
AFWAL-TR-88-110

Information Processing Research
N J.G. Carbonell, S.E. Fahiman, A.L. Fisher, D.A. Guise,

A.N. Habermann, T. Kanade, H.T. Kung, A. Newell,
R c. Rashid, D.S. Scoft, S.A. Shafer, and A.Z. Spector

0)Carnegie Mellon University
Computer Science Department

5000 Forbes Avenue
Pittsburgh, PA 15213

IDTIC

NOV 3 0 19D

D o3
January 1988

Final Report for the period
January 1985 to September 1987

Approved for public release, distribution unlimited

Prepared for
Defense Advanced Research Projects Agency

1400 Wilson Boulevard
Arlington, VA 22209

Monitored by
Avionics Laboratory

Air Force Wright Aeronautical Laboratories
Air Force Wright Systems Command

Wright-Patterson Air Force Base, OH 45433-6503
Views and conclusions contained in this document are those of the authors and should not be interpreted
as representing official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or of the United States Government.

N Z A A A 5 0087 65 "1...

REPORT DOCUMENTATION PAGE

I&. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassif J ed
2&. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release,
2b. OECLASSIFICATION/DOWNGRADING SCHEDULE distribution limited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWAL-TR-88-110

Ga. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

CARNEGIE MELLON UNIVERSITY (Ifapplicable) AFWAL/AAAT-3
CMU

5c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

5000 Forbes Avenue Wright-Patterson AFB

Pittsburgh, PA 15213 Dayton, Ohio 45431-6543

I.& NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable) F33615-84-K-1520
DARPA

1c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. NO. NO. NO.

I1. TITLE (Include Security Clauification) 4976

inal Report .on Information Processing Research _ _

12.PERSONALAUTHOR(S) Carbonell, J. G.; Fahlman, S.E.; Fisher, A.L.; Giuse, D.A., iabermann, A.N

Kanade, T.; Kung, H.T.; Newell, A.; Rashid, R.F.;Scott, D.S.; Shafer, S.A.; Spector, A.Z.

13a. TYPE OF REPORT 13b. TIME COVERED J14" DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

FINAL IFROM Jan. 85 TO Sept.871 88/Jan.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reuerse if necessary and identify by block number)

FIELD GROUP SUB. GR. Distributed processing, image understanding, machine
intelligence, computer vision, knowledge representation,

problem solving, natural language, programming technology,

19. ABSTRACT (Continue on reuvrse if neceuary and Identify by block number)

This report documents DARPA-supported basic research in Carnegie Mellon University's Computer Science

Department during the period 2 January 1985 through 31 May 1987, extended to 30 September 1987. Each chapter

discusses one of seven major research areas. Sections within a chapter present the area's general context, the

specific problems addressed, our contributions and their significance, and an annotated bibliography.

0. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

INCLASSIFIEO/UNLIMITED K] SAME AS RPT. C OTIC USERS 0 Unclassified

Ja. NAME OP RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 122c. OFFICE SYMBOL
I (Include Arta Code)

Chahira Hopper (513) 255-7865 AFWAL/AAAT-3

18. software development environments, parallel programming, multiprocessor networks,
operating systens, distributed sensor networks, graceful interaction, user
interfaces, VLSI, systolic processing.

19. Abstract (continued)

The research areas and their main objectives are:

*Distributed Processing (DP): Develop techniques and systems for effective use of numerous separate
computers interconnected by high-bandwidth, local area networks. This effort involves developing a
methodology for efficient utilization of distributed (loosely connected) personal computers.

" Image Understanding (t): Apply knowledge effectively in assisting the image interpretation process.

"* Machine Intelligence (MI): Explore ways to utilize knowledge in obtaining intelligent action by
computers. Long range goals of this effort include the discovery of principles that enable intelligent
action and the construction of computer systems that can perform tasks requiring intelligence.

"* Programming Technology (UT): Develop new techniques and methods for generating better software

* Distributed Sensor Nets (DSN): Construct a demonstration system of physically and logically
distributed computers interacting through a communication network to identify, track, and display the
situation of multiple objects in a laboratory environment.

* Graceful Interaction (GD): Design, construct, and evaluate user interface systems that both appear
cooperative and supportive to their users and can provide interfaces to a wide variety of application
systems.

* VLSI Systems Integration (VLSI): Focus on research into VLSI systems and computation, with some
effort in design tools to assure that we maintain a minimal set of tools necessary to carry out our design
tasks.

Acceu-or For __

01A1

A ;3 C- &i
fl@ A

6 st

B y..

U ,v. U -IjC't , .

' .- + It

TABLE OF CONTENTS FINAL REPORT, 198547

Table of Contents

1. Introduction 1-1
1.1 Research scope 1-1
1.2 The Research environment 1-3
1.3 Work statement 2-1

2. Distributed Processing 2-1
2.1 System support 2-2

2.1.1 Distributed file systems 2-2
2.1.2 Access to remote systems 2-3
2.1.3 Structuring data 2-3
2.1.4 Workstation security 2-4
2.1.5 Large scale software distribution 2-4
2.1.6 Warp 2-5

2.2 Programming environments 2-5
2.3 User Interfaces 2-7
2.4 Bibliography 2-9

3. Image Understanding 3-1
3.1 Introduction 3-1
3.2 System framework for knowledge-based vision 3-1

3.2.1 Digital mapping laboratory 3-2
3.2.2 SPAM 3-2
3.2.3 3D Mosaic 3-3
3.2.4 3DFORM 3-4

3.3 Algorithm acquisition for three-dimensional object recognition 3-4
3.3.1 Multi-resolution stereo using dynamic programming 3-5
3.3.2 Trinocular stereo vision 3-5
3.3.3 Range data analysis for outdoor Imagery 3-6
3.3.4 Generating object ,'ecognition algorithms 3-7
3.3.5 Recognizing 3-D objects based on solid models 3-7
3.3.6 Parallel vision on Warp 3-8

3.4 Inferring shape and surface properties 3-9
3.4.1 Calibrated Imaging laboratory 3-9
3.4.2 Color 3-11
3.4.3 Texture 3-13
3.4.4 Modeling uncertainty in motion reasoning 3-13

3.5 Bibliography 3-16
4. Machine Intelligence 4-1

4.1 Knowledge-Intensive systems 4-1
4.1.1 Knowledge-intensive problem solving, Soar 4-2
4.1.2 Acquiring knowledge for aerial Image interpretation, MAPS 4-4
4.1.3 Computational properties of chunks 4-5

4.2 Machine learning 4-6
4.2.1 Learning through experience, Prodigy 4-7
4.2.2 Integrating learning in a reactive environment, World Modelers 4-8

4.3 Massively parallel architectures 4-10
4.3.1 Parallel search and pattern recognition 4-11

20 JANUARY 198

FiNAL REPORT, 1O-47 TABLE OF CONTENTS

4.3.2 SUPREM: A new search architecture 4-11
4.3.3 Boltzmann Networks 4-12

4.4 Rational control c' reasoning 4-13
4.5 Bibliography 4-15

5. Programming Technology 5-1
5.1 Generating Transform Programs 5-1
5.2 Designing an Environment's Views 5-2

5.2.1 Toward an Environment Generator with Views 5-3
5.3 Gandalf Product Development 5-4

5.3.1 The evolution of Gandalf 5-4
5.3.2 Concurrency and segmentation in large software databases 5-5
5.3.3 Specifying tools 5-6

5.4 Programming language Issues In hardware design 5-6
5.5 Bibliography 5-9

6. Distributed Sensor Networks 6-1
6.1 Algorithm development 6-2
6.2 System development 6-3

6.2.1 Camelot 6-4
6.2.2 Avalon 6-5

6.3 Accent 6-6
6.3.1 Systems evaluation 6-6
6.3.2 Operating system constructs 6-6

6.4 Reliability 6-7
6.4.1 Distributed transaction facility 6-7
6.4.2 Distributed logging 6-8
6.4.3 Interaction with users 6-9
6.4.4 Replicated directory demonstration 6-9

6.5 Bibliography 6-11
7. Graceful Interaction 7-1

7.1 The Lisp shell 7-2
7.2 The Viewers system 7-3
7.3 Mirage 7-3
7.4 MetaMenu 7-3
7.5 Griffin 7-3
7.6 Chinese Tutor 7-4
7.7 A knowledge-based system 7-4
7.8 Bibliography 7-6

8. Very Large Scale Integration 8-1
8.1 Systolic Building-blocks 8-1

8.1.1 Building Crossbar Switches 8-1
8.1.2 Intermodule Communication 8-1

8.2 Tools for VLSI Design and Testing 8-2
8.2.1 Yield Simulation 8-2
8.2.2 Testing by Simulation 8-2
8.2.3 A Compiled Simulator for MOS Circuits 8-4
8.2.4 System Design Tools 8-6

28 JANUARY 1968

TABLE OF CONTENTS FINAL REPORT, 198547

8.2.5 Formal Verification by Simulation 8-7
8.2.6 Formal Hardware Description Semantics 8-8
8.2.7 Automatic Hardware Verification 8-10

8.3 VLSI Systems and Applications 8-12
8.3.1 A Scan Line Array Processor 8-12
8.3.2 A Coprocessor Design Environment 8-14
8.3.3 Pipelined Architectures for Data-dependent Algorithms 8-15
8.3.4 Chess Machine c-1 6

8.4 Bibliography 8-19

28 JANUARY 1938

INTRODUCTION FIAL REPORT, 19547

1. Introduction

This report documents a broad program of basic and applied information processing
research conducted by Carnegie Mellon University's Computer Science Department
(CMU-CSD). The Information Processing Techniques Office of the Defense Advanced
Research Projects Agency (DARPA) supported this work during the period 2 January
1985through 31 May 1987, and extended to 30 September 1987. .

The remainder of this chapter describes our research scope and the CMU-CSD /
research environment.-- Chapters 2 through 8 thn present in detail .oir seven major
research areas: Distributed Processing, Image Understanding, Machine Intelligence,
Programming Technology, Distributed Sensor Networks, Graceful Interaction, and-VLSI t,
Systems Integration. Sections in each chapter present the area's general research con-,
text, the specific problems we addressed, ou= contributions and their significance, and
an annotated bibliography.

The bibliographies present selected references that reflect the scope and significances<--
of CMU's contributions to basic and applied computer science. Wherever possible, par-
ticularly for key reports, we have included abstracts. -While we have striven for com-
prehensive coverage, some documents have regrettably eluded our efforts. Finally,
though basic research does not proceed with the mechanical regularity of industrial
production, publication dates do indicate progress in the various problem areas. CSD
Technical Report dates exhibit the closest correlation With temporal progress and the
report text frequently reappears later in the more accessible archivIal literature.

1.1 Research scope

We organize the research reported here under seven major headings. These interre-
lated categories and their major objectives are:

Distributed Processing (DP): Develop techniques and systems for effective
use of numerous separate computers interconnected by high-bandwidth,
local area networks. This effort involves developing a methodology for ef-
ficient utilization of distributed (loosely connected) personal computers.
Research on a concept demonstration system will proceed in several
areas:

"* Integration of subsystems and services at two levels-the user
interface and the underlying system architecture--in order to
provide significant improvement in the productivity of computer
science researchers.

" Design and implementation of two programming systems to
support a variety of applications.

" Development of a distributed file system offering automatic ar-
chiving facilities and transparent access to remote files.

" Building an interactive document preparation system by merg-
ing existing packages into an integrated environment.

1-1

FINAL REPORT, i9BS-T INTROOUCTION

Extension of current message systems to handle multi-media
formats by exploiting the technology of personal computers
and their interconnecting network.

Image Understanding (IU): Apply knowledge effectively in assisting the im-
age interpretation process. Research in this area has several aims:

,Develop basic theories and construct systems for com-
prehending the three-dimensional structure of the environment
from two-dimensional visual images.

"* Discovering the representations, algorithms, and control struc-
tures required to exploit pre-existing knowledge about the en-
vironment for image understanding.

"* Investigate special architectures and programming structures
to realize vision algorithms efficiently.

* Machine Intelligence (Ml): Explore ways to utilize knowledge in obtaining
intelligent action by computers. Long range goals of this effort include the
discovery of principles that enable intelligent action and the construction of
cmputer systems that can perform tasks requiring intelligence. Research
in machine intelligence covers a wide range of issues:

"* Discovering and analyzing methods of problem solving, the
ways problems may be represented and how such represen-
tations affect the difficulty of solving the problems.

"* Discovering and analyzing processes that produce appropriate
internal representations through recognition and description of
external task situations.

" Discovering and understanding control structures and system
organizations that can combine a collection of problem-solving
methods and problem representations into an effective total
system.

• Programming Technology (PT): Develop new techniques and methods for
generating better software through work on:

"* Developing advanced, highly interactive programming environ-
ments that facilitate the development and maintenance of large
software projects.

"* Advanced development tools that help programmers reason
about and modify programs.

"* Parallel programming methodologies.
"* Program organization and development methodologies.

* Distributed Sensor Nets (DSN): Construct a demonstration system of
physically and logically distributed computers interacting through a com-
munication network to identify, track, and display the situation of multiple
objects in a laboratory environment. This project will involve the following
tasks:

* Evaluate and enhance the design and performance of our cur-
rent testbed system.

1-2

INTRODUCTION FINAL REPORT, 108547

* Extend the testbed by integrating multiprocessor hosts.
* Investigate design and implementation issues basic to dis-

tributed computing: architecture, language primitives, descrip-
tive representation, and reliable distributed computation.

"* Graceful Interaction (GI): Design, construct, and evaluate user interface
systems that both appear cooperative and supportive to their users and can
provide interfaces to a wide variety of application systems. We plan to em-
phasize:

"* Techniques for interactive error correction of command inter-
action and the provision of contextually sensitive on-line help.

"* Decoupling of application systems from direct interaction with
the user through form-based communication.

"* Support for user tasks that require the coordinated use of more
than one application systems.

"* VLSI Systems Integration (VLSI): Focus on research into VLSI systems
and computation, with some effort in design tools to assure that we main-
tain a minimal set of tools necessary to carry out our design tasks.

* Integrate a capability for custom VLSI design into the design of
novel computer architectures. Design and implement several
systems that can benefit greatly from custom chips of our own
design.

* Eventually establish an environment where researchers in a
wide variety of areas will have direct and convenient means of
using custom VLSI for their own systems.

1.2 The Research environment

Research in the CMU Computer Science environment tends to be organized around
specific experimental systems aimed at particular objectives, e.g. the demonstration of
an image understanding system or the design and fabrication of an advanced VLSI sys-
tems. This report describes several such activities. Sometimes the creation and
demonstration of a system is itself an appropriate scientific objective. At other times,
some level of system performance constitutes the scientific goal. Thus our work tends
to emphasize concept demonstration rather than system engineering. These research
systems provide a convenient way to discuss and even to organize the projects at
CMU-CSD. They are not always, however, ends in themselves.

A major strength of the Carnegie Mellon University environment lies in the synergy
resulting from close cooperation and interdependence among varied research efforts,
despite their diverse foci. For example, the Image Understanding project typically re-
quires extensive computational resources that can profitably employ novel machine ar-
chitectures and scftware techniques. Research in VLSI techniques, on the other hand,
often provides powerful, specialized hardware in need of an application to focus con-
tinuing development efforts. Close interaction and cooperation among our various

1-3

FINAL REPORT, 198547 INTRODUCTION

research efforts has led to innovative approaches and solutions, and has significantly
contributed to the intellectual ferment that makes Carnegie Mellon University unique in
the computer science area.

We have no administrative structure that corresponds to our organization of effort.
We consist simply of faculty, research scientists, and graduate students of the Com-
puter Science Department, with the facilities support divided into an Engineering
Laboratory and a Facilities Software Group. The rest of the organization is informal.
This organizational style keeps the barriers between efforts to a minimum and promotes
the kind of interactions and synergy reflected in the work distribution shown in Table
1-1.

Number of
Areas DP IUS MI PT DSN GI VLSI

Mario Barbacci 1 x
Hans Berliner 1 x
Roberto Bisiani 3 x x x
Stephen Brookes 2 x x
Jaime Carbonell 1 x
Edmund Clarke 1 x
Roger Dannenberg 1 x x
Scott Fahlman 2 x x
Merrick Furst 1 x
Nico Habermann 1
Phil Hayes 1
Peter Hibbard 2 . x
Douglas Jensen 1 x
Takeo Kanade 1
Elaine Kant 1 x
H.T. Kung 1
John McDermott 1
Allen Newell 1 x
Rick Rashid 1
Raj Reddy 3 x x x
Bill Scherlis 1 x
Dana Scott 1 4
Mary Shaw 1 x
Herb Simon 1 x
Alfred Spector 1 x

x = Active research in this area
= Responsible for area
Faculty participating, total = 25

Table 1-1: Distribution of faculty effort

1.4

DISTRIBUTED PROCESSING FINAL REPORT, 198547

2. Distributed Processing

The basic goal of our Distributed Processing research was to understand and
evaluate, as a possible replacement for timeshared computing facilities, the use of high
performance personal computers interconnected on a high-speed network. In order to
achieve these goals we have built a large-scale distributed computing environment,
called Spice. Since our aim was to provide a practical tool for research in many areas of
computer science, a major portion of our effort was devoted to redesigning or adapting
existing tools, such as editors and compilers, to make effective use of the distributed
environment.

Our approach in CMU's Spice project was to study the crucial issues of using high
performance personal computers in a network environment by developing a practical
personal computer network system. This strategy led to development efforts in operat-
ing systems, distributed file systems, languages and language support tools, and user
interfaces. We felt from the outset that success depended on building real systems and
subjecting them to use by a large number of faculty and students within the Department.

We developed the original Spice system on Perq computers from the PERQ Systems
Corporation. At the peak of Perq use within the Department, the Spice environment
consisted of over 150 workstations connected by 10MHz and 3MHz ethernet LANs.
Spice included the Accent network operating system, Spice Common Lisp, a research-
oriented Ada+ programming environment, and numerous user interface tools.

PERO Systems Corporation went out of business in 1985, so early that year we
began porting the work done under the Spice project onto a new operating system base
called Mach. Mach is a portable multiprocessor operating system patterned in many
respects after Accent and built as part of the DARPA Strategic Computing Intiative.
Mach first became stable on the VAX architecture machines toward the end of 1985, and
we began to use it heavily on MicroVAx and multiprocessor VAX 11/784 hardware in
early 1986. In addition, the Mach project ported that system to the IBM RT PC in May
of 1986.

During 1986, the technology developed under Spice was largely transferred to the
emerging Mach environment. By the middle of 1986, we had ported many of the basic
components of Spice to run under Mach, including:

"* Network message services

"* Spice Common Usp (for the RT PC)
"* Sesame Authentication and Authorization servers
"• MatchMaker Interprocess Interface Generator

"* Flamingo Window Manager

One of the major issues addressed during this porting effort was dealing with
heterogeneity in both the software and hardware base. During the transition period
many of the system's components had to function under both Accent and Mach. In ad-

2-1

FINAL REPIWRT, 19867 DiSTR!BUTED PROCESSING

dition, the significant difference in data types and data packing conventions between
VAX, RT PC and PERQ computers placed significant constraints on facilities, such as
MatchMaker, which define and compile interfaces between major system modules.
Software management for a heterogenous environment also became an issue.

Some of the contributions made during this time include:
"* Restructuring of MatchMaker and the Mach Network Servers to handle

multiple machine types and perform automatic data type conversion.

" Contributions to the understanding of Common Lisp compilation tech-
niques, specifically as they relate to RISC architecture machines.

" Incorporation into Mach of CMU's remote file system (RFS) which allows
cross-network remote file access, even over slow communication lines.

" Continued work on window management, including work on object-oriented
interfaces to windowing systems (as part of Flamingo).

During the latter half of 1986 and first half of 1987 we completed work on several
major system efforts:

"* workstation security

"* large-scale file systems

* evolution of our public domain Common Lisp implementation into new
arenas

* user interfaces
* large scale software distribution.

This chapter features our work on:
"• System support
"* Spice language environments
"* User interface utilities.

2.1 System support

2.1.1 Distributed file systems

With the Sesame distributed file system, we demonstrated the feasibility of using Ac-
cent ports as tokens of identity. Sesame provides most of the interrelated services
needed to allow protected sharing of data and services in a network of personal and
central computers. Each service is independently implementable on other hosts on the
local net. Sesame deals with user verification issues both locally and between
machines, name look-up services for various typed objects, archiving of files to more st-
able media as well as the fundamental functions of reading and writing files. Sesame is
currently running as an alternate file system in the Spice environment
[Thompson&. 85. Sesame].

2-2

DISTRIBUTED PROCESSING FINAL REPORT, 19U547

One of the earliest goals of the Spice project was the management of a large, dis-
tributed file system. Our work on the Sesame file system demonstrated the feasibility of
using file caching to reduce network communication traffic and improve performance. A
file system similar in many respects to Sesame is the Vice/Virtue distributed file system
developed by the CMU Information Technology Center. The similarities between
Vice/Virtue and Sesame arose out of the fact that many members of the Sesame design
team participated in the development of Vice/Virtue as a way to transfer that technology
to the rest of the University and to industry.

During the later part of 1986, as part of the distributed processing contract, we incor-
porated Vice/Virtue back into Mach and worked with members of the ITC to compare
the performance of Vice/Virtue to remote file access facilities such as SUN's network file
system (NFS). Using Vice, Mach can now provide a large shared file system for
hundreds of workstations at a time with as many as 50-75 workstations per server.

In addition to Vice support, we began distribution of a compatible remote file access
facility called CMU RFS which allows workstations to cooperate and share files without
merging them into a common administrative domain. We tested CMU RFS over 10MHz
Ethernet, 4MHz IBM token ring, and even 56KB and 9.6KB serial line connections to the
CMU SEI and to a research laboratory in Princeton, NJ. During the first half of 1987 the
Vice/Virtue vs. NFS benchmarks were performed and a paper on the results was ac-
cepted by the ACM Symposium on Operating Systems Principles and recommended for
publication in ACM Transactions on Computing.

10 The key result was the demonstration of the ability of Vice to support significantly
larger workstation loads than NFS. NFS server performance fell off drastically with in-
creasing numbers of clients while Vice allowed a significant number of workstation
clients per server with only slowly (, .wing response time.

2.1.2 Access to remote systems

Early this year we completed a mucih-improved Common Usp version of Matchmaker
and its compiler. Most notably, Matchmaker can now generate type definition files for all
the target languages; this previously had to be done by hand for each language. As a
result, the entire interface definition is contained in the Matchmaker input file, rather
than in a variety of files that had to be kept consistent by the programmer
[Jones&.85. Matchmaker].

2.1.3 Structuring data

We have developed a distributed object system for Mach. This object system, named
FOG, provides machine- and language-independent descriptions of structured data,
language-independent message passing of structured data, and a distributed object
reference/ method invocation system. The design of FOG was largely influenced by the
Matchmaker remote procedure call system, developed as part of the Spice projec'., and

2-3

FINAL REPORT, 198547 DISTRIBUTED PROCESSING

by the Flamingo User Interface Management System. Unlike those systems, however,
FOG

provides the ability to dynamically add the definitions if new structured types to the
run-time environment, and a transparent method invocation system.

2.1.4 Workstation security

During the last part of 1986 we had designed a new network communication manager
for Mach which would preserve the capability mechanisms of a single node system in
an extended network environment. During the first half of 1987 this work was brought to
conclusion in the implementation of that manager and its initial testing within Mach. As
of June, 1987 a PhD thesis on this work by Robert Sansom was nearing completion. In
addition to implementing encryption protocols for network capability systems, Sansom's
work included implementing a new network authentication and authorization protocol
which allows one communicating process to verify the identity of another.

A major area of concern in managing large numbers of workstations in a local area
network is communication security. The underlying Mach interprocess communication
facility is protected on a single node by using capabilities managed by the operating
system kernel to represent communication channels. During the later part of 1986 we
designed a collection of encryption algorithms and protocols which would securely ex-
tend the capability protection of a single node into the network environment

• [Sansom&.86.Extending].

We also designed a new network authentication and authorization protocol which al-
lows one communicating process to verify the identity of another. We began im-
plementing these new protocols and expect to complete them during the first half of
1987.

2.1.5 Large scale software distribution

We developed and implemented facilities for maintaining software consistency in a
distributed environment. The key component of this work is a program called "Sup"
which performs automatic, network software distribution and update. In addition to dis-
tribution and the ability to carry out procedures for software installation, SUP provides a
level of security by allowing software collections to be protected by individual encryption
keys.

During the latter part of 1986 we tested these facilities both within our Department
and jointly with other research laboratories, including the CMU Software Engineering In-
stitute, the University of Maryland, and Berkeley. This was done using the ARPAnet as
well as private leased line networks.

The use of SUP grew substantially during the first half of 1987. For example, during
this period SUP began to be used for routine software distribution of Mach and related

2-4

DISTRIBUTED PROCESMNG FL REPORT, 19."7

source code between CMU and the DARPA funded UltraMax project at Encore, and be-
tween CMU and the DARPA funded BBN Monarch project. Our experiences with sup led
to development of an automated software distribution project proposal.

2.1.6 Warp

We have used a Lisp-based command interpreter as the main interface mechanism
for the Warp Programming Environment. The Warp Programming Environment is a dis-
tributed software environment that allows users of the Warp multiprocessor to develop
and debug Warp applications. The environment includes local user workstations, a set
of central server workstations each acting as a host for a Warp machine, and a few
Warp multiprocessors. The command interpreter is executed in Lisp on the user's
workstation, while the more communication-intensive tasks are executed on the host
workstations. The system allows the user to choose the ideal distribution of the load for
the different machines (local, host, and Warp) ar 4 can provide extensive help and infor-
mation about the current status of the environi it. A first version of the Warp Pro-
gramming Environment has been released to the Warp users community outside CMU.

2.2 Programming environments

During the preceding contract period, 1981-1984, we developed the Spice environ-
ment and worked toward making it language independent and to provide it with interlan-
guage communication facilities. We achieved this by developing compre-,ensive pro-
gramming environments for Ada and Lisp, each with its own microcode interpreter. In
the beginning of this contract period, 1985-1987, our work on developing the Spice Ada
environment reached maturity. We distributed the compiler and utilities to the CMU
community, and individual users continue to enhance it according to their needs.

While our work on Ada ended, our work on Lisp continued to grow. During 1984 we
had designed Common Lisp and implemented Spice Lisp. In 1985 our efforts were
directed toward debugging, modifying, and improving the Lisp programming environ-
ment, building up a library of application programs, and porting the Spice Lisp system
from Perqs to IBM PC RTs. We extended the Hemlock text editor, reduced Spice Lisp's
core size, and organized an initial library of portable and semi-portable public-domain
programs for Common Lisp, including OPS5.

We extended the Hemlock text editor (written in mostly-portable Common Lisp) with
facilities such as a real-time spelling corrector and a "shell" mode that allows the user to
control many jobs while residing in a convenient, easily extensible, Lisp-based environ-
ment. Our extensions lay the groundwork for work on user interfaces in the new
workstation.

In order to port Spice Common Lisp we first reduced its core size by 30%, with notice-
able reductions in the working sets of programs. We achieved this by eliminating redun-
dant structures and improving paging performance by automatically allocating related

2-5

FINAL REPORT, 1985-87 DISTRIBUTED PROCESSING

procedures in adjacent virtual memory addresses. These techniques have allowed us
to pack a full Common Usp system onto a 4 Mbyte IBM RT PC. Before the compres-
sion, we thrashed on that configuration; after, the Lisp didn't page too much except
when running large At programs. By the end of 1985 we had finished porting Common
Lisp and the Hemlock text editor to the new IBM workstation.

In 1986 we began studying RISC-like architectures with features designed especially
for Lisp and object-oriented programming. We began designing a new, more portable,
public-domain Common Lisp compiler. The compiler's design incorporated significant
optimizations and improved compatibility for today's conventional processors, par-
ticularly RISC machines.
We continue to work on this highly-optimizing compiler and anticipate it will be complete
by the end of 1987. Its design will make it easy to convert it to produce code for new
instructions sets -a valuable attribute at a time when many new RISC architectures are
appearing.

While working on the Spice Lisp environment, it became clear to us that the Common
Lisp community needed support and that an informal group was not going to suffice. At
the December 1985 Common Lisp meeting the attendees decided to seek formal ANSI
and ISO standardization for the language. The new committee, X3J13, began work by
the years end and is the US participant in the ISO's international standards effort.
Much time and effort went into the activities that support the Common Lisp community:
answering questions about the language's design and possible extensions, discussing
vadous formal organizations that might be adopted, and supporting manufacturers in
their efforts to bring Common Lisp systems to market. At the IJCAI conference in
August, Xerox announced plans to introduce a Common Lisp for their machines during
1986. Among US manufacturers affiliated with the DARPA research community, Xerox
was the last major corporation to accept Common Lisp.

In the beginning of 1987 we incorporated the Xerox Common Loops object-oriented
extension into our Common Lisp and completed and released our Common Lisp im-
plementation for the IBM-RT PC in source form. This enables us to gain real ex-
perience with this facility before it [the standard] becomes final and unchangeable.
We also integrated the CMU Common Lisp system with the popular X window system,
and participated in the design of CLX, a proposed standard interface between Common
Lisp and X, version 11. The Hemlock text editor was made to work under X windows
and also was made to work with standard ASCII terminals. We have been cooperating
with members of the DANTE project to develop higher-level graphics facilities. As part of
the effort to interface to X, we developed a facility for interfacing Lisp programs to C
subroutines.

In 1987 CMU remains a center of Common Lisp development and innovation in part
due to our role in Common Lisp standards efforts at both the national and international
level (ANSI and ISO) and in part because CMU Common Lisp is the most complete
public domain version of the language and is a base for many other Common Lisp sys-

I tems.

2-6

2.3 User interfaces
Along with researchers from the Graceful Interaction project, we developed a user in-

terface shell for Mach in Common Lisp which allows a Mach Common Lisp programmer
to easily invoke and control the actions of his Mach programs and at the same time do
so within a full Common Lisp programming environment. Such a tool provides con-
siderably more flexibility and programability than traditional UNIX shells because of its
more complete programming environment. It also makes possible the extension of Al
techniques to traditional user interface tasks of UNiX-like systems (see chapter 6).

In the area of window managers, we made the transition to X as a window manager
base to conform with emerging window system standards. Our work on object-oriented
graphics and window management was transferred to this new environment. Before this
transition we used Flamingo.
Flamingo

In February 1985, Spice researchers met to consider the current and future require-
ments of the user interface systems available on Spice systems. Our primary goal was
to create a flexible, distributed interface system that could manage input and output
resources for application programs. The challenge was to develop a system that could
span heterogeneous hardware architectures (so users could, for example, process on a
Perq and display on a MicrovAx) while providing upward compatibility for our older
software.

This group designed Flamingo, an object-oriented interface manager for programs
running within the Spice environment. Our design for the Flamingo system addressed
these key objectives through an object-oriented strategy that can associate data objects
with operations, or "methods", implemented in remote processes. The "remote method"
mechanism differs from the traditional user/server structure found in many distributed
systems. In Flamingo, the system is a central "object manager," while remote client
programs provide the methods that Flamingo and other clients may call. Flamingo and
its clients both serve and use each other.

On June 5, 1985, the first Flamingo prototype was executing on a MicroVAX I. This
prototype had the simple ability to create rectangular regions on the screen using a spe-
cially constructed raster operation, with pixel array objects representing the screen ob-
jects being managed by Flamingo. In October 1985, we released an initial version to
MicroVAX users running the Mach operating system [Smith&.86.Flamingo], and in 1986
Flamingo was ported to the RT and Sun. Flamingo usage in CMU CSD is limited since
the switch to X was made.
Mirage

In the Spring of 1987 the Graceful Interaction group implemented the first prototype of
Mirage, a programmable object-based graphical interface tool. Mirage is written in
Spice Lisp (CMU Common Lisp) and provides a powerful object-oriented programmable
interface. This interface allows application programmers to develop complex applica-
tions more easily, since the system can be developed incrementally. One of the com-

FINAL REPORT, 198547 I)STRIBUTED PROCESSING

ponents of Mirage is a device- and window system-independent graphics layer, which
provides complete insulation between the application program and the underlying
hardware and software. The graphics layer is not itself a window manager, but rather
uses whatever window manager is provided by the underlying machine. This first im-
plementation uses the X window manager as the underlying window system, thus
providing very powerful graphics capabilities on a large number of different machines.
The object-oriented interface is built in Common Lisp and uses Portable Common
Loops, a public-domain object system that is evolving into the standard object system
for all Common Lisp implementations.

2

24

DISTRIBUTED PROCESSING FINAL REPORT, 19647

2.4 Bibliography

[Back and Kurki-Suonio 85]
Back, R.J. and R. Kurki-Suonio.
Serializability in distributed systems with Handshaking.
Technical Report CMU-CS-85-109, Carnegie Mellon University Com-

puter Science Department,
February, 1985.

Two interleaving models, a concurrent model and a serial
model, are given for distributed systems in which two or
more processes can be synchronized for communication
by a handshake mechanism. The equivalence of the two
models is shown, up to fairness and justice properties. The
relationships between the natural fairness and justice no-
tions in the models are analyzed, and sufficient conditions
are derived for the validity of serial reasoning in the con-
current model. Proving that these conditions hold for a par-
ticular system can be carried out totally within the simpler
serial model.

[Barbacci and Wing 86]
Barbacci, M.R. and J.M. Wing.
Durra: a task-level description language.
Technical Report CMU-CS-86-176, Carnegie Mellon University Com-

puter Science Department,
November, 1986.

Durra is a language designed to support the development of
large-grained parallel programming applications. This
document is a preliminary reference manual for the syntax
and semantics of the language. Comment, suggestions,
criticisms, etc., are appreciated. Address them to: Dr.
Mario R. Barbacci Professor Jeannette M. Wing Software
Engineering Institute Department of Computer Science
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213 (412)
268-7704 (412) 268-3068 Barbacci@sei.cmu.edu.arpa
Wingcs.cmu.edu

[Barbacci and Wing 87a]
Barbacci, M.R. and J.M. Wing.
Durra: a task-level description language.
In Proceedings of the International Conference on Parallel

Processing, 1987.
Also available as Technical Report CMU-CS-86-176.

Computation-intensive, real-time applications such as vision,
robotics, and vehicular control require efficient concurrent
execution of multiple tasks, e.g., sensor data collection,
obstacle recognition, and global path planning, devoted to
specific pieces of the application. At CMU we are develop-

2-9

FINAL REPORT, 198547 DISTRIBUTED PROCESSING

ing some of these applications and the hardware and
software environments to support them, and in this paper
we present a new language, Durra, to write what we call
task-level application descriptions. Although the language
was developed with a concrete set of needs, we aim at a
broader class of applications and hardware implemen-
tations. After a brief description of the nature of these ap-
plications and a scenario for the development process, we
concentrate on the language and its main features.

[Barbacci and Wing 87b]
Barbacci, M.R. and J.M. Wing.
Lecture Notes in Computer Science, Vol. II, Parallel Languages.

Volume : Specifying functional and timing behavior for real-time
applications,

Proceedings of PARLE (Parallel Architectures and Languages
Europe) 259. Springer-Verlag Publishers, 1987.

Also available as Technical Report CMU-CS-86-177.
We present a notation and a methodology for specifying the

functional and timing behavior of real-time applications for
a heterogeneous machine. In our methodology we build
upon well-defined, though isolated, pieces of previous
work: Larch and Real Time Logic. In our notation, we
strive to keep separate the functional specification from the
timing specification so that a task's functionality can be un-
derstood independently of its timing behavior. We show
that while there is a clean separation of concerns between
these two specifications, the semantics of both pieces as
well as their combination are simple.

[Barbacci et al. 85a]
Barbacci, M., S. Grout, G. Lindstrom, M.P. Maloney, E.T. Organick,
and D. Rudisill.
Ada as a hardware description language: an initial report.
In Proceedings of the 7th International Conference on Computer

Hardware Description Languages, CHDL, August, 1985.
This paper reports on our initial results in using Ada as a

Hardware Description Language. Ada provides abstraction
mechanisms to support the development of large software
systems. Separate compilation as well as nesting of
packages, tasks, and subprograms allow the construction
of modular systems communicating through well defined
interfaces. The complexity of modem chips (e.g. those
proposed in the VHSIC program) will require the use of
those features that make Ada a good language for
prog ramming-i n-the-large.

The key to our approach is establishing a writing style ap-
propriate to the objective of describing both the behavior
and the structure of hardware components. We model a

2-10

DISTRIBUTED PROCESSING FINAL REPORT, I19s-87

hardware system as an ensemble of typed objects, where
each object is an instance of an abstract data type. The
type definition and the associated operations are encap-
sulated by a corresponding package. In this paper we il-
lustrate out approach through a series of examples, build-
ing up a hypothetical hierarchy of hardware components.
We conclude by discussing ways to describe arbitrarily
complex simulation models and synthesis styles.

[Barbacci et al. 85b]
Barbacci, M.R., W.H. Maddox, T.D. Newton, and R.G. Stockton.
The Ada+ front end and code generator.
In Proceedings of the Ada International Conference, ACM, Septem-

ber, 1985.
It will be shown that the general design of the Ada+ system has

been kept as simple and straightforward as possible. This
has proven immensely useful in that it provides a simple
framework for dealing with many of the details involved in
Ada semantics. The semantic areas mentioned would
have been much harder to implement if the compiler had
attempted to use a more efficient or restrictive scheme. In
addition, the separation of facilities tended to minimize in-
teraction between various features and make it easier to
produce correct code.

We will describe a simplified runtime representation for Ada
programs, as implemented by the Ada+ compiler. We
believe that our experience may be of assistance to others
undertaking the development of an Ada compiler with
limited resources.

[Black 86] Black, D.L.
Measure theory and fair arbiters.
Technical Report CMU-CS-86-116, Carnegie Mellon University Com-

puter Science Department,
April, 1986.

The existence of fair arbiters and formal specifications for them
was a major topic of discussion at the Workshop. One of
the many results discussed is that it is possible to create a
fair arbiter by adding output delays to a mutual exclusion
element. This work builds on that result by investigating
the basic fairness properties of mutual exclusion elements
and combinations thereof. Rather than working with a par-
ticular mutual exclusion element, we abstract the behavior
of a class of such elements using a choice set model and a
probabilistic specification of the choice inherent in mutual
exclusion. This allows us to capture the choice behavior of
a mutual exclusion element in a probabilistic structure con-
taining finite and infinite traces. To analyze such struc-I tures we employ techniques from the mathematical dis-

2-11

FINAL REPORT. 19187 ISTRIBUTED PROCESSING

cipline of measure theory, and in particular the measure
theoretical treatment of probability. The major result from
this analysis is that the mutual exclusion elements are fair
under a strong probabilistic notion of fairness.

[Cohen et al. 85] Cohen, E.S., E.T. Smith, and L.A. Iverson.
Constraint-based tiled windows.
Technical Report CMU-CS-85-165, Carnegie Mellon University Com-

puter Science Department,
October, 1985.

Typical computer workstations feature large graphical display
screens filled with windows that each show information
about a users processes and data. Window managers im-
plemented on these systems provide mechanisms for
creating, destroying, and arranging windows on the screen.
Window managers generally follow either a 'desktop'
metaphor, allowing windows to overlap each other like
sheets of paper piled up on a physical desk, or they use a
'tiling' model, arranging each window with a specific size
and location on the screen such that no overlap occurs be-
tween windows.

Desktop models allow for the most freedom in arranging win-
dow, but can become quite frustrating to use when faced
with a large number of windows 'coming and going' over a
short period of time that must be visible on the screen
simultaneously. Tiling models save the user from having to
specify every window location and guarantee that each
window will be completely visible on the screen, but thus
far, such systems have provided relatively poor
mechanisms for the user to control layout decisions.

This paper describes work in progress on tiled window manage-
ment featuring a constraint-based layout mechanism. With
this mechanism the user can specify the appearance of in-
dividual windows and constrain relationships between win-
dows, thus providing necessary control over the tiling
process. We discuss our constraint model as well as detail
an implementation approach that would make use of those
constraints to arrange windows on a screen.

[Fitzgerald and Rashid 86]
Fitzgerald, R., and R. Rashid.
The integration of virtual memory management and interprocess

communication in Accent.
In ACM Transactions on Computing Systems, ACM, May, 1986.

The integration of virtual memory management and interprocess
communication in the Accent network operating system
kernel is examined. The design and implementation of the
Accent memory management system is discussed and its
performance, both on a series of message-oriented
benchmarks and in normal operation, is analyzed in detail.

2-12

DISTRIBUTED PROCESSING FINAL REPORT, 19Sr7

[Herlihy 85] Herlihy, M.
Comparing how atomicity mechanisms support replication.
In Proceedings of the 4th Annual ACM SIGACT-SIGOPS Sym-

posium on Principles of Distributed Computing, ACM SIGACT-
SIGOPS, August, 1985.

Most pessimistic mechanisms for implementing atomicity in dis-
tributed systems fall into three broad categories: two-phase
locking schemes, timestamping schemes, and hybrid
schemes employing both locking and timestamps. This
paper proposes a new criterion for evaluating these
mechanisms: the constraints they impose on the
availability of replicated data.

A replicated data item is a typed object that provides a set of
operations to its clients. A quorum for an operation is any
set of sites whose co-operation suffices to execute that
operation, and a quorum assignment associates a set of
quorums with each operation. Constraints on quorum as-
signment determine the range of availability properties
realizable by a replication method.

This paper compares the constraints on quorum assignment
necessary to maximize concurrency under generalized
locking, timestamping, and hybrid concurrency control
mechanisms. This comparison shows that hybrid schemes
impose weaker constraints on availability than timestamp-
ing schemes, and locking schemes impose constraints in-
comparable to those of the others. Because hybrid
schemes permit more concurrency than locking schemes,
these results suggest that hybrid schemes are preferable
to the others for ensuring atomicity in highly available and
highly concurrent distributed systems.

[Hedihy 86] Herlihy, M.
A quorum-consensus replication method for abstract data types.
ACM Transactions on Computer Systems4(1):32-53, February, 1986.
Also available in technical report CMU-CS-85-164R.

Replication can enhance the availability of data in distributed
systems. This paper introduces a new method for manag-
ing replicated data. Unlike many methods that support
replication only for uninterpreted files, this method sys-
tematically expioits type-specific properties of objects such
as sets, queues, or directories to provide more effective
replication. Each operation requires the cooperation of a
certain number of sites for its successful completion. A
quorum for an operation is any such set of sites. Neces-
sary and sufficient constraints on quorum intersections are
derived from an analysis of the data type's algebraic struc-
ture. A reconfiguration method is proposed that permits
quorums to be changed dynamically. By taking advantage
of type-specific properties in a general and systematic way,

2
2-13

FINAL REPORT, 1985-7 DISTRIBUTED PROCESSING

this method can realize a wider range of availability
properties in a more flexible reconfiguration than com-
parable replication methods.

[Jones and Rashid 86]
Jones, M., R.F. Rashid.
Mach and Matchmaker: kernel and language support for object-

oriented distributed systems.
In Proceedings of ACM Conference on Object-Oriented Program-

ming Systems, Languages and Applications, ACM, September,
1986.

Mach, a multiprocessor operating system kernel providing
capability-based interprocess communication, and
Matchmaker, a language for specifying and automating the
generation of multi-lingual interprocess communication in-
terfaces, are presented. Their usage together providing a
heterogeneous, distributed, object-oriented programming
environment is described. Performance and usage statis-
tics are presented. Comparisons are made between the
Mach/Matchmaker environment and other related systems.
Possible future directions are examined.

[Jones et al. 85] Jones, M.B., R.F. Rashid, and M.R. Thompson.
Matchmaker: an interface specification language for distributed

processing.
In Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, 1985.
Matchmaker, a language used to specify and automate the

generation of interprocess communication interfaces, is
presented. The process of and reasons for the evolution of
Matchmaker are described. Performance and usage
statistics are presented. Comparisons are made between
Matchmaker and other related systems. Possible future
directions are examined.

[Kurki-Suonio 85] Kurki-Suonio, R.
Towards programming with knowledge expressions.
Technical Report CMU-CS-85-153, Camegie Mellon University Com-

puter Science Department,
August, 1985.

Explicit use of knowledge expressions in the design of dis-
tributed algorithms is explored. A non-trivial case study is
carried through, illustrating the facilities that a design lan-
guage could have for setting and deleting the knowledge
that the processes possess about the global state and
about the knowledge of other processes. No implicit
capabilities for logical reasoning are assumed. A language
basis is used that allows not only eventual but also true
common knowledge between processes. The observation
is made that the distinction between these two kinds of

2-14

DISTRIBUTED PROCESSING FINAL REPORT, 1985"7

common knowledge can be associated with the level of
abstraction: true common knowledge of higher levels can
be implemented as eventual common knowledge on lower
levels. A knowledge-motivated abstraction tool is therefore
suggested to be useful in supporting stepwise refinement
of distributed algorithms.

[Liskov et al. 85] Liskov, B., M. Herlihy, and L. Gilbert.
Limitations of synchronous communication with static process struc-

ture in languages for distributed computing.
Technical Report CMU-CS-85-168, Carnegie Mellon University Com-

puter Science Department,
October, 1985.

Modules in a distributed program are active, communicating en-
tities. A language for distributed programs must choose a
set of communication primitives and a structure for
processes. This paper examines one possible choice:
synchronous communication primitives (such as rendez-
vous or remote procedure call) in combination with
modules that encompass a fixed number of processes
(such as Ada tasks or UNIX processes). An analysis of the
concurrency requirements of distributed programs sug-
gests that this combination imposes complex and indirect
solutions to common problems and thus is poorly suited for
applications such as distributed programs in which concur-
rency is important. To provide adequate expressive power,
a language for distributed programs should abandon either
synchronous communication primitives of the static
process structure.

[McDonald et al. 87]
McDonald, D.B., S.E. Fahlman, and A.Z. Spector.
An efficient Common Lisp for the IBM RT PC.
Technical Report CMU-CS-87-134, Carnegie Mellon University Com-

puter Science Department,
July, 1987.

CMU Common Lisp is a full implementation of Common Lisp
developed within the Computer Science Department of
Carnegie Mellon University. It runs on the IBM RT PC un-
der CMU's Mach operating system, which is compatible
with Berkeley Unix 4.3. An important consideration in the
design of CMU Common Lisp was our desire to make the
best possible use of the IBM RT PC's RISC instruction set
and flexible memory architecture.

CMU Common Lisp provides a comprehensive Lisp program-
ming environment and is now heavily used within the CMU
Computer Science Department, both in Lisp's traditional
role as the language of Al research. and in many other
areas where "mainstream" languages were formerly used.

2-15

FINAL REPORT, 1965-87 DISTRIBUTED PROCESSING

In this paper we focus on the design and implementation
strategy used in CMU Common Lisp. We also briefly
describe the improvements we plan for the future.

[Rashid 86a] Rashid, R.
From RIG to Accent to Mach: the evolution of a network operating

system.
In Proceedings of the ACM/IEEE Computer Society 1986 Fail Joint

Computer Conference, November, 1986.
This paper describes experiences gained during the design, im-

plementation and use of the CMU Accent Network Operat-
ing System, its predecessor, the University of Rochester
RIG system and its successor CMU's Mach multiprocessor
operating system. It outlines the major design decisions
on which the Accent kernel was based, how those deci-
sions evolved from the RIG experiences and how they had
to be modified to properly handle general purpose mul-
tiprocessors in Mach. Also discussed are some of the
major issues in the implementation of message-based sys-
tems, the usage patterns observed with Accent over a
three year period of extensive use at CMU and a timing
analysis of various Accent functions.

[Rashid 86b] Rashid, R.
Threads of a new system.
Unix Review4(8):37-49, 1986.

The Department of Defense, anxious for better multithreaded
application support, has funded the development of Mach,
a multiprocessor operating system for UNIX applications.

[Sansom et al. 86] Sansom, R.D., D.P. Julin, R.F. Rashid.
Extending a capability based system into a network environment.
Technical Report CMU-CS-86-115, Carnegie Mellon University Com-

puter Science Department,
April, 1986.

The Mach operating system supports secure local communica-
tion within one node of a distributed system by providing
protected communication capabilities called Ports. The lo-
cal port-based communication abstraction can be extended
over a network by Network Server tasks. The network ser-
vers efficiently act as local representatives for remote tasks
by implementing an abstraction of Network Ports. To ex-
tend the security of the port-based communication abstrac-
tion into the network environment, the network servers
must protect both the messages sent over the network to
network ports and the access rights to network ports. This
paper describes in detail the protocols used by the network
servers to support protection.

2-16

DISTRIBUTED PROCESSING FINAL REPORT, 198547

[Scherlis and Jorring 86]
Schertis, W.L., and U. Jorring.
"Deriving and using destructive data types.
In IFIP TC2 Working Conference on Programs Specification and

Transformation, IFIP, March, 1986.
Techniques are presented that support the derivation and reuse

of high performance implementations of programs
specified using applicative abstract data types. There are
two facets to this work.

First, we show how the performance of programs specified
using general-purpose types such as lists or trees can be
improved by specializing the types to their contexts of use.
These techniques provide a means for using mechanical
tools to build, given a small set of general types, a diverse
collection of dcrived specialized types suitable for a broad
variety of applications.

Second, we sketch techniques for deriving, from simple applica-
tive programs, efficient implementations that use destruc-
tive data operations and that can reuse heap-allocated
storage. These techniques rely on simple propagation of
non-interference assertions; reasoning about the global
state of storage is not required for any of the examples
presented.

[Sha 85] Sha, L.
Modular ccocurrency control and failure recovery--- consistency, cor-

rectness and optimality.
Techi.ical Rer,'rt CMU-CS-85-114, Camegie Mellon University Com-

puter Science Oepartment,
March, 1985.

