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A TECHNIQUE FOR FEATURE LABELING IN INFRARED OCEANOGRAPHIC IMAGES

* * ** **

. Krishnakumar , S.Sitharama Iyngar Ron Holyer , Matthew Lybanon

*Department of Computer Science **Remote Sensing Branch

Louisiana Satc University Naval Ocean Research and Development Activity
Baton Rouge, LA 70803. Stennis Space Center, MS 39529.

ABSTRACT

Advanced Very High Resolution Radiometer
"L'ti'-'al infrared images of the ocean obtained from (AVHRR) aboard the NOAA-7 satellite. Brightness

satcllic sensors are widely used for the study of ocean dynar- in this infrared image is proportional to the
ic,. The derivation of mesoscale ocean information from
satellite data depends to a large extent on the correct interpre- ocean surface temperature (dark areas represent
tatlon of infrared oceanographic images. The difficulty of the wamaer temperatures and light areas represent colder
image analysis and understanding problem for oceanographic temperatures). Vortices (areas of closed circulation)
images is due in large part to the lack of precise mathematical within this turbulent flow pattern are called eddies.
descriptions of the ocean features, coupled with the time vary- The Gulf Stream and its associated eddies are exam-
ine naiture of these features and the complication that the view pies of mesoscale features ("mesoscale" is the name
of the ocean surface is typically obscured by clouds, some- comoyal e features e xisth name

times almost completely. Towards this objective, the present commonly applied to the features existing on spatial

paper describes a technique that utilizes a non linear proba- scales of the order of 50 to 300 km). Mesoscale
bilistic relaxation method for the oceanographic feature label- features are important to the study of ocean dynam-
ing problem. A unified mathematical framework that helps in ics, the fisheries and to many other diverse interests.
solving the problem is presented. This paper highlights the
advantages of using the contextual information in the feature Current image analysis techniques rely on human
labeling algorithm. The feature 'abeling technique makes use interpretation of the satellite imagery. Human
of a new, efficient edge detection algorithm based on cluster
shade texture measure. This new algorithm is found to be interpretation is obviously varied in its level of
more suitable for labeling the mesoscale features present in expertise and is highly labor-intensive. With the prol-
the oceanographic satellite images. The paper presents some iferation of high volume Advanced Very High Reso-
iniporant results of the series of experiments conducted at lution Radiometer image applications , it becomes
Remote Sensing Branch, NORDA on the NOAA AVHRR highly desirable for certain applications to move
niagery data. The paper concludes w ith a motivation for using from the labor-intensive manual interpretation of
this technique to build an oceanographic expert system. infrared imagery towards a capability for automated

Key words: feature labeling, feature extraction, oceanic interpretation of these images. The complete automa-

fe:tures. edge detection, knowledge based systems, relaxation, tion of the oceanographic image interpretation func-
infrared imagery, tion is probably not feasible, but one can begin to

address certain subsets of the problem with the

1.0 INTRODUCTION present-day image processing and artificial intelli-

gence techniques. This was the motivation for the

work reported by Lybanon et al., 111 [151, in the
Satellite-bome sensors potentially offer man ,  development of a prototype oceanographic expert

advantagcs for the study of oceanic processes. They system.
provide global synoptic measurements of various

oceanic surface properties, in contrast to the local Several previous studies have addressed the
measurements, possibly at a range of depths, pro- automation of the analysis of the infrared satellite
vided by conventional oceanographic measurement

techniques. Thermal infrared images of the ocean im aGer sosealefeatires.iger andetebtoski

obtained from satellite sensors are widely used for 121 and Gerson et al.d31 investigated the detection of

the study of ocean dynamics. Fig.1 shows a sample the Gulf Stream in infrared images from the Geosta-

infrared image of the Gulf-Stream obtained from the tionary Operational Environmental Satellite (GOES).
Gerson and Gabroski [2], used a hierarchical

This project is funded by the Department of Navy under the contract approach where 16x 16 pixel (I 28x 128 kin) "frames"
nurmber NO(1)I4.8X-K-6002. within the image were evaluated for the possibility of
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containing the Gulf Stream. Frames flagged as Gulf The objective of an expert system tor oceano-

Stream possibilities were then further evaluated to graphic system is to correctly interpret the dynamics

determine the exact location of the Stream within the of the ocean process with miniMai tuan iliteract ion.

frame by looking at statistics based on 5x5 pixel Tlokards this objective, the development of a power-

"local neighborhood". As an outgrowth of the work ful oceanographic expert system is in the process of

reported in [21 and [31, Coulter 14) performed development at Remote Sensing Branch, NORD,'.

