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TIME-DEPENDENT MULTIMODE SIMULATION

OF GYROTRON OSCILLATORS

I Introduction

High power gyrotrons, including both CW and high peak power configurations, are in-

creasingly designed to operate in high mode density regimes. For example, at NRL high

voltage gyrotrons have produced powers approaching 100 MW in the TE12.2 transverse

mode of the cylindrical cavity at a frequency of 49 GHz,(1 ) and at MIT CW-relevant gy-

rotrons have produced 100's of kW in modes as high as the TE2 7,61 mode at a frequency

of 327 GHz. (2) It has been observed that operation is often single-moded even for cavities

with dense mode spectra, but the mode density does affect the efficiency and the accessible

operating modes. Multimode effects have received considerable theoretical attention, but

there has been relatively little work on fully nonlineax formulations because of the extensive

computations required to obtain results. The calculation of multimode effects in waveguide

cavity gyrotrons is complicated by the unequal coupling impedances and irregularly-spaced

frequencies of the transverse modes. In this paper a time-dependent, nonlinear, multi-

mode theory of waveguide-cavity gyrotron oscillators is formulated and numerical results

axe presented for the simulation of two gyrotron configurations.

Eaxly work on the theory of multimode oscillations of triode oscillators was carried out

by van der Pol based on a lumped circuit element approach.(0) A multimode theory of lasers

was obtained by Lamb.( '") The multimode laser theory was adapted to the multimode

operation of gyrotrons by Nusinovich and co-workers. (' ,7 ) A time-dependent multimode

theory of quasi-optical gyrotrons has been developed by Bondeson et al.09 ) The stability of

single-mode gyrotron operation with respect to parasitic oscillations has been examined by

Antonsen et al.,(s) Dumbrajs et al.(10), and by Borie and J6dicke.01 1) Multimode effects in

gyrotron have also been studied using a particle-in-cell (PIC) code by Lin and co-workers.( 12 )

In this work the problem of multimode oscillations in gyrotrons is investigated using

a theory similar in form to that used in the study of multimode lasers.(5 ) The approach

involves solving the following coupled, nonlinear, time-dependent equations, derived in

Manuscnpr approved September 12. 1990.



Section II, for the mode amplitudes (a,,) and phases (0,,) of the form:
da,, woa.._..2  =)d', 1

+ 2,, -.- 1 m?',(t) (1)

di 2Q,, 2c0

+ WO =wo -W ReP's(t), (2)
d o 2eoa,c

where P,, is the complex, slow-time-scale component of the electron beam polarization for

the mode n, w,,O is the mode cold-cavity eigenfrequency, w0 is a nearby reference frequency,

Q,, is the mode oaality factor, and co is the permittivity of free space. Equations of this

form are well known froir the semiclassical theory of lasers(4' , ) and have been applied to

gyrotrons by Nusi ovich and coworkers. In most previous gyrotron applications, the above

equations have been solved in the same manner as for lasers by expanding the polarization

in powers of the mode amplitude and neglecting higher order terms-usually above third

order. Such perturbation expansions should be valid for beam currents near the oscillation

threshold, but the accuracy is open to question at currents 10-20 times the threshold value

which are typically needed for efficent, high power operation. For this reason, a fully

nonlinear approach has been adopted in the present formulation.

The results of calculations are presented for two experimental gyrotron configurations:

a 140 GHz, 65 kV, TE03 mode gyrotron 3 ) and a 35 GHz, TE62 mode intense-beam

gyrotron.(1) The former represents a useful benchmark because very detailed experimental

data is available.(1 3) The latter experiment is in an interesting high peak power, short pulse

regime for which the experimental data is less extensive. It has also been simulated by

Lin et al.(12) using a multimode particle-in-cell code, and it is interesting to compare the

different theoretical approaches.

