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MORBIDITY/MORTALITY ANALYSIS OF COHORT DATA

1. INTRODUCTION

.;apThis report is the culmination of investigations into modeling the natural history of discasc with
appIcation to the Air Force Health Study...--Tiee approaches to the problem are presented here. The
first approach extends the totally nonparametric method developed in Albert, Gcrtman and Louis
(1978), Albert, Gertman, Louis, and Liu (1978) and Louis, Arthur, and Hcghinian (1978). These three
papers will be referred to as Louis et al. The second modeling approach is based on the semi-
parametric methods for analyzing survival/sacrifice experiments presented in Dinse (1982, 1988) and
Portier and Dinse (1987). This set of papers will be referred to as Dinse ct al. The third approach
combines the first two modeling methods to obtain a semi-parametric procedure using the disease
model of Louis et al. and allows the inclusion of covariate data.

In Section 2 we present the extension of Louis et al. tt, include death as a third time-of-
occurrence. In Section 3 we simplify the model and obtain a full likelihood solution. In Section 4 we
show the drawbacks of attempting to extend the nonparametric model of Dinse (1982). In Section 5 we
extend Dinse et al. to arrive at a parametric model. In Section 6 we present a partial likelihood solution
to the problem of determining the effect of individual risk factors on death with disease and death
without disease. In Section 7 we present the full likelihood solution. In a subsection of Section 7 we
also present the formulas for a score test to determine the significance of risk factors.

2. LOUIS ET AL. EXTENSION TO MULTIPLE EXAMS

For multiple exams, the information available can be written in two parts: a basic Mortal-
ity/Morbidity vector denoted by MM and a matrix of examination data denoted by E. Let T = the age at
death of a subject who has died, X = age at which the preclinical stage of the disease begins and
Z = X + Y be the age at which symptoms appear. Y is the sojourn time in the preclinical stage.

The array MM is denoted by:

MM = (e,DELD,DS,S,C,DR,DC,I),

where

e = age of subject at entrance into the study
DS = min(T, time of analysis),

DELD = 0ifDS = T,
= I otherwise,

Z = time of symptoms (of the disease of interest),
S = min(time to symptoms, time of analysis, death without symptoms).
C = 1 if subject is lost to follow-up at time S,

= 0 if subject has shown symptoms at time S,
DR = lifDS>XandDELD=O,

= 0 if DS< X and DELD = 0,
DC = IifDS>X+YandDELI=0,

= ifDS<X+YandDELD=O,

and I ik the number of examinations (or screens) the subject received. DR and DC are undefined when
DELD = 1. The array E is given by, E = (E(1),...,E(I)), where E(i) = (U(i),R(i)) ", U(i) is the subject's
age at the ith exam and R(i) = 0 if no disease is present at the ith exam and I otherwise.
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The basic goal is to estimate the joint probability density function of (X,Z,T) in terms of MM and
E. To illustrate the approach, we present here the calculation of the likelihood contribution of a partic-
ular rcalizaion of MM and E. Partition (or strat;fy) the positive real line into intervals I(1),....J(M) and
suppose that a subject's MM vector and E matrix are:

M M = (e E I(a), DELD = 0, DSE (1 ), SE I(k), C = 1, DR = 1, DC= 0, 1= 2)
and

E= U(1)E I(J1 ), R(1) =0

[U(2)E(j 2 ), R(2) = 1

Shorthand -totation would be

and MM = (a,O,.,k,1,,0,2)

Let us review what information this data represents. In Figure 1 we abuse notation and treat an interval
as a point in time. Figure 1 shows the disease and death history of a subject with this MM and E data.

I(a) l101 )  162.) l(.k) l(k)

e U(1) U(2) T S

Figure 1.

Graphical representation of information available on a subject with age at entry (e) in the time
interval l(a), age at death (T) in the interval I(A), age at first examination U(1) in the inter al
1'j1 ) , age at second examination U(2) in the interval 162 ), and age at loss to follow-up (S) in the
interval 1(k).