A distributed computer system offers the potential for a degree
of concurrency, modularity and reliability higher than that
which can be achieved in a centralized system. To realize
this potential, we must develop provably consistent ,a
correct scheduling rules to control the concurrent execution
of transactions. Furthermore, we must develop failure
recovery rules that ensure the consistency and correctness
of concurrency control in the face of system failures.
Finally, these scheduling and recovery rules should sup-
port the modular development of system and application
software so that a transaction can be written, modified,
scheduled and recovered from system failures indepen-
dently of others.

To realize these objects, we have developed a formal theory of
modular scheduling rules and modular failure recovery
rules. This theory is a generalization of the classical works
of serializability theory, nested transactions and failure
atomicity. In addition, this theory addresses the concepts
of consistency, correctness, modularity and optimality in

2-17

FINAL REPORT, 198547 DISTRIBUTED PROCESSING

concurrency control and failure recovery. This theory also
provides us with provably consistent, correct and optimal
modular concurrency control and failure recovery rules.

[Smith and Anderson 86a]
Srmith,E.T., and D.B. Anderson.
Flamingo: object-oriented window management for distributed,

heterogeneous systems.
Technical Report CMU-CS-86-118, Carnegie Mellon University Com-

puter Science Department,
April, 1986.

This report describes the Flamingo User Interface System
(Version 15). Flamingo is a system for managing the inter-
face between users and programs that run in large, dis-
tributed, heterogeneous computing environments. Using
the mechanisms described herein, Flamingo provides a set
of user interface features associated with traditional win-
dow management.

Flamingo uses an object-oriented structure whose objects can
have methods (or 'operations') implemented in remote
processes. This mechanism differs from the traditional
'user/server relationship that is used to structure many dis-
tributed systems. In Flamingo, the system is a central
'object manager, while client programs running as remote
processes provide the implementations for methods called
upon by Flamingo and other clients. Both the clients and
Flamingo act as servers and users of each other.

Flamingo is built on the Mach operating system, which provides
a UNIX environment plus a message-based Interprocess
Communication (IPC) mechanism. Flamingo uses a
machine-generated Remote Method Invocation (RMI)
mechanism to provide a symmetric interface between it
and client programs that wish to call on method implemen-
tations located in each. The Remote method Invocation
system itself uses a machine-generated Remote Proce-
dure Call mechanism as a message transport layer.

[Smith and Anderson 86b]
Smith, E.T., and D.B. Anderson.
Flamingo: object-oriented abstractions for user interface manage-

ment.
In Proceedings of the Winter 1986 USENIX Conference, USENIX,

January, 1986.
This paper describes the Flamingo User Interface System

designed for use by programs running on Spice machines.
Flamingo is designed to use the remote procedure call
mechanism available through the various operating sys-
tems running on Spice machines to provide a flexible,
robust, machine-independent interface to a variety of dif-
ferent machines communicating over local area networks.

2-18

DISTRIBUTED PHOCESSING FINAL REPORT, 198"47

Flamingo separates the abstractions of the objects used by the
program to communicate with the user from the actual
devices used to read or write information. A window
manager is provided that makes a suitable mapping from
output provided to map input events from real devices to
either window management routines or to a form suitable
for input by a program.

Flamingo itself can be divided into different processes running
on different machines each implementing different parts of
the system. All exported objects used for communicating
between users and programs are implemented with
specific methods defining the operations available for an
instance of a particular object or for all objects of a class in
a given running Flamingo system. These mechanisms
provide a flexible framework within which a variety of win-
dow managers and user interfaces can be realized and
evaluated.

[Smith and Anderson 86c]
Smith, E.T., and D.B. Anderson.
Flamingo: object-oriented window management for distributed

heterogeneous systems.
Technical Report CMU-CS-86-118, Carnegie Mellon University Com-

puter Science Department,
April, 1986.

This report describes the Flamingo User Interface System
(Version 15). Flamingo is a system for managing the inter-
face between users and programs that run in lrge, dis-
tributed, heterogeneous computing environments. Using
the mechanisms described herein, Flamingo provides a set
of user interface features associated with traditional win-
dow management.

Flamingo uses an object-oriented structure whose objects can
have methods (or "operations") implemented in remote
processes. This mechanism differs from the traditional
"user/server" relationship that is used to structure many
distributed systems. In Flamingo, the system is a central
"object manager", while client programs running as remote
processes provide the implementations for methods called
upon by Flamingo and other clients. Both the clients and
Flamingo act as servers and users of each other.

Flamingo is built on the Mach operating system, which provides
a UNIX environment plus a message-based Interprocess
Communication (IPC) mechanism. Flamingo uses a
machine-generated Remote Method Invocation (RMI)
mechanism to provide a symmetric interface between it
and client programs that wish to call on method implemen-
tations located in each. The Remote Method Invocation
system itself uses a machine-generated Remote Proce-
dure Call mechanism as a message transport layer.

2-19

FINAL REPORT, 198547 DISTRIBUTED PROCESSING

[Thompson et al. 85]
Thompson, M.R., R.D. Sansom, M.B. Jones, and R.F. Rashid.
Sesame: the Spice file system.
Technical Report CMU-CS-85-172, Carnegie Mellon University Com-

puter Science Department,
November, 1985.

Sesame provides several distinct but interrelated services
needed to allow protected sharing of data and services in
an environment of personal and central computers con-
nected by a network. It provides a smooth memory hierar-
chy between the local secondary storage and central file
system. It provides a global name space and a global user
authentication protocol.

[Wing 87] Wing, J.M.
A Larch specification of the library problem.
In 4th International Workshop on Software Specification and Design,

IEEE, April, 1987.
Also available as Technical Report CMU-CS-86-169.

A claim made by many in the formal specification community is
that forcing precision in the early stages of program
development can greatly clarify the understanding of a
client's problem requirements. We help justify this claim
via an example by first walking through a Larch specifica-
tion of Kemmerer's library problem and then discussing the

1questions that arose in our process of formalization. Fol-
lowing this process helped reveal mistakes, premature
design decisions, ambiguities, and incompletenesses in
the informal requirements. We also discuss how Larch's
two-tiered specification method influenced our modifica-
tions to and extrapolations from the requirements.

[Wing and Nixon 85]
Wing, J.M. and M.R. Nixon.
Adding temporal logic to Ina Jo.
Technical Report CMU-CS-85-146, Carnegie Mellon University Com-

puter Science Department,
July, 1985.

Toward the overall goal of putting formal specifications to prac-
tical use in the design of large systems, we explore the
combination of two specification methods: using temporal
logic to specify concurrency properties and using an exist-
ing specification language, Ina Jo, to specify functional be-
havior of nondeterministic systems. In this paper, we give
both informal and formal descriptions of both current Ina Jo
and Ina Jo enhanced with temporal logic. We include
details of a simple example to demonstrate the expressive-
ness of the enhanced language. We discuss at length ourp language design goals, decisions, and their implications.

2-20

DISTRIBUTED PROCESSING FINAL REPORT, 198547

The appendices contain complete proofs of derived rules
* and theorem schemata for the enhanced formal system.

[Wing et al. 85] Wing, J., J. Guttag, and J. Horning.
The Larch family of specification languages.
In IEEE Software, IEEE, September, 1985.

The use of suitable formalisms in the specification of computer
programs offers significant advantages. Although there is
considerable theoretical interest in this area, practical ex-
perience is rather limited. The Larch Project, a research
project intended to have practical applications within the
next few years, is developing tools and techniques to aid in
the productive application of formal specifications. A major
part of the project is a family of specification languages.
Each specification language has components written in two
languages. The Larch interface languages are particular to
specific programming languages, while the Larch Shared
Language is common to all languages.

2

2-21

IMAGE UNDERSTANDING FINAL REPORT, 198547

3. Image Understanding

3.1 Introduction

Research in image understanding (IU) aims at developing adequate and versatile
techniques to facilitate the construction of IU systems. Such techniques include
processing methods for extracting useful information from images; representation and
control structures for exploiting relevant knowledge sources; and special architectures
and programming structures required to realize the algorithms efficiently. At CMU,
research in image understanding is divided into three basic areas: exploiting context
knowledge, building three-dimensional descriptions from images, and physical and
geometric modeling. The Image Understanding program covers a variety of topics in
vision ranging from the theory of color and texture to the system issues in building
demonstrable vision systems. Our research during the contract period was focused on
three areas:

" System Framework for Knowledge-Based Vision: Developing systems that
can incrementally build a three-dimensional description of a complex scene
from a sequence of images.

" Algorithm Acquisition for Three-Dimensional Object Recognition: Inves-
tigating special architectures and programming structures to realize vision
algorithms efficiently. Extending current techniques in image analysis,
representation, and geometrical reasoning.

e Inferring Shape and Surface Properties: Developing new methods for infer-
ring basic surface and shape information from images using color, texture,
and modeling uncertainty in image representations.

3.2 System framework for knowledge-based vision
In order to broaden the applicability of knowledge-based vision systems, we must

have a general framework in which we can represent the 3-D object models, control the
analysis using generic and domain-specific knowledge, and access image features
flexibly and efficiently. Toward this goal, we have developed application systems: MAPS,
SPAM, 3D Mosaic, and 3DFORM, that use task-specific individually-devised frameworks.
During the contract period, we have: created the Digital Mapping Laboratory, a facility
that uses the MAPS (Map Assisted Photointerpretation System) system to explore the
generation and maintenance of a large scale domain knowledge base; improved the 3D
Mosaic system to integrate techniques that allow us to build and verify 3-D scene
models and demonstrate acquisition of scene models; developed and tested SPAM, a
rule-based system that uses map and domain-specific knowledge to interpret airport
scenes; and worked on 3DFORM, a system based on a frame language (Framekit)
defined on Common.Lisp.

3
3-1

FINAL REPORT, 198547 IMAGE UNDERSTANDING

3.2.1 Digital mapping laboratory

S One of the key issues in building systems for cartography and aerial photointerpreta-
tion is the generation and maintenance of a domain knowledge base. Loosely speak-
ing, this "knowledge base" should contain known facts and spatial relations between ob-
jects in an area of interest, access to historical or normalcy reports, and methods that
relate earth coordinates to pixel locations in digital imagery. Unfortunately, these spatial
database capabilities are somewhat different from those found in traditional geographic
information systems. Another issue is including methods for spatial knowledge utiliza-
tion and representation. For example, simply having access to cartographic descrip-
tions does not address the problem of how to operationalize iconic descriptions for im-
age analysis and interpretation.

In 1985, McKeown created a Digital Mapping Laboratory (DML)
[McKeown&.85.Stereo] for aerial photointerpretation, cartography, and computer vision.
The DML uses the MAPS system developed by McKeown and others to explore the
generation and maintenance of a large scale domain knowledge base. MAPS is an
image/map database system for the Washington D.C. area that contains approximately
100 high-resolution aerial images, a digital terrain database, and a variety of map
databases from the Defense Mapping Agency (DMA). We have continued work on the
MAPS image/map database system primarily in the area of integration of map data to
support our work in rule-based airport scene analysis.

3.2.2 SPAM

The interpretation of aerial photographs requires extensive knowledge about the
scene under consideration. Knowledge about the type of scene aids in low-level and
intermediate level image analysis, and will drive high-level interpretation by constraining
search for plausible consistent scene models.

McKeown investigated the use of a rule-based system for the control of image
processing and interpretation of results with respect to a world model, as well as the
representation of the world model within an image/map database. The system, SPAM
[McKeown&.85.Rule-Based], uses domain-specific knowledge to interpret airport
scenes. We have developed a set of specialized tools [McKeown&.87.Automating] to
aid this task. These tools include a user interface for interactive knowledge acquisition,
automated compilation of that knowledge from a schema-based representation into
productions that are executable by our interpretation system, and a performance
analysis tool that generates a critique of the final interpretation. We demonstrated the
generality of these tools by the generation of rules for a new task, suburban home
scenes, and the analysis of a set of imagery by our interpretation system.

NOTE: See Machine Intelligence Chapter.

3
3-2

IMAGE UNDERSTANDING FINAL REPORT, 1985"7

3.2.3 3D Mosaic

* Processing in an image understanding system involves considerably more than
detecting an object's existence, classifying an image, or segmenting an image. The 3D
Mosaic system is a photointerpretation system which combines domain knowledge with
image processing. Walker wrote an interactive version of the 3D Mosaic System and
analyzed its object-independent geometric reasoning rules [Kanade&.85. Image]. Our
goal is to develop a more robust system that uses domain knowledge more explicitly
and adapts to other domains.
Frame-based representations for geometrical reasoning in vision

Our current strategy for meeting this goal is to add low-level image-processing tools
and a procedure that determines each tool's applicability. We will use these tools for
bottom-up verification of hypotheses developed by the top-down component of the sys-
tem. For example, when a building roof is found in an image, the system hypothesizes
edges from each vertex of the roof to the ground. We are studying operators that will
verify these hypothesized edges to determine which ones to use under what conditions.
We are testing the interactive system on several aerial images of Washington, D.C.
Walker has worked on a scheme for representing and reasoning about geometrical ob-
jects, such as projections between 2-D images and 3-D scenes, shape and surface
properties of objects, and geometrical and topological relationships between objects
[Walker&.87.Geometric]. These capabilities are essential for knowledge-based, 3-D
photointerpretation systems.

We adopted a frame-based representation using the CMU-built Framekit tool in Coin-S mon Lisp. Each type of object, such as a point, line, or plane, is represented as a
frame. Specific objects are created by instantiating the generic frame. Instantiating an
object consists of creating a new frame with a unique name and filling in slots specific to
the new object. Slots not filled in are inherited from the generic object by means of an
IS-A hierarchy.

Geometric relationships between objects, such as parallel or perpendicular for lines,
are also represented by frames. Each geometric relationship has slots for two or more
geometric objects plus one or more numeric ranges. For example, the LINES-IN-
PLANE relationship adds each line to the plane's list of contained lines and adds the
plane's normal to the list of vectors perpendicular to each line. Finally, computations
are done to ensure that the true numeric values (such as the angle between two lines)
fall within the specified ranges. If the values fall outside the ranges, then the evaluation
function returns FALSE, indicating an inconsistency in the data. The primitive geometric
relationships are combined into conjunctions to describe the complex geometric
relationships between objects.

Successful evaluation of the conjunction results in hypotheses for the remaining slots
of the concepts. This model has been used to define such concepts as a roof and a
wall of buildings for city scene understanding, a similar task domain of 3D Mosaic in
aerial photo interpretation. With simulated input, running these conjunctions has5 generated correct hypotheses for missing edges and vertices of rectangular buildings.

3-3

FINAL REPORT, 19W847 IMAGE UNDERSTANDING

We plan to incorporate this framework of geometrical representation and reasoning into
an image interpretation system by means of an image processing interface and a
hypothesis tester.

3.2.4 3DFORM

Three-dimensional representation of objects is necessary for many applications of vi-
sion such as robot navigation and 3D change detection. Geometric reasoning is also an
important capability, since geometric relationships among object parts are a rich source
of knowledge and constraint in image analysis. Unfortunately, past systems for
geometric representation and reasoning have not had sufficient flexibility and efficiency
to be generally applied for computer vision.

We are developing a system, called 3DFORM (Frame-based Object Recognition and
Modeling System), ,'hat has the desirable properties of generality, flexibility, efficiency,
and extensibility for computer vision applications [Walker&.87.Framework]. This system
includes a number of features that make it an improvement over past systems. 3DFORM
uses frames to model object parts such as buildings and walls, geometric features such
as lines and planes, and geometric relationships such as parallel lines. The system in-
cludes explicit modeling of the projections from the 3D scene to the 2D image and back,
which allows a program to reason back-and-forth as needed. Active procedures can be
attached to the frames to dynamically compute values as needed. For example, a line
has an active procedure to compute its direction vector from known points on the line;
this procedure would be invoked only when the direction vector is needed for other com-
putations.

Since the order of computation is controlled largely by accessing objects' attribute
values, the system can perform top-down and bottom-up reasoning as needed. This
allows an efficient system that can perform the most reliable computations first, using
the resulting constraints to guide the interpretation of more questionable or ambiguous
data. There is no need for an external "focus of attention" mechanism, which in past
systems has sometimes been a complex and problematic item to construct.

In 3DFORM, both objects and relationships are explicitly represented. Thus, extending
the system to handle additional kinds of objects and relationships involved adding new
frames but does not require that the existing system be modified. This makes 3DFORM a
relatively easy system to extend or to tailor for a specific application domain. We have
applied it to aerial photointerpretation, finding buildings from very sparse initial infor-
mation, with good success.

3.3 Algorithm acquisition for three-dimensional object recognition

Efficiently matching a model description with visual sensory input (images or ranges)
forms the central part of recognition procedures. Three-dimensional object matching is

*! a key issue underlying all vision systems, and three-dimensional representation of ob-

3-4

IMAGE UNDERSTANDING FINAL REPORT, 1985-"7

jects is necessary for many applications of vision such as robot navigation and 3-D
change detection. During the contract period we have studied algorithms for dynamic
programming, range data segmentation, object recognition, and trinocular stereo vision.
We have also developed a special Warp architecture for vision research.

3.3.1 Multi-resolution stereo using dynamic programming

Stereo is a useful method of obtaining depth information. The key problem in stereo
is finding correspondence points between the left and right images so that, given the
camera model, the depth can be computed by triangulation. This stereo matching
problem can be cast as a search problem.

Ohta's and Kanade's dynamic programming stereo algorithm uses both intra- and
inter-scanline search to obtain a disparity map, beginning with gray-scale real world
images [Ohta&.85.Stereo]. Szeliski has developed a faster version of the algorithm
using a coarse-to-fine multi-resolution search strategy.

The images are first preprocessed using the DOLP Transform to build an image
pyramid. Low-pass (blurred) images are used to calculate the cost function used by the
stereo matcher, while band-pass images are used to extract the edges. The stereo
matching algorithm is then applied to the coarsest (smallest) image, resulting in a list of
matched edges that is used to constrain the stereo matching of the next finer (larger)
level.

The matching proceeds until the solution for the finest level is obtained. The com-
bined processing time of creating the pyramid and multi-resolution search is much lower
than that of single-resolution processing, since the constraints from the previous level
greatly reduce the search space of the current level. In practice, the multi-resolution
method was 2.5 times faster than the single-resolution method. The results for the
single- and multi-resolution versions are similar in quality.

3.3.2 Trinocular stereo vision

In 1985, Milenkovic developed a trinocular stereo algorithm, a vanation of edge-based
stereo algorithms using three cameras instead of two [Milenkovic&.85.Trinocular]. The
trinocular matching algorithm performs very well even though it uses the same order of
computing resources as the binocular method.

The third view provided by trinocular stereo vision aids in selecting matching pairs of
edge points from the first two views by providing a positional constraint. In addition to
this constraint on position, trinocular stereo provides two constraint principles for use in
determining correct matches. The first principle constrains the orientations of the
matched edge pixels, and the second principle constrains the image intensity values in
the regions surrounding the edge pixels.

We have applied the trinocular stereo algorithm to both real and synthetic images. In

3-5

FINAL REPORT, 1SSS-47 IMAGE UNDERSTANDING

general, our tnnocular method can match better than the best binocular method. The
key features of the trinocular stereo vision include that it does not require the continuity
assumption (i.e. neighboring edge pixels have similar disparities), and that it can
handle reversals (i.e. the case where the matching pixels' order of appearance reverses
between images).

3.3.3 Range data analysis for outdoor Imagery

Our goal is to develop a 3-D vision system that provides a description of an unknown
environment to a mobile robot. This description, a three-dimensional map of the ob-
served scene in which regions are labeled as accessible terrain, objects, etc., will
provide the necessary information for path planning and landmark recognition. As part
of our efforts, Hebert developed several range data segmentation algorithms
[Hebert&.85.First]. We have used the segmentation programs to produce input for path

planning programs of the Terregator mobile robot.

We use a state-of-the-art sensing device, the ERIM scanner, that can produce 64x256
range images with an accuracy of 0.4 feet at a frame rate of two images per second.
This sensor combines a large field of view (30 degrees horizontal and 40 degrees
vertical) and a fast acquisiti,'r, rate, making it suitable for outdoor imagery analysis.

The first goal of tKr - algorithms is to extract three types of features: 3-D edges, ac-
cessible and non-accessible terrain regions, and obstacles divided into pseudo-planar
regions. The final segmentation product is a graph of edges, regions, and objects. The
segmentation algorithms proceed by first extracting low-level attributes such as edge
points, surface normals, and surface curvature. Then each attribute is used to derive an
intermediate segmentation. Finally, the intermediate segmentations are merged
together to form a consistent scene description. The complete segmentation takes
about one minute on a VAX-785. We plan to reduce this computation time by using the
Warp systolic array processor.

The range data segmentation techniques described so far proceed by independently
processing one image at a time. In addition to this independent processing, the system
can develop a global map by accumulating information from consecutive images. As
the vehicle moves, the robot obtains an image every one to ten meters and consecutive
images are registered with respect to the previous ones. Matching proceeds by finding
the best match between the features produced by the segmentation program. This
matching, in turn, provides an estimate of the current image's 3-D position with respect
to the global map.

We have tested the matching algorithms in a realistic outdoor navigation environment
using a sensor mounted on a mobile testbed robot.

We are now combining range data with other sources of visual information such as
color images or reflectance data. This will yield more accurate environment descriptionsP because more object properties can be taken into account.

3-6

IMAGE UNDERSTANDING FINAL REPORT, 1985"7

3.3.4 Generating object recognition algorithms

Historically, many computer vision programs were "hand" written by a vision program-
mer. An alternative approach is to develop a general model-based vision program
which takes a model of the object and recognizes the scene by reasoning about various
properties and relationships based on the model. Ikeuchi has developed an approach
that provides a third alternative: develop a "general" program which takes a model of
an object and generates (compiles) a "special" run-time program tailored for the object.

Ikeuchi has been working on a method, consisting of compile-time processing and
run-time processing, to generate 3-D object recognition algorithms from a geometric
modeler [Ikeuchi.87.Precompiling]. We have applied this method in a task for bin-
picking objects which include both planar and cylindrical surfaces.

We generate apparent object shapes under various viewer directions. These shapes
are classified into groups based on dominant visible faces and other features. Based
on the grouping, recognition algorithms are generated in the form of an interpretation
tree. The interpretation tree classifies a target region into a representative shape group,
and then determines the precise attitude of the object within that group. We have
developed a set of rules for determining the appropriate features and the order the
geometric modeler will use them to generate an efficient and reliable interpretation tree.

This approach will also have an impact on automatic learning in vision. During the
course of the research, Ikeuchi has developed a set of rules (mostly heuristic) which
guide the decisions about what features are to be used in what order to generate an

S efficient and reliable interpretation tree. Currently, the interpretation trees are
represented by semi-automatically written Usp programs. We plan to develop an Al
program which generates interpretation trees represented by object-oriented program-
ming.

3.3.5 Recognizing 3-D objects based on solid models

One of the central tasks in computer vision is the recognition of objects described by
solid models. In our previous work, we developed and demonstrated a method for
automatically generating a recognition algorithm from a solid model of an object. In our
recent work, we have extended this paradigm by modeling the sensors as well as the
objects. Using these sensor models, the solid model and sensor descriptions can be
used together to automatically generate algorithms for recognizing an object as seen by
diverse kinds of imaging sensors.

Different sensors such as a video camera, light-stripe projector, or SAR (synthetic
aperture radar) have very different properties and respond to different types of object
features under different circumstances. Past work in computer vision has always been
based on an assumption of a single type of sensor. This has created a built-in depen-
dence on the sensor that makes existing vision programs restricted to the sensor for
which they were designed. Our research in automatically generating algorithms for

3-7

FINAL REPORT, 198"7 IMAGE UNDERSTANDING

recognizing objects has the potential to break out of this restriction by using an explicit
sensor model in addition to the solid model of the object. In this way, we will be able to
automatically generate appropriate algorithms to recognize an object from several dif-
ferent sensors.

We have developed a model for sensor properties that can specify two important
characteristics: detectability and reliability. Detectability refers to the kind of features
that can be detected, such as faces, edges, and vertices. For example, an edge detec-
tor is sensitive to edges; a laser range scanner is sensitive to faces; SAR is most sen-
sitive to vertices. We have developed a uniform representation for such detectability
properties that allows many different sensor modalities to be described in a single
framework. Reliability specifies how reliable the detection process is, and how errors
are propagated from the measured data to the inferred geometric features.

We have used this sensor modeling methodology to construct a survey of commonly
available sensors, and produced detailed descriptions of photometric stereo and light-
stripe range finders as examples. Our future work will include the use of these sensor
models in conjunction with our previous methodology for recognizing objects from solid
models, to produce a system that can operate with diverse sensors. This capability will
be important for sensor fusion or integration tasks that involve the use of many sensors
to recognize a single object, and will also be important in robot system design as an
automated aid to sensor selection for specific applications.

I3.3.6 Parallel vision on Warp

The prototype Warp machine at Carnegie Mellon is being used to develop new ap-
plications in magnetic resonance image processing, and as a research tool in image
texture analysis. Warp is the Carnegie Mellon Systolic Array Machine providing 100
MFLOP. As part of Strategic Computirg Vision, Webb and his associates have been
developing vision software for use by vision researchers. To date, we have achieved
the following:

"* Several demonstrations of Warp's use for road following, obstacle
avoidance using stereo vision and ERIM laser range scanner data, NMR im-
age processing, signal processing, and other vision algorithms.

"* A library based on the Spider Fortran subroutine library, all written in the
Warp programming language (W2). The current library includes about 80
different Warp programs, covering edge detection, smoothing, image
operations, Fourier transforms, and so on. The actual number of routines
in the Spider library covered by these Warp programs is about 100.

Another important development around Warp is that as the software environment im-
proves, it is becoming a tool for vision research (not for demonstrations of architectural
concepts) in our CMU Image Understanding group.

We are developing software tools for facilitating vision programming on Warp on top

of the generic W2 Compiler. Hamey, Webb, and Wu have developed a special-purpose

3-8

IMAGE UNDERSTANDING FINAL REPORT, 198547

programming language, Apply, in which low-level vision (local operation) programs can
be written quickly and efficiently [Hamey&.87.Low-level]. By simply describing the local
operations on a local window, the Apply compiler can generate code for the Warp
machine (in W2) which executes the operations on the whole image efficiently. The
compiler can also generate code in C under UNIX, which allows debugging algorithms
off Warp.

In his research on analyzing repetitive textures, Hamey needed to detect local point
symmetry to locate the texture elements. Point symmetry is detected by an analysis of
variance (ANOVA) statistical test which is applied to a window surrounding each pixel
location. The ANOVA method consists of partitioning the variance of the data into two
portions: that which is explained by the model and that which remains unexplained. The
method is to be applied at each pixel location to measure point symmetry. Local peaks
in an image of a symmetry measure values representing points of local symmetry. This
analysis requires a large amount of computation.

The Warp implementation of this algorithm performs 346 million multiplications and
519 million additions. The prototype Warp processes a 512x512 image in 30 seconds.
The same processing would take more than an hour on a Sun-3.

3.4 Inferring shape and surface properties

Developing computational techniques for recovering scene and shape information
from images remains a most basic computer vision research area. Working vision
theories must build on sound models of geometric, optical, and statistical processes.
Research must then evaluate the theories in controlled environments to understand
their scope and limitations, such as requisite measurement precision, illumination types,
surface forms, etc. Finally, we can apply the theories to real situations with the ap-
propriate instrumentation and assumptions identified. Toward these goals, we have es-
tablished the Calibrated Imaging Laboratory. Using our new facility, we have been in-
vestigating four basic vision modules: color, texture, recognizing 3-D objects based on
solid models, and modeling uncertainty in motion reasoning.

3.4.1 Calibrated Imaging laboratory

In 1986, Shafer built a Calibrated Imaging Laboratory (CIL), a facility for high-
precision imaging with accurate ground truth data [Shafer.85.Calibrated]. The CIL
bridges the gap between vision theories, which typically depend on idealized models
about the world, and applications, which must function on real images. Real images are
provided in a controlled environment, with the ability to incrementally add more com-
plexity to the imaging situation and the scene. In all cases, accurate ground truth data
make it possible to quantitatively evaluate the performance of methods used for image
analysis.

The facilities of the CIL include:

3-9

FINAL REPORT, 1985-87 IMAGE UNDERSTANDING

"Image Sets for Precision Stereo and Motion from a mobile platform with
precision X-Y-Z-pan-tilt controls and a pair of CCD cameras aligned for
stereo correspondence.

" A variety of cameras including sets of color and other filters, RGB color
cameras, and a high-precision camera yielding 512x512x8-bit images that
are nearly noise-free (repeatable) and linearly related to scene radiance,
using color filters in a filter wheel.

"* Calibration Data provided by appropriate tools, including photometers,
precision targets, and calibration camera filters.

* Accurate Ground Truth Data given by an optical table with precision posi-
tion control devices and surveyors' transits for position measurement.

"* Flexible Lighting Control with a near-point light source (arc lamp) for preci-
sion shadow analysis, and a complete track lighting system for flexible
general illumination.

"* Background Reflection Control in a room with a black ceiling, black carpet,
and black or white curtains, with other colored backdrops as needed.

"• Geometric control of the camera and object positions, to allow for controlled
position, motion, and stereo configurations.

"* Geometric measurement by theodolites (surveyor's transits) with a"geometric calculator" program that allows 3D scene points to be measured
and their pixel locations calculated to the nearest pixel in the image.

"* A variety of test objects including calibration materials, simple objects for
color and texture studies, and a highly detailed landscape model for study-
ing images of a complex environment within the laboratory.

We are currently working on the geometric camera calibration methodology for the
CIL, which should achieve higher precision than current methods, and which will involve
controlling the fine motion of the camera to put the camera into a standard orientation
relative to the lab. We are implementing software for the control of the high-precision
camera so we can utilize its images more effectively. We recently acquired an inexpen-
sive R-G-B color camera and will be evaluating its spatial and color resolution. Our goal
is to provide images with every bit noise-free and with ground truth data that allows any
pixel value to be exactly calculated from direct measurements of the scene.

The CIL has provided data already for several vision projects, including our studies of
color and highlights, color edges, motion, and image segmentation. We have also
provided tapes of images for other universities, and we have provided assistance for
other labs in deciding what equipment to obtain, such as cameras and color filters. We
have a series of lab reports (CILIA) that describe the facilities of the lab and the issues
in acquiring and using this kind of equipment.

0

IMAGE UNDERSTANDING FINAL REPORT, 1965-87

3.4.2 Color

Using the facilities of the Calibrated Imaging Laboratory, we have been developing
techniques for using color information in a manner which is sound computationally and
physically. Current work includes measurement of gloss components from color images
and extraction of color edges.
Gloss from color

Klinker, Shafer, and Kanade have worked on the measurement of gloss from color
images [Klinker&.87.Measurement]. All of the image segmentation methods that are
widely used today are confused by artifacts such as highlights, because they are not
based on any physical model of these phenomena. We have developed and imple-
mented a method for automatically separating highlight reflection from matte object
reflection. By exploiting the color difference between object color and highlight color,
our algorithm generates two intrinsic images from one color image of a scene, one
showing the scene without highlights and the other one showing only the highlights.
The successful modeling of highlight reflection can provide a useful preprocessor for
stereo and motion analysis, for direct geometric shape inference, for color image seg-
mentation, and for material type classification.

Our work is based on a spectral theory of light reflection from dielectric materials. The
theory describes the color at each point as a linear combination of the object color and
the highlight color. According to this model of light reflection, the color data of all points
from one object forms a planar cluster in the color space. The shape of the cluster is
determined by the object and highlight colors and by the object shape and illumination
geometry. We use the shape of such clusters to determine the amount of highlight
reflection and matte object reflection at each image point. This method has been suc-
cessfully run on several real images.
Color edge detection

Novak and Shafer have been studying color versions of the Canny edge detection
operator, and have obtained both theoretical and pragmatic results.

In general, the color edges are noticeably better than edges from intensity images as
evaluated by human judgment. The basic Canny operator runs x- and y-derivative
operators over a smoothed image to yield the quantities Ix and I/; from these, the mag-
nitude and direction of the best edge can be found. The color version of the Canny
operator differs in that the pixel value is the vector C=[R G B], and the gradient operator
per se no longer applies. Rather, we have C as a function of (xy), and can describe its
variation at any point using a Jacobian matrix J containing the derivatives of the color
bands. The color version of the Canny operator calculates the x- and y-derivatives of
each color band independently after smoothing the images, then calculates the mag-
nitude and direction of each edge using the eigenvectors of J'j, and eliminates "broad"
edges by local non-maximum suppression.

The above method is theoretically sound, but as a practical method it is computation-
ally expensive. We have also developed a less expensive, general method for creating

3-11

FINAL REPORT, 198547 IMAGE UNDERSTANDING

color operators from multi-stage intensity operators, operators with several steps of
* processing. This method involves numbering the steps from 1 to n; then, a color

operator at stage k can be derived by carrying out steps 1 through k independently on
each color band, combining the results with a color distance operator, and performing
steps k+l through non the single-valued result.

We have evaluated the theoretical color Canny operator and all of the non-trivial multi-
stage color operators on a set of images of our landscape model. By visually compar-
ing these operators' output with each other and with the output of the Canny operator
applied to intensity image of these scenes, we concluded the following for this set of
images:

"* The color edges are consistently better than edges from intensity images,
though most (over 90%) of the edges are about the same.

"* The best multi-stage operator seems to be Il/max, that is, calculating the
magnitude and direction independently for each color band and then select-
ing the edge with the maximum magnitude.

"* A similar result, not quite as good, was obtained from the Ilmax operator.
This is faster than the Il/max operator since the color combination is per-
formed earlier.

"* The Il/max operator produced almost exactly the same edges as the
theoretical operator based on the above Jacobian analysis.

"* The image input quality was very important; producing better quality input
images yielded better results. Surprisingly, images digitized off of an NTSC
encoded color signal produced color edges almost as good as those from
direct R-G-B color digitization.

We have applied similar lines of reasoning to develop color operators for stereo fea-
ture point detection and matching, and have greatly reduced the matching error rate
using color.
Supervised color constancy

In the first half of 1987, we developed a method called "Supervised Color Constancy."
Traditional color constancy methods attempt to compensate for the color of illumination
by assuming some heuristic such as that the average color in the image is gray. This
provides three measurements (red-green-blue) to use in the color correction. In our
method, a standard color chart is placed in the scene to provide more comprehensive
reference data. The color chart has 24 blocks with three color measurements on each
(red-green-blue), yielding 72 measurements. These measurements are used in a sys-
tem of linear equations to solve for coefficients of the illumination, yielding a tremendous
improvement in the ability to model the details of the illumination color. Based on this
model, the color of an object in colored illumination can then be calculated. This
method is far more accurate than standard color constancy approaches, but requires
the use of the color chart as a reference standard. For this reason, we call the method
"Supervised Color Constancy." Our future work will include experimental verification of
the method, which will take place when the necessary equipment (spectroradiometer)
arrives in our lab.

3-12

IMAGE UNDERSTANDING FINAL REPORT, 1995-67

3.4.3 Texture

In addition to color, texture is a vital clue to object properties for low-level vision. For
understanding texture, we are studying the perception of regular texture repetitions.
The central problem in texture analysis is a chicken-and-egg problem: the texture ele-
ment is difficult to define until the repetition has been detected, but at the same time the
repetition cannot be found until the texture element is defined. We have developed a
way to address this problem by identifying several potential features to define the tex-
ture element, then looking for all possible repetitions in these features. The features we
use are constant intensity regions, corners, etc.

After identifying the potential features, we look for local repetitions in them. This is
done by forming a histogram around each feature point of the vectors leading to other
nearby feature points. These histograms are analyzed to discover which vectors occur
most frequently. The shortest of these vectors indicates the direction and distance of
the repetition. If this repetition applies over a sufficient number of feature points, it in-
dicates a region of the image containing a repetition. Because the method is local in
nature, it can deal with distortions such as a checkered pattern on fabric or a perspec-
tive texture gradient (foreshortening) on a tall building. This method has been applied to
several images of textured objects with good results. We have now determined some
new constraints that identify the dominant features within each repetition pattern. We
plan to incorporate these constraints in our future work.

3.4.4 Modeling uncertainty in motior :easoning

In applications of 3-D computer vision to dynamic scenarios, it is essential to know the
motion of the cameras relative to objects in the environment. This motion information is
necessary in algorithms that determine the shape of objects from camera motion, in al-
gorithms that track moving targets, and in algorithms that determine vehicle motion
using cameras onboard the vehicle.
Determining vehicle motion in onboard cameras

In many situations it is desirable to estimate the motion directly from information in the
sequence of images provided by the cameras, rather than to obtain it from extemal
sources. Prior performance on this task has been very poor due to inadequate model-
ing of the problem. In 1985, Matthies developed a method for incorporating adequate
models [Matthies&.86. Error] into motion estimates.

We demonstrated this method in a scenario in which the motion of a mobile robot was
determined from image sequences provided by onboard stereo cameras. The algorithm
has two main steps:

"* Building simple 3-D scene models from each stereo pair
"* Finding the 3-D transformation that best maps the model built at each robot

location into the model built at the next location.
The transformations produced by the second step are the desired output of the algo-

* rithm. The 3-D models consist of points whose positions are computed by triangulation
from corresponding features in the stereo pairs.

3-13

FINAL REPORT, 198U47 IMAGE UNDERSTANDING

Previous efforts based on this type of algorithm have performed poorly because the
* measurement error inherent in triangulation was not adequately modeled in the proce-

dure that determined the 3-D transformations. Previous error models were based on
scalar descriptions of the uncertainty in the position of each 3-D point. This treats the
uncertainty in the position of a point as spherically distributed in space. However, with
triangulation the actual uncertainty can be highly non-spherical. A much better error
model can be obtained by treating each 3-D point as the mean of a 3-D normal distribu-
tion. The uncertainty in the location of the point can then be modeled by the covariance
of the distribution. We have developed a new method for estimating the motion of the
cameras based on this model.

We have tested the new motion estimation algorithm in simulations and in live opera-
tion with real images. The results show reductions in estimation error by factors of three
to ten or more, depending on the distance of the points from the cameras. The greater
the distance, the greater the difference in performance. This shows that error modeling
is important for obtaining high performance in algorithms for visual ranging and motion
estimation. These results apply directly to the visual mapping and navigation problems
in autonomous vehicles.

Modeling uncertainty In representations for low-level vision
Recently Szeliski has been working on modeling uncertainty in low-level dense

representations, such as depth maps and optical flow (velocity) maps by means of
Bayesian models. Researchers have already used the Bayesian modeling in low-level

* vision processing. However, one of the distinguishing features of Szeliski's approach is
that he uses Bayesian modeling not only to recover optimal estimates (as is currently
done), but also to calculate the uncertainty associated with these estimates.

Low-level representations are usually derived from the input image(s) using "shape-
from-X" methods such as stereo or shape from shading. These methods usually yield
data that is sparse, (e.g. stereo) or underconstrained (e.g. shape from shading). Two
approaches to overcoming this problem are currently popular. The first-
regularization-reformulates the problem in terms of the minimization of an energy func-
tional. Smoothness constraints, in the form of added energy terms, are used to
guarantee a unique and well-behaved solution. The second method, Bayesian estima-
tion [Szeliski.86.Cooperative], assumes both a probabilistic prior model for the data be-
ing estimated, and a probabilistic imaging model relating the data to the sensed image.
An optimal estimate (e.g. Maximum A Posteriori or Minimum Variance) can then be ob-
tained.

One of the results of this research has shown that regularization methods are equiv-
alent to Bayesian models with fractal priors, i.e. models that are self-similar over scale
transformations. Suppose that depth constraints (eg., sparse measurements of depth)
are given. A typicalsample of a likely map has the rough (crinkly) appearance of a frac-
tal, as opposed to the most likely sample, which is maximally smooth. This result also
leads to a new fractal generation algorithm based on the multi-resolution stochastic

* (Monte Carlo) simulation of Markov Random Fields. This allows the use of arbitrary

3-14

IMAGE UNDERSTANNG FINAL REPOR, 1M947

constraints (e.g. depth values, orientation or depth discontinuities) without affecting thep fractal nature of the resulting surface.

The main emphasis of this research, however, is to study how the uncertainty inherent
in the Bayesian modeling approach can be estimated and used in further processing.
Previous work, both in regularization and Bayesian estimation, has concentrated solely
on obtaining a single optimal estimate of the underlying field. However, the Bayesian
approach actually (implicitly) defines a whole distribution conditional on the sensed
data. For example, when regularization is used, the resulting distribution is a mul-
tivariate correlated Gaussian image. Thus knowing both the mean (minimum variance
estimate) and the covariance fully characterizes the distribution. The estimated uncer-
tainty can then be used for further processing, such as integration with new data, or
matching to a model. Current research is focusing on the former application (using Kal-
man filtering), as well as examining the use of alternate representations that better
model the uncertainty.
Analyzing uncertainty In low-level vision

Computer vision is a measurement process, and uncertainty is endemic in all aspects
of measurements. Most work in computer vision has ignored uncertainty in the past,
leading to methods that are brittle and tend to fail when confronted with the noise that
arises in real data. We are developing methods for explicitly modeling uncertainty and
using the noise properties of the sensor, measured over multiple images, to produce im-
proved results.

Our work in this area is focused on the problem of estimating depth from image se-
quences taken under known camera motion. Previous work in this area has been ham-
pered by a lack of representations and algorithms appropriate for incrementally refining
depth estimates over the course of an image sequence, thus forcing analysis to be per-
formed in a "batch mode" at the end of the motion. We are developing an incremental
approach that keeps a running depth estimate, and updates this with each new image
that is obtained. The update process explicitly weights the new image and the previous
depth estimate according to the known noise and uncertainty properties of each. We
use an iconic representation of uncertainty that stores the depth estimate and variance
at each pixel, and we utilize a Kalman filter to perform the update of the esimate.

In theory, this algorithm can be applied to arbitrary directions of camera motion. For
pragmatic reasons, our experiments so far have been confined to camera translations
parallel to the image plane (i.e. vertical and sideways). The results have been striking,
comparing in accuracy with the best known "batch" methods. The advantage of our ap-
proach is that this quality can be obtained on a moment-by-moment basis by a mobile
robot rather than waiting for the complete image sequence to be acquired before it can
be analyzed. Our future work will include the extension of the experiments to general
camera motion. We also believe that this method can be very useful for initializing the
knowledge of a mobile robot equipped with stereo cameras; we plan to develop this
total-system approach in our future work as well.

S
3-15

FINAL REPORT, 195-47 WAGE UNDERSTANDING

3.5 Bibliography

S [Goto et al. 86] Goto,Y., K. Matsuzaki, I. Kweon, and T. Obatake.
CMU sidewalk navigation system.
In Proceedings 1986 Fagl Joint Computer Conference, Pages

105-113. November, 1986.

[Gross et al. 85] Gross,T., H.T. Kung, M. Lam, and J. Webb.
Warp as a machine for low-level vision.
In Proceedings of the 1985 IEEE International Conference on

Robotics and Automation, IEEE, March, 1985.
Warp is a programmable systolic array processor. One of its

objectives is to support computer vision research. This
paper shows how the Warp architecture can be used to ful-
fill the computational needs of low-level vision.

We study the characteristics of low-level vision algorithms and
show they lead to requirements for computer architecture.
The requirements are met by Warp. We then describe
how the Warp system can be used. Warp programs can
be classified in two ways: chained versus severed, and
heterogeneous versus homogeneous. Chained and
severed characterize the degree of interprocessor depen-
dency, while heterogeneous and homogeneous charac-
terize the degree of similarity between programs on in-
dividual processors. Taken in combination, these classes
give four user models. Sophisticated programming tools
are needed to support these user models.

[Hamey et al. 87] Hamey, L.G.C., J.A. Webb, and I.C. Wu.
Low-level vision on Warp and the Apply programming module,
In J. Kowalik, Parallel Computation and Computers for Artificial

Intelligence. Kluwer Academic Publishers, 1987.
In the course of implementing low-level (image to image) vision

algorithms on Warp, we have understood the mapping of
this important class of algorithms well enough so that the
programming of these algorithms is now a straightforward
and stereotypical task. The partitioning method used is in-
put partitioning. This seems to consistently provide an ef-
ficient implementation of this class of algorithms, which is,
moreover, quite natural for the programmer. We have
developed a specialized programming language, called
Apply, which reduces the problem of writing the algorithm
for this class of programs to the task of writing the function
to be applied to a window around a single pixel. Apply
provides a method for programming Warp in these applica-
tions which is extremely easy, consistent, and efficient.
Apply is application specific, but machine independent--it
appears possible to implement versions of Apply which run
efficiently on a wide variety of computers, including uni-

3-16

IMAGE UNDERSTANDING FINAL REPORT, 1UN-47

processors, bit-serial processor arrays, and distributed
memory machines. Apply is therefore a significant aid to
the programmer, which allows him to program efficiently
and consistently in a well-defined application area, for a
specialized type of machine, without restricting his code to
be run just on that machine.

[Hebert and Kanade 85]
Hebert, M. and T. Kanade.
First results on outdoor scene analysis using range data.
In Proceedings of DARPA Image Understanding Workshop, DARPA,

December, 1985.
This paper describes some techniques for outdoor scene

analysis using range data. The purpose of these tech-
niques is to build a 3-D representation of the environment
of a mobile robot equipped with a range sensor. Al-
gorithms are presented for scene segmentation, object
detection, and map building.

We present results obtained in an outdoor navigation environ-
ment in which a laser range finder is mounted on a vehicle.
These results have been applied to the problem of path
planning through obstacles.

[Hebert and Kanade 86]
Hebert,M., and T. Kanade.
Outdoor scene analysis using range data.
In IEEE International Conference on Robotics and Automation, 1986.

This paper describes techniques for outdoor scene analysis
using range data. The purpose of these techniques is to
build a 3-D representation of the environment of a mobile
robot equipped with a range sensor. Algorithms are
presented for scene segmentation, object detection, map
building, and object recognition.

We present results obtained in an outdoor navigation environ-
ment in which a laser range finder is mounted on a vehicle.
These results have been successfully applied to the
problem o path planning through obstacles.

[Herman 85] Herman,M.
Representation and incremental construction of a three-dimensional

scene model.
Technical Report CMU-CS-85-103, Carnegie Mellon University Com-

puter Science Department,
January, 1985.

The representation, construction, and updating of the 3D scene
model derived by the 3D Mosaic scene understanding sys-
tem is described. The scene model is a surface-based
description of an urban scene, and is incrementally ac-
quired from a sequence of images obtained from multiple
viewpoints. Each view of the scene undergoes analysis

3-17

FINAL REPORT, 198547 IMAGE UNDERSTANDING

which results in a 3D wire-frame description that
represents portions of edges and vertices of buildings.
The initial model, constructed from the wire frames ob-
tained from the first view, represents an initial approxima-
tion of the scene. As each successive view is processed,
the model is incrementally updated and gradually becomes
more accurate and complete. Task-specific knowledge is
used to construct and update the model from the wire
frames. At any point along its development, the model
represents the current understanding of the scene and
may be used for tasks such as matching, display genera-
tion, planning paths through the scene, and making other
decisions dealing with the scene environment.

The model is represented as a graph in terms of symbolic primi-
tives such as faces, edges, vertices, and their topology and
geometry. This permits the representation of partially com-
plete, planar-faced objects. Because incremental
modifications to the model must be easy to perform, the
model contains mechanisms to (1) add primitives in a man-
ner such that constraints on geometry imposed by these
additions are propagated throughout the model, and (2)
modify and delete primitives if discrepancies arise between
newly derived and current information. The model also
contains mechanisms that permit the generation, addition,
and deletion of hypotheses for parts of the scene for which
there is little data.

[Ikeuchi 87a] Ikeuchi, K.
Precompiling a geometrical model into an interpretation tree for ob-

ject recognition in bin-picking tasks.
In Proceedings of the Image Understanding Workshop, AAAI,

February, 1987.
Given a 3-D solid model of an object, we first generate apparent

shapes of an object under various viewer directions.
Those apparent shapes are then classified into groups
(representative attitudes) based on dominant visible faces
and other features. Based on the grouping, recognition al-
gorithms are generated in the form of an interpretation
tree. The interpretation tree consists of two parts: the first
part for classifying a target region in an image into one of
the shape groups, and the second part for determining the
precise attitude of the object within that group. We have
developed a set of rules to find out what appropriate fea-
tures are to be used in what order to generate an efficient
and reliable interpretation tree. Features used in the inter-
pretation tree include inertia of a region, relationship to the
neighboring regions, position and orientation of edges, and
extended Gaussian images.

*. This method has been applied in a task for bin-picking objects

3-18

IMAGE UNDERSTANDING FINAL REPORT, 196547

that include both planar and cylindrical surfaces. As sen-
sory data, we have used surface orientations from
photometric stereo using oriented-region matching,and
edges from an intensity image.

[Ikeuchi 87b] Ikeuchi, K.
Generating an interpretation tree from a CAD model for 3D-object

recognition in bin-picking tasks.
International Journal of Computer Vision:1 45-165, 1987.

This article describes a method to generate 3-D object recog-
nition algorithms from a geometrical model for bin-picking
tasks. Given a 3-D solid model of an object, we first
generate apparent shapes of an object under various
viewer directions. Those apparent shapes are then clas-
sified into groups (representative attitudes) based on
dominant visible faces and other features. Based on the
grouping, recognition algorithms are generated in the form
of an interpretation tree. The interpretation tree consists of
two parts: the first part for classifying a target region into
one of the shape groups, and the second part for determin-
ing the precise attitude of the object within that group. We
have developed a set of rules to find out what appropriate
features are to be used in what order to generate an ef-
ficient and reliable interpretation tree. Features used in the
interpretation tree include inertia of a region, relationship to
the neighboring regions, position and orientation of edges,
and extended Gaussian images.

This method has been applied in a task for bin-picking objects
that include both planar and cylindrical surfaces. As sen-
sory data, we have used surface orientations from
photometric stereo using oriented-region matching,and
edges from an intensity image.

[Ikeuchi 87c] Ikeuchi, K.
Determining a depth map using dual photometric stereo.
International Joumal of Robotics Research6(1):15-31, 1987.

