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Executive Summary

)The coding, storage, axjd reconstruction of images is a major concern in the ap-
plication of computer techiology to technical and scientific problems. One example
is the flood of geophysiA1 and intelligence data originating from satellite platforms.
In such applications i( is highly desirable to reduce the storage and transmission

___requirem ents for i gge data. A n im age can be coded com pactly w hen it is pos-
4 -sible to exploit self similar redundancy in the image. The development of such a

so-called& fractal" method for compressing image data has been the focus of our
research project.~t

ur approach to image compression has been to tessellate the image with a
tiling which varies with the local image complexity, and to check for self similarity
amongst the tiles. Self similarities are coded as systems of affine transformations
which can be stored far more compactly than the original image. This method
is inherently lossy, since the self similarities are never exact. Although the tiling
technique yields good results in many c -ses, we have also begun to investigate
contour schemes which may lead to irregular tilings with even better compression
ratios, computation time and signal-to-no-se ratios.

We have tested our encoding scheme on a variety of test images, gaining com- 0
pression ratios greater than 40:1. At high ccmpres.ion ratios, the scheme yields
better signal to noise ratios than are reported ic- other techniques. Our scheme
is versatile in that it allows a trade off between compression, reconstructed image
fidelity and encoding time. Our methods are computationally intensive but are
feasible for. non-real time applications on workstations or main frame computers.
The algorithms can be accelerated considerably by dedicated hardware for real time
requirements.

Fractal compression is a promising approach to image compression. Within a
very short development time, fractal techniques have yielded results which rival the
best examples of data compression afforded by other methods. Although fractal
encoding of images is complex and may require specialized hardware for real time
applications, the decoding process can be widely utilized because it is simple, fast,
and suitable for software implementation. Thus, it can be run on workstations or
personal computers without special requirements. (

We recommend further research and deveopment along the following lines.
First, the tiling scheme is sufficiently mature to consider hardware implementation
for possible real time applications. Second, we expect that the application of fractal
techniques with other image processing methods, such as contour detection, will
lead to even better results. Finally, research into the mathematical foundations of
the subject is warranted. We believe that a program which integrates hardware
engineering, software development and further mathematical research will yield the
best results in the long run.
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Section 1.0. Introduction.

The objective of the Phase I research was "to improve [lossy] image compression
techniques which are based on fractal constructions." This was an ambitious un-
dertaking, since at the time of the proposal no such techniques were widely known.
In fact, although claims about "fractal image compression" existed, there were no
bench mark results and no hard data on such schemes.

Thus, the Phase I research set out to prove the feasibility of such a scheme,
and the conclusion of this research effort is: such a scheme is feasible. We have
implemented a working, completely automatic image compression algorithm. The
algorithm yields compression results that compare favorably to other state of the
art techniques.

The work of the last six months at NETROLOGIC can be broken down into
two parts. The first part demonstrates automatic encoding of digital image data by
storing an approximation of the image as a collection of affine transformations of the
plane. The amount of memory required to store the transformations is considerably
smaller than the amount of memory required to store the original image, and the

0 transformations can be converted back to an image by a simple and fast procedure.

The second part of the work deals with alternative schemes to compress images,
some transfo- n based and some not. Since the first part already demonstrated our
ability to e-. -ide images as transformations, the results from this work are beyond
the scope of the original Phase I proposal. Since these schemes are preliminary,
they should be considered proprietary. Like the technique in the first part, these
techniques are based on completely new algorithns developed at NETROLOGIC
and the University of California, San Diego.

One important note remains to be made: Although the work demonstrates
the feasibility of encoding images as transformations, the theoretical foundation

0 for the subject is requires more development. The major theorem in the field is
the contractive mapping fixed point theorem, which is unsatisfactory because the
bounds it gives on certain rates of convergence do not come close to the actual
convergence rates. This suggests that we do not understand the mechanism that
controls the degree to which an image can be encoded. Until the subject has a
well formulated and successful theoretical foundation, the results will continue to
be largely empirical and less than satisfactory.

Section 2.0. Background.

The following is a brief history of the development of the subject. Hutchinson
[5) introduced the theory of iterated functions systems (a term coined by Barnsley)
to model self similar sets (such as in figure 3). Demko, Hodges, and Naylor [6]
first suggested using iterated function systems to model complex objects in com-
puter graphics. Barnsley, Demko, Elton, Sloan and others generalized the concepts
and suggested the use of fractals to model "natural scenes". In his thesis [7], A.
Jacquin developed an image encoding scheme based on iterated Markov operators
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on measure spaces and used it to encode 6 bit/pixel monochrome images.

M. Barnsley (see [2] or [3]) is credited with stimulating interest in image com-
pression based on "fractal" techniques. While much effort has been spent on the
use of fractals to generate images, Barnsley popularized the converse notion of en-
coding the content of images using fractals. Although many claims were made in
this field recently, results based on rigorous test procedures are almost nonexistent.
In an effort to bring results and details to scientific scrutiny, work was begun at
the University of California, San Diego (UCSD), the Naval Ocean Systems Center
(NOSC), in addition to NETROLOGIC. The result of the work at NETROLOGIC
and the current research is presented in section 4.0.