automated feature extraction studies using the higher We have already developed a prototype expert sys-

resolution Advanced Very I igh Resolution Radiom- ten for Gulf Stream regional dynamics [ 1]. The

eter data. Janowitz [51 studied the automatic detec- current activities focus on building an expert system

tion of the Gulf Stream eddies using the Advanced that makes use of the information about the position

Very High Resolution Radiometer data. Nichol [6j of mesoscale features obtained from the relaxation

uses a region adjacency graph to define spatial rela- labeling scheme. One element of an expert system is

tionships between elementary connected regions of a database of knowledge about the subject matter,

constant gray level called atoms. Eddy-like structure with the knowledge represented in a form suitable for

is then identified by searching the graph for isolated manipulation by the "inference engine" of the expert

atoms of high temperature that are enclosed by atoms system (i.e., the logical and heuristic procedures for

of lower temperature (for the case of warm eddies). solving problems in the problem domain). With the

Although satisfactory emulation of human extraction help of the knowledge gained from discussions at

of eddy structure is claimed for this method, NORDA and from the literature in oceanography, a

Nichol[61 does point out that not all enclosed uniform knowledge base about the nature of the mesoscale

areas identified by the method will correspond to real features (occurrence, mean life time. movement, etc.)

ocean structure. was built [1]. Presently, we are in the process of

designing an expert system which makes use of the

positional information about the features(obtained

2.0 MOTIVATION OF THE PRESENT WORK from the relaxation labeling) and the knowledge base
of mesoscale information.

In this section we present the motivation behind Trhis paper presents a relaxation labeling scheme
the present work. Our primary objective is to build a to label features in thermal infrared images obtained
powerful automatic image interpretation system for from satellite. The technique presented in this paper

oceanographic satellite images. In order to make this exploits the advantages of using the contextual infor-
difficult problem tractable, we divide the problem mation in the labeling algorithm. The remainder of
into two parts : feature labeling problem and the the paper is organized as follows: Section 3.0 intro-
development of an expert system. In this paper we duces the probabilistic relaxation scheme and briely
focus on the feature labeling problem. It is clear that discusses the application of this scheme to the ____

the performance of the labeling algorithm depends oceanographic labeling problem. In section 4.0 we r

heavily on the low level image processing algo- develop a mathematical frame work which is neces-

rithms. Particularly, the output of an edge (detector sary for our labeling problem. Section 5.0 discusses

algorithm plays a major role in the feature labeling the performance of our technique and describes the

process. In view of this, a new efficient edge detector steps that are involved in implementing this tech-
algorithm proposed by Holyer and Peckinpaugh [7) is nique. Section 6.0 gives a brief description on the

employed in our feature labeling technique. It is implementation of this technique on the image
known that the conventional edge derivative opera- analysis system at NORDA. Section 7.0 concludes

tors are very sensitive to noise and are not suitable with all the important features of this technique and

for analyzing oceanographic satellite images. The future extensions to the availa scheme. _y Co des

new edge detector algorithm proposed by l-olyer and Avail and/or

Peckinpaugh [7) is based on the gray level co- ist Special
occurrence matrix, which is commonly used in image
texture analysis. This algorithm 171 is found to exhi- l.a
bit the characteristics of fine structure rejection while 3.0 RELAXATION PROCESS
retaining edge sharpness. In this paper we focus ont

the preliminary results of a feature labeling algorithm
and the effect of the cluster shade edge detector algo- An important research area in image analysis imid

rithm on the performance of the labeling. In the fol- image interpretation technology is the development

lowing paragraph we briefly outline the various steps of methods that blend contextual information with

