ©
| ! ! DNILSIL ATA
!
! NOIIVATWAI Ny © i W316A68NS dJO
! E..xm [) — *
ISNOAEIY DINYNAG 3-9 ©)
_ 931117050 DKIGHYK ¢ 1YHO1 N 400s !
NOI2Y 1A A1YNY ALIIGVIO ©
5 340 ive ALINBYEIJOUILNI BAR & o Q35019 TVUKINIUONI { AVYNY uuz<u(0u¢mc M
IONYMEO04YId SMY/1 YOWLNOD
3SNOdB3Y G0N O ONILEIL AYA ONILS3L A¥A " 8
$31L11YND DNITGNYN © WILEAB OJLYEOILNI 316ASBNE DINYNAC " SISAIYNY 03
NOILVQITVA “
1831 1013 | 3IvEINID LUOEIY ©
1

FAILIYYENOD ©

Qi invs ¢

ABOL@IK-INiL @

-__r____.______

INIAWNOHIANS
NIS SAVHINIVA

LIN3WNQHIANI
QuIgNOY!

LIN3IWNOBIANI
1831 LtHON3

A0Q)-XJ1NQ ©
SISATYNY vivad

LN3NNOHIANI
NOILYISHHOM XVA

NOWYANIWND0QD

SLNdGNI
$04

4

2.4 POTENTIAL APPLICATIONS OF THE CAV‘ZES DEVELOPMENT EFFORT

The Computer Aided Verification and Validation Engineering System has many
commercial applications which will bring large savings to its users. A great
deal of interest has been expressed by government agencies and industry leaders
in providing new capabilities in the verification and validation of the
evolving flight critical systems. The CAVPES will be directly usable by
industry dewvelopers of systems which are flight critical and are driven by
software. It will also be wusable by manufacturers of automated systems
controlled by software which can effect the performance of their product and
the safety of their user.

The aircraft manufacturers including General Dynamics, McAir, Rockwell,
Lockheed, Northrop, and Grumman all currently are faced with the problems of
developing and integrating flight critical systems as their major product
output. They have expended a large amount of resources in attempting to build
and maintain werification and wvalidation capabilities to keep pace with the
increasing growth in the use of software in wvirtually all of their
applications. The CAVYES offers these industry leaders an inexpensive tool
which can be easily implemented and customized to meet their specific needs.
Of course, the cammercial market extends beyond the United States market and
covers our NATO allies and supported neutral countries such as Sweden.
Campanies such British Aerospace (BAE), Messerschmitt-Boelkow-Blohm (MBB),
SAAB-SCANIA, and GEC Avionics are all heavily involved in the same pursuit of
developing, verifying, and validating flight critical systems.

CAV2ES will be of use to the many subcontractors to the prime aircraft
manufacturers. These include: the developers of flight control systems such as
Honeywell, General Electric, and Lear Siegler; engine manufactures such Pratt
& Whitney, General Electric, and Rolls Royce; and other manufactures of
subsystems such as hydraulic actuators, braking systems, and the large number
of 1integrated avionics components going into modern day aircraft. All of these
developers of subsystems face the problem ¢f verification and validation of

software used to control and interface their subsystems with other flight

25

critical systems. This requires the verification activities involved in the
early phases of design and development of software, and also requires that they
provide and a realistic environment with which to test their subsystems,
validating that they meet specified performance goals and safety requirements.

The interest and application of a CAV2ES in the govermment is readily
apparent by simply reviewing the many procurement and research activities being
announced on a daily basis. Examples of these include solicitation by: NASA
Ames Research Center (SBIR: 03.10 - "Development, Testing and Verification Of
Flight Critical Systems"); DARPA (SBIR: 90-087 - "Low Cost Reconfigurable
Generic Computer Workstations for Simulation Research/Development/Analysis");
Air Force (SBIR: A90-470 - Verification and Validation of Expert Systems); and
a recent procurement announced by the Avionics Laboratory titled "Advanced
Avionics Verification And Validation". The CAVZES has capabilities which are
directly applicable to each of these and offers the flexibility to expand to
future required capabilities. The direct use of the CAVZES by the many
research groups in the government organizations is not limited to WRDC but
extends to all government services engaged in the research and development and
testing of flight critical systems software.

CAVZES offers a capability to the independent software development and
software verification and validation contractors who the governmment solicits to
perform IV&V activities on flight critical systems. For contractors such as
these, the CAVZES offers a low cost test bed tool which can be applied at all
phases of werification and wvalidation. CAV2ES is a tool which the SPOs can
offer or specify as a support tool with the knowledge that it is a tool which
can produce the type of products that are needed to validate FCSs safety
requirements.

Aside from the contractors who build flight critical systems, the CAVZES
offers capabilities of interest to commercial manufactures of systems which use
software that can effect the user’s safety. The car manufactures have braking
system, engine systems, and ride quality systems which are controlled by
software and could impact safety if failure occurs. Developers of robotic

26

controlled manufacturing processes also need a capability to develop, verify,
and validate software which is safe to use in a manufacturing environment.

In summary, the usefulness and numbers of applications of the CAVES is

very large including: all branches of the military government agencies
' supporting the development of flight critical systems; the aircraft
manufacturers and their many subcontractors; the companies who provide
independent and consulting support in the verification and validation of flight
critical systems; and other commercial manufacturers who use software as an
automating and integrating means in the development of their commercial
products. The resources saved on future FCS programs are many times the
CAV?ES development costs.

27

SECTION 3.0
TECHNICAL DISCUSSIONS

3.1 DEVELOPMENT PHASES FOR FLIGHT CRITICAL SYSTEMS
3.1.1 Qverview
The development process of fligiat critical systems has many variations in
literature, but the basic states are universal. We choose to follow that
defined in Reference 1. The stages are:
(o} Study phase
o] Concept phase
System requirements phase
System design phase
Subsystem requirements phase

Subsystem design phase
SW requirements phase HW specification phase

o 0o 0O O ©o

Basic software design phase

Detailed software design phase

Coding/module test phase HW development phase
SW integration on host camputer phase

O O o O

SW integration on target computer phase--------- HW integration phase
Subsystem integration phase

System integration phase

Flight test phase

o O O O

0 Production phase

o Postdevelopment support or in-service phase

28

Our main emphasis in this study starts at the system requirements phase and
carries through system integration up to flight test. Before embarking on a
discussion of the development process, it is helpful to see how the roles of
verification and wvalidation go hand-in-hand with the development process.
Figure 3.1-1 is a representation of the development process with specifications
of verification and wvalidation levels. Starting at the bottom of the figure,
verification may be defined as the demonstration that each step in the
design/development process (left side of Figure 3.1-1) is correct and that the
software program is a correct rendition of the software design. Validation,
shown in the middle of the figure, may be defined as the demonstration of the

STUDIES I ON-SERVICE s

CONCEPT
DEVELOPMENT PRODUCTION
—————— :\————— CERTIFICATION L[VEL———j—-——--~ -
CERTIFICATION FUGHT
REQUIREMENT TESTS
—————— ~§—~—— VALIDATION usvr;L~———]{————-~
SYSTEM SYSTEM
REQUIREMENT INTEGRATION
SYSTEM
DESIGN
SUBSYSTEM - SUBSYSTEM
REQUIREMENT INTEGRATION
SUBS YSTEM
DESIGN

- { VERIFICATIONUEVEL 7+ — — — — — -~

Prelminary SW REQ SW/HW INTEC
Design Review HW DESIGN ON TARGET
Cntcal BASIC W e SWINTEC
Design Review DESIGN ON HOST
R [
. {
Detarled (niuca) DETANLED MODITLY
Deargn Review SW DESICON TESTS
4
_—

MOttt
COPUING

Figure 3.1-1 FCS DEVELOPMENT AND V&V PHASES

29

correct performance of the entire subsystem/system. With this brief
introduction to V&V, we will return to a discussion of the presented
development phases.

3.1.2 Systems Requirements/Desian Phase

The system requirements/design phase produces a System Specification
containing custamer and other known requirements which must be later validated
during the system integration efforts. In addition to the System
Specification, a System Mechanization/Architecture document is normally
produced describing the entire system structure, connections between
subsystems, preliminary data, and design of the system. These documents then
form the bases for requirements and design of subsystems.

3.1.3 Subsystem Requirements/Design Phase

During the subsystem requirements/design phase, each subsystem will
normally have a Subsystem Requirements/Design Specification containing:

o] A functional description of the subsystem including a copy of the
specific subsystem functional requirements contained in the System
Specification
The subsystem design concept and subsystem architecture
Subsystem criticality classification
Requirements on:

- Sensors and effectors
- Processors
- Displays and controls

0 A detailed description of the subsystem’s interface with all other
subsystems and with the system as a whole. Each subsystem will
generate requirements which will be implemented in software or
hardware. Detailed requirements for the hardware and software
components to be used to implement the subsystems will be derived from
the functional requirements during this phase. Some requirements for

30

the hardware components may be determined by use of certain software
camponents and by the design environment.

o The computing power (speed and memory) required to execute the
software within the time allowed.

o The availability of a particular software development environment.
Also, certain functions might be required that can realized only
through equipment specific software.

Built~In Test (BIT).
Data format conversation.
Specific sensor functions (e.g., Inertial Navigator, Display).

3.1.4 Software Requirements/Hardware Specification Phase

Separation for subsystem functions between hardware and software components
is carried out for each subsystem during the Software Requirements/Hardware
Specification Phase. Precise boundaries between hardware and software cannot
be determined in an effective way prior to ocompletion of the Subsystem
Requirements and Subsystem Design Phases. Results of the Software Requirements
and Hardware Specification Phase are normally recorded in:

o Software Requirements Documents (including descriptions and
derivations of all algorithms to be implemented)
Equipment Specifications

o An Interface Definition and Control Document

3.1.5 Basic Software Design Phase

The Basic Software Design Phase transforms the software requirements for a
subsystem into a software module design and a subsystem test design. Program
structure, program flow, module functions, and interfaces with other modules
are determined during this phase. Timing considerations are normally addressed
within a framing concept defining the module calling sequences based on
experience from existing similar systems. Bus load analysis should be
confirmed by rapid prototyping tests.

31

Results of the preliminary software design process should be contained in a
Software Design Specifications and a Software Test Requirements Document.
These documents are verified against the appropriate Software Requirements
Document during formal review at the end of the Software Preliminary Design
Phase.

3.1.6 Detailed Software Design Phase

During the Detailed Software Design Phase, the internal module structure,
the algorithms to be implemented, and the data structures to be used are
completely defined. The internal module structure is described in functional
flows or pseudo-code. Also, module test procedures are prepared.

The following information developed during the Detailed Software Design
Phase is added to the Software Design Specification.

Module descriptions

Detailed func+ .- 41 flows

Detailed d-i- .lows

Detailed interface and data description
Modu’e test specifications.

O 0O O O O

At the end of the Detailed Software Design Phase, a Critical Design Review
is held to confimm that:

o The design is complete. All intermal modules are present. All
interfaces are defined.

All software requirements have been satisfied.
The required software quality attributes are achieved.

3.1.7 Module Coding/Test Phase
The Software Design Document and Software Test Document form the basis for
module coding and test activities, respectively. During the Module Coding/Test

Phase, the modules are coded and commented; syntax errors are debugged, and

32

code inspection and code walk throughs are performed. All previously specified
module tests are prepared. Test stubs and drivers are established. Static and
dynamic module tests are executed. Detected errors are corrected.

The Software Design document is updated to be reflective of the implemented
design and a 1listing of source code is added to the documentation. The
Software Test Document procedures are campleted to form a module test report.

3.1.8 Software and Software/Hardware Integration Phase

During this phase, the process is to integrate the individual modules into
a working subsystem. This is normally accomplished on a host development
camputer. Inputs and outputs to each module are simulated and the modules are
successively integrated one at a time into a software subsystem. When all
modules are integrated, the software subsystem is moved to a target computer
and the code is retested. Software/Hardware test procedures are filled in and
bound to provide a Software/Hardware Integration Test Report.

3.1.9 Subsystem Integration Phase

At this point the subsystem code is moved to the target computer (flight
computer) . The software camponents that handle the hardware interfaces to the
flight computer are integrated one at a time and tested. Finally, the
Subsystem Test Procedures are executed on the flight camputer and a test report

of results is prepared.
3.1.10 System Integration Phase

The System Integration Phase is performed in a similar manner to the
subsystem integration. Subsystems are integrated individually into the system
and tested. The end task of the system integration is to validate that the
overall system satisfies the system requirements in the System Specifications.
The system tests performed at this phase are normally very extensive and cover
all of the functional and performance capabilities to be achieved at the
different points in the flight envelope. When the system has been adequately

33

validated for system safety properties, and handling qualities and performance,
the system is moved into flight test.

3.1.11 Flight Critical System Engineering

One function which is particularly important in system testing, but extends
back to the beginning of the system design is that of flight critical systems
engineering. With the growth in integration of flight critical systems, there is
a growing need to provide a flight critical systems engineering function to
administer to the needs of the flight critical portion of the aircraft. The
functions which fall into FCS engineering can be summarized as follows:

o] Allocate aircraft requirements to Vehicle Management System (VMS) flight
critical requirements. This includes definition of architecture,
redundancy levels, fault coverage requirements, functional partitioning,
iteration rates, system time delays, information flow, through-put and
memory requirements, avionics system interface requirements, and flight
test aids requirements.

o) Administer to external interfaces of flight critical systems. This
includes providing a support function in terms of interface definition,
expertise/consulting on interfaces during development of FCS and
providing a configuration control function.

0 Provide development services in terms of requirements interpretation
during design, a "fireman’s" role during detailed design, and in general
provide coherent progressive processes for system development.

o) Provide expertise in system level testing by assuring that the testing
level 1is established at the level the requirements are generated

supporting system or subsystem level and provide a system level test
leadership role.

The role of the flight critical systems engineering function then is to
provide expertise and control functions in the requirements, design,
implementation, and test of all FCS on the aircraft.

34

3.1.12 Flight Test Phase

The task of the Flight Test Phase is to carry out all testing required to
certify safety and performance characteristics in the actual flight environment.

3.2 VERIFICATI AND VALIDATT E FTWARE
3.2.1 Qverview

The purpose of verification and validation is to provide systematic assurance
that FCS comwputer programs will perform their mission requirements efficiently
and correctly. The V&V effort serves as a program acceptance tool in providing
higher confidence in software reliability, compliance between specifications and
code, and adherence to accepted standards. When performed by an independent
party, independent V&V (IV&V) provides the customer better visibility intc the
development effort, a second source of technical expertise, better document
quality and reduced frequency of operational change.