The subject is still in its infancy - the most important observation is that the
theoretical foundation is still very weak and that the underlying mechanism driving
the encoding process is not well understood. The existing theoretical foundations
can be found in the next section.

Section 3.0. Theory.

In this section we motivate the use of affine maps to encode images. The main
tool of the subject is an old but powerful theorem, the contractive mapping fixed
point theorem. First we need a definition.

Definition. Let 6 be a metric on a space F. A map W : F -+ F is said to be a
contraction if there exists a positive real number s < 1 such that

6(w(x), w(y)) < 6(x, y)

for any tvwo points x,y E F. If s < 1 then W is said to be a strict contraction.

Theorem (Contractive Mapping Fixed Point). Let F be a complete metric
space with metr.ze 6. If W : F - F is a contraction, then there exists a unique
point g E F such that g = W(g). Moreover, for any f E F, the fixed point is the
limit g = lim"-.oo W°"(f).

In the next section we apply this theorem to produce a simple example of image
compression.

Section 3.1. A Simple Example.

The following example shows a simple application of the contractive mapping
fixed point theorem. In this example F is the space of compact subsets of R2 and 6
is the Hausdorff metric, then (F, 6) is a complete metric space. (The exact definition
of the Hausdorff metric is not important, it is sufficient to think of it as measuring
the extent to which two sets in the plane overlap). We can then define the three
transformations shown in figure 1:
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For any set S, let

W (s) = Uw1 s). (1)

i=l
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* be converging to a limit set shown in figure 3. In fact, the maps wi are strictly
contractive in the euclidean metric, and it is not hard to show that this implies
that the map W is contractive in the Hausdorff metric. As n -4 oo, the sets An
converges (in the Hausdorff metric) to a limit set A,,, shown in figure 3. Moreover,
for any compact set S C R 2, W~fl(S) A,,.~ as n -+ o0.

0 A1  10 A2  1 0 A3 110 A4  1

Figure 2. A, = W(Ao) and its images A 2,7A3 , and A 4.
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That all compact initial sets converge under iteration to A,, is important - it
means that the set A,, is defined by the wi only. Also, it is not difficult to see why
such a thing is true. The wi are contractive; they halve the diameter of any set to
which they are applied. Thus, the images of any initial A0 will shrink to points in
the limit as the wi are repeatedly applied.

Figure 3. The limit set A. = - W*'(Ao).

Each wi is determined by 6 re.,, values, so that for this example we require
18 floating point numbers to define the image. In single precision, this requires 72
bytes. The memory required to store an image of the set depends on the resolution;
figure 3 requires 256 x 256 x 1bit = 8192 bytes of memory. The resulting compression
ratio in our particular example is thus 114: 1. However, in this particular example,
the limit set is a fractal and can thus be decoded to any resolution. The resulting
compression ratio can be honestly said to be infinite. In applications, however, it is
less than honest to decode an image at a different size than it was encoded at and to
then claim very high compression rates. Just as with the fractal in this example, the
fractal compression scheme we describe later will generate detail at all scale levels,
even though such detail is not present in the original image. It is very important
to include both the original image size and the signal to noise ratio (or some other
measure of error) when giving results for any image encoding method and 'fractal"
image encoding methods in particular.

Section 3.2. The Space of Images.

The space in which we work when compressing images can be defined in the
following way. We denote the closed interval [0, 1] by I, and the n-fold Cartesian
product of I with itself by I n . Let F be the space consisting of all graphs of real
Lebesgue measurable functions z = f(x, y) with (x, y, f(x, Y)) E I3. Thus f is
bounded. We think of a point in F as an abstract image of infinite resolution,
with f(x,y) representing the grey level (with 0 being black and 1 being white)
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at the point (x, y) in the image. We can model images with finite resolutions by
partitioning V with a rectilinear grid and either insisting that f be constant on
the boxes of the grid, or by averaging f over each box. The model with infinite
resolution allows us to handle the theory somewhat more clearly. Color images can
be encoded as graphs of functions f : 2 --+ P with range points reprcsenting the
color model of choice, for example RGB values.

We metrize F using the metric induced by the essential supremum:

1if 1100 = inf{a : p(f 1 ((a, 1])) = }.

The metric we wish to use is

6(f,g) =II If -gI 1100.

The space F with the metric 6 is complete, allowing us to use the contractive
mapping fixed point theorem, when we identify images which have distance 0. Other
spaces of images are possible, for example the space of positive Borel measures
supported on 12, but this space is difficult to metrize, and the particular space and
metrization is of little practical consequence ultimately. This is especially true in
light of the inability of the theory to bound the converges rates even weakly, as we
show later.

We now return to the application of the contractive mapping fixed point the-
orem to the problem at hand. Let W = U=lwi : F -+ F denote some contractive
map, which we assume is built up of a union of local maps wi F -+ F (as in
equation 1, for example).