II Theory

Consider a gyrotron with a cylindrical resonator and a thin ann'lar beam. The electrons

follow helical trajectories in the applied axial magnetic field ;-out guiding centers located

at a distance Ro from the symmetry axis. The beam interacts with one or more resonator

modes, which are assumed to have closely-spaced oscillation frequencies. The electron beam
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and cavity cross sectional geometries are shown in Fig. 1. It is convenient to look at time-

dependent effects which remain after a reference frequency w0 has been factored out. These

effects are characterized by time-scales which are much longer than a wave period and are

incorporated in the complex mode amplituc.- A,(z, t) which also describe the mode spatial

dependence in the z-direction. The total transverse electric field is expressed in the form:

N

E= An (z, t) e (r, 0; z) e-  (3)
n=1

where ', = i x Vt is the waveguide transverse-mode vector function and T is the cor-

responding scalar mode function which satisfies a Helmholtz equation with respect to the

transverse coordinates. 0 4) N is the number of interacting modes. The transverse electric

field satisfies the wave equation:

1 a2;(4Et! -2 j 2 at- (4)

where Jt is the transverse AC current density, c is the speed of light, and p0 is the perme-

ability of free space. MKS units are used throughout except as noted. Substituting Eq.(3)

into Eq.(4), integrating over the resonator cross section, and noting that 9An/9t < woAn,

one obtains:

2  C2 (

where derivatives with respect to z of the transverse vector function have been neglected,

and wc = wc(z) is the local mode cutoff frequency, which may depend on the axial

position. In deriving Eq.(5) the RF current density has been expressed in the approximate

form:(4s)

t= J~_t(6)

where

= j2 d(wot)iet"" (7)

To obtain slow-time-scale equations for a gyrotron oscillator, multiply Eq.(5) by A' and

multiply the complex conjugate of Eq.(5) by An. Then first add and then subtract the
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resulting equations, and integrate the sum or difference over the axial extent of the cavity.

The difference leads to:

fLz -A- 2A'+ A, O2A i .-o

o L Ozz2 c2  at

= -iPoOwJ da dz [A,," JI + A,.J:}, (8)

where V denotes integration over the cavity volume. The sum leads to:

dz A: 2z 2 + z 2  A-

Sa . .A

+2i - 49- A, 9A+ 2 ia.g t Olt A -

-i4owo JV da dz [A, J'. ,- A,. ,], (9)

As will be shown, Eq.(8) leads to an equation for the amplitude of the mode n, and Eq.(9)

leads to an equatioa for the mode phase. Integrating the first two terms on the right-hand

side of these equations by parts leads to:

2-- z - A ,, LA -1 L+ 2i WOfo dazIA,1

= -iowo JV da dz Z + a. , fj], (10)

and

iA2.L +.f jLdz _2 1A. 12 (WO- _.W,,.)

Oz 0" z C2

l f fda dz [A:,. - . (.11)

respectively. As discussed in previous work,(16 ) the first term on the left-hand side of

Eq.(11) is a boundary term which vanishes for a free running oscillator because A, --+ 0 at

the cavity input (z = 0) and IA,l = constant at the cavity output (z = L) when there is

only an outgoing wave. The boundary term in Eq.(10) corresponds to the net power flow

from the cavity in the mode n. At the cavity output the mode amplitude function has the
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form of an outgoing wave with amplitude AnL and wavenumber k,,, i.e.,

A,, (z = L, t) = a-L (t) e tk*z -¢Jn], (12)

where ?,, is a Jowly varying mode phase parameter. Thus for a free-running oscillator, the

boundary term in Eq.(10) can be written as:

A' A- - An -Az ) I =2ik a 2 L (t) (13)

The mode amplitude function inside the cavity is approximated by the separable form:

An (z,t) = an(t)Ci¢ (t) h(z), (14)

where hn(z) is an axial profile function which satisfies the Helmholtz equation:

[2  21
dz2 + knj h,,(z) = 0 (15)

or approximates the solution of this equation. In this formulation, the function Pn = 'Fhn

approximates an eigenfunction of the gyrotron resonator with eigenfrequency wnO and beam

loading effects on the mode axial profile are neglected. Possible choices for h,, for the lowest

order axial mode include the sinusoidal profile: h(z) = sin(kxz) where k, = r/L and the

Gaussian profile: h(z) = exp[-(K, z) 2 ], centered at the cavity midpoint, where tc = 2/L is

the effective axial wave number.( 7 ) The sinusoidal profile corresponds to a closed cylindrical

cavity whereas the Gaussian profile approximates the fields in a tapered waveguide cavity.