Proper performance: of V& on FCS software requires an understanding of
software V&V tools and techniques. It also requires a strong theoretical
background, and experience in FCS design and analysis. This background and
experience are needed for use of proper analysis techniques and putting enough
emphasis on critical functions. There are unique problems associated with the
design and development of dicital flight critical systems. For example, in some
cases, direct discrete design 1is required as opposed to discretization of an
analog design. However, it 1is also necessary to account for pure time delays
introduced by the digital design. In a Digital Flight Control System (DFLCS),
the wvalidity of the design should be verified throughout the operating envelope.
Simple frequency response measurements are not generally adequate for this
purpose, particularly where variable gain scheduling is wutilized (and if
task-tailored control laws or reconfigurable control laws are to be implemented) .

The V&V process 1s designed to address each critical phase of the software
development process. Software development is comprised of many subactivities or

tasks and the V&V process assures that each development task has been completely
and correctly performed. A camprehensive V&V effort to assure software
reliability will include the following basic tasks:

1. Requirements analysis: assure that software requirements have been
correctly derived from system requirements and that the
hardware/software interface requirements are campatible.

2. Design analysis: assure that the proposed design is feasible and that
proposed mathematical equations and algorithms will satisfy the software
requirements.

3. Code analysis: assure that developed code is a correct implementation
of the software design.

4, Testing: assure proper operation of program modules, software
interfaces, and system performance.

A detailed description of each V&V activity is presented in the following
paragraphs.

3.2.2 ECS Software Requirements Analysis

The definition of software requirements is one of the most critical phases of
the software development process. Verification of software requirements is
performed to ensure that system and interface requirements (documented in the
system and subsystem specifications) are correctly allocated to software
requirements (documented in the Camputer Program Development Specification). The
criteria employed in this evaluation include completeness, correctness, and
testability.

Several techniques have been successfully applied to the verification of
software requirements. These techniques include:

0 Independent derivation of software requirements from system/subsystem
requirements.

36

o) Comparison to standard reference systems or similar systems previously
developed.
Functional simulations and modeling of process allocation.
Timing and sizing analysis, and the establishment of budgets for flight
critical system parameters.

o Development of a requirements chart which identifies interrelation-
ships between requirements.

A V&V test criteria is selected for use in confirming prcper implementation
for each valid software requirement. The results of this analysis are presented
in a Software Requirements Analysis Report and any problems detected are
aucumented and acted upon.

3.2.3 ECS Software Design Analysis

After system and subsystem requirements have been allocated down to software,
the software design phase can begin. This is the process of translating software
requirements into a basic software design and then a detailed software design.
It is imperative to verify that the proposed software design satisfies all the
software requirements.

The software design defines both the executive control logic and algorithms
to perform each software function. A balance of analysis techniques must be
selected to verify both of these elements of the software design. The following
design analysis techniques have proven effective in detecting design errors:

o] Correlation and traceability between design elements and software
requirements.

Functional simulation to assess design integrity and process allocation.
Independent derivation of equations and algorithms.

Comparison with standard references and models.

Comparison with methods which have been proven in operational systems.
Mathematical and logical analysis.

O O O O O

37

Design analysis techniques to be wutilized for any particular function are
dependent upon the nature of the function (such as signal filtering, gain
scheduling, device interfacing). For example, logic analysis techniques are
appropriate for executive control functions while mathematical methods are more
suited for numerical functions. The proposed design of each software function is
verified by using the selected method to determine the extent to which it
satisfies the corresponding software requirements. Control logic is sindilarly
verified to ensure proper interaction between software functions.

3.2.4 Code Analysis

Analysis of the developed program code is performed to ensure that the coded
representation of the software design corresponds to the verified design. The
goals of the program analysis are to ensure that the coding is correct, that
development standards have been followed, and that no latent errors have been
introduced into the software by the coding process. The following program
analysis techniques are examples of those employed to identify coding errors:

Version comparisons

Text editing and syntax analysis
Standards auditing

Equation reconstruction

Data structure analysis

Flowcharting and logic reconstruction
Manual code inspection

Software sneak analysis

© 0O 0 O 0 0O O o

Software tools, which are programs designed to assist the analyst, are employed
to automate many of the above program analysis techniques. Software tools can be
used to help identify actual or potential errors in the developed code, and
reformat and consolidate information. They present a reliable, cost—effective
means to greatly reduce the manual program analysis techniques.

38

To maximize the wvisibility of the software development, program analysis is
performed in parallel with the code development. This is achieved by analyzing
the incremental code deliveries and modifications introduced in the updated
program versions. This method has proven to be an effective technique for
identifying major coding problems and for correction early in the code
development process. Any discrepancies between the final code and the verified
software design are documented and acted upon.

3.2.5 Flight Critical Systems Software Test

To complete the validation, tests are performed to determine compliance with
software and system requirements. A camprehensive test plan is developed prior
to testing and tests are planned to achieve the following abjectives:

1. Verify that individual software functions satisfy the corresponding
software requirements.

2. Verify that the software/software and hardware/software interface
functions are properly implemented.

3. Verify that the operational system possess the required system
capabilities and satisfies the appropriate performance requirements.

Tests are planned at module, interface, and system levels for both nominal
and extreme conditions within the required performance limits. Test proocedures
are developed to provide a detailed specification of the exact steps to be used
in performing the test. The results of the test planning activity are presented
in a Test Plan/Procedures document. Comprehensive planning is the foundation
upon which effective testing is based.

Testing 1is conducted by following the exact procedures specified in the Test

Plan/Procedures. Software tools are employed during the tests to provide a
testing environment, an acceptance criteria, and analysis aid. Test results are

39

recorded, and any anomalous results are confirmed by analysis, documented and
acted upon.

Testing of FCS software generally occurs at five major levels during software
integration and test phases of a system development. These are:

1. Execution on the host computer.
(Moczle Testing)
2. Execution on an emulator of the target computer.
(Module & Interface Testing)
3. Execution on the target computer.
(Module & Interface Testing)
4. Integrated system simulation testing.
(Interface and System Testing)
5. Flight testing.
(System Testing)

These five levels are normally used in most FCS software development; the last
three levels are always required. Execution on a host computer usually refers to
a development type environment, where code can be examined in a static
environment, modules can be tested, and structure of the code can be tested for
proper interfaces between modules.

When the target computer is not available, the target computer is emulated on
a host computer. This emulation testing uses identical instruction sets, word
sizes, etc. yet provides a host computer user friendly environment in which test
drivers and analyzers can be "wrapped around” the emulator.

Execution on the target computer provides the actual camputer environment for
the software execution. Individual modules are tested and integrated to a
complete subsystem/system to allow end-to-end testing. Execution on a target
computer in conjunction with some external inputs (real and modeled hardware
devices) is often referred to as "hot-bench" testing. One of the primary
functions of "hot-bench" testing is to check external interfaces and software
functional performance to realistic real-time inputs.

40

Integrated system simulation testing is performed to check the FCS software
in the full range of operational conditions. In this phase of testing, prototype
or actual flight computers are brought into a hot-bench, iron-bird, and/or test
rig environment. The environment is made to present the operational environment
as close as is practical. This environment includes high-fidelity aerodynamics,
sensors (normally simulated), hydraulics and actuators, cockpit, instrumentation,
and outside view presentations for pilot—cueing. The closed-loop tests that are
run are generally pilot-in-the-loop operations to verify performance, flying
qualities, and to confirm proper functional dynamics and mode sequencing. In
addition to these tests, "pilot confidence" testing is performed where the pilots
fly realistic missions and push the simulated aircraft to its safety limits.

Flight testing is directed toward confirmation of performance requirements
and demonstrating flight safety. Considerable instrumentation is needed to
collect data which can be analyzed and correlated with analytical and simulator
predictions.

3.2.6 FCS Software V&V Tools and Techniques

Table 3.2.6~1 broadly summarizes FCS software V&V tasks, applicable V&V tools
and techniques, and the V&V cbjectives. 2An extremely large number of tools have
been and continue to be developed to aid in the verification and validation of
software. A variety of these tools (static and dynamic) are listed in Table
3.2.6-2. Static tools exanine some aspect of specifications, designs, or code
without executing the code. These tools are grouped into a list of those which
examine a specific property and those which examine more general and extensive
properties. A dynamic tool performs some function to aid in testing the software
when the program is actually executed. A timing analyzer that monitors and
records execution times for functions is an example of a dynamic tool.

Techniques are "“standards and procedures" used in develcpment, test, and
maintenance of software. Table 3.2.6-3 presents some standard techniques used.
Development and maintenance techniques are included since substantial software
reliability can be obtained by attention to systematic development. and

documcntation.

41

TABLE 3.2.6-1 V & V REQUIREMENTS

VeV TASKS OBJECTIVE/PURPOSE APPLICABLE TECHNIQUES/TOOLS

stem Speci £i. on Evaluated to ensure that system/ o Requirements Analysis |

\S,ymgcau“é catd subsystem considered will o Documentation Review
fulfill nission goals and
objectives.

Control Law Analysis Assure control algorithms o0 Requirements Analysis
adequacy. Verify equation o Control Law Analysis
accuracy; evaluate functional o Emulation/Simulation
relationships and functional
performance (timing, sequencing,
etc.)

Evaluation of Evaluate for sar;-isfactoxy 0 Review Management Plan
standards & practices, o CPDP Review

Development Planning es, p ‘ rols,
reviews, audits, QM change
control, problem resolution, V&V

Evaluation of Preventive Measure. Sound o Document Review

Software Development design, coding, and test - Standards

Methodology techniques reduce mumber of - Plans
errors made during development. - Configuration Management

Provisions

Software Requirements evaluated for o Requirements Analysis

Verd fication adequacy, completeness, o Critical
accuracy, testability, and Identification
traceability to higher level o Docarentation Review
specifications.

Software Design Evaluate development products o Design Analysis
to ensure technical viability o Performance Analysis
and contribute to refinement © Document Review
process. Ensure software design © Top Down
represents a clear, consistent © System Level BEmulation
and accurate translation of o Consistency Checker
software requirements. o Standardization

Code Correctness Test and evaluate developers o Code Analysis
code using independent tools. o0 Camwparator
Code is checked for errors, o Compiler
omissions and incorrect trans- o Interface Checker
lations. Evaluate logic, file o Doaument Review

. structuring, exeastion paths and o Cross Reference
limitations, interfaces, etc. o Cross Assenbler
Machine 1level open-loop tests o Simulation
and unit and module; closed-loop o Instruction Trace
at subsystem/system. Examine
timing.

Identify unexpected paths for o Sneak Analysis
information flow through a pro-

gram by analyzing the clues

characteristic of sneak paths in

network trees/flow graphs.

Software Validation Determine whether all software o Test Plan/Procedure Review
and system performance, o0 Test Case Generation

o Development Tests face, functional and test o Hot-Bench Similator

0 System Tests requirements are fulfilled. o Miinframe Simulation

o Flight Tests o Iron-Bird Simulatien

o Control Lane ~ Every requirement is o Aircraft Flight

Response adequately tested
o Handling Quantities - All subsystems are properly
0 Functional Tests integrated

- All system responscs are
adequate for performance and
safety.

o Redhmdancy

Insure, through lndr-pm\dr‘ﬁt

System Level Erulation

Management testing, that PM/EM system meets o Iron Fird timlation

o Failure Minagement design redquirement o fur worst o BMT

Canambitut o o tatlare;

perform peramet rie analysis ot

pathelo el pathr,
Tool Deve lcgrent Prepaite a0 rcftwerr tea] st ta ¢
aned Mont enanoe Ardoan the prerfcrmany: of VAWV O

Cresement tarke, ‘

TABLE 3.2.6-2 VERIFICATION AND VALIDATION TCOLS

1
SPLCIIC STALIG TOOLS GQENERAL STATIC TQQLS QYNAMIC TQQL S !
}
I
CIRCULAR REFERENCE CHECKEH ACCURACY ANALYZER DATA F (DN PATHING
COOE COMPARATOR DOCUMENTATION AND EMULATION i
CONSTRUCTION SYSTEMS ;
CROSS-REFERENCE CHECKER SIMULATIONS
1
DATA BASE ANALYZER EDiTCH o CCMPUTEN
fLOW CHAWHITER FCRMAL LANGUAGES WITH * HYBRID
SYNTax ANALYZERS
INTERFACEL CHECKER ® TEST BED (+ACN B.RD)
MODULE INVOCATION ® REQUIREMENTS TEST DATA GENERATOR
|
i
PROGRAAM FLOW ANALYZER ® SOECIFICATIONS TEST CRIVER i
SET/USE CHECKER ®* PROGRAM DESIGN TEST EXECUTION MCNITCH
UNITS CONSISTENCY CHECKER ® PRCGRAM CODE TEST RECORD GENERATCH
UNREACHABLE CORE VECTOR SNEAK-PATH ANALYZER TIMING ANALYZER

SYMBCLIC EVALUATOR

THEQREM PROVER,

TOOL DEFINITIONS
Accuracy analyzer - analyzes numerical calculations for req’d accuracy
Circular reference checker - modules calling each other
Code comparator - differencing between versions
Cross-reference checker - calling of modules; external variables called
Data bases analyzer - module accesses to data bases; unused elements
Data Flow Pathing - trace execution sequence for variable(s) in flow
Documentation & constructions - Auto documentation; Consistent data pool
Editor - Analyze/extract information/relationships from source programs
Emulations - System level model generated from requirements, not design
Flow charter - show logical construction of program
Formal Languages - Program structures and rules
Interface Checker - Check Range, limits, scaling of variables
Module Invocation Tree - Establishes call hierarchy with system
Program flow analyzer - statistics on usage; estimate execution time
Set/Use checker - Checks for variables: set, not used; & used before set
Simulations - Test characteristics, algorithms, finctions, performanca
Sneak-Path Analyzer - Looks for unexpected paths
Symbolic evaluator - reconstructs equations relating output to input
Test data generator - produces test cases to exercise the system
Test driver - controls the execution of a program
Test execution monitor - collects data and compares to expected results
Test record generator - analyzes, reduces, and formats results
Theorem prover - axioms used prove assertions stated for a path
Timing analyzer - monitors/records run time of functions and routines
Units consistency checker - variable expressions (units) checked
Unreachable code detector - looks for code which cannot be executed

43

TABLE 3.2.6-3
DEVELOPMENT AND V&V TECHNIQUES

Abstractions and hierarchies to reduce complexity: abstractions such as
trees are used to make the design simple and clearly defined

Checkout (debug) testing: function/module testing before integration

Constructive design approaches: (eg. formal design language)

Critical Design Review: oral demonstration of detailed design

Data flow diagram, structure chart: shows flow of data in program and
hierarchial organization

Descriptions or documentation

Design guidelines, test guidelines, & coding guidelines

Design standards, coding standards

Functional capabilities list: module description of functions to perform

Integration testing: code test after modules are assembled; I/0 structure

Organization as finite automata: provides clear structure of functions for
FLCS

Qualification audit

Singularities and extremes testing

Symbolic execution: performed on special functions such as mode logic

Systems concept review: oral demo of initial oconcepts, trade—offs, etc.