Following Hutchinson's notation [5], we denote the fixed point g = IWI -
limn-. W 0'(f). Then

n

IWI = W(OWl)= U wi(IWI). (2)
i=1

We say that W encodes an image f E F if f = IWI. Given W, it is easy to
find the image that it encodes - begin with any image fo and successively compute
W(fo), W(W(fo)), ... until the images converge to IWI (just as in the example in
section 3.1). The converse is considerably more difficult: given an image f, how
do we find a mapping W such that IWI = f ? We know of no general, non-trivial

* solution to this problem, nor do we expect that one exists. We attempt instead
to find an image f' E F such that 6(f, f') is minimal with fP = IW1. Equation
2 suggests how this might be possible. 'We seek domains Dl,..., D,9 C F and
corresponding transformations w1, - w, : F -4 F such that

n

f _ W(f)-- U WiID,(f). (3)
i=1

9



This equation says: cover f with parts of itself; the parts are defined by the Di
and the way those parts cover f is determined by the wi. Equality in equation (3)
would imply that f = IWI. Since we cannot cover f exactly with parts of itself, we
try to do the best we can and hope that IWI and f will not look too different, i.e.
that 6(IWI, f) is small. The following observation, which is due to Barnsley [1] and
which he calls the Collage Theorem, gives us hope that this can be done. It is a
corollary of the contractive mapping fixed point theorem.

Corollary. Let W : F -* F be a contraction with contractivity s and let f E F be
an image. Then S(1WI,!) _ ' W(f),f).

Our problem is to find a W such that 6(W(f), f) is minimized and such that
s is small. We will then know that IW is close (in 6) to f. However, ,he bound in
the corollary is not very good; it provides motivation only and not a useful bound
in practice. In fact, it is possible to generate examples in which the bound in the
corollary is arbitrarily large while 6(IWI, f) is bounded. We have found empirically
that restricting s to be small results in poorer encodings, because while the

term decreases, 6(W(f), f) increases. Table 1 demonstrates this phenomenon.

Remark: We can always approximate any given image f to within any e > 0. Since
the simple functions (functions whose range consists of a finite number of points)
are dense in F, we can find simple functions gl,...,g. such that SP(gif) < e.
For details see [8]. We can then construct maps w 1,... , w, and a map W using the
simple functions gi. This is not a deep point, because we sacrifice compression in
order to achieve accuracy - that is, we require a large number of maps W,... w,
in order to have S(f, W(f)) small, and n grows rapidly as e -- 0.

We found, while proving the convergence of W, that contractiveness was not
essential. It is sufficient for W to be eventually contractive, meaning that there
exists some positive integer m such that W*r is contractive. We generalized the
corollary to give a new bound on the efficacy S(IW 1, f) of the encoding W.

Generalized Corollary. For f E F, W m : F -* F contractive with contractivity
a < 1, and smax the expansiveness of W,

6(1 I,!)~ 1 1S'1ax 6(W(f),f).1 - s 8 az 501(IX 5) _1 - 01 1 - Smna( f)f)

In encoding images, we restricted ourselves to eventually contractive maps,
since they yield better results. Nevertheless, the theoretical bound on the efficacy
of the encoding 8(1W 1, f) in both the eventually contractive and contractive cases
is poor, as demonstrated in table 1. The metric used in this table is the rms metric.

Table 1 gives results for a typical portrait image. The first two entries in
the table are encodings resulting from contractive maps. The third entry is an
encoding with an eventually contractive map. The table demonstrates two points.
First, the eventually contractive map gives the best encoding. Second, even though
restricting the contractivity of W improves the bounds the contractive mapping
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theorem corollaries, it worsens the encoding. This demonstrates that the bounds in
the corollaries are poor; hence they provide motivation rather than actual bounds.

6(W(f), f) 6(IWI,f) smaz a m Col2-Coll Theorem

21.965 23.487 0.8 0.8 1 1.513 109.825
20.306 20.976 0.9 0.9 1 0.67 203.06
18.937 19.621 4.05 0.85 5 0.684 720874.8

Table 1

In the implementation of the algorithm, we restrict ourselves to affine maps of
the form

Wi -" di 0 Y - fi (4)

Z 0 0 Si i j

where the ai, bi, ci, di, ei, fi, si, and oi are determined by minimizing 6(W(f), f).
Finding good values for these parameters is the crux of the problem, and we describe
a method to find such values in the next section.

Section 4.0. Results.

This section contains the main Phase I research results. It is organized into two
parts; the first demonstrates the feasibility of encoding digital images as a collection
of "tile" transformations. This scheme is called tiled transform image encoding. The
transformations can be constructed into an image which is an approximation of the
original image (the compression scheme is lossy), and there is a trade off between
compression fidelity, the extent to which the reconstructed image resembles the
original, and compression ratio, the ratio of memory required to store the original
image to the memory required to store the compressed image. Reference [1] gives
further details.

The second part of this section exhibits results obtained from alternative image
compression schemes, also developed during the Phase I research. These schemes are
not as mature as the tiled transform encoding scheme, but they do display several
attractive features. First, they provide a foundation for an alternative method of
encoding images as transformations (this alternative has not yet been studied).
Second, the schemes are simple and fast to implement and execute. And finally, the
schemes can be implemented in a variety of ways, utilizing standard compression
techniques or new "fractal" based techniques. These algorithms can be loosely
described as contour based, since they depend on extracting contours (such as level
curves or edges) from an image.