In the remainder of this paper the mode subscript will be dropped from the profile function.

The mode amplitude in the cavity can be related to the mode amplitude at the cavity

output via the output Q factor according to:

= -1an(t). (16)

Substituting Eqs.(13), (14), and (16) into Eq.(10), and Eqs.(14) and (16) into Eq.(l1),

applying Eq.(15), and carrying out the axial integrations on the left-hand side of Eqs.(11)

and (10) leads to the free-running oscillator equations for the mode amplitude and phase,
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Eqs. (1) and (2) given in Section I and repeated below:

dan + oa- Wo+ 0 = -( (17)
di 2Qn -2-hco t

de+ WO o - ReP,(t), (18)
d 2eoa,

where

(t)= da dz h(z)g* .Ze ' O", (19)

is the complex, slow-time-scale component of the electron beam polarization for the mode

n,

W =-- dzh(z) 1Z, (20)

eo is the free space permittivity, and the approximation: w 2 - w.o - 2wo (wo - w, 0 ) has

been used. Performing the integral in Eq.(20) leads to W = L/2 for the sinusoidal profile,

and W - [7r/2)1/ 2 L/2 for a truncated Gaussian profile.

As an aside, the mode polarization is related to the mode susceptibility according to:

= oxnan = o(x" + ,X'.) an (21)

The mode amplitude and phase equation can be expressed in terms of the susceptibility

according to:

dan wo WOof,d-_ +  = ---nanXn (22)
d 2Q.

d=, I, WO , (23)

Eq.(23) shows that the mode oscillation frequency is shifted from the cold-cavity frequency

by -2 WOX1.

The value of the mode polarization at the time t depends on the motion of electrons

which entered the cavity between the times t and t - Llv,. Thus Eqs.(1) and (2) are

nonlocal integro-differential equations. To calculate the AC current density, the interaction

with the electron beam is treated in the single-particle approximation. The general time-

dependent problem can be simpiih'ed by using the fact that the characteristic rise-time of
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fields in the resonator is much longer than the electron transit time in the cavity as well

as the wave period. In this case one can use a quasi-steady-state approximation in which

the electron trajectories are calculated for RF modes with fixed amplitude and linearized

phase: p 0. (to) + 0/, (to)(t - t0 ). The slow-time-scale nonlinear equations-of-motion for

an electron in a thin annular beam immersed in a tapered magnetic field and interacting

at a particular harmonic with several circularly polarized TE modes (including all field

components) are readily deduced from previous steady-state, single-mode analyses and are

given by:

dut _ -h e-[A+ .+(mn-S)9O
di EA k,) Re

+ t A. 
(24)

2nz~ di

dA ( "76 s-

d "= CD 1 o uzut

E fn (:t) Re h + i-L- e (25)

n1 ktiL -yo di sfjo-y)I

S  , . R h,[A+.+(m.)o] U -t d(26)
di UzWo =1 I dz- 2u2 QZdi

where ut = 7vt/c is the normalized transverse momentum amplitude, u, = iv/c is the

normalized axial momentum (vt and v. denote the electron transverse and axial velocities,

respectively),

A = (wo - sAl-o) z/v. + woto - sO (27)

gives the slow variation in the transverse momentum azimuthal phase relative to the ref-

erence wave phase, s is the harmonic number, -y (70) is the (initial) relativistic mass ratio

which is given by:

0= ( + ±u ) + (28)

ki is the mode transverse wave number, rL is the Larmor radius of the orbit, J,(J3) is (the

derivative of) a regular Bessel function, fl, is the nonrelativistic cyclotron frequency for
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the z-component of the magnetic field, and fn is the amplitude of a mode with azimuthal

dependence ezm n e at the time to. The mode amplitude for mn > 0 is normalized according

to:
ei= X'CJ,I.-(ktRo)a.(to) (29)