This paper describes a method for determining a depth map
from a pair of surface-orientation maps obtained by a dual
photometric stereo. A photometric stereo system deter-
mines surface orientations by taking three images from the
same position under different lighting conditions, based on
the shading information. A photometric stereo system can
determine surface orientations very rapidly, but cannot
determine absolute depth values. This paper proposes a
dual photometric stereo system to obtain absolute depth
values.

A dual photometric stereo generates a pair of surface-
orientation maps. Then, the surface-orientation maps can

* be segmented into isolation regions with respect to surface

319

FINAL REPORT, 198547 WAGE UNDERSTANDING

orientations, using a geodesic dome for grouping surface
orientations. The resulting left and right regions are com-
pared to pair corresponding regions. The following three
kinds of constraints will be used to search for correspond-
ing regions efficiently: a surface-orientation constraint, an
area constraint, and an epipolar constraint. Region match-
ing is done iteratively, starting from a coarse segmented
result and proceeding to a fine segmented result, using a
parent-children constraint. The horizontal difference in the
position of the center of mass of a region pair determines
the absolute depth value for the physical surface patch
imaged onto that pair. This system takes only a few
minutes on a Usp machine to determine an absolute depth
map in complicated scenes and could be used as an input
device for a bin-picking system.

[Ikeuchi and Kanade 87a]
Ikeuchi, K. and T. Kanade.
Modeling sensor detectability and reliability in the configuration

space for model-based vision.
Technical Report CMU-CS-87-144, Carnegie Mellon University Com-

puter Science Department,
July, 1987.

The model-based vision requires object appearances in the
computer. How an object appears in the image is a result
of interaction between the object properties and the sensor
characteristics. Thus in model-based vision, we ought to
model the sensor as well as modeling the object. In the
past, however, the sensor model was not used in the
model-based vision or, at least, was contained in the object
model implicitly.

This paper presents a framework between an object model and
the object appearances. We consider two aspects of sen-
sor characteristics: sensor detectability and sensor
reliability. Sensor detectability specifies what kind of fea-
tures can be detected and in what area the features are
detected; sensor reliability specifies how reliable detected
features are. Commonly available sensors are briefly ex-
amined in terms of their sensor characteristics. We define
the configuration space to represent sensor characteristics.
We propose a representation method of the sensor detec-
tability in the configuration space. Sensor reliability dis-
tribution is also discussed in the configuration space. Un-
der this framework, we characterize the photometric stereo
and the lightstripe range finder as examples.

3-20

IMAGE UNDERSTANDING FINAL REPORT, 198•--7

[Ikeuchi and Kanade 87b]S Ikeuchi, K. and T. Kanade.
Modeling sensor detectability and reliability for model-based vision.
In Proceedings of the Workshop on Computer Vision, IEEE, Novem-

ber, 1987.
Also appeared in Proceedings of the Fourth International Symposium

of Robotics Research,. August 1987.
The model-based vision requires object appearances in the

computer. How an object appears in the image is a result
of the interaction between the object properties and the
sensor characteristics. Thus, in model-based vision, we
ought to model the sensor as well as modeling the object.
In the past, however, the sensor model was not used in the
model-based vision or, at least, was contained in the object
model implicitly.

This paper presents a framework between an object model and
the object appearances. We consider two aspects of sen-
sor characteristics: sensor detectability and sensor
reliability. Sensor detectability specifies what kind of fea-
tures can be detected and in what area the features are
detected; sensor reliability specifies how reliable detected
features are. We define the configuration space to
represent sensor characteristics. We propose a represen-
tation method of the sensor detectability in the configura-
tion space. Sensor reliability distribution is also discussed
in the configuration space. Under this framework, we
characterize a light-stripe range finder as an example.

[Ikeuchi et al. 86] Ikeuchi,K., H.K. Nishihara, B.K.P. Horn, P. Sobalvarro, and
S. Nagata.
Determining grasp configurations using photometric stereo and the

PRISM binocular stereo system.
The International Journal of Robotics Research5(1):46-65, 1986.

This paper describes a system which locates and grasps parts
from a pile. The system uses photometric stereo and
binocular stereo as vision input tools. Photometric stereo
is used to make surface orientation measurements. With
this information the camera field is segmented into isolated
regions of a continuous smooth surface. One of these
regions is then selected as the target region. The attitude
of the physical object associated with the target region is
determined by histograming surface orientations over that
region and comparing them with stored histograms ob-
tained from prototypical objects. Range information, not
available from photometric stereo, is obtained by the
PRISM binocular stereo system. A collision-free grasp
configuration is computed and executed using the attitude

* and range data.

3-21

FINAL REPORT, 198547 WIAGE UNDERSTANDING

[Kanade and Koezuka 87]
Kanade, T. and T. Koezuka.
A technique of precompiling relationships between lines for 3-D ob-

ject recognition.
In Proceedings of the International Workshop on Industrial Applica-

tions of Machine Vision and Machine Intelligence, IEEE,
February, 1987.

This paper discusses a 3-D recognition technique which pre-
compiles the recognition program using relationships be-
tween lines that constitute an object. The technique is split
into two stages. The first stage is the compile-time
processing where the system compiles an object recog-
nition program from a 3-D description of a target object. It
can run faster than a general-purpose recognition program.
The second stage is the run-time processing, where the
system recognizes the object in the image efficiently by
using the precompiled data.

This is the first use of relationships between lines, such as
angles and distances, to achieve high speed recognition.
These relationships are closely related with the viewing
directions and they offer strong constraints to narrow the
probable viewing directions. The compile-time processing
produces the 2-D shape data and the description relating
to the relationships between lines. The 2-D shape data in-
dicates all attitudes of the object projected onto the image
plane from various viewing directions. In the run-time
processing, the system compares image data, including
the target objects, with all the 2-D shape data and chooses
the best matched shape as the object attitude. In this
matching procedure, we use the pre-ccmpiled description
of the line relationships, thus ignoring the improbable 2-D
shape data quickly. The measured results have shown
ihis technique can greatly reduce the total number of
matching trials of possible combinations between image
lines and model lines.

[Kanade and Shafer 85]
Kanade,T., and S. Shafer.
Image understanding research at CMU.
In Proceedings of the DARPA Image Understanding Workshop,

DARPA, December, 1985.
In the CMU Image Understanding Program we have been work-

ing on both the basic issues in understanding vision
processes that deal with images and shapes, and the sys-
tem issues in developing demonstrable vision systems.
This report reviews out progress since the October 1984
workshop proceedings. The highlights in out Program in-
clude: V. Milenkovic has developed and edge-based

i trinocular (three-camera) stereo method for computing
depth from images.

3-22

IMAGE UNDERSTANDING FINAL REPORT, 198547

R. Szeliski has extended Ohta and Kanade's dynamic program-
"ming stereo method to use a coarse-to-fine multi-resolution
search strategy.

E. Walker is analyzing the object-i-.-,,pendent geometric
reasoning rules in the 3D Mosaic system.

S. Shafer is constructing the Calibrated Imaging Lab which will
provide high-precision images for stereo, motion, shape
analysis, and photometric ana,-,,,s.

M. Hebert has developed several algorithms for analysis of out-
door range images to extract edges, planar faces of ob-
jects, and terrain patches.

L. Matties is analyzing motion stereo image sequences using a
statistical analysis of uncertainty to yield high accuracy.

D. McKeown has started a Digital Mapping Laboratory as a fo-
cal point for work in aerial photo interpretation, cartog-
raphy, and computer vision. Current projects include
MAPS, a large-scale image/map database system, SPAM,
a rule-based system for airport scene interpretation, and
ARF, a system for finding and tracking roads in aerial im-
agery.

J. Webb is developing a high-performance vision system on a
systolic machine, Warp, which will be actively used by the
vision community at CMU. The Warp hardware is a reality,
and almost a dozen implementation programs are now run-
ning.

G. Klinker has implemented the FIDO mobile robot vision and
navigation system using the WARP.

C. Thorpe, R. Wallace, and A. Stentz are working on the
Strategic Computing Vision project, building an intelligent
mobile robot for outdoor operation.

[Kanade and Thorpe 86]
Kanade,T., and C.E. Thorpe.
CMU strategic computing vision project report: 1984 to 1985.
Technical Report , The Robotics Institute, Carnegie Mellon Univer-

sity,
1986.

This report describes work during the first year of Carnegie Mel-
lon University's Strategic Computing Vision project. Our
goal is to build an intelligent mobile robot capable of
operating in the real world outdoors. We are approaching
this problem by building experimental robot vehicles and
software. Experiments in the first year have demonstrated
vehicle guidance using sonar, stereo and monoscopic TV
cameras, and a laser scanner. This report describes the
technical contributions, our relationship with the DARPA

Autonomous Land Vehicle project, our project history, the
people who comprise our project, and a list of project

* publications over the last year.

3-23

FINAL REPORT, 1985-87 IMAGE UNDERSTANDING

[Kanade et al. 86] Kanade,T., C.E. Thorpe, and W.L. Whittaker.
Autonomous land vehicle project at CMU.
In Proc. ACM Computer Conference, February, 1986.

This paper provides an overview of the Autonomous Land
Vehicle t1,'LV) Project at Carnegie Mellon University. The
goal of the CMU ALV project is to build vision and intel-
ligence for a mobile robot capable of operating in the real
world outdoors. We are attacking this on a number of
fronts: building appropriate research vehicles, exploiting
high-speed experimental computers, and building software
for reasoning about the perceived world. Research topics
include:

"* Construction of research vehicles.

"* Perception systems to perceive the natural
outdoor scenes by means of multiple sensors
including cameras(color, stereo, and motion),
sonar sensors, and a 3-D range finder.

"* Path planning for obstacle avoidance.

"* Use of a topological and terrain map.

"* System architecture to facilitate the system in-
tegration.

* Utilization of parallel computer architectures.
Our current research vehicle is the Terregator built at Carnegie

Mellon University which is equipped with a sonar ring, a
color camera, and the ERIM laser range finder. Its initial
task is to follow roads and sidewalks in the park and on
campus, and avoid such obstacles as trees, humans, an
traffic cones.

[Klinker et al. 87] Klinker, G., S.A. Shafer, and T. Kanade.
Measurement of gloss from color images.
In Proceedings of the Conference on APPEARANCE, ISCC,

February, 1987.
It is the goal of computer vision to automatically recover the

three-dimensional shape of objects in the scene from
images. Most current research in computer vision
analyzes black-and-white images and assumes that the
objects in the scene are matte. Brightness variation in the
image is then attributed to variations of surface orientation
on the objects and to material changes at object boun-
daries. However, real scenes generally contain glossy ob-
jects, as well as matte obiects. Highlights on glossy ob-
jects provide additional brightness variations in the images
and are commonly misinterpreted by current computer vi-
sion systems. Shafer has introduced a spectrally-based
dichromatic reflection model that accounts for both diffuse

3-24

m . n H n i ii ••

IMAGE UNDERSTANDING FINAL REPORT, 1985-"7

and specular reflection. Along with the model, we describe
a method that exploits the model to detect and remove
highlights from color images. This approach tnus provides
a useful preprocessor for many areas of computer vision.
We present the results of applying the technique to real
images.

[Krogh and Thorpe 86]
Krogh,B.H., and C.E. Thorpe.
Integrated path planning and dynamic control for autonomous

vehicle.
In IEEE International Conference on Robotics and Automation, IEEE,

April, 1986.
A method is presented for combining two previously proposed

algorithms for path-planning and dynamic steering control
into a computationally feasible scheme for real-time feed-
back control of autonomous vehicles in uncertain environ-
ments. In the proposed approach to vehicle guidance and
control, Path Relaxation is used to compute critical points
along a globally desirable path using a prior information
and sensor data. Generalized potential fields are then
used for local feedback control to drive the vehicle along a
collision-free path using the critical points as subgoals.
Simulation results are presented to demonstrate the con-* trol scheme.

[Kung and Webb 86]

Kung,H.T., and J. Webb.
Mapping image processing operations onto a linear systolic machine,
In Gouda, M.C., Distributed Computing. Springer-Verlag, 1986.

A high-performance systolic machine, called Warp, is opera-
tional at Carnegie Mellon. The machine has a programm-
able systolic array of linearly connected cells, each
capable of performing 13 million floating-point operations
per second. Many image processing operatiuns have
been programmed on the machine. This programming ex-
perience has yielded new insights in the mapping of image
processing operations onto a parallel computer. This
paper identifies three major mapping methods that are par-
ticularly suited to a Warp-like parallel machine using a
linear array of processing elements. These mapping
methods correspond to partitioning of output dataset, and
partitioning of computation along the time domain
(pipelining). Parallel implementations of several important
image processing operations are presented to il! ,-trate the
mapping methods. These operations include the Fast
Fourier Transform (FFT), connected component labeling,
Hough transform, image warping and relaxation.

3-25

FINAL REPORT, 1985-87 IMAGE UNDERSTANDING

[Matthies and Shafer 86]
Matthies, L.H. and S.A. Shafer.
Error modelling in stereo navigation.
In 1986 Proceedings of the Fall Joint Computer Conference,

ACM/IEEE, November, 1986.
In stereo navigation, a mobile robot estimates its position by

tracking landmarks with onboard cameras. Previous sys-
tems for stereo navigation have suffered from poor ac-
curacy, in part because they relied on scalar models of
measurement error in triangulation. The authors show that
using 3-D Gaussian distributions to model triangulation er-
ror leads to much better performance. They also show
how to compute the error model from image correspon-
dences, estimate robot motion between frames, and up-
date the global positions of the robot and the landmarks
over time. Simulations show that compared io scalar error
models the 3-D Gaussian reduces the variance in robot
position estimates and better distinguishes rotational from
translational motion. A short indoor run with real images
supported these conclusions and computed the final robot
position to within 2% of distance and one degree of orien-
tation. These results illustrate the importance of error
modelling in stereo vision for this and other applications.

S[McKeown and Harvey 87]

McKeown, D.M. Jr. and W.A. Harvey.
Automating knowledge acquisition for aerial image interpretation.
Technical Report CMU-CS-87-102, Carnegie Mellon University Com-

puter Science Department,
January, 1987.

The interpretation of aerial photographs requires a lot of
knowledge about the scene under consideration.
Knowledge about the type of scene: airport, suburban
housing development, urban city, aids in low-level and in-
termediate level image analysis, and will drive high-level
interpretation by constraining search for plausible consis-
tent scene models. Collecting and representing large
knowledge bases requires specialized tools. In this paper
we describe the organization of a set of tools for interactive
knowledge acquisition of scene primitives and spatial con-
straints for interpretation of aerial imagery. These tools in-
clude a user interface for interactive knowledge acquisition,
the automated compilation of that knowledge from a
schema-based representation into productions that are
directly executable by our interpretation system, and a per-
formance analysis tool that generates a critique of the final
interpretation. Finally, the generality of these tools is
demonstrated by the generation of rules for a new task,
suburban house scenes, and the analysis of a set of im-
agery by our interpretation system.

3-26

IMAGE UNDERSTANDING FINAL REPORT, 1985-67

[McKeown et al. 85a]
McKeown, D.M., C.A. McVay, and 8.0. Lucas.
Stereo Verification in aerial image analysis.
In Proceedings of DARPA Image Understanding Workshop, DARPA,

December, 1985.
Also available as Technical Report CMU-CS-85-139.

Computer vision systems that attempt to extract cultural fea-
tures from aerial imagery are often forced to interpret seg-
mentations where the actual features are broken into
numerous segments or fragments. For example, roads and
road-like features are difficult to completely segment due to
occlusions, poor contrast with their surroundings, and
changes in surface material. Often the nature of the seg-
mentation process is designed to err toward oversegmen-
tation of the image, since the joining of feature descriptions
is believed to be simpler than their decomposition. No mat-
ter what the cause, it is necessary to aggregate these in-
complete segmentations, filling in missing information, in
order to reason about the overall scene interpretation. This
paper describes a method to select sets of such fragments
as candidates for alignment into a single region, as well as
a procedure to generate new linear regions that are linked
composites of the original sets of fragments. Portions of
the composite region that lie between pairs of the original
fragments are approximated with a spline. The resulting
composite region can be used to predict the areas in which
to search for missing components of the cultural feature.

[McKeown et al. 85b]
McKeown,D.M. Jr., W.A. Harvey, and J. McDermott.
Rule-based interpretation of aerial imagery.
IEEE Transactions on Pattern Analysis and Machine

IntelligencePAMI-7(5) :570-585, 1985.
In this paper, we describe the organization of a rule-based sys-

tem, SPAM, that uses map and domain-specific knowledge
to interpret airport scenes. This research investigates the
use of a rule-based system for the control of image
processing and interpretation of results with respect to a
world model, as well as the representation of the world
model within an image/map database. We present results
of a high resolution airport scene where the image seg-
mentation has been performed by a human, and by a
region-based image segmentation program. The results of
the system's analysis is characterized by the labeling of in-
dividual regions in the image and the collection of these
regions into consistent interpretations of the major com-
ponents of an airport model. These interpretations are
ranked on the basis of their overall spatial and structural
consistency. Some evaluations based on the results from
three evolutionary versions of SPAM are presented.

3-27

FINAL REPORT, 1985•7 MAGE UNDERSTANDING

[McVay et al. 85] McVay,C., B.D. Lucas, and D.M. McKeown.
Stereo verification in aerial image analysis.
Technical Report CMU-CS-85-139, Carnegie Mellon University Com-

puter Science Department,
July, 1985.

This paper describes a flexible stereo verification system,
STEREOSYS, and its application to the analysis of high
resolution aerial photography. Stereo verification refers to
the verification of hypotheses about a scene by stereo
analysis of the scene. Unlike stereo interpretation, stereo
verification requires only coarse indications of three-
dimensional structure. In the case of aerial photography,
this means coarse indications of the heights of objects
above their surroundings. This requirement, together with
requirements for robustness and for dense height
measurements, shape the decision about the stereo sys-
tem to use. This paper discusses these design issues and
details the results of implementation.

[Milenkovic and Kanade 85]
Milenkovic, V. and T. Kanade.
Trinocular vision using photometric orientation constraints.
In Proceedings of the Image Understanding Workshop, Pages

163-175. DARPA, December, 1985.
Trinocular vision is stereo using three non-collinear views. It

has been shown in the literature that a third view aids in
the selection of matching pairs of edge points from the first
two views by providing a constraint on the positions of the
points. In addition to this positional constraint, this paper
proposes two new constraint principles for use in determin-
ing the set of correct matches. The first principle con-
strains the orientation of the matched edge pixels, and the
second principle constrains the image intensity values in
the regions surrounding the edge pixels. Statistical con-
fidence measures and rejection thresholds are derived
from these constraint principles in order to maximize the
correct matches in the presence of error. An trinocular
stereo algorithm based on these principles is described
and applied to synthetic and real images with good results.

[Ohta and Kanade 85]
Ohta,Y., and T. Kanade.
Stereo by intra- and inter-scanline search using dynamic program-

ming.
In IEEE Transactions on Pattern Analysis and Machine Intelligence,

IEEE, March, 1985.
This paper presents a stereo matching algorithm using the

dynamic programming technique. The stereo matching
problem, that is, obtaining a correspondence between right

3-28

IMAGE UNDERSTANDING FINAL REPORT, 198547

and left images, can be cast as a search problem. When a
pair of stereo images is rectified, pairs of corresponding
points can be searched for within the same scanlines. We
call this search intra-scanline search. This intra-scanline
search can be treated as the problem of finding a matching
path on a two-dimensional (2D) search plane whose axes
are the right and left scanlines. Vertically connected edges
in the images provide consistency constraints across the
2D search planes. Inter-scanline search in a three-
dimensional (3D) search space, which is a stack of the 2D
search planes, is needed to utilize this constraint.

Our stereo matching algorithm uses edge-delimited intervals as
elements to be matched, and employs the above men-
tioned two searches: one is inter-scanline search for pos-
sible correspondences of connected edges in right and left
images and the other is intra-scanline search for cor-
respondences of edge-delimited intervals on each scanline
pair.

Dynamic programming is used for both searches which proceed
simultaneously: the former supplies the consistency con-
straint to the latter while the latter supplies the matching
score to the former. An interval-based similarity metric is
used to compute the score.

The algorithm has been tested with different types of images in-
cluding urban aerial images, synthesized images, and
block scenes, and its computational requirement has been
discussed.

[Shafer 85] Shafer, S.A.
The Calibrated Imaging Lab under construction at CMU.
In Proceedings of DARPA Image Understanding Workshop, DARPA,

December, 1985.
This document describes the Calibrated Imaging Laboratory, a

facility for precision digital imaging under construction at
CMU. The purpose of this lab is to provide images with ac-
curate knowledge about ground truth (concerning the
scene, illumination, and camera) so that computer vision
theories and methods can be tested on real images and
evaluated to determine how accurate they really are. The
lab aims to provide ground truth data accurate, in the best
circumstances, to the nearest pixel geometrically and the
nearest 8-bit pixel value photometrically. There are also
many illumination and imaging facilities in the lab that
provide increased flexibility or increased complexity of the
visual situation, at a cost of reduced precision in the
ground truth data.

To accomplish these goals, the lab includes mechanisms to
carefully control and measure the direct and indirect il-
lumination in the scene, the positions of objects, and the

3-29

FINAL REPORT, 198547 MAGE UNDERSTANDING

properties of the camera/digitizer system. Lighting can be
provided by a near-point source (5 mm diameter aperture)
for high precision, or by a general-purpose track lighting
system for flexibility. The work area can be surrounded by
black curtains etc. to reduce stray light and indirect il-
lumination. The cameras include a very high-precision
CCD camera on a static mount, and an X-Y-X-pan-tilt jig
with multiple inexpensive CCDs aligned with each other.
Surveyors' transits are used to measure positions of points
in space, and other calibration materials are available for
all types of camera property measurement. Color imaging
by serial selection of filters is also available.

The lab is described as we currently envision it will be equipped
when the facilities are operational; the current status is
summarized at the end of the paper.

[Shafer et al. 86] Shafer,S.A., A. Stentz, and C.E. Thorpe.
An architecture for sensor fusion in a mobile robot.
In IEEE International Conference on Robotics and Automation, 1986.
Also available as technical report CMU-RI-TR-86-9.

This paper describes sensor fusion in the context of an
autonomous mobile robot. The requirements of a complex
mission, real-world operation, and real-time control dictate
many facets of the system architecture. The hardware ar-
chitecture must include both general-purpose and special-
purpose computers, and multiple sensors of various
modalities (vision, range, etc.). The software architecture
must allow modular development of a parallel system that
supports many perceptual modalities and navigation plan-
ning tasks, but at the same time enforces global consis-
tency regarding position and orientation of the vehicle and
sensors.

We are building such a system at CMU, called the NAVLAB
system, based on a commercial truck with computer con-
trols and studded with cameras and other sensors. This
paper describes the software architecture of the NAVLAB,
consisting of two parts: a "whiteboard" system called
CODGER that is similar to a blackboard but supports
parallelism in the knowledge source modules, and an or-
ganized collection of perceptual and navigational modules
tied together by the CODGER system.

In general, the system philosophy is to provide as much top-
down guidance as possible, and to exploit sensor modality
differences to produce complimentary rather than
competing perceptual processes in the system. In this
way, the limitations of each sensor modality are compen-
sated for as much as possible by other sensors or by
higher level knowledge. The NAVLAB is being produced
as part of the DARPA Strategic Computing Initiative, in con-
junction with the Autonomous Land Vehicle Project.

3-30

W"AGE UNDERSTANDING FL REPORT, 198547

[Smith and Kanade 85]
Smith,D.R., and T. Kanade.
Autonomous scene description with range imagery.
Computer Vision, Graphics, and Image Processing3l (3):322-334,

1985.
This paper presents a program to produce object-centered 3-

dimensional descriptions starting from point-wise 3D range
data obtained by a light-stripe rangefinder. A careful
geometric analysis shows that contours which appear in
light-stripe range images can be classified into eight types,
each with different characteristics in occluding vs occluded
and different camera/illuminator relationships. Starting
with detecting these contours in the iconic range image,
the descriptions are generated moving up the hierarchy of
contour, surface, object to scene. We use conical and
cylindrical surfaces as primitives. In this process, we ex-
ploit the fact that coherent relationships, such as sym-
metry, collinearity, and being coaxial, which are present
among lower-level elements in the hierarchy allow us to
hypothesize upper-level elements. The resultant descrip-
tions are used for matching and recognizing objects. The
analysis program has been applied to complex scenes
containing cups, pans, and toy shovels.

[Stentz and Thorpe 85]
Stentz, A. and C. Thorpe.
An architecture for autonomous vehicle navigation.
In Proceedings of the Fourth International Symposium on Unmanned

Untethered Submersible Technology, University of New
Hampshire Marine Systems Engineering Lab, June, 1985.

The Autonomous Land Vehicle group at CMU is building an in-
telligent sensor-equipped robot vehicle. We have
produced the first demonstrations of a system that uses vi-
sion to follow roads. This paper first briefly describes the
hardware, including the vehicle, sensors, and the com-
puters. We then present an overview of the sensor inter-
pretation processes. The main part of the paper is a dis-
cussion of the blackboard architecture that ties all the
processes together, and our experiences with a real im-
plementation. Finally, we discuss our plans for the future.

[Szeliski 85] Szeliski, R.
Mufti-resolution stereo using dynamic programming.
IUS internal report , Carnegie Mellon University Computer Science

Department,
May, 1985.

3-31

FINAL REPORT, 198547 IMAGE UNDERSTANDING

[Szeliski 86] Szeliski,R.
Cooperative algorithms for solving random-dot stereograms.
Technical Report CMU-CS-86-133, Carnegie Mellon University Com-

puter Science Department,
June, 1986.

This report examines a number of parallel algorithms for solving
random-dot stereograms. A new class of algorithms based
on the Boltzmann Machine is introduced and compared to
previously developed algorithms. The report includes a
review of the stereo correspondence problem and of
cooperative techniques for solving this problem. The use
of energy functions for characterizing the computational
problem, and the use of stochastic optimization techniques
for solving the problem are explained.

[Thorpe et al. 85] Thorpe, C., A. Stentz, and S. Shafer.
An architecture for autonomous vehicle navigation.
In Proceeding of Computers in Aerospace V Conference, Pages

22-27. IEEE, October, 1985.
The Autonomous Land Vehicle group at CMU is building an in-

telligent sensor-equipped robot vehicle. We have
produced the first demonstrations of a system that uses vi-
sion to follow roads. This paper first briefly describes the
hardware, including the vehicle, sensors, and the com-
puters. We then present an overview of the sensor inter-
pretation processes. The main part of the paper is a dis-
cussion of the blackboard architecture that ties all the
processes together, and our experiences with a real im-
plementation. Finally, we discuss our plans for the future.

[Thorpe et al. 86] Thorpe,C., A. Stentz, and S. Shafer.
An architecture for autonomous vehicle navigation.
In Proceedings of the International Conference on Robotics and

Automation, IEEE, April, 1986.
The Autonomous Land Vehicle group at Carnegie Mellon

University is building an intelligent sensor-equipped robot
vehicle. We have produced the first demonstrations of a
system that uses vision to follow roads. This paper first
briefly describes the hardware, including the vehicle sen-
sors, and the computers. We then present an overview of
the sensor interpretation processes. The main part of the
paper is a discussion of the blackboard architecture that
ties all the processes together, and our experiences with a
real implementation. Finally, we discuss our plans for the
future.

[Thorpe et al. 87] Thorpe,C.E., S.A. Shafer, and T. Kanade.
Vision and navigation for the Carnegie Mellon Navlab.
In Proceedings of the Image Understanding Workshop, DARPA, Los

Angeles, CA, February, 1987.

3-32

IMAGE UNDERSTANDING FINAL REPORT, 19S847

[Tomita and Kanade 85]
Tomita,F. and T. Kanade.
A 3D vision system: generating and matching shape descriptions in

range images,
In H. Hanafusa and H. Inoue, Robotics Research, Pages 35-42. MIT

Press, 1985.
We have developed a vision system to recognize and locate

three dimensional (3D) objects in range images. A light-
stripe rangefinder image is first segmented into edges and
surfaces. This segmentation is done in 3D space; edges
are classified as either 3D straight lines or circular curves,
and surfaces are either planar or conic. An object model
consists of component edges and surfaces and their inter-
relationships. Our model representation can accom-
modate not only objects with rigid, fixed shape, but also
objects with articulations between their parts, such as
rotational-joint or linear-slide motions. The system sup-
ports interactive construction of object models. Using
sample scenes, the object models can be generated and
modified till they become satisfactory. The matching
process is rather straightforward. A transformation from an
object model to the scene is hypothesized by initially
matching a few scene features with model features. The
transformation is then tested with the rest of the features

* for verification.

[Walker and Herman 87]
Walker, E. and M. Herman.
Geometric reasoning for constructing 3-D scene descriptions from

images.
In Proceedings of the Workshop on Spatial Reasoning and Muftisen-

sor Fusion, AAAI, October, 1987.
There are many applications for a vision system which derives a

3-dimensional model of a scene from one or more images
and stores the model for easy retrieval and matching.
Geometric reasoning is used at several levels of the
derivation, as well as for the eventual matching. Ex-
perience with the 3D Mosaic system has shown that
domain specific knowledge can be used to drive much o;
this geometric reasoning. A general framework for the
representation and use of domain knowledge is proposed.

[Walker et. al. 87] Walker, E., M. Herman, and T. Kanade.
A framework for representing and reasoning about three-dimensional

objects for vision.
In Proceedings of the AAAI Workshop on Spatial Reasoning and

Multisensor Fusion, AAAI, October, 1987.
The capabilities for representing and reasoning about three-

dimensional objects are essential for knowledge-based, 3-

3-33

FINAL REPORT, 198547 WAGE UNDERSTANDING

D photointerpretation systems that combine domain
knowledge with image processing, as demonstrated by
such systems as 3D Mosaic and Acronym. Three-
dimensional representation of objects is necessary for
many additional applications such as robot navigation and
3-D change detection. Geometric reasoning is especially
important, since geometric relationships between object
parts are a rich source of domain knowledge. A practical
framework for geometric representation and reasoning
must incorporate projections between a 2-D image and a
3-D scene, shape and surface properties of objects, and
geometric and topological relationships between objects.
In addition,it should allow easy modification and extension
of the system's domain knowledge and be flexible enough
to organize its reasoning efficiently to take advantage of
the current available knowledge. We are developing such
a framework, called the 3D FORM (Frame-based Object
Recognition and Modeling) System. This system uses
frames to represent objects such as buildings and walls,
geometric features such as lines and planes, and
geometric relationships such as parallel lines. Active
procedures attached to the frames dynamically compute
values as needed. Since the order of processing is con-
trolled largely by accessing objects' slots, the system per-
forms both top-down and bottom-up reasoning, depending
on the current available knowledge. The FORM system is
being implemented using the CMU-built Framekit tool in
Common Lisp. Examples of interpretation using a simple
model of a building as a rectangular prism are presented.

[Wallace et al. 85] Wallace, R., A. Stentz, C. Thorpe, H. Moravec, W. Whittaker, and
T. Kanade.
First results in robot road-following.
In UCAI-85, AAAI, August, 1985.

The new Carnegie Mellon Autonomous Land Vehicle group has
produced the first demonstrations of road-following robots.
In this paper we first describe the robots that are part of the
CMU Autonomous Land Vehicle project. We next describe
the vision system of the CMU ALV. We then present the
control algorithms, including a simple and stable control
scheme for visual servoing. Finally, we discuss our plans
for the future.

[Wallace et al. 86] Wallace, R., K. Matsuzaki, Y. Goto, J. Webb, J. Crisman, and
T. Kanade.
Progress in robot road-following.
In 1986 IEEE International Conference on Robotics and Automation,

IEEE, April, 1986.
We report progress in visual road following by autonomous

3-U4

WAGE UNDERSTANDING FINAL REPORT, 198547

robot vehicles. We present results and work in progress in
the areas of system architecture, image rectification and
camera calibration, oriented edge tracking, color classifica-
tion and road-region segmentation, extracting geometric
structure, and the use of a map. In test runs of an outdoor
robot vehicle, the Terregator, under control of the Warp
computer, we have demonstrated continuous motor vision-
guided road-following at speeds up to 1.08 km/hour with
image processing and steering servo loop times of 3 sec.

""
.......

MACHINE INTEWIGENCE FINAL REPORT, 1985-87

4. Machine Intelligence

Machine Intelligence (MI) is the study of how to obtain intelligent action by computers.
It encompasses both the attempt to discover the principles whereby intelligent action is
possible and to construct computer systems that can perform tasks requiring intel-
ligence. To achieve acceptable levels of performance, Al systems increasingly need
the ability to acquire, represent, and effectively utilize large amounts of knowledge. In
the MI project, we have been investigating methods for acquiring, representing, and
utilizing knowledge to obtain intelligent action by computers. For the past three years,
we have concentrated our work in the following areas:

* Knowledge-intensive systems-Extending expert systems technology by
attacking on several fronts the problem of how to develop systems that
combine the power and efficiency of a knowledge-based system with the
generality and robustness of a general problem solver.

* Machine learning-Investigating systems that can learn from the ex-
perience of solving a problem and develop techniques through which ex-
pert systems can acquire knowledge and skill.

"* Massively parallel architectures--Exploring massively parallel architectures
as means of meeting the computational demands imposed by large
constraint-satisfaction problems, particularly in recognition tasks.

"* Rational control of reasoning--Incorporating rationally controlled reasoning
to increase the power, flexibility, and reliability of knowledge based sys-

* tems.

4.1 Knowledge-intensive systems

Current knowledge-based systems typically exhibit a rather narrow character--often
described as shallow. Though substantial knowledge is piled up in the rules, capable of
being released appropriately to perform the task, there is no ability to reason further with
that knowledge. The basic semantics of the task domain is not understood by the sys-
tem. New rules are not learned from experience nor does behavior with the existing
rules become automatically tuned. To point out such limitations is not to be hypercritical
of the current art. Indeed, the important scientific discovery behind the success of Al
knowledge-based expert systems is precisely that sufficient bodies of such shallow
knowledge could be assembled, without any of the supporting reasoning and under-
standing ability, and still prove adequate to perform real consultation tasks in the medi-
cal and industrial world.

A major-and widely recognized--item on the agenda for expert systems research is
to transform the current generation of systems so that they are no longer shallow.
Researchers differ on which aspect to tackle first, but candidates are plentiful: reasoning
power; internal semantic models; learning ability; explanation ability. Increased reason-
ing power implies combinatorial search in conjunction with extensive knowledge bases.

* Internal semantic models imply large data structures and the corresponding processing
power to manipulate them. Learning ability implies finally getting beyond the volume of

4-1

FNAL REPORT, 198957 MACHINE INTELLIGENCE

* rules that can be encoded by hand, thus opening the way to systems with 105 and ul-
timately 106 rules. Such immense rule bases will result not only from extending the
scope and depth of knowledge in rule-based systems, but also from introducing
automatic learning techniques. Automatic learning is likely to increase by an order of
magnitude the density of rules that represent a given microbody of knowledge and its
applicability.

4.1.1 Knowledge-intensive problem solving, Soar

In the Soar project, we have developed a general architecture for solving problems
and learning. Research sites around the country have recently begun using a rule-
based system embodying our Soar architecture [Laird&.86.Soar] and our ultimate goal
is to give it all the capabilities it needs to display the full range of intelligent behavior-
problem solving, planning, diagnosis, design, learning, etc..

Soar represents all cognitive activity as heuristic search of problem spaces. Its objec-
tive is to find a viable path from a given initial state to a desired final state. Soar and our
research strategy for its development should be understood within the context of several
decades of research on problem spaces and production systems. Productions, contain-
ing both search control and instructions for implementing primitive operators, represent
Soar's long-term knowledge about a problem space. Failure to progress toward a solu-
tion produces an "impasse". The architecture detects the impasse then establishes a

* subgoal to resolve it. When subgoal searches terminate, Soar builds productions
(chunks) that summarize processing within the subgoal. Soar can then reuse its
experience-derived chunks to speed future problem solving in equivalent situations.

The project was originally located entirely at CMU, but in mid-1984, it became a dis-
tributed effort among CMU, Xerox PARC and Stanford University (when Laird moved to
PARC and Rosenbloom moved to Stanford). Much of fall 1984 and spring 1985 was
spent establishing the research at these new locations. In June 1985, we summarized
the part of the research program that focused on learning. We solidified our under-
standing of chunking in Soar (its learning mechanism) by showing that if Soar were
given the appropriate tasks, it would automatically accomplish the macro-operator-
learning scheme developed by Korf [Laird&.85.Chunking].

In 1985, Van de Brug, visiting CMU from DEC, examined a number of different task
decompositions for doing the configuration task and showed that Soar could handle the
same sized tasks as the commercial version used by DEC, and do it within a factor of
about two. Of greater interest, he showed how the basic task structure used by Soar
could be the basis of a rationalized version of R1 (called Proto-R2) which could also
form the basis of a knowledge-acquisition system (called Sear) for Ri-like expert sys-
tems [vandeBrug&.85.Doing]. DEC used this scheme to restructure R1 in 1985.

During the second half of 1986, Soar research at CMU has pursued three main
* thrusts, each of which we believe is crucial to successfully investigating the nature of

intelligence. First. we completed some architectural details that address aspects of in-

4-2

MACHINE INTELLIGENCE FINAL REPORT, 1985-87

* telligence for which the framework was uncommitted. Second, we continued to use
Soar as the foundation of several systems that represent and apply substantial amounts
of knowledge for problem solving in complex domains. Third, we began mapping our
current ideas about Soar into the immense body of data from cognitive psychology, with
the intent of presenting a single system of mechanisms tMat could serve as a unified
theory of human cognition. Each of these research directions is strongly influenced by
work in the other areas and brings together distinct perspectives not often integrated
within artificial intelligence.

For the first research focus, filling in the details of Soar, we concentrated on charac-
terizing the implications of Soar's simple and uniform approach to problem solving and
learning. For example, we allocated substantial effort to the question of how Soar
should acquire new problems to solve. The current method requires a "Soarware
engineer" to analyze the problem and write a set of Soar productions implementing the
problem spaces req-ired. Eventually, we want Soar to build the productions automati-
cally from new task descriptions. We tried several approaches to the task acquisition
problem. Our current strategy has two phases: a comprehension phase that parses the
task description (given in pseudo-natural language), and an interpretation phase that
executes the internal task representation, acquiring chunks as it resolves impasses.
The chunks closely resemble task productions that we would have otherwise built by
hand. Though this task acquisition method is still inefficient and under development, we
have already demonstrated it in the missionaries-and-cannibals and the eights-puzzle

* tasks.

The second concentration of our research is to employ Soar in building knowledge-
intensive systems for "real" tasks. The aim is to duplicate our 1984 success with R1-
Soar, the partial reimplementation of the VAX-configuring expert system. We made sig-
nificant progress towards developing knowledge-based systems in the automatic pro-
gramming domain. Our larger system, Designer-Soar, reimplements and extends
Designer, a prototype automatic algorithm desig; tr. Our objective with Designer-Soar
is to demonstrate that we can profitably integrate diverse knowledge about application
domain, algorithm design, and general problem solving into a single framework for
designing algorithms. It currently designs several simple set and numeric algorithms,
producing data-flow configurations to describe algorithms. A second system, Cypress-
Soar, reproduces much of the behavior of the Cypress system (developed by D. Smith
at Kestral Institute) that designs divide-and-conquer sorting algorithms. Cypress-Soar
has already produced several novel results that combine performance, search, and
learning in this domain, all within a two-month development effort.

Our third research aim is to establish the Soar paradigm as a leading candidate for a
unified psychological theory of cognition. This long-term goal requires Soar's behavior
to explain, or at least be consonant with, the psychological literature covering the com-
plete spectrum of cognitive activity: problem solving, decision making, routine action,
memory, learning, skill, perception, behavior, and language. Substantial parts of the
scheme (problem spaces for problem solving, and chunking for learning and skill ac-
quisition, for example) are already in place. During the contract period, we elaborated

4-3

FINAL REPORT, 198547 MACHINE INTELUGENCE

other parts of a Soar-based cognitive theory. Progress was most significant on the
* specification of Soar's mechanisms for interacting with the external world (the

perception-cognition-motor interface), and the use of mental models. The former
specifies that the perceptual and motor systems interact with encoding and decoding
productions by communicating through working memory. The specification is strongly
constrained by psychological reaction-time data, as well as the current structure of
Soar. For the latter, we used Johnson-Laird's study of mental models as the basis of a
simple system for working with with logical syllogisms.

4.1.2 Acquiring knowledge for aerial image interpretation, MAPS

Interpreting aerial photographs requires extensive knowledge about the scene under
consideration. For example, just knowing the scene type-airport, suburban housing
development, urban neighborhood--can aid in low- and intermediate-level image
analysis and can drive high-level interpretation by constraining searches for plausibly
consistent scene models. Building versatile, automated photointerpreters that incor-
porate such complex knowledge poses a challenging problem.

We have already handcrafted one system that embodies expert photointerpretive
knowledge.
The SPAM system, developed primarily under Defense Mapping Agency sponsorship
and partly with DARPA support, represents one of the few vertically integrated,
knowledge-intensive systems. It utilizes knowledge during all interpretive phases, from
pixels to symbolic objects, from segmenting an initial image to generating and describ-
ing a final scene model. While other systems, such as ACRONYM and 3D Mosaic, focus
on geometric aspects of isolated objects and VISIONS performs two-dimensional seg-
mentations based upon direct mappings between object color and view-specific spatial
relationships, SPAM is unique in employing spatial, structural, and functional knowledge
to perform 2-D and 3-D interpretation of complex scenes.

Our research addresses a broad set of topics within the overall knowledge acquisition
framework. First and foremost, we are interested in automating the process through
which an interpretation system can collect and represent new knowledge-to improve
its performance on existing tasks or to gain proficiency on new tasks. Knowledge
serves primarily to constrain the search for a plausible interpretation. For SPAM'S
original airport scene task, we relied mainly on spatial constraints from airport design
books and, to a lesser extent, on relationships we observed in aerial imagery. Other
task domains, such as aerial suburban scenes, may not have codified spatial
guidelines, though they may exhibit similar patterns across many examples. To function
effectively in such domains, a versatile system must allow users to identify and measure
spatial relationships in representative imagery and then automatically compile the new
information into the photointerpreter. This need for automated support is one of many
and emphasizes the critical role that specialized tools play in assembling and organizing
large knowledge bases.

* We have already developed three powerful tools: an interactive user interface for ac-

4-4

MACHINE INTELUGENCE FINAL REPORT, 198547

quiring scene and spatial knowledge, an automatic compiler that transforms new
knowledge from a schema-based representation into productions directly executable by
our interpretation system, and a performance analyzer that critiques the final image.
During the second half of 1986, we demonstrated the generality of our tools by generat-
ing knowledge rules for a new task, interpreting suburban house scenes, and using our
compiled knowledge to analyze an image set [McKeown&.87.Automating].

In our work with SPAM, we have attempted to identify knowledge sources that do not
suffer such drawbacks as dependency on objects' spectral properties or reliance on
viewpoint-specific spatial relationships. We strive rather to exploit spatial relationships
to generate a reasoning chain by applying multiple constraints across several interpre-
tive levels. While spectral knowledge can play a role in certain domains, we assert that
other types of spatial knowledge offer greater power for interpreting aerial imagery. In
particular, we have found the following knowledge types generally available and effec-
tive:

* Knowledge for determining and defining appropriate scene domain primi-
tives
Knowledge of spatial relationships and co,•straints among the domain
primitives.

*Knowledge of mtiodel decompositions that determine collections of primi-
tives that form "natural" scene components

* Knowledge of methods for combining scene components into complete
* scene interpretations

* Knowledge of how to recognize and evaluate conflicts among competing in-
terpretations

4.1.3 Computational properties of chunks

For several years now, we have been applying the notion of chunking to problem solv-
ing. Briefly, chunking divides a total problem configuration into smaller "chunks", each
of which is easily recognizable and which has properties useful in understanding the
current situation. Our earliest work, in the chess domain, produced a program that
operated on a subset of pawn endings and produced speedups of 1014 over previous
strategies. This result encouraged us to extend the chunking approach to cover the full
domain of pawn endings. Our present program, Chunker, can decompose any pawn
ending into chunks.

The basic problem-solving technique employs selective search augmented by excel-
lent knowledge. Strategic plans and chunk properties, up to a dozen properties per
chunk, form Chunker's knowledge. Once the program identifies a chunk, it can look up
the chunk's properties in a data base, or in case of an unusual chunk, compute the
properties dynamically. Once it has ascertained cach chunk's property values, the
program can operate across chunks to identify which side is ahead and what alternative

* plans each side has. Each chunk restricts what is possible and, out of this reduced
search space, alternative plans come quite easily.

4-5

FINAL REPORT, 198547 MACHINE INTELLIGENCE

We have exerted considerable care to order plans according to potency and likelihood
of success. It is quite possible that the most potent plan in a position can, given the
vadous chunk properties, be pronounced to be a win for one side without any further
investigation. In such cases the search immediately backtracks to other issues that
have yet to be resolved. When the Chunker cannot statically determine a plan's out-
come, the search proceeds until the plan either succeeds or is found lacking in some
significant way. The solution to difficult problems cannot immediately be looked up, or
found through only a moderate amount of combinatoric investigation. To solve
problems such as this, it is necessary to have enough accurate domain knowledge to
be able to rule out alternatives, that under a less stringent appraisal may appear to be
plausible. Only in this way is it possible to search a meaningful subset of the many pos-
sible trees of alternatives. It is in this, that Chunker excels.

Chunker can now solve approximately 70% of the problems in the most comprehen-
sive pawn-endings text.
The book presents an authoritative treatise on all aspects of the subject, including those
at the highest level. Most of its exercises challenge even the world's best players. The
problems require showing that a proposed plan will win against any possible coun-
terplan or demonstrating that there is no viable winning plan. Showing that a plan wins
or fails to win against a particular counterplan generally involves a highly directed
search. Chunker has found about 20 major errors in the book of 1600 problems. It has
also found about 30 alternative solutions. One interesting aspect of these errors, is
similar to what occurred in the original Chunker work: There is a particular maneuver
which can be used to save certain types of positions which is apparently unknown or at
least not well known. Chunker has found this maneuver in a number of problems. In
any case, we consider Chunker to be just about equal to the highest human level of per-
formance in this domain.

4.2 Machine learning

Learning-including acquiring new information, formulating new heuristics, adapting
to new situations, and refining problem-solving skills-forms a major component of intel-
ligent behavior. We are investigating aspects of machine learning that include experien-
tial learning in problem solving and integrated systems that adapt to new environments.
Much of the earlier research into machine learning takes the form of learning from ex-
amples in which the machine has no opportunity to manipulate the situation and to per-
form experiments to gain more knowledge. In the World Modelers and Prodigy projects,
we are pursuing a more interactive approach. While expert systems have demonstrated
their power and utility in many domai:,s, manually acquiring the requisite knowledge
from an expert and transforming it into formal rules typically remains a time-consuming
and difficult process. Machine learning techniques offer a potential solution to the
"knowledge bottleneck" by automating the knowledge acquisition process. In particular,
by developing problem-solving systems that can learn by experience and instruction, we
can enable human domain experts to transfer their knowledge in a natural and efficient

* manner. The World Modelers project is building a simulated environment in which we

4-6

MACHINE INTEWIGENCE FINAL REPORT, 1985-67

can examine the interactive aspects of learning. The Prodigy project also deals in inter-
active learning but focuses on the learning system itself.

4.2.1 Learning through experience, Prodigy

We are developing the Prodigy system [Minton&.86.1mproving], a "learning
apprentice" intended to facilitate the acquisition of problem-solving expertise. Our ul-
timate objective is to create a unified architecture for building instructable expert sys-
tems in multiple domains, an architecture that enables learning from both expert instruc-
tion and direct experience.
Acquiring problem-solving expertise

The initial version of Prodigy's problem solving architecture was modeled after that of
Strips, and much of the early part of 1985 was devoted to making changes and im-
provements on the Strips approach. These included adding a simple reason-
maintenance system, and enabling the problem solver to have direct control over the
invocation of inference rules as well as operators. A variation of predicate calculus was
adopted as the input language and revised to be more intelligible to human users of the
system. In addition, the problem solver was designed so that its activities could be con-
trolled by the addition of search control rules.

The Prodigy system comprises a general-purpose problem solver integrated with an
explanation-based learning module (EBL) and a knowledge-refinement interface (KRI).

* The Strips paradigm offers a stable, tried-and-true base for our learning research.
Prodigy's problem solver also incorporates a flexible, rule-guided control structure.
Control rules provide a means for distinguishing control knowledge (when to work on a
task) from domain knowledge (how to accomplish a task) and may encode either
domain-specific or domain-independent search heuristics. Prodigy represents all its
knowledge, including control rules and domain operators, using a uniform, logic-based
description language.

Prodigy's EBL facility learns domain-specific control rules by analyzing problem-
solving traces. While previous explanation-based learning systems could learn by
analyzing from problem solutions, EBL can also learn from additional experiences, in-
cluding problem-solving failures and goal interferences. The KRI module enables a
domain expert to instruct and interact with Prodigy. In the second half of 1986, we
added a facility that allows Prodigy to learn from experimentation and handle situations
where its domain operators have been incorrectly or incompletely specified.

New knowledge from current explanations
One challenge in developing systems that can learn from their own experience lies in

how to capture and efficiently exploit relevant experience. Our strategy is to build a
general explanation facility that is also closely tied to Prodigy's steps in solving a
particular problem. This facility will enable Prodigy to explain its problem solutions so
that both it and humans can use the information.

Earlier systems restricted their target concepts to the problem solver's actual goals.

4-7

FINAL REPORT, 198547 MACHINE INTELUGENCE

That is, they could transform a failure to "stack block 27 on cylinder 5" into new
knowledge, but had no higher-level concept for "the stack operator failed at node 7" in
the search tree. In the former case, the mapping from problem-solving trace to causal
explanation is fairly obvious, though limited in applicability. The latter case, however,
requires an explicit means of mapping from trace to explanation proving some more
general concept such as "this operator failed". We have designed an efficient
"explanation-based specialization" (EBS) method that handles the more general case.
Our initial EBS module links EBL and the problem solver, mapping from trace to ex-
planation through explicit discrimination functions that indicate which axioms are ap-
propriate.