Validation testing: final demo in simulation environment

44

Evolvement of Computer Aided Software Engineering (CASE) tools continues
towards providing software development with the environment of an integrated
tool set which includes planning, analysis, design, documentation, static
analysis, prototyping, dynamic analysis, simulation, and construction of
executable systems. (See Referenmce 2) Table 3.2.6-4 presents same of the
applicable CASE tools that are commercially available. These tools span the
gamut fram powerful linear systems analysis, prototyping and code generation to
those which provide aids in the form of a data dictionary, creating data-flow
diagrams, process specifications, and graphic documentation of design.
Evolving CASE tools are providing ways to help manage the camplexity of
large-scale software systems. The tools, like the methods they implement, are
not final solutions but are aids to providing a more friendly software
development and test environment.

Table 3.2.6-4 REPRESENTATIVE CASE TOOLS, METHODOLOGIES, AND LIFE CYCLES

CASE TOOL

METHODOLOGY

LIFE CYCLE

TEAMWORK 05/2.3.0

EXELERATOR 1.84

POSE 4.0

TRACEBUILDER 1l

INTEGRATED SYSTEMS,
e

DeMARCO, WARD/
SCHLAIR, CONSTANTINE

YCURDON, GENE/SARSON

YOURDON, GANE/SARSON,

CONSTANTINE, FINKELSTEIN,

INFORMATION ENGINEERING

TRACES SOFTWARE
REQ’'S FORWARD &
BACKGROUND

LINEAR MODELING,
SYLHTUM BUILO, AUTO-CUDE
GENERATION

45

PLANNING, ANALYSIS
DESIGN

PLANNING, ANALYSIS
DESIGN

PLANNING ANALYSIS
DESIGN, CONSTRUCTION

ALL PHASES OF

SOF TWARE CEVELOPMENT

CONCLPTUA DEL LN
VU AT AN SN

T O T Y E I

Besides attempting to ease the software programmer’s burden, code
reusability is another issue which CASE developers are targeting. Software now
constitutes 90% of an electronic systems functionality (vs. 10% during the
1960s) . With so much code being written, CASE tool manufacturers are
developing tools to tackle reusability problems. These tools are part of a
larger system of front-end tools to streamline the programming process and make
it more efficient.

Fundamentally, CASE tools must meet several criteria in order to be

successfully adapted as part of a software developer’s tool kit. These
criteria include:

e} Break down complexity of requirements and designs into manageable
components.

o Presentable to several audiences including end-users and contracting
organizations.

o Cheaper than building the real thing as campared to conventional
software development approach.

o] Quantitative and Verifiable with respect to requirements traceability
and performance criteria.

o Graphically orjented to provide more easily understood graphical

illustrations of design.

46

3.3 TASK 1 RESULTS: REQUIREMENTS FOR FLIGHT CRITICAL SYSTEMS SOFTWARE V&V

3.3.1 General Requirements for Flight Control Systems

General requirements for flight critical systems are generally broken into
two parts: mission requirements and safety requirements. For example, flight
control/engine control is normally first driven by safety requirements and
secondly by mission requirements. For most other systems, mission requirements
are given more design attention relying on flight control (and the pilot) to
provide the needed margins of safety. Commonly used specifications for
probability of loss of an aircraft due to a flight control system failure is:

Ploss < 1 X 1077 per flight hour (military aircraft)
Pioss < 1 % 1072 per flight hour (civil aircraft).

With the advent of digital flight control systems, these failure probabilities
have been applied to the total digital system including the software. To
achieve these numbers for the entire flight control system safety, the prob-
ability of aircraft loss due to software failure must be even lower to achieve
this high safety margin. Emphasis in past and current developments has been
placed on fault avoidance and fault tolerance techniques in software design.

With the advent of the highly coupled flight critical systems, this
distinction between flight control and other flight critical systems regarding
safety consideration is diminishing and fault avoidance/tolerance issues must
be applied in all flight critical systems.

3.3.2 ECS Design Trends Impact On Software V&V Requirements

Design techniques which are currently used to address safety aspects of FCS
software include fault avoidance and fault tolerance. Fault Avoidance
techniques apply structured design methods that incorporate rigorous

47

quality control and systematic testing of the software to insure that the
probability of a software “bug" being introduced or remaining undetected during
the software design and develcpment process is extremely low. One technique of
fault avoidance is the use of very small and very simple modules which are
relatively easy to wverify. It is commonly assumed that high integrity can be
achieved through use of such techniques. In practice, however, no matter how
carefully the software is designed, it is impossible to establish that it is
campletely error free because: (1) the larger number of possible states
preclude exhaustive testing; and (2) the usual statistical analysis methods
which are useful in hardware development are not applicable to software
development. Therefore, Fault Tolerance is introduced into design to cope with
faults which are not discovered during design and implementation process. A
good fault tolerant design should prevent any remaining faults from having a
catastrophic effect on the system.

Flight control systems requirements have and will continue to drive safety
aspects in software design. While requirements for digital flight control are
not unique, collectively, they represent the most demanding requirements in
guidance and control applications. Real-time closed-loop operations,
malti-mode design, bandwidth variations, multi-loop design, and tight
interface/reliance on sensor systems are some of the characteristics of flight
controls which drive owverall software design complexity. These factors along
with the trends in aircraft systems and avionics systems design toward the
increased use of relaxed static stability and integrated avionics/control
functions, place even more importance on software fault avoidance and fault
tolerance.

The near term trends in flight control systems (FLCS) are expanding the use
of real-time, on-board optimization and intelligent controls to achieve high
performance and provide for damage tolerance and self-healing designs. These
near term FICS already are addressing the inner-loop, outer-loop, and
redundancy management functions shown in Table 3.3-1.

48

TABLE 3.3-1 NEAR TERM TRENDS IN FLCS FUNCTIONS

FUNCTIONS
INNER-LOOP OUTER-LOQP REDUNDANGUY MANAGEMENT
2
« RELAXED STATIC STABILITY TF/TA/OA o ANALYTIiC REDPUNDANCY

GUST LOAD ALLEVIATION

RIDE QUALITY

FLUTTER MODE CONTROL

INTEGRATED CONTROL

Al BASED DECISION MAKING

INTEGRATED CONTROL

OPTIMAL FLIGHT PATH CONTROL

e AL BASED TECHNIQUES

B}

FCS Integration has an even more challenging impact on software.

Table

3.3-2 sumarizes same of the areas related to integration and the related

impacts of fault tolerance.

Table 3.3-2 EXAMPLES OF IMPACTS OF INTEGRATION CONCEPTS ON COMPLEXITY

CONCEPT

DISPERSED.INTEGRATED

INTEGRATED FLIGHT/
PROPULSION CONTROL

FLIGHT PATH MANAGEMENT

!

fo—e e e
!

VEHICLE MANAGEMENT
SYSTEMS

FLIGHT/NAVIGATION SENSORS

DESCRIPTION

SHARING OF STRAPDOWN
NAVIGATION SENSORS WITH
FLIGHT CONTROL

BETWELN ENGINE AND FLIGHT
CONTROL SYSTEMS, VECTORED
THRUST

REAL TIME OPTIMAL CONTROL
FOR TF/TA,COMPLEX ROUTF
DECISIONS AT LOW ALTITUDE

I[FPC

UTILITIES SYSTEMS MGMT
INTEG CONTROL FUNCTIONS
INTEG MAINT/DIAGNOSTICS

o © o ©

49

T T %

CRUCIAL FUNCTION

MORE COMPLEX FCS
ALGORITHMS FOR SENSCH

NORMALIZATION, REDUNDANCY
MANAGEMENT, & SURVIVABLE
DISPERSION

FLT CRUCIAL ENGINE CTRL

LOW ALTITUDE AUTO FLIGHT
MANAGEMENT IS CRUCIAL,
SENSOR BLEND CONCEPTS-
FLT CRUCIAL. HUGE TERRAIN
DATA BASES (eg DTM) ARE
FLIGHT CRUCIAL

o COMPLEKXITY
o HIGHLY INTERACTIVE
0 HECONFIGURATION

3.3.3 Technology Impacts on V&V Requirements

Technology advancements in flight critical systems software design and in
software verification and validation testing have been significant over the
past 15-20 vyears. The developmen. and use of digital systems in flight
critical systems applications have pushed wverification and validation
techniques to meet the demands of testing increasingly complicated systems. A
nurser of accepted validation testing methods are used, but verification and
validation technology generally lags the advances being made in the development
of FCS software. Currently, convenient verification and validation methods and
tools are lacking for multi-channel and highly integrated systems.

Trends and projections in flight control system design and impacts on
validation have been presented in Reference 3 and are summarized in Table
3.3-3. The trends presented in the table are very realistic and provide moti-
vation for developing improved FICS verification/validation techniques
simultaneocusly with evolving flight critical systems concepts. It has long
been advocated that many of the complications associated with V&V of FCS
software can be avoided by anticipating the V&V requirements early in the
design process and by using many of the evolving structured V&V techniques and
tools discussed in Section 3.5.

3.4 TASK 2 RESULTS: DATA COLLECTION
The primary efforts involved in the data collection task were to perform

literature reviews on FCS software development and V&V methods and to conduct
numerous focused interviews with FCS developers and key government FCS

experts. In order to help organize and focus these efforts, FTI developed
checklists (see Appendix) addressing the classes of information to be
gathered. The checklists addressed specifics on current developmental

approaches used for FCS software, available software analysis tocls and
techniques being used, facilities and support requirements, problems most often
encountered during development, experiences in the development of FCS software,
and perceptions of what FCS software development procrams would require because

50

Table 3.3-3 Forecasts/Projections for FCS in 21st Century Indicate
(source AGARD WG09)

Significant increases in computer power will cause major expansion in
scope and character of onboard systems

Development of architectural branches within redundant systems will
add verification and validation complexity

Redundancy in management functions (e.g., voting planes, etc.)
embedded in special purpose HA isolated from FICS will change
verification and validation complexity

Highly fault-tolerant HW designs that provide “"dynamic redundancy"
changes the scope and comlexity of wverification and wvalidation
efforts

Embedded replicated or dissimilar subchannels for self monitoring
could reduce redundancy management complexities at higher rates
Increased throughput and emerging new architectures are allowing
sensor fusion with information integration and display, requiring
expanded FCS verification and validation roles

Trends are towards systems highly integrated through FICS because of
mission and performance benefits -- leads to more testing at system
levels, interdisciplinary expertise, and pilot involvement

Increase of control effectors and reduction in actuator redundancy
levels for self repair/reconfigurable flight control

High bandwidth FCS for active vibration and load control have
associated characteristics which impact other FCS

Hypersonic vehicles require VMS to have total vehicle energy/thermal/
trajectory management integrated with FLCS

Decision-Aiding systems in a real-time environment require validation
of knowledge base which currently has no accepted validation methods
Interfaces and internetting to unmanned vehicles leads to additional
complexities and verirication and validation requirements

Boundaries between non flight critical and flight critical systems are
projected to dissolve with increasing integration of systems

51

of the latest technology being incorporated into FCS. The checklists also
included a 1list of applicable Government standards which address FCS software
development . A catalog of applicable software tools used in development,
verification and wvalidation of flight critical systems software was prepared
and included in the checklists to aid with tool identification.

Literature searches were performed including review of publications and
recent articles at the AFTECH Library, review of software development and
flight critical systems technical journals, and a Defense Technical Information
Center search on related subjects. Hundreds of related article abstracts were
scanned for appropriate subject material. In order to provide an orderly way
of tracking and retaining pertinent information gained from these reviews a
Data Base Management System (DBMS) was implemented. This DBMS was used then to
help organize and record the many identified sources of data, tools and
techniques. This DBMS was created on DRASE III+ and hosted on an IBM
compatible PC.

A number of the reports and documents specifically directed at flight
critical systems development and its verification and validation were
identified. Two very recent AGARD reports, "Language Support Environments For
Guidance And Control Systems" - Final Report Working Group 08, and “Validation
Of Flight Critical Control Systems" - Report of GCP Working Group 09, were very
helpful and current on many of the flight critical systems requirements, flight
critical systems trends, development approaches, and verification & validation
practices. The "Handbook - Volume I Validation of Digital Systems in Avionics
and Flight Control Applications" and the "Digital Systems Validation Handbook
Volume II", (References 4 and 5, respectively) both published by the US DOT are
also excellent sources of material for verification and validation testing
practices wused in modern flight critical systems. Ancther informative
reference that serves as a good primer on flight control software validation is
the "Digital Flight Control Software Validation Study", (Reference 6) an AFFDL
technical report. Discussions of recent Computer Aided Software Engineering
tools were presented in several articles; the book by A.S.Fisher titled "CASE"
gave an excellent summary of where CASE tools are now and their current trends.

52

In depth interviews were conducted with key government and industry experts
in the development of flight critical systems. These interviews included
personnel at Wright Research Development Center Flight Dynamics Laboratory, Air
Force Flight Test Center, NASA Dryden Flight Research Facility, McAir, General
Dynamics, Rockwell International, Honeywell, Softech, and High Plains. The
prepared checklist was used to gquide the discussions on FCS software
verification and validation tools and techniques.

Commenits gathered from the above sources have been summarized below in
terms of V&V Drivers, Development and V&V Methodologies, Higher Order
Languages, Development and V&V Tools, Validation Testing, Future FCS Software
Considerations, and Problems/Lessons Learned.

FCS SOFTWARE V&V DRIVERS

o FCS move to digital implementation increases complexity of V&V effort.
0 Increased systems integration accomplished through software.

o Move to Ada requires update of V&V tools and techniques.

o Complexities of Failure Management / Self Healing requires careful test
planning to get adequate testing coverage.

Maintenance of FCS software requires extensive V&V capabilities.