taken to solve the second sub problem. the conventional image processing algorithms. The
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literature survey clearly indicates that such a hybrid that the probabilities are functions of time unlike the
approach yields good results. Relaxation labeling is conventional pixel relaxation labeling schemes where
on1C such process that approaches this problem. the probability is a function of position alone. This
Relaxation labeling has been applied to a variety of allows the relaxation labeling algorithm to utilize
image processing problems eg., linear feature temporal continuity to reduce the ambiguity in label-
enhancement [8], edge enhancement [9], image ing. The ambiguity may arise due to noise (cloud
enhancement [101, pixel classification [11,121. cover, for example).
Recently a survey article by Kitten and Illingworth
[13] on relaxation labeling highlights the importance There are two steps in executing the probabilistic
of this area of research. The survey [131 also points relaxation algorithm. At the first step, a priori proba-
out the advantages and possible applications of relax- bilities are evaluated with the help of ground truth
ation methods. More importantly, the relaxation data and / or a previous but recent mesoscale
labeling approach was elegantly described by Rosen- analysis. In the second step, these a priori probabili-
feld et al. [14] who investigated the problem of label- ties are iteratively updated (relaxation) until a con-
ing the sides of a triangle and proposed a set of sistent labeling is reached. We now discuss these two
schenes to solve the problem. The paper [141 con- steps in detail.
eluded with the result that the non linear probabilistic
relaxation schemes yield better results than the oth- Step 1: Estimating the a priori probabiliiies
ers. The labeling algorithm presented in this paper is
based on the non linear probabilistic relaxation tech- Let p (x,t) denote the a priori value, that is, the pro-
nique. bability that pixel x(ij) at time t belongs to the object

?, at the zeroth iteration. The Bayesian probability
The goal of the relaxation process is to reduce equation is used to evaluate this value. The equation

the uncertainty (and improve the consistency) in the (4.1) is used to calculate p" (x ,).
assignment of one of the labels to each object in a set
of related objects. In the Oceanographic feature A. = ,(x.iik) PtX) (4.1)
classitication problem, the classes are the various Y4 p(xt Kk)fP()

Oceanographic features namely North and South wall
of Gulf Stream, cold eddy, warm eddy, shelf front
and coastal boundary. Refer to fig.2 to identify the where p(xi I X) denote the conditional density function
position of these oceanic features in a typical image. and P o) the probability of occurrence of the object X.
The objects are the individual pixels in a set of
recistered multi-temporal images. The uncertainty To evaluate the conditional density function p(x.t X),
could be due to the cloud cover or the overlap of the a set of parameters is measured at the pixel x(ij). Let
features that are mentioned above, features not X denote the parameter vector. The following param-
belonging to one of the classes, noise in the image, or eters are used to form the vector X:
other factors. In this paper, we are attempting to label
mesoscale features, but the ocean exhibits variability (1) distance of the pixel x(ij) from the origin, both
on all spatial scales. Thermal structure on scales the magnitude and direction.
smaller than mesoscale will interfere with the mesos- (2) gray scale intensity value at the pixel x(ij).
cale feature labeling process. The underlying (3) the edge magnitude (Section 5.1 presents the

mathematical framework necessary for the reiaxation chosen edge operator algorithm).
labeling method is described in the next section of

the paper. For each object, the mean vector px and the covai-
ance matr x -), are computed. Also it is assumed that
the conditional density function follows a normal dis-
tribution. Hence the conditional density function
p(x,t Xi.) is evaluated using equation (4.2).

Let A = {X1,X2. .,,, } be the set of possible labels that
may be assigned to each pixel x in the IR image
Also we let pk(x,t) denote the probability that the
pixel at x(i,j) and time instant t, belongs to the object p(,t IX ,= (2it tX -j"x - _ X (4.2)
. after k iterations of the relaxation algorithm. Note CW !
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To compute P(.) , relative areas of the objects are
considered. The number of pixels in the object X be rkx.(xy) = cw(X',) (4.6)
Ilk. Then P0.) can be calculated using equation (4.3). o(X) o(X)

where cv (,k') denotes the covariance of two events,
namely, tile pixel x is assigned the label and the

,"(4.") pixel y is assigned the label k' and is given as:

Step 2: Iterative updating algorithm = P ) P (Xp) (4.7)

We now discuss the probability updating rule. The
new estimate of the probability of ) at x(ij) is given
by (4.4). The joint probability p (X& k) can be calculated using

the position vectors of the pixels x and V. Let nz and
ni' be the mean position vectors of the objects ;X and

pk%(xt)(I+qX(x)) . respectively. Then the joint probability can be
Pt(--xt) - + (1-k)kpx(xt'(4.4) computed using simple functions as given by equa-

tions (4.8a) and (4.8b).

where q (x) is called the update factor and a), is called
temporal weighting function.