In this special case, we know Z>T, since C= 1. We also know X< U(2), be.ause R(2) -1 (and
we assume there are no false positives): however, if the screen at U(1) was a fal. negative, X maybe
less that U(1). We also know DS =T, the actual age at death, since DELD =0. Fimally, I =2 tells us
that this patient received two exams. Calculations for the likelihood contribution of this data are (with
p = probability of a false negative result):
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P(MM,E) = X P(XE I(q),MM,E) Distribution/
q=1 Availability Codes

Avail and/or
M J2 Dist Special

= X P(XEI(q),ZEI(r),MM,E)

r=1+1 q=1A
M j2

= X X P(pos.screen at 162)1 e e I(a),Xe I(q),Z- I(r),TE l(1 ),E(1), I = 2)
r--J +1 q=l

x P(e EI(a),XE I(q),Z Il(r),TE I(. ),E(1)))

M j2

= X Ix P(neg.screen at (l) 1 e I(a),Xe I(q),Zc I(r),Te I(1),I 2)
r=1.+1 q=1

x P(e e I(a),Xe I(q),ZE I(r),TE I(1 ),l = 2)

x P(U(I)E 1I61),U( 2 )E 1(62 )1 e e 1(a))

M J2

1 X Y pW (JO'q)P(eeI(a),Xe l(q),ZEI(r),Tel(.1),l=2),
r=.C+1 q=1

where w (t) = 1 t > 0, w (t) = 0 t< 0 and cx indicates "proportional to".

Note that Te I(I ) and ZE I(r), with re { + 1,...,M}, is the information given by
{ (C = 1,SE I(k),Te I(1),DELD = 0}. Under the assumption that examination times are scheduled
regularly and independently of (X,ZT), as is the case in the Air Force Health Study, we have:

M J2

P(MM,E) a I X pw(j-q)p(a,q,r,1)P(I=2)
r=1 +1 q=l

M J2

0C X X p (Jl'q)P(a,q,r,1),
r=1 +1 q=1

where P(a,q,r ) = P(e e I(a),Xe I(q),ZE I(r),Te l(1)). The parameters p(a,q,re) are the same as those
of the one-examination model. Thus, the Louis et al. model extended to include mortality data employs
the same parameters in the case of two examinations as in the case of one examination.

3. SIMPLIFIED NONPARAMETRIC MODEL

In this simplified extension of Louis et al., we reduce the model by eliminating X. We demon-
strate the technique by writing out the necessary equations in the special case that two exams have been
administered and we use the language of the Air Force Health Study, since this form of the model is
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specifically designed for the data from this study. Each subject's time is measured from his first tour in
Vietnam. This simplified model uses only the following:

T = time of death,
Z = time of symptoms (of the disease of interest),

DS = min(T, time of analysis),
DELD = 0 if DS = T,

= I otherwise,
S = min(time to symptoms, time to analysis or death without symptoms),

DELZ = I if S = Z,
= 0 otherwise,

I = number of exams,
U(j) = time of the jth exam,
R(j) = I if U(j)>_S,

= 0 otherwise.

The time interval (0,-) is partitioned into intervals 1(1),I(2),....I(M). Table I lists the possible data pat-
terns (indexed by q ).

TABLE 1. POSSIBLE DATA PATTERNS IN THE REDUCED LOUIS ET AL. MODEL*

Pallern No. S DELZ DS DELD I U(1) R(1) U(2) R(2)
I k 1 d 0 2 jl 0 J2  1
2 k 1 d 0 2 Jl 1 j 2  1
3 k 0 d 0 2 Jl 0 j2  0
4 k 0 d 0 1 ji 0
5 k I d 0 1 Jl 1 -

0, d 0 0
7 k 1 d 1 2 j 1  0 j 2  1
8 k I d 1 2 J1 1 J2  1
9 k I d 1 2 j] 0 J2  0
10 1 d 1 2 ii 0 J2  0
11 k 0 d 1 2 Jl 0 j2  0
12 k I d 1 1 1 - -
13 k I d 1 1 J1 0 - -
14 1 d 1 1 J 0 - -
15 k 0 d 1 1 0 - -
10 k I d 1 0 - - - -
17 k I d 1 0
18 1 d 1 0
*Lower case letters (k, d, j1,j 2 = 1,...,M) in the Z, DS, U(1), U(2) columns indicate interval numbers

in the partition of (0, -).