Move towards transportability (MIL-STD-1750 kills this area).
Integration of software with hardware complicates V&V testing.

o]

o]

o

FCS SOFTWARE DEVEIQPMENT
o 2167A waterfall chart represents how development/test is performed.
o Rapid prototyping is useful early design aid.
o0 Projects organized along the lines of how the development proceeds
are desirable. One good example is:.
- Aerodynamic Stability and Control
Control Law Design and Analysis

Flight Critical Systems Engineering
Flight Control Mechanization and Software
Flight Control Hardware Design

1

- Flight Control Systems Test
- Flight Control Operations

o Flight Critical Systems Engineering function is an increasingly
important function to administer to needs of flight critical portion
of aircraft. It provides a continuum of understanding across the
development organization.

o] Quality Functional Deployment is good formal planning and documenting
why you have done what you have done.

o} Some developers feel strongly that the software development should be
kept with the flight control engineers. In principal, other developers
agree, but that the software engineer is better equipped to write
software -- therefore training software engineers in the development of
FCS software is mandatory.

USE OF HIGHER ORDER IANGUAGES (HOLS)

o HOLs are in general good. However, once code is recompiled, it is
difficult to say that new code is good versus an assembly language
patches approach.

o One advantage of HOL is that it allows the system analyst (flight
control engineer) to read or even develcp the code. This avoids the
praoblem of miscommnication between the designers and the software
implementors.

o The proper place to standardize is the language. Ada has some problems
(Ada tasking, rendezvous, etc.), but you do not have to use all of the
capabilities of the language.

FCS SOFTWARE DEVELOPMENT AND V&V TOQLS

o FCS software development is moving towards provision of control law
block diagrams to the FICS houses for automatic code generation. GE’s
program called FASTER directly generates 1750A assembly code.

o FICS Tools used:
- Ctrl-C
- Matrix X
- GenAir: Generic Aircraft, a McAir tool. This uses general

54

control laws and general aircraft configuration performance. Used
for mission performance evaluation.

- Modular Design & Analysis Tools

- Nonlinear aircraft model simulation

- MATLAB, EASY5, MATRIXx, CIRL-C

- Use of script files: set of cammand files that go to simulation
computers

- Recording system for all parameters in the simulation system.

o Test tools that use actual flight boxes and automate testing are
evolving. The Fully Automated Tester and Error Reporting (FATER) is an
example which compares control laws in Fortran versus assembly.

o TAE (Transport Application Executive) is a NASA Goddard Flight Center
tool used in Simulated Rapid-Prototyping Facility (SRF) of the WRDC
Flight Dynamics Laboratory. It has standard I/0 for a program and runs
on a dozen different computers.

o FCS Integration Tools/Methods Include:

- Basic documentation tools.

- A lot of simulation for R&M testing.

- In-house fault tree analysis.

- 1553 analysis tools.

- Flow diagrams & analyzing timing between functions.

FCS VALIDATION TESTING

0 Utilizes a bottam~up philosophy.

0 Starts with lowest level code and progresses to system—level testing.

o Provides verification at one level before progressing to the next.

o Test plans/procedures are prepared for each phase/level of testing.

o Test results documented, discrepancies documented, investigated and
acted upon.

o

Approach ensures system operates as designed and is flight worthy.

55

Provides total visibility of system development which allows better
management control.

Handling qualities quantitative solutions have failed.

Integrated system V&V evaluates system functional requirements:

~ closed loop test environment simulates the dynamic

behavior of the air vehicle

actual flight hardware is used where practical

verifies closed loop dynamic response

used for handling qualities evaluation

evaluate pilot vehicle interface evaluation

i

t

- used for failure management evaluation

- evaluates failure modes and effects tests

The ability to test back-to-back software (ie. previous OFP vs updated
OFP) offers many benefits during validation.

EFTWARE IDERATIONS
Future FCS systems will most likely have to address interfacing with
existing systems. A wide generation of FCS computers exists. Some

older ones cannot support HOLs.

Development contractors are moving towards using.

~ RISC computers; currently there is not adequate support tools
in this environment.

- Ada language programming.

Transportable software is being addressed.

- Software compilers are currently a problem here.

- Timing is one of the most critical elements in flight
critical software and this effects transportability.

Vehicle Management Systems (VMS) is the new focus in FCS

- Developers must be realistic about what they propose and use.

- The combinatorial considerations make it impossible to test
all combinations

Developers are looking at real needs of common Module approach.

- Designing test stations that will test.

56

- Using language translators for new front-ends to test tools.
- FIC filters have already been transported.
- Ada will help "Cammon Module’s" in the future.
0 Redundancy & Monitoring (R&M)
- Test coverage is the problem here.
- There is the question of Quad vs Triplex. Triplex can meet the
1 x 1077 problem, but it is difficult to meet a requirement of
fail-op, fail-op without going tc a Quad system —-
is this requirement unduly imposed on flight critical systems?
- A quad voter runs twice as long a triplex voter.
- Software complexities at least double for every channel added.
o Total System Integration
—- New techniques are being used for rabust control laws,
multi-axis, integrated flight propulsion methods, multi-thrust
vectoring, and self repairing.
- Need a manageable way of dealing with reconfiguration & fault
isolation, reconfiguration control, and advance control design
software.

PROBLEMS AND ILESSONS IFARNFD
O Problems arise in specifications across flight critical systems
interface.
0 Use of simulation for testing inteqgrated systems is questionable.
- Can not simulate EQO and radar devices that well. Models can
be built for it, but usually they are single thread.
- Sensors & integration depend on models for high
technology sensors. Modeling is very difficult.
o Use of simulation for V&V
- Organizations: people and equipment have to be planned and adequate.
- There is always a reluctance to change a simulator once things
are up and running. Some flexibility is required.

57

People who have tested systems have to put information back into the
loop. The problems that were encountered and how they were solved is
not reported. Only the good part/results seem to get published.
Result of flying qualities testing has produced much disinformation.
One very large need is requirements & specifications for control laws.
- There is a lack of a reasonable MIL-Spec for flight control.
- PIO prediction is an example of this.
- Mil Prime Standard 8785-C is not adequate, it is a back-up
guide.
Design group practices could be improved:
- Must think ahead as to the way things will be tested.
- Lack of documentation: integrated system documentation
defining how systems work together is needed.
Most errors are in design. These are generally found in systems
integration testing.
- B-2 put a lot of time and money to get set up for systems
integration testing and that has paid off well.
- Verification of software is done very well. Few code errors
now appear. Autamating tests is easy.

58

3.5 TASK 3 RESULTS: DEVELOPMENT OF THE FCS V&V METHODOLOGY

3.5.1 Technical Approach

The FTI technical approach to the development of the flight critical
systems verification and validation methodology is based on a balanced
allocation of technical skills, proven V&V tools and techniques, and evolving
software developmental test methodologies. The implementation of our
methodology will provide a workstation environment providing the needed tools
and techniques for verification and validation of flight critical systems.
This approach will address the growth in the use of software as the
implementating and integrating media for the development of highly integrated
flight critical systems, Our overall technical approach for developing and
implementing the methodology is illustrated in Figure 3.5.1-1.

It is built to address the flight critical systems software development
tasks and will provide timely evaluations for each development milestone. Our
approach addresses each of the development phases and breaks out the
verification and validation tasks, tools, and techniques which most
appropriately can be used to evaluate the development efforts at that phase. A
large data base of analysis, verification, and validation tools is available.
Appropriate tools will be chosen to address the V&V requirements. Those tools
which can be used directly to meet the requirements will be candidates to be
used in the development of a Computer Aided Verification And Validation
Engineering System (CAVZES) which can be applied to the current development
environment phase. For each tool evaluated that does not meet specific
criteria, deficiencies which must be corrected will be identified and estimates
of the effort required to correct these deficiencies will be made.

The CAVZES will be hosted in a workstation environment and will provide
the user with ready access to those requirements, design, and development
details needed to assess the state of development of FCS software. Much of the
early development wverification activities will utilize tools hosted in a
workstation environment and will provide analysis data and results which can be
carried from one stage to the next. The V&V methodology will also address the

59

X3

comet (om (on (ron Qon

SYSTEM FCA

rea Q Qo

SYS1

STUDIES

CONCEPT
DEVELOPMENT

IN-SERVICF.

- SYSTEM BUILD
- SIMULATION
-- {ITERATE
- FC PERFORMANCE EVAL.
- AUTO CODE
- REAL-TIME SiM

BEQUN. MANAGEMENT

NO

FCS
INPU

DOCUMEN|

MEETS

v

- FAULT TOLERANCE REVIEW
- NUMERICAL CHECKS

- R/M EMULATIONS

* S/W PLANE
* H/W PLANE

- +0 DEFICIENCIES
- ADDED REQ'S
- COST ESTIMATE

CRITERIA

TOOLS & TECHNIQUES DATA BASE

——ly

FUNCTIONAL DECOMP
DECISION TABLES
TIMING ANALYSIS
CONTROL FLOWS

DATA FLOWS
SYMBOL!IC EVALUATION

JD0F /800F SIM
REM EMULATORS

MATRIX - X REVIEWS J
TOYAL WALX THROUGHS !
CTRL-C HIERARCHICAL MODEL%
MATLAB TOPOGRAPHS

1
I
|
|
|
I
!
!
!

COMPARTOR
CROSS-REFERENCE
FLOW-CHARTER
INTERFACE CHKER
SET/USE CHKER
SNEAK -PATH ANAL
EOITOR
CONDITION GENER

SIMULATIONS
- COMPUTER
- EMULATORS
- HYBAID
- TEST BED
TEST DATA GEN
TEST DRAIVER
TEST EXEC MONITOR
oBMS

HAROWAR
SUBSYST!
T&T ~
EVALUATION -
L
Sy
-
g
o
ey
—y
.y

NN

T,

SYSTEM FCA

A O POR Q con () R () e O Osom PHASE 1 FLIGHT CRITICAL SYSTEM SO
AND DOCUMENTATION DAT

~~ O

FCS VAX WORKSTATION MAINFRAME SIM
INPUTS ENVIRONMENT ENVIRONMENT

DATA ANALYSIS
© QUICK-LOOK
o TIME \

n

o FAULY 1D

J

® COMPARITIVE
© AREPORT GENERATE

P ————————

OYNAMIC SUBSYSTEM
vaV TESTING

FCS ANALYSIS

!
[
!
1
|
1
I
1
i
[}
DOCUMENTATION t
4 ® CONTROL LAVS o
[}
{

o P € AMALY
© STABILITY ANALY

OFP SUBSYSTEM
VA&V TESTING
53 o
@A%i : uooue
o OFP STANDALONE

. AR

1

' \ HOTBENCH
HARDWARE h

SUBSYSTEMS SIMULATOR

| ul

INCREMENTAL CLOSEDS
LOOP FUNCTIONAL o
EVMLUATION

WORES W ION
VA&V TASKS / TECHNIQUES / TOOLS
Tar [aETracw MELEIRS WERRGERRS
NO MEETS EVALUATION| inise—e— == ===
CRITERIA ——
. N Ao emara sdputems b e rd
Cam—— Wbt Gt ® Suhen henyShumben A
Snbartomiigs qul St bt
l' -
e d bt Gt suxtatmtary * Povies Smmpman e
- tD DEFICIENCIES ol ey‘—"'—"‘....:.. — T —
- ADDED REQ'S T e —————
- COST ESTIMATE — ot ot hy——ad
— s s e ot -
—_— :
——
S Setcamas [ttt ¢ Svtrmmme tnvate
_h-*: L)
Apuliiet av.
’ e S - c— —— viaiiny r——— Syt
ol it @ sl * Gomenms Systan
—— o et Smsbemn M _—"—_—‘.
——‘“‘ :~—_
i Spds—— L)
o - R ——
Gae M Gaaet OF oven -

- AASErE Gl * hassthe
friyFegy gt o ——
ey, el s el ® Comts Subusssny

TOOLS & TECHNIQUES DATA BASE —» YN S~
o ——
h—-’:: o S
A
REVIEWS : COMPARTOR ' simyLations boee s T e
WALK THHOUGHS CROSS-REFERENCE | - COMPUTER ' — . vt oot
- A
HIERARCHICAL MODEL% FLOW-CHARTER " - EMULATORS] o i - ° v S——
TOPQGAAPHS | 'NTERFACE CHKER | - HYBRID (E ,};:::u —— - tanie o Deass mamae
FUNCTIONAL DECOMP | SET/USE CHKER | - TesT 8EO : ¢ = ———) - ;
——a—y - ks -
OECISION TABLES | SNEAX-PATM ANAL TEST DATA GEN i S -y ’
TIMING ANALYS(S | EDITOR) TEST DAIVER | —_— o ——— '
CONTRDL FLOW .
L FLOWS | conon:sou GENER | TEST EXEC MONITOR | o T e . e ——
Dala ¥1ows } : | 0BmS) e g N
SYmBeoLc (vALUA”ON' . | . i ttiont g, -
. - ot Sembamion
: (' : ! z== B S
- ‘ , » Tgut fnAetalew
. . .

AND DOCUMENTATION DATA BASE V&V METHODOLOGY

PHASE 1 FLIGHT CRITICAL SYSTEM SOFTWARE REPORT ‘ FIGURE 3.5.1-1
I
{
L

o FMET J
o Fid EVALUATION

| |
' I I = = DEVELOPMENT APPROACH |
VAX WORKSTATION MAINFRAME SIM IRONBIRD FLIGHT TEST
ENVIRONMENT ENVIRONMENT ENVIRONMENT ENVIRONMENT
t . 1
; DATA ANALYSIS X : '
: @ QUICK -LOOK ! + 1 :)
|| 2mmssTon : ' M
i L3 i
COMPARITIVE
: . REPORT GENERATE : : : FLIGHT TEST
| . | VALIDATION
1
i 1
] Qasal
! FCS ANALYSIS OYNAMIC SUBSYSTEM INTEGRATED SYSTEM ! o HANDLING QUALITIES
! e ConTROL LA :' | vav TESTING YAV TESTING : o PeRroRMANGE
-‘%—-’- : ;f:;fr‘_llvA:s:‘;NAU | INCREMENTAL CL oaal | o SYS INTEROPERASILITY r&
: 100r Funcriowar e 5 XL OO irEs !
i EVLUATION o C-L DYNAMIC RISPONSE

OFP SUBSYSTEM
ViV TESTING

* OF P STANDALONE
LY

\ HOTBENCH

_:/"‘T SIMULATOR
1
| |] |

i

|

|

|

!