Mechanically generated explanations, unfortunately, tend toward arcane verbosity, as
researchers in automatic theorem-proving would agree. Humans have difficulty reading
them and other programs have difficulty evaluating them. EBS is no different, so we
designed a procedure to meet both clients' needs. Our "compression analysis" method
embodies a post-processing strategy that rewrites learned control rules, increasing their
readability and reducing their match cost. The compressor employs partial evaluation,
truth-preserving logical transformations, and domain-specific simplification rules.

Merely identifying and formulating new knowledge cannot guarantee that it will con-
tribute a cost-effective control rule. Quite possibly the time to match a rule with precon-
ditions may exceed any savings in solution time. To address this issue and give
Prodigy a selective learning capability, we designed a method that empirically analyzes
control rule utility, as suggested in [Minton.85.Selectively].
Our metric compares a rule's average match cost to its average savings, adjusting for
application frequency.

Finally, since the ultimate test is how well Prodigy solves a realistic problem, we
created an experimental test domain.
Our domain describes the expertise required for crafting a primary telescope mirror from
raw materials and includes operators for grinding, aluminizing, and polishing. We
produced an initial design for methods of monitoring a solution plan while it executes,
dynamically replanning when reality diverges from expectation, and learning through ex-
periment. These capabilities represent preliminary steps toward learning that can cor-
rect an incomplete or inaccurate world model.

4.2.2 Integrating learning In a reactive environment, World Modelers

The World Modelers Project explores machine isarning within a simulated reactive en-
vironment that facilitates designing, implementing, and testing integrated learning sys-
tems [Carbonell&.86.World]. Researchers can define autonomous "agents" whose
"bodies" can move about the environment, performing simple actions such as pushing
objects. An agent's "mind" resides in a program that learns how to satisfy its predefined
needs and priorities. Our project goals include discovering learning techniques ap-

* plicable to a wide range of real-world learning tasks such as planning and sensory-
motor skill acquisition. We also seek methods for combining such learning techniques

4-8

MACHINE INTELWGENCE RNAL REPORT, 1985-87

to form a complete, autonomous agent that can gradually acquire knowledge through
experience and adapt to a changing environment.

Our work focuses on constructing agents that can survive within the environment for
extended periods. That is, we strive to build complete cognitive systems that continue
acquiring new abilities without losing those they already have. We seek robust learning
techniques that apply in a wide variety of situations and that remain insensitive to small
environmental changes. An agent should be able to obtain food, for example, even if it
knows only approximately where to look. Such techniques offer the greatest promise of
successful transfer to real-world robots that must deal with environments about which
they have incomplete knowledge. During the latter half of 1986, we extended our
agents' cognitive architectures to incorporate learning-from-experiment mechanisms
and built supporting software to help implement such agents.

As a first step toward building organisms capable of interesting learning behavior, we
designed a cognitive architecture partitioned into ten basic components: the internal
state generator, the object and event recognizers, the cognitive map constructor, the fo-
cal attention mechanism, the working memory, the long term memory, the scheduler,
the planner, and the schema-learning mechanisms [Mozer&.85.Architecture]. We
designed the architecture as a framework within which sub,:,,stems could be indepen-
dently designed and implemented. During the first half of 1985, we completed design-
ing and implementing one such subsystem, a schema-based event memory.

Extending agent architectures

,:) create a substrate for more sophisticated abilities, we developed a method of ac-
tivr' learning through which an agent can exploit environmental feedback to refine its un-
derstanding of operator capabilities. This experimental learning-trying an action se-
quence and observing the result, in effect-permits an agent to begin "life" from a very
basic specification and almost no knowledge of its world. Our method allows an agent
to :mprove its knowledge by discovering which environmental features are relevant to
seiecting a particular operator. When its initially simple operator descriptions prove in-
adequate to identify an effective operator, the agent can enrich the descriptive
templates. To develop a new template feature, the agent searches heuristically for a
lirnar discriminator function that will distinguish cases where the operator succeeds
fromn those where it fails unexpectedly.

Sotware for building agents

Lach learning agent needs an interface between itself and the environment
sinmulator-the "mind-body," connection. Such an interface provides mechanisms for
transforming and filtering the available, potentially voluminous sensory data down to
those few data that the agents' higher cognitive mechanisms can perceive directly. We
designed and implemented a generalized sensor-effector interface that meets this need.
Our design provides a set of shared utilities and offers sufficient versatility that it will
reduce the code each investigator must write when building a new agent.

In another move to simplify building agents, we implemented a production system
* package that combines frame-like data structures with priority-ordered control rules.

4-9

FINAL REPORT, 198547 MACHINE INTELLIGENCE

Our Rulekit package employs a fast, Rete-style match algorithm and, due to its in-
* hertance capability, offers more powerful and flexible pattern-matching than standard

OPS packages. Rulekit's conflict-resolving mechanisms, based on agendas, also yield
greater flexibility and facilitate obtaining desirable agent behavior. We can, for example,
assign invocation precedence to higher-priority rules. This strategy would allow intense
sensory data, such as a loud noise, to interrupt an agent's current activity and let the
agent attend to a more urgent stimulus. Rulekit provides a general-purpose Al tool,
simplifying the investigator's task by transparently handling such issues as match ef-
ficiency. Beyond the World Modelers domain, other projects in machine learning and
expert systems have recognized Rulekit's value and currently use it.

Seeing what transpires within the simulated physical environment has proven crucial
to debugging the simulator. We recently upgraded our monitoring capability by im-
plementing a graphical interface on a Sun workstation. The interface allows inves-
tigators to monitor agents' behavior as they interact with other agents and objects. The
new implementation exploits specialized color graphics hardware to achieve a hundred-
fold increase in drawing speed and a tenfold increase in resolution over our previous
implementation. With it, we have identified and corrected numerous previously un-
detected qualitative problems in collision resolution.

Finally, we shipped our world simulator to the UC-Irvine group, which will also use it to
study learning within reactive environments.
They, however, will investigate a different task set and will probably test the environ-

* ment in areas where our group has not ventured. Our success in exporting the
simulator augurs well for porting the system to other sites, too.

4.3 Massively parallel architectures

Humans apparently solve problems in a "knowledge-intensive" mode, applying small
amounts of search when necessary. The human strategy is flexible and avoids the
need to encode all knowledge. Many successful Al systems mimic the human style and
expert systems offer the prime example. Competitive gaming systems typically employ
the opposite scheme, relying primarily on search.

In the quest for higher performance, "more of the same" offers diminishing amounts of
"better". Clearly, a more productive approach would evolve knowledge-intensive sys-
tems toward increased search or introduce intelligence into search-; ntensive systems.
Our research offers an opportunity to study the effects of extremely fast-and relatively
clever-searches in very large problem spaces. The opportunity here is significant be-
cause we have no experience with intelligent systems, human or mechanical, solving
problems in this manner.

4-10

MACHINE INTELUGENCE FNAL REPORT, 198547

4.3.1 Parallel search and pattern recognition

Our work on parallel architectures has concentrated mainly on the Hitech chess
machine, which achieves its success from parallelism in the right places. Hitech has
now reached a National rating of 2359, making it approximately the 1 8 0 th best US chess
player.

Hitech's search algorithm must identify possible moves, determine whether a given
position is legal, recognize positions seen before, and evaluate the candidate position,
among other things. To minimize elapsed time, Hitech performs these tasks in parallel.
This strategy alone allows it to process approximately 175,000 positions/s, comparable
to the fastest chess program on a 4XMP-Cray.

Parallelism is most crucial in the evaluation stage. At Hitech's search rate, it can
spend, at most, one microsecond evaluating each position. During that interval, a
super-fast, general-purpose machine could execute possibly 50 instructions, a number
that could not go very far in evaluating a complex situation, even given the power of
vector instructions. We have found that pattern recognition complements Hitech's
powerful search extremely well, though other systems typically avoid it because either:

"* On a serial machine, examining all potential patterns is simply too expen-
sive.

"* Where pattern-specific hardware is employed, adding a new pattern or
changing an old one means building new hardware.

0 -Hitech avoids these problems by having programmable pattern recognition hardware.
At present there are 22 such units, each capable of recognizing patterns of limited com-
plexity. Before Hitech begins a search, a software Oracle analyses the root position
and decides which patterns from its pattern library should be loaded into each unit. This
provides both speed and flexibility, since the loading occurs only once per search.
Since we incorporated the parallel pattern appropch, Hitech's rating has climbed about
200 points, or one full rating category from high Expert to high Master.

4.3.2 SUPREM: A new search architecture

Out of our Hitech research has emerged a new search architecture, which we call
SUPREM (Search Using Pattern Recognition as an Evaluation Mechanism). The system
architecture has two parts:

" The Oracle is SUPREEM'S primary knowledge repository and has all
knowledge the system needs to operate. Since the knowledge is domain-
dependent, each domain requires a unique Oracle. After having performed
an analysis on the root position, the Oracle selects which patterns should
be loaded into which units, and directs the compilation of these patterns
and their down-loading.

"* The Searcher executes the search, and evaluates the nodes of the search
tree. This involves a move generator that can order the legal moves ac-
cording to their potency, so that likely best solutions are tried first. It also

4-11

FINAL REPORT, 108547 MACHINE INTELLIGENCE

involves evaluation using the Pattern Recognizer units. These units
retrieve values whenever the candidate state-as a pattern of state com-
ponents - matches pre-tabulated patterns in the recognizer memory. The
outputs of these recognizer units is summed to form the evaluation of a
node. The tree of possibilities is evaluated in the usual way by backing up
the values of leaf nodes to produce a more informed view of what the value
of any action at the root really is.

During 1986, the pattern recognizing units were made more powerful, so as to allow
global context- the most essential characteristics of the current state- to influence the
evaluation. For instance, the interest in King safety is very much dependent upon how
much opponent material exist for attacking the King. As the amount of material lessens,
so does the interest in protecting the King. In 1987, we have been developing software
to take advantage of this new hardware. This is a difficult undertaking involving much
tuning to determine just what the global state variables (which we have called Applica-
tion Coefficients in earlier work) should look like, and how much influence each should
have.

We have also been working on new search algorithms since it is becoming apparent
that in order to play chess at the highest level, it will be necessary to search deeper
than any chess machine can at present. To this end a new 2nd generation hardware
move generator has been built which is faster than the Hitech move generator, only re-
quires a single chip, and can be paired with other identical chips to make a multiproces-

* sor searching several parts of the tree at the same time. This chip with very rudimen-
tary support was able to achieve an even score in the 1986 ACM North American Com-
puter Chess Championship.

4.3.3 Boltzmann Networks

The Boltzmann Machine group, an interdisciplinary research team from the Computer
Science and Psychology departments, is investigating a class of fine-grained, massively
parallel computer architectures that may allow us to build a fast, general recognition en-
gine. The machine can be trained by showing it examples of the desired input/output
mappings and has some capacity for generalizing from the cases it has seen to similar
cases. Boltzmann networks resemble neuron networks and may help us to understand
how such operations are carried out by the human brain. In addition, Boltzmann net-
works are good candidates for wafer-scale VLSI technology because they employ a dis-
tributed representation that is inherently fault-tolerant.

We conducted a series of experiments on small-scale Boltzmann networks using
simulators. At present, we have an interesting mathematical result that guarantees a
certain learning procedure will build internal representations that allow the connection
strengths to capture the underlying constraints implicit in a large ensemble of examples
taken from a domain. We also have simulations that show that the theory works for
some simple cases, but the current version of the learning algorithm is very slow

* [Ackley&.85. Learning].

4-12

MACHINE INTELGENCE FNAL REPORT, 19W4-67

In an attempt to speed up the learning, we are investigating variations on the
Boltzmann learning algorithms. We are focusing on back-propagation, a technique that
was discovered by Hinton, along with Rumelhart and Williams of UCSD. Back-
propagation learns from examples without the costly "simulated annealing" searches of
the Boltzmann architecture. Similar techniques were considered years ago, but were
rejected because the learning process could get stuck. Fortunately, we have found,
based on simulations, that this seldom happens in practice, and for some kinds of
problems, back-propagation is one or two orders of magnitude faster than the pure
Boltzmann architecture [Hinton&.86.Distributed].

Boltzmann and back-propagation networks are naturally suited for recognition tasks
because the networks are trained to produce some particular response for a given class
of inputs. But, to broaden the architecture's application to more than just recognition
tasks, Touretzky has been studying the problem of building more conventional symbol-
processing Al architectures on a connectionist substrate [Touretzky&.85.Symbols].

Our research is funded by the System Development Foundation, NSF, and DARPA.

4.4 Rational control of reasoning

On the more theoretical side of Machine Intelligence, Doyle has been investigating
issues related to rational control of reasoning. Rational control of reasoning aims at in-

* creasing the power, flexibility, and reliability of knowledge-based systems. Current
techniques are relatively unreliable and inflexible, since they may fail on one problem
even though they succeed on closely related ones, and since excessive effort is often
necessary to revise them to correct such failures. Rationally controlled reasoning
reduces unreliability, for the hallmarks of rationality are flexibility and comprehensive-
ness, taking everything into account. Doyle's research uses tools from modem logic,
decision theory, and the theory of algorithms to develop formal specifications and
designs for agents that rationally and deliberately control their own reasoning and or-
ganization as well as their external actions.

Doyle first explains each of the central topics in Al in terms of ratiotially planned and
conducted revisions of the agent's attitudes. Rationally adopting and revising beliefs
and probabilities forms the basis of reasoning, learning, and reason maintenance. Ra-
tionally adopting and revising goals and preferences forms the basis of problem solving,
search, and decision making. Rationally adopting and revising intentions and priorities
forms the basis of planning. Further, most issues concerning meta-reasoning, reflec-
tion, and control of reasoning are more clearly described and evaluated as aspects of
rationally planned reasoning.

Doyle then applies theories from logic and decision theory to formalize the special
sorts of decisions that arise in controlling one's own reasoning. These formalizations
connect the common non-numerical Al techniques with the common numerical statis-
tical techniques in a theoretically rigorous way. This permits ready connections be-
tween ideas and techniques in Al and ideas and techniques in logic, statistics, decision

4-13

FINAL REPORT, 198547 MACHINE INTELLIGENCE

theory, economics, and operations research, facilitating transportation of good ideas
and techniques into and out of Al.

During the first half of 1987, Doyle completed a monograph on rational control, and
began circulating the draft in July 1987. The monograph, titled Artificial Intelligence and
Rational Self-Government, is an initial presentation of the rational view of artificial intel-
ligence theories. One specific accomplishment is an application of Dana Scott's theory
of information systems to describing the internal logic of the agent's states. This theory
addresses some sort of unreliability through notions of constitutive logics and constitu-
tive intentions, which are limited logics and self-specifications that the agent automati-
cally respects without special control. Such abstract logics permit formal presentations
of Al architectures that are just as rigorous as formal theories of programming language
semantics.

Another accomplishment is a formal theory of decision-making under incomplete and
inconsistent beliefs and preferences. This theory is based on qualitative comparisons of
relative likelihood and preferability, and consistent selections from inconsistent sets.
Expressing rational control knowledge qualitatively instead of in terms of inconvenient
numerical representations enhances the flexibility with which the agent's beliefs may be
modified, either by itself or by its informants during knowledge acquisition. As an added
attraction, one special case of this theory is formally identical to the standard theory of
group decision-making and public choice. This means that ideas about decision-making
with conflicting preferences developed in the study of political, social, and business or-

* ganizations may be readily transformed into techniques with which artificial agents
might overcome inconsistencies in their knowledge.

4-14

MACHINE INTELLIGENCE FINAL REPORT, 198547

4.5 Bibliography

[Ackley et al. 85] Ackley, D.H., G.E. Hinton, and T.J. Sejnowski.
A learning algorithm for Boltzmann machines.
Cognitive Science9(1), January-March, 1985.

The computational power of massively parallel networks of
simple processing elements resides in the communication
bandwith provided by the hardware connections between
elements. These connections can allow a significant frac-
tion of the knowledge of the system to be applied to an in-
stance of a problem in a very short time. One kind of com-
putation for which massively parallel networks appear to be
well suited is large constraint satisfaction searches, but to
use the connections efficiently two conditions must be met:
first, a search technique that is suitable for parallel net-
works must be found; second, there must be some way of
choosing internal representations which allow the preexist-
ing hardware connections to be used efficiently for encod-
ing the constraints in the domain being searched. We
describe a general parallel search method, based on
statistical mechanics, and we show how it leads to a
general learning rule for modifying the connection
strengths so as to incorporate knowledge about a task
domain in an efficient way. We describe some simple ex-
amples in which the leaming algorithm creates internal
representations that are demonstrably the most efficient
way of using the preexisting connectivity structure.

[Berliner and Ebeling 86]
Berliner, H. and C. Ebeling.
The SUPREM architecture: a new intelligent paradigm.
Artificial Intelligence28:3-8, 1986.
No abstract appeared with the paper.

[Bisiani 87] Bisiani, R.
A software and hardware environment for developing Al applications

on parallel processors.
In Proceedings of the 5th National Conference on Al, AAAI, August,

1987.
This paper describes and reports on the use of an environment,

called Agora, that supports the construction of large, com-
putationally expensive and loosely-structured systems, e.g.
knowledge-based systems for speech and vision under-
standing. Agora can be customized to support the pro-
gramming model that is more suitable for a given applica-
tion. Agora has been designed explicitly to support mul-
tiple languages and highly parallel computations. Systems
built with Agora can be executed on a number of gneral
purpose and custom multiprocessor architectures.

4-15

FINAL REPORT, 198547 MACHINE INTELLIGENCE

[Carbonell 85] Carbonell, J.G.
Derivational analogy: A theory of reconstructive problem solving and

expertise acquisition.
Technical Report CMU-CS-85-115, Carnegie Mellon University Com-

puter Science Department,
March, 1985.

Derivational analogy, a method of solving problems based on
the transfer of past experience to new problem situations,
is discussed in the context of other general approaches to
problem solving. The experience transfer prolcess consists
of recreating lines of reasoning, including decision se-
quences and accompanying justifications, that proved ef-
fective in solving particular problems requiring similar initial
analysis. The role of derivational analogy in case-based
reasoning and in automated expertise acquisition is dis-
cussed.

[Carbonell and Hood 85]
Carbonell, J.G. and G. Hood.
The World Modelers project: objectives and simulator architecture.
In Proceeding of the Third International Machine Learning Workshop,

June, 1985.
Machine learning has long sought to construct complete,

autonomous learning systems that start with general in-
ference rules and learning techniques, and gradually ac-
quire complex skills and knowledge through continuous in-
teraction with an information-rich external environment.
The World Modelers project provides a simplified artificial
environment -- a continuous three-dimensional physical
model of the world -- to facilitate the design, implemen-
tation, and testing of integrated learning systems. This
paper presents the rationale for building the simulator, and
briefly describes its capabilities and the system architec-
ture underlying its implementation.

[Carbonell and Hood 86]
Carbonell, J.G. and G. Hood.
The world modelers project: learning in a reactive environment,
In Mitchell,T.M., J.G. Carbonell, and R.S. Michalski, Machine learn-

ing: a guide to current research, Pages 29-34. Kluwer Academic
Press, 1986.

No abstract appeared with the paper.

[Doyle 85a] Doyle, J.
Circumscription and implicit definability.
Journal of Automated Reasuningl :391-405, 1985.

We explore some connections between the technique of cir-
cumscription in artificial intelligence and the notion of im-
plicit definition in mathematical logic. Implicit definition can
be taken as the informal intent, but not necessarily the for-

4-16

MACHINE INTELLIGENCE FINAL REPORT, 1985-87

mal result, of circumscription. This raises some questions
for logical theory and suggests some implications for artifi-
cial intelligence practice. The principal implication is that
when circumscription 'works' its conclusions can be ex-
plicitly described.

[Doyle 85b] Doyle, J.
Expert systems and the 'myth' of symbolic reasoning.
IEEE Transactions on Software EngineeringSE-11 (11), November,

1985.
Elements of the artificial intelligence approach to expert sys-

tems offer great productivity advantages over traditional
approaches to application systems development, even
though the end result may be a program employing Al
techniques. These productivity advantages are the hidden
truths behind the 'myth' that symbolic reasoning programs
are better than ordinary ones.

[Doyle 85c] Doyle, J.
Reasoned assumptions and pareto optimality.
Technical Report CMU-CS-85-121, Carnegie Mellon University Com-

puter Science Department,
December, 1985.

Default and non-monotonic inference rules are not really epis-
temological statements, but are instead desires or
preferences of the agent about the makeup of its own men-
tal state (epistemic or otherwise). The fundamental rela-
tion in non-monotonic logic is not so much self-knowledge
as self-choice of self-determination, and the fundamental
justification of the interpretations and structures involved
come from decision theory rather from logic and epistemol-
ogy.

[Goetsch 86] Goetsch, G.
Consensus: a statistical learning procedure in a connectionist

network.
Technical Report CMU-CS-86-131, Carnegie Mellon University Com-

puter Science Department,
May, 1986.

We present a new scheme for the activity of neuron-like ele-
ments in a connectionist network. The CONSENSUS
scheme is based on statistical inference. The guiding prin-
ciple of CONSENSUS is that decisions should be deferred
until sufficient evidence accumulates to make an informed
choice. Consequently, large changes in network structure
can be made with confidence. Nodes have an awareness
of their role and utility in the network which allows them to
increase their effectiveness. The reinforcement scheme
utilizes the notion of confidence so that only nodes proven
to contribute successfully issue reinforcements. Nodes are

4-17

FINAL REPORT, 1985-87 MACHINE INTELL ,'GENCE

grouped into communities to exploit their collective
knowledge which exceeds any individ,,al member. The
netwo-k was tested against several problemns and was able
to find suitable encodings to solve them.

[Gupta et al. 86] Gupta, A., C. Forgy, A. Newell, and R. Wedig.
Parallel algorithms and architectures for rule-based systems.
In Thirteenth Annual International Symposium on Ccrnputer

Architecture, IEEE, June, 1986.
Rule-based systems, on the surface, appear to be capable of

exploiting large amounts of paralle!ism-it is possible to
match r.,ach rule to the data memjry in parallel. In prac-
tice, however, we s'iow that the speed-up from parallelism
is quite limited, 1ess than 10-fold. The reasons for the
small speed-up are: (1) the small number of rules relevant
to each change to data memory; (2) the large variation in
the processing required by the relevant rules; and (3) the
small mimber of changes made to data memory between
synchronization steps. Furthermore, we observe that to
obtain 'his limited factor of 10-fold speed-up, it is neces-
sary to bxDloit parallelism at a very fine granularity. We
propose that a suitable architecture to exploit such fine-
grain parallelism is a bus-based shared-memory mul-
tiprocessor with 32-64 processors. Using such a mul-
tiprocessor (with individual processors wr,,"king at 2 MIPS),
it is possible to obtain execution speeds of about 3800
rule-firings/sec. This speed is significantly higher than that
obta*,ned by other proposed parallel implementations of
rule-based systems.

[Gupta et al. 87] Gupta, A., C.L. Forgy, D. Kalp, A. Newell, and M. Tambe.
Results of parallel implementation of OPS5 on the Encore

multiprocessor.
Technical Report CMU-CS-87-146, Carnegie Mellon University Com-

puter Science Department,
August, 1987.
Anoop Gupta is now a member of the Computer Science Depart-

ment, Stanford University.
Until now, most results reported for parallelism in production

systems (rule-based systems) have been simulation
results -- very few real parallel implementations exist. In
this paper, we present results from our parallel implemen-
tation of OPS5 on an Encore multiprocessor with 16 CPUs.
The implementation exploits very fine-grained parallelism
to achieve significant speed-up. Our implementation is dis-
tinct from other parallel implementations in that we attempt
to parallelize a highly optimized C-based implementation of
OPS5. This is in contrast to other efforts where slow lisp-
based implementations are being parallelized. The paper

4-18

MACHINE INTELLIGENCE FINAL REPORT, 198547

discusses both the overall structure and the low-level
issues involved in the parallel implementation and presents
the performance numbers that we have obtained.

[Hinton and Lang 85]
Hinton, G.E. and K.J. Lang.
Shape recognition and illusory conjunction.
In IJCAI-85, Pages 252-259. IJCAI, 1985.

One way to achieve viewpoint-invariant shape recognition is to
impose a canonical, object-based frame of reference on a
shape and to describe the positions, sizes and orientations
of the shape's features relative to the imposed frame. This
computation can be implemented in a parallel network of
neuron-like processors, but the network has a tendency to
make errors of a peculiar kind: When presented with
several shapes it sometimes perceives one shape in the
position of another. The parameters can be carefully tuned
to avoid these 'illusory conjunctions' in normal cir-
cumstances, but they reappear is the visual input is
replacpd by a random mask before the network has settled
down. Treisman and Schmidt (1982) have shown that
people make similar errors.

[Hinton et al. 86] Hinton, G.E., J.M. McClellarnd, and D.E. Rumelhart.
Distributed representations,
In Rumelhart, D.E. -.nd J.L. McClelland, Parallel Distributed Process-

ing: Explorations in the Microstructure of Cognition. Bradford
Books/MIT Press, 1986.
Every representational scheme has its good and bad points.

Distributed representations are no exception. Some
desirable properties arise very naturally from the use of
patterns of activity as representations. Other properties,
like the ability to temporarily store a large set of arbitrary
associations, are much harder to achieve. As we shall
see, the best psychological evidence for distributed
representations is the degree to which their strengths and
weaknesses match inose of the human mind.

The first section of this chapter stresses some of the virtues of
distributed representations. The second section considers
the efficiency of distributed representations, and show
clearly why distributed representations can be better than
local ones for certain classes of problems. A final section
discusses some difficult issues which are often avoided by
advocates of distributed representations, such as the
representation of constituent structure and the sequential
focusing of processing effort on different aspects of a
structured object.

4-19

FINAL REPORT, 198547 MACHINE INTELLIGENCE

[Hood 85] Hood, G.
Neural modeling as one approach to machine learning.
In Proceeding of the Third International Machine Learning Workshop,

June, 1985.
In this paper I propose that a neural modeling approach is

reasonable for investigating certain low-level learning
processes such as are exhibited by invertebrates. These
include habitation, sensitization, classical conditioning, and
operant conditioning. Recent work in invertebrate
neurophysiology has begun to provide much knowledge
about the underlying mechanisms of learning in these
animals. Guided by these findings, I am constructing simu-
lated organisms which will display these basic forms of
learning.

r[wasaki 87] Iwasaki, Y.
Generating behavior equations from explicit representation of

mechanisms.
Technical Report CMU-CS-87-131, Carnegie Mellon University Com-

puter Science Department,
June, 1987.

The methods of causal ordering and comparative statics provide
an operational means to determine the casual relations
among the variables and mechanisms that describe a
device, and to assess the qualitative effects of a given dis-
turbance to the system. However, for correct application of
the method of causal ordering, the equations comprising
the model of the device must be such that each of them
stands for a conceptually distinct mechanism. In this paper,
we discuss the issue of building a model that meets this re-
quirement and present our solution. The approach we
have taken for building device models in our domain of a
power plant is to represent explicitly one's understanding
of mechanisms underlying an equation model as flows of
matter and energy. A system was implemented to
generate structural equations automatically from this
representation. We discuss the results and some of the
problems encountered along the way.

[Iwasaki and Simon 85]
Iwasaki, Y. and H. Simon.
Causality in device behavior.
Technical Report CMU-CS-85-118, Carnegie Mellon University Com-

puter Science Department,
March, 1985.

This paper shows how formal characterizations of causality and
of the method of comparative statics, long used in
economics, thermodynamics and other domains, can be
applied to clarify and make rigorous the qualitative causal

4-20

MACHINE INTEWGENCE FINAL REPORT, 1985-7

calculus recently proposed by de Kleer and Brown (1984).
The formalization shows exactly what assumptions are re-
quired to carry out causal analysis of a system of inter-
dependent variables in equilibrium and to propagate distur-
bances through such a system.

[Iwasaki and Simon 86]
Iwasaki, Y., and H. Simon.
Theories of causal ordering: reply to de Kleer and Brown.
Technical Report CMU-CS-86-104, Carnegie Mellon University Com-

puter Science Department,
January, 1986.

In their reply to our paper, CAUSALITY IN DEVICE BEHAVIOR, DE
KLEER AND BROWN (COMMENTS seek to establish a clear
product differentiation between the well-known concepts of
causal ordering and comparative statics, on the one side,
and their mythical causality and qualitative physics, on the
other. Most of the differences they see, however, are in-
visible to our eyes. Contrary to their claim, the earlier no-
tion of causality, quite as much as the later one, is qualita-
tive and derives the relationship between the equations
and their un.derlying components which comprise the
modeled system. The concepts of causal ordering and
comparative statics offer the advantage of a formal foun-
dation that makes clear exactly what is being postulated.
Hence, they can contribute a great deal to the clarification
of the causal approaches to system analysis that de Kleer
and Brown are seeking to develop.

In this brief response to the Comments, we discuss the source
of the structural equations of the causal ordering approach,
and we challenge more generally the claim that there are
inherent differences (e.g.,in the case of feedback) between
the engineer's and the economist's approach to the study
of system behavior.

[Kahn and McDermott 85]
Kahn, G. and J. McDermott.
MUD: a drilling fluids consultant.
Technical Report CMU-CS-85-116, Camegie Mellon University Com-

puter Science Department,
March, 1985.

This paper reports on MUD, a drilling fluids consultant
developed at Carnegie-Mellon University. MUD is able to
diagnose fluid problems and recommend treatments for
their correction. MUD's functionality, its approach to diag-
nosis, and its treatment strategies are discussed. In ad-
dition, we examine why MUD's approach to diagnosis is
successful given domain constraints, and draw several
conclusions with respect to knowledge acquisition
strategies.

4-21

FINAL REPORT, 196547 MACHINE INTELLIGENCE

e [Kant and Newell 83]
Kant, E. and A. Newell.
An automatic algorithm designer: An initial implementation.
In Proceedings of the Third Annual Meeting of the American Associa-

tion for Artificial Intelligence, AAAI, August, 1983.
This paper outlines a specification for an algorithm design sys-

tem (based on previous work involving protocol analysis)
and describes an implementation of the specification that is
a combination frame and production system. In the im-
plementation, design occurs in two problem spaces -- one
about algorithms and one about the task-domain. The par-
tially worked out algorithms are represented as configura-
tions of data-flow components. A small number of general
purpose operators construct and modify the represen-
tations. These operators are adapted to different situations
by instantiation and means-ends analysis rules. The data-
flow space also includes symbolic and test-case execution
rules that derive the component-refinement process by ex-
posing both problems and opportunity. A domain space
about geometric images supports test case execution,
domain-specific problem solving, recognition and dis-
covery.

[Kulkarni and Simon 86]
Kulkarni, D. and H.A. Simon.
The processes of scientific discovery: the strategy of

experimentation.
Technical Report CMU-CS-86-1 11, Carnegie Mellon University Com-

puter Science Department,
February, 1986.

This paper is part of a program of research aimed at studying
the processes of scientific discovery by constructing com-
puter programs that are capable of making discoveries and
that simulate, at a grosser or finer level of approximation,
the paths that have been followed by distinguished scien-
tists on their roads to important discoveries. Predecessors
to this paper include the work of Buchanan and others on
MetaDENDRAL, of Lenat on AM and of Langley, Simon,
Bradshaw, and Zytkow on BACON and related programs.

Since scientific discovery involves a whole array of activities--
designing and performing experiments, inferring theories
from data, modifying theories, inventing instruments, and
many others--any single inquiry will perforce focus on
some special aspects of the whole process. The research
on BACON, for example, was concerned mainly with the
ways in which theories could be generated from empirical
data, with little or no help from theory. The question of
where the data themselves came from was left un-
answered. The processes of designing experiments and
programs of observation were not investigated.

4-22

MACHINE INTELLIGENCE FINAL REPORT, 1985-87

This present paper represents a first investigation of some of
the domains left unexplored by the previous research. It
was made possible by the existence of a detailed historical
study of a particular scientific discovery: Hans Kreb's
elucidation of the chemical pathways for synthesis of urea
in the liver.

[Laird 85] Laird, J.E.
Soar 4.0 user's manual
1985.

The Soar software is available for non-commercial research
purposes and it may be copied only for that use. Any
questions concerning the use of Soar should be directed to
John E. Laird at the address below. This software is made
available AS IS and Xerox Corporation makes no warranty
about the software, its performance, or the accuracy of this
manual describing the software. All aspects of Soar are
subject to change in future releases.

John E. Laird Xerox Corporation Palo Alto Research Centers
Palo Alto, California 94304

[Laird et al. 85a] Laird, J.E., P.S. Rosenbloom, and A. Newell.
Chunking in Soar: the anatomy of a general learning mechanism.
Technical Report CMU-CS-85-154, Carnegie Mellon University Com-

puter Science Department,
August, 1985.

The goal of the Soar project is to build a system capable of
general intelligent behavior. We seek to understand what
mechanisms are necessary for intelligent behavior,
whether they are adequate for a wide range of tasks - in-
cluding search-intensive tasks, knowledge-intensive tasks,
and algorithmic tasks - and how they work together to form
a general cognitive architecture. One necessary com-
ponent of such an architecture, and the one on which we
focus in this paper, is a general learning mechanism. A
general leaming mechanism would possess the following
properties. Task generality. It can improve the system's
performance on all of the tasks in the domains.
Knowledge generality. It can base its improvements on
any knowledge available about the domain. Aspect
generality. It can improve all aspects of the system.
Otherwise there would be a wandering-bottleneck
problerýn which those aspects not open to improvement
would come to dominate the overall performance effort of
the system. Transfer of learning. What is learned in one
situation will be used in other situations to improve perfor-
mance. It is through the transfer of learned material that
generalization, as it is usually studied in artificial intel-

* ligence, reveals itself in a learning problem solver.

4-23

FINAL REPORT, 198547 MACHINE INTELLIGENCE

There are many possible organizations for a general learning
mechanism, each with different behavior arid implications.
The one adopted in Soar is the simple experience learner.
There is a single learning mechanism that bases its
modifications on the experience of the problem solver. The
learning mechanism is fixed, and does not perform any
complex problem solving.

[Laird et al. 85b] Laird, J., P. Rosenbloom, A. Newell, J. McDermott, and E. Orciuch.
Two Soar studies.
Technical Report CMU-CS-85-1 10, Carnegie Mellon University Com-

puter Science Department,
January, 1985.

The first paper is titled Towards Chunking as a General Learn-
ing Mechanism (Laird,Rosenbloom,& Newell, 1984).
Chunks have long been proposed as a basic organiza-
tional unit for human memory. More recently chunks have
been used to model human learning on simple perceptual-
motor skills. In this paper we describe recent progress in
extending chunking to be a general learning mechanism by
implementing it within Soar. By implementing chunking
within a general-problem solving architecture we take sig-
nificant steps toward a general problem solver that can
learn about all aspects of its behavior. We demonstrate
chunking is Soar on three tasks: the Eight Puzzle, Tic-Tac-
Toe, and a part of the R1 coinputer-configuration task. Not
only is there improvement with practice but chunking also
produces significant transfer of learned behavior, and
strategy acquisition.

The second paper, titled Ri-Soar: An Experiment in
Knowledge-Intensive Programming in a Problem-Solving
Architecture (Rosenbloom,Laird,McDermott Newell,& Or-
ciuch, 1984), presents an experiment in knowledge-
intensive programming in Soar. In Soar, knowledge is en-
coded within a set of problem spaces, yielding a system
capable of reasoning from first principles. Expertise con-
sists of additional rules that guide complex problem-space
searches and substitute for expensive problem-space
operators. The resulting system uses both knowledge and
search when relevant. Expertise knowledge is acquired ei-
ther by having it programmed, or by a chunking
mechanism that automatically learns new rules reflecting
the results implicit in the knowledge of the problem spaces.
The approach is demonstrated on the computer-system
configuration task, the task performed by the expert sys-
tem, Ri.

4-24

MACHINE INTEWGENCE FINAL REPORT, 198547

[Laird et al. 86] Laird, J.E., A. Newell, and P.S. Rosenbloom.
Soar: an architecture for general intelligence.
Technical Report CMU-CS-86-171, Carnegie Mellon University Com-

puter Science Department,
December, 1986.

The ultimate goal of work in cognitive architecture is to provide
the foundation for a system capable of general intelligent
behavior. That is, the goal is to provide the underlying
structure that would enable a system to perform the full
range of cognitive tasks, employ the full range of problem-
solving methods and representations appropriate for the
tasks, and learn about all aspects of the tasks and its per-
formance on them. In this article we present Soar, an im-
plemented proposal for such an architecture. We describe
its organizational principles, the system as currently imple-
mented, and demonstrations of its capabilities.

[Lehr 85] Lehr, T.F.
The implementation of a production system machine.
Technical Report CMU-CS-85-126, Carnegie Mellon University Com-

puter Science Department,
May, 1985.

The increasing use of production systems has drawn attention
to their performance drawbacks. To address these
problems, investigations of algorithms and machine types
for supporting production systems are being conducted.
This paper discusses the architecture and implementation
of a uniprocessor OPS production system machine. A brief
tutorial on the OPS production system and its Rete algo-
rithm introduces salient issues that temper the selection of
a uniprocessor architecture and implementation. It is
argued that general features of Reduced Instruction Set
Computer (RISC) architectures favorably address these
issues. The architecture and a RTL description is
presented for a pipelined RISC processor designed speca;,-
cally to execute OPS. The processor has a static branch
prediction strategy, a large register file and separate in-
struction and data fetch units. Because of the simplicity of
the processor, the viability of realizing it in gallium arsenide
is also discussed. The current status of GaAs digital cir-
cuits is evaluated as it pertains to possible gate counts,
basic logic design characteristics and inter-chip signal
propagation delays. The GaAs processor with a large
register file requires nine separate modules.

4-25

FINAL REPORT, 198547 MACHINE INTELLIGENCE

* [Lehr 86] Lehr, T.F.
The implementation of a production system machine.
In Proceedings of the Nineteenth Annual Hawaii International Con-

ference on System Sciences, University of Hawaii, January,
1986.
The increasing use of production systems has drawn attention

to their performance drawbacks. This paper discusses the
architecture and implementation of a uniprocessor OPS
production system machine. A brief tutorial on the OPS
production system and its Rete algorithm introduces salient
issues that temper the selection of a uniprocessor architec-
ture and implementation. It is argued that general features
of Reduced Instruction Set Computer (RISC) architectures
favorably address these issues. The architecture and a
RTL description is presented for a pipelined RISC proces-
sor designed specifically to execute OPS. The processor
has a static branch prediction strategy, a large register file
and separate instruction and data fetch units.

[Minton 85a] Minton, S.N.
Selectively generalizing plans for problem solving.
In Proceedings of the ninth International Joint Conference on Artifi-

cial Intelligence, August, 1985.

O [Minton 85b] Minton, S.
A game-playing program that learns by analyzing examples.
Technical Report CMU-CS-85-130, Carnegie Mellon University Com-

puter Science Department,
May, 1985.

This paper describes a game-playing program that learns tac-
tical combinations. The program, after losing a game, ex-
amines the opponent's moves in order to identify how the
opponent forced the win. By analyzing why this sequence
of moves won the game, a generalized description of the
winning combination can be produced. The combination
can then be used by the program in later games to force a
win or to block an opponent's threat. This technique is ap-
plicable for a wide class of games including tic-tac-toe, go-
moku and chess.

[Minton 85c] Minton, S.
Overview of the PRODIGY learning apprentice.
In Proceedings of the 3rd International Machine Learning Workshop,

June, 1985.
This paper briefly describes the PRODIGY system, a learning

apprentice for robot construction tasks currently being
developed at Carnegie-Mellon University. After solving a
problem, PRODIGY re-examines the search tree and
analyzes its mistakes. By doing so, PRODIGY can often
find efficient tests for determining if a problem solving

4-26

MACHINE INTELLIGENCE FINAL REPORT, 108547

method is applicable. If adequate performance cannot be
achieved through analysis alone, PRODIGY can initiate a
focused dialogue with a teacher to learn the circumstances
under which a problem solving method is appropriate.

[Minton et al. 86] Minton, S.N., J.G. Carbonell, C.A. Knoblock, D. Kuokka, and
H. Nordin.
Improving the effectiveness of explanation-based learning.
In Proceedings of the Workshop on Knowledge Compilation, Sep-

tember, 1986.
In order to solve problems more effectively with accumulating

experience, a system must be able to extract, analyze,
represent and exploit search control knowledge. While
previous research has demonstrated that explanation-
based learning is a viable method for acquiring search con-
trol knowledge, in practice explanation-based techniques
may generate complex expressions that are computation-
ally expensive to use. Better results may be obtained by
explicitly reformulating the learned knowledge to maximize
its effectiveness. This paper reports on the c<PRODIGY>
learning apprentice, an instructable, general-purpose
problem solver that combines compression analysis with
explanation-based learning, in order to formulate useful
search control rules that satisfy the dual goals of generality

[Mozer and Gross 85] and simplicity,

Mozer, M.C., and K.P. Gross.
An architecture for experiential learning.
In Proceeding of the Third International Machine Learning Workshop,

June, 1985.
This paper describes a cognitive architecture for an intelligent

organism residing in the World Modelers environment.
The architecture is partitioned into ten basic components:
the internal state generator, the object and event recog-
nizers, the cognitive map constructor, the focal attention
mechanism, the working memory, the long term memory,
the goal scheduler, the planner, and the schema-learning
mechanisms. A uniform procedural representation is
necessary for interactions among the components.

[Rappaport 85] Rappaport, A.
Goal-free learning by analogy.
In Proceeding of the Third International Machine Learning Workshop,

June, 1985.
The purpose of this research is to propose and study

mechanisms for incremental learning by goal-free learning
by analogy in an information-rich world. A similarity matrix
is obtained on which a clustering analysis is performed.
The abstractions obtained are transformed into a plan of

4-27

FINAL REPORT, 198547 MACHINE INTELLIGENCE

action which may be considered an imitation of previously
observed behavior. While the agent has no explicit idea of
the original goals, it acquires a subjective knowledge by an
a posterion identification of goals. We discuss such
mechanisms for the building of a concept-based behavior
and the goal-free acquisition of knowledge on which
knowledge-intensive learning methodologies can then be
applied.

[Rosenbloom and Laird 86]
Rosenbloom, P.S. and J.E. Laird.
Mapping explanation-based generalization onto Soar.
In Proceedings AAAI-86: 5th National Conference on Artificial

Intelligence, AAAI, August, 1986.
Explanation-based generalization (EBG) is a powerful approach

to concept formation in which a justifiable concept defini-
tion is acquired from a single training example and an un-
derlying theory of how the example is an instance of the
concept. Soar is an attempt to build a general cognitive ar-
chitecture combining general leaming, problem solving,
and memory capabilities. It includes an independently
developed learning mechanism, called chunking, that is
similar to but not the same as explanation-based
generalization. In this article we clarify the relationship be-
tween the explanation-based generalization framework and
the Soar/chunking combination by showing how the EBG
framework maps onto Soar, how several EBG concept-

formation tasks are implemented in Soar, and how the
Soar approach suggests answers to four of the outstanding
issues in explanation-based generali-ation.

[Rosenbloom and Newell 85]
Rosenbloom, P.S. and A. Newell.
The chunking of goal hierarchies: a generalized model of practice,
In Michalski,R.S., J.G. Carbonell, and T.M. Mitchell, Machine Learn-

ing: An Artificial Intelligence Approach, Volume II. Morgan Kauf-
mann Publishers, Inc.: Los Altos, CA, 1985.

Also available in Proceedings of the Second International Machine
Learning Workshop, Urbana, 1983.
This chapter describes recent advances in the specification and

implementation of a model of practice. In previous work
the authors showed that there is a ubiquitous regularity un-
derlying human practice, referred to as the power law of
practice. They also developed an abstract law of practice,
called the chunking theory of learning. This previous work
established the feasibility of the chunking theory for a
single 1023-choice-reaction-time task, but the implemen-
tation was specific to that one task. In the current work a
modified formulation of the chunking theory is developed

4-28

MACHINE INTELWGENCE FINAL REPORT, 198547

that allows a more general implementation. In this for-
mulation, task algorithms are expressed in terms of hierar-
chical goal structures. These algorithms are simulated
within a goal-based production-system architecture
designed for this purpose. Chunking occurs during task
performance in terms of the parameters and results of the
goals experienced. It improves the performance of the
system by gradually reducing the need tc decompose
goals into their subgoals. This model has been success-
fully applied to the task employed in Zhe previous work and
to a set of stimulus-response capability tasks.

[Rnsenbloom et al. 85]
Rosenbloom, P.S.. J.E. Laird, J. McDermott, A. Newell, and
E. Orciuch.
R1-Soar: an experiment in knowledge-intensive programming in a

problem-solving architecture.
In IEEE Transactions on Pattern Analysis and Machine Intelligence,

IEEE, 1985.
Also available in Proceedings of the IEEE Workshop on Principles of

Knowledge-Based Systems, Denver, 1984, and as part of CMU-
CSD Technical Report CMU-CS-85-1 10.

[Saito and Tomita 86]
Saito, H., and M. Tomita.
On automatic composition of stereotypic documents in foreign

languages.
Technical Report CMU-CS-86-107, Camegie Mellon University Com-

puter Science Department,
December, 1986.

This paper describes an interactive system that composes high
quality stereotypic documents. The language for the inter-
action is totally independent from the target language in
which the documents are written; that is, a user can
produce documents in a foreign language by interacting
with the system in his language without any knowledge of
the foreign language. It is also possible to produce docu-
ments in several languages simultaneously. The idea is
that the system first builds, by interaction, a semantic con-
tent which contains enough information to produce the
documents. Then the system composes the document by
looking at the specification file, which specifies the
stereotypic document of a particular language. A new type
of document or a new target language can be added to the
system by simply creating a new specification file without
altering the program itself. A successful pilot system has
been implemented at the Computer Science Department,
Carnegie Mellon University.

4-29

FINAL REPORT, 198547 MACHINE INTELLM..NCE

[Saxe 85] Saxe, J.B.
Decomposable searching problems and circuit optimization by retim-

ing: two studies in general transformations of computa~ional
structures.

Technical Report CMU-CS-85-162, Carnegie Mellon University Com-
puter Science Department,

August, 1985.
An important activity in the advancement of knowledge is the

search for general methods: techniques applicable to large
classes of problems. This dissertation studies general
transformations of computational structures in two domains
(1) design of data structures for decomposable searching
problems and (2) optimization of synchronous digital
circuits.

[Shen 87] Shen, W.
Functional transformations in Al discovery systems.
Technical Report CMU-CS-87-117, Carnegie Mellon University Com-

puter Science Department,
April, 1987.

The power of scientific discovery systems derives from two
main sources: a set of heuristics thr' determine when to
apply a creative operator (an operator for forming new
operators and concepts) in a space that is being explored;
and a set of creative operators that determine what new
operators and concepts will be created for that exploration.
This paper is mainly concerned with the second issue. A
mechanism called functional transformations (FT) shows
promising power in creating new and useful creative
operators during exploration. The paper discusses the
definition, creation, and application of functional transfor-
mations, and describes how the system ARE, starting with
a small set of creative operations and a small set of heuris-
tics, uses FT's to create all the concepts attained by
Lenat's AM system and others as well. Besides showing a
way to meet the criticisms of lack of parsimony that have
been leveled against AM, ARE provides a route to dis-
covery systems that are capable of "refreshing" them-
se;ves indefinitely by continually creating new operators.

[Stern and Lasry 85]
Stern, R.M. and M.J. Lasry.
Dynamic speaker adaptation for feature-based isolated word recog-

nition.
In IEEE Transactions on Acoustics, Speech, and Signal Processing,

IEEE, May, 1985.
In this paper we describe efforts to improve the performance of

FEATURE, the Carnegie-Mellon University speaker-
independent speech recognition system that classifies iso-

MACHINE INTEUJGENCE FINAL REPORT, 198547

lated letters of the English alphabet, by enabling the sys-
tem to learn the acoustical characteristics of individual
speakers. Even when features are designed to be speaker-
independent, it is frequently observed that feature values
may vary more from speaker to speaker than from letter to
letter. In these cases it is necessary to adjust the system's
statistical description of the features of individual speakers
to obtain optimum recognition performance. This paper
describes a set of dynamic adaptation procedures for up-
dating expected feature values during recognition. The al-
gorithm uses maximum a posterion probability (MAP) es-
timation techniques to update the mean vectors of sets of
feature values on a speaker-by-speaker basis. The MAP
estimation algorithm makes opiimal use of both knowledge
of the observations input to the system from an individual
speaker, and the relative variability of the features' mean
vectors across the various letters enables the system to
adapt its representation of similar sounding letters after
any one of them is presented to the classifier. The use of
dynamic speaker adaptation improves classification perfor-
mance of FEATURE by 49% after four presentations of the
alphabet, when the system is provided with a posteror
knowledge of which specific utterance had been presented
to the classifier from a particular user. Performance can be
improved by as much as 31% when the system is allowed
to adapt passively, without any information from individual
users.

[Touretzky 86a] Touretzky, D.S.
BoltzCONS: Reconciling connectionism with the recursive nature of

stacks and trees.
In Proceedings of the Eighth Annual Conference of the Cognitive

Science Society, Cognitive Science Society, August, 1986.
Stacks and trees are implemented as distributed activity pat-

terns in a simulated neural network called BoltzCONS.
The BoltzCONS architecture employs three ideas from
connectionist symbol processing -- coarse coded dis-
tributed memories, pullout networks, and variable binding
spaces, that first appeared together in Touretzky and
Hinton's neural net production system interpreter. In
BoltzCONS, a distributed memory is used to store triples of
symbols that encode cons cells, the building blocks of
linked lists. Stacks and trees can then be represented as
list structures. A pullout network and several variable bind-
ing spaces provide the machinery for associative retrieval
of cons cells, which is central to BoltzCONS' operation.
Retrieval is performed via the Boltzmann Machine simu-
lated annealing algorithm, with Hopfield's energy measure
serving to assess the results. The network's ability to

4-41

FINAL REPORT, 1985-"7 MACHINE INTELLIGENCE

recognize shallow energy minima as failed retrievals
makes it possible to traverse binary trees of unbounded
depth without maintaining a control stack. The implications
of this work for cognitive science and connectionism are
discussed.