The goal of this nonparamctric approach is to estimate the joint distribution of (Z, T). Table 2
lists the likelihood contribution of each data pattern in terms of P(a,b) = P(ZE 1(a), Tc 1(b)).
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TABLE 2. LIKELIHOOD CONTRIBUTION OF DATA
PATITERNS IN THE REDUCED LOUIS ET AL. MODEL*

Data Paltern n Likelihood Contribution
M

1 X P(k, 1)
I =d+l

M
2 X P(k, 1)

A =d+l
M M

3 X X P(q,A)
q=j 2 +1 1=d+l

M M
4 X X P(q,f)

q=jl+l e=d+l
M

5 X P(k,)
1 =d+l

M M
6 X X P(q,2,)

q=1 1=d+l
7 P(k, d)
8 P(k, d)
9 P(k, d)

d
10 1 P(q, d)

q=j2+1
M

11 1 P(q, d)
q=j2+ 1

12 P(k, d)
13 P(k, d)

d
14 X P(q, d)

q=jl+l
M

15 X P(q, d)
q=d+1

M
16 . P(q, d)

q=d+l
17 P(k, d)

d M
18 X X P(q, 1)

q=1 A =d+l
*P(ab) P(Ze I(a), TE I(b))

We wish to maximize the resulting likelihood in terms of the parameters P(a, b). Because the
likclihood function is too complicated to maximize directly, we apply (as did Louis ct al.) the Estimation
and Maximization (EM) algorithm to obtain maximum likelihood estimates of the P(a, b). To invoke
the EM algorithm we need to compute the conditional probabilities P(ZE 1(c), TE (f) 117 ), the proba-
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bility that 7Ze 1(c) and TE I(f) given that the subject has displayed data-pattern q. Using the definition
of conditional probability we see that

P(ZE 1(c), TE I(f) I t1) = P(ZE I(c), TE 1(f,2 )/P(i, ), q =1,..18

where P(27 ) is the likelihood contribution of the data pattern q7. To compute these conditional proba-
bilities we first compute the probabilities of a subject having ZE 1(c) (ieqsymptoms occur in the interval
1(c)) and TE I(f) (death occurs in interval I(f)) and the subect displays data pattern q. Let

= 0 otherwise,

and W~(t) =1I if t > 0

= 0 otherwise

Table 3 gives these probabilities for each '7,27 = 1,2,...,18.

TABLE 3. THE PROBABILITIES THAT SUBJECT'S SYMPTOMS APPEAR AT TIME S IN
THE INTERVAL 1(C) AND THAT THE SUBJECT'S TIME OF DEATH (T) IS IN THE

INTERVAL 1(F), GIVEN THAT THE SUBJECT HAS DATA PATITERN j?

g_ (S. DELZ. DS, DELD. 1. U(1). RR1). U(2), R(2)) M(E I(C). TE I(f), ii)

1 (k, 1, d, 0, 2, j1 , 1, j2 , 0) P(cf~ (f-d)S (k-c)
2 (k, 1, d, 0, 2, j 1, 1, J2 , 1) P(cf)w (f-d)S (k-c)
3 (k, 0, d, 0, 2,ji1, 0, j2 , 0) P(c,1)w (c-j2lw (f-d.)
4 (k, 0, d, 0, 1,ji1 , 0, -- )P(c,f)o (c-j1 )w (f-d)
5 (k, 1,d, 0,l 1 ,1,,- P(c,f)w (f-d)S (k-c)
6 (-, -,d,0, 0, -,-- P(cf)w (f-d)
7 (k, 1, d, 1, 2, j1 , 0, j2 , 1) P(c,f06 (f-d)S (k-c)
8 (k, 1, d, 1, 2, j 1, 1, J2 , 1) P(c,f)6 (f-d)S (k-c)
9 (k, 1, d, 1, 2, j 1, 0, j2 , 0) P(c,f)S (f-d)S (k-c)
10 (-, 1, d, 1, 2,ji1 , 0, i2 , 0) P(c,1)w (c-j 2 )8 (f-d)(1-w (d-c))
11 (j2 ,o, d, 1, 2, j 1, 0, i2 , 0) P(cf)w (c-d)S (f-d)
12 (k, 1, d, 1, 1,j 1i, 1, -- )P(cf)S (k-c)S (f-d)
13 (k, 1, d, 1, 1,ji1 , 0, -- )P(c,f)6 (k-c).g (f-d)
14 (-, 1, d. 1, 1,ji1, 0,-) P(cf)w (c-j1 )S (f-d)(1-o (d-c))
15 (d, 0, d, 1, 1, j 1,O0,-) P(c,f)w (c-d)S (f-d)
16 (k, 0,d, 1, 0, -,-, -, P(cf)w (c-k)S (f-d)
17 (k, 1, d, 1, 0, +,- - ) P(cfO6 (k-c)6S (f-d)
18 (k,1, d, 1,0,-,,--) P(cf)(1-o (d-c))& (f-d)

The maximum likelihood estimates of the P(a, b) are obtained by using the following EM algo-
rithm. Let n(Y7 ) = the number of subjects with data pattern q, q7 = 1,2 ....,18.