T

‘;’"’" + VoouLe
—

!

i

yay REPQATING

WEAKNESSES
- AECOMMENDATIONS
REVISIONS
CHANGE IMPACTS

- SOF ISSUES
DESIGN CONCERNS
REQ'D CORLS

V&V TASKS / TECHNIQUES / TOOLS

T 4 LS SR —s

'——"'—..—'::-.:.."’" e emnr iy vy FUTURE IMPACTS

— ON FLCS vav

Ay qiumuel elguritiue » Pephowmmts Snatyuis

ctupany. Swify eguties > Consel bav Smiguis

aattnagy wwbume Sewkiesed Smalat e/ Rhunien te

*-a_m

- - ARCHITECTURE BRANCH

e o e e i REDUNDANCY

tnien, phowhey esmmeshe,

b, astits, OF Seags

T e ——— -~ REPLICATED/DISSIMILAR

[y ——— - Gmmau St SUBCHANNEL RM

sy, anliey, sud as R

nhpes aulte by of - rane

— vt datay - - HIGHLY INTEGRATED
. [————— [T FCS/VMS/PVI VeV APPROACH

Sy, et = ey Sery GOALS & BENEFITS

ety - SELF-REPAIR &

e ey o tumin salyste ’ RECONFIGURATION

e = ei— :.:_"':'....""‘ ® SYSTEM OPERATES AS DESIGNED

e At b dep syt - Al SYSTEMS AND 1S FLIOMT WORTHY

®* MHIGM DEGREE OF CONFIDENCE THAT FC

= e e [- SIGNIFICANT INCREASE WILL MEET ALL SAFETY OF FLIGHT ISSUES AND

— e ——— Hiy A IN CPU POWER PEAFORMANCE REQUIREMENTS

[r— o Sommmms et

frereri it [ofom—d . * EARLY 1OENTIFICATION OF AMBIGUOUS, ILL-DEFINED

——— bty o= bty . AND INADEQUATE SOF TWARE REQUIREMENTS EARLY

oAy ¢ ——— . ANO CONTINUED ZMPHASIS ON TEST PLANNING

hubng.

oy gy o * DETECTION AND CZARECTION OF IMPROPERLY

by oy)ty MECHANIZED DESIGNS AND CODE

— e o s IMPROVED CUSTCWERA VISIBILITY (NTO THE

T o un VP Srter DETAILED STATUS 27 THE SOFT\WARE DEVELOPMENT
. ol veflrpr—iiang S e e ACTIVITY AS 27 P=CGRESSES

L~ X VN :u—m

pot e o e i * AEDUCED INCICENCES OF SOF TWARE ERAONAS ONCE -THE

- T SYSTEM IS OPERAT TNAL

- A spUREn P

—— e pr——- e EASE OF MAINTEASNCE ONCE THE SYSTEM 1S
- OPERATIONAL

S, e bmo— -—-:—--n.-:—
- porigiee ool et - - ¢ \ALIOATION DATA ANALYSIS TOOLS/TECHNIOUES

.—.._-:"“_"‘..." = APPLICABLE TC F.:GM1 TEST

r— -.—-v Py ® DEMONSTRATED ME THODOLOGY EASILY IMPLEMENTED

ST P m— ACROSS FLIGHMT C3Z TICAL SYSTEMS

——— o Dottt St o

D e mee—

l,“/ g / -‘?
- "/‘; e’

validation test activities which take place when the development progresses to
the point where testing of software and subsystems utilizes hotbench
simulators, simulators requiring mainframes for camputational support and
finally when testing moves into an ironbird test environment.

Review/selection of tools and techniques will be an ongoing activity. This
activity will address impacts on V&V requirements as future flight critical
systems software designs take advantage of the growth in computational power
due to computer advancements and in new design approaches which can be utilized
because of this growth. Increases in levels of redundancy for increased
safety, use of highly integrated FCS/VMS/PVI to improve mission performance,
and use of self-repairing design techniques in FICS are but a few of the trends
which will complicate the verification and validation of FCS software.

The proposed V&V methodology will provide the user a means for early
identification of ambignities and errors in requirements generation and design,
yet also provide the means of assessing whether or not the FCS operates as
required and is flight worthy.

The specific details of the CAVES will be presented in the next section.
3.5.2 Computer Aided Verification and Validation Engineering System

The FCS V&V methodology design will be implemented in a workstation
environment denoted as the Camputer Aided Verification and Validation
Engineering System (CAVzES) , see Figure 3.5.2-1. The CAVZES w111 provide
an environment in which the flight control engineer or software engineer can
quickly and easily access and analyze design information and software code, or
generate data to verify and validate FCS software. It will allow the engineers
to deal with all phases of the development cycle and tackle the problem

maintaining a continuity of requirements/design cvaluations across these
phases.

The Computer Aided Verification and Validation Engineering System will
provide the following functions: V&V Executive (VEXEC), Tool Interface Manager
(TIM), User Interface (UI), Simulation Computer Interface (SCI), Data Recording

61

ooog -« 0 s

AUTO

TOOL

INTERFACE
MANAGER

PILOT
B FUNCTION

_

NETWORK

 vav EXECUTIVE

438N

30V3H" 3 LN!

DATA
ANALYSIS

DATA

d RECORDING
SYSTEM

BASE
MANAGER

SYSTEM

!
!
I
I
!
!
|
I
|
!
!
|
I
!
!

l FILES I

Figure 3.5.2-1 Camputer Aided Verification and Validation
Engineering System (CAVES)

System (DRS), Data Basc Manager (DBM), Autamatic Pilot Functions (APF), and the
Data Analysis Sy:tem (DAS).

In addition to the CAVPES primary functions, it also retains its own data
base and library of tools. The data base is structured to be able to store and
retrieve the data items which are a product of executing the verification and
validation analysis tools. The tool library consists of two parts, a generic
tools set and an external tools set. The generic tool set is a group of V&V

62

tools which will perform basic V&V functions on FCS. The external tools set
represents user selected or new tools which need to be interfaced through the
Tool Interface Manager.

The Tool Interface Manager (TIM) selects which interfaces are used with the
selected tools so that the output of the library tool is put into a standard
format acceptable to the Data Base Manager. If a new tool (extermal tool) is
to be interfaced to CAVZES, the TIM has an interface build capability which
aids the user in building a functional interface which converts data to a
format consistent with the existing data base.

The V&V Executive (VEXEC) monitors and ooordinates the operation of
CAV’ES functions. The VEXEC execution involves issuing commands to the Tool
Interface Manager, the Simulation Computer Interface, the Data Recording
System, the Data Base Manager, the Automatic Pilot Functions and the Data
Analysis System. It receives commands and sends responses to the user via the
User Interface.

VEXEC is command driven via the User Interface (UI). The user interfaces
with the VEXEC by means of commands transformed through the UI. VEXEC assists
in selection of: V&V tools, data analysis techniques, and data bases to be
used. VEXEC can also assist in start up and shut down of simulations and
facilities to be exercised via the Simulation Computer Interface. It can
direct the loading of simulation software in simulat:ion computers, and can also
control the initialization of the data recording system and other CAVES
subsystems.

For V&V static analysis, VEXEC controls the loading and execution of the
selected V&V tools, selected FCS software, design structures and code, and the
data analysis and output presentations from the results. For dynamic analysis,
VEXEC controls the loading and execution of flight test plans and corresponding
test proceduies/test cases which camprise them. Execution of the test
procedures/test cases can be performed autometically or single stepped. All
actions performed by the VEXEC (as a part of static tools execution or dynamic

63

execution) and all user inputs are recorded in a test execution log which is
available on-line for review.

The purpose of the User Interface (UI) is to provide direct access to the
various software tools functionalities, while relieving the user of needing
intimate knowledge about the software tools as stand-alone systems and adapting
to their various styles and syntaxes. This means that a user who wants to
obtain a time history plot of data generated by a simulation tool, ACSL for
example, does not need to know the particular commands for the tool package for
simulation and plotting. However, the UI does not confine the experienced tool
user to stay within the Ul interface, but provides a direct tool mode in which
the user can execute tool commands within the CAVYES environment to perform
any simulation and plotting activity allowed by the tool. The UI provides both
menu driven and command driven (for the more experienced user) capabilities to
the user. The UI provides an open, customizable, flexible environment. The UI
is built in a windows environment to provide quick expansion or contraction of
backup information, aiding in the verification and validation process. It is
also graphically oriented in temms selection of options and in presentation of
specification and design information. The functionality of a tool can be
accessed via point-and-click mouse operations on icons, menu, and form driven
screens. Program structures are presented by schematic designs and network
trees; the data displays offer great flexibility in manner of display and in
custamization.

The Simulation Computer Interface (SCI) is used to coammunicate to the
simulation camputers. Cammunication may take place over serial lines to
various devices and over ethemet or bus link. The user may open a terminal
window for each of these connections and manually type commands. All commands,
along with responses, will be logged and sent to the DBM to be recorded in a
test execution log. Other subsystems of CAV2ES may also send commands to the
simulation computers. All commands indicate if a response is expected. SCI
will then pass along the command and wait for the response, if necessary.

The Data Recording System (DRS) will be responsible for recording
simulation data (both real-time and non-real-time) and transferring data to the

64

data base manager. The DRS receives its cammands fram the VEXEC. Before a
test begins, the VEXEC sends a list of comands to be executed (recording
script) . The start test signal tells the DRS to begin executing the recording
script. The abort signal tells the DRS to stop recording and ignore any
recorded data. The real-time simulation recording takes place via a link (bus
link or ethernet) connected to the simulation computers wvia SCI. Proper
synchronization is critical if a valid set of data is to be recorded.

The Data Base Manager (DBM) serves two purposes. First, to create and
maintain data base files and second, to conduct data transactions for other
CAVES subsystems. THE DBM is composed of two processes to serve these
purposes: Vexec__Interface and Build_Update. The interface process conducts
transactions while Build_Update is used to create and maintain data base
files. To assist in performing these processes, a commercially available data
base management system, UNIFY, will be wused. UNIFY uses a Host Language
Interface (HLI) to operate at both of these lewvels. Briefly, UNIFY’s HLI is a
library of standard data base management function queries, reports, etc. that
can be called from standard Higher Order lLanguage (HOL) programming language
statements. The modules and functions of the DBM processes will therefore be
written in a chosen HOL.

The Automatic Pilot Functions (APF) subsystem provides the capability for
the CAVES system to send pilot comands to the aircraft flight control
system. The APF provides the capability to perform initial condition trimmed
(ICT) to specified flight conditions, to provide flight test functions (FTF)
for testing of performance parameters (e.g., steps, doublets, sine wave, etc.),
to fly fundamental maneuvers, and landing approaches. VEXEC obtains cammanded
maneuvers from the test procedures via the Data Base Manager. The APF sends
these commands to the simulation computers and flight coritrol system via the
SCI. The APF uses a transportable auto-pilot model which may be hosted on the
simulation computers (mainframes) or in the CAVZES workstation environment,
dependent on the particular type of communications 1link used between the
CAVZES and the simulation computers. The communications link must be fast
enough to provide realistic comands and feedback for the autopilot to provide

65

proper control inputs. This provides flexibility in the choice of this
cammunication link from one implementation to the next. There is no intent to
provide "pilot modeling"™ in this module, but simply provide the capability to
fly in a oontrolled manmner and to provide oontrolled inputs which would
normally be supplied by a pilot. This module allows elimination of the pilot
from many closed-loop tests.

The Data Analysis System (DAS) is designed to provide the validation
engineer the capability to examine the data recorded during a test and to
perform data reduction techniques on the recorded data. A sepacate data set is
created for each test case executed. The DAS may be used to examine the data
in any of the data sets. The recorded data can be displayed both on a dynamic
display (bitmapped graphics CRT) and on a hardcopy device. Data displayed
during simulation execution will generally be plots of variables as a function
of time and mode switches. Post test data analysis can be performed providing
performance parameters of flight critical systems. Additionally, the user may
specify what variables are to be displayed for a given data set.

The application of the CAV’ES in FCS software development and in its
verification and validation is shown pictorially in Figure 3.5.2-2. The
(‘AVZES can be used in the early phases of FCS software development efforts to
perform FCS analysis and to aid in requirements and design analysis as
discussed in Section 3.2. As the FCS development progress, CAVES provides
the analysis tools and techniques to verify requirements and design, to perform
OFP subsystem testing at the unit, module, and subsystem levels. Software
tools can be hosted to aid the user in evaluation of system reliability.
Development of analytical techniques are becoming available to aid in
performing this task. The fault tree approach is one tool/technique which will
be evaluated to include in the tool library. Other techniques will also be
reviewed.

The CAV?ES provides an environment in which the V&V engineer can use the
inputs of previous verification efforts including requirements analysis, design
analysis, and code analysis to¢ quickly generate test cases for execution cf the
FCS software. Within this environment, the process of generating test cases

66

(83z AVD)
W3 LSAS ODNIHIINIONI
NOILVAITIVA ANV NOILYOIdIH3A
aagiv 43.1nNdnNoO90
¢-¢’'S'e 3HNDOIL

N

$3114
uu<c<2o

UIAOYNYR
isve
wivo

nIisAe

ONICYOO3u §
vivg

M3L545

Sisvav

J

5

i

awomi3

USER
INTERFACE

Al
3A1Ln03x3 Ata | -
\

INTERFACE

SIMULATION
COMPUTER

HIOYNYN
JOVINILNG

1001

LALL LA 1

AYOMLIN

L0 0000

SONVREQIUBY ¢
FNROIEI JAGN ¢
$21117YN0O DNITONYN @

NOILYNIWME N4 &

1804 ¢

BENOdRIN OIAVNAQ 1=3 @
S214L1¥ND DNITONYH &
NOIUIVNTWAB 1Ad &
ALINBYNIIOVILNI 8AS &

l J

YOLYINMIS |
HON3ELOH

NOLIVATWS
AYNOILINNY 4O
$039010 TYLNINDUONI

—\-

ONILSIL ATA
NILGAS Q2IVUOILNI

ONLLSAL ATA
Yuhnrwnao OINVYNAG

uid llllll\““l\ﬂ.h.
® _—

SNILBABENS
“ AVVMAYYH
I
l
wmoTvONTLS 440 & —
1IN ¢ 3009
ONILiSAL ATA

W3ILBABBNS d40

)

KIYNY ALIIOViS &
KIYNY BONYRYOINDE © Lap
MY T0ULNOD &

SISAIVNY 893 NOUYVININNDOQ

|
| “
“ |
NOILVOITYA “ , -]
1834 LHOIN \ ! IVUINDD 1¥0dDY * !
H 1 BAILIWWNOD ¢ |
| 1 a1 110v3 ¢ 1
1 a. »xohn_w..u:; " "
n “ 4 SISXIYNY viva “
i
LINIANOQHIAND LNIWNOHIANI INIWNOHIANI AINSWNOHIANI SiNdNI
1834 LHDINS QHISNOY! WIS SNVHANIVAN NOLLVLSHHOM S04

JRSp | FH - N -

67

can be eased by providing help or advisory instructions for testing of specific
subsystem/system segments. Also, test cases previously used for achieved
specified test abjectives can be quickly pulled from the test case, data base
and used as exanples. These examples can then be quickly tailored to meet
specific design test specifications, if required. Following this, CAVYES can
provide an effective "test directors" workstation which uses a data base of
proven test procedures to perform hotbench testing, dynamic subsystem testing
and finally integrated system validation testing in an ironbird environment.
CAVES not only provides the test directors control capabilities over the
testing, but also supplies data reduction and analysis tools to analyze the
test results. Finally, the CIWZES can be used to support flight test by
examining (real-time simulation) flight scenarios prior to flight test to
predict flight test results. These same analysis tools can also be used to
reduce flight test data and compare them to predicted results.