[Touretzky 86b] Touretzky, D.S.
Representing and transforming recursive objects in a neural network,

or "Trees do grow on Boltzmann machines".
In Proceedings of the 1986 IEEE International Conference on Sys-

tems, Man, and Cybernetics, IEEE, October, 1986.
BoltzCONS is a neural network that manipulates symbolic data

structures. The name reflects the system's mixed
representational levels: it is a Boltzmann Machine in which
Lisp cons cell-like structures appear as an emergent
property of a massively parallel distributed representation.
BoltzCONS is controlled by an attached neural network
production system interpreter also implemented as a
Boltzmann Machine. Gated connections allow the produc-
tion system and BoltzCONS to pass symbols back and
forth. A toy example is presented where BoltzCONS
stores a parse tree and the production system contains a
set of rules for transforming parse trees from active to pas-
sive voice. The significant features of BoltzCONS are its
ability to represent structured objects and its generative
capacity, which allows it to create new symbol structures
on the fly.

[Touretzky and Hinton 85]
Touretzky, D.S. and G.E. Hinton.
Symbols among the neurons: details of a connectionist inference ar-

chitecture.
In IJCAI-85, Pages 238-243. IJCAI, 1985.

Pattern matching and variable binding are easily implemented in
conventional computer architectures. In a distributed
neural network architecture each symbol is represented by
activity in many units and each unit contributes to the
representation of many symbols. Manipulating symbols
using this type of distributed representation is not as easy
as with a local representation where each unit denotes one
symbol, but there is evidence that the distributed approach
is the one chosen by nature. We describe a working im-
plementation of a production system interpreter in a neural
network using distributed representations for both symbols
and rules. The research provides a detailed account of two
important symbolic reasoning operations, pattern matching
and variable binding, as emergent properties of collections
of neuron-like elements. The success of our production
system implementation goes some way towards answering

4-32

MACHINE INTELLIGENCE FINAL REPORT, 198547

a common criticism of connectionist theories: that they
aren't powerful enough to do symbolic reasoning.

[vandeBrug et al. 85]
van de Brug, A., J. Bachant, and J. McDermott.
Doing R1 with style.
In Proceedings of the Second Conference on Artficial Intelligence

Applications, IEEE Computer Society, 1985.
A premise of this paper is that much of an expert system's

power is due to the strong constraints on the way its
knowledge can be used. But the knowledge that an expert
system has is seldom explicated in terms of uses, nor does
there seem to be much interest in identifying the source of
the usage constraints. The work reported in this paper ex-
plores the relationship between a problem-solving method
and the various roles knowledge plays in a computer sys-
tem configuration task. The results suggest that the
knowledge in a system like RI can be represented more
coherently if the problem-solving method is exploited to ex-
plicitly define the various knowledge roles.

44-3

PROGRAMMING TECHNOLOGY FINAL REPORT, 1985"7

* 5. Programming Technology

Programming technology comprises both the principles and knowledge (the know-
how) and the tools (themselves primarily software systems) used to produce software
(compilers, debuggers, editors, design systems, etc.). Our long-range goal in program-
ming technology research is to increase our ability to produce hardware/software sys-
tems of predictably high quality.

The Gandalf project explores two key issues in improving programming technology:
What kinds of expert knowledge about system building can we incorporate in a pro-
gramming environment, and in what respects can we make system development a
cooperative effort between environment and user. Our primary strategy is to create ef-
fective methods and systems for evolving software development environments
automatically and intelligently. We divide our efforts between building tools for generat-
ing environments and constructing specific environments to evaluate our ideas and
tools.

During the first half of 1987, we continued work on three established fronts. We com-
pleted our design for a transform program generator and implemented enough of it to
demonstrate it's basic feasibility. We also worked out the details of how a designer can
specify alternative data views for a target environment. Finally, we completed sig-
nificant product development on Gandalf itself, our fundamental environment-generating
system.

5.1 Generating Transform Programs

A serious problem for programming environments and operating systems is that exist-
ing software becomes invalid when the environmnt or operating system is replaced by
a new release. Unfortunately, there has been no systematic treatment of the issues.
Current approaches are manual, ad hoc, and time-consuming for both environment im-
plementors and program users.

We have developed a way to move existing programs automatically from one version
of the underlying environment to the next. To see the potential of automating the tran-
sition process, consider that CMU-CSD took more than half a year to convert from Unix
4.2 BSD to the newer 4.3 version. With our strategy, we could accomplish such a con-
version in days rather than months.

Our approach eases the tasks facing environment implementors and introduces a
higher-level role: the environment designer. Environment descriptions, as well as all
existing software, reside in a comprehensive database. The designer specifies a
revised environment by changing the formal environment descriptions. A "transformer
generator" tracks the alterations, then builds a transformer program that can map old
data formats and values into new ones. When an environment user later attempts toP access or modify a database-resident program specified under the old structural gram-
mar, the transformer program automatically converts old data structures to the new or-
ganization [Garlan&.86.Structural].

5-1

FINAL REPORT, 198547 PROGRAMMING TECHNOLOGY

P 5.2 Designing an Environment's Views

Integrated environments have the desiiable property that their tools can share a
database of common data structures. However, they have the undesirable characteris-
tic that new tools are hard to add because, usually, a single data representation must
serve all tools.

Gandalf environments are typically highly specialized systems for controlling data.
Within an environment, a user can manipulate database objects available to him via
tools that perform legal operations on those objects. A user might employ distinct en-
vironments, 'or instance, when editing text and developing programs. One of our goals
is to make it easy to design numerous customized environments and then hook them
together so the user can migrate among them according to task demands.

Our soluti ,n [Garlan.87.Views] allows a designer to define a tool in terms of its
"views" into the common database. A view describes the data types the tool contains
and the primitives that comprise it's permissible operations. Tools can share data ob-
jects but each tool accesses objects only through its own views. The designer adds
new tools by defining new views and the database thus synthesizes all views that the
environment's tools define.

During this period, we addressed practical details of designing views: the tools and
strategies an environment designer needs to design effective views. We have nowP specified the types of primitives that will be available in the designer's environment and
which will enable him to express view descriptions.

Our major concern during the second half of 1986 centered on the idea that both tools
and human users want to look at software database objects in d.fferent ways at different
times. While constructing software, for example, a user may want the environment to
display the abstract syntax tree's structure. When maintaining a software system, the
programmer may wish to browse a high-level system outline to rapidly locate the place
for modifications. Tools, on the other hand, typically don't care about the display at aii.
A semantic analyzer might search for type declarations but ignore documentation text.
A program-managing package might not care about code at all but want to knew who
last modified a particular procedure. Our interest is to provide a means of me:ging the
implementation of distinct views so that users and tools can access software objects
through a variety of views. We find particularly interesting the problem of extending an
existing database: adding and integrating new tools and new views to existing ones.
Our two major topics this period were implementing a version transformer generator and
research into merging database views.

Our research extends existing structure-oriented approaches to tool integration by al-
lowing the tools in an environment to define a collection of views of shared data. Com-
mon database formats are then synthesized out of the collection of tool-defined views.
New tools can be added by augmenting an existing system with new views.

10 The underlying basis of our approach consists of an object-oriented notation that is

5-2

PROGRAMMING TECHNOLOGY FINAL REPORT, 198-87

independent of any particular programming language and a translator for generating ex-
ecutable code from the notation. Reusable software building blocks are written and
composed in this notation, which provides taxible means for combining both data struc-
tures and algorithms [Kaiser&.87.Composing]. The translator uses techniques from
software generation to produce efficient executable systems.

From software generation techniques, we took the idea of a declarative notation that
is independent of any particular programming language but that can be translated into
an efficient implementation. From object-ori.nted programming, we took the concepts
of inheritance and of encapsulating behavior with data structures. To these ideas, we
have added our unique concept of merging both data structures and operations. Other
object-oriented languages merge data structures, in the sense of inheriting instance
variables defined by a superclass, but no other notation besides attribute grammars
supports combination of algorithms on the basis of dependencies.

5.2.1 Toward an Environment Generator with Views

During the second half of 1986, we completed the first phases of designing and im-
plementing a new structure-oriented environment generator that employs views as its
fundamental building blocks. To evaluate our design, we employed it in extending IDL-
based systems to support concurrent views. These extensions lead to a model of tool
integration that combines the flexibility provided by sequentially-oriented tools with theP benefits of close cooperation and database management provided by database-orientc -4
tools. The extensions are based on the idea that some IDL descriptions can be treatLJ
as views of shared views of a common object base. These views provide tools with
abstract interfaces to shared data in the same spirit in which IDL structures now provide
abstract interfaces between tools.

Our IDL extensions make it possible for several tools to share access to a common
data pool. Each tool's data interface is defined by an IDL structure that determines its
view of the objects. Mappings between views are to be handled automatically by the IDL
translator and database support mechanisms.

Our work included the following:
* extending SoftLab's model of tool integration to allow tools to specify col-

lections of structures as common views of a shared pool of objects. Tools
thus act as scoping units for sharing and cooperation.

*augmenting the IDL collection types (sequence and set) with additional
primitives (indexed table, sorted table, array, multi-set). The purpose of this
extension is to give the implementor greater diversity in specifying at an
abstract level operationally distinct groupings of objects.

*introducing the notion of type compatability as mappings between opera-
tions of one type and those of another. Type compatability extends to IDL
structure compatability and provides an operational interpretation forp describing a set of objects with two different IDL structures.

&-3

FINAL REPORT, 1086-7 PROGRAMMING TECHNOLOGY

*adding notation, called dynamic views, that allows one IDL structure to
describe its contents in terms of properties of nodes in another structure.
Coupled with a shared database, dynamic views serve the function of as-
sociate query found in database systems.

We also implemented special case of views to support display tools. Several working
environments now use this implementation. Approximately 2000 students used these
environments at CMU, Stanford, and NYU.

5.3 Gandalf Product Development

The Gandalf System forms the foundation for our work in generating environments
automatically, providing a workbench for creating and developing interactive program-
ming environments. The system itself includes four specialized environments that a
designer uses to specify and fine-tune target user environments, each of which offers
task-specific tools and facilities. Gandalf eliminates the economically impractical
process of handcrafting individual environments and permits environment designers to
generate families of software development environments, semiautomatically and without
excessive cost.

Gandalf-produced environments permit interactions not available in traditional en-
vironments. They integrate programming tools, which ease the programming process,
and system development support, which reduces the degree to which a software project
must depend on good will among its members. In practice, our industrial customers
have built environment prototypes and small control systems where, for example, a user
can modify system-supplied templates and icons to prepare reports on physical
parameters in a manufacturing process.

In the past six months, we introduced an improved, more marketable Gandalf System.
The enhancements represent basic software engineering that will aid a potential en-
vironment designer in understanding the system.

5.3.1 The evolution of Gandalf

The Gandalf project concerns knowledge-based environments, in particular the
automatic generation of such environments. In the past we developed and implemented
tools that allow an environment designer to specify the user environment. We also
designed and implemented the necessary program generator that transforms these
specifications into executable code.

After working with the new Gandalf System for about a year we began to reassess the
system's limitations with respect to building powerful and practical environments.
Several important issues that were identified include:

e The inability to bring existing source code into a Gandalf environment's
database (i.e. no parser).

5-4

PROGRAMMING TECHNOLOGY FINAL REPORT, 1"5-67

"" The inability to transform existing Gandalf environment databases when the
structural description of the database required modification.

" The issues of scaling up the system to create environments for large
software projects. This mainly relates to database issues such as dis-
tribued databases for workstations, concurrency with multiple users ac-
cessing the database, and database segmentation for very large software
databases.

5.3.2 Concurrency and segmentation In large software databases

In 1986 the Gandalf System generated environments for programming-in-the-small,
though systems like the C Prototype demonstrated that programming-in-the-large and
programming-in-the-many can be successfully approached with proper database sup-
port. Providing this "proper database support" means addressing the diverse require-
ments and opera;ng characteristics that programming-in-the-small, programming-in-
the-large, and programming-in-the-many have with respect to the integrated database.

The most promising approach appeared to be a method of segmenting the tree struc-
tured databases into a collection of smaller trees. The original structure is preserved (by
symbolic pointers between segments) so there is a single virtual database comprised of
many smaller segments, each of which resides in a separate file on secondary storage.
This scheme provides the desired segmentation needed for large software databasesP since a single user will typically need only one or two segments in his address space at
any one time. It supports concurrent access into the database by multiple users since
different users can access different segments without readers/writers problems, and
semaphores can be associated with segments. Another advantage that this scheme
provides is modularity in the database's grammar description. For example, in a version
control system, procedures would be stored in separate segments and the module
description (which would contain pointers to a set of procedures for that module) would
be in another segment. Since the grammar for the module level should be unrelated to
the grammar of the procedures, segmentation at the boundary provides a natural
means for keeping the two grammars separate. In the existing Gandalf System both
grammars would have to be combined into one large grammar. And, as mentioned ear-
lier, this segmentation scheme allows us to retain a single virtual integrated database.

One of the issues that had to be addressed in this scheme is the behaviour of the
system at and across the boundaries of segments. An early version of the Gandalf Sys-
tem used a paging scheme top fault in segments whenever needed. Any node in a
database grammar could be designated as a "filenode" which would be a root for a new
segment. This was to be completely transparent to the user. This approach failed be-
cause there was no way to localize the page-in/page-out code for segments. All opera-
tions in the database kernel could never be sure if they were looking at a filenode or real
node, so each operation had to test. Even implementor written semantic routines would
have to test for filenodes. This code became very hard to maintain and very expensiveP at execution. Also, there was no concurrency and no modularity of the database gram-
mar.

5-5

FINAL REPORT, 136547 PROGRAMMING TECHNOLOGY

The approach we took to behavior at segment boundaries was to have a special type
of terminal node in the grammar which corresponds to a segment. This terminal node
contains the symbolic pointer to the actual segment. Nodes of this type will usually ap-
pear as any other terminal node to the user, the database kernel, and the semantic
routines. A few special operations will allow the system to change its focus attention
from one segment to another. Since we expect segment boundaries to occur at natural
points, such as in the module and procedure example given above, explicit commands
and operations to change context should also be natural for users and semantic
daemons. This eliminated the problems associated with the filenode approach by
localizing the segment swapping code to those special operations.

5.3.3 Specifying tools

During the second half of 1985 we focused our attention on specifying tools for a
software development environment. We incorporated the language design of January to
June 1985 into a new version of the Gandalf System for generating language-oriented
software development environments. Toward this end, we rewrote the Gandalf Kemel to
support the description of tools written in Action Routine Language
(ARL) [Ambriola&.86.Aloe]. This involved adding kernel support for ARL primitives, at-
tributes, signals, and transactions.

We also implemented the implementor's environment for producing structure editors
using ARL. This environment consists of two systems, ALOEGEN for generating environ-
ment descriptions, and DBgen for linking environment descriptions to form a working
editor. Both systems were bootstrapped using ARL itself. We distributed copies of the
new system, including a tutorial introduction [Staudt&.86.GANDALF], as a beta test
release to a number of research groups both within the CMU computer science depart-
ment and outside.

In a parallel development, we implemented a new generation of user interface to run
on inexpensive bitmapped personal computers such as the Macintosh. We based it on
VIZ, a language for describing flexible unparsing, and developed a corresponding user
interface to support multiple views of a program [Garlan.85.Flexible]. This was made
available to the general public within a year as a novice programming environment for
Pascal.

5.4 Programming language issues in hardware design

One research focus centers around applying concepts from the domain of program-
ming systems to hardware. We are particularly interestV.d in the problem of assuring the
correctness of hardware implementations with respect to specifications. In 1985 we ad-
dressed this problem in two ways: verification and compilation.

Verification methods can be used to check whether an existing design satisfies a
specification. We have concentrated on automatic techniques for verifying sequential

5tcnqe4eifigsqeta

PROGRAMMING TECHNOLOGY FINAL REPORT, 1985"7

P circuits. This work has proceeded in two directions: verifying asynchronous sequential
circuits described at the gate level, and verifying synchronous sequential circuits
described by a program in a high-level hardware description language (SML).

In both asynchronous and synchronous cases: the circuit is specified by formulas in
temporal logic, a state-graph describing the possible circuit behaviors is automatically
extracted from the circuit description, and then the formulas are automatically compared
with the state graph. The last step is performed by a program called the model-checker,
which, if the state graph (and hence the circuit) satisfies the specification, reports that all
is well, or if the circuit fails to meet the specification, tries to produce an example of an
execution (sequence of circuit actions) which can be used to find and correct the
problem.

Another way to guarantee the correctness of a hardware implementation is to compile
it directly from its specification. We are doing this in two different ways. First, an SML
program (see above) can be regarded as a specification of a correct circuit once it has
been verified. We can translate SML programs into a form suitable for input to existing
programs that translate state machines into hardware. For example, it is possible to
write a high-level program for a device controller, check that it is correct with respect to
a specification in temporal logic, and then translate it automatically into various
hardware implementations.

Second, we have developed means for compiling path expressions into asynchronous
controllers. Path expressions were originally devised as a way to specify the desirable
interactions among "loosely-coupled" systems of concurrent programs. We believe that
they are also a good way to specify the interactions among loosely-coupled hardware
devices. Our technique isolates the concurrency control in a separate circuit which in-
teracts with the circuits it controls via request/acknowledge signals. The controller cir-
cuit allows the controlled circuits to execute in only those orderings allowed by the path
expression.

In the second half of 1985 we continued to experiment with SML. We used it to
describe a commercial UART (Universal Asynchronous Receive/Transmit) and to verify
some temporal properties of our description. We also produced a description of SML's
syntax and semantics and illustrated its usefulness in designing small finite state
machines [Browne&.85.SML].

Although most formal models of asynchchronous circuits avoid making asssumptions
about the relative speeds of the circuit components, many practical designs rely on such
assumptions for their correct operation. Therefore we extended the theory and im-
plementation of our asynchronous verifier to include simple timing assumptions.

We have also begun to investigate the formal foundations of asynchronous circuit
operation as a basis for more powerful methods of verifying and synthesizing them.
Fairness and liveness properties play critical roles in concurrent systems. An example
of a fairness property is "if any user requests a resource, he will eventually be granted
it"; a liveness property might be "a circuit always acknowledges a request". Recently,

5-7

FINAL REPORT, 198547 PROGRAMMING TECHNOLOGY

S others have proposed trace theory as an appropriate formal semantics theory for
1 asynchronous circuits. Previously, trace theory has only considered finite circuit execu-

tions, and describing fair or live behavior requires infinite executions in general. We ex-
tended trace theory to include infinite executions, and showed that it is possible to
describe a fair, delay-insensitive arbiter (a circuit whose existence previous researchers
had questioned) [Black.85.Existence].

Finally, many apparently complex circuits have a fairly simple recursive structure. We
have implemented a system called Escher that allows the user to describe the recursive
structure using a graphical interface. The circuit structure is expanded when some
parameters are provided (such as how many bits wide it should be). The result is a
layout of the primitive cells and their connecting wires. The system has been applied to
a variety of examples, including a sorting network, FFT, and a recursive hardware mul-
tiplier [Clarke&.85.Escher].

S-

PROGRAMMING TECHNOLOGY FINAL REPORT, 1985W97

5.5 Bibliography

[Ambriola and Montangero 85]
Ambriola, V. and C. Montangero.
Automatic generation of execution tools in a GANOALF environment.
The Journal of Systems and Software5(2):155-172, May. 1985.

[Ambriola and Staudt 86]
Ambriola, V. and B.J. Staudt.
The ALOE action routine language manual.
Technical Report CMU-CS-86-129, Carnegie Mellon University Com-

puter Science Department,
May, 1986.

ARL (Action Routine Language) is a special-purpose language
for the manipulation of abstract syntax trees with attributes.
It is the language in which the users of the GANDALF Sys-
tem write the semantic processing of GANDALF-style en-
vironments. This document describes ARL 1.3.

The Gandalf system provides a user with the ability to generate
a language- based programming environment given a
description of the language. The syntax of the language is
described using a BNF-like notation. The semantics of the
language is described using attributes and ARL routines.
The syntactic and semantic language descriptions are
linked with a standard editing kernel provided by the Gan-

_ dalf system to produce a language-specific programming
environment. Environments generated in this manner are
often called ALOEs (A Language-Oriented Editor). The
terms Gandalf environment and Aloe are used inter-
changeably in this paper. Programs that are written with a
Gandalf environment are maintained as attributed syntax
trees, not text. ARL was therefore designed with trees as
the basic data type. The primitive operations in ARL
provide facilities to browse and manipulate tree structures.

[Anantharaman et al. 85]
Anantharaman, T.M., E.M. Clarke, M.J. Foster, and B. Mishra.
Compiling path expressions into VLSI circuits.
In Twelfth Annual ACM Symposium on Principles of Programming

Languages, ACM, January, 1985.
Path expressions were originally proposed by Campbell and

Habermann as a mechanism for process synchronization
at the monitor level. We argue that path expressions are
also usefu; for specifying the behavior of complicated
asynchronous circuits, and in this paper we consider the
possibility of directly implementing them in hardware.

Our implementation is complicated in the case of multiple path
expressions by the need for synchronization on event5 names that are common to more than one path. Moreover,

5-9

FINAL REPORT, 1W87 PROGRAMMING TECHNOLOGY

since events are inherently asynchronous in our model, all
of our circuits must be self-timed.

Nevertheless, the circuits produced by our construction have
area proportional to N@k(dot)log(N) where N is the total
length of the multiple path expression under consideration.
This bound holds regardless of the number of individual
paths or the degree of synchronization between paths.

[Barbacci 84] Barbacci, M., S.Grout, G.Lindstrom, M.Maloney, E.Organick, and
D.Rudisill.
Ada as a hardware description language: an initial report.
Technical Report CMU-CS-85-104, Carnegie Mellon University Com-

puter Science Department,
December, 1984.

This paper reports on our initial results in using Ada as a
Hardware Description Language. Ada provides abstraction
mechanisms to support the development of large software
systems. Separate compilation as well as nesting of
packages, tasks, and subprograms allow the construction
of modular systems communicating through well defined
interfaces. The complexity of modem chips (e.g. those
proposed in the VHSIC program) will require the use of
those features that make Ada a good language for
programming-in-the-large.

W• [Barbacci et al. 85a]
Barbacci, M.R., W.H. Maddox, T.D. Newton, and R.G. Stockton.
The Ada+ front end and code generator.
In Proceedings of the 1985 International Ada Conference: Ada in

Use, May, 1985.

[Barbacci et al. 85b]
Barbacci, M.R., S. Grout, G. Lindstrom, M. Maloney, E. Organick,
and D. Rudsill.
Ada as a hardware description environmeri: an initial report.
In Proceedings of the IFIP Seventh International Symposium on

Computer Hardware Description Languages, CHDL, August,
1985.

[Barbacci et al. 85c]
Barbacci, M.R., G. Lindstrom, M. Maloney, and E. Organick.
Representing time and space in an object oriented hardware descrip-

tion language.
Technical Report CMU-CS-85-105, Carnegie Mellon University Com-

puter Science Department,
January, 1985.

Hardware description languages (HDLs) will clearly play a vital
role in the comprehensive VLSI design tools of the future.
Now that the requirements for such HDLs are becoming
better understood, it is becoming increasingly evident that

5-10

PROGRAMMING TECHNOLOGY FINAL REPORT, 198547

the central issues are abstraction, modularity, and com-
plexity management --- the same issues faced by desig-
ners of large scale software systems, rather than low-level
technological details (although these must ultimately be
served as well).

Consequently, we argue that Ada, constituting the most ad-
vanced, carefully conceived, and (soon to be) widely avail-
able modern high-order programming language, forms not
only an adequate but a compelling choice as an HDL.
Specifically, Ada offers separate compilation as well as
nesting of packages, tasks, and subprograms. These, and
other important features of Ada, allow the construction of
modular systems communicating through well defined in-
terfaces.

This paper demonstrates how placement and routing infor-
mation can be incorporated into Ada hardware descrip-
tions: another paper, "Ada as a Hardware Description Lan-
guage: An Initial Report", submitted to the IFIP 7th Inter-
national Symposium on Computer Hardware Description
Languages and their Applications, Tokyo, August 1985
shows how component 3nd signal propagation delays over
carriers are also incorporated into the same hardware
descriptions.

[Black 85] Black, D.L.
On the existence of delay-insensitive fair arbiters: Trace theory and

its limitations.
Technical Report CMU-CS-85-173, Camegie Mellon University Com-

puter Science Department,
October, 1985.

In this paper, we attempt to settle the controversy over whether
delay-insensitive fair arbiters exist. We examine Udding's
(1985) claim that they do not exist and find that this result
is theoretically correct but of no practical significance be-
cause it relies on an inappropriate notion of fairness. We
show that for the relevant notions of fairness, the existing
trace theory of finite traces lacks sufficient expressive
power to adequately specify a fair delay-insensitive
arbiter--the existing specification of a fair arbiter is also
satisfied by an unfair arbiter. Based on this reasoning, we
extend trace theory to include infinite traces, and show by
example the importance of including liveness in such a
theory. The extended theory is sufficiently expressive to
distinguish fair arbiters from unfair ones. We use this
theory to establish the existence of a delay-insensitive fair
arbiter. In the process of formulating the extension we de-
velop a more general trace-theoretic composition operator
that does not require the domain constraints (composability
restrictions) used by other authors. Finally, we introduce

5-11

FINAL REPORT, 198547 PROGRAMMING TECHNOLOGY

wire modules as an abstraction to capture the important
role transmission media properties play in circuit behavior.

[Brookes 85a] Brookes, S.D. and A.W. Roscoe.
Deadlock analysis in networks of communicating processes.
Technical Report CMU-CS-85-1 11, Carnegie Mellon University Com-

puter Science Department,
February, 1985.

We use the failures of Communicating Sequential Processes to
describe the behavior of a simple class of networks of
communicating processes, and we demonstrate this fact
by proving some results which help in the analysis of dead-
lock in networks. In particular, we formulate some simple
theorems which characterize the states in which deadlock
can occur, and use them to prove some theorems on the
absence of global deadlock in certain classes of systems.
Some examples are given to show tI-- utility of these
results.

[Brookes 85b] Brookes, S.
On the axiomatic treatment of concurrency.
Technical Report CMU-CS-85-106, Camegie Mellon University Com-

puter Science Department,
February, 1985.

This paper describes a semantically-based axiomatic treatment
of a simple parallel programming language. We consider
an imperative language with shared variable concurrency
and a critical region construct. After giving a structural
operational semantics for the language we use the seman-
tic structure to suggest a class of assertions for expressing
semantic properties of commands. The structure of the
assertions reflects the structure of the semantic represen-
tation of a command. We then define syntactic operations
on assertions which correspond precisely to the cor-
responding syntactic constructs of the programming lan-
guage; in particular, we define sequential and parallel com-
position of assertions. This enables us to design a truly
compositional proof system for program properties. Our
proof system is sound and relatively complete. We ex-
amine the relationship between our proof system and the
Owicki-Gries proof system for the same language, and we
see how Owicki's parallel proof rule can be reformulated in
our setting. Our assertions are more expressive than
Owicki's, and her proof outlines correspond roughly to a
special subset of our assertion language. Owicki's parallel
rule can be thought of as being based on a slightly different
form of parallel composition of assertions; our form does
not require interference-freedom, and our proof system is
Srelatively complete without the need for auxiliary variables.

5-12

PROGRAMMING TECHNOLOGY FINAL REPORT, 1985-87

Connections with the 'Generalized Hoare Logic' of Lambort
and Schnieder, and with the Transition Logic of Gerth, are
discussed briefly, and we indicate how to extend our ideas
to include some more programming constructs, including
conditional commands, conditional critical regions, and
loops.

[Brookes and Roscoe 85]
Brookes, S.D. and A.W. Roscoe.
An improved failures model for communicating processes.
Technical Report CMU-CS-85-112, Carnegie Mellon University Com-

puter Science Department,
February, 1985.

We extend the failures model of communicating processes to al-
low a more satisfactory treatment of divergence in addition
to deadlock. The relationship between the revised model
and the old model is discussed, and we make some con-
nection with various models proposed by other authors.

[Browne and Clarke 85]
Browne, M.C. and E.M. Clarke.
SML - a high level language for the design and verification of finite

state machines.
Technical Report CMU-CS-85-179, Carnegie Mellon University Com-

puter Science Department,
November, 1985.

In this paper, we describe a finite state language named SML
(State Machine Language) and illustrate its use with two
examples. Although the compilation procedure is exponen-
tial, the compiler is fast enough that we believe that SML
can still be a useful tool for the design of small (< 1000
state) finite state machines. Furthermore, we have inter-
faced our SML compiler with a temporal logic theorem
prover that can assist in the debugging and verification of
SML programs. In addition to being useful for design, SML
can also be a documentation aid, since it provides a suc-
cinct notation for describing complicated finite state
machines. A program written in SML can be compiled into
a state transition table that can then be implemented in
hardware using an appropriate design tool. The output of
the SML compiler can also be used by the Berkeley VLSI
design tools to layout the finite state machines as either a
ROM, PLA, or PAL.

[Browne et al. 85a]
Browne,M., E. Clarke, D. Dill, and B. Mishra.
Automatic verification of sequential circuits.
In CHDL85, August, 1985.
Also available as CMU-CSD Technical Report CMU-CS-85-100.

Verifying the correctness of sequential circuits has been an im-

5-13

FINAL REPORT, 198547 PROGRAMMING TECHNOLOGY

portant problem for a long time. But lack of any formal and
efficient method of verification has prevented the creation
of practical design aids for this purpose. Since all the
known techniques of simulation and prototype testing are
time-consuming and not very reliable, there is an acute
need for such tools. In this paper we describe an
automatic verification system for sequential circuits in
which specifications are expressed in a propositional tem-
poral logic. In contrast to most other mechanical verifica-
tion systems, our system does not require any user assis-
tance and is quite fast -- experimental results show that
state machines with several hundred states can be
checked for correctness in a matter of seconds!

The verification system uses a simple and efficient algorithm,
called a Model Checker. The algorithm works in two steps:
in the first step, it builds a labeled state-transition graph;
and in the second step, it determines the truth of a tem-
poral formula with respect to the state-transition graph.
We discuss two different techniques that we have imple-
mented for automatically generating the state-transition
graphs: The first involves extracting the state graph
directly from the circuit by simulation. The second obtains
the state graph by compilation from an HDL specification of
the original circuit. Although these approaches are quite
different, we believe that there are situations in which each
is useful.

[Browne et al. 85b]
Browne, M.C., E.M. Clarke, and D.L. Dill.
Automatic circuit verification using temporal logic: two new ex-

amples.
In 1985 IEEE International Conference on Computer Design: VLSI in

Computers, IEEE, October, 1985.
In this paper provide further evidence for the usefulness of our

approach by describing enhancements to the basic verifier
that automates the extraction of state transition graphs
from circuits. We discuss two different techniques. The
first approach involves extracting the state graph from a
wire-list description of the circuit and is for asynchronous
circuits. The second obtains the state diagram by compila-
tion from an HDL specification of the original circuit. Al-
though these approaches are quite different, we believe
that there are situations in which each is useful.

[Bruegge 85a] Bruegge,B.
Adaptability and portability of symbolic debuggers.
Technical Report CMU-CS-85-174, Carnegie Mellon University Com-

puter Science Department,
September, 1985.

5-14

PROGRAMMING TECHNOLOGY FINAL REPORT, 198W47

The design and implementation of symbolic debuggers for com-pplex software systems is not a well understood area. This
is reflected in the inadequate functionality of existing
debuggers, many of which are seldomly used. For ex-
ample, 30% of all programmers asked in a questionnaire
(which was distributed as part of this thesis work) do not
use a debugger at all or only very infrequently (Bruegge,
1984). Yet debugging tools are needed: Many software
systems are produced by the cooperative effort to many
designers and programmers, sometimes over several
years, resulting in products that inevitably contain bugs.

[Bruegge 85b] Bruegge, B.
Debugging Ada.
Technical Report CMU-CS-85-127, Carnegie Mellon University Com-

puter Science Department,
May, 1985.

The complexity of the Ada language poses several problems for
the builder of a debugger. We identify the Ada language
constructs that cause these problems and propose solu-
tions that can be incorporated in a debugger based on
Pascal. Several of the solutions involve changes in the
symbol table of the Ada compiler, others are based on the
argument that having to obey the language rules is anp obstacle when debugging programs.

[Bryant 85] Bryant, R.E.
Symbolic verification of MOS circuits.
Technical Report CMU-CS-85-120, Carnegie Mellon University Com-

puter Science Department,
April, 1985.

The program MOSSYM simulates the behavior of a MOS circuit
represented as a switch-level network symbolically. That
is, during simulator operation the user can set an input to
either 0, 1, or a Boolean variable. The simulator then com-
putes the behavior of the circuit as a function of the past
and present input variables. By using heuristically efficient
Boolean function manipulation algorithms, the verification
of a circuit by symbolic simulation can proceed much more
quickly than by exhaustive logic simulation. In this paper
we present our concept of symbolic simulation, derive an
algorithm for switch-level symbolic simulation, and present
experimental measurements from MOSSYM.

p

FINAL REPORT. 198S-87 PROGRAMMING TECHNOLOGY

-. [Chandhok et al. 85]U Chandhok, F., D. Garlan, D. Goldenson, P. Miller, and and
M. Tucker.
Programming environments based on structure editing: the GNOME

approach.
In AFIPS Conference Proceedings of the 1985 National Computer

Conference, Pages 359-369. 1985.
The use of integrated programming environments based on

structure editing is an emerging technology that has now
reached the stage of being both demonstrably useful and
readily implementable. We have outlined some of the
salient aspects of our work in developing the GNOME and
MacGNOME programming environments and suggested
paths of implementation that seem to be worth traveling. A
predominant theme in all of this has been the need to
separate policy from mechanism. While the choice of user
interface policies will probably differ widely from those we
have made here, the mechanisms that we have sketched
will nonetheless be applicable to future environments.

[Clarke and Feng 85]
Clarke, E.M., and Y. Feng.
Escher-- a geometrical layout system for recursively defined circuits.
Technical Report CMU-CS-85-150, Carnegie Mellon University Com-

puter Science Department,
July, 1985.

An Escher circuit description is a hierarchical structure com-
posed of cells, wires, connectors, between wires, and pins
that connect wires to cells. Cells may correspond to primi-
tive circuit elements, or they may be defined in terms of
lower level subcells. Unlike other geometrical layout sys-
tems, a subcell may be instance of the cell being defined.
When such a recursive cell definition is instantiated, the
recursion is unwound in a manner reminiscent of the pro-
cedure call copy rule in Algol-like programming languages.
Cell specifications may have parameters that are used to
control the unwinding of recursive cells and to provide for
cell families with varying numbers of pins and other internal
components. We illustrate how the Escher layout system
might be used with several nontrivial examples, including a
parallel sorting network and a FFT implementation. We
also briefly describe the unwinding algorithm.

[Dill and Clarke 85]
Dill, D.L. and E.M. Clarke.
Automatic verification of asynchronous circuits using temporal logic.
In 1985 Chapel Hill Conference on VLSI, Computer Science Press,

May, 1985.
0 Also available as CMU-CSD Technical Report CMU-CS-85-125.

5-16

PROGRAMMING TECHNOLOGY FINAL REPORT, 196547

We present a method for automatically verifying asynchronous
sequential circuits using temporal logic specifications. The
method takes a circuit described in terms of boolean gates
and Muller elements, and derives a state graph that sum-
marizes all possible circuit executions resulting from any
set of finite delays on the outputs of the components. The
correct behavior of the circuit is expressed in CTL, a tem-
poral logic. This specification is checked against the state
graph using a 'model checker' program. Using this
method, we discover a timing error in a published arbiter
design. We give a corrected arbiter, and verify it.

[Durham 86] Durham, I.
Abstraction and the methodical development of fault-tolerant

software.
PhD thesis, Carnegie Mellon University Computer Science Depart-

ment, February, 1986.
Also available as technical report CMU-CS-86-112.

The reliable operation of software is a factor of increasing im-
portance with the use of computers for critical functions.
Software in general is demonstrably unreliable, particularly
in the presence of external failures. Software that con-
tinues to provide reliable, if degraded, service in spite of
extemal failures is termed Fault-Tolerant. Fault-tolerant
software uses redundancy in code and data to recover
from failures. Because few tools are available to guide the
introduction of redundancy for the most cost-effective im-
provement in reliability, an ad hoc approach is commonly
used. Unfortunately, such an approach cannot guarantee
that the most serious potential failures have even been
recognized. There is, therefore, a need for a methodical
approach to deciding where to introduce redundancy.
Abstraction has provided a foundation for the methodical
development of correct software. As a conceptual tool, it
simplifies the structure of software and supports both the
precise specification of its behavior in the absence of
failures and the ease of reasoning about it. This thesis
provides a foundation for the methodical development of
fault-tolerant software using abstraction as the basis for
describing both failures and the behavior of software in the
presence of those failures.

[Ellison and Staudt 85]
Ellison, R.J. and B.J. Staudt.
The evolution of the GANDALF system.
The Journal of Systems and Software5(2):107-120, May, 1985.

The GANDALF System is used to generate highly interactive
software development environments. This paper describes
some design decisions made during the development of

5-17

FINAL REPORT, 196547 PROGRAMMING TECHNOLOGY

the GANDALF system and the system's applicability to the
generation of single-user programming environments and
multi-user software development environments.

[Furst et al. 86] Furst, M.L., J.L. Gross, and L.A. McGeoch.
Finding a maximum-genus graph imbedding.
Technical Report CMU-CSD-86-113, Carnegie Mellon University

Computer Science Department,
March, 1986.

The computational complexity of constructing the imbeddings of
a given graph into surfaces of different genus is not well-
understood. In this paper, topological methods and a
reduction to linear matroid parity are used to develop a
polynomial-time algorithm to find maximum-genus cellular
imbedding. This seems to be the first imbedding algorithm
for which the running time is not exponential in the genus
of the imbedding surface.

[Garlan 85] Garlan, D.
Flexible unparsing in a structure editing environment.
Technical Report CMU-CS-85-129, Camegie Mellon University Com-

puter Science Department,
April, 1985.

Generators of structure editing-based programming environ-
ments require some form of unparse specification
language with an implementor that can describe mappings
between objects in the programming environment and con-
crete, visual representations of them. They must also
provide an unparser to execute those mappings in a run-
ning programming environment. We describe one such
unparse specification language, called VIZ, and its unpar-
ser, called UAL. VIZ combines in a uniform descriptive
framework a variety of capabilities to describe flexible
views of a programming database using a library of high-
level formatting routines that can be customized and ex-
tended by the implementor. The UAL unparser allows the
highly conditional unparse mappings of VIZ to be executed
efficiently. Its implementation is based on the automatic
generation of explicit display views, together with a
scheme for efficient incremental updating of them in
response to arbitrary changes to objects in the program-
ming environment.

[Garlan 86] Garlan, D.
Views for tools in integrated environments,
Proceedings of the 1986 International Workshop on Advanced Pro-

gramming Environments. Springer-Verlag, 1986.
This paper addresses the problem of building tools for in-

tegrated programming environments. Integrated environ-
0 ments have the desirable property that the tools in it can

5.16

PROGRAMMING TECHNOLOGY FINAL REPORT, 1985-7

share a database of common structures. But they have
the undesirable property that these tools are hard to build
because typically a single representation of the database
must serve all tools. The solution proposed in this work al-
lows tools to maintain appropriate representations or
"views" of the objects they manipulate while retaining the
benefits of shared access to common structures. We il-
lustrate the approach with two examples of tools for an en-
vironment for programming-in-the-large, and outline cur-
rent work in progress on efficient implementations of these
ideas.

[Garlan 87] Garlan, D.
Views for tools in integrated environments.
Technical Report CMU-CS-87-147, Camegie Mellon University Com-

puter Science Department,
May, 1987.

Integrated environments have the desirable property that the
tools in them may share a database of common structures.
But they have the undesirable property that tools are hard
to add to an environment because typically a single
representation of the database must serve the needs of all
tools. The solution described in this thesis allows an im-
plementor to define each tool in terms of a collection of
"views" of the objects to be manipulated. A view is a
description of a common database, defined in such a way
that objects can be shared among a collection of tools,
each tool accessing objects through the views it defines.
New tools are thus added by defining new views. The
common database then becomes the synthesis of all of the
views defined by the tools in the environment.

[Garlan et al. 86] Garlan, D., C.W. Krueger, and B.J. Staudt.
A structural approach to the maintenance of structure-oriented en-

vironments.
In Proceedings of The ACM SIGSOFT/SIGPLAN Software Engineer-

ing symposium on Practical Software Development
Environments, ACM SIGSOFT/SIGPLAN, Palo Alto, CA, Decem-
ber, 1986.

A serious problem for programming environments and operating
systems is that existing software becomes invalid when the
environment or operating system is replaced by a new
release. Unfortunately, there has been no systematic
treatment of the problem; current approaches are manual,
ad hoc, and time consuming both for implementors of
programs and for their users. In this paper we present a
new approach. Focusing on a solution to the problems for
structure-oriented environments, we show how automatic
converters can be generated in terms of an implementor's
changes to formal descriptions of these environments.

5.19

FINAL REPORT, 1985-87 PROGRAMMING TECHNOLOGY

D [Gunter 85] Gunter, C.
Profinite solutions for recursive domain equations.
Technical Report CMU-CS-85-107, Carnegie Mellon University Com-

puter Science Department,
February, 1985.

The purpose of the dissertation is to introduce and study the
category of profinite domains. The study emphasizes those
properties which are relevant to the use of these domains
in a semantic theory, particularly the denotational seman-
tics of computer programming languages. An attempt is
made to show that the profinites are an especially natural
and, in a sense, inevitable class of spaces. It is shown, for
example, that there is a rigorous sense in which the count-
ably based profinites are the largest category of countably
based spaces closed under the function space operation.
They are closely related to other categories which appear
in the domain theory literature, particularly strongly al-
gebraic domains (SEP) which form a significant sub-
category of the profinites. The profinites are bicartesian
closed-a noteworthy property not not possessed by SFP
(because it has no coproduct). This gives rise to a rich type
structure on the profinites which makes them a pleasing
category of semantic domains.

D [Habermann 85] Habermann, A.N.
Automatic generation of execution tools in a GANDALF environment.
The Journal of Systems and SoftwareS(2):145-154, May, 1985.

Information generated in a programming environment is often
allowed to grow indefinitely. Designer and user alike are
counting on standard backup and disc clearing procedures
for archiving old data. In this paper we take the view that
one should distinguish between relevant old data that is
purposely archived and obsolete information that should
automatically be deleted. The two main topics of the paper
are the strategies and mechanisms for deleting information
and the facilities available to designers of programming en-
vironments to specify deletion strategies. Information can
be deleted applying a passive or an active strategy. With
the passive strategy, information will not actually be
deleted until it is certain that there is no interest in it any
longer. With the active strategy, an object is immediately
deleted when it becomes obsolete, while users of the ob-
ject are notified of the deletion event. This paper dis-
cusses various implementation of these two strategies and
shows when they apply. Taking the view that it must be
easy to modify and fine tune programming environments,
much attention must be given to the designers support en-
vironment for generating programming environments. This
paper discusses in particular the facilities for expressing

6-20

PROGRAMMING TECHNOLOGY FINAL REPORT, 198057

the semantics of names in an environment. Various
naming modes are useful for a designer to specify the
deletion strategies for his target programming environment.
Details are illustrated by applying the ideas to an environ-
ment for software development and maintenance.

[Habermann 86] Habermann, A.N.
Technological advances in software engineering.
In Proceedings of the 1986 ACM Computer Science Conference,

Pages 29-37. ACM, Cincinnati, February, 1986.
A major challenge for software engineering today is to improve

the software production process. Nowadays, most
software systems are handcrafted, while software project
management is primarily based on tenuous conventions.
Software engineering faces the challenge of replacing the
conventional mode of operation by computer-based tech-
nology. This theme underlies the Software Engineering In-
stitute that the DoD has established at Carnegie Mellon
University. Among the contributors to software develop-
ment technology are ideas, such as workstations, and pro-
gramming environments that provide integrated sets of
tools for software development and project management.
Facilities and tools are by themselves not sufficient to ach-
ieve an order of magnitude improvement in the software
production process. Future directions in software en-
"gineering must emphasize a constructive approach to the
design of reusable software and to automatic generation of
programs. The author briefly explores the promising tech-
nology that can be used to implement these ideas.

[Habermann and Notkin 86]
Habermann, A.N. and D.S. Notkin.
Gandalf software development environments.
IEEE Transactions on Software Engineering, December, 1986.

Software development environments help programmers perform
tasks related to the software development process. Dif-
ferent programming projects require different environ-
ments. However, handcrafting a separate environment for
each project is not economically feasible. Gandalf solves
this problem by permitting environment designers to
generate families of software development environments
semiautomatically without excessive cost.

Environments generated using Gandalf address both program-
ming environments, which help ease the programming
process, and system development environments, which
reduce the degree to which a software project is depend-
ent on the good will of its members. Gandalf environments
integrate programming and system development, permit-
ting interactions not available in traditional environmenttb.

5-21

FINAL REPORT, 198547 PROGRAMMING TECHNOLOGY

The paper covers several topics inciuding the basic characteris-Stics of Gandalf environments, our method for generating
these environments, the structure and function of several
existing Gandalf environments, and ongoing and planned
research of the project.

[Herlihy 85a] Herlihy, M.
Atomicity vs. availability: concurrency control for replicated data.
Technical Report CMU-CS-85-108, Carnegie Mellon University Com-

puter Science Department,
February, 1985.

Data managed by a distributed program may be subject to con-
sistency and availability requirements that must oe
satisfied in the presence of concurrency, site crashes, and
network partitions. This paper proposes two integrated
methods for implementing concurrency control and replica-
tion for data of abstract type. Both methods use quorum
consensus. The Consensus Locking method minimizes
constraints on availability, and the Consensus Scheduling
method minimizes constraints on concurrency. These
methods systematically exploit type-specific properties of
the data to provide better availability and concurrency than
methods based on the conventional read/write classifica-
tion of operations. Necessary and sufficient constraints on
correct implementations are derived directly from the dataS type specification. These constraints reveal that an object
cannot be replicated in a way that simultaneously min-
imizes constraints on both availability and concurrency.

[Herlihy 85b] Herlihy, M.
Using type information to enhance the availability of partitioned data.
Technical Report CMU-CS-85-119, Carnegie Mellon University Com-

puter Science Department,
April, 1985.

A partition occurs when fun--tioning sites in a distributed system
are unable to communicate. This paper introduces a new
method for managing replicated data in the presence of
partitions. A novel aspect of this method is that it sys-
tematically exploits type-specific oroperties of the data to
support better availability and concurrency than com-
parable methods in which operations are classified only as
reads or writes. Each activity has an associated level,
which govems how it is serialized with respect to other ac-
tivities. Activities at the same level a-e serialized systemati-
cally, but higher-level activities are serialized after lower-
level activities. A replicated data item is a typed object that
provides a set of operations to its clients. A quorum for an
operation is any set of sites whose co-operation suffices to
execute that operation, and a quorum assignment as-

5.22

PROGRAMMING TECHNOLOGY FINAL REPORT. 198547

sociates a set of quorums with each operation. Higher-
level activities executing 'in the future' may use different
quorum assignments than lower-level activities executing
'in the past.' Following a failure, an activity that is unable to
make progress using one quorum assignment may switch
to another by restarting at a different level.

[Herlihy 85c] Herlihy, M.
Comparing how atomicity mechanisms support replication.
Technical Report CMU-CS-85-123, Carnegie Mellon University Com-

puter Science Department,
May, 1985.

Most pessimistic mechanisms for implementing atomicity in dis-
tributed systems fall into three broad categories: two-phase
locking schemes, timestamping schemes, and hybrid
schemes employing both locking and timestamps. This
paper proposes a new criterion for evaluating these
mechanisms: the constraints they impose on the
availability of replicated data.

A replicated data item is a typed object that provides a set of
operations to its clients. A quorum for an operation is any
set of sites whose co-operation suffices to execute that
operation, and a quorum assignment associates a set of
quorums with each operation. Constraints on quorum as-
signment determine the range of availability properties
realizable by a replication method.

This paper compares the constraints on quorum assignment
necessary to maximize concurrency under generalized
locking, timestamping, and hybrid concurrency control
mechanisms. This comparison shows that hybrid schemes
impose weaker constraints on availability tnan timestamp-
ing schemes, and locking schemes impose constraints in-
comparable to those of the others. Because hybrid
schemes permit more concurrency than locking schemes,
these results suggest that hybrid schemes are preferable
to the others for ensuring atomicity in highly available and
highly concurrent distributed systems.

[Hisgen 85] Hisgen,A.
Optimization of user-defined abstract data types: a program transfor-

mation approach.
Technical Report CMU-CS-85-1 66, Camegie Mellon University Com-

puter Science Department,
September, 1985.

This dissertation introduces a programming language facility for
optimizing user-defined abstract data types. Current op-
timizing compilers have concentrated on the optimization
of built-in, predefined types, for example, the integers. This
work investigates the possibility of extending the benefits

5-23

FINAL REPORT, 19U647 PROGRAMMING TECHNOLOGY

of program optimization to user-defined abstract data
types. The programmer of an abstract data type writes
transformations that state when one operation of the type
(or sequence of operations) may be replaced by another
operation (or sequence of operations). A transformation
may have an enabling precondition, which says that it is
legitimate only in contexts in which the enabling precon-
dition can be shown to be true. When compiling a program
that is a client of the type, the compiler analyzes the
client's calls on the operations of the type and attempts to
apply the transformations to particular calls (or sequences
of calls).