The sign of mn determines the direction of mode rotation. The mode rotates in the same

direction as the electron cyclotron motion for m, > 0, and in the opposite direction for

m, < 0. The normalized wave amplitude for mn < 0 is given by Eq.(29) with mn replaced

by Im I and J,,-, (ktR0 ) replaced by (-1)Jlml+, (ktRo). Quantities with an overbar have

been normalized according to: i = z/rw, fL = rL/rw, = Slr,/c, Co = worwIc, and

kt = kntr.. Ro and E0 denote the electron orbit guiding center radius and azimuthal

angle, lei is the electron charge, mo is the electron rest mass, mn is the azimuthal index for

the mode n, x' is a zero J, r, is an arbitrary normalization radius, and 0 gives the

slow variation in the transverse momentum phase relative to the cyclotron motion. The

linearized mode phase parameter is given by:

t,,(z) = On (to) + (dcP/dt)lt, z/v; (30)

The transverse TE mode normalization coefficient

=. {[7r (_,21 _M2) ]1/ 2 J (x 1~) (31)

The AC current density is obtained by integrating Eqs.(24)-(25) for an appropriate set of

initial conditions at the cavity input z = 0. For a thin annular beam the transverse AC

current density is given by:
it= -- V. (32)

vz

Substitution of Eqs.(7) and (6) into E.(19) and using the prescription developed in previous

work, ("s ) Eqs.(1) and (2) for the mode amplitude and phase can be rewritten as:

df,. f,. +In L  '(k_ )!L
dr- = 2Qn + di h(i) (J(kntrL)-U cos [A + A n- (m, -s) o) (33)

dT 2QhoJ, o
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dT Wo

S di h () (J,kt rL) L- sin [A + -(m,, - s) e0])A,8 (34)

where ( )A,0 denotes .he average with respect to the initial momentum phases and guiding

center angles of the electrons, and L is the normalized interaction length. The nornalized

current is given by:

- leiZo J0(kntRO) I1 (35)
ir - M2/znI) J..(x,, 1,)W

where 1o is the DC beam current and the free-space impedance Z0 = 377 ohms. The

numerical calculations can be simplified for low-order harmonic interactions by noting that

the argument of the Bessel function J. (J.) which occurs in the equations-of-motion and

the mode amplitude and phase source terms can be expressed as:

kntrL - SvtIC, (36)

and therefore these Bessel functions can be replaced by their small argument expansion

with little loss of accuracy.

The time-dependent simulation is initiated by assigning a small initial amplitude and ar-

bitrary phase to a set of modes which may participate in the interaction. The corresponding

induced AC current density is obtained by integrating the equations-of-motion [Eqs.(24)-

(26)] and is used to construct the source terms in Eqs.(33) and (34). Eqs.(33) and (34) can

then be integrated a single time step and the process repeated. The initial conditions for

the equations-of-motion for a cold, phase-mixed electron beam are: ut(0) = Uto, u,(0) = uzo I

a fixed guiding-center radius Ro, and A(O) = A0 and e0 are uniformly distributed in the

interval [0, 2r]. The interaction efficiency is given by:

77 0 - ('y(z = L)Aoo(37)
ro- 13

and the output power in the mode n is given by:

P, () - irr~c4 (1 - mn /x i) Jin(X'M.,nl If"(r)I2 (38)

2Zo0el 2  QnJ2:.(ktRo)

9



for modes with mn = -jmnj, respectively.

For comparison with other work it is useful to introduce the following normalized pa-

rameters which are often used in gyrotron analysis("):

F. = 1 o-- ) f..(39)

A= 7r (40)

An = 2(1 ) (41)

where Fn is the normalized mode amplitude, u is the normalized interaction length, and

An is a mode detuning parameter. In analyzing multimode systems Antonsen et al. have

introduced the alternative amplitude parameter En = Fnp and the kinematic phase-slip pa-

rameter bn = AnJU/2.(0) The latter parameters are useful for comparison with experimental

data because they are less sensitive to the beam pitch ratio a = vt/v. than the former set

of normalized parameters. Antonsen et al. also introduce the mode density parameter:

To = TRITp where TR is the repetition time for the quasi-periodic multimode RF field, and

Tp = L/(2vo) is half the electron beam transit time in the cavity.