Section 4.1. Results from Phase I.

A detailed explanation of the results and the image compression scheme may
be found in [1]. This text informally explains the general idea of the scheme. The
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compression scheme depends on the following premise: Given an image, for example
a face, it is reasonable to expect that small portions of the image, for example the
tip of the nose, resemble larger scale features, such as a properly scaled and rotated
chin. When small scale features can be represented as transformations of larger
scale features, an image can be stored as the large scale features plus the set of
transformations needed to define the small scale features. Since it essentially never
happens that a tip of a nose looks exactly like a skewed chin, the resulting image is
never identical to the original. On the other hand, the amount of memory required
to store an image in this different way is often much less than the memory required
to store the original.

An image is digitally stored as a collection of values. Each value represents
a grey level, for example 0 may be black and 255 may be white, with the values
interpolating the grey level between these extremes. Successive values represent
dots or pixels, forming a matrix which can be viewed on a monitor and which looks
like an image, since the human visual system tends to ignore the pixelization.

The main difficulty of the scheme described above is finding the transforma-
tions. Our tiling transformation image encoding scheme (TTIE) finds the transfor-
mations in the following way. The images is broken up into tiles; for example, a
256 x 256 pixel image is partitioned into contiguous, non-overlapping 8 x 8 tiles,
called range tiles. The image is also partitioned into 16 x 16 pixel tiles called do-
main tiles. For each range tile, we seek a domain tile which looks most like it. The
computer determines how much two tiles "look alike" by an affine least squares fit of
the pixel values, using 1 of every 4 pixels to accommodate the difference in domain
to range tile size. Domain tiles are checked in 8 possible orientations, corresponding
to the symmetries of the square. The transformations stored are then determined
by which domain mapped to which rang , the orientation of the domain, and the
affine transformation (scaling and offset) on the grey levels of the domain.

Once all range tiles have been covered the image can be reconstructed in the
following way. An arbitrary initial image is chosen, for example an image consisting
entirely of zeros. The part of the initial image which corresponds to the domain
tile is copied to a separate storage location. This subimage is oriented properly, as
determined by the transformation. Its pixel levels are scaled and offset. It is shrunk
by taking only one of every 4 pixels, so that it shrinks to size 8 x 8. And it is then
put in the position of the range tile determined by the current transformation. The
domain tile is unaffected. All of the transformations are applied. This whc 1 cycle
is repeated several times until the resulting image remains stable. Convergence is
a consequence of the cor'lractive mapping fixed point theorem, as long as the affine
transformations are taken to be contractive (or eventually contractive).

The transformations completely determine the final image, independently of
the initial image chose. There is no need to store the large scale detail separately;
it is created out of the small scale detail stored in the 8 x 8 tiles. The small scale
detail is then created in turn by tbe mapping of the large scale detail into the 8 x 8
tiles.

The algorithm is actually considerably more svphisticated than the one outlined
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above. The size of the domain and range tiles is not fixed. Rather, it varies with
the local image complexity in order to allow fewer transformations to be used in
relatively flat portions of the image and more transformations to be used in complex
regions of the image. Also, the search through the domain tiles is not exhaustive,
since this is computationally intensive. Rather, the domains and ranges are classified
and only the domains of the same class type as a given range are searched for a
good least squares fit.

Figure B.1 shows the decoding process. The initial image is, in this example, a
pattern of vertical lines, chosen to show the structure of the transformations after
one application of all of the maps. The figure contains, first from left to right, top
then bottom: The initial image, one application of all of the transformations, two
applications of the transformations, and ten applications of the transformations by
which we have converged. The initial image is shown in figure B.2. The last image
in figure B.1 can be encoded in 1/10th the memory required to store the image in
figure B.2, with an rms error of 8.59 (a signal to noise ratio of 29.5db).

Table 2 below gives several typical results for several images. The table specifies
the image size in pixels; the compression in memory required to store the original
image vs. the memory required to store the compressed image; the signal to noise
ratio; the cpu seconds of computation time required to encode the image on a
Convex C210; and the number of transformations in the encoding.

In general, larger images yield better compression ratios, since there is more
interpixel correlation. The compression scales roughly with the image size, however,
so that a 512 x 512 image, which contains four times as much information as a
256 x 256 image, will have roughly four times the compression ratio.

Image Size Comp SNR (db) Time (sec)

Lena 512 x 512 15.6 32.1 899.9
Lena 512 x 512 38.7 29.2 -
Lena 512 x 512 23.5 30.0 2582.0
Lena 256 x 256 11.3 28.8 234.6
City 256 x 256 7.1 26.6 530.3

Collie 256 x 256 19.5 30.2 1898.9

Table 2

Figure B.3 shows the original 256 x 256 pixel collie image and three compressed
versions (left to right, top to bottom) at respective compressions of 63.0:1 with a
signal to noise ratio of 25.2db, 28.2:1 with a signal to noise ratio of 29.3db, and
16.6:1 with a signal to noise ratio of 30.4db. Figure B.4 shows an encoding of a
512 x 512 original Lena at compression 38.7 with a signal to noise ratio of 29.2db.