This dissertation presents a language for writing transformations
between the operations of an abstract data type. The
transformation language also includes facilities for writing
specifications for the type in a manner that caters to the
task of optimization. Examples of data types that can ex-
ploit the transformation language are given. Techniques for
compiling client programs are described.

[Kaiser 85a] Kaiser, G.E.
Semantics for structure editing environments.
Technical Report CMU-CS-85-131, Camegie Mellon University Com-

puter Science Department,
May, 1985.

This thesis addresses the processing of semantics by structure
editor-based programming environments. This processing
is performed incrementally while the user writes and tests
her programs. The semantics processing involves the
manipulation of two kinds of properties, static and dynamic.
The implementor of a programming environment describes
the semantics processing in terms of these properties.

Recent research in structure editing environments has focused
on the generation of programming environments from
description. Several mechanisms have been proposed,
and the most successful of these have been action
routines and attribute grammars. Using action routines,
written as a collection of imperative subroutines, it is dif-
ficult to anticipate all possible interactions that may result
in adverse behavior. Attribute grammars are written in a
declarative style and the implementor need not be con-
cerned with subtle interactions because all interactions
among attribute grammar rules are handled automatically.
Unfortunately, attribute grammars have hitherto seemed
unsuited to the description of dynamic properties.

This thesis describes a very large extension to attribute gram-
mars that solves this problem. The extended paradigm is
called action equations. Action equations are written in a
declarative notation that retains the flavor of attribute gram-

5-24

PROGRAMMING TECHNOLOGY FINAL REPORT, 198547

mars but adds an easy means to express both dynamic
properties and static properties. The extensions include
attaching particular attribute grammar-style rules to events
that represent user commands; supporting propagation
both of events and of change with respect to attribute
values; limited support for non-applicative mechanisms, al-
lowing attributes to be treated as variables and permitting
both modification of and replacement for changes to at-
tribute values. Together, these extensions are sufficient to
support dynamic properties.

[Kaiser 85b] Kaiser, G.E. and E. Kant.
Incremental parsing without a parser.
The Journal of Systems and Software5(2):121-144, May, 1985.

This article describes an algorithm for incremental parsing of ex-
pressions in the context of syntax-directed editors for pro-
gramming languages. Since a syntax-directed editor
represents programs as trees and statements and expres-
sions as nodes in trees, making minor modifications in an
expression can be difficult. Consider, for example, chang-
ing a '+' operator to a '*' operator or adding a short sub-
expression at a syntactically but not structurally correct
position, such as inserting ') * (d' at the # mark in' (a + b #
+ c)'. To make these changes in a typical syntax-directed
editor, the user must understand the tree structure and
type a number of tree-oriented construction and manipula-
tion commands. This article describes an algorithm that al-
lows the user to think in terms of the syntax of the expres-
sion as it is displayed on the screen (in infix notation)
rather than in terms of its internal representation (which is
effectively prefix), while maintaining the benefits of syntax-
directed editing. This algorithm is significantly different
from other incremental parsing algorithms in that it does
not involve modifications to a traditional parsing algorithm
or the overhead of maintaining a parser stack or any data
structure other than the syntax tree. Instead, the algorithm
applies tree transformations, in real-time as each token is
inserted or deleted, to maintain a correct syntax tree.

[Kaiser 86] Kaiser, G.E.
Generation of run-time environments.
In SIGPLAN '86 Symposium on Compiler Construction, June, 1986.

Attribute grammars have been used for many years for
automated compiler construction. Attribute grammars sup-
port the description of semantic analysis, code generation
and some code optimization in a formal declarative style.
Other tools support the automation of lexical analysis and
parsing. However, there is one large part of compiler con-
struction that is missing from our toolkit: run-time environ-

5-25

FINAL REPORT, 195.47 PROGRAMMING TECHNOLOGY

ments. This paper introduces an extension of attribute
grammars that supports the generation of run-time environ-
ments. The extension also supports the generation of in-
terpreters, symbolic debugging tools, and other execution-
time facilities.

[Kaiser and Garlan 87]
Kaiser, G.E., and D. Garlan.
Composing software systems from reusable building blocks.
In The Twentieth Hawaii International Conference on System

Sciences (HICSS-20), Kona, HA, January, 1987.
Current approaches to software reuse have had little effect on

the practice of software engineering. Among the reasons
that most existing approaches have been so limited is the
fact that they result in software that is highly tied to linguis-
tic and/or functional context. A software building block can
be reused only in a manner envisioned by the original
programmer. A generic stack module written in Ada can
only be used for manipulating stacks, and only within an
Ada environment. A window manager written in any pro-
gramming language can only be used as a window
manager.

We argue that to achieve an order of magnitude improvement in
software production, we need to support software
reusability that has three important characteristics: (a)S language-independence, (b) support for component reuse
through composition, and (c) the ability to reuse a com-
ponent in a way not anticipated by the original program-
mer. We describe a framework for achieving these three
goals. The important components of the famework are
features, a unit for modularity that can be composed in a
manner similar to the multiple inheritance of object-
oriented languages and action equations, a declarative
notation for specifying the behavior of software building
blocks.

[Newton 86a] Newton, T.D.
An implementation of Ada generics.
Technical Report CMU-CS-86-125, Camegie Mellon University Com-

puter Science Department,
May, 1986.

This paper describes the technique used for implementing
generics in the Ada+ compiler. It involves performing
semantic analysis on generic units, producing code for in-
stantiations by generic expansion, and preserving the
results of semantic analysis on a template in its copies.

One of the more interesting features of the Ada programming
language is the capability to define generic subprograms5 and packages which can be parameterized by types and

5-26

PROGRAMMING TECHNOLOGY FINAL REPORT, 1985-87

subprograms as well as by objects. By allowing the reuse
of code, generic units can save programming time and in-
crease reliability. However, while generic units are a nice
tool from a programmers point of view, they pose an
added burden for a compiler both in terms of semantic
analysis and in terms of code generation. This paper is an
attempt to describe how the Ada+ compiler deals with the
problems posed by generic units.

[Newton 86b] Newton, T.D.
A survey of language support for programming in the large.
Technical Report CMU-CS-86-124, Camegie Mellon University Com-

puter Science Department,
May, 1986.

The support provided by a number of programming languages
for the activity of programming in the large is examined,
and their features are categorized with respect to decom-
position of a system, import/export mechanisms, separate
compilation, and version/configuration control. A com-
parison is made using this categorization. Eighteen lan-
guages are surveyed; ranging from Simula-67 to Modula-2
to Ada to BCPL, they exhibit a number of design
philosophies.

[Newton et al. 85] Newton, T.D., W.H. Maddox, and R.G. Stockton.
User's guide to the Ada+ compiler
1985.

[Notkin 85] Notkin, D.
The GANDALF project.
The Journal of Systems and Software5(2):91-106, May, 1985.

The GANDALF project is concerned with the automated genera-
tion of software development environments. In particular,
the project has considered project management environ-
ments, system version control environments, and in-
cremental programming environments. The artifacts sur-
rounding these environments are described. Later ver-
sions of these environments have been constructed as
structure editors. The processes and tools involved in
generating structure editors for software development en-
vironments are also discussed. Future plans of the project
are briefly mentioned.

[Saraswat 86] Saraswat, V.A.
Problems with concurrent Prolog.
Technical Report CMU-CS-86-100, Camegie Mellon University Com-

puter Science Department,
January, 1986.

In this paper I argue that pure Hom logic does not provide the
correct conceptual framework for concurrent programming.

6-27

FINAL REPORT, 108S-87 PROGRAMMING TECHNOLOGY

In order to express any kind of useful concurrency some
extra-logical apparatus is necessary. The semantics and
"proof systems for such languages must necessarily reflect
these control features, thus diluting the essential simplicity
of Horn logic programming.

In this context I examine Concurrent Prolog as a concurrent and
as a logic programming language, highlighting various
semantic and operational difficulties. My thesis is that
Concurrent Prolog is best thought of as a set of control fea-
tures designed to select some of the many possible execu-
tion paths in an inherently non-deterministic language. It is
perhaps not a coherent set of control and data-features for
the ideal concurrent programming language. It is not a
Horn logic programming language because it does not dis-
tinguish between derivations and refutations, because of
its commitment to don't care indeterminism. As a result,
soundness of the axioms does not guarantee a natural no-
tion of partial correctness and the failure-as-negation rule
is unsound. Because there is no don't know determinism,
all search has to be programmed, making it a much more
procedural rather than declarative language.

Moreover, we show that its proposed '?' (read-only) annotation
is under-defined and there does not seem to be any con-
sistent, reasonable way to extend its definition. We
propose and justify alternate synchronization and commit-
ment annotations.

[Scherlis 86] Scherlis, W.L
Abstract data types, specialization, and program reuse.
In International Workshop on Advanced Programming Environments,

ACM SIGPLAN/SIGSOFT, April, 1986.
It is often asserted that our ability to reuse programs is limited

primarily by the power of programming language abstrac-
tion mechanisms. We argue that, on the basis of perfor-
mance considerations, this is just not the case in practice --
these generalization mechanisms must be complemented
by techniques to adapt the generalized structures to
specific applications. Based on this argument, we consider
a view of programming experience as a network of
programs that are generalizations and specializations on
one another and that are interconnected by appropriate
program derivation fragments. We support this view with a
number of examples. These examples illustrate the impor-
tant role of abstract data type boundaries in program
derivation.

S
5-28

PROGRAMMING TECHNOLOGY FINAL REPORT, 198547

[Scherlis and JOrring 86]
Scherlis, W.L., and U. JOrring.
Compilers and staging transformations.
In Proceedings of the Thirteenth POPL Conference, ACM, January,

1986.
Computations can generally be separated into stages, which

are distinguished from one another by either frequency of
execution or availability of data. Precomputation and
frequency reduction involve moving computation among a
collection of stages so that work is done as early as pos-
sible (so less time is required in later steps) and as infre-
quently as possible (to reduce overall time).

We present, by means of examples, several general transfor-
mation techniques for carrying out precomputation trans-
formations. We illustrate the techniques by deriving frag-
ments of simple compilers from interpreters, including an
example of Prolog compilation, but the techniques are ap-
plicable in a broad range of circumstances. Our aim is to
demonstrate how perspicuous accounts of precomputation
and frequency reduction can be given for a wide range of
applications using a small number of relatively straightfor-
ward techniques.

Related work in partial evaluation, semantically directed com-
pilation, and compiler optimization is discussed.

S [Shombert 85] Shombert,L.A.
Using redundancy for testable and repairable systolic arrays.
Technical Report CMU-CS-85-157, Carnegie Mellon University Com-

puter Science Department,
August, 1985.

This thesis presents a method of using spares to enhance the
reliability and testability of systolic arrays. The method,
called roving spares, provides fault detection and fault
isolation without interrupting array operation, essentially
providing a self testing array. Systolic arrays are defined
and the design space of systolic arrays is identified. The
methodology for roving spares on the simplest, but still
very powerful, type of systolic array is then derived.
Several detailed designs are generated to provide sample
data points for the analysis that follows. The analysis
shows that reliability is increased by factors to two to ten,
over a nonredundant array, and that this improvement is
achieved at low cost. The testing capability of roving
spares does not significantly decrease the reliability
benefits of spares. A brief analysis of a more complex sys-
tolic array indicates that the benefits achievable for the
simple array can be expected for all types of systolic ar-

-* rays.

6-29

FINAL REPORT, 198547 PROGRAMMING TECHNOLOGY

* [Staudt 86a] Staudt, B.J., C.W. Krueger, A.N. Habermann, and V. Ambriola.
The GANDALF system reference manuals.
Technical Report CMU-CS-86-130, Carnegie Mellon University Com-

puter Science Department,
May, 1986.

The Gandalf System is a workbench for the creation and
development of interactive programming environments.
The system consists of several components that an im-
plementor uses for designing and fine tuning a user en-
vironment with task-specific tools and facilities. This report
is a collection of three documents describing the use of the
Gandalf System: The Gandalf Editor Generator Reference
Manuals, The Aloe Action Routine Language Manual, and
The Implementor's Guide to Writing Daemons for Aloe.

[Staudt 86b] Staudt, B.
Tolerant user interfaces (thesis proposal).

One of the problems shared by most user interfaces available
today is their inability to interpret user input that deviates
from an expected form. This effectively places a large por-
tion of the burden of communication between the system
and user upon the shoulders of the user. The problem is
even more severe when program generators are used. If
the interface is one of the generated portions of the
program, it is often hard or impossible to tailor the interface
appropriately for the task and user. The goal of this thesis
is to demonstrate mechanisms that allow the implementor
of a generated program to create user interfaces that are
tolerant of the differing styles of individual users and differ-
ing requirements of individual domains. Tolerance is ach-
ieved by allowing the implementor to augment the standard
generated interface with heuristics that capture knowledge
of the particular domain and user.

[Stockton 85] Stockton, R.G.
Overload resolution in Ada+.
Technical Report CMU-CS-85-186, Carnegie Mellon University Com-

puter Science Department,
December, 1985.

This paper describes one technique for performing Ada over-
load resolution. It involves a bottom-up scan of an at-
tributed syntax tree which examines all possible interpreta-
tions of an expression and filters out all invalid interpreta-
tions.

One of the many useful features of the Ada programming lan-
guage is the capability to overload various symbols. Al-
though this can contribute immensely to the readability of
programs, it places a much greater burden upon the com-
piler, since the meaning of a symbol can not always be

5-30

PROGRAMMING TECHNOLOGY FINAL REPORT, 198547

uniquely determined based upon its name. In fact, in some
cases there might be several equally valid interpretations
of the given symbol. The compiler must determine, based
on the context of the symbol, which of the possible inter-
pretations is the correct one. This document is an attempt
to describe the way in which the Ada+ compiler ac-
complishes this task.

[Wadler 84] Wadler,P.L.
Listlessness is better than laziness.
Technical Report CMU-CS-85-171, Carnegie Mellon University Com-

puter Science Department,
August, 1984.

The thesis is about a style of applicative programming, and a
program transformation method that makes programs writ-
ten in the style more efficient. It concentrates on a single,
important source of clarity and inefficiency in applicative
programs: the use of structures to communicate between
components of a program.

[Wilber 84] Wilber, R.
White pebbles help.
Technical Report CMU-CS-85-101, Camegie Mellon University Com-

puter Science Department,
December, 1984.

A family of directed acyclic graphs of vertex in degree 2 is con-
structed for which there are strategies of the black-white
pebble game that use asymptotically fewer pebbles than
the best strategies of the black pebble game. This shows
that there are straight-line programs that can be evaluated.

&31

DISTRIBUTED SENSOR NETWORKS FINAL REPORT, 1985-t7

6. Distributed Sensor Networks

In the preceding contract period, 1981-1984, we built the hardware and software foun-
dation for a DSN testbed. The long term goal of our research was to seek problem solu-
tions that would influence both the long-term design goals of DSNs and distributed intel-
ligence systems in general. Our goal during this period, 1985-1987, remained essen-
tially the same.

Systems for building DSNs are complex. Their design raises a number of difficult
issues including:

"* Suitable physical structures and system architectures for fault-tolerant com-
putation.

"* Languages and tools to assist in creating and debugging programs for a
distributed environment.

"* Techniques for distributed signal processing.

* Construction and maintenance of distributed knowledge structures.
Our objective has been to develop a distributed transaction facility and associated lin-
guistic support to simplify the construction of and interoperability of databases of all
types, but particularly those that require continued access despite the occurrence of
failures. We also began to develop example applications that use such databases, and
continue to function despite failures. All of our work is machine independent and
designed to use Mach and both uni- and multi-processors. These facilities simplify pro-
gramming by freeing the application programmer of many reliability and concurrency
concerns. With the facilities we are developing, application programs appear to run se-
quentially, despite other concurrently-executing programs. Programs also can more
easily deal with failures, because failures are guaranteed to never leave programs in in-
consistent states.

As part of our integrational and systems development work, there are numerous op-
portunities to innovate in the development of algorithms. We have developed efficient
algorithms for restoring the state of computers after failures, managing disk storage,
coordinating multiple computers that are involved with a transaction, and storing repli-
cated data. We have not yet written up these algorithms in some instances, but they
will be the focus of a number of graduate students' Ph.D. theses.

Though our research is particularly relevant to various aspects of the distributed sen-
sor network problem, it more generally relates to any system that has distributed data,
which are concurrently read and updated by a potentially large collection of processes.
Much of this work was done using results from our earlier research on Accent and TABS
[Spector&.85. Distributed].

Our work divided into two components: In one component, we were winding down
our experimentation with the Accent operating system, but leaming as many lessons as
possible from that testbed. These lessons resulted in many of the innovative ideas that
are being incorporated in the Mach operating system. For example, the Mach message

6-1

FINAL REPORT, 198547 DISTRIBUTED SENSOR NETWORKS

* system with its emphasis on copy-on-write data transfer is directly based on the Accent
message system [Rashid.86.Threads]. Also, Mach's ultimate goal of producing a sys-
tem comprising a relatively small operating system kernel with many servers derives
from the structure of the Accent system. As a final example, the Mach Interface Gener-
ator [Jones&.87.MIG] is based on the Matchmaker interface tool we previously wrote for
Accent (see the Distributed Processing chapter).

In the other component of our work, we began the major effort to design and imple-
ment the Camelot distributed transaction facility and the Avalon language extensions to
C++, Common Lisp, and Ada. The goal of this work is to do research and development
of operating system and language facilities that can be used by the Arpanet community
to more easily program highly available, reliable distributed programs. Examples of
areas in which Camelot and Avalon should be useful include the development of various
types of database systems, command and control systems, messaging systems, and
various near real time control tasks. This work on Camelot and Avalon was influenced
by Accent, but more importantly, by TABS [Spector&.85.Support]. TABS (as described in
previous reports) demonstrated that general purpose distributed transactions are a valu-
able tool for structuring highly reliable distributed systems, and sufficiently efficient to be
practical.

Because we believe that researchers today need usable systems and languages on
which to base their own work, we have twin goals in constructing Camelot and Avalon.

* First, we are constructing the Camelot and Avalon facilities so they can be used by
others in the DARPA internet community. This requires balancing complexity,
functionality, performance, and ease of implementation issues so we can produce work-
ing systems in a short period of time. It also requires good software engineering prac-
tices [Thompson.86.Coding]. On the other hand, Camelot and Avalon must develop
higher risk, features, constructs, or algorithms in order to produce a system with suf-
ficient flexibility and performance.

Our work generally divides into three catogories: developing algorithms, developing
systems, and analyzing systems.

6.1 Algorithm development

During 1986 we analyzed the trade-offs between concurrency and availability. In par-
ticular, we described how two-phase locking, multiversion timestamping, and hybrid
synchronization techniques affect the availability of objects using quorum consensus
protocols [Herlihy.86.Concurrency]. For example, we showed that hybrid schemes per-
mit more quorum assignments than timestamping schemes , and thus could provide for
higher availability in some instances. In related work, we also described new

* synchronization techniques. These techniques can use increased semantic knowledge
to gain more greater concurrency, and can be used in conjunction with standard tech-
niques such as two-phase locking.

6-2

DISTRIBUTED SENSOR NETWORKS FINAL REPORT, 198547

We also enhanced our theoretical work on a replicated directory algorithm we had
previously developed and implemented. This resulted in a better set of correctness
proofs [Bloch&.86.Weighted].

We concluded the design and implementation of a technique for demand-driven trans-
fer of data across a network. Zayas [Zayas.87.Use] showed that this technique is useful
for transferring program images intended for execution on another machine. We per-
formed the work on Accent but expect it to be portable to Mach.

We completed the development of a replication algorithm for storing log data, that is,
data that describes the essential state transitions that occur on nodes of a distributed
system. This algorithm permits recovery of nodes even after they are themselves physi-
cally destroyed [Daniels&.87.Distributed, Daniels.86.Distributed]. We had previously
done a simplified implementation of the algorithm in the TABS system, and we
proceeded with its reimplementation and enhancement for use in Camelot. The
reimplementation required the development of a more efficient communication protocol,
and a complete implementation of the low-level storage structures.

We began development of a new commit algorithm that coordinates multiple nodes
that may be involved in committing a transaction. This algorithm has the reliability
benefits of so-called Byzantine algorithms, with the many performance benefits of tradi-
tional algorithms. The reliability benefits are most useful in systems that are less able to
tolerate while nodes or networks are repaired.

We began developing a new replication technique [Bloch.86.Practical] that should be
practical for replicating a wide variety of abstract data types, such as queues, stacks,
directories, sets, and typical database storage structures such multiply indexed data
sets.

We enhanced our previous TABS techniques for manipulating long-lived data. These
techniques [Eppinger.86.Virtual] will be useful in Camelot and now support up to 248
bytes of data; permit rapid streaming of data into memory; interact more efficiently with
recovery mechanisms; require a reduced number of messages during normal process-
ing, and help systems recover after node crashes.

The recovery algorithms that we developed support nested transactions with the ef-
ficiency usually associated with large, commercial database systems. In addition, the
recovery algorithms permit efficient log usage for short transactions, the type that are
most commonly used. We began the implementing these techniques in Camelot.

6.2 System development

Having had a substantial opportunity to evaluate TABS and Accent, we concluded
that distributed transaction processing facilities could be implemented efficiently and. that they would be widely useful in commercial, military command and control, and
program development environments.

6.3

FINAL REPORT, 198547 DISTRIBUTED SENSOR NETWORKS

* After a collection of intensive group-wide sessions, we determined that a system like
TABS was required, but that it should have more flexibility, higher performance, an
easier to use interface, and relatively wide distribution. The latter required that the sys-
tem run on the Berkeley 4.3 Unix compatible Mach operating system. We determined
the other requirements were feasible given careful design and coding.

Thus, we functionally specified the Camelot distributed transaction facility and the
Avalon programming langauge extensions. We specified Camelot as supporting nested
transactions, very large user-defined objects, distributed operation, distributed logging,
and compatibility with Mach. We specified Avalon as being built on standard program-
ming languges, such as C++, Ada, and Common Lisp and providing linguistic support
for developing highly reliable distributed applications. These functional specifications
were just a beginning, but they have lead to large
efforts [Spector&.86.Camelot, Herlihy&.87.Avalon] and the current DARPA Reliable Dis-
tributed Systems Effort.

6.2.1 Camelot

As of June 29, 1987, the Camelot Project finished version 0.4(23) of Camelot Release
1. This release contained 42,000 lines of C-code, and correctly supported most of
Camelot Release 1.0's functional interfaces. Internally the implementation was deficient
in a number of ways, but we expect most deficiencies to be corrected by the Fall of

* 1987. A substantial amount of time was spent during the first half of 1987 in both
designing and coding the system. Release 0.4(23) ran on Microvaxes, RT PCs, and
Multimaxes.

Starting in the middle of May 1987, the Camelot Project divided into two parts:
Camelot implementation and Camelot testing/demonstration.

"* Camelot implementors developed the low-level functions in the system in-
cluding the disk manager, recovery manager, transaction coordinator, node
server, node configuration application, communication manager, and
Camelot library. Substantial time was devoted to evaluating the perfor-
mance of the initial system functions.

" Camelot testers developed applications to both test and demonstrate the
utility of Camelot. These applications include an X-based, graphical room
reservation system sufficient to support the CMU Campus; a document or-
dering system for use over the ARPAnet; a system to support the
Department's cheese cooperative; and abstract data type libraries for
shared recoverable hash tables and B-trees. These applications were
chosen because they are representative of many problems in both industry
and military applications, and because they will be widely used at Carnegie
Mellon. Release 0.4(22) had sufficient reliability and functionality to sup-
port the activities of these application programmers.

* A substantial amount of effort was put into documenting the system, resulting in the
Guide to the Camelot Distributed Transaction Facility Release 1.0. Edition 0.4(23).)

6-4

We completed the release of a system that is a sufficient base for our internal users:
* the Camelot test group and the Avalon project. We have also completed a release of

our user's guide, and the evaluation of our distributed logging package. As presented at
Sigmod '87, the latter proved capable of supporting the execution of 70 transactions per
second on a 2 MIPS IBM RT PC. We also evaluated the base Camelot system. The
performance numbers show that the Camelot's overhead is not high and that it will not
interfere with the intended uses of the system.

Along with a top-level design, the algorithms and techniques described in this report
comprise a design for the Camelot Distributed Transaction facility. Though the design
won't be finalized until the first version is released for general use, the design was quite
stable by the end of the year. The design specification is The Camelot Interface
Specification [Spector&.86.Camelot] and is summarized in
[Spector&.86.CamelotProject]. The Camelot Team produced the first 25,000 lines of

code were produced.

6.2.2 Avalon

We began to do a detailed design of the Avalon language in the first half of 1987.
Avalon is a language interface for building reliable distributed applications on top of
Camelot and Mach. Initially, it will be a set of extensions for C++, but there will also be
extensions for use with Common Lisp and Ada. The Avalon effort has been divided into

"* three parts:
o Design: We are tailoring our language extensions to maintain the spirit of

each base language.
* Implementation: The Avalon runtime system exploits the Camelot trans-

action management facility.

* Tool Support: The Avalon/C++ preprocessor provides the interface to an
Avalon programmer. The Avalon type library will contain a set of built-in
types and user-extensible types. Avalon and Camelot share other version
control and administrative tools.

We also began to design the first of the Avalon language extensions, which are to be
made to the C++ language [Herlihy&.87.Avalon]. In general terms, these extensions
permit programmers to implement permanent, synchronized abstract data objects with
little or no more work than they use for traditional objects. The concepts are applicable
to Common Lisp and Ada, and we intend to extend them for use in these systems.

The Avalon work necessarily lags behind the Camelot work since it depends on un-
derlying Camelot facilities, and there are no completed portions of Avalon at this time.
The Avalon group is aiming toward having the first Avalon demonstration by September
1987.

FINAL REPORT, 1985-67 DISTRIBUTED SENSOR NETWORKS

P 6.3 Accent

6.3.1 Systems evaluation

Rashid and Fitzgerald concluded a long-term (multi-year) effort to evaluate the im-
plementation of the Accent message passing mechanism. This message passing
mechanism substantially reduces message passing costs by permitting the efficient
transfer of very large messages. The technique Accent uses is called copy-on-write
data transfer.

Our evaluation work, as detailed in [Fitzgerald.86.Performance], demonstrated that
Accent substantially reduced the data copying costs associated with message passing,
while still retaining its other benefits. For example, after comparing Accent with the con-
ventionally organized UNiX 4.1 bsd, we showed that Accent's file system performance is
comparable, despite the fact that files were transferred using messages and copy-on-
write mapping. This evaluation work substantially influenced the development of the
Mach operating system [Accetta&.86.Mach], which is ongoing work under the DARPA
Strategic Computing Initiative.

The work that we performed involved developing a performance evaluation methodol-
ogy for precisely measuring certain very short events in an operating system. This
methodology, and associated tools, are also described in [Fitzgerald.86.Performance];P we expect the measurement techniques to be useful in future projects.

6.3.2 Operating system constructs

During the second half of 1985 we developed and evaluated operating system con-
structs that make it easier to write distributed programs--programs that must execute
on multiple nodes of a distributed system. Such programs art growing more important
because of needs for increased performance, reliability, and availability despite failures.
They are also essential to solving parts of the distributed sensor network problem. It is
our goal to reduce the effort required to construct reliable distributed programs, while at
the same time permitting such programs to execute very efficiently.

Our work in this period related to the Accent operating system kernel, which efficiently
supports distributed message-based applications and a distributed transaction facility,
TABS. TABS supports applications that share access to distributed data.

We completed the design of a message-passing mechanism, implementable on Ac-
cent, for doing demand-driven data transfer. In conventional message passing ap-
proaches, a network processing node that wishes to send a message dispatches the
entire message at once, regardless of its size. The recipient/remote node must wait for
the entire message to arrive before it can begin processing it. In a demand-driven ap-
proach, the sender node dispatches an "IOU" to the remote node. Then, as the remoteP node accesses portions of the message, it demands the rest of the message/data only

6-6

DISTRIBUTED SENSOR NETWrCaKS FINAL REPORT, 198547

as needed. This "lazy" transfer approach permits the recipient node to begin processing
before all the data has arrived. In common situations where not all the data in a mes-
sage will be accessed, this approach can substantially reduce system delays.

In other kernel work, we formalized and analyzed a mechanism for accessing objects
in recoverable storage. Recoverable storage refers to the areas in virtual memory which
contain objects that persist across program invocations and are not destroyed by
processor, memory, or disk failures. With such recoverable storage, programmers can
declare program variables normally and be assured the variables will always have their
most recent values.

Our implementation technique for recoverable storage is based on a generalization of
the database technique of write-ahead logging. Like all logging techniques, write-ahead
logging records state transitions of objects in a highly reliable log. The log is used to
redo or undo changes following failures. However, unlike less efficient techniques, our
write-ahead strategy permits most log writes to be done asynchronously; hence, they do
not slow down the execution of application programs.

We implemented a variant of this recoverable storage implementation technique as
part of TABS [Spector&.85.Distributed]. This work lays the groundwork for a more
flexible, production-quality implementation.

6.4 Reliability

We completed three major tasks in our work on reliability: We designed a distributed
algorithm to efficiently record the state transitions of processing nodes across a network
on remote log servers, we finished implementing a system whereby transaction-based
applications can more effectively communicate with human users, and we concluded
the performance evaluation of the TABS system.

6.4.1 Distributed transaction facility

We built the TABS distributed transaction facility to demonstrate that general purpose
facilities that support distributed transactions are feasible to implement and useful in
simplifying the construction of reliable distributed applications. Although there is room
for diversity in its exact functions, a distributed transaction facility must make it easy to
initiate and commit transactions, to call operations on objects from within transactions,
and to implement abstract types that have correct synchronization and recovery
properties.

To date, transactions have been useful in the restricted domain of commercial sys-
tems. Our research has been based on the notion that transactions provide properties
that are essential to many other types of distributed applications. Synchronization
propeotes guarantee that concurrent readers and writers of data do not interfere with
each other. Failure atomicity simplifies the maintenance of invariants on data by ensur-

6-7

FINAL REPORT, 1985-87 DISTRIBUTED SENSOR NETWORKS

ing that updates are not partially done, despite the occurrence of failures. Permanence
provides programmers the luxury of knowing that only catastrophic failures will corrupt
or erase previously made updates.

Overall, the most important contributions of the TABS system were:
"* The development of a system architecture in which transactions can be

used for a wide variety of applications, including the maintenance of dis-
tributed and replicated data that is useful in distributed sensor networks.

"* The integration of virtual memory management and recovery to provide
very efficient, yet easy to use memory structures for programmers using
TABS.

*An efficient set of communication mechanisms to track the nodes that are
involved in a transaction and permit them to come to an agreement that the
transaction has successfully completed.
The first implementation of two recovery algorithms that provide decreased
recovery time after system crashes and increased flexibility in using com-
plex data types.

6.4.2 Distributed logging

This work is based on the following idea: If a processing node's fundamental state
transitions are recorded on one or more other nodes, then even after a catastrophic
failure, that processing node's state can be reconstructed by reapplying the state tran-
sitions, one after another. In other words, if a processing node N1 is destroyed, there
exists sufficient information on other nodes to allow N1 to be reconstituted. We
amplified this basic idea by developing the concept of a replicated log
service [Daniels&.86. Distributed]:

1. Logically, a replicated log service provides primitives to append new data
records to the end of a logically infinite log. Depending on its precise con-
figuration, the replicated log guarantees that these data records will be
available in the future, despite a high number of failures.

2. A replicated log service is implemented through the use of a collection of
networked, dedicated log servers. To write a log record to the replicated
log service, the log records are written in parallel to some of the remote
log servers using a special-purpose, high-performance protocol. To read
a previously written record, it is necessary only to read the information on
a single log server having up to date information. The algorithm makes it
easy to learn which log servers are current information and does some
rather complex bookkeeping to handle all possible failure conditions.

The log service is tuned to support transaction-based systems but could be used
wherever people want to record state transitions reliably. In some transaction-based
environments, the use of a replicated log service could offer survival, operational, per-
formance, and cost advantages. Survival is likely to be better for a replicated log ser-
vice because it can tolerate the destruction of one or more entire processing nodes.

6-8

DISTRIBUTED SENSOR NETWORKS FiNAL REPORT, 1985-87

Operation could be better because it is easier to manage high volumes of log data at a
small number of logging nodes, rather than at all transaction processing nodes. Perfor-
mance might be better because shared facilities can have faster hardware than could
be afforded for each processing node. Finally, providing a shared network logging
facility would be less costly than dedicating highly reliable storage (e.g., duplexed disks)
to each processing node, particularly in some distributed systems environments.

6.4.3 Interaction with users

Reliability projects typically concentrate on maintaining the consistency of data inter-
nally stored at multiple processing nodes. Our work on user-interaction focused on how
human users should interact with such systems. One major question is how to present
tentative, committed, or aborted information to a user in the presence of unreliable com-
munication and display equipment. Another is how to reexecute a user's commands so
as to automatically retry transactions that have aborted.

We developed a user interaction system in which users can count on receiving correct
information about the status of transactions they have initiated. Additionally, system out-
put to the user is stable across crashes; that is, a-display's output can be viewed as a
type of database, which has the same integrity guarantees as any other database.
Even though there may be failures that temporarily delay a user from seeing his output,
the failures can be repaired, and the user is guaranteed not to lose any information.

Human input, too, is stored reliably in a database. If a program reading from that
database aborts due to a failure, the human input remains in the database and can be
automatically reused when the work resumes.

In our prototype implementation of this, we stored both types of data in TABS data ser-
vers, which are stored as reliably as any other system data. This moderate program-
ming effort resulted in about 5,000 lines of code, and was performed to demonstrate
performance and utility. The system's performance shows the idea will work satisfac-
torily on machines that can deliver 2 or more MIPS. We gave our I/O subsystem an in-
terface similar to the standard I/O system to make it easy for programmers to use.

6.4.4 Replicated directory demonstration

One way to ensure reliability is to replicate data-store it redundantly at multiple loca-
tions. Replicated data can enhance data availability in the presence of failures and in-
crease the likelihood that data will be accessible when needed. Researchers at CMU
have developed algorithms that exploit knowledge about the semantics of the replicated
data to provide more effective replications than traditional approaches such as disk mir-
roring provide. In particular, Bloch, Daniels, and Spector developed an algorithm to
replicate directory objects having operations on data such as Lookup, Update, Insert,
and Delete [Bloch&.86.Weighted].I

FINAL REPORT, 198"5-7 DISTRIBUTED SENSOR NETWORKS

* We implemented this algorithm on top of TABS, both to demonstrate the correctness
and performance of the algorithm, and also to demonstrate the completeness of TABS.
We ran tests in which machines were turned off to show that data remains accessible
despite failures. Then, the machines were turned on to show that they would automati-
cally reconnect to the network after failures. This demonstration was one of the few
demonstrations of replication algorithms that has actually been implemented.

S1

S+

6-10

DISTRIBUTED SENSOR NETWORKS FINAL REPORT, 198547

6.5 Bibliography

[Accetta et al. 86] Accetta, M., R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young.
Mach: a new kernel foundation for UNIX development.
In Proceedings of Summer Usenix, USENIX, July, 1986.

Mach is a multiprocessor operating system kernel and environ-
ment under development at Carnegie Mellon University.
Mach provides a new foundation for UNIX development that
spans networks of uniprocessors and multiprocessors.
This paper describes Mach and the motivations that led to
its design. Also described are some of the details of its im-
plementation and current status.

[Anonymous et al. 85]
Anonymous et al.
A measure of transaction processing power.
Datamation3l (7), April, 1985.
Also available as technical report TR 85.2, Tandem Corporation,

Cupertino, California, January 1985.

[Bhandari et al. 87]
Bhandari, I.S., H.A. Simon, and D.P. Siewiorek.
Optimal diagnosis for causal chains.
Technical Report CMU-CS-87-151, Carnegie Mellon University Com-I puter Science Department,
September, 1987.

Probe Selection (PS) is an important facet of any diagnostic
program. The problem solved here is to find an optimal al-
gorithm for PS in a causal chain. The word "optimal" has
been used in the literature on diagnosis to designate both
locally optimal and globally optimal algorithms. Locally op-
timal algorithms use some best-first technique to choose
next the probe that optimizes some metric and they are not
generally optimal, although they do provide good heuris-
tics. Globally optimal algorithms choose that sequence of
probes that optimizes some metric and they are truly op-
timal. In this work, optimal will be used to refer to the lat-
ter.

An optimal algorithm to do probe selection in causal chains is
presented. Probes may have different costs of measure-
ment. The algorithm runs in polynomial time.

[Bloch 86] Bloch, J.J.
A practical, efficient approach to replication of abstract data objects.
PhD thesis proposal.

Bloch's thesis proposal explains how to extend replicated direc-
tories to be a type which is useful for constructing many
other types. Also, contains the first words on optimistic
time stamps, and optimistic approaches in general.

6-11

FINAL REPORT, 195-87 DISTRIBUTED SENSOR NETWORKS

O [Bloch et al. 87] Bloch, J.J., D.S. Daniels, and A.Z. Spector.
W0 A weighted voting algorithm for replicated directories.

JACM34(4), October, 1987.
Also available as technical report CMU-CS-86-132.

Weighted voting is used as the basis for a replication technique
for directories. This technique affords arbitrarily high data
availability as well as high concurrency. Efficient al-
gorithms are presented for all of the standard directory
operations. A structural property of the replicated directory
that permits the construction of an efficient algorithm for
deletions is proven. Simulation results are presented and
the system is modeled and analyzed. The analysis agrees
well with the simulation, and the space and time perfor-
mance are shown to be good for all configurations of the
system.

[Daniels 86] Daniels, D.S.
Distributed logging for transaction processing.
PhD thesis proposal.

Daniels' thesis proposal discusses logging across a local areanetwork and other node recovery issues in such environ-
ments.

[Daniels et al. 87] Daniels, D.S., A.Z. Spector, and D.S. Thompson.
Distributed logging for transaction processing.
In Sigmod '87 Proceedings, ACM, May, 1987.
Also available as technical report CMU-CS-86-106.

Increased interest in using workstations and small processors
for distributed transaction processing raises the question of
how to implement the Ings needed for transaction
recovery. Although logs can be implemented with data
written to duplexed disks on each processing node, this
paper argues there are advantages if log data is written to
multiple Iogserver nodes. A simple analysis of expected
logging loads leads to the conclusion that a high perfor-
mance, micro-processor based processing node can sup-
port a log server if it uses efficient communication
protocols and low latency, non-volatile storage to buffer log
data. The buffer is needed to reduce the processing time
per log record and to increase throughput to the logging
disk. An interface to the log servers using simple, robust,
and efficient protocols is presented. Also described are
the disk data structures that the log servers use. This
paper concludes with a brief discussion of remaining
design issues, the status of a prototype implementation,
and plans for its completion.

6-12

DISTRIBUTED SENSOR NETWORKS FINAL REPORT, 198S4S7

[Detlefs et al. 87] Detlefs, D., M. Herlihy, and J.M. Wing.
Inheritance of synchronization and recovery properties in

Avalon/C++.
Technical Report CMU-CS-87-133, Carnegie Mellon University Com-

puter Science Department,
March, 1987.

We exploit the inheritance mechanism of object-oriented lan-
guages in a new domain, fault-tolerant distributed systems.
We use inheritance in Avalon/C++ to transmit properties,
such as serializability and crash resilience, that are of
specific interest in distributed applications. We present
three base classes, RESILIENT, ATOMIC, and DYNAMIC, ar-
ranged in a linear hierarchy, and examples of derived
classes whose objects guarantee desirable fault-tolerance
properties.

[Durham 86] Durham, I.
Abstraction and the methodical development of failt-,olerant

software.
PhD thesis, Carnegie Mellon University Computer Science Depart-

ment, February, 1986.
Also available as Technical Report CMU-CS-86-112.

The reliable operation of software is a factor of increasing im-
portance with the use of computers for critical functions.
Software in general is demonstrably unreliable, particularly
in the presence of external failures. Software that con-
tinues to provide reliable, if degraded, service in spite of
external failures is termed Fault-Tolerant. Fault-tolerant
software uses redundancy in code and data to recover
from failures. Because few tools are available to guide the
introduction of redundancy for the most cost-effective im-
provement in reliability, an ad hoc approach is commonly
used. Unfortunately, such an approach cannot guarantee
that the most serious potential failures have even been
recognized. There is, therefore, a need for a methodical
approach to deciding where to introduce redundancy.
Abstraction has provided a foundation for the methodical
development of correct software. As a conceptual tool, it
simplifies the structure of software and supports both the
precise specification of its behavior in the absence of
failures and the ease of reasoning about it. This thesis
provides a foundation for the methodical development of
fault-tolerant software using abstraction as the basis for
describing both failures and the behavior of software in the
presence of those failures.

[Eppinger 86] Eppinger, J.L.
Virtual memory management for transaction processing.
PhD. thesis proposal.

6-13

FINAL REPORT, 198567 DISTRIBUTED SENSOR NETWORKS

To support failure atomicity and permanence, transaction
processing systems store data in recoverable storage.
Recoverabie storage is commonly implemented using a
combination of non-volatile storage for the current state of
data and stable storage for a log that permits operations to
be undone or redone. While data are being processed,
they are cached in volatile, primary memory. Traditionally,
transaction processing systems have implemented
recoverable storage themselves, but many advantages are
obtained if the operating system undertakes this respon-
sibility: data can be mapped into virtual memory and
thereby accessed more conveniently; the operating
system's fast address translation and paging components
provide increased performance; the amount of primary
memory allocated to buffering data is adapted to system
load; double paging is eliminated; multiple, separate ser-
vers can share the use of the operating system's buffer
management and use a common log.

My thesis is that operating systems should manage recoverable
storage. In my dissertation, I will show how this can be
done. I will describe two operating systems into which I
have incorporated or will incorporate such support, and I
will evaluate these systems with respect to efficiency and
ease of use. My dissertation will also discuss multiproces-
sor implementations, implementations for large amounts of
data, and implementations for large memories.

[Fitzgerald 86] Fitzgerald, R.P.
A performance evaluation of the integration of virtual memory

management and interprocess communications in Accent.
PhD thesis, Carnegie Mellon University Computer Science Depart-

ment, October, 1986.
Also available as technical report CMU-CS-86-158.

All communication-oriented operating systems need a way to
transfer data between processes. The Accent network
operating system addresses this need by integrating copy-
on-write virtual memory management with inter-process
communication. Accent provides a flat, 32-bit, sparsely al-
locatable, paged virtual address space to each process. It
uses mapping, the manipulation of virtual memory data
structures, to transfer large data objects between
processes and to provide mapped access to files and other
data objects. It uses copy-on-write protection to prevent
accidental modification of shared data, so that mapping
transfers data by value.

Although by-value data transfer and mapped file access have
been considered desirable on methodological grounds, ex-
perience with previous systems such as RIG and CAL
raised serious questions about the performance possible in

6-14

DISTRIBUTED SENSOR NETWORKS FINAL REPORT, 1985-87

such systems. This dissertation examined the impact of
the Accent approach on the design, implementation, per-
formance and use of Accent.

[Fitzgerald and Rashid 85]
Fitzgerald, R. and R.F. Rashid.
The integration of virtual memory management and interprocess

communication in Accent.
Technical Report CMU-CS-85-164, Carnegie Mellon University Com-

puter Science Department,
September, 1985.

The integration of virtual memory management and interprocess
communication in the Accent network operating system
kernel is examined. The design and implementation of the
Accent memory management system is discussed and its
performance, both on a series of message-oriented
benchmarks and in normal operation, is analyzed in detail.

[Grizzaffi 85] Grizzaffi, A.M.
Fault-free performance validation of fault-tolerant multiprocessors.
Technical Report CMU-CS-86-127, Carnegie Mellon University Com-

puter Science Department,
November, 1985.

By the 1990's, aircraft will employ complex computer systems to
control flight-critical functions. Since computer failure
would be life threatening, these systems should be ex-
perimentally validated before being given aircraft control.

Over the last decade, Carnegie Mellon University has
developed a validation methodology for testing the fault-
free performance of fault-tolerant computer systems. Al-
though this methodology was developed to validate the
Fault- Tolerant Multiprocessor (FTMP) at NASA-Langley's
AIRLAB facility, it is claimed to be general enough to
validate any ultrareliable computer system.

The goal of this research was to demonstrate the robustness of
the validation methodology by its application on NASA's
Software Implemented Fault-Tolerance (SIFT) Distributed
System. Furthermore, the performance of two architec-
turally different multiprocessors could be compared by con-
ducting identical baseline experiments.

From an analysis of the results, SIFT appears to have a better
overall performance for instruction execution than FTMP.
One conclusion that can be made is thus far the validation
methodology has been proven general enough to apply to
SIFT, and has produced results that were directly com-
parable to previous FTMP experiments.

6-1

FINAL REPORT, 198547 DISTRIBUTED SENSOR NETWORKS

[Hedihy 86] Herlihy, M.P.
Optimistic concurrency control for abstract data types.
In Fifth ACM SIGACT-SIGOPS Symposium on Principles of Dis-

tributed Computing, ACM SIGACT-SIGOPS, August, 1986.
A concurrency control technique is optimistic if it allows trans-

actions to execute without synchronization, relying on
commit-time validation to ensure serializability. This paper
describes several new techniques for objects in distributed
systems, proves their correctness and optimality
properties, and characterizes the circumstances under
which each is likely to be useful. These techniques have
the following novel aspects. First, unlike many methods
that classify operations only as reads or writes, these tech-
niques systematically exploit type-specific properties of ob-
jects to validate more interleavings. Necessary and suf-
ficient validation conditions are derived directly from an
object's data type specification. Second, these techniques
are modular: they can be applied selectively on a per-
object (or even per-operation) basis in conjunction with
standard pessimistic techniques such as two-phase lock-
ing, permitting optimistic methods to be introduced exactly
where they will be most effective. Third, when integrated
with quorum-consensus replication, these techniques cir-
cumvent certain trade-offs between concurrency and
"availability imposed by comparable pessimistic techniques.
Finally, the accuracy and efficiency of validation are further
enhanced by some technical improvements: distributed
validation is performed as a side-effect of the commit
protocol, and validation takes into account the results of
operations, accepting certain interleavings that would have
produced delays in comparable pessimistic schemes.

[Herlihy and Wing 86]
Herlihy, M.P., and J.M. Wing.
Avalon: language support for reliable distributed systems.
Technical Report CMU-CS-86-167, Camegie Mellon University Com-

puter Science Department,
November, 1986.

Avalon is a set of linguistic constructs designed to give
programmers explicit control over transaction-based
processing of atomic objects for fault-tolerant applications.
These constructs are to be implemented as extensions to
familiar programming languages such as C++, Common
Lisp, and Ada; they are tailored for each base language so
the syntax and spirit of each language are maintained.

This paper presents an overview of the novel aspects of
Avalon/C++: (1) support for testing transaction serialization
orders at run-time, and (2) user-defined, but system-
invoked, transaction commit and abort operations for

6-16

DISTRIBUTED SENSOR NETWORKS FINAL REPORT, 198547

atomic data objects. These capabilities provide program-
mers with the flexibility to exploit the semantics of applica-
tions to enhance efficiency, concurrency, and fault-
tolerance.

[Herlihy and Wing 87a]
Herlihy, M.P. and J.M. Wing.
Avalon: language support for reliable distributed systems.
In 17th Symposium on Fault-Tolerant Computer Systems, IEEE,

July, 1987.
Also available as Technical Report CMU-CS-86-167.

Avalon is a set of linguistic constructs designed to give
programmers explicit control over transaction-based
processing of atomic objects for fault-tolerant applications.
These constructs are to be implemented as extensions to
familiar programming languages such as C++, Common
Lisp, and Ada; they are tailored for each base language so
the syntax and spirit of each language are maintained.

This paper presents an overview of the novel aspects of
Avalon/C++: (1) support for testing transaction serialization
orders at run-time, and (2) user-defined, but system-
invoked, transaction commit and abort operations for
atomic data objects. These capabilities provide program-
mers with the flexibility to exploit the semantics of applica-
tions to enhance efficiency, concurrency, and fault-
tolerance.

[Herlihy and Wing 87b]
Herlihy, M.P. and J.M. Wing.
Specifying graceful degradation in distrfibuted systems.
Technical Report CMU-CS-87-120, Camegie Mellon University Com-

puter Science Department,
May, 1987.

Distributed programs must often display graceful degradation,
reacting adaptively to changes in the environment. Under
ideal circumstances, the program's behavior satisfies a set
of application-dependent constraints. In the presence of
failures, timing anomalies, or synchronization conflicts,
however, certain constraints may become difficult or im-
possible to satisfy, and the application designer may
choose to relax them as long as the resulting behavior is
sufficiently "close" to the preferred behavior. This paper
describes the relaxation lattice method, a new approach to
specifying graceful degradation for a large class of highly-
concurrent fault-tolerant distributed programs. A relaxation
lattice is a lattice of specifications parameterized by a set
of constraints, where the stronger a set of constraints, the
more restrictive the specification. While a program is able
to satisfy its strongest set of constraints, it satisfies its

6.17

FINAL REPORT, 198547 DISTRIBUTED SENSOR NETWORKS

preferred specification, but if changes to the environment
force it to satisfy a weaker set, then it will permit additional
"weakly consistent" computations which are undesired but
tolerated. The use of relaxation lattices is illustrated by
specifications for programs that tolerate (1) faults, such as
site crashes and network partitions, (2) timing anomalies,
such as attempting to read a value "too soon" after it was
written, and (3) synchronization conflicts, such as choosing
the oldest "unlocked" item from a queue.

[Herlihy et al. 87] Herlihy, M.P., N.A. Lynch, M. Merritt, and W.E. Weihl.
On the correctness of orphan elimination algorithms.
In 17th Symposium on Fault-Tolerant Computer Systems, IEEE,

July, 1987.
Abbreviated version of MIT/LCS/TM-329.