Step 1: Choose a set of initial probabilities:

P(O) (a,b), a,b = 1..M

Step 2: Given the v th estimates P(M(a,b), v = 0,1,2,..., compute

6



18
n(v + 1)(a,b) = I n(l )P(v')(a,b I q ), a,b = 1,...,M,

17=1

where P(v)(a,b 1 q) is obtained by using p( )(a,b) in the formulas of Tables I and 3 and
the formula for P(ZF I(a),TE I(b) I q ).

Step 3: Compute p(V + 1)(a,b) =n(V + 1 )/N, a,b= 1...,M, where N =Xn(i7).
'7

Step 4: Repeat Steps 2 and 3 until the P()(a,b) converge.

The resulting limits are the maximum likelihood estimates of the P(a,b).

4. TWO-EXAMINATION EXTENSION OF DINSE (1982) AND ITS DRAWBACKS

Dinse (1982) provides a method for analyzing data composed of examination and death time
information when subjects are examined at most one time. Below we provide an example of an exten-
sion of this work that allows more than one examination. This development is exactly that of Dinse
(1982) except that the number of examinations is 2 rather than 1. This approach illustrates the fact that,
unlike the extension of Louis et al. in Section 2, increasing the number of examinations by one increases
the number of parameters in the model by a number equal to the product of the number of death times
and the number of disease states. This increase in parameters makes the method too cumbersome for a
study like the Air Force Health Study in which there are to be up to six examinations. The full data case
is sufficient to demonstrate the drawback of attempting to use a two-examination extension of Dinse.

Define the following notation:

T = age at death,
B(T) = disease state at death,
E(i) = age at the ith exam, i = 1,2,
B(i) = disease state at the ith exam.

The full data case involves no incomplete pairs among (T,B(T)), E(i),B(i)), although one or
more of (E(i),B(i)) may be missing. By design E(1) < E(2), so that there are three possibilities for an
individual: T < E(1) < E(2), E(1) < T < E(2), or E(1) < E(2) < T. If T < E(i), then the ith examination
was not performed (of course).

If we follow the nonparametric approach of Dinse, we would take each possible event and write
out its likelihood contribution as a product of conditional and unconditional probabilities. These condi-
tional and unconditional probabilities would then be considered parameters to be estimated. The
infeasibility of this approach for the Air Force Health Study can be best illustrated by writing out the
likelihood contribution for an individual having had two exams (ieE(1) < E(2) < T). Using the time
intervals 1(1) < 1(2) <g • < I(M) of the Louis et al. extension, the likelihood contribution would be:

P(Te I(a),B(T) = b(T),E(1)E I(c),B(1) = b(1),E(2)E I(d),B(2) = b(2))
= P(B(T) = b(T) I TE I(a),E(1)e I(c),B(1) = b(1),E(2) = l(d),B(2) = b(2))
x P(Te I(a) I E(1)r I(c),B(1) = b(1),E(2) = 1(d),B(2) = b(2)) x P(B(2) = b(2) I E(1)E I(c),

B(1) = b(1),E(2) = I(d)) xP(B(1) = b(I) I E(1)e I(c))P(E(1)- I(c),E(2)e 1(d)).

7



The first factor requires a parameter for every combination of death time, exam times and disease
states. Essentially, this parameter forces the data to be stratified according to each such combination.

This problem illuminates the difference between survival/sacrifice experiments and epidemiolog-
ical studies. In a survival/sacrifice experiment the sacrifice is the first and only examination and coin-
cides with the ending of information on that animal. However, in an epidemiologic study with repeated
exams, the subjects may continue to live after the first and second exams and their disease history will
take one of many paths. To make inferences about these paths, we must have a sufficient number of
both cases and controls taking each path. A large number of paths, such as would be the situation for
two or more cxams, would require a very large and therefore infeasible number of cases and controls.
Clearly, this is an unrealistic approach for the Air Force Health Study. An alternative and feasible
approach is to invoke a parametric model, described in the next section.

5. A PARAMETRIC MODEL

Now let X denote the time to the first event, either onset of the disease of interest or death
without the disease of interest. Let T denote the time to natural death. Define

Y(t) = 1 if disease is present at time t,
= 0 otherwise.