The images shown in appendix B have not been postprocessed. With postpro-
cessing, most of the boxy artifacts introduced by the compression scheme can be
eliminated. Some more details can be found in appendix A.

It is important to stress that the software yielding these results has not been
optimized. It is of a highly developmental nature, resulting in somewhat less than
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optimal results. Never the less, the results are comparable to other image compres-
sion techniques (See section 5.0).

Section 4.2. Extra Results: Most Promising Lines for Future Re-
search.

This section describes results which are not directly related to the Phase I
proposal, in the sense that they do not demonstrate the feasibility of "fractal"
image compression. Because of the preliminary nature of the research, this section
should be considered proprietary.

The results are all based on various manipulations of contours. The schemes
are:

* Transform encoding of contours (TEC);
e Image encoding through level curves;
* Image encoding through leveling of edges.

Section 4.2.1. Transform Encoding of Contours.

We briefly discuss the one dimensional analogue of the two dimensional tiled
transform image encoding scheme. The image, in this case, becomes a contour, and
the tiles become portions of the contour called chains. The algorithm is still the
same, however: The contour is partitioned into long domain chains and short range
chains (the particular lengths are not important and can be varied to alter the final
compression and the fidelity of the reconstructed contour). For each range chain, a
domain chain is found which minimized the root mean square distance between the
range chain and an affine transformation of the domain chain. These transforma-
tions are recorded, along with the endpoints of the range chains. An approximation
of the original contour can then be reconstructed from these transformations by
iteratively applying all of the transformations. For more details, see [4].

Section 4.2.2. Image Encoding Through Level Curves.

The idea of using level curves to encode an image arose in conversation with
Josh Deutsch, of the physics department at the University of California, Santa Cruz.
Spencer Menlove, of NETROLOGIC, also contributed to both the implementation
and design of these algorithms.

A level curve is a contour in the image which has a constant grey level. At sharp
contrast points of the image, the contour is forced to pass through pixels which may
not be of constant grey level but which approximate the position of the contour had
the image been of infinite resolution and the grey levels been continuous. Level
curves are extracted at several different grey values. These level curves can be
stored compactly, using, for example, the transform encoding of contours method
described in the previous section. To reconstruct the image, the grey levels of pixels
between contours are interpolated.

14
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This scheme is conceptually simple, simple to implement, not computationally
intensive, and moderately successful.

Due to time constraints, this scheme and the TEC scheme were not united, so
the results reflect compression of the date using a lossless standard technique. From
the experimentation with the TEC scheme, we hope to achieve an improvement in
compression by roughly a factor of 2.

* Section 4.2.3. Image Encoding Through Leveling of Edges.

A property of the level curve encoding scheme is that it preserves edges. This
occurs because edges are at high contrast points of the images through which the
level curves tend to pass. To capitalize on this observation, a similar scheme was
developed which encodes an image using contours which run along edges in the
image.

In this scheme the edges, or high contrast points, of an image are extracted
and connected to form contours. The grey level at each edge contour is averaged
for each side of the edge, and the whole contour is assigned two values: one for each
side of the edge. The contours can be compactly encoded, as above, and the image
is reconstructed by interpolating the grey levels between the edge pixels.

Due to time constraints, this scheme and the TEC scheme were not united, so
the results reflect compression of the date using a lossless standard technique. From
the experimentation with the TEC scheme, we hope to achieve an improvement in
compression by roughly a factor of 2.

Section 4.3. Fractals and Wavelets: Theoretical Investigations.

Transform methods.

One efficient way of determining the local frequency content of the image is
through transforms related to the Fourier transform. These, in order of increas-
ing generality, are the Fourier transform, the Wigner transform, and wave packet
transforms. The Wigner transform is given by the integral

W(f) = J e- 2 ?'Pf(x + ip)f(x - 1p)dp,

and a generalized wave packet transform is given by the integral

p!(1p a.t) = J e-Pq+rPxt1/2(b[tl/2(x - (x)dp

where O(x) is a generalized Gaussian (see below). A little consideration of the
definition of W(f)(x,6) will show that this transform gives the local frequency
content of the function f in a neighborhood of x. The expression for Pf(p, q, t) is
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the inverse Fourier transform for W(f) if we set t = 1 and # = f. Details may be
found in Folland's 1989 monograph, pp56-63 and 142-169.

Wavelet transform methods.

We investigated relationships between fractal methods and wavelet transforms.
The objective of this phase of the study was to look for ways to improve the choice
of affine iterated function systems. One rationale for doing this is that our current
image compression scheme does not preserve edges well. Because edges contribute
heavily to human perception of image quality, it is important to amend this weak-
ness. An appropriate wavelet transform yields a powerful tool to extract edge
information from an image on a variety of scale lengths. Figure B.5 shows edges
extracted from a wavelet transform of "Lena" at different scale lengths. Edges cor-
respond to zero crossings of a wavelet transform of an image and the image may be
reconstructed, by standard methods, from such zero crossings.

Edge information may be used in conjunction with fractal methods in various
ways. One approach is to force the coding method to preserve edges by using a
error measure which weights the edge error more heavily. (Recall that our encod-
ing scheme chooses transforms on the basis of an integrated error.) An alternative
approach is to regard the edges as one-dimensional fractal curves. The edges them-
selves may be coded as iterated transforms, using a 1-dimensional analog of the
2-dimensional method used for images, as has been detailed above.