Nested transaction systems are being explored in a number of
projects as a means for organizing computations in a dis-
tributed system. Like ordinary transactions, nested trans-
actions provide a simple mechanism for coping with con-
currency and failures. In addition, nested transactions ex-
tend the usual notion of transactions to permit concurrency
within a single action and to provide a greater degree of
fault-tolerance, by isolating a transaction from a failure of
one of its descendants.

"In a distributed system, however, various factors, including node
"crashes and network delays, can result in orphaned com-
putations: computations that are still running but whose
results are no longer needed. Even if a system is
designed to prevent orphans from pemranently affecting
shared data, orphans are still undesirable, for two reasons.
First, they waste resources. Second, they may see incon-
sistent information.

Several algorithms have been designed to detect and eliminate
orphans before they can see inconsistent information. In
this paper we give formal descriptions and correctness
proofs for the two orphan elimination algorithms in [7] and
[10]. Our analysis covers only orphans resulting from
aborts of actions that leave running descendants; we are
currently working on modeling crashes and describing the
algorithms that handle orphans that result from crashes.
Our proofs are completely rigorous, yet quite simple. We
show formally that the algorithms work in combination with
any concurrency control protocol that ensures serializabil-
tity of committed transactions, thus providing formal jus-
tification for the informal claims made by the algorithms'
designers. Separating the orphan elimination algorithms
from the concurrency control algorithms in this way con-
tributes greatly to the simplicity of our results, and is in
marked contrast to earlier work on similar problems.

6-18

DISTRIBUTED SENSOR NETWORKS FINAL REPORT, 198547

[Jones and Rashid 87]
Jones, M.B. and R.F. Rashid.
Mach and Matchmaker: Kernel and language support for object-

oriented distributed systems.
Technical Report CMU-CS-87-150, Carnegie Mellon University Com-

puter Science Department,
September, 1987.
This paper also appeared in the Proceedings of the First Annual

ACM Conference on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA, September, 1986.
Mach, a multiprocessor operating system kernel providing

capability-based interprocess communication, and
Matchmaker, a language for specifying and automating the
generation of multi-lingual interprocess communication in-
terfaces, are presented. Their usage together providing a
heterogeneous, distributed, object-oriented programming
environment is described. Performance and usage statis-
tics are presented. Comparisons are made between the
Mach/Matchmaker environment and other related systems.
Possible future directions are examined.

[Jones et al. 85] Jones, M.B., R.F. Rashid, and M.R. Thompson.
Matchmaker: an interface specification language for distributed

processing.
In Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, 1985.
Matchmaker, a language used to specify and automate the

generation of interprocess communication interfaces, is
presented. The process of and reasons for the evolution of
Matchmaker are described. Performance and usage
statistics are presented. Comparisons are made between
Matchmaker and other related systems. Possible future
directions are examined.

[Leivant 87] D. Leivant.
Characterization of complexity classes in higher-order logic.
In 2nd Symposium on Structure in Complexity, IEEE, June, 1987.
Submission invited to a special issue of the Journal of Computer and

System Sciences.
We show, for a number of computational complexity classes,

that the problems therein are precisely the problems ex-
plicitly definable by those formulas of higher oruer logic
that obey a certain syntactic constraint. The complexity
classes thus characterized include NLog.space, Ptime,
NPtime (Fagin's Theorem), PtimeHierarchy, Exp.time,
NExp.time, ExpHierarchy, ExpSpace, and DoublyExp.time.

6.1

FINAL REPORT, 194-7 DISTRIBUTED SENSOR NETWORKS

S[Leivant and Fernando 87]
V Leivant, D. and T. Fernando.

Skinny and fleshy failures of relative completeness.
In 14th Symposium on Principles of Programming Languages, ACM,

January, 1987.
Also submitted to the Journal of the ACM.

We exhibit a programming language whose control structure is
trivial, and yet for which no Cook-complete Hoare logic ex-
ists. The poverty of the language is precisely what permits
certain structures to be expressive, structures which would
not be expressive had the program constructs been used
more freely.

We also discuss the failure of relative completeness for "fleshy"
programming languages, of the kind of Clarke's. We point
out the relevance of the Lambda Calculus here, from which
we derive the failure of Cook-completeness for a program-
ming language orthogonal (i.e. incomparable) to Clarke's,
whose control-structure complexity resides to a great ex-
tent in a modest use of generic procedures. A variant of
the same ideas also provides an alternative proof of non-
relative-completeness for (a variant of) Clarke's language.

Finally, we note in passing a simple proof of Wand's Theorem,
which states the failure of local completeness (without
Cook's expressiveness condition) for while programs. Our

"*• program uses rudimentary facts from Mathematical Logic.

[Liskov et al. 85] Liskov, B., M. Herlihy, and L. Gilbert.
Limitations of synchronous communication with static process struc-

ture in languages for distributed computing.
Technical Report CMU-CS-85-168, Carnegie Mellon University Com-

puter Science Department,
October, 1985.

Modules in a distributed program are active, communicating en-
tities. A language for distributed programs must choose a
set of communication primitives and a structure for
processes. This paper examines one possible choice:
synchronous communication primitives (such as rendez-
vous or remote procedure call) in combination with
modules that encompass a fixed number of processes
(such as Ada tasks or UNIX processes). An analysis of the
concurrency requirements of distributed programs sug-
gests that this combination imposes complex and indirect
solution to common problems and thus is poorly suited for
applications such as distributed programs in which concur-
rency is important. To provide adequate expressive
power, a language for distributed programs should aban-
don either synchronous communication primitives or the
static process structure.

6-20

DISTRIBUTED SENSOR NETWORKS FINAL REPORT, 198-87

[Liskov et al. 86] Liskov, B., M. Herlihy, and L. Gilbert.
Limitations of synchronous communication with static process struc-

ture in languages for distributed computing.
In 13th ACM Symposium on Principles of Programming Languages,

ACM, January, 1986.
Also available as technical report CMU-CS-85-168.

must get abstract

[McDonald et al. 87]
McDonald, D.B., S.E. Fahlman, and A.Z. Spector.
An efficient Common Lisp for the IBM RT PC.
Technical Report CMU-CS-87-134, Carnegie Mellon University Com-

puter Science Department,
July, 1987.

CMU Common Lisp is a full implementation of Common Lisp
developed within the Computer Science Department of
Carnegie Mellon University. It runs on the IBM RT PC un-
der CMU's Mach operating system, which is compatible
with Berkeley <unix> 4.3. An important consideration in
the design of CMU Common Lisp was our desire to make
the best possible use of the IBM RT PC's RISC instruction
set and flexible memory architecture.

CMU Common Lisp provides a comprehensive Lisp program-
ming environment and is now heavily used within the CMU
Computer Science Department, both in Lisp's traditional
role as the language of Al research, and in many other
areas where "mainstream" languages were formerly used.

In this paper we focus on the design and implementation
strategy used in CMU Common Lisp. We also briefly
describe the improvements we plan for the future.

[McKendry and Herlihy 86]
McKendry, M.S. and M. Herlihy.
Time-driven orphan elimination.
In Proceedings of the Fifth Symposium on Reliability in Distributed

Software and Database Systems, IEEE, January, 1986.
An orphan in a transaction system is an activity executing on

behalf of an aborted transaction. This paper proposes a
new method for managing orphans created by crashes and
by aborts. The method prevents orphans from observing
inconsistent states, and ensures that orphans are detected
and eliminated in a timely manner. A major advantage of
this method is simplicity: it is easy to understand, to imple-
ment, and to prove correct. The method is based on
timeouts using clocks local to each site. The method is
fail-safe: although it performs best when clocks are closely
synchronized and message delays are predictable, un-
synchronized clocks and lost messages cannot produce in-

* consistencies or protect orphans from eventual elimination.

6-21

FINAL REPORT, 198547 DISTRIBUTED SENSOR NETWORKS

* [Rashid et al. 87] Rashid, R.F., A. Tevanian, M. Young, D. Golub, R. Baron, D. Black,
W. Bolosky, and J. Chew.
Machine-Independent virtual memory management for paged

uniprocessor and multiprocessor architectures.
Technical Report CMU-CS-87-140, Carnegie Mellon University Com-

puter Science Department,
July, 1987.

This paper describes the design and implementation of virtual
memory management within the CMU Mach Operating
System and the experiences gained by the Mach kernel
group in porting that system to a variety of architectures.
As of this writing, Mach runs on more than half a dozen
uniprocessors and multiprocessors including the VAX
family of uniprocessors and multiprocessors, the IBM RT
PC, the SUN 3, the Encore Multimax, the Sequent Balance
21000 and several experimental computers. Although
these systems vary considerably in the kind of hardware
support for memory management they provide, the
machine-dependent portion of Mach virtual memory a con-
sists of a single code module and its related header file.
This separation of software memory management from
hardware support has been accomplished without sacrific-
ing system performance. In addition to improving por-
tability, it makes possible a relatively unbiased examination0 of the pros and cons of various hardware memory
management schemes, especially as they apply to the
support of multiprocessors.

[Spector 85] Spector, A.Z.
The TABS project.
Database Engineering8(2), 1985.

To simplify the construction of reliable, distributed programs, the
TABS Project is performing research in the construction
and use of general purpose, distributed transactions
facilities. As part of this work, it has constructed a
prototype and data objects that are built onto it. The goals
of the work are to show that a distributed transaction
facility can simplify programming some types of distributed
applications and that its performance can be satisfactory.

[Spector 87] Spector, A.Z.
Distributed transaction processing and the Camelot System.
Technical Report CMU-CS-87-100, Carnegie Mellon University Com-

puter Science Department,
January, 1987.

This paper describes distributed transaction processing, a tech-
nique used for simplifying the construction of reliable dis-
tributed systems. After introducing transaction processing,0
the paper presents models describing the structure of dis-

6-22

DISTRIBUTED SENSOR NETWORKS FINAL REPORT, 198547

tributed systems, the transactional computations on them,
and the layered software architecture that supports those
computations. The software architecture model contains
five layers, including an intermediate layer that provides a
common set of useful functions for supporting the highly
reliable operation of system services, such as data
management, file management, and mail. The functions of
this layer can be realized in what is termed a distributed
transaction facility. The paper then describes one such
facility - Camelot. Camelot provides flexible and high per-
formance commit supervision, disk management, and
recovery mechanisms that are useful for implementing a
wide class of abstract data types, including large
databases. It runs on the Unix-compatible Mach operating
system and uses the standard Arpanet IP communication
protocols. Presently, Camelot runs on RT PC's and
Vaxes, but it should also run on other computers including
shared-memory multiprocessors.

[Spector and Daniels 85]
Spector, A.Z. and D.S. Daniels.
Performance evaluation of distributed transaction facilities.
Presented at the Workshop on High Performance Transaction

Processing, Asilomar, September, 1985.
* [Spector et al. 85a]

Spector, A.Z., D.S. Daniels, D.J. Duchamp, J.L. Eppinger, and
R. Pausch.
Distributed transactions for reliable systems.
In Proceedings of the Tenth Symposium on Operating System

Principles, ACM, December, 1985.
Also available as technical report CMU-CS-85-117.

Facilities that support distributed transactions on user-defined
types can be implemented efficiently and can simplify the
construction of reliable distributed programs. To
demonstrate these points, this paper describes a prototype
transaction facility, called TABS, that supports objects,
transparent communication, synchronization, recovery, and
transaction management. Various objects that use the
facilities of TABS are exemplified and the performance of
the system is discussed in detail. The paper concludes
that the prototype provides useful facilities, and that it
would be feasible to build a high performance implemen-
tation based on its ideas.

6-23

FINAL REPORT, 1985-67 DISTRIBUTED SENSOR NETWORKS

al [Spector et al. 85b][W p Spector, A.Z., J. Butcher, D.S. Daniels, D.J. Duchamp, J.L. Eppinger,
C.E. Fineman, A. Heddaya, and P.M. Schwarz.
Support for distributed transactions in the TABS prototype.
IEEE Transactions on Software EngineeringSE-1 1 (6), June, 1985.
Also available as technical report CMU-CS-84-132.

The Tabs prototype is an experimental facility that provides
operating system-level support for distributed transactions
that operate on shared abstract types. The facility is
designed to simplify the construction of highly available
and reliable distributed applications. This paper describes
the TABS system model, the TABS prototype's structure,
and certain aspects of its operation. The paper concludes
with a discussion of the status of the project and a prelimi-
nary evaluation.

[Spector et al. 86a]
Spector, A.Z., J.J. Bloch, D.S. Daniels, R.P. Draves, D. Duchamp,
J.L. Eppinger, S.G. Menees, and D.S. Thompson.
The Camelot project.
Database Engineering9(4), December, 1986.
Also available as technical report CMU-CS-86-166.

This paper is an early discussion of Camelot. It broadly dis-
cusses its key functions and some aspects of its im-
plementation. For perspective, it was written just after the
project measured the performance of local write trans-
actions without stable storage. A pretty early paper.

[Spector et al. 86b]
Spector, A.Z., D. Duchamp, J.L. Eppinger, S.G. Menees, and D.S.
Thompson.
The Camelot interface specification.
Camelot Working Memo 2.

We present a performance evaluation methodology for general
purpose distributed transaction processing facilities. This
methodology extends previous techniques in two ways:
First, it provides more insight into a transaction facility's in-
ternal operation and makes it possible to predict the effects
of algorithmic and architectural changes. Second, it per-
mits the performance of many types of transactions to be
understood. We illustrate the methodology by applying it
to a prototype transaction facility called TABS.

[Spector et al. 87] Spector, A.Z., D. Thompson, R. Pausch, J. Eppinger, D. Duchamp,
R. Draves, D. Daniels, and J. Bloch.
Camelot: A distributed transaction facility for Mach and the Internet--

An interim report.
Technical Report CMU-CS-87-129, Carnegie Mellon University Com-

puter Science Department,
June, 1987.

6-24

DISTRIBUTED SENSOR NEWORKS FINAL REPORT, 1918547

Camelot is a distributed transaction facility that runs on top of
the Berkeley Unix 4.3 compatible Mach operating system.
Camelot runs on a variety of different hardware and sup-
ports the execution of distributed transactions on shared
user-defined objects, and hence the operation of dis-
tributed network services. The Camelot library, akin to the
Unix Man 3 library, provides about 30 macros and proce-
dure calls to simplify the development of applications and
distributed services. To achieve good performance,
Camelot is implemented using a combination of multi-
thread tasks, shared memory, messages, and datagrams.
This paper reports on a number of latency experiments to
show the overhead of Camelot Release 0.4(22).

[Tevanian and Rashid 87]
Tevanian, A. Jr. and R.F. Rashid.
MACH: A basis for future UNIX development.
Technical Report CMU-CS-87-139, Camegie Mellon University Com-

puter Science Department,
June, 1987.

Computing in the future will be supported by distributed comput-
ing environments. These environments will consist of a
wide range of hardware architectures in both the
uniprocessor and multiprocessor domain. This paper dis-
cusses Mach, an operating system under development at
Carnegie Mellon University, that has been designed with
the intent to integrate both distributed and multiprocessor
functionality. In addition, Mach provides the foundation
upon which future Unix development may take place in
these new environments.

[Tevanian et al. 87]
Tevanian, A. Jr., R.F. Rashid, D.B. Golub, D.L. Black, E. Cooper,
and M.W. Young.
Mach threads and the Unix kernel: The battle for control.
Technical Report CMU-CS-87-149, Camegie Mellon University Com-

puter Science Department,
August, 1987.

This paper examines a kernel implementation lightweight
process mechanism built for the Mach operating system.
The pros and cons of such a mechanism are discussed
along with the problems encountered during its implemen-
tation.

[Tygar and Wing 87]
Tygar, J.D. and J.M. Wing.
Visual specification of security constraints.
Technical Report CMU-CS-87-122, Camegie Mellon University Com-

puter Science Department,
May, 1987.

6-25

FINAL REPORT, 198S-87 DISTRIBUTED SENSOR NETWORKS

We argue and demonstrate that the security domain naturally
4 lends itself to pictorial representations of security con-

straints. Our formal model of security is based on an ac-
cess matrix that traditionally has been used to indicate
which users have access to which files, e.g., in operating
systems. Our formal visual notation borrows from and ex-
tends Harel's statechart ideas, which are based on graphs
and Venn diagrams. We present a tour of our visual
language's salient features and give examples from the
security domain to illustrate the expressiveness of our
notation.

[Wendorf 87] Wendorf, J.W.
OS/application concurrency: A model.
Technical Report CMU-CS-87-153, Carnegie Mellon University Com-

puter Science Department,
April, 1987.

A model of the processing performed on a computer system is
presented. The model divides processing into two types:
OS processing and application processing. It then defines
what it means to have OS/application concurrency, and
enumerates the different forms such concurrency can take.
Examples are presented to illustrate the model's analytic
and predictive capabilities. The model provides a common
framework for describing the concurrency in different sys-
tems, and it aids in identifying the areas where increased
concurrency may be possible. The potential performance
improvements resulting from increased OS/application
concurrency can also be predicted from the model.

[Wendorf and Tokuda 87]
J.W. Wendorf and H. Tokuda.
An interprocess communication processor: Exploiting OS/application

concurrency.
Technical Report CMU-CS-87-152, Carnegie Mellon University Com-

puter Science Department,
March, 1987.

The efficiency of the underlying interprocess communication
facility is often one of the key determinants of the overall
performance (and success) of a message-based operating
system. Because of its importance, IPC has frequently
been a target for extra hardware support, through the ad-
dition of special machine instructions or specialized IPC
coprocessors. In this paper we propose and evaluate
software-level functional specialization within a tightly-
coupled multiple-processor system, as a "hardware" sup-
port technique for improving the performance of com-
municating processes. Our experiments, conducted on a
VAX-11/784 shared-memory multiprocessor, show that per-

6-26

ISTRIBUTED SENSOR NETWORKS FNAL REPORT, 1947

formance is significantly improved by the overlapped ex-
ecution of IPC and application processing. We analyze un-
der what conditions a software-specialized IPC processor
will be effective, and we indicate how remote IPC support
can be easily integrated with local IPC in our design.

[Wing 87] Wing, J.M.
A study of twelve specifications of the library problem.
Technical Report CMU-CS-87-142, Carnegie Mellon University Com-

puter Science Department,
July, 1987.

Twelve workshop papers include an informal or formal
specification of Kemmerer's library problem. The
specifications range from being knowledge-based to logic-
based to Prolog-based. Though the statement of the infor-
mal requirements is short and "simple," twelve different ap-
proaches led to twelve different specifications. All twelve,
however, address many of the same ambiguities and in-
completenesses, which we describe in detail, present in
the library problem. We conclude that for a given set of in-
formal requirements, injecting domain knowledge helps to
add reality and complexity to it, and formal techniques help
to identify its deficiencies and clarify its imprecisions.

The purpose of this paper is to summarize and compare the
twelve different papers that address the same set of infor-
mal requirements--Kemmerer's library problem--as as-
signed to participants of the Fourth International Workshop
on Software Specification and Design held in Monterey,
California in April 1987.

[Zayas 87] Zayas, E.R.
The use of copy-on-reference in a process migration system.
Technical Report CMU-CS-87-121, Carnegie Mellon University Com-

puter Science Department,
April, 1987.

Process migration is a valuable tool in a distributed program-
ming environment. Two factors have conspired to dis-
courage efficient implementations of this facility. First, it
has been difficult to design systems that offer the neces-
sary name and location transparency at a reasonable cost.
Also, it is often prohibitively expensive to copy the large vir-
tual address spaces found in modern processes to a new
machine, given the narrow communication channels avail-
able in such systems.

This dissertation examines the use of lazy address space trans-
fers when processes are migrated to new sites. An IOU for
all or part of the process memory is transferred to the
remote location. Individual memory pages are copied over
the network in response to attempts by the transplanted

6-27

FINAL REPORT, 1911647 DISTRIBUTED SENSOR NETWORKS

process to touch areas for which it holds an IOU. The
SPICE environment developed at Carnegie Mellon has
been augmented to provide a process migration facility that
takes advantage of such a copy-on-reference scheme.
The underlying Accent kemel's location-independent IPC
mechanism is integrated with its virtual memory manage-
ment to supply the necessary transparency and the ability
to transmit data in a lazy fashion.

Study of the testbed system reveals that copy-on-reference ad-
dress space transmission improves migration effectiveness
(performance). Relocations occur up to a thousand times
faster, with transfer times independent of process size.
Since processes access a small portion of their memory in
their lifetimes, the number of bytes transferred between
machines drops by up to 96%. Message-handling costs
are lowered by up to 94%, and are more evenly distributed
across the remote execution. Without special tuning, fault-
ing in a remote page took only 2.8 times longer on average
than accessing a page on the local disk. Page prefetch
and explicit transfer of resident pages are shown to be
helpful in certain situations.

6-28

GRACEFUL INTERACTION FINAL REPORT, 198547

* 7. Graceful Interaction

In the timesharing era, the great challenge was to use every machine cycle as ef-
ficiently as possible. In the new world of workstations, user time is increasingly expen-
sive, while machine cycles are cheap and plentiful. The challenge now is to find ways to
use these cycles to make computer users more productive and more comfortable, and
to allow application programs to exchange information with the user more effectively.

We predicted that there would be a new generation of interface systems that were
qualitatively different from the ones in widespread use at that time. One of our goals
was to facilitate the creation of this new generation of systems by developing a
prototype interface environment with some of the features we believed would be avail-
able in the future.

We tailored our work specifically for large, heterogeneous computer systems. Such
systems have become predominant in the academic, military, and industrial environ-
ment, but not enough was known about providing effective and understandable user in-
terfaces for such heterogeneous systems.

The man-machine interface component is a crucial factor in both the development ef-
fort and the usefulness of any major piece of software.

We built an experimental system that was be a first demonstration of some of the. capabilities of the next generation of user interface systems. This system, the Uniform
Workstation Interface, provides a uniform interface to a heterogeneous system of
workstations and dedicated multiprocessors.

Our strategy was to integrate the results of previous research work into one
homogeneous system. The advantage of this approach is that we capitalized on sig-
nificant amounts of previous research, both in the area of user interface systems and in
the area of man-machine interface studies.

By taking advantage of the best possible development environment, we were able to
minimize the effort we spent on implementation details and concentrate instead on the
conceptual issues of designing user interface systems. The tools we built to accom-
pany ther Uniform Workstation Interface are intended to be as standard as possible, in
order to make be accessible by as wide a community as possible.

We are developing the Uniform Workstation Interface as an interface manager written
in Common Lisp. This is based on our experience with Lisp-based systems and on the
clear trend towards computers that can run Lisp as efficiently as more traditional lan-
guages like C or Pascal.

An important strategic decision for the Dante Project was to develop the Uniform
Workstation Interface on top of the Mach operating system. This decision serves

* several purposes:
* The Mach operating system provides us with a large community of users

7-1

FINAL REPORT, 198"-7 GRACEFUL INTERACTION

(both at Carnegie Mellon and at external sites) and with a very diversified
range of computer systems.

" The community of Mach users includes very experienced and sophisticated
users and software developers, and thus represents an ideal testbed for
our system. The Mach community will provides us with extensive feedback
and thus contributes significantly to the ultimate success of the system.

"* We expect that the early availability of the Uniform Workstation Interface
will in turn significantly enhance the appeal of Mach as an operating system
and will contribute to its widespread acceptance.

*Finally, the Mach operating system gives us a powerful programming en-
vironment that supports efficient communication among local or remote
processes, possibly written in different programming languages. Such an
environment is the ideal layer upon which an interface system for a
heterogeneous computing environment can be built.

We have continued both our to follow our conceptual design of the experimental user
interface system and the implementation of several of its basic building blocks.

7.1 The Lisp shell

The Lisp shell, which we started designing in the first half of 1986, is a Lisp-based
command language interpreter that constitutes one of the interaction mechanisms in the. UWI. The Lisp shell is completely customizable, both through the customary user-level
mechanisms and through an embedded programming language. This programming lan-
guage, Common Lisp, makes the Lisp shell an extremely powerful tool, allowing it to ex-
ecute commands written as Lisp programs or as external processes written, for in-
stance, in C or Pascal. One advantage is this gives the user the full functionality of the
UNIX programming environment without having to leave Lisp [Giuse.85.Programming].

During the second half of 1986 we implemented the first version of the Lisp shell and
ported it to an external environment, i.e. to the Warp project. A member of the Warp
group did the porting which consisted of moving the Lisp Shell from CMU Common Lisp
under Mach to Lucid Common Lisp under UNIX 4.2 (on a SUN workstation). The port
also required converting the system's editor from Hemlock to SUN Emacs. The result-
ing system, called the Warp Shell, constitutes the top-level user interface to the Warp
systolic multiprocessor. A first version of the Warp Shell was released to users outside
the CMU community (see the Warp section in the Distributed Processing chapter).

Based partly on our experience with porting the Lisp shell to the Warp environment,
we recently redesigned the Lisp Shell. We added an operating system independent
layer and clarified the boundary between the editor and the shell. This increased its por-
tability and functionality. The increased functionality includes support for multiple com-
mand interpreters which can be active simultaneously, thus allowing application
programs to define and use their own customized command languages as necessary.

7-2

GRACEFUL INTERACTION FINAL REPORT, 1985-"7

7.2 The Viewers system

Inspired by the ZOG project and the Xerox Notecards project we built Viewers, a
frame-based interaction system that allows a user to navigate through a network of in-
terconnected frames of information. The Viewers system represents both a browsing
mechanism and a knowledge representation system. Knowledge is represented as
frames of information that are connected into complex networks. The user can employ
a simple, menu-like interaction to browse through the network and to perform actions
such as running programs or manipulating system resources. We released the Frames
system to the Spice Lisp community on the Perq workstation and and later completed a
version for the IBM RT PC, running under Mach.

During the first half of 1987, we revised and extended the Viewers system. Now the
interface is customizable and is dynamic; the application can change how Viewers inter-
acts with the user as it runs.

7.3 Mirage

During the second half of 1986 we designed Mirage, the graphical component of UWI.
Since then we have implemented the first prototype of Mirage. One of its components
is a device- and window system-independent graphics layer, the meta-device; this layer
facilitates porting the whole system to different hardware configurations and window

* managers. Several of our tools are already using the meta-device for all their graphics
input and output; moreover, we have made the system available as a stand-alone tool
for developers of Lisp systems within the Mach environment [Busdiecker.86.Mirage].

7.4 MetaMenu

We have completed the design of MetaMenu, a powerful menu-based system that will
be another of the basic building blocks of the Uniform Workstation Interface. This sys-
tem will be integrated with Mirage, the graphic component described above. We have
started implementing MetaMenu, based on the X window manager.

7.5 Griffin

During the Spring of 1987, we completed the first implementation of Griffin, a new in-
terface tool that implements a form-filling paradigm. This paradigm lets a user interact
with a program through forms, which contain slots that can be individually manipulated
hv the user. Griffin is based on our past experience with the Cousin system and
represents a considerable extension to that system, both in terms of power and in terms
of performance. Griffin can be modified by the user, and it provides extensive type
checking,a built-in help facility, and on-line documentation [Engelson.87.Griffin].

7-3

FINAL REPORT, 106547 GRACEFUL INTERACTION

* 7.6 Chinese Tutor

To test and validate some of the tools we have created so far, we developed the
Chinese Tutor, an intelligent computer-based tutoring system for beginner-level
Chinese. The Chinese Tutor represents the first prototype of an application program
that uses the Uniform Workstation Interface to allow the user to interact with the system
through diverse styles ef interaction. The application program itself is totally unaware of
exactly how the user is interacting with it, which translates into a greatly simplified ap-
plication program. The Chinese Tutor makes very extensive use of the Viewers system
and uses KR, described below, to represent knowledge about the language. It also
uses some of the preliminary work we have done on Mirage to provide graphical sup-
port for the display of Chinese characters. Work on the Chinese Tutor has provided us
with invaluable feedback about the interactions among some of the subsystems we are
developing, and we have already used some of this feedback to improve the design of
those subsystems.

7.7 A knowledge-based system

Early form-based systems, including our own, were limited to a static model of the
user and a single interface paradigm that forced the user to use a rigidly defined inter-
action style. To overcome the limitations , we began pursuing a different approach: By
giving the interface system sufficient knowledge, we could enable it to make some deci-

* • sions without explicit user intervention.

Representing knowledge
In the beginning of 1985 we analyzed what knowledge was required and how it could

be represented. The required knowledge included a user model, i.e. a description of the
users expertise level, particular preferences, and goals, as well as a system model that
describes the environment and available resources and how to best utilize some of
those resources. We chose to represent the knowledge using semantic networks and in
1986 constructed a simple semantic network prototype system. This prototype, called
KR, provides very flexible knowledge representation without the performance overhead
normally associated with full-blown semantic network systems. We designed it specifi-
cally for efficiency, since we felt that traditional frame-based systems would have a sig-
nificant performance impact on a user interface environment like the one we are build-
ing. KR will constitute the central representation mechanism for the UWI; we have al-
ready converted the Lisp Shell to use it, and will convert the other system components
to use it too. We have released the first version of KR to the CMU Common Lisp com-
munity as a stand-alone knowledge representation mechanism.

A knowledge-based interface
As one example of our knowledge-based interface strategy, we designed and imple-

mented CoalSORT, a prototype intelligent interface to a large bibliographic database in
the coal technology domain [Monarch&.86.Final]. The system's knowledge resides in a

* frame-based semantic network that represents a domain expert's knowledge, par-
ticularly in its organizational aspects.

7-4

GRACEFUL INTERACTION FINAL REPORT, 19857

Our CoalSORT research attacks consistency problems that plague more conventional
document access strategies, specifically statistical and manual indexing. The system's
network representation minimizes guesswork in the indexing task. Both users seeking
information and those cataloging documents can browse through the concept net.
Searchers and indexers thus select concept keywords from the same organization.
Consistency between query and catalog views reflects the network's ability to represent
the meaning underlying relevant terms.

By applying its understanding of the domain's conceptual structure, the system can
guide and progressively restrict the search through a large document collection.
Through menus and multiple window displays, CoalSORT cooperates with a user to for-
mulate and refine partial concept descriptors. Descriptors express the information con-
tent match between a topical query and documents that the system knows about.
Query formulation proceeds by recognition rather than recall or guesswork and the
search employs a weighted key-concept mechanism. CoalSORT displays different kinds
of information in separate windows and currently works with several terminal types, in-
cluding Concepts and DEC VT series, a Macintosh personal computer, and a Perq
workstation. Relationships among network nodes appear as verbal diagrams and the
system offers both global views and local context cues.

Our prototype system demonstrates the feasibility of combining a network knowledge
representation with a browsing interface. Preliminary studies with engineers ex-

* perienced in coal liquefaction technology proved encouraging. Users found the system
relatively easy to learn and our netwcrk design adequately captured the meanings of
key domain concepts. Our work opens the way for more powerful systems that can
automatically parse queries and abstracts into a uniform semantic representation.

0

7-5

FINAL REPORT, 196547 GRACEFUL INTERACTION

* 7.8 Bibliography

[Busdiecker 87] Busdiecker,R.
Mirage user's manual.
Dante Project internal working document.

[Capell and Miller 86]
CapelI,N.O., and P.L. Miller.
Cognitive style and learning computer programming: a study of fac-

tors relating to student achievement.
Technical Report CMU-CS-86-119, Carnegie Mellon University Com-

puter Science Department,
May, 1986.

Students taking the introductory programming methods courses
at Carnegie Mellon have experiences that differ sharply
along the dimensions of ease of learning and attitude
toward the course. These courses at Carnegie Mellon are
taught to nearly all undergraduate students. The courses
use the GNOME structured programming environment for
all programming. The final examination in the course is a
competency or mastery examination that requires students
to der,;gn, implement, and debug a large program in a
timed, proctored setting. The courses emphasize pro-
gramming methodology and problem solving as opposed
to language details, conforming largely to the programming
methods portions of the Advanced Placement Computer
"Science Coume Curriculum of the College Board.

Over the past five years, we have observed differences in
students' performance, not only between individuals, but
more significantly, between whole groups. Typically, dif-
ferences in the way in which students perform are dis-
missed as relating only to their individual background and
abilities. Certainly this perspective holds validity, but it is
far too general an application for anyone seriously con-
cerned with developing an understanding of how students
learn and what factors may trigger understanding.

In this paper we explore one body of knowledge that may shed
light on student differences. We look at the cognitive style
research that is on-going in psychology and education.
This research suggests that student differences might be
related to a poor fit between the cognitive style of some
students and the cognitive style that underpins our
courses. We hope to be able to better understand student
differences, and ultimately to build courses that are more
attuned to channels of learning of all students.

74

GRACEFUL INTERACTION FINAL REPORT, 198647

[Giuse 85] Giuse, D.
Programming the Lisp shell.
The document is still under development, since the Lisp Shell itself is

under very active development. At this stage, this document
should not be interpreted as a cast-in-concrete specification yet,
but rather as an overview of the current functionality.
This document contains a description of how to program the

Lisp Shell, both in terms of writing new Shell commands
and in terms of creating programs that use the Shell as
one of their resources to achieve a higher level of control.

[Hayes et al. 85] Hayes, P.J., P.A. Szekely, and R.A. Lemer.
Design alternatives for user interface management systems based

on experience with Cousin.
In CHI '85 Proceedings, April, 1985.

User interface management systems (UIMSs) provide user in-
terfaces to application systems based on an abstract
definition of the interface required. This approach can
provide higher-quality interfaces at a lower construction
cost. In this paper we consider three design choices for
UIMSs which critically affect the quality of the user inter-
faces built with a UIMS, and the cost of constructing the in-
terfaces. The choices are examined in terms of a general
model of a UIMS. They concern the sharing of control be-
tween the UIMS and the application it provides interfaces
to, the level of abstraction in the definition of the sequenc-
ing of the dialogue. For each choice, we argue for a
specific altemative. We go on to present Cousin, a UIMS
that provides graphical interfaces for a variety of applica-
tions based on highly abstracted interface definitions.
Cousin's design corresponds to the alternative we argued
for in two out of three cases, and partially satisfies the
third. An interface developed through, aivj run by Cousin
is described in some detail.

[Monarch 86] Monarch, I.
Abstract: intelligent information retrieval interfaces and a new con-

figuration of text.
In AAAI-86 Workshop on Intelligence in Interfaces, AAAI, August,

1986.
The focus of this abstract is to summarize the approach taken to

provide an intelligent interface for a bibliographic database.
However, at the peripheries, the implications of this ap-
proach for a new conception of textual communication and
a textual boundaries will be noted. Such an approach has
these implications because an index at the back of a book
is similar to the subject index in a library card catalogue.
The linear organization of a book as specified by its table
of contents is always capable of being supplemented by

7-7

FINAL REPORT, 198547 GRACEFUL INTERACTION

the multiple access points indicated by its index. The non-
linear reading and also writing of texts made possible by
indexing can become a more central feature of textual
communication in the emerging context of knowledge-
based browsing interfaces to bibliographic databases.

[Rubine and Dannenberg 87]
Rubine, D. and R. Dannenberg.
ARCTIC: Programmer's manual and tutorial.
Technical Report CMU-CS-87-1 10, Carnegie Mellon University Com-

puter Science Department,
June, 1987.

ARCTIC is a programming language for describing real-time sys-
tems with many concurrent activities. Unlike conventional
languages that model concurrency as multiple sequential
threads of control, ARCTIC models concurrency as multiple
functions of time, whose domains may overlap. This radi-
cal departure from convention has many advantages, in-
cluding a declarative programming style, implicit
synchronization, convenient specification of timing relation-
ships, and an integrated approach to event-driven and
data-driven real-time computation.

This document is a specification of the ARCTIC language. Ex-
amples have been included in the hope that this specifica-
tion may be also used as a tutorial. Details of a preliminary
implementation of ARCTIC are given in the appendix.

7-8

VERY LARGE SCALE INTEGRATION FINAL REPORT, 198547

8. Very Large Scale Integration

The ultimate goal of our research in VLSI is to make it practical to use VLSI routinely
as a tool in the design of experimental computer systems. Our principal focus in the
past three years has been constructing working systems that apply VLSI in several key
areas. This approach allows us to evaluate algorithms and architectures that have at-
tractive theoretical properties when actually applied to a particular problem and
designed into circuitry. It can suggest new ideas for tools and in the meantime allow us
to test and refine existing tools. And, it induces innovations in the applications them-
selves. Our work during this period has been in three general areas: systolic building-
blocks, design and testing tools, and VLSI systems and applications.

8.1 Systolic Building-blocks

8.1.1 Building Crossbar Switches

One of our goals is to develop methods !hat permit fabricating chips with good perfor-
mance, even while working in a sijicon-broker environment. The XBAR chlip, with its
simple structure, allowed us to concentrate on path optimization and gate sizing. The
use of a second layer of aluminum has provided a further challenge.

We have completed the layout of XBAR, a building block for implementing large
crossbars. XBAR is a high-bandwidth, 16x16, two-bit crossbar chip implemented in
double-metal, CMOS P-well technology with 3jgm feature size. The chip is about 7.8x8.8
mm 2 and will be housed in a 144-pin grid array package. Speed has been the major
goal and this explains the chip's large size despite its simple structure and functionality.
Our target speed is a delay of less than 60 nsec. (data-in, data-out) on a 100pF load
over the commercial temperature range. We have performed accurate SPICE simula-
tions, achieving a 35 nsec. delay in the critical path (pads included, 1 0OpF load).

8.1.2 Intermodule Communication

LINC is a custom chip whose function is to serve as an efficient link between system
functional modules such as arithmetic units, register files, and I/O ports. In this respect,
LINC is a "glue" chip for powerful system construction: It can provide efficient hardware
support to connect high-speed, high-density building-block chips, provide physical com-
munications and data buffering between functional system units, and implement some
complicated data shuffling operations [Hsu&.84.LINC]. We have explored two applica-
tions that can use this processor array: the fast Fourier transform (FFT) and a simulated
annealing algorithm for chip placement and wire-length minimization.

We completed LINC'S layout, with General Electric's cooperation, and simulated its
functionality on a Daisy workstation. GE simulated the low-level cells, verified timing of

* critical paths through the chip, and tested the fabricated chips using test vectors

6-1

FINAL REPORT, 1965-87 VERY LARGE SCALE INTEGRATION

designed and simulated at CMU. LINO will be demonstrated in the WarpJr systolic array
being designed at CMU.

WarpJr is a 32-bit, floating-point, linear systolic processor of our design. Its
functionality resembles that of the Warp processor, but it uses LINO to implement the
data path and the AM29325 floating point chip as the ALU. To simplify programming
the systolic array and to test the feasibility of exploiting LINC'S pipelined registers ef-
ficiently, we wrote a compiler specifically for WarpJr. The high-level language is W2,
just as in the Warp compiler, and its front end is also the same as the Warp compiler's.

8.2 To ls for VLSI Design and Testing

8.2.1 Yield Simulation

With partial support from the Semiconductor Research Corporation, we have built a
catastrophic-fault yield simulator for integrated circuits. Our VLASIC simulator employs a
Monte Carlo strategy and statistical defect models to hypothesize random catastrophic
point defects on a chip layout and then determine what circuit faults, if any, have oc-
curred. The defect models are described in tables, and so readily extend to new
processes or defect types. The defect statistical model is based on actual fabrication
line data, and has not appeared before in the literature. The circuit fault information
generated by VLASIC can be used to predict yield, optimize design rules, generate test
vectors, evaluate redundancy, etc. We are extending VLASIC to handle larger designs
and to improve its redundancy analysis system.

The process tables currently assume a single-level metal NMOS technique. The
simulator takes as inputs a circuit and wafer layout, and defect statistics. The simulator
uses a Monte Carlo method to generate potentially-faulty circuit instances with the cor-
rect statistical distribution. A back end is currently being implemented for use in fault-
tolerant circuit design. We are currently fitting the process models to real data from a
two-micron double-metal NMOS process. The simulator will then be used to predict the
yield of a 16K SRAM containing 100,000 transistors, and the results will be compared
with actual fabrication results.

8.2.2 Testing by Simulation

As VLSI circuit sizes have increased, many have found that testing manufactured cir-
cuits for defects proves at least as challenging as designing and manufacturing them.
Simulation offers one fundamental means of debugging and gaining confidence in
designs, and research at CMU is exploring several techniques that promise significant
advances in fault simulation and test generation. Our work includes both fault
simulators and test data pattern generators for MOS circuits.

8-2

Several aspects of CMU's research program stand out among related efforts in both
industry and academia. First, much of our work is based on switch-level models, an
abstract representation of MOS circuits in which each transistor is modeled as a
parameterized switch. The switch-level representation of a system can capture many
aspects of circuit behavior that more traditional gate-level models cannot, while provid-
ing a level of abstraction that allows efficient validation of very large circuits operating
over long input sequences. Second, our work applies symbolic methods, in which an
abstract representation of a circuit is created, describing its behavior for many possible
input and timing conditions. Symbolic methods are used both to enhance the perfor-
mance of conventional simulators, as well as to provide new capabilities in circuit
verification, and automatic test pattern generation. Finally, our work emphasizes an
algorithmic approach that spans the entire range from theory to practice. On the
theoretical side, we explore and develop new algorithms and verification methodologies.
On the practical side, we implement production quality programs for a variety of valida-
tion tasks. These programs receive widespread use by VLSI designers nationwide.
Switch-level Models

A switch level simulator models a logic circuit as a network of nodes connected by
transistors. This allows a detailed modeling of many of the phenomena associated with
MOS circuits such as bidirectional transistors, dynamic memory, precharged logic, and
various bus structures. In contrast, simulators based on more traditional gate-level
models cannot model these features accurately and will often fail to detect major design
errors. Unlike detailed circuit level simulators, however, switch level simulators abstract
away many details of the circuit electronics in the interest of performance. Node vol-
tages are represented by three states 0, 1, and X (for uninitialized or invalid), and tran-
sistors are modeled as discrete switches. Consequently, switch-level simulators can
simulate circuits containing 100,000 or more transistors for thousands of clock cycles in
a timely fashion.
Symbolic Methods

A symbolic simulator computes a circuit's behavior for a sequence of user-supplied
input patterns provided. The user can then interactively examine and manipulate the
computed symbolic representations to gain insight into circuit operation. Alternatively, a
user might attempt to prove circuit correctness by testing the representation for equiv-
alence with another derived from the circuit specification.

Such a program opens up a totally new way for designers to analyze circuits. A con-
ventional simulator forces the designer to try out a small number of test cases one at a
time. Serious design errors often remain undetected. Once improper behavior has
been detected, the designer must engage in the laborious process of hypothesizing the
source of the error, devising test patterns to validate the hypothesis, and simulating
these patterns. In contrast a symbolic simulator helps the user understand how the cir-
cuit processes arbitrary Boolean data. A single simulation sequence determines the cir-
cuit behavior for many test cases. Using the symbolic manipulation capabilities of the
program, the user can examine the function at different points in the circuit to more. quickly identify the source of an error.

FINAL REPORT, 198547 VERY LARGE SCALE INTEGRATION

In a conventional simulator, the description of a system is read in, the user specifies a
series of input patterns, and the simulator computes the behavior of the system for
these patterns. In a symbolic simulator, however, the input r atterns consist of Boolean
variables in addition to the constants 0 and 1, and the behavior computed by the
simulator consists of Boolean functions over the present and past input variables.
These functions can then be tested for equivalence with functions representing the
desired behavior of the system, thereby verifying the correctness of the system for the
set of all possible input data represented by the input patterns. Although a complete
symbolic verification of a large circuit may be impractical, the user can adopt a hybrid
approach with some inputs set to variables and others to constants.

Our MOSSYM simulator [Bryant.85.Symbolic] simulates MOS circuits represented as
switch-level networks. MOSSYM implements the same circuit model as the our previous
simulator MOSSIM ii and can accurately model such MOS circuit structures as ratioed,
complementary and precharged logic, dynamic storage, bidirectional pass transistors,
and busses. Experimental results with MOSSYM are quite promising
[Bryant&.85.Performance].

The availability of a symbolic simulator raises a new set of problems on how to
rigorously verify a circuit based on observations of its input-output behavior. This task is
related to the "machine identification" problem of classical finite state machine theory,
but with some new twists that allow more positive results.

O 8.2.3 A Compiled Simulator for MOS Circuits

The cosMos project, begun in early 1986, addresses the issue of algorithmic im-
provements to switch-level simulation. COSMOS, a compiled simulator for MOS circuits,
will replace MOSSIM II as the leading switch-level simulator at CMU. It will operate ap-
proximately an order of magnitude faster than MOSSIM II while providing additional
capabilities including fault simulation. Furthermore, it can easily be implemented on any
special purpose simulation accelerator that supports Boolean evaluation.

Unlike switch-level simulators that operate directly on the transistor level description
during simulation, COSMOS transforms the transistor network into a Boolean description
during a preprocessing step. This Boolean description, produced by a symbolic
analyzer, captures all aspects of switch-level networks including bidirectional transis-
tors, stored charge, different signal strengths, and indeterminate (X) logic values. Most
significantly, for all but a small class of dense, pass transistor networks (e.g. barrel
shifters), the size of the Boolean description grows linearly with the size of the transistor
network. Even for these exceptional cases, the growth is no worse than quadratic. This
compares favorably to the exponentially sized results produced by all previous symbolic
analyzers.

For execution on a general purpose computer, COSMOS generates a procedure for. each channel-connected subnetwork. When called, this procedure computes the new
states of the subnetwork nodes as a function of the initial transistor and node states.

8-4

VERY LARGE SCALE INTEGRATION FINAL REPORT, 1985-87

The Boolean description produced by the symbolic analyzer maps directly into machine-
* level logical instructions, and hence execution time is very short. COSMOS compiles

these sub-network procedures together with an event-driven scheduler and user inter-
face code. The resulting program appears to the user much like an ordinary simulator,
except that the network is already loaded at the start of execution. This program is be-
ing written in C and will be made available to the DARPA VLSI community.

For execution on special purpose hardware, COSMOS maps the output of the symbolic
analyzer into a set of Boolean elements. Whatever methods are provided to support
logic gate simulation are then used to perform switch-level simulation. COSMOS requires
no special hardware to support switch-level simulation. In fact, many of the costly fea-
tures found in existing simulation accelerators such as bidirectional elements and multi-
valued logic modeling are not needed. Preprocessors such as ours encourage a RISC
approach to hardware design where only basic operations on a limited set of data types
are implemented. The preprocessor must perform the mapping between the complex
models required by the simulator and the simple operations implemented by the
hardware. For switch-level simulation, the payoff in terms of greater flexibility and per-
formance clearly favors this approach.

COSMOS provides a combination of high simulation performance and a variety of
simulation features. It simulates between 10 and 200 times faster than other switch-
level simulators such as MOSSIM II. COSMOS achieves this performance by
preprocessing the transistor network using a symbolic Boolean analyzer, converting the. Boolean description into procedures describing the behavior of subnetworks plus data
structures describing their interconnections, and then compiling this code into an ex-
ecutable simulation program.

An earlier bottleneck caused by the long time required to preprocess a circuit into an
executable simulation program has been solved by a combination of hierarchy extrac-
tion, incremental analysis, and assembly code generation. The preprocessor takes a
flat network description and extracts a two-level hierarchy consisting of transistor sub-
networks as leaves, and their interconnection as root. This extraction utilizes graph
coloring/isomorphism-testing techniques similar to those used by wirelist comparison
programs. To avoid ever repeating the processing of isomorphic subnetworks, it main-
tains a directory of subnetworks and their compiled code descriptions with file names
derived from a hash signature of the transistor topology. Finally, the code generation
program can generate assembly language declarations of the data structures rather
than C code. The data structure formats for all Unix assemblers are sufficiently similar
that the assembly code generator for a new machine type can be produced with minimal
effort. As an example, a 1600 transistor circuit that earlier required 23 minutes to
preprocess on a VAX-1 1/780 now requires only 2.9 minutes to preprocess the first time,
and only 2.3 minutes subsequently.

Features of COSMOS include both logic and concurrent fault simulation, mechanisms
to interface user-written C code to implement new simulation commands as well as be-

* havioral models, and the ability to simulate up to 32 sets of data simultaneously.

8.5

FINAL REPORT, 196547 VERY LARGE SCALE INTEGRATION

* Programs are provided to translate circuit descriptions produced by the Berkeley Magic
circuit extractor into the network format required by the symbolic analyzer.

The COSMOS project aims to develop a fast and accurate switch-level simulator. It
combines the capabilities of MOSSIM II and FMOSSIM but operates nearly an order of
magnitude faster. The simulator attains high performance by preprocessing the tran-
sistor network into a functionally equivalent Boolean representation. This description,
produced by the symbolic analyzer ANAMOS, captures all aspects of switch-level net-
works including bidirectional transistors, stored charge, different signal strengths, and
indeterminate (X) logic values. ANAMOS has proved reliable and reasonably fast; a
benchmark 1600 transistor circuit requires less than 4 CPU minutes on a MicrovAx-II.

The LGCC program translates the Boolean representation produced by ANAMOS into a
set of C evaluation procedures, as well as a set of initialized arrays representing the
network structure. This program has also proved reliable and fast, requiring no more
time than ANAMOS.

The C compiler generates the simulation program by compiling the LGCC output
together with code implementing the event scheduler and user interface. The resulting
simulation program appears much like MOSSiM II, but with a preloaded network. Fur-
thermore, it runs 8 to 10 times faster.

* We have also increased the performance of the compilation step by implementing an
incremental version of the circuit analyzer. This program will analyze, generate code,
and compile the procedure for a subnetwork only if it fails to find a matching subnetwork
in its library.

The COSMOS project has reached a stage where we have developed, tested, and
documented a comprehensive set of programs. Release of the programs to both in-
dustrial and academic users will proceed shortly.