Suppose there are J distinct death and examination times. Let V be a vector of covariates
measured on each subject. Define

aj(V) = number of subjects who died with the disease at tj and had covariate vector V.

bj(V) = number of subjects who died without the disease at tj and had covariate vector V.

mj(V) = number of subjects examined at tj who were disease free and had covariate vector V.

nj(V) = number of subjects examined at tj who had the disease and had covariate vector V.
J J

Define the following hazard functions:

>, v(t) = lim P(t< X < t + e,Y(X) = 1I X > tV = v)/E,

E-.0

flv(t) = lim P(t5X<t+e,Y(X) =01 X>t,V=v)/,

= lim P(t T < t + E T> t,Y(t) = 0,V = v)/E,
E-.0

Ofv(t) = lim P(t.. T<t+e T>t,Y(t)= 1,V=v)/E.
E-0

These functions extend Dinse's (1988) expressions to include covariates. It follows directly from
Dinse (1988) that I v(t), Ov(t) and Oxv(t) can all be written in terms of the following three functions:

8



hvt=frn P(t 5T<t+E Tat,V=v)/E,

e--O

7 t)=P(Y(t) =Ii T;--t,V =v),

and

pv(t) = P(Y(t) =1I T = t,V = v).

Following Dinse (1988), we define the lethality function as rv(t) = oev~t)/Pv(t). It follows from Dinse's
(1988) expression (4) that rv(t) = pt/(-v))/7vt/71t))

We now introduce the following model: Let C, v and -y be vectors of coefficients and ~)
v 0 (t) and -y o(t) be functions of time. We model h1(t) = ho(t)eC - v, a proportional hazards model, and
7rv(t) and pv(t) with logistic models,

eVO(t)+V 'v

7rv(t) = i+evO(t)+v 'v

and

p'(t = ()+-

i' =1+ eY 0(t) + Y 'v

It follows that the survival function Sv(t) = Pv(T > t) can be written as a power of a baseline survival function
determined by ho(t),

Sv(t) = exp{-ft hv.(u)du}
0

We also see that(epf (Ud}e-v

rv~) e Y (t)VOt)+ (-Y v

so that the ratio of lethality for covariate vectors V = v, to V = v2 is

(-Y '-V vl-
rv (t)/rv (t) = e

The theory in section 3 of Dinse (1988) together with the above models imply that the loglikelihood is
the sum over all vectors z of the following expressions.
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Ll(hv) = {(aj(v) + bj(v))(logh0 (tj) + " v)-(aj(v) + bj(v) + mj(v) + nj(v))e€ "v fJ h0 (u)du}

j=1 0

J

L2( V) = X {nj(v)(vo(tj) +v v)-(nj(v) +mj(v))og(1 +evO(tj) +v z)}

j=1
J

L3 (Pv) = {bj(v)(-3o(tj) +-y "v)-(aj(v)+bj(v))log(l+e3"o(tj) +Y z)I.
j=l

The resulting loglikelihood is L = [Ll(h v) + L20(7v) + L3(pv)].
v

The baseline information h0 (t), v 0 (t) and -y 0(t) will be known if the exposed group is being
compared with a population (Breslow, Lubin, Marek, and Langholz (1983)). In a two-sample study,
however, this baseline information will not be known and thus must be estimated. Such estimates are
derived via modeling. Survival times are frequently assumed to follow a Weibull model (Dinse 1988).
Dinse and Lagakos (1982) suggest modeling the logit of the prevalence rate by a low-order polynomial
in time. Taking these suggestions, we model

h0(t) =/it (1)

V 0 (t) = v O+V t + V2 t 2

and

-Y 0 (t) = g0 + g1t + g2 t2 "

The resulting parameters are estimated by maximizing the full likelihood.

5.1 Some Special Cases

In the following special cases we assume v is a group indicator, v = 1 for exposed and 0 for
controls.

Case 1: Pv(t) = p0 (t), 7v(t) = 7r0 (t) and h0 (t) is known.

This is the case assumed in Breslow, Lubin, Marek, and Langholz (1983). In this situation the
only difference between exposed and controls is in survival. The loglikelihood in this situation is
L = X vLj (hy). The hypothesis of interest is H0 : E = 0. The corresponding score test (Rao, 1973)
which is based on the statistic S = (8 L/a C I 0 = o)2 /(- a 2I/a c 21 = 0). In this case,

J t.
aC Ij =0= (aj(1) + bj(1))-(aj(1) + bj() + nj(1)) f h(u)du,

=1 0

= O-E

10



J
where 0 = X (aj(1) + bj(1)) = number of deaths among the exposed group and

j=1
J t .