P (X & X) _ - x if k X" (4.8a)
The method of estimating these factors are illustrated n -i
below. The updating factor for the estimate pt(xt) at
the kth iteration is given by equation (4.5). P - if (4.8b

X + it

qt (x) - r (x .v )py (v (4.5) The new estimate of the probability of k at x(i,j) Is
in A

where m is the number of objects. In this equation, E (X j I+,/ (xI

rkj.y) denote compatibility coefficients. These
coefficients are computed as in 113,161. According to
the relaxation scheme, rXx.y) is a measure of the where -kA.') denotes the probability value at the
probabilistic compatibility between label X on point . pixel x(ij) at time instrt t', t' < t and a denotes the
and label ;CJ on point Y, and has the following charac- temporal weighting .raction for the object X. The
teristics: function ax detern*.is the weight that is given to the

current probabiliy values and the factor i-ak) associ-
(I) If X on x frequently co-occurs with V on v, then ates a weight to the probability values calculated at

rA-(x.') > 0 , and if they always co-occur, then previous time instant t'.
r X(x .y)= .

(2) If X on x rarely co-occurs with X on y, then I estimate the new probability value, either (a)
r {x.y) < 0 , and if they never co-occur, then the )robability value at the previous time frame t' or
r ,;,(Xy) = -I. (t, a set of probability values at time frames t'. t".

(3 etc., can be used. In the present analysis and the(3) If 0 on x occurs independently of on y, then implementation, the method (a) is chosen. Also it is
p0. proposed to implement the method (b) and compare

These compatibility coefficients are computed using improvements (if any) in the feature labeling. The
the equation (4.6). temporal weighting function can be detemlined witf

1,71



01 ic he p of the previous analysis of the images. it is ud iv idual pixels in the oceanographic image are
imiiul,:t >h, that this temporal weightin, futctio ca labeled depending on the initial probability values
not h, unstant in the real time situation. For example obtained in the first stage.
in some cases, the performance of the labeling may
be less satisfactory and correspondingly the temporal 5.1 IISCUSSION ON CLU!ASTER SlA)E EI)(I;:
we ighJting function should be civen a relatively AL(ORI'IIM
sniAllcr value. Hence the selection of this ftnction
itsclf may be a problem in sone cases. One may use
different values for :his function and the performance In this section, we discuss the features of the
of the lacl in.c can be compared. The itcrative updat- edge detection algorithn proposed by liolyer and
inc is ielainated when the difference between the Peckinpau, gh [7). The motivation behind the develop-
probahility values at the k th and the (k + 1) th ment of such a new edge detector algorithm is to aid
iterations is very small (say less than 0.1%). the analysis of oceanographic satellite images. The

popular derivative-based edge operators viz Sobel's
operator [191 are shown to be too sensitive to edge

5.0 )ISCUSSION ON THE TECHNIQUE fine-structure and to weak gradients to be useful in
this application. The edge algorithm proposed by

The implementation of the above mentioned l-olyer and Peckinpaugh [7] is based on the cluster

technioe is carried out in two stag-es. The flow chart shade texture measure, which is derived from the

shown in fig.4 depicts the various steps involved in gray level co-occurrence matrix (GLC). The authors
implementing the technique. 17] have suggested that the edge detection technique

based on the GLC matrix can be effectively used in
automated detection of mesoscale features. The (ij)
th element of the GLC matrix , P(ij IAx.Ay) is the
relative frequency with which two image elements,

At the first stage, the a priori probabilities are C,

estimlated using a manually prepared mesoscale separated biy distance (&t.Ay) occur in the image, one
anaystisd uing a m riod vedpir msoce with intensity level i and the other with intensity levelanalysis from a time period ot five days prior to the j.TelmntofheGC aricudbeo-

test laoe.j. The elements of the GLC matrix could be com-
test image. bined in many different ways to give a single numeri-

cal value that would be a measure of the edges
The objects present in the oceanographic IR present in the image. Holyr and Peckinpaugh [7]

image are identified with the help of the previous have used a cluster shade function which is found to
analysis. The shapes (or boundaries) of these objects be very effective in the edge detection process. The
are then determined and represented by a regular new edge algorithm computes the cluster shade func-
polygon. The parameter values are then computed for tion at each pixel. Then the edges are detected by

all the pixels inside these polygons. A reasonably finding the significant zero crossings in the cluster
accurate algorithm which finds out whether a pixel is shade image. The advantages of this new edge algo-
inside a polygon or not is implemented. rithm over the conventional derivative-based tech-

niques are discussed in [7]. It is known that using
large windows in derivative-based edge detector

From the parameter vector X for a pixel x(ij), algorithms results in poor smoothing. This problem is
the mean vector pX is calculated. Also for each object circumvented in the new algorithm. Because edges
). , the covariance matrix Yx is computed. The equa- are detected by finding zero crossings, precisely posi-
tion (4.2) is used to compute the conditional density tioned lines result, even if the GLC matrix is calcu-
function p (,.r I X. Finally the initial probability lated using a larger window. So, the desired edge0