Generalized Gaussian functions give one class of wavelet transforms. In order to
clarify the relationship between affine fractals and this particular wavelet transform,
we consider the behavior of the generalized Gaussian under afine transformations.
A generalized Gaussian is given by a function:

OA,b,d(X) = exp(x t Ax + bt x + d),

where x is a vector in the plane, A is a symmetric, negative definite matrix, and b is
a fixed vector. There is also a complex-valued form, in which the entries of A and b
are complex numbers and the real part of A is required to be negative definite. The
set of generalized Gaussians is preserved under non-singular affine transformations
and the orbits (up to a complex factor) are specified by the cogredience class of A.
According to a theorem of Sylvester, any two real symmetric matrices are cogredient
if they have the same rank and the same signature- (Jacobson, 1953). The closure
property may be seen by a simple calculation. If x '-f Bx + c is an affine transform
A, then O(x) is transformed into

A(OA,b,d)(Bx + c) = exp(xtBtABx + ctAx + xtAc + btBx + ctAc + btc + d).

The latter function is of the form SAI,b,,d,, where A' = BtAB, b = 2ctA + btB and
d' = c;Ac + btc + d. Because A is symmetric and negative definite the equation

2ctA + btB = et
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has a unique solution c. Therefore by proper choice of affine transforms, the
quadratic part xtAx is specified up to cogredience class. The linear part btx
is arbitrary, and we are left with a constant factor which cannot be specified.

Future work should clarify the relationship between image coding by wavelets
and image coding by iterated function systems. The invariance of the set of general-
ized Gaussian functions under affine transformations indicates that the analog of a
fractal should be a sum of Gaussians which is preserved under an iterated function

0 system. In particular, if
f - AI,bh di

then we look for a system of affine transformations {A1 , A2,..., AN} with weights
{wI,w 2 ,... ,WN} such that

N

f = _w,(Ai) -(f) = 0A'.b &.
i=1 i

Because we require O =

i i

the summations need not be unique.

Our survey of the literature has revealed some other connections between gen-
eralized harmonic analysis and affine transformations, in particular through rep-
resentations of the extended metaplectic representation and the inhomogeneous
symplectic group. The metaplectic representation is a representation of the sym-
plectic group (the group of 2n x 2n matrices which preserve the symplectic form
[(p, q), (p', q')] = pq' - p'q, on vectors with 2n components. The symplectic group
is generated by matricesA 0
The action is given, up to sign, by

m[(A 0 f(Alx)

m ( f(x) = e-rCxf(x)

M.[(~ 1 )] f (X) i-/= F1 )
where F is the Fourier transform. The extended metaplectic representation is a
representation of the semidirect product of the Heisenberg and symplectic groups.
The semidirect product is given as pairs of operators (X, A), where X is in the
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Heisenberg group and A is in the symplectic group. The group product is given
by (X, A)(X', A') = (X(AX'), AA'), and the representation is given by w(X, A) =
r(X)m(A). The Heisenberg group acts as follows for X = (p, q, t):

Xf(x) = e2 't e 2 7rqx+7rPqf(x + p).

Because the product in the Heisenberg group is given by

(p, q, t)(p', q', t') = (p + p', q + q', t + t' + (pq' - qp')),

it can be seen that the extended metaplectic representation contains the usual action
of the affine group.

The inhomogeneous symplectic group is another extension of the symplectic
group, which has a more obvious relationship to the affine group. In this case the
semidirect product is the product of R 2' with the symplectic group, and the group
multiplication is

(w, A)(w', A') = (w + Aw', AA').

The representation, as before, is given by w(X, A) = r(X)m(A). This is a projective

representation, and the extension of this representation by a representation of the
circle group is the extended metaplectic representation.

Other connections between generalized Gaussians and affine transforma-
tions.

It is easy to show that the set of generalized Gaussians is preserved under the
convolution product. This may be derived from results on the oscillator semigroup
(Folland, page 231) or calculated directly. Furthermore, affine transformations pre-
serve the convolution product, up to a constant factor. If we write

Y[A,xo,c] = exp[(x - xo)tA(x - xo) + c)

where, as before the real part of A is negative definite, then

M/[A,xo,c] = [MtAM,M-1(xo-b),c],

where M(x) = M(x) + b, and

7[Axo,c] * 7(B,yo,c] = 7f[At(A+B)-A+A,xo+yo,c]

where c' = c - log(det(A + B)) and * represents the convolution product.

This may be useful in shortening the search for affine transformations which
map one part of the image into another. In particular, we may be able to use a
wavelet decomposition and the expression for the convolution to comute the best
correlation between regions of the image.
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Affine transformations and theta functions.

One definition for the theta function is given via a generalization of the Fourier
transform. We let jx be a vector in Rk and jx stand for a vector in the space jRk

of homogeneous polynomials of degree j in Rk. There is an obvious inner product
in this space, so we can define the nonlinear Fourier transform

(r ...... 7j) f= JfGx)exp[iri .1 x,... irs .j x]dx.