3.5.3 CAV2ES FCS VsV Capabilities

Capabilities to be included within the CAVES environment will provide
the flight control/software engineers the capability to assess the FCS software
design in terms of performance, stability, and redundancy management analysis.
It will provide both static and dynamic code analysis tools for verification
and val.dation of flight critical systems code. It will also provide the
capability to perform quick-look analysis of generated data. It will provide
the mears to verify and validate FCS software through control of real-time
simulators driven by proven test procedures/test cases. Specific V&V
capabili’.ies and techniques/tools to be applied will be presented below in an
order which would correlate to the flight critical system software development.

3.5.3.1 Aircraft Flight Critical Systems Analysis

The CAVPES will provide the capability to perform wverification and
validaticn testing of FCS software by evaluating the adequacy of the control
laws with respect to performance and stability and to evaluate system
mechanization with respect to redundancy management, timing and bus loading.
To perform these analysis, 3 <eneral types of flight control analysis tools

68

will be wused: a linear analysis and design tool, a nonlinear simulation tool,
and a system level emulator. Figure 3.5.3.1-1 depicts these tools. The
non-linear simulation will be used to evaluate large amplitude characteristics
of digital FCS and to provide state space models for linear analysis. The
linear analysis tool will be used to evaluate stability and performance
margins, and sample data properties of the closed-loop control system. The
system level emulator will be utilized to verify that the implemented code
represents the system design with sufficient accuracy to meet system
performance requirements. Outputs of the system level emulator can be used to
provide inputs for rigorous exercising of operational flight oode, when
available, on an instruction level emulator of the target flight coamputer. A
more detailed discussion of each of these types of tools follows.

Non-Linear Control Laws
Simulstion e

e Performance

} e Stabilfty
) Linear
Analysis/
Design
System Mechanization
SysN'!m ~ e Redundancy mgmt.
t::l:lulot - o Timing

e Bus loading

9

:_';:;:uc“on 1 Code Execution Res\;la
Emulator

? (Q‘%Au KN

Figure 3.5.3.1-1 Performance, Stability & Mechanization Tools

69

Control Law Analysis

The control law analysis must insure that digital FICS meets the flying and
handling requirements within the maneuvering flight envelope of the aircraft,
as specified by the system specification and the MIL-SPECs. This effort
includes control law specification assessment, non-linear simulation, and
control law evaluation.

Usage of the nonlinear simulation and linear analysis tools for control
system analysis and evaluation is depicted in Figure 3.5.3.1-2. A general
purpose non-linear aircraft simulation program incorporates specific aircraft
characteristic through user-defined modules for the aerodynamic forces and
moments, the propulsion system, the control system, etc. It can be run to trim
the aircraft for any desired flight condition, to generate linear state models
for the trimmed flight condition, and to generate time history responses for
user—-defined inputs representing commands or external disturbances.

Cammercially available 1linear analysis and design tools provide a
camprehensive interactive control design and analysis software language system
including state-of-the-art primitives in <classical and modern control
synthesis, matrix analysis, dynamic system analysis, parameter estimation, and
graphical presentation. System analysis tools that are significant for
investigation of digital flight control systems are continuous to discrete
transformation, time and frequency responses, stability and performance
robustness computations, MIL-F-8785C analysis report generation and computation
of control requirements.

Performance and Stability Analysis

There are two characteristics of the DFICS which are critical to aircraft
safety of flight. These are the aircraft response to pilot and turbulence
inputs, and the ability of the flight control system to cope with deviations
from the model on which it is based. Of particular importance for this

70

TEST DATA NONLINEAR SIMULATION TOOL AIRCAAFY MODEL
® 1RON BIRD ® TRIM MAP @ CONFIGURATION
@ HOT BENCH e AERODYHAMICS
¢ FLIGHT ® TRIM AT FLIGHT CONDIT1ON ¢ STRUCTURAL/
AERO-ELASTIC DYN.
® LINEAR MODEL EXTRACTION ¢ CONTROLLER
® TIME HISTORY @ TIME HISTORY RESPONSE
FILES
@ STATE MODEL FILESAI ® TIME HISTORY FILES
LINEAR ANALYSIS/DESIGN TOOL
CONTROL LAW MATRIX ANALYSIS DYNAMIC SYSTEM STATISTICAL
uTILITY
SYNTHESIS AND OPERATION ANALYSTS ANALYSIS
@ LINEAR QUADRATIC ELEMENT BY ® TIME RESPONSE MAXIMUM LINELT- GRAPHICS
ELEMENT FUNCTIONS HOOD PARA. ESTI.
- STATE FEEDBACK - CONTINUOUS S$1M. - INTERACTIVE
SQUARE MATRIX - DISCRETE SIM. EQUATION ERROR
- 106 FUNCTIONS PARA. 1DENT. - BATCH
@ FREQUENCY RESPONSE
= ouTPUT MATRIX PROPERTIES KALMAN FILTERING ~ SPLINE CURVE
FEEDBACK @ TRANSFER FUNCTION FITTING
MATRIX DECOMPOSI- FAST FOURIER
= FIXED STRUCTURE| TION AND FACTORI- | @ TRANSFER ZEROS TRANSFORM FILE HANDLING
ZATIONS
- CONTINUOUS § ® SINGULAR VALUES ERROR ANALYSIS CONTINUOUS TO
DISCRETE MATRIX DIFFERENT 1AL DISCRETE MODEL
EQUATION SOLUTIONS| ® CONTROL CAPABILI- - CORRELATION TRANSFORMATION
@ QUADRATIC COST ITY/OBSERVABILITY COEFFICIENT
ANALYSLS OTHER OPERATIONS STATE MODEL FROM
e STABILITY ~ F-RATI0 TRANSFER FUNCTION
® POLE PLACEMENT ® MATRIX BUILDING ROBUSTNESS
FUNCTIONS ~ MEAN & VARIANCE
® PERF, ROBUSTNESS
~ TIME DELAYS
@ MIL-SPEC ANALYSIS 1

Figure 3.5.3.1-2 Nonlinear Simulation and Linear Analysis Tools

analysis 1is the effect of discretization on the stability and performance
robustness of the aircraft. As was discovered in the AFTI/F-16 DFLC design,
for the low frequency components of system response discretization of the
analog design may be used. However, the narrow structural notch filters
require direct discrete design in order to avoid problems arising from
aeroservoelasticity and the warping of filter characteristics. Algorithms for
performance and stability robustness camputations are available for evaluation

71

of FICS software design. Table 3.5.3.1-1 outlines a number of tasks which can
be performed to evaluate the stability and performance of digital control laws
using linear analysis/design tools.

— Table 3.5.3.1-1 Control Law Analysis Tasks

DISCRETIZATION ANALYSIS DISTURBANCE REJECTION ANALYSIS®
e gdiscretization errors e translent response for step wind gust
- * equivalent transfer function error e RMS tracking accuracy for random turbulence

« disturbance rejection robustness based on
singulsr value analysis

STABILITY ANALYSIS CONTROL REQUIREMENTS

= continuous and discrete closed loop o Control surface position and rate for
elgenvaiues deterministic and stochastlc inputs

s multiloop phase and gain margin based
on singular value analysls

PERFORMANCE ANALYSIS
« translent response for pilot Inputs

e tracking performance robustness based on

singuiar value analysis vavi

s Mechanization Apalvsi
~ The system mechanization analysis verifies that the code implements the
system design with sufficient accuracy to meet performance requirements. To

perform this analysis and validation, the requirements contained in Software

72

Mechanization Documents, together with the aircraft dynamics would be
implemented in a system level emulation structure. The emulation can then be
utilized for redundancy management analysis, timing and bus loading analysis.

The structure of a typical system level emilator is illustrated in Figure
3.5.3.1-3. Use of the emulator requires that the DFLICS requirements/design be
implemented (modeled) and that the appropriate aircraft dynamics be added.
This type of emulator can be used to analyze the correctness of module logic
and functions, bus loading, timing and redundancy management, as well as
analyzing the operational capabilities of a system and its conformance to
system requirements.

EXECUTIVE

¢ Initial values e Initial values

o Analysis select

o Failures o Command inputs
v _
DFLCS Afrcraft Dynamics
¢ Control laws e Aircraft
== ¢ Failure mgmt. e Actuators
¢ AMUX processing Intercept ¢ Sensors
Sofrvare e Selectors/monitors Software e Power
Mechanizatior
e Start-up ¢ Hydraulics
Document . ety ————] S SE—
e Executive
e BIT
Y
Analysis Qutput

¢ Timing
e Bus and memory loading
o Faflure states

Figure 3.5.3.1-3 System Level Emulator

13

The executive oontrols the simulator and sets failures, initial values,
aircraft flight conditions, and selects the type of analysis to be performed.
The DFICS emulation consists of modules with processing modes and communication
links of sufficient detail to accommodate the desired camponent failure
conditions to be injected by the user.

Typical questions which are addressed through use of an emulator are:

o
o

Are there deficiencies in the Mechanization Document?

Does the detailed software design faithfully represent the
Mechanization Document requirements?

What happens in the case of certain failures which appear simultaneous
to the software (e.g. latent failures)?

Is the design susceptible to particular cases of interchannel skew?

Is mode transition accomplished smoothly among the asynchronous
channels? (same for failure detection and reconfiguration, and for
failure reset).

Do all tasks get serviced by the executive within timing requirements?
Is there adverse coupling between the Failure Manager and Control
Laws, e.g., are failure latching and control law configuration handled
smoothly by the flight control executive?

What is the minimum acceptable time to detect and isolate various
types of failures? Is that time requirement met by the design?

What are typical inter—channel differences and are threshold
selections tolerate of these?

Does the persistence-counter design provide for a reasonable trade of
resistance to false alarm for speed of detection?

3.5.3.2 FCS Software Design Verification

Software design analysis activities are directed at verifying:

o

the allocation of system and software requirements to software
components

the adequacy of the design to meet the requirements

compatibility of +the software with both external and intemal
interfaces.

74

The primary aim of the design wverification is to confirm that the
recommended design will perform the function specified in the Requirements
Specification.

The approach to software design wverification is illustrated in Figure
3.5.3.2-1. The approach is to evaluate the system requirements documentation,
progressing through development outputs and approved baseline design
docaurentation. Analysis of the system and software requirements is the initiel
step of design verification and is normally addressed as part of the FCS and
control law analysis discussed in Section 3.5.3.1. The system specification,
Part I design specification, interface compatibility documents, trade studies,
and other documents provide inputs for verification of the requirements
allocation. Requirements are analyzed to confirm that: all functional,
interface and test requirements are completely specified in quantitative terms;
requirements are logical, oconsistent, testable, and traceable; all data Lkase
and data requirements are <clearly stated; all equations have been
scientifically verified; and timing and sizing estimates have sufficient margin
for growth. Upon reviewing the requirements documentation, and the FCS
software development and management plans, a requirements compliance checklist
may be used to verify tha: the given design adequately addresses all system
requirements. Example requirements campliance checklist and software design
campliance checklist are presented in Figure 3.5.3.2-2.

The next step in the verification is to confirm the technical adequacy of
the design. This process is to verify that the total design has been expressed
in writing and that adequate analysis, simulation and evaluation have been
performed to evaluate the design as to risk, expected performance, cost and
reliability. The design should address performance capabilities, system and
software architecture, operational sequences, information flow, timing and
other parameters. Design elements are analyzed for ambiqguities,
maintainability, expandability adequate deccamposition of design components
ensuring a top-down design and that testability and maintainability
considerations are embedded within its structure.

Documentation

e System Specs
e CP Dev Specs

e DFLCS Dev &
Management
Plan CPOP

o ICDs

¢ CP Product
Specs

¢ Trade
Studies

Verify Requirements Allocation -

Review Documentation
Trace Requirements

Review Trade Studies
Perform Independent Studies

N

%

Verify Design Concepts

/

Review Oocumentation
-Perform Algorithm Analysis
Analyze Architecture

Review Trade Studies

Perform Independent Trade Studies
Analyzz Life—Cycle Costs

—=— Requirements Evaluated for
Adequacy

s Completeness
o Traceability
s Accuracy

s Testability

»— Verification of Design Concepts
to Ensure
¢ Compliance with
Requirements
o Feasibility
¢ Practicality
e Testability

Verify Component Compatibility

Review Documentation

Review Trade Studies

Perform Independent Trade Studies
Analyze Hardware/Software/ Pilot

- Interaction

Analyze Communication

»\erificatian
of Interfaces
to Ensure

s Compliance with
Requirements

s Feasibility
e Practicality
¢ Testabdity

Figure 3.5.3.2-1 Approach for Performing Software Design Analysis

76

jow

r "UORINTNETS 8,108 43}
40 BI1107.9130uWYd I110F10-0A100-0208 PU D]isEe-0
3O 1383308 wql cEdjweusp 301WNIOE oq) Lq paiwncal)e
U191 (910081109 ey 107 spusemOd 1034NIJ® @Yy O]

54 v ¢ seeniwd owiiw 3o orFuw ydiq 3w Aipoorea
dimwude jo ssfuwyd Aols 103 SUOTIysusl) yloows ep}

jo Kdusnbe1y jeyndAy syy o3 dn S08VRIOUT Jeyl ‘s/pel

§05NPOIIT] QOLINETITRIP UL STILY oY) JO IWyY O3 B
I SRTIL (VIFTIP 20170p SUOTIVDIFFONEE Sy 1wy

¥ ‘uylive Supsge puv Fupuj}
¢ 43u5pod> upleq 01 yInous pe

~111o8dg jusedoteasg 1 118 a3
I VJINIUT PUN SUOT) 9D TUTIIWOD

ipougzep seldey
) ¢ xa7dwod 31043 puv eafIjTIQedeD

‘POLINI[] 12045 Jusmdotsang oy 9] 08 ey pajusseid

f1 10Q Sarindexy eyl o1 Induy uw 6 «1000b82 Jujrnpayds yena, syy -

b 4 vidave IUBT-1JINS Bawy soi1vmiins Fuisis puv Bupsp) og
1 iPPqTI089p Rutise) jo saleis PUY #eAj100{q0 sy) ey
Y/N APRIFTI0A AT W3131iUv128 useq suojyenbe oY) sawy
b 4 $IUSERIINDAI YOue 307 paj)iieds P1I83110 souwidedde aay
F 4 iPoiTIs L1291 siuswaIinbas SIVP puv eswq wiEp Byl eIy
4 iPO1I13umpy s283a03u] eawAljo8 po divaparg (v sy