E = i X1{1(aj(1) +bj(1) +mj(1) +nj(1)) f0oJh0(u)duJJ

= expected number of deaths among the exposed group

under the control hazard,

and (-a 2La c 2 ) I $= 0 - E. Rao's score statistic for testing H0 : = 0 is thus (O-E) 2/E. This is the
same test statistic obtained by Breslow, Lubin, Marek, and Langholz (1983) in a similar situation.
Case 2: = 0, -y = 0 with v 0 (t) and -y 0(t) known.

This is the case in which exposed and controls differ only in the prevalence of disease among the
living, with the prevalence among the living and prevalence at death assumed known for the controls. In
this case the observed number of diseased subjects among the living exposed is:

J

0 X nj(1),
j=1

while the expected number of disease subjects among the exposed under the control prevalence rate is:
J

E = X (mj(l) + nj(1))(e 0(tj) + "/(I + e (tj)
j=1

Hence, (a L/8 v j = 0) = O-E and (a 2L/a iv 21 . = o) = -E. Thus the score statistic for testing lo:
v = 0 is again of the form (O-E)2 /E.

Case 3: =0, v =0 with v 0 (t) and -y0(t) known.

In this case the only difference between exposed and controls is the prevalence of disease at
death, with the control prevalence known. It again follows that the score statistic for testing H0 : -y = 0 is
(O-E) 2/E, where

J

o = bj(1) = observed number of diseased cases among those dying of natural causes,
j=1

and
a n bj ))( 0 (t ) + -Y e Y0 (t +

E (aj(1) +/(+ e).
j=1

5.2 The General Case

In the general case that the baseline functions cannot be assumed known and there may be
covariate effects for survival and both prevalences, we assume the baseline models in (1). The loglikeli-
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hood is the sum over z of Ll(hz), L2 (7t v) and (L3 (pv) with (1) substituted for h0 (t) and v 0 (t) and -y0(t).
The resulting likelihood is then maximized to obtain the parameter estimates.

6. A PARTIAL LIKELIHOOD MODEL

Again, let Z indicate the time symptoms occurred and let T indicate the time of death. In this
section, we extend the Dinse (1982) model in terms of Z and T and then use this model to build a likeli-
hood. The events for which we need likelihood contributions, numbered 1, 11, III, IV, and V as in Dinse
(1982), are all the combinations of censoring situations on Z and T. Table 4 lists these events and their
likelihood contributions.

TABLE 4. OBSERVABLE EVENTS AND THEIR LIKELIHOOD CONTRIBUTIONS FOR
THE DINSE (1982) EXTENSION

Event Type Event Likelihood Contribt,

I Z>t,T>t P(T>t Z>t)P(Z>t)

1I Z< t,T > t P(T> tI Z< t)P(Z < t)

-d
Il Z>t,T=t -P(T>t Z>t)P(Z>t)

dt

-d
IV Z<t,T=t -P(T>tl Z<t)P(Z<t)

dt

V T> t Sum of likelihood contributions I, II

Notice that we are assuming that the actual time of occurrence of symptoms is never known. The
model can be easily extended to include such cases if necessary. Notice also that the events depict
knowledge at a point in time T = t. This time T would be the time of the last available knowledge about
the subject. Thus T can be the time of death, the time of loss to follow-up, or time of analysis.

Let V indicate a vector of covariates. We define the following conditional hazards.

A(tI Z<t,V=v) = lim P(t<T<t+e c Z<t,V=v,T>t)/e-
E-.0

and

)N(tI Z>t,V=v) = lim P(t<T<t+E Z>t,V=v,Tt)/E.
c-0

We also define the conditional baseline hazards as:

12



I, l(t) = ), (t Z < tV = 0)

and
)L 2(t) =\ (t Z > t,V = 0).

Finally, we model the conditional hazards of T as:

), (t[ Z <t,V = v) = X l(t)ej6 v

and and I (t Z > t,V = v) = ), 2(t0ec' v,

where P and a are vectors of parameters which reflect the effect of the covariates in V on the hazard of

death for a person with and without the disease, respectively.