III Calculations and Results

Multimode calculations have been carried out for two gyrotron configurations: a 64 kV,

TE,3,1 mode gyrotron designed to operate at 140 GHz; and a 750 kV, TE6,2,1 mode gyrotron

designed to operate at 35 GHz. The former was investigated experimentally at MIT (2 )

and the latter was investigated experimentally at NRL.P) Operation of the TE0 ,3,1 mode

gyrotron is limited by competition from the TE 2,3 ,1 mode, whereas operation of the TE 6 ,2,1

mode gyrotron is limited mainly by competition from other TEn, 2,1 modes. The highly

accurate data from the thermionic cathode, repetitively-pulsed MIT experiment provides an

opportunity to benchmark the multimode theory on a relatively simple, well-characterized

configuration.

The numerical integrations were carried out using a fourth-order Runga-Kutta algorithm.('9
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Twelve phases were used in the average over Ao and twelve angles were used in the aver-

age over e0 . Fifty points were used in the axial integrations. The results were found to

be insensitive to increasing the number of points used in these averages and integrations.

These numbers have also been found to provide adequate numerical accuracy in previous

calculations of the steady-state, single-mode efficiency of free-running oscillators. The time

step for multimode calculations must generally be much smaller than for the correspond-

ing single-mode calculation. This is especially true for systems with relatively large mode

frequency separations because in this case the reference frequency will be significantly dif-

ferent from some of the mode frequencies so that the phase time derivatives for these modes

will be large. This necessitates a small time step for accurate numerical integration. In

the NRL gyrotron simulation the mode separation was about 8 GHz and the time step was

5 psec. The time step used in the MIT gyrotron simulation was 20 psec. The sinusoidal

axial profile was used in the calculations reported here. As shown in previous work,(15) the

sinusoidal profile leads to lower peak theoretical nonlinear efficiencies (by - 20%) than ei-

ther the Gaussian or the more accurate self-consistent profile;(15) however, parameter trends

should be given correctly.

III-A TE0 ,3,1 Mode Gyrotron Results

A CW-relevant gyrotron designed to operate in the TEo,3,1 mode at 140 GHz has been

extensively tested at MIT by Kreischer, Temkin and co-workers.("3 ) TEO, type modes are

desirable for their low ohmic losses, but operation is limited by competition from the TE2n

modes-in this case the TE±2,3,1 modes which have a resonant frequency near 137 GHz.

The gyrotron design parameters, which were used in the calculations, include: an output

Q factor of 1500, a normalized cavity length L/A = 7.1, a maximum cavity wall radius

r, = 0.348 cm, a beam guiding center radius R? - 0.182 cm, and a beam velocity pitch

ratio a = 1.5. Calculations were carried out as a function of magnetic field and beam

current for a beam energy of 64 keV. To approximate the finite risetime of the electron

gun voltage, the beam energy was ramped up, linearly, from 44 keV to the maximum

11



value, 64 keV, during the first 5 nsec of the simulation. Consistent with temperature-

limited emission operation of the cathode, the maximum beam current was used from the

beginning of the simulations. The beam velocity pitch ratio was increased linearly during

the beam energy ramp-up.