1La5ndque
1NOYITA UOTIdUN] qowe 103 patI>8de puew petiriuepy

b ¢ 10eme3IInbe '
'A3sTrqrUrRIagee 'q1A023 ‘uogivisdo ‘» O¥e3fnbe1 Jujess>03d puv ‘indine ‘induj (v ssy
(Dx -0I[nbdal [[8I8A0 BET[¥e2 L[IN sulis I91a%puiaepan pov aqqresasy
() 12 *TqWIsel 1ueIs1sU0> ‘TEIF30T srusweainbe *q) ery
X 241 1% PAUSTIQAVISY s103pnq Fujsz)e - apnbed g
{suoy. v ANV X gwﬂﬁwNﬂbN af rveze ‘ﬂbhh“ ﬂ.w»=~x Aoe 230q1 M2y
1 33%¢ oq) puw 8,001 ul paysyIqeIse 178381 sagim fauwmd o seds L1o101dm0s
X (FWINIXS DUV BITADIWY BY) YITA B1qQT b ¢ SusseIInbes Ise) puw .cu-uuounuvu“w“o«,ucsw -m g

JuBzsep ay3 ug o) ¢ o i

TALINDAXS 104D
SITOM WLIDINGA §LUMGERIN0n TALIOS

dAITTIqReOe) a1ay) sy
Y1 U} pesSeIppE Usdq SIuUNERIINDAI B1wAl}

2l
gl -

WINCIROS MIVD INOTLONL
SAY] T00INGD 100D

e — T
ISITOTED MOIIVOLITELA MOISHS T(VALIOS

YiTA o1qf1edmod ATIN} (epoyies -n.umﬂummdm»wm.mmuu-

X 93NIDBITYIAT 011 8] pus pAUTIEP ATINj B8¥q M1ep sy) =] @
i{8iuseeanbes asjumydse AT158130>
b ¢ sindino/induy pus ‘swyijios(e ‘suciienbe Yy TIv O0Q ¢

pue ulisep
08 (1@ savg o

! ! ;

Compliance Checklists

1gn

Figure 3.5.3.2-2 Example Requirements and Des

71

Particular attention is directed to design strategies which involve
external interfaces such as the hardware/software/pilot interaction. The
design is examined to ensure that all external interface requirements have been
addressed.

As can be discerned fram the description of the design verification tasks,
much of this effort involves manual review of requirements and design
specifications, requiring methodical and diligent attention in matching
requirements to design and in evaluating designs. It is in this area where the
application of CASE tools discussed in Section 3.5 can provide benefits in
verification. In general, CASE tools leverage the requirements analysis and
design specification phases of the software development cycle while more
traditional tools are more applicable in the software implementation phase.
CASE tools can be applied from an independent viewpoint to evaluate
requirements/design relations. They can provide structured analysis of these
designs/requirements relations to ease the evaluation process of the analyst.
CASE tools can yield tremendous benefits in revealing many requirements (and
surprises) before implementatior. begins. Some CASE tools also provide reverse
engineering capabilities which will take implemented software back to graphic
structured design representations. In this form, verification of design to
design specification and traceapility of requirements to design can be
performed more easily.

For this effort, Frontier will evaluate currently available tools and
incorporate one or two of the most applicable tools. Teamwork, Battlemap and
Tracebuilder II are examples of CASE tools that are applicable in this design
verification task.

3.5.3.3 FCS Software Code Verification
The ck ~ctive of this software code verification is to evaluate the code
for technical correctness, efficiency and adequacy. Tools and techniques to

aid in performing software code veiification are many and varied. The general
classes of tools and techniques were discussed in Section 3.5. The code

78

analysis will utilize tools and techniques that allow for test repeatability,
since multiple versions/updates of the code are a natural part of any FCS
software development effort. The code analysis will emphasize the software
interfaces and sequencing 1logic. Past experience shows that these areas tend
to be very error-prone. The code will be examined using both static analysis
and dynamic execution analysis. Static analysis provides statisics on syntax,
structural relationships, and cross-references, while dynamic execution
analysis will allow evaluation of actual code execution results. The code will
also be examined for efficiency. Areas of code that have high utilization will
be identified with a timer analyzer tool and then will be further scruntinized
for efficiency in coding to minimize run time. Routine and module size is
anciher area which must be monitored. Unplanned trade-offs often occur when
sizing and timing constraints reach their limit.

Specific static analysis techniques which wilil be initially implemented
will be selected as a part of the Phase II effort. However, capabilities to
perform software sneak analysis and to perform instruction level emlator code
execution are examples of static and dynamic analysis tools, respectively.
Both provide a strong code verification tool base and are planned for
implementation in Cav’ES. A description of the use of these follows.

Software Sneak Analysis (SSA). SSA methodology is based on the development
of topological network trees which provide a clearly understandable functional
representation of FCS software performance, and which are useful throughout the
life of the FCS software. Software sneak analysis outputs include a
comprehensive, understandable software network tree database. Instead of
basing the development of network trees strictly on NASA developed techniques
or other sneak methodologies, FTI builds a network tree database from
hierarchial models in a manner that clearly reflects a program function, in a
format understandable to hardware, software, and system engineers. This
database is one of the major benefits offered by a software sneak analysis
approach. Initially each line of executable source code is converted to one or
more models as shown in Figure 3.5.3.3-1. The modelling process is
hierarchial. For instance, in a background executive, the main program may be

79

represented only as an impedance. In lower level trees, this model will be
expanded to include all execution paths.

o EACK LINE OF CODE IS INCLUDED IN ONE OR MORE MODELS:

(lmgncz) (RELAY COIL~CONTACTS)
FUNCTIONAL GROUP ALl

(mn% (sa%mn) (smicu)

START ' EXD TEST

Figure 3.5.3.3-1 Models for Code Representation

The next step in the SSA process is to use pathfinding programs in order to
fully trace all possible program execution paths. The programs assist in
connecting all source code hierarchial models and displaying them in the
software network trees. A unique SSA tool--hierarchial data cross
references-—are then generated to assist in determining sneak data paths by
helping trace data flow across all module interfaces.

Sneak paths, sneak indications, and sneak labels are determined through
topograph identification and clue application techniques. Sneak timing
problems are discovered through interrupt sequencing and operations analysis.
Figure 3.5.3.3-2 illustrates the six basic topographic patterns cammon to all
languages. Each network tree is camposed of one or more of these topographs.
Each pattern (topograph) has an associated clue 1list which is used by the
analyst to alert him to potential sneak conditions.

80

Ly

— Figure 3.5.3.3-2 Software Sneak Topographs, Cammon to All
Languages, Alert the RAnalyst to Possible Sneak Conditions

In addition to applying topograph specific clues, a list of application
clues are used to help determine sneak conditions. An example of sneak
conditions is given in Figure 3.5.3.3-3.

The network tree modelling technique is specifically designed to provide

— maximm visibility of code function so effects of changes on overall system
function can be easily determined.

81

A N XYSLMG

-
-

<+

{

Y VARIABLE REDEF INED
BEFORE USE

SEVERAL
CONDITHONS
EVIDENT :

L ,l UNDEF INED_STATES

IN CASE STATEMENT

/,/I OUPL ICATE CODE

Figure 3.5.3.3-3 Examples From F-16 DFLCS SSA Program

Instruction Level BEmulator

To evaluate program correctness, the FCS software will be executed and its
response to given stimuli will be assessed against acceptable limits through
instruction level emulation. The 1750A simulator is an example of an
instruction level emulator which will be employed to execute the software for

82

two levels of correctness testing. The basic level of correctness testing will
exercise all FCS software in a routine-by-routine bottom up fashion. Emphasis
here will be on inputting nominal, limit and erroneous data into the routine
and evaluating the output for acceptable content and/or arithmetic
correctness. Instruction paths will be traced, aiding in the identification of
dead code, and in calculation of timing estimates for each routine. As bottaom
up correctness testing continues, the interfaces between routines will be
exercised with regard to control and data passing. The second level of
correctness testing will be functional. Those software implemented functions
identified as critical and/or suspect fram the design analysis =ffort, software
sneak analysis, or other techniques will be executed extensively on the 1750A
simalator. The function’s response to the test data will then be evaluated
against acceptable limits. For both levels of correctness testing, the HOL
compiler and linker will be used to allow test driwvers, stubs and data
extraction hooks to be linked in with the FCS software in order to augment
emulation testing capabilities.

3.5.3.4 Stand Alone and Dynamic Subsystem Verification and Validation

The engineering and formal system and software testing utilizes a bottom-up
philosophy. Testing starts with a lowest level code (unit code) and progresses
upward to system-level testing. Verification of results is performed at each
level before progressing to the next lewvel. Test plans and procedures are
prepared for each lewvel of formal testing and test results are documented.

Problems or discrepancies detected during any phase of testing is documented,
investigated, and acted upon.

The stand alone verification and validation is the first level of testing
involving actual flight hardware. The abjective of this testing is to insure
that the Operational Flight Program (OFP) is functionally correct. Ideally,
this testing should be automated to the maximum extent possible to allow for
rapid retesting when future updates are made. The testing verifies
requirements specified in Software Requirements Specification, provides
open-loop functional evaluation, and supports computer software configuration/
hardware integration testing. This test environment uses engineering test

83

stations containing models to drive different subsystems containing flyable
hardware tests. Test files provided by CAVZES are used to drive tests. The
results of these tests are then compared to predicted results and test reports
are autcmatically generated.

The next step in the V&V testing is to integrate individual "subsystem"
tests to provide dynamic rather than static inputs between tested subsystems.
This can be done to different 1levels as illustrzated in Figure 3.5.3.4-1.
Flyable subsystems are incrementally integrated via engineering test stations.
This type of testing provides added testability of integrated subsystems and
reduced hotbench or iron-bird simulation requirements. CAV2ES will be used
to commnicate to simulation computers and subsystems to drive individual and
integrated subsystem tests. The Maneuvering-simulation Validation Automation
(MVA) system currently under development by FTI for SAAB-SCANIA will provide
just this type of capability. The design structure of CAVES can incorporate
many of the functions in the MVA system.

3.5.3.5 Integrated System Verification and Validation (ISVV)

Integrated system wverification and wvalidation testing provides a closed
loop test environment that simulates the dynamic behavior of the air wvehicle.
Actual flight hardware is used where practical to verify closed loop dynamic
responses. This test environment is used to perform pilot-in-the-loop handling
qualities evaluation, pilot wehicle interface, and failure modes and effects
tests. This test configuration is represented in Figure 3.5.3.5-1. The
CAV’ES will be used to provide a test directors work station environment for
conduct of these types of tests.

84

NOILYQIMVA 8 NOILYOIJIHIA W3LSASENS 1-v'€'S'€ IUNDIS

m)@r

om
n
|
n
noa

_ r

J1Y

uuu

A% AWILSASENS JINVNAQ

85

The entire system test and evaluation process is represented in Figure
3.5.3.5-2. This includes the FCS and software along with airplane subsystem
tests. The culmination of all these tests is flight testing.

In sumary, the CAV’ES is an integrated V&V tool set to be wused
throughout FCS development phases. The specific tools and techniques discussed
for implementation will provide the user the capability to analyze the FCS
software design and code, to allow him to easily generate test cases, and to
execute these test cases in various test environments. It provides the
capability for performing reliability analysis through wuser selected
techniques. The user is able to call on analysis data generated from different
V&V analysis phases as input to his current task. It is usable by developers,
V&V organizations, and research groups. Its workstation provides the user with
a powerful coamputational environment which can utilize many of the more
sophisticated FCS design and analysis tools. CAV2ES provides a CASE type
werking environment, user friendly interfaces, and provides hooks for addition
of future tools. It provides means for interfacing and driving real-time
simulations and offers an environment to approach automatic generation of test
cases while also aiding autamation of real-time testing. CAV2ES is an
evolutionary system which accommodates new tools to meet the growing user
requirements in verification and validation of flight critical systems
software.

86

SIMULATOR
DOME

&
CREWSTATION

Figure 3.5.3.5-1 Integrated System Verification and Validation

87

NOLLVNIVAZ ANV LS3L WILSAS ¢-6'€°G'€ 3HNOId

.

SAVO1 TVHNLONHLS

\

SAS SOINOQIAY -
ALID1LSYI3
OAU3SOY3Y -

IONYWHOIH3d *

S3NvNo
ONIONWH -
NOISTINGOHd »
$404 »

ONILS3L

1HOId p

}

ONINIVEL L1O71d
aNV
SSINIAILD3Hd3
W3LSAS

Pr—

ONILS3L A % A

DESIRAHAR: R s e T
SINIWNELSH:
-\ ABONVLS -
. NOIULYLNIANELSNI « ooﬂmwn_m.mx .
R $1S3L SWILSAS OILVUORN' «
1HOMN434Yd » 118 ONO S04 + IvoyLo33 -
NNY 3NION3 - S1S3L TIWNOILONNS S1S31 3ONVIVE
OAI/ING » | SNOLLYY3dO SWILSAS /MO 93 -
DNNGNOD IVHNLONKILS + LNOONIE ONIEIM + <+ S1S31
NOILYYBIA ONNOYD -« MO3HD LI 'dinO3 » WILSASENS
ONILS3L S1S3L ONIHIZNIONS -+ INVIdHIY
(ONNOHD 3NVIdHIY LNONO3HO % \ J
H NOILYYOILNI 3NVIdHIV |
‘ ™
NOILYNTIVAS a N
INZWIOVNYW 3uNIvS - JOLVYAVAS
L3N - TWNOLONNS
3SNOJS3Y 4001 03O0 ONILS3L
QINVNAQ dOOT Q35070 « (¢ WININIEON! + ot JHVMOYVYH
SIILAVNO ONMONVH + ﬁ N31SASENS

NOILVATIVAS IAd »
ALNIBYHIJOYILINI WILSAS »

ONILS3L A% A

WILSAS A3LVHO3IINI
_ J

e L R R s BT 1

N3LSASANS DINVNAQ

o ,

INOXJO3HD

HOLYINNIS
HON3810H

ﬁ ONILSIL A 9 A

INOTIVAONYIS ddJ0
nalsisaens

S L A

88

Appendix

Data Gathering Thecklists

89

QUESTIONNAIRE TOPICS

TYPES OF SOFTWARE DEVELOPED
DEVELOPMENT PROCEDURES/METHODOLOGY
MANAGEMENT OF DEVELOPMENT EFFORT
FLIGHT CRITICAL SYSTEMS DEVELOPED BY THESE METHODS
DEVELOPMENT LANGUAGES
- SOFTWARE TOOLS AND TECHNIQUES
STANDARDS, PRACTICES AND GUIDELINES
VERIFICATION AND VALIDATION TECHNIQUES
QUALITY ASSURANCE TECHNIQUES
IMPACT OF GOVERNMENT STANDARDS
GENERAL FACILITY DATA
FLIGHT CONTROL SYSTEMS REQUIREMENTS ISSUES
- GENERAL PROBLEM AREAS IN DEVELOPMENT

SYSTEM DEVELOPMENT ERRORS AND STATISTICS

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 454§1

90

TIYPE F_SOFTWARE DEVELQPED

Flight Control
Avionics Architecture
Engine Control
Command, Control, Comm
Analytical Models
Simulation

E P ED Y

Waterfall

Spiral

Prototyping

Hierarchical Phase Model

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431
91

SOETWARE DEVELOPMENT PHASES

System Requirements

Systems analysis and design
Software analysis and design

Coding and checkout

Software integration testing
Software/System qualification

Software Maintenance

REVIEWS AND TESTS

Stage

Reviews

Tests

1. Requirements

2. System design

3. Software design

4. Coding

5. Integration

6. Qualification

7. Installation

8. Maintenance

Systems require-
ments review

Software concept

Preliminary design
review

Critical design
review

Qualification
Audit or functional
Configuration audit

Physical configura-
tion audit and

Formal qualification
review

Change reviews

Module tests

Integration tests

Validation tests

on operational
hardware

Validation tests

On iron-bird
simulation

Re-validation tests

92

MANAGEMENT OF DEVELOPMENT EFFORT

o Background of software designers: control engineers? software engineers?

o What aspects of software project management functions are used:

Management

- Project Planning

~ Project Control

- Project Communications

Documentation

- Engineering Documentation (2167, PDL, etc.)