,,,(. .tis computed using the equation (4.1). The detection characteristics of retaining sharp edges
output of the first stage is shown in fig.3. The output while eliminating edge detail is achieved with the
image is split into six parts to illustrate the labeling, help of the new algorithm. As an input to our feature
Fig.3.1 shows the output of the labeling module with labeling algorithm, we used the image output
all the five features labeled. Refer to fig.2 to compare generated by cluster shade algorithm, with a window

the labeling with tie hand segmented image. To illus- size of 16x16 pixels and zero crossing threshold of
trate the labeling process five different features are 50. The edge magnitudes obtained from this new
considered. They are : two parts of the north wall, edge detector algorithm is used as an input to the
south wall and two warm eddies. The labeling of feature labeling algorithm. In particular the edge
these five features is shown in figures 3.2 to 3.6. The magnitudes are used to evaluate the a priori probabil-
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ity values. It can be seen from fig 3. that the only the els present in the image. To highlight the perfor-
edge pixels participate actively in the labeling pro- mance of this initial labeling algorithm, a decision
cess. Also the speed of tile algorithm that computes making algorithm based on these a priori probability
the a priori probability values is greatly improved values is implemented. A pixel that has a probability
because of the reduced number of pixels for con- value above 0.8 for an object is given the label for
sideration. that object. Thle decision algorithm selects the pixels

in the neighborhood of the objects to illust;ate the
In the second stage, the iterative updating rule is results obtained. The edges of the labeled objects are

implemented. The compatibility coefficients are dilated for clear identification of the labels. The
evaluated using the equation (4.6). The coefficients covariance matrices for the objects are shown in
are calculated using the initial class probability fig.5.
values obtained in the first stage. These are fixed dur-
ing the update process. As a concluding step in the
second stage of the implementation, the iterative
updating algorithm is implemented using the equa-
tion (4.9). The iterative algorithm terminates when 7.0 SUMMARY AND RECOMMENDATIONS

(& .l< v-(x t) where c is a very small FOR FUTURE WORK
qluantity. Clearly the time parameter is helpful in
rCdtcing the ambiguity. especially when the image is

ntaiiminated with noise. In this paper, the need for automatic inteipreta-
tion of oceanographic images is empliasiled. The
advantage of exploiting the contextual infonnttiO in

. I\II I 1. , N'- I I'.V,'ION feattre labeling is highlighted. An efficient and sin-
pie technique for labeling of oceanic features is

1 thos sectiun, we present the experimental described. hle underlying theoretical framework and
..! ,,t the first stage of the relaxation labeling ftnctions are explained in detail. Results of the first

estimating the a priori probability values stage of the labeling technique are presented. The
Sr-'terencc inuge. The software that computes the restilts and the performance analysis of the proceed-

'I P" 1'',i probabilities is developed on VAX 8300 sys- in stages of the technique will appear in forthcom-
T:cTl running the VNMS operating system installed ,t iig issues. The first stage, namely, the estimation of a
:ic Rcmote Sensing Branch, NORIDA. We used the priori probabilities for the reference imaoe, is com-
lrcractive Digital Satellite Irnage Processing System plete and has been tested on real oceanographic

tonsisting of International Imaging System's S600 images. An expert system that uses the kno\ ledge
are with NORI)A extensions to process tIc hase and the information obtained from the labeling

oceanographic satellite images. The software algorithm is in the process of development.
modules are developed in 'C' language. The posi-
tional information about the oceanographic features As a future extension to the present work we
present in the image can be provided either manually propose to
or from the previous analysis of the satellite imagery
data. The module first computes the mean vectors (i) investigate the possibility of implementing a
and covariance matrices for all the objects present in parallel relaxation labeling algorithm to speed up
the reference image. The second part of the software the labeling process.
module computes the a priori probability values as (ii) make the oceanographic expert system "learn"
given by equation (4.1). from its past experience in analyzing the satellite

imagery data.
To illustrate the performance of the labelingimgrda.oillusratetherforace fre aelwin (iii) incorporate additional information about the

algorithm, an oceanographic infrared image with mesoscale features (size, physical properties,
some of the typical oceanic features is taken (refer to etc.) during tle laeling process to reduce tle
fig. I). The objects that are selected for labeling are ambiguity in labeling the features.
north wall, south wall and warm eddies. The a priori
knowledge about the objects, namely the position is
taken from the prior analysis shown in fig.3 and
givenH as an input to the labeling module. 'l11 a prui
probability values are then computed for all the pi\
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