Let t(1) < t( 2) <• • < t(k) be the ordered death times of those dying with the disease. Denote by

Vo) the vector of covariates for the subject dying at to). Similarly, let t( 1) < t( 2 ) < •e < t(k) be ordered

death times of those dying without the disease. Let VG) be the vector of covariates for the subject dying

at t'j). Define R l) and R(j- ) to be the set of indices for subjects at risk at tol) andto 2, respectively,

= 1,2,...,k, j2 = 1,2,...,k. Standard partial likelihood arguments (Lawless (1982), pp356-357) lead to the

partial likelihood

k e 'vU) ea

L(a,)=( II v) ( 1H -). (2)
jl=l Y efP'v j2 =1 X ea' v.1

This partial likelihood is the product of two standard partial likelihood functions. Thus, it can be
maximized using standard methods on each factor to derive estimates of a and P.

7. A FULL LIKELIHOOD MODEL

The partial likelihood solution to (2) allows us to compare the effect on death rates of a covariate
for subjects with and without the disease. However, there are other descriptors for the disease which
we cannot estimate without further modeling. For example, the lethality of the disease at age t for
subjects with covariates V = v can be defined as:

A (tI S< t, V = v)
rv = (tIs>tV=v)

In terms of the model in Section 2 we have:

) , 1 ( t ) 0 -a ) ,V

I 2(t)

so that, without a trivializing assumption on the baseline hazards, we can make no inference about rv(0.
The solution to this problem is to model the baseline hazards. In this section, we give a full likelihood
solution to the discretized form of this problem. This solution will be useful in analyzing grouped data.
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Let tl,t2,...,tk be the set of possible death times. Define:

and 
N j =P(T=tj T;tj,S tj), j = 1,...,k

) 2j=P(T=tj T2tj,S>tj),j= 1,...,k.

Let
Dj(d) = The set of labels of individuals dying at time tj and with the disease (S5 tj)

Cj(d) = The set of labels of those with the disease censored at ti.

Dj(3) = The set of labels of subjects without the disease who died at tj.

Cj(d) = The set of labels of subjects without the disease who were censored at t1.

Cj = The set of labels of persons whose death times were censored at tj and for whom we
have no disease information.

Following the technique of Kalbfleisch and Prentice (1980), pp 98-102, we model:

and 
i 'j = log((-log(1-X j))

7Y 2j = log((-log(1-), 2j))- (3)

Using the discrete form of the proportional hazards model, we have:

P(T = tj,S tj I T> tjV = v) = 1-(1-), j)e 6

The resulting likelihood is: P(T = tj,S > tj T tjV = v) = 1-(1-(1-) ) 2 )) v

k j •j •v, 1 (1) 1e Y1 [--)2jpe 1 VilLO. ,o ,)=. H 1{ HI [1(1) l jj v, (1--. lj)e~ v1" ["(~) 2 ) "
-- iE Dj(d) 1 E Cj(d) iE Dj("d

x n (1-),2j)eQ vi " [1-(1-t,1j)e "1i + (1.),2j)eQ vfi} (4)

1 EC(d) i

where 1 = O, 1k, 21'...'N 2k)'

If there are no censored death times without disease information, then LO , ,ct,) is the product
of two standard likelihoods for the discrete proportional hazards model. Substituting (3) into (4) and
taking the logarithm, allows us to write the log likelihood as:

k
logL(-y,cefl) = X { X log(1-exp(-exp(- Ilj + f 'vi)))- I exp(-ylj+# "v.)

ieDj(d) AECj(d)
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+ X lo(-x(ep- 2j+c vi) exp(-Y 2 +a ivj)

iE Dj(d) AECj(d)

+ X log(exp(-exp(7j + P 'v1 )) + exp(-exp(-2j+a 'vg)))}.

AE C

To form the score test for H0 :1 O,o =0, we compute for j = 1,...,k, j,= 1,2,...,k, j 2 = 1,2,...,k, v = 1,2 and

r,q =1,..,p,

a[0i ]= {-kil~L},

-lj
8

[0 el = 1- 4ogL},

[a 26 = {I- logI},

2a -a 2logL

[-a 2 ogL

- 2 1ogL{-a2 f I1={8ckr8q },

p-a 2 r i l f -. a 2 o g L ,
aYijaOr

[-a82 ic ]J= {
a-7ij8 %

and

-a 21ogLl-a ~ 2r lr2] = a }"2

[at i is a k x I vector with jth component - ogL, [-a 20kI is a p x p matrix and [-a 2r, i1 is a k x p
a Yii alogL

matrix, i = 1,2. Define r7 to be the vector of-y ij, the solutions to - = 0 where the derivative isa -Yij

evaluated at cg = 0 and 0 = 0. The components of 1 can be written simply with more notation.