8.2.4 System Design Tools

Standard Frame Configuration
When planning chip fabrication via MOSIS, designers must conform to the MOSIS Stan-

dard Frame I/O pad conventions. To facilitate placing and connecting input/output pads
around the edges of a chip design, we have written a useful tool that we call a "standard
frame instantiator". The user gives our Frame program a pad frame description iden-
tifying the parameters of the frame itself, characteristics of the pad cells used, the sorts
of wires connecting the frame's cells, and which particular pad cell goes at each pin.
The program provides a completely laid-out frame, including the "glue" between pad
cells. It takes only minutes to generate an error-free pad frame. We are currently ex-
tending Frame to include labels in the generated frame cells in such a way that Magic's
router can automatically route the frame to the chip's internals. We have already used

* the tool to generate frames for two chips.

8-6

Asynchronous Building Blocks
We have designed a chip that contains a collection of asynchronous circuit building

blocks that are unavailable as standard IC parts. Without these parts, building real
asynchronous circuits is extremely difficult. The chip has eight different configurations,
each offering a different set of asynchronous parts to the user. The parts include Muller
C-elements, two and four input transition call modules, two and four way select
modules, transition toggles, asynchronous arbiters, asynchronous FIFO, and 0-Flops
(for building internally clocked delay-insensitive modules). With only a few exceptions,
the parts use a two-phase transition sensitive communication protocol.

Our Parts-R-Us chip for building self-timed circuits returned from fabrication in the fall
of 1986. Thirteen chips were delivered and, although yield was quite low, we found at
least one functional example of every design element. Two chips were completely
working and three were completely non-functional, indicating that the yield problem was
probably the fabricator's and not due to the design. We have developed test software
that allows the same Common Lisp program that was used to drive a design's simula-
tion to be used to test the completed chip. This allows easy comparison of the simu-
lated behavior to that of the chip, and also means that test programs need only be writ-
ten once. After testing, we built two small demonstration circuits in the spring, revised
the design slightly to permit building more complex circuits, and returned the chip to
MOSIS for refabrication.

Our next step will be to use the Parts-R-Us building block designs to construct a
silicon compiler for automatically generating asynchronous circuits from programs. The
compiler will map algorithms to logic designs and then apply a series of optimizing
transformations to derive efficient hardware realizations. We have already begun work
oi, tools and methods that will take behavioral descriptions written in Occam and trans-
late them into self-timed circuits. Occam is a CSP-like language used for describing
concurrent communicating objects. It turns out to provide a very natural medium for
describing one class of self-timed circuits.
An Asynchronous Multiplier

Rockoff completed the layout of an asynchronous multiplier with a recursive symbol
structure. This chip project has been engineered for delays using Sutherland's "logical-
effort" delay model. Switch-level simulation has been performed on the entire chip. Ad-
ditionally, the layout has been verified including boundary circuitry such as pads. In-
cluded on the chip is a set of test structures that will allow us to characterize both the
speeds of devices fabricated on the die as well as the DC transfer effects of various
gates' logical efforts.

8.2.5 Formal Verification by Simulation

We have also investigated methods for formally verifying digital circuits by logic
simulation. A simulator can prove correctness if it can be shown that only circuits im-

* plementing the system specification will produce a particular response to a sequence of
simulation commands. This style of verification has advantages over other proof

FINAL REPORT, 198547 VERY LARGE SCALE INTEGRATION

methods in being readily automated and requiring less attention to the low-level details
of the design, as well as advantages over other approaches to simulation in providing
more reliable results, often at a lower cost.

Our work has explored two verification methods: The first, called "black-box" simula-
tion, involves simply observing the output produced by the simulator in response to a
sequence of inputs with no consideration of the internal circuit structure. In contrast to
the machine identification problem of classical sequential systems theory, however, the
simulator is assumed capable of modeling a signal as having an unknown or X value,
where the simulator must produce responses that are monotonic for the partial ordering
X < 0 and X < 1. In addition to supplying input sequences, the user can command the
simulator to set all internal signals to X. It has been shown that a circuit can be verified
by black-box simulation if and only if the specified behavior is that of a definite system,
i.e. the output of the system at any time depends only on the most recent k inputs for
some constant k. The second method, ca~led "transition" simulation, requires the user
to specify the relation between states in the circuit and the specification. The simulator
is then used to prove that each state transition in the specification is implemnted cor-
rectly. Arbitrary systems can be verified by this method, but the simulation sequences
depend on the implementation.

In general the circuit verification problem is NP-hard. However, in some cases the
ability of the simulator to model unknown signals can be exploited to reduce the number
of patterns simulated. A variety of memory circuits can be verified by simulation se-. quences that are linear or near-linear in the memory size.

State-transition verification has been applied to two circuits, the dynamic stack in the
Mead-Conway text, and various sizes of a 3-transistor dynamic RAM. The number of
simulation steps necessary to verify a n-bit RAM is asymptotically proportional to
n log n. However, as each simulation step involves simulation of the entire circuit, the
duration of a simulation step also increases with the size of the circuit; thus, the time
required to verify an n-bit RAM is more nearly proportional to n**2 log n. Measure-
ments bear this out; for example, verifying a 256-bit RAM on a lightly loaded VAX using
MOSSIM II as the logic simulator took 8 hours. Though these measurements show that
state-transition verification of large circuits is not yet feasible, a symbolic simulator such
as MOSSYM should significantly reduce the number of simulation steps required. As
MOSSYM matures, state-transition verification should become more promising.

8.2.6 Formal Hardware Description Semantics

Another research focus centers around applying concepts from the domain of pro-
gramming systems to hardware design. We are particularly interested in the problem of
assuring the correctness of hardware implementations with respect to specifications.
We are addressing this problem in two ways: verification and compilation.

We have been developing temporal logic based tools for specifying and verifying se-
quential machines. Recently, we have used our state machine verifier to debug the

8-8

VERY LARGE SCALE INTEGRATION FINAL REPORT, 1985-87

* design for a complicated DMA controller. This was the most ambitious verification effort
that we have attempted so far. We have also developed a prototype version of an
automatic verifier for asynchronous circuits. Circuit specifications are given as finite
state machines and a very flexible timing model for circuit behavior is supported. In ad-
dition, the system makes it possible to verify a circuit in parts, following the modular
structure of the circuit. Finally, we have also developed techniques for analyzing se-
quential circuits that are composed of many identical processing elements. These tech-
niques permit a reduced version of the circuit with one or two processing elements to be
considered instead of the entire circuit. The "state explosion" phenomenon (See 2-10),
which had previously hindered the analysis of such circuits, is avoided by these tech-
niques.

Verification methods can be used to check whether an existing design satisfies a
specification. We have concentrated on automatic techniques for verifying sequential
circuits. This work has proceeded in two directions: verifying asynchronous sequential
circuits described at the gate level, and verifying synchronous sequential circuits
described by a program in a high-level hardware description language (SML).

In both asynchronous and synchronous cases: the circuit is specified by formulas in
temporal logic, a state-graph describing the possible circuit behaviors is automatically
extracted from the circuit description, and then the formulas are automatically compared
with the state graph. The last step is performed by a program called the model-checker,

* which, if the state graph (and hence the circuit) satisfies the specification, reports that all
is well, or if the circuit fails to meet the specification, tries to produce an example of an
execution (sequence of circuit actions) which can be used to find and correct the
problem.

Another way to guarantee the correctness of a hardware implementation is to compile
it directly from its specification. We are doing this in two different ways. First, we have
developed means for compiling path expressions into asynchronous controllers. Path
expressions were originally devised as a way to specify the desirable interactions
among "loosely-coupled" systems of concurrent programs. We believe that they are
also a good way to specify the interactions among loosely-coupled hardware devices.
Our technique isolates the concurrency control in a separate circuit which interacts with
the circuits it controls via request/acknowledge signals. The controller circuit allows the
controlled circuits to execute in only those orderings allowed by the path expression.

Second, an SML program can be regarded as a specification of a correct circuit once
it has been verified. We can translate SML programs into a form suitable for input to
existing programs that translate state machines into hardware. For example, it is pos-
sible to write a high-level program for a device controller, check that it is correct with
respect to a specification in temporal logic, and then translate it automatically into
various hardware implementations.

8-9

FINAL REPORT. 198547 VERY LARGE SCALE INTEGRATION

Programming Language Issues
* We have continued experimenting with our SML language, using it to describe a com-

mercial UART interface. We were able to verify some temporal properties of our descrip-
tion for this common and nontrivial device. We also produced a description of SML's
syntax and semantics and illustrated its usefulness in designing small finite state
machines [Browne&.85.SML].

Although most formal models of asynchronous circuits avoid making assumptions
about the relative speeds of the circuit components, many practical designs rely on such
assumptions for their correct operation. Therefore we extended the theory and im-
plementation of our asynchronous verifier to include simple timing assumptions.

We have also begun to investigate the formal foundations of asynchronous circuit
operation as a basis for more powerful methods of verifying and synthesizing them.
"Fairness" and "liveness" properties play critical roles in concurrent systems. An ex-
ample of a fairness property is "if any user requests a resource, he will eventually be
granted it"; a liveness property might be "a circuit always acknowledges a request".
Recently, others have proposed trace theory as an appropriate formal semantics theory
for asynchronous circuits. Previously, trace theory has only considered finite circuit ex-
ecutions, and describing fair or live behavior requires infinite executions in general. We
extended trace theory to include infinite executions, and showed that it is possible to
describe a fair, delay-insensitive arbiter (a circuit whose existence previous researchers
had questioned) [Black.85.Existence].

0 Finally, many apparently complex circuits have a fairly simple recursive structure. We
have implemented a system called Escher that allows the user to describe the recursive
structure using a graphical interface. The circuit structure is expanded when some
parameters are provided (such as how many bits wide it should be). The result is a
layout of the primitive cells and their connecting wires. The system has been applied to
a variety of examples, including a sorting network, FFT, and a recursive hardware mul-
tiplier [Clarke&.85.Escher].

8.2.7 Automatic Hardware Verification

Many hardware systems can be viewed at some level of abstraction as communicat-
ing finite state machines. The dream of somehow using this observation tc automate
the verification of such programs can be traced all the way back to the early papers on
Petri nets in the 1960's. The temporal logic model checking procedure also attempts to
exploit this observation. The model-checking algorithm determines whether the global
state transition graph associated with some concurrent program satisfies a formula in
the CTL temporal logic. The algorithm is linear in both the size of the globa: state graph
and the length of the specification. Researchers have successfully used it to find subtle
errors in many sequential circuit designs. Several other workers have extended the
basic model checking algorithm or proposed alternative algorithms. Although these al-. gorithms differ significantly in the type of logic they use and in the way they handle

8-10

VERY LARGE SCALE INTEGRATM FIAL REPORT, •9847

* issues like fairness, they all suffer from one apparently unavoidable problem: In analyz-
ing a system of N processes, the number of states in the global state graph may grow
exponentially with N. We call this problem the state explosion problem. Our approach
to this problem is based on another observation about distributed programs. Although a
given program may involve a large number of processes, it is usually possible to par-
tition the processes into a small number of classes so that all of the processes in a
given class are essentially identical. Thus, by devising techniques for automatically
reasoning about systems with many identical processes, it may be possible to make sig-
nificant progress on the general problem.

We have devised a means of reducing the problem of checking the correctness of
large networks of identical finite state machines to the problem of checking very small
networks. This allows us to apply our automatic verification tools to large systems with
vast numbers of states.

To understand how our method works consider a distributed mutual exclusion algo-
rithm for processes arranged in a ring network in which mutUal exclusion is guaranteed
by means of a token that is passed aroLund the ring. How can we determine that such a
system of processes is correct? Our first attempt might be to consider a reduced system
with one or two processes. If we can show that the reduced system is correct and if the
individual processes are really identical, then we are tempted to conclude that the entire
system will be correct. In fact, this type of informal argument is used quite frequently by

* designers in constructing systems that contain large numbers of identical processing
elements. Of course, it is easy to contrive an example in which some pathological be-
havior only occurs when, say, 100 processes are connected together. By examining a
system with only one or two processes it might even be quite difficult to determine that
this behavior is possible. Nevertheless, one has the feeling that in many cases this kind
of intuitive reasoning does lead to correct results. The question that we address is
whether it is possible to provide a solid theoretical basis that will prevent fallacious con-
clusions in arguments of this type.

We have addressed the problem of devising an appropriate logic for reasoning about
networks with many identical processes. The logic that we propose is based on com-
putation trees and is called Indexed Temporal Logic. Typical operators include
GLOBA.LuYf, which will hold in a state provided thatf holds globally along all computation
Daths starting from that state and iNEVrrABLYf, which will hold in a state provided that f
eventually holds along all computation paths. In addition, our !ogic permits formulas of
the form /•f(i) and yf(i) wheref(i) is a formula of our logic. Intuitively, the formula A

I I I

f(i) will be true in a global state of some concurrent system, provided that the formula
f(i) holds for each component process i. vf(i) is explained similarly.

I

Since a closed formula of our logic cannot contain any atomic propositions with con-
stant index values, it is impossible to refer to a specific process by writing such a for-
mula. Hence, changing the number of processes in a family of identical processes

* should not affect the truth of a formula in our logic. We make this intuitive idea precise
"by introducing a new notion of equivalence between networks of finite state processes.

8-11

FINAL REPORT, 198547 VERY LARGE SCALE INTEGRATION

* We prove that if two systems of processes correspond in this manner, a closed formula
of our logic will be true in the initial state of one if and only if it is true in the initial state of
the other. We have devised a procedure that can be used in practice to find a network
with a small number of processes that is equivalent to a much larger network with many
identical processes. We call this result the collapsing theorem for networks with many
identical processes.

To see how the collapsing theorem might be used, consider the distributed mutual ex-
clusion algorithm discussed above. We assume that the atomic proposition c1 is true
when the i-th process is in its critical region, and that the atomic proposition di is true
when the i-th process is delayed waiting to enter its critical region. A typical require-
ment for such a system is that a process waiting to enter its critical region will everiually
enter the critical region. This condition is easily expressed in our logic by the formula

AGLOBALLY(di D INEVITABLY ci).
I

By using our results it is possible to show that exactly the same formulas of our logic
hold in a network with 1000 processes as hold in a network with two processes! We can
use one of the temporal logic model checking algorithms to automatically check that the
above formula holds in networks of size two and conclude that it will also hold in net-
works of size 1000.

8.3 VLSI Systems and Applications

8.3.1 A Scan Line Array Processor

The SLAP project is developing a highly parallel (100-1000 processor) SIMD linear ar-
ray architecture for image computation and s~milar applications [Fisher.86.Scan]. The
scan line array processor (SLAP) architecture devotes a processor to each pixel of ar
image scan line. Processing elements are connected in a linear array by both n~arest-
neighbor bidirectional paths and a specialized video-rate shift register, and are con-
trolled in SIMD fashion. This architecture has a unumber of advantages for VLSI im-
plementation, and appears to be well-suited to a wide variety of image processing tasks.
We also expect it to be of use in graphics and specialized numeric processing, and
preliminary investigation suggests that it can also be fruitfully applied to the simulation
of connectionist architectures for artificial intelligence. We estimate that a 512 processor
SLAP can be built from 128 MOSIS 3 micron CMOS chips, and provide 2 billion opera-
tions per second using 8 bit pixels and 16-20 bit results.

Most recently, our work has concentrated on hardware implementation and on the
development of programming paradigms and tools.

* The SLAP PE datapath layout has been completed, and a test chip has been sib-
mitted for fabrication in 3 micron CMOS. We have used a conservative design style that

6-12

VERY LARGE SCALE INTEGRATION FINAL REPORT, 1985-87

should allow us to get useful chips from both N well and P well runs. In anticipation of
the availability of MOSIS standard frames with higher pincounts, we are redesigning the
SLAP interprocessor communication path to handle a full word in a single cycle, yielding
improvements in latency, ease of programming, and system construction. We expect to
submit a 4-PE layout for fabrication in 2 micron CMOS near the end of 1987.

We are also engaged in the design of a prototype machine. We expect a 512-
processor machine to include a one-board microprogrammed global controller and two
or three array boards. We plan to implement the controller as a triple height VME
wirewrap board, and the array boards as triple height VME PC boards. The controller
will be interfaced to a Sun-3 host, while the array boards, using the VME cage only for
mechanical support and power, will receive data over point to point cables from com-
mercial image capture and storage components. Our schedule calls for the prototype to
become operational in the summer of 1988. When fully populated with 128 SLAP chips,
the system should yield a peak throughput of some four billion twenty bit operations per
second.

At the same time, we are developing programming support, including a compiler, as-
sembler and simulators for the entire system. One interesting aspect of the compiler
work involves the expression of inter-PE communication in a functional style that allows
automatic scheduling and optimization of the interaction of communication and com-
putation. A working paper on this topic appears in an appendix to this report.

Our goal has been to refine the architecture of the 20-bit processing element for ef-
ficiency and ease of code generation, while laying the groundwork for the chip layout.

On the architecture front, we have settled on a two-bus datapath with separate ALU
(with support for 40-bit Booth multiplication and division) and barrel shifter, specialized
circuitry for a video shift register and neighbor communication, and an unusual two-port
register file. Instructions are pipelined three cycles deep, with a simple fixed layout and
timing scheme. Supporting flexible programming within the SIMD paradigm are a novel
context nesting mechanism, local addressing of the register files, and support for global
voting and fast combinational signal propagation.

Logic design for the chip is complete, and the datapath has been laid out. Global
wiring and the shared decoder/controller remain to be laid out. We expect the entire
chip to be ready for fabrication in the fall.

Now that the hardware effort is well underway, we have also begun to work hard on
programming support. We have designed a two-level programming language (one level
for the array controller, and one for the SIMD array itself) that has two options for pro-
gramming the array: a high level assembler with full expressive power, and a high-level
expression language that allows straightforward expression of data-parallel programs.
In support of this expression language, we have developed an abstract treatment of
communication in fine-grain machines that unifies it with computation, and allows the

* automatic generation of code that maximizes sharing of intermediate results among
neighboring processors. Our preliminary experiments with a handful of examples have
yieldecd high-level code of handcrafted quality.

6-13

FINAL REPORT, 1985-87 VERY LARGE SCALE INTEGRATION

Fisher and Highnam have made further progress in mapping computer vision al-
gorithms onto such machines, and Highnam is developing a flexible coding and simula-
tion facility for further algorithm studies. Rockoff is investigating functional block
designs in CMOS, in order to provide good speed and area estimates for the detailed
design.

We have completed cell designs and layouts for the SLAP datapath elements, and
have designed an initial chip floorplan. Our more detailed designs remain remarkably
close to our original rough estimate of four 20-bit PEs, with 32 registers apiece, on a
maximum-size MOSIS die.

In addition, we designed and had fabricated (through MOSIS) a test chip of critical path
elements. These critical path elements include a column of the register file and the
carry chain. In addition to verifying designs, we have also been able to characterize
some process phenomena on this test chip. The chip is still yielding results.

8.3.2 A Coprocessor Design Environment

The coprocessor design environment project, started in Fall 85, is developing a suite
of hardware and software tools aimed at assisting the process of designing and deploy-
ing custom coprocessors within an existing application environment. The tools provide
early feedback on eventual system performance as well as assistance in hardware and

* software interfacing.

We have completed the logic design of a MC68020-compatible coprocessor design
frame. We are currently designing an example coprocessor with raster graphics and
data structure applications that exercises the most commonly used features of the
frame. We expect the design frame to use the pending MOSIS 108 pin standard; in case
the standard is not set by the time the example design is ready for fabrication, we plan
to disable some signals and fabricate it in an 84 pin package.

We are also using the example design to test out our initial design and implemen-
tation of a coprocessor interface compiler, which produces code generation facilities,
and a performance simulator, which runs actual application code, emulates tne
coprocessor and provides estimates of system performance before the device is built.

We have completed a register-transfer and transistor-level logic design of a 68020-
compatible coprocessor design frame at the detailed timing level. We have tested the
logic design by running it against a functional simulator, and we have begun to lay out
the chip [Chatterjee&.86.Specialized]. We plan to insert coprocessors in systems
through the use of a daughterboard holding the CPU, the coprocessor and any
peripheral circuitry. Our initial design will support slave-mode and DMA operation. We
had initially expected that DMA, which our preliminary studies show can yield speedups
on many tasks in ,. ie 68020 environment, would require the use of a support chip, since
we have limited ourselves to MOSiS standard packages with an eye to making the
design frame and associated software available to other MOSIS users. Now, however,
we plan to use a soon-to-be-announced MOSIS package with a higher pincount.

8-14

VERY LARGE SCALE INTEGPATION FINAL REPORT, 1985-67

We have also begun designing generic software support tor system insertion of cus-
* tom accelerators. This comprises an interface compiler, whir-h produces code genera-

tion facilities and necessary operating system support, and a performance simulator,
which runs actual application code, emulates the coprocessor, and provides estimates
of system performance before a device is built.
Specialized Coprocessors

Fisher and Chatterjee have begun a study of single-chip coprocessors, linked closely
to general-purpose hosts, as accelerators for inner loops of programs. As a first step,
we have begun to measure the expected performance of coprocessors that use system
memory rather than local memory, and hence are essentially bandwidth limited. Even
in this restricted case, results are encouraging; a brief summary of a forthcoming paper
is included as an appendix to this report. We plan next to carry out similar estimates for
more algorithms, and to do more detailed estimates of coprocessors with and without
local memories. We also plan to design and implement a CMOS design frame, a la
Katz, for the production of coprocessors for the Motorola 68020.

8.3.3 Pipelined Architectures for Data-dependent Algorithms

We have been working on architectures for data dependent applications, such as en-
countered in speech recognition. First, we evaluated a class of custom architectures in
which the processor, the processor memory interconnection, and the synchronization
supported by the shared memory could be customized to the task, using custom VLSI
chips. One particular task, the Harpy speech recognition system, was fully simulated on
a number of architecture configurations, and speed ups of above 8000 compared to the
VAX-780 were obtained assuming MOSIS level NMOS technology (100 ns clock cycle
time, 400ns memory cycle time). The speed up as a function of the number of MOS tran-
sistors (excluding memory), was found to be superlinear, even though the speed up in
terms of number of processors was sublinear. The explanation lies in the the reduction
in number of MOS transistors per processor that can be achieved by customizing each
processor individually to more and more specialized tasks
[Anantharaman&.86. Hardware].

Currently we are investigating a general-purpose architecture for data dependent
programs. Our aim is to provide performance similar to that of the full custom architec-
ture with full programmability while eliminating hardware utilization (speedup / MOS
transistors). VLSI technology is expected to be used to implement a memory controller
which supports efficient synchronization primitives including HEP style bit/word
semaphores, Cedar style syn-hronization keys, atomic operations on shared queues
and stacks, and blocking/unblocking of processors waiting on synchronization events.

Bisiani and Anantharaman have completed simulations of both a pipelined and a
parallel version of the search accelerator. The simulations have been done using real
speech data. The simulations indicate that both versions of the accelertor can speed
up search by about three orders of magnitude.

8-15

FINAL REPORT, 198547 VERY LARGE SCALE INTEGRATION

We are not planning to build a VLSI device because of the manpower involved and
because the details of the search algorithm (e.g. size of some data elements, pruning
heuristics, etc.) are still changing. Since the device would be a definite plus for the
speech project we are now planning to build an emulator out of off-the-shelf hardware.
Because of the nature of this project and since it interacts closely with all the other
"software" work done for speech we have proposed to build the accelerator as part of
the next Strategic Computing contract.

Continuing our work toward designing an architecture suitable for a large set of
speech recognition search algorithms, we have analyzed in detail various algorithms for
searching Hidden Markov model graphs. We have described all the algorithms as varia-
tions of a single basic algorithm and compared their individual requirements. Given this
unified description, we can recast each algorithm as a pipeline of simple register-to-
register machines that can be tailored to attain some speed/cost or speed/size trade-off.
We are now building a simulator to test various trade-offs using (or with) real data. The
other issue we have been working on is how to use a collection of identical pipeline
machines to achieve higher performance. Load balancing is a challenge because all the
algorithms we are dealing with are data dependent. As soon as we have a reasonable
design, we will build and test it within the distributed speech system. We expect to be
able to do that easily since most of the hardware/software interfacing has already been
done for a signal processing accelerator and we can take advantage of this environ-
ment.

O 8.3.4 Chess Machine

Chess programs and chess machines that search a large space of possibilities in a
very simple way have established dominance over chess programs that try to bring a lot
of knowledge to bear in guiding the search and evaluating each situation.
A Parallel Chess Machine

The CMU Chess Machine, which features a move generator built from 64 custom
VLSI chips designed by Ebeling and fabricated through MOSIS, came to Vife in 1985.
Programmed by Berliner's chess group, it has since attained a provisional USCF rating
of 2170 (higher than that of any current computer program) and is expected to achieve
Master level (2200) before long. The machine comprises a microprogrammed processor
that controls a variety of chess-specific hardware, including the move generator that
produces and orders moves at the rate of 200,000 moves/s.

Most successful chess programs utilize a brute-force a-P search with as much posi-
tional evaluation at the leaf positions as can be afforded. Since positional evaluation
can be done very fast incrementally while move generation requires a lot of time, we
chose to investigate whether we could use VLSI to implement a fast move generator.
The result is an array of 64 (identical) custom VLSI chips, each of which generates a
subset of the legal moves. The chips also perform move ordering based on capture in-
formation and square safety and maintain the search context for searches up to 40 ply.

8-1

VERY LARGE SCALE INTEGRATION FINAL REPORT, 198547

* Each chip comprises about 14,000 transistors, divided about equally between the
legal move computation, move ordering and the context stack. The time required to
perform the different operations ranges from 120 ns. for making moves to 300 ns. for
performing a distributed arbitration cycle. The time required to process each position in
the search with the current hardware implementation is about 5 microsec. and includes
the time for evaluation, handling the transposition and repetition tables and the a-P
search.

After about 20 tournament games with a variety of human players, the machine has
yet to lose to a player rated under 2100 and has a win and a draw in 5 games against
master players. While the speed of the hardware has brought us this far, we have im-
plemented the position evaluation as programmable hardware that is not yet being fully
utilized. Wa expect that the speed of the move generator combined with more intel-
ligent evaluation will take us well into the Master category.

A 3-Chip Set for Chess

We are now applying our Hitech and Chess Machine experience to develop a three-
chip set: move generator, controller, and evaluator. The three-chip set is expected to
search at around one million positions/s, or about 5-10 times faster than current genera-
tion of chess machines. While the chip set should be able to reach well into Master
level performance searching in single-processor configuration, the real goal is to
operate the chip set in multiprocessor configuration. A new, parallel alpha-beta algo-
rithm that has shown "asymptotically optimal" speedup in preliminary analytical resultsO is now been examined. The controller chip itself is also being designed along with the
study of the parallel algorithm. The three-chip set coupled with a commercial static
RAM chip will form a self-contained chess machine. Inside the controller will be the
move stack, various status registers, communications interface to the parent processor,
and board repetition detection logic. The repetition detection logic is based on a new
incremental algorithm instead of the usual hash table implementation. The evaluator is
based on a new pipelined evaluation scheme and will implement a mixture of the Belle
evaluation functicn and the Hitech evaluation function.

Our first chip was a 40-pin chess move generator that essentially implemented the
Belle move generation algorithm. The chip incorporates several circuit refinements and
measures 6912x6812 microns (MOStS standard die size) in three-micron p-well CMOS
process. We simulated the -36K-transistor chip in its entirety on a Daisy worlkstation at
the transistor switch level. SPICE simulation of the critical path circuitry indicated a max-
imum throughput of about two million moves/s.

The initial fabrication yield was good (up to 50%), with the exception of a run from one
vendor apparently having fabrication problems. We built a chip tester and a simple
chess machine around the chip to evaluate its performance. The chip operates at a raw
speed of about 2,000,000 moves/s-about three times as fast as the Belle TTL move
generator and 10 times as fast as the Hitech 64-chip move generator. In terms of
speed over chip count, the single chip move generator is about three oJers of mag-
nitude better than either of the previous designs. We have built one test machine

8-17

FINAL REPORT, 198547 VERY LARGE SCALE INTEGRATION

* capable of searching around 1,000,000 nodes/s (less than the raw speed because of
controller overhead). We are currently constructing a machine using three move
generators that will search some 3,000,000 nodes/s, about 20 times faster than any ex-
isting chess machine.

ChipTest, the Sun-based system built around one of our move generator chips, was
recently crowned the new ACM North American Computer Chess Champion. A new 2-
processor chess machine is currently being constructed. The new machine is expected
to run at around 2,000,000 nodes/s. This represents about a factor of 4 increase in raw
speed over the retiring champion. Because of algorithm improvement, the actual speed
increase should be around a factor of five. The new machine will be completed before
the end of the 1987. The new machine will be a single VME triple height, full depth
board that plugs directly into a SUN workstation. Based on test results between Chip-
Test and Hitech, we expect that once the chess knowledge in Hitech is merged with the
new machine, a computer grandmaster will become a reality.

We have also made progress on new algorithms for minimax searching. Our
"selective extension" method of following promising lines of play has shown success in
preliminary experiments, and will receive a full-scale trial when the new hardware is
ready.

We have started work on a companion controller/evaluator. Because of the good
yield achieved for the move generator, we decided to design the controller and the

"*= evaluator as a single chip. Preliminary simulation results on parallel alpha-beta al-
gorithms have been extremely promising; speedup on the order of hundreds seems to
be readily achievable. The new parallel algorithms have also been shown theoretically
to dominate the weaker form of sequential alpha-beta algorithm that does not use deep
cutoff.

9-18

VERY LARGE SCALE INTEGRATION FINAL REPORT, 198547

8.4 Bibliography

[Anantharaman and Bisiani 86]
Anantharaman, T., and R. Bisiani.
A hardware accelerator for speech recognition algorithms.
In Proceedings of the 13th Annual International Symposium on Com-

puter Architecture, June, 1986.
Two custom architectures tailored to a speech recognition beam

search algorithms are described. Both architectures have
been simulated using real data and the results of the
simulation are presented. The design of the custom ar-
chitectures is described, and a number of ideas are
presented on the automatic design of custom systems for
data-dependent computations

[Brunvand 87] Brunvand, E.
Parts-R-Us: A chip apart(s)....
Technical Report CMU-CS-87-119, Carnegie Mellon University Com-

puter Science Department,
May, 1987.

Parts-R-Us is a chip that contains a collection of building block
parts for asynchronous circuit design. The parts contained
on the chip are either not available as standard commercial
components, or are standard gates combined into small
modules that are particularly useful for building
asynchronous control circuits. There are eight different
configurations of Parts-R-Us, each offering a different set
of asynchronous parts to the user. The parts contained on
the chip include: C-elements, transition call modules, tran-
sition selectors, transition toggles, transition arbiters, a four
phase mutual exclusion element, an asynchronous
register, two phase 0-registers, and four phase 0-
registers.

This document is both a description of Parts-R-Us, and a user's
manual for designers using the chip.

[Bryant 85a] Bryant, R.E.
Symbolic manipulation of Boolean functions using a graphical

representation.
In 22nd Design Automation Conference, IEEE, June, 1985.

In this paper we describe a data structure for representing
Boolean functions and an associated set of manipulation
algorithms. Functions are represented by directed, acyclic
graphs in a manner similar to the representations of Lee
and Akers, but with further restrictions on the ordering of
decision variables in the graph. Although a function re-
quires, in the worst case, a graph of size exponential in the
number of arguments, many of the functions encountered
in typical applications have a more reasonable represen-

8-19

FINAL REPORT, 196487 VERY LARGE SCALE INTEGRATION

tation. Our algorithms are quite efficient as long as the
graphs being operated on do not grow too large. We
present performance measurements obtained while apply-
ing these algorithms to problems in logic design verifica-
tion.

[Bryant 85b] Bryant, R.E.
Symbolic verification of MOS circuits.
In 1985 Chapel Hill Conference on VLSI, Computer Science Press,

Inc., March, 1985.
The program MOSSYM simulates the behavior of a MOS circuit

represented as a switch-level network symbolically. That
is, during simulator operation the user can set an output to
either 0, 1, or a Boolean variable. The simulator then com-
putes the behavior of the circuit as a function of the past
and present input variables. By using heuristically efficient
Boolean function manipulation algorithms, the verification
of a circuit by symbolic simulation can proceed much more
quickly than by exhaustive logic simulation. In this paper
we present our concept of symbolic simulation, derive an
algorithm for switch-level symbolic simulation, and present
experimental measurements from MOSSYM.

[Bryant 86a] Bryant, R.E.
Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on ComputersC-35(8):677-691, 1986.

In this paper we present a new data structure for representing
Boolean functions and an associated set of manipulation
algorithms. Functions are represented by directed, acrylic
graphs in a manner similar to the representations intro-
duced by Lee and Akers, but with further restrictions on the
ordering of decision variables in the graph. Although a
function requires, in the worst case, a graph of size ex-
ponential in the number of arguments, many of the func-
tions encountered in the typical applications have a more
reasonable representation. Our algorithms have time com-
plexity proportional to the sizes of the graphs being
operated on, and hence are quite efficient as long as the
graphs do not grow too large. We present experimental
results form applying these algorithms to problems in logic
design verification that demonstrate the practicality of our
approach.

[Bryant 86b] Bryant, R.
Can a simulator verify a circuit?,
In Milne, G.J., FormalAspects of VLSI Design. North-Holland, 1986.

A logic simulator can prove the correctness of a digital circuit if
only circuits implementing the system specification can
produce a particular response to a sequence of simulation
commands. This paper explores two methods for verifying

11-20

VERY LARGE SCALE INTEGRATION FINAL REPORT, 1985-"7

circuits by a three-valued logic simulator where the third
state X indicates an indeterminate value. The first, called
black-box simulation, involves simply observing the output
produced by the simulator in response to a sequence of in-
puts with no consideration of the internal c',rcuit structure.
This style of simulation can verify only a limited class of
systems. The second method, called transition simulation,
requires the user to specify the relation between states in
the circuit and the specification. The simulator is then
used to prove that each state transition in the specification
is implemented correctly. Arbitrary systems may be
verified by this method.

[Bryant 86c] Bryant, R.
A collection of papers about a symbolic analyzer for MOS circuits.
Technical Report CMU-CS-86-114, Carnegie Mellon University Com-

puter Science Department,
March, 1986.

COSMOS, a compiled Simulator for MOS Circuits, aims to per-
form accurate switch-level simulation at least an order of
magnitude faster than previous simulators such as MOS-
SIM I1. Unlike programs that operate directly on the tran-
sistor level description during simulation, COSMOS trans-
forms the transistor network into a Boolean description
during a preprocessing step. This Boolean description,
produced by a symbolic analyzer, captures all aspects of
switch-level networks including bidirectional transistors,
stored charge, different signal strengths, and indeterminate
(X) logic values. These papers give a brief overview of
COSMOS as well as a detailoid presentation of the theory
and algorithms behind the symbolic analyzer.

[Bryant 87a] Bryant, R.
Graph-based algorithms for Boolean function manipulation.
In IEEE Transactions on Computers, IEEE, August, 1987.

In this paper we present a new data structure for representing
Boolean functions and an associated set of manipuiation
algorithms. Functions are represented by directed, acyclic,
graphs in a manner similar to the representations intro-
duced by Lee and Akers, but with further restrictions on the
ordering of decision variables in the graph. Although a
function requires, in the worst case, a graph of size ex-
ponential in the number of arguments, many of the func-
tions encountered in typical applications have a more
reasonable representation. Our algorithms have time com-
plexity proportional to the sizes of the graphs being
operated on, and hence are quite efficient as long as the
graphs do not grow too large. We present experimental
results from applying these algorithms to problems in logic

6-21

FINAL REPORT, 1985-87 VERY LARGE SCALE INTEGRATION

design verification that demonstrate the practicality of our
approach.

[Bryant 87b] Bryant, R.E.
Two papers on a symbolic analyzer for MOS circuits.
Technical Report CMU-CS-87-106, Carnegie Mellon University Com-

puter Science Department,
February, 1987.

This report contains two papers describing a set of algorithms to
extract the logical behavior of a digital metal-oxide semi-
conductor (MOS) from its transistor representation.
Switch-level network analysis, applied symbolically, per-
forms the extraction. The analyzer captures all aspects of
switch-level networks including bidirectional transistors,
stored charge, different signal strengths, and indeterminate
(X) logic values. The output is a set of Boolean formulas,
where the behavior of each network node is represented
by a pair of formulas. In the worst case, the analysis of an
n node network can yield a set of formulas containing a to-
tal of 0(n3) Boolean operations. However, all but a limited
set of dense, pass transistor networks give formulas with
0(n) total operations.

The analyzer can serve as the basis of efficient programs for a
variety of logic design tasks, including : logic simulation (on
both conventional and special purpose computers), fault
simulation, test generation, and symbolic verification.

These papers have been accepted for publication in IEEE
Transactions on Computer-Aided Design of Integrated
Circuits.

[Bryant 87c] Bryant, R.E.
A methodology for hardware verification based on logic simulation.
Technical Report CMU-CS-87-128, Carnegie Mellon University Com-

puter Science Department,
June, 1987.

A logic simulator can prove the correctness of a digital circuit if it
can be shown that only circuits implementing the system
specification will produce a particular response to a se-
quence of simulation commands. This style of verification
has advantages over other proof methods in being readily
automated and requiring less attention to the low-level
details of the design. It has advantages over other ap-
proaches to simulation in providing more reliable results,
often at a comparable cost.

This paper presents the theoretical foundations of several re-
lated approaches to circuit verification based on logic
simulation. These approaches exploit the three-valued
modeling capability found in most logic simulators, where
the third value X indicates a signal with unknown digital

8-22

VERY LARGE SCALE INTEGRATION FINAL REPORT, 198547

value. Although the circuit verification problem is NP-hard
as measured in the size of the circuit description, several
techniques can reduce the simulation complexity to a
manageable level for many practical circuits.

[Bryant and Schuster 85]
Bryant, R.E. and M.D. Schuster.
Performance evaluation of FMOSSIM, a concurrent switch-level fault

simulator.
In 22nd Design Automation Conference, IEEE, June, 1985.

This paper presents measurements obtained while performing
fault simulation of MOS circuits modeled at the switch
level. In this model the transistor structure of the circuit is
represented explicitly as a network of charge storage
nodes connected by bidirectional transistor switches.
Since the logic model of the simulator closely matches the
actual structure of MOS circuits, such faults as stuck-open
and closed transistors as well as short and open-circuited
wires can be simulated. By using concurrent simulation
techniques, we obtain a performance level comparable to
fault simulators using logic gate models. Our measure-
ments indicate that fault simulation times grow as the
product of the circuit size and number of patterns, assum-
ing the number of faults to be simulated is proportional to
the circuit size. However, fault simulation ties depend
strongly on the rate at which the test patterns detect the
faults.

[Chatterjee and Fisher 86]
Chatterjee, S., and A.L. Fisher.
Specialized coprocessor chips: fast computation with slow memory.
In Platinum Jubilee Conference on Systems and Signal Processing,

December, 1986.
Advances in VLSI technology, computer aided design and

design automation, and rapid tumaround fabrication have
made the use of special-purpose architectures more and
more practical. Our focus in this paper is on the prospects
of using special-purpose devices to speed up the inner
loops of programs, as an extension of the usual techniques
of code tuning and vertical migration. In particular, we con-
sider the use of single-chip coprocessors that do not con-
tain large local memories, and hence operate on data
stored in system memory. We show that the intrinsic ef-
ficiency of specialized hardware can lead in some cases to
dramatic speedups over software implementations, despite
the processor-memory "bottleneck."

8-23

FINAL REPORT, 198547 VERY LARGE SCALE INTEGRATION

[Dally and Bryant 85]
Dally, W.J., and R.E. Bryant.
A hardware architecture for switch-level simulation.
In IEEE Transactions on Computer-Aided Design, IEEE, July, 1985.

The Mossim Simulation Engine (MSE) is a hardware accelerator
for performing switch-level simulation ol MOS VLSI circuits
(1), (2). Functional partitioning of the MOSSIM algorithm
and specialized circuitry are used by the MSE to achieve a
pe,'ormance improvement of -300 over a VAX 11/780 ex-
ecuting the MOSSIM II program. Several MSE processors
can be connected in parallel to achieve additional
speedup. A virtual processor mechanism allows the MSE
to simulate large circuits with the size of the circuit limited
only by the amount of backing store available to hold the
circuit description.

[Fisher 85] Fisher, A.L.
Design synthesis and practical considerations for bit-level arithmetic

arrays.
In Second International Symposium on VLSI Technology, Systems

and Applications, Pages 274-277. May, 1985.
Bit-serial implementations of systolic and other array algorithms

are often found attractive because of their potential for
ease of design, hiigh clock rates and flexible word length.
The author deals with two aspects of serial implemen-
tations: their design and their cost and performance. In the
first section, the author shows a new approach to deriving
serial arrays, in two steps, from word-parallel arrays of in-
ner product cells. In the second section, he considers the
costs and benefits of such arrays, and presents a list of
factors that determine the best degree of serialization in a
given system.

[Fisher 86] Fisher, A.L.
Scan line array processors for image computation.
In Proceedings of the 13th Annual International Symposium on Com-

puter Architecture, June, 1986.
The scan line array processor (SLAP), a new architecture

designed for high-performance, low-cost i,-nage computa-
tion, is described. A SLAP is an SIMD linear array of
processors, and hence is easy to build and scales well with
VLSI technology. At the same time, appropriate special
features and programming techniques make it efficient for
a wide variety of low- and medium-level computer vision
tasks. The basic SLAP concept and some of its variants
are described, a particular planned implementation is dis-
cussed, and its performance for computer vision and other
applications is indicated.

6-24

VERY LARGE SCALE INTEGRATION FINAL REPOqT, I1O987

[Fisher et al. 85] Fisher, A.L., H.T. Kung, and K. Sarocky.
Experience with the CMU programmable systolic chip,
In P. Antognetti, F. Ancheau, and J. Vimillemin, Microarchitecture of

VLSI Computers, Pages 209-222. Martinus Myhoff Publishers,
1985.
The CMU programmable systolic chip (PSC) is an experimental,

microprogrammable chip designed for the efficient im-
plementation of a variety of systolic arrays. The PSC has
been designed, fabricated, and tested. The chip his about
25,000 transistors, uses 74 pins, and was fabricated
through MOSIS, the DARPA silicon broker, using a 4
micron nMOS process. A modest demonstration system
involving nine PSCs is currently running. Larger
demonstrations are ready to be brought up when additional
working chips are acquired.

The development if the PSC, from initial concept to silicon
layout, took slightly less than a year, but testing, fabrica-
tion, and system demonstration took an additional year.
This paper reviews the PSC, describes the PSC
demonstration system, and discusses some of the lessons
learned from the PSC project.

[Gupta 86] Gupta, A.
Parallelism in production systems.
Technical Report CMU-CS-86-122, Carnegie Mellon University Com-

puter Science Department,
March, 1986.

Production systems (or rule-based systems) are widely used in
Artificial Intelligence for modeling intelligent behavior and
building expert systems. Most production system
programs, however, are extremely computation intensive
and run quite slowly. The slow speed of execution has
prohibited the use of production systems in domains re-
quiring high performance and real-time response. This
thesis explores the role of parallelism in the high-speed ex-
ecution of production systems.

On the surface, production system programs appear to be
capable of using large amounts of parallelism- it is possible
to perform match for each production in a program in paral-
lel. The thesis shows that in practice, however, the speed-
up obtainable from parallelism is quite limited, around 10-
fold as compared to initial expectation of 100-fold to 1000-
fold. The main reasons for the limited speed-up are: (1)
there are only a small number of productions that are af-
fected (require significant processing) per change to work-
ing memory; (2) there is a large variation in the processing
requiremeit of these productions; and (3) the number of
changes made to working memory per recognize-act cycle
is very small. Since the number of productions affected

8-25

FINAL REPORT, 198547 VERY LARGE S !ALE INTEGRATION

and the number of working-memory changes per
recognize-act cycle are not controlled by the implementor
of the production system interpreter (they are governed
mainly by the author of the program and the nature of the
task), the so!utinn to the problem of limited speed-up is to
somehow decrease the variation in the processing cost of
affected productions. The thesis proposes a parallel ver-
sion of the Rete algorithm which exploits parallelism at a
very fine grain to reduce the variation. It further suggests
that to exploit the fine-grained parallelism, a shared-
memory multiprocessor with 32-64 high performance
processors is desirable. For scheduling the fine-grained
tasks consisting of about 50-100 instructions, a hardware
task scheduler is proposed.

[i!su 86] Hsu, F.H.
Two designs of functional units for VLSI based chess machines.
Technical Report CMU-CS-86-103, Carnegie Mellon University Com-

puter Science Department,
January, 1986.

Brute force chess automata searching 8 plies (4 full moves) or
deeper have been dominating the computer chess scene
in recent years and have reached master level perfor-
mance. One interesting question is whether 3 or 4 ad-
ditional piles coupled with an improved evaluation scheme
will bring forth world championship level performance. As-
suming an optimistic branching ratio of 5, speedup of at
least one hundredfold over the best current chess
automaton would be necessary to reach the 11 to 12 plies
per move range.

One way to obtain such speedup is to improve the gate utiliza-
tion and then parallelize the search process. In this paper,
two new designs of functional units with higher rate ef-
ficiency than previous designs in the literature will be
presented. The first design is for move generation only,
and is esserntially a refinement of the rn.)ve generator used
in the Belie chess automation, the first certified computer
chess master. The second design is a general scheme
that can be used for evaluating a class of chess-specific
functions, besides generating moves. A move generator
based on the second design will be described. Applica-
tions of the same general scheme will be briefly discussed.

[Hsu et al. 85] Hsu, F.H., H.T. Kung, T. Nishizawa, and A. Sussman.
Architecture of the link and interconnection chip,
In Fuchs, H., 1985 Chapel Hill Conference on Very Large Scale In-

tegrated Systems. Computer Science Press, 1985.
The link and interconnection chip (LINC) is a custom chip

whose function it is to serve an efficient link between sys-

6-26

VERY LARGE SCALE INTEGRATION FINAL REPORT, 198547

tem functional modules, such as arithmetic units, register
files and I/O ports. This paper describes the architecture
of LINC, and justifies it with several application examples.

LINC has 4-bit datapaths consisting of an 8x8 crossbar inter-
connection, a FIFO or programmable delay for each of its
inputs, and a pipeline register file for each of its outputs.
Using pre-stored control patterns LINC can configure an in-
terconnection and delays on-the-fly. Therefore the usual
functions of busses and register files can be realized with
this single chip.

LINC can be used in a bit-sliced fashion to form interconnec-
tions with datapaths wider than 4 bits. Moreover, by tri-
stating ihe proper data output pins, multiple copies of LINC
can for crossbar interconnections larger than 8x8.

Operating at the target cycle time of 100ns, LINC makes it pos-
sible to implement a variety of high-performance process-
ing elements with much reduced package counts.

[Lam and Mostow 85]
Lam, M.S. and J. Mostow.
A Transformational Model of VLSI Systolic Design.
Computerl 8(2):42-52, February, 1985.
An earlier version appears in Proc. 6th International Symposium on

Computer Hardware Description Languages and Their
Applications, May, 1983.

[Mishra 86] Mishra, B.
Some graph theoretic issues in VLSI design.
Technical Report CMU-CS-86-117, Carnegie Mellon University Com-

puter Science Department,
May, 1986.

It is often said that VLSI design is the ultimate batch job! The
statement succinctly characterizes several problems that a
VLSI designer must face: many man-months of design ef-
fort, high turn-around time, long hours spent in testing and
the difficulty of correcting a design error. In order to al-
leviate these problems, a VLSI design must be equipped
with powerful, efficient and automated design tools. In ad-
dition, such tools, if properly designed, can help in eliminat-
ing the errors that hand-designs are prone to.

The first part of the thesis describes a graph theoretic problem
(called All-Bidirectional-Edges Problem) that arises
naturally in the context of the simulation of an MOS tran-
sistor network. The algorithm can be used to quickly
detect all the pass-transistors in the network that can be-
have as bilateral devices. The knowledge of such transis-
tors in the network can be used profitably in several exist-
ing simulation algorithms to obtain a significant speed-up in
their performance. In addition, the algorithm can also be

8-27

FINAL REPORT, 198547 VERY LARGE SCALE INTEGRATION

used to find sneak paths in the network and hence detect
functional errors.

The second part of the thesis studies the design of tools for
verifying the correctness of sequential circuits. Though the
problem of verifying asynchronous circuits is considered to
be rather important, there is a severe lack of practical
design aids for this purpose. Since all the known tech-
niques of simulation and prototype testing are time-
consuming and not very reliable, the need for verification
tools becomes more acute. Moreover, as we build larger
and more complex circuits, the cost of a single design error
is likely to become even higher. We investigate several al-
gorithm design issues involved in an automatic verification
system for (asynchronous) sequential circuits, in which tne
specifications are expressed in a propositional temporal
logic of branching-time, call CTL. We also study how to
tackle a large and complex circuit by verifying it hierarchi-
cally.

[Nowatzyk 85] Nowatzyk, A.
Advanced design tools for programmable logic devices.
Technical Report CMU-CS-86-121, Camegie Mellon University Com-

puter Science Department,
November, 1985.

Programmable Logic Devices (PLD's) such as field programm-0 able logic arrays based on fusable link or floating gate
technology have become a viable altemative to random
logic designs. Increasing device complexity and decreas-
ing gate transfer delays allow PLD's to replace large frac-
tions of circuits previously implemented with LSI and MSI
chips. This trend has permitted designs that use fewer
device types and achieve much higher logic densities.

PLD's are not only a direct replacement for conventional gate
and flip flop level designs, but they support systematic
design styles that were considered to be too expensive
with conventional logic. The cost function for PLD designs
can be radically different from those of gate-level im-
plementations because PLD's come in standard sizes, so
the actual number of gates used matters little as long as it
does not exceed the available resources in a given pack-
age.

The complexity of PLD's and the unique constraints that a PLD
imposes on a logic design requires new design tools to
describe, encode, verify, and implement PLD based cir-
cuits. This paper provides a brief overview of available
PLD design aid software and describes a more general
method of using a general purpose language (here C) to
specify and implement complex functions efficiently.

S-28