If we take f to be F 61n, where in is the lattice of vectors with integer coor-
dinates in Rk and J = 2, then we get the function 03(x, z). Furthermore,

ff(MlX)exp[ir "1 x,...i .jxd

det(M) f(x) exp{i[Mi] * M ix,..., i"(M) jxdx

det(M)F[ ] * 1 ,.[.., Ij(M- 1 )] * r ),

where denotes the adjoint and the pre-subscript denotes the appropriate symmet-
ric product. This shows that approximate symmetries under the affine group of the
function f can be represented as approximate symmetries of the affine group acting
on the nonlinear Fourier transform of f. This indicates that searching zero-crossings
should be a good way to find appropriate transforms to code an image.

Section 6.0. Comparison With Other Image Compression Schemes.

This section contains some results from other image compression schemes. This
section is by no means complete; the omission or inclusion of any results is happen-
stance. The following graph shows results from a collection of recent publications,
listed below.
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Figure 4. Signal to noise ratio vs. Compression from
a variety of recent publications and from the TTIE scheme.

The figure is somewhat misleading in that not all of the images compressed are
the same, or even the same size. The points are segragated into image size, results
from the literature and our results. The high fidelity, low compression results come
from a paper which used particularly simple images to encode. Nevertheless, the
TTIE scheme compares well with other results.

Table 3 tabulates the results in the image and gives the references to the gath-
ered data. The references for the gathered data follow:

[1] Analysis/Synthesis for Subband Image Coding, Smith, Eddins, IEEE Trans.
Speech Acoustics and Signal Processing, Vol. 38, No. 8, Aug 1990.

[2] Adaptive Cosine Transform Coding of Images, Ngan, Leong, Singh, IEEE
Trans. Speech Acoustics and Signal Processing, Vol. 37, No. 11, Nov 1989.

[3] Image Coding - From Waveforms to Animation, R. Forchheimer, T. Kronander,
IEEE Trans. Speech Acoustics and Signal Processing, Vol. 37, No. 12, Nov
1989.

[4] Subband Image Coding, Woods and Oneil, IEEE Trans. Speech Acoustics and
Signal Processing, Vol. 34, No. 10, Oct 1986.

[5] Non Linear Space-Carient Postprocessing of Block Coded Images, Rmammuthi,
Gersho, IEEE Trans. Speech Acoustics and Signal Processing, Vol. 34, No. 5,
May 1986.
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[6] Sliding Block Entropy Encoding of Images, Cohen and Woods, M7.1 IEEE,
1989.

[7] Pruned Tree-Structured Vector Quantization in Image Coding, Riskin, Daly
and Gray, M7.2 IEEE, 1989.

Reference Compression SNR (db) Image Size Image

1 10 30.7 256 simple
1 10 31.3 256 simple
1 5 35.1 256 simple
1 5 35.6 256 simple
1 15 28.7 256 simple
1 15 29.5 256 simple
2 20 33.5 512 Lena
2 10 37.0 512 Lena
3 9 24.3 256 Lena
4 16 29.6 ? ?
4 8 33.0 ? ?
4 4 36.5 ? ?
5 11.4 29.9 512 Lena
6 8 34.8 512 Lena
6 17.7 32.5 512 Lena
6 14.3 31.1 512 Lena
7 25.6 29.2 512 Lena
7 25.6 30.92 512 Lena
7 15.68 32.43 512 Lena

TTIE 7.5 30.0 256 city
TTIE 19.54 30.28 256 collie
TTIE 11.8 31.96 256 collie
TTIE J.1 28.48 256 collie
TTIE 18.3 29.4 256 colie
TTIE 13.1 32.4 256 girl
TTIE 12 28.9 256 Lena
TTIE 38.7 29.2 512 Lena
TTIE 15.91 32.1 512 Lena
TTIE 23.5 30.0 512 Lena

Table 3

Section 6.0. Conclusion.

The tiled transform image encoding scheme yields good results which are com-
parable to the latest results attainable by other schemes. It is sufficiently mature to
be implemented in hardware, and this should be one of the next goals of pursuing
"fractal" image encoding further. The research into the subject, however, should
not be considered complete. The alternative schemes presented in the paper should
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be followed to see if they yield even better results. Given that the TTIE scheme was
only explored for a short time, there is good reason to expect that further research
will lead to such results.

Finally, the mathematical modeling of the underlying processes should be ex-
tended. As we demonstrated, the current level of understanding of the scheme is
rather incomplete. Basing a scheme on "motivational" arguments cannot be ex-
pected to provide optimal res.,:. A thorough research effort into building a good
model of the process should lead to much better results.

Section 7.0. Recommendations.

We recommend further research and development along several lines. First, the
tiling scheme is sufficiently mature to pursue hardware implementation for possible
real time applications. Second, we expect that the application of fractal techniques
with the other image processing methods presented, such as contour detection, will
lead to even better algorithms. This avenue of research should be developed. Fi-
nally, research into the mathematical foundations of the subject has barely begun.
We believe that a program which integrates hardware engineering, software devel-
opment and mathematical research will yield the best results in the long tun.