Define:
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aj = The number of indices in

a2j = The number of indices in Dj(d),

aij = The number of indices in Dj(d),

blj = The number of indices in Ci(d),

and

cj = The number of indices in C1.

Finally define:

pj =exPl-exp( j ,...,k, v=1,2.

With this notation the components of r are the solutions to the following k pairs of quadratic equations.

pl(alj + blj + cj) + Plj(-blj-cj) + PljP2j(alj + blj)-P2jblj = 0

and
p4(a2j + b2j + 9) + p2j(-b2j-cj) + PljP2j(a2j + b2j)-Pljb 2j =0,

j = 1,...,k. Define:
(, L)" = ([a3' r ",[a "2],[ao ",[a ")

and X as the 2(k + p)x 2(k + p) symmetric matrix

--[a 2r 1] Fa-22£1['2] [-a 2r 1,61 [-B2r 1a ,

[-- 2j2 [-a 2r2# 1-a2r2al

[-a 2#1] [-a 2,oa]

[-a 2oEq

Then, the score test for H0: B = 0, a = 0 is the X2p statistic

X2 = (0 L)a 1(a L)0,

where the subscript "0" indicates evaluation at (r,aA) = (r,0,0).
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7.1 Computational Formulas For The Score Test

The following formulas are all evaluated at ct 0, =0. The rth component of the vector of

covariates for the ith subject is denoted by 7-1r.

a logL = avipvi_ -b 9~ jv 12

a logL k _i" i zr+19j t P1jlogp1j 1,rl..p

a 1 Pij - ie Cj(d) A E Cj(d) Pli N P j

a og k XP*Og~ zir + 192- z logp j+ 2i' I ZjA.d, r~l..p
8cr 01 ' 1-P2j ie--Dj(1 AECj()Pq~ ~ jAC

-a 2IogjL ?1 lg 1  21,

+c(Pllogpli + P(I2ogp1i +l PIi(P1 )2

_a 210gL +(Pij + P2j)2  0

and for j 1,...,k, - =0, =os.

pa 2r 11 is a diagonal matrix Similarly, [-8 217 2] is a diagonal matrix whose jth diagonal element is:

-a 2jog[Lplop _lg )Pj-jl 2 j)+blg 2

a81222 -a2j( (1-p2j) 2 + 'gj

2 lo p 1 pp 2@(logp2,) 2

+ c1( th'9~ + PlJP2Jlg~
(pij + p2j) 2

for j =1,...,k. Additionally,

-a 2 kogL -Pljlogplj(l-Pli + logp1 1)
- ,Xl) ZiflI~Pj X A Zra j6ra Ifj (Fp 1) iDj(d) I ECj(d)

+ P1jlOgPj(Plj + p2J-P2JlogP2J) XZr
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-a 2 logL = plP2iogp2ilogpi z

PraI2j (Plj +P2j) 2  IECj(d)

-8 2logL -a 2 1ogL

aCZr8YIj 8 ir Y2j

-a 2logL = PjlogP2j(-P2j + ogrp2i) [ zir'IogPj X zi r

a8 Cra -j (k-p2) i D(jl) IeCj(d

+ P2jl'gP2j(lj + P2J-Plj'ogPlJ) .1 r"
(Plj +P2j) 2  ACj

-a 2logL k pliogpj(l+logpli-pi) X zirZiq
__ _= if I{ 11 zriafrdflq j=1 (-Plj)2 iE Dj(d)

-lOgp -1 q z- r -PljIgPli(Pli + P2i + P2lgP) z rZlq}
A E Cj(d) (Plj + P2j)2  I E Cj

-a 2logL k P21 lOgP2 (l-P2j + 1ogp 2j)

a_ ra_ q = I-p j) X Zirziq

p~j iE= Dj('a)
-z logp(pli + p2i + plilgP2i)

1 09P2j X 1 Zr Zq +py + j2 1 rZZlq}.1 Cj (d) (Pl + E~)2 J Cj

-8 2 °gL k PliP2 lgP1ilogP2 ' zirziq }.

aarafq J=I (P1j + P2j)2  ieCj

8. DISCUSSION

There remains much work to be done. These three models must be compared. The most useful
model seems to be the semiparametric partial likelihood model, because software already exists for the
estimation of its parameters. However, the simplified extension of Louis et al. settles down somewhat as
the number of screenings increases. This suggests that, if sample sizes are large enough for one screen,
they are also large enough for multiple screens. Of course, a power study would need to be performed
to determine when sample sizes are large enough.
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