~ Formal Management Documentation (2167, SDP, S/W Dev Plan,CM Plan,
QA Plan

- Informal Documentation (reports, guidance/policy papers, minutes,
etc.)

Configuration Management

~ Baseline Identification (Tech descrip of all S/W items)

- Control & Tracking of S/W Access and Change

~ Control of S/W releases

1 TE L D _BY T

F-16 DFCS
F-15 E
AFTI/F-16
F-15 STOL
X-29

F-18
PAGUS
X-31
F-117

DEVELOPMENT ILANGUAGES
Ada
Jovial J73 (MIL-STD 1879B)

Assembly
CMS-2

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 4543&

93

VS —

SOFTWARE TQOLS AND TECHNIQUES

Proprietary Tools

Flight Control Analysis Tools
- Matrix-X
- CNTRL-C
- - MATLAB

CASE tools

’

TECHNTOUES

Abstractions and hierarchies to reduce complexity: abstractions such
t.rees are used to make the design simple and clearly defined.

Checkout (debug) testing: function/module testing before integration

Constructive design approaches: (eg. formal design language)

Critical design Review: oral demonstration of detailed design

Dat-. flow diagram, structure chart: used in preliminary design

Descriptions or documentation

Design guidelines, test gquidelines, & coding guidelines

Design standards, coding standards

Functional capabilities list: module description of functions to perform

Integration testing: code test after modules are assenbled; I/0 struct.

Organization as finite automata

Qualification audit

Singularities and extremes testing

Symbolic execution: performed on special functions such as mode logic

Systems concept review: oral demo of initial concepts, trade-offs, etc.

Validation testing: final demo in simulation environment

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431

94

TOQLS

Accuracy analyzer - analyzes numerical calculations for red accuracy
((;gwlar reference checker - modules calling each other

Code camparator — differencing between versions

Cross-reference checker — calling of modules; external variables called
Data bases analyzer -~ module accesses to data bases; unused elements
Data Flow Ifathing - trace execution sequence for variable(s) in flow
Docurentation & constructions - Auto documentation; Consistent data pool
Edltor.- Analyze/extract information/relationships from source programs
Emulations - System level model generated from requirements, not design
Flow charter - show logical construction of program

Formal Languages - Structured and rules.
Interface Checker - Check Range, limits, scaling of variables

Module Invocation Tree — Establishes call hierarchy with system

Program flow analyzer - statistics on usage; estimate execution time
Se':t/Use.checker - Checks for variables: set, not used; & used before set
Simalations — Test characteristics, algorithms, functions, performance

Sneak-Path Analyzer -~ Looks for unexpected paths

Symbolic evaluator - reoconstructs equations relating output to input
Test data generator ~ produces test cases to exercise the system

Test driver - controls the execution of a program

Test execution monitor — collects data and campares to expected results
Test record generator - analyzes, reduces, and formats results

Theorem prover - axioms used prove assertions stated for a path

Timing analyzer - monitors/records run time of functions and routines
Units oconsistency checker - variable expressions (units) checked.
Unreachable code detector - looks for code which cannot be executed

Specific Static Tools

General
Static Tools

Dynamic Tools

Circular reference checker
Codc comparator
Consistency checker
Cross-reference checker
Data base analyzer

' low charter

Interface checker
Program flow analyzer
Set/usc checker
Standards checker

Unuts consistency checker

Unreachable code detector

Accuracy analyzer
Assembly code verifier
Assertion checker

Documentation and
construction systems
Formal languages with
syntax analyzers

e Requirements

e Specifications

e Program design

e DProgram code
Snecak-path analyzer

Svimmbohe evaluator
Theorem piove:

A\ ertheation condion

e aerpratos

—]
Simulations
e Computer
e lybrid
e Test bed (iron bird)
e Monte Carlo

Test data generator
Test driver

Test execution momtor
Test record generator

Timing analyzer

TANDARD PRACTI ND ELIN

- Design standards

- Coding Standards

- Documentation Standards

- Engineering Development Standards

VERIFICATION AND VALIDATION TECHNIQUES

- Review & Walkthrough

- Units Consistency Checks
- Data Flow Charts

- Interface Format Checks
- Decision Tables

- Set/Use Checks

- Type Consistency Checks
- Timing Test/Analysis

- Numerical Accuracy/Precision Analysis/Test
- Symbolic Evaluation

- Testing

- Control Flow Diagram

-~ Petri Nets

- Correctness Proof

- Scaling Analysis

- Table of Events

- Simulation

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431

96

-—-------------------I-i

ALITY A RANCE TECHNIQUE

- Software Inspections
- Software Reviews
- Software Audits
- Document Reviewed for
-~ Consistency
-- Traceability
~- Clarity, readability
-— Structure

-- Completeness with respect to H/W & S/W
- Standards, Practices, and Conventions

- Configuration Management

- Quality Factors and Criteria
- Code Control and Media Control
- S/W Quality Assurance Standards

IMPACT OF GOVERNMENT STANDARDS

MIL-STD-2167A
MIL-STD-2168
MIL-STD-F-9490D
MIL-STD-483
MIL-STD-490
DI-S-30567A (CPDP)
MIL-STD-1521A

Frontier Technology, Inc.

4141 Colonel Glenn
97

Beavercreek, OH 45431

e

GENERAL_ FACILITY DATA

General Data:

Computer Data:

Coclkpits:

Graphics Data:

Special Equipment:

oftware Library:

1"

Facility Probiems:

Facility Plans and Goals:

Processor Requirements:

S/W Requirements:

Contractor S/U:

Frontier Technology, Inc.

4141 Colonel Glenn

Company, laboratory name, address, key

contacts, etc.

Host processors, distributed processors, I/F
diagrams, size of memory.

Type (i.e., fighter, transport, generic)
displays (analog, CRT, etc.) controls (i.e.,
stick, wheel, force-feel, etc.).

Resolutions, colors, update rates, features,
etc.

As available frcm contractors containing
data on special test support or software
development equipmeat.

Program names and functions.
The contractor‘s estimatior of areas of
wvezknesses and needed ethancements for

flight critical software test.

New equipnent
procurement.

expected, desired, or in

What processors will be wused to host
in-house S/w development, memory
requirements, timing data.

Operating systems, languages (HCZ and
Assembly) FC Develcpment tools for
development test and d=2mo. Emulators, etc.

of all stages of development showing, S/W
test and support requirements.

Those software develiopment, tests and demo
packages that are required to support flight
critical system development and verification
including software availability from
contractor with lease-rent-buy cost data.

98

Beavercreek, OH 45431

FELIGHT CONTROL SYSTEMS REQUIREMENTS ISSUES

0 Requirements. Methods should:

Be problem driven and applications based

Handle H/W and S/W interactions in concurrent mechanizations

Address complexity and reliability concerns explicitly and
quantitatively

Effect component integration during design

Provide provision for quality assurance

Natural transition for system reqs to software design to H/W-S/W
implementation and integration

o Integrated support environment is needed.

0 S/W development environment will need to be incorporated into a
system prototype facility.

o Different leveis of abstraction appropriate for different phase of
development and post-development

0 MOST IMPORTANT REQUIREMENTS

o
(o]
o
o

Satisfaction of fast real-time constraints

High reliability

High availability/survivability
Supportability/ease of modification/ease of test

Frontier Technology, Inc. 4141 Colonel Glenn Beavercreek, OH 45431

99

- GENERAL PROBLEM AREAS IN DEVELQOPMENT

What measures of fault tolerant design are used?

What measures of fault avoidance design are used?
Structured design methods; QA; systematic testing; small,
simple modules.

Methods of countering impact of:
- Increased use of relzxed static stability
- Integrated avionics and control functions
- Other: complex FCS Algorithms for sensor, sensor blending

SYSTEM DEVELOPMENT ERRQRS AND STATISTICS

— Types of errors
Ease of finding
Measures of Performance
Gathering of statistics

3

Frontier Technology, lnc. 4141 Colonel Glenn Beavercreek, OH 45431

100

WOHTILAWNIOP d00d

suojivaytdads viisap
JO VONBIV A AW 1034400V]

s3npow jo Funsd) najdwody|
930429 (¥ udvaBodi)
PImdlAdd 10U 3p0)
S2|Q81I0A pEZIIBHIVIUA @
LI LERACTIVETE R)
SIURISU0D JO) BUNIBA 1233400V) @
SUOIINbI FuINdWod Vi §40d4d @
SANIBA 180114

sy el
(TR T, WON I}

101

puw JeinBuis jo Juljpusysiw o A1peg auop §) matadd WIduwo)
C1EP 1NN JO XIPU] JO 880 @ Jvop pavdisap L1i00d
$240130018 d00] 19944000] @ A1PpTq majadd U¥18ap KJoujwyadd d4C $34npadoid 1831 Jatmy oS
.m 24043 Jienbapevy a¥enduc)
m Juiyousdq pus Bujsuanbas o puUE 121TWOV] §f VOTITIVIWNIGT 2210duiod o vOI23]28 00 21P0bIPP 10U §§ VLT SS(iCRIIEA
mJ.l FUOJ1INIIBU) Swuindo3iw 12343090} SUO11031115d8 o oﬂ%ﬁﬂwuh__)”_ JEIIIUN FJe FAIL I U} J4EMPUTY
) 10 VOLIEd)JIpOWi +J198 ® £3o1opoutaw Jujwweadosd » Heayy 4 jo von oQ
) suolICt 2icnbopeul §1 22indwIoY 2w jC IS
@ uoyiswixoJidde saujapIng o n
ol - PUD U838 'mOljdaA0 o FJLodWIuLE J9indwod Aine) e 1234402 10V
40 G4 §pavpuy ddymifos o wauin $1 WA dn jo vonesr el
-~ uojisdado amanas !
' o 248mpIUY PUT F13N1PU0D)0 VOLI8ZIIIN JOOY 1041U0Y IATINIIXND PdEmymE @ pIIUPWNIOD Alucod
m d¥anBuwy jo VoLIMIPIGIAILISIW @ 24NIISUY) VOTIBLIUETI0 JJOMIJOS | BIPELY 24EM(JOE/IINMPILT 2000 ¢ PARIGIIIUISI @
+) i8404d2 Buipo)y Al1023400V) pavonnised ass suonouny :Buodm §) volieandyuod wasks 1948 S,awWOAINbIL Wik
m/m ANISWOdU} 30 A1kINIDCy
49 dde Juswdinba 1edaydiaed apn
m «W pu® Jdempdey au1 Jo sUONIdI48Q X
~ a131dwoay) 2A1I1AI83a KJa3a @ - by
$1 wWoishs aw Juivyjap eic 2;91dwo: < 2
sdempicy uoIBINEiju0d AW VO ti1ep a1mnbapeu]) 1) Wijap eicQ WAISISVOIVY 40 2io1dwot @ M w
4t JO VOIICIVIWNIOP JO0{ JJEMPUICY Y JO UOHITILIWNIOP J00d PAVIWNRIOP Aluood o VUM ITOUL WO padueys ¢ v "
ﬁ suonea11o9ds ¢ oBis pue ¢ adeis paraddiniuisiw o paters A1peq *
M\W ..w VU|p $N0IV0IL0 40 B1d1dWOIY| U33.M19Q UDTICUIPI00) JO RaeT] 140 SUIWINDIL WIis s T34E SIUDWALINDIL WIISAy
—~— Junisd 1 1noxaay) pue Buipo,) uB1§3Q pue SisA|rUY 2JTMJOS ud1$a() pue SIFAITUY Waishg SIWAWIINDIY widisAS
6 m v Wns [rmg 2 230 }aders

“"LANGUAGE SUPPORT ENVIRONMENT FOR GUIDANCE AND OONTROL SYSTEMS", Final

Report Working Group 08, NATO Advisory Group For Aerospace Research and
Development, March 1990.

Fisher, Alan S., "CASE, USING SOFTWARE DEVELOPMENT TOOLS", John Wiley and
Sons, 1988.

"VALIDATION OF FLIGHT CONTROL SYSTEMS", Draft Report of GCP Working Group
09, NATO Advisory Group For Aerospace Research and Development, April 1990.

"HANDBOOK - VOLUME I, VALIDATION OF DIGITAL SYSTEMS IN AVIONICS AND FLIGHT
CONTROL APPLICATIONS", US DOT/FAA/CT-82/115, September 1986.

"DIGITAL SYSTEMS VALIDATION HANDBOOK - VOLUME II", US DOT/FAA/CT-88/10,
February 1989.

"DIGITAL FLIGHT CONTROL SOFTWARE VALIDATION STUDY™, AFFDL-TR-79 3076,
June 1979.

102

U.S. Government Printing Offfce 548-076

A ————= |