More specific recommendations will be found in our followup Phase II proposal.
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Appendix A: Other Work
In this appendix we describe other work carried on during the phase I research

which is of secondary interest. The section is organized into small subsections which
briefly describe the work and results.

Lossless Compression.

While the compression ratios attainable with lossless compression schemes are
far lower than those obtained with lossy schemes, the utility of lossless schemes is
higher for many applications. We investigated briefly the idea of compressing the
difference between an original image and a highly compressed version of the image.
The results were encouraging, though not spectacular. Compression of our standard
test images ranged from 1.3 to 1.9. Further work along these lines is warranted, in
view of the importance of lossless compression schemes.

Fourier Methods.

We investigated the use of FFT methods in conjunction with the TTIE scheme.
The results were uniformly poor. The frequency domain does not display the type
of coherency or adjacent pixel correlation which the TTIE scheme can capitalize on
in order to achieve good compressions.

Alternative Tile Classification Schemes.
Using alternative classification schemes for tiles is somewhat technical. Refer-

ence [1] has further details. The domain tiles used to encode an image are classified
in order to speed the search needed to find a "good" domain tile. Using a classifica-
tion scheme generally results in poorer fidelity, because there is no guarantee that
the optimal domain will be found in the class searched. We investigated several
methods based on correlation methods and moments. The results are not defini-
tive, being better in some features and worse in others as compared with the present
scheme.

Elimination of Compression Artifacts.

One weakness of the current compression scheme is the appearance of artifacts.
In order to eliminate these we attempted to postprocess the image by smoothing
along the boundaries of the range tiles. This was successful, often resulting in an
even lower rms error. Of the attempts to remove compression artifacts, this was the
most successful. This type of postprocessing can, and should, be utilized in any final
implementation of TTIE scheme. While the TTIE scheme is still in development,
we felt it was better to concentrate on optimizing the results obtainable with the
method, rather than attempt to do a good job cleaning up afterwards.
Image Preprocessing.

In an effort to improve the ability of the encoding scheme in encoding images,
we investigated two image preprocessing methods. The first, based on Wigner
transforms was disappointing. This transform lead to data which was complicated.
The second method using a wavelet transform, is potentially useful. We used this
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transform as a method of edge detection, though we had hoped to find a deeper
relationship between it and the affine transformations used to encode images (see
section 4.3). This research did not lead to any concrete results.

Alternative Tiling Methods.

We attempted to improve the fidelity of a given tiling by using linear combina-
tions of domain tiles. Initial results were very encouraging, having greatly reduced
artifacts. Using more than one domain tile significantly reduced the encoding error,
but decreased the overall compression. Without careful classification, the search
time needed to find even a moderate approximation to an optimal fit is prohibitive.
Our last approach to using several domain tiles in an encoding was to encode a range
optimally and then encode the resulting error. Due to time constraints, we did not
carefully study the relationship between the encoding fidelity and the compression
ratio as compared with the TTIE scheme. Such a study is warranted.
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*Figure B.2
The original Lena at size 256x256.
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Figure B.3
The original collie at size 256x256 8bpp (upper left). Collie compressed63.0:1 with a signal to noise ratio of 25.2db (upper right). Colliecompressed by a factor of 28.2 with a signal to noise ratio of 29.3db(lower left). Collie compressed at 16.6:1 at 30.1ldb snr (lower right).

1

s"0



*, Figure B... .".4

Acttoa21oi va3871wtasinltnosraio 29.d

% %%"s.%

"~~~ .,..e.,

•Figure B.4
Areconstruction of a 512x512 original version of Lena compressed

at 38.7:1 with a signal to noise ratio of 29.2db.
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* Figure B.6
An original map of Asia (left) and a fractally encoding of
that map. The resulting compression depends on the storage method
of the original map. For very efficient schemes, the compression is
still near 1 at this preliminary stage of development of the algorithm.
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Figure B.7
Contour encoding of images. Lena encoded with 9 (upper) and 15 (lower)
contours with respective compressions of 5.9 and 4.2 and signal
to noise ratios of 26.3db and 26.5db. We expect to increase the
compression once the contours are encoded as transformations.
The contours are shown on the right of each image.
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*Figure B.8
Edge contour encoding of images. Lena encoded with two differenlt
edge sensitivitics. (20 upper and 10 lower). Thle respective
compressions are 5.7 and 3.0 with signal to noise ratios of'
22.5db and] 27.4dlb. The signal to noise ratio does not reflct
the trueC imlage fidelity, Since thle edges arc veiy well preserved by
this scheme. \Vc expect to increase thle Compression on1ce the edge'
contours are encoded as transformations. Thle cdoc Contours are Shlown
on the right of each image.
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Figure.B .9
Amodified Edge contour enlcodinlg Of imrages. Lena enicoded with two

different edge sensitivities. (20 Lipper and 10 lower). The respective
compressions are 7.2 and 3.5 with sign-#I to noise ratios of
21 .6db and 24.4dlb. Thle signal to nple ratio does not reflect
the true imag e fideclity, sia~ce the .1rs are very well preserved by
this scheme. We expect toicrie the compression once thle edoe
contours are encoded as transformiations. Thie cdoe contour11s are shown
on thle righit of each inmaoe.