The time evolution of the mode output powers is shown for a magnetic field of 5.38 T

and a current of 4 A in Fig. 2. As shown in the figure, the TE 03 mode turns on first during

the beam energy ramp, followed by the onset of the TE+2,3 modes near the end of the

ramp. The reason for this behavior is shown by Fig. 3 which plots Q times the threshold

beam power for the TE03 and TE2 3 modes as a function of beam voltage as well as the

corresponding Q times beam power. The threshold for excitation of the T[ mode occurs

at about 46 kV, or early in the voltage rise. In comparison, the threshold voltage for the

TE±2,3 modes is about 55 kV. At this magnetic field the TE±2,3 modes ultimately supress

the TE 03 mode, thus limiting the efficiency optimization of this mode by magnetic field

detuning. The TE- 2,3 mode is supressed in turn by the TE+2.3 mode which has stronger

coupling to the beam for the present beam diameter as is manifested in Fig. 3 by the slightly

lower threshold current for the latter mode. To conserve computer time the beam energy

risetime is much faster than the experimental value (-- 1 psec). The slower risetime would

probably allow TEo3 mode operation to extend to slightly lower magnetic fields, and thus

achieve slightly higher efficiency, than in the present calculations. After about 25 nsec an

equilibrium with a single dominant mode is obtained. A single-mode equilibrium for this

system was obtained in all cases simulated. The dominant mode obtained as a function

of magnetic field is plotted in Fig. 4 for several beam currents. Figures 5 and 6 show a

comparison of the calculated optimum efficiency and power, and optimum magnetic field

with the experimental data of Kreischer et al. for the TE03 and TE23 modes. A map of the

interacting modes under steady-state conditions as a function of magnetic field is shown in

Fig. 7. The figure shows the Qx threshold beam power curves and the optimum efficiency

QPb as a function of magnetic field for the TEo3 mode. It indicates that efficient operation

of the TE03 mode can occur well into the magnetic field region where the TE 23 modes have

12



lower starting currents and could be expected to limit TE03 mode operation. To facilitate

comparison with other work, the calculated results for each mode are presented in terms of

the normalized parameters E and 6 as shown in Fig. 8. The TE23 mode results correspond to

the optimized single-mode case. The TE03 mode 6 for each E is limited by mode competition

except for the highest and lowest E values. However the highest efficiencies are obtained at

the intermediate 1 values. The mode density parameter To = 3.6.

III-B TE6,2,1 Mode Gyrotron Results

A high voltage, intense-beam gyrotron designed to operate in the TE, 2,1 mode at

35 GHz has been extensively tested at NRL by Gold and co-workers. 0 ) TE, 2 "whispering

gallery" modes are desirable for their effective coupling to annular beams propagating near

the cavity wall and their relative freedom from competition with other TE modes. This

system has been extensively analyzed in the single-mode approximation(') and it has also

been simulated using a particle code.( 2 ) The gyrotron design parameters used in the present

calculations-which used a sinusoidal profile--include: an output Q factor of 250 for the

TE6 ,2 mode, a cavity length of 4 cm, a maximum cavity wall radius r. = 1.6 cm, a beam

guiding center radius R0 = 1.16 cm, and a beam velocity pitch ratio a = 1. Calculations

were carried out as a function of magnetic field for a beam energy of 735 keV and beam

current of 1600 A. To approximate the finite risetime of the electron gun voltage, the beam

energy was ramped up, linearly, from 500 keV to the maximum value, 735 keV, during

the first 5 nsec of the simulation. To approximate space-charge-limited emission operation

of the cathode, the beam current was scaled as the 4/3 power of the beam energy. To

approximate the effect of the pump magnet on the beam, the beam velocity pitch ratio was

increased linearly during the beam energy ramp-up.

Although there are several non-TE,,, 2,1 cavity modes with resonant frequencies near the

TE,,, 2,1 mode, particularly the TE 0,1,1 and TE1 ,4,1 modes, these have weaker coupling to the

beam than the TEn,,2,1 type modes for the chosen beam position and therefore competition

is expected to occur only between modes of the latter type. These modes are approximately
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equally spaced so that a three-mode interaction characterized by: 2wn -wn- I -wn+l :t 0, can

occur. This is also the dominant mode interaction process in the quasi-optical gyrotron. (s )

Five-mode simulations with -8 < m < -4 were carried out to investigate the effect of

mode-competition. The negative sign for m indicates a mode rotating counter to the sense

of electron gyration. (1 ) The choice of negative rn's was dictated by the beam position. The

output Q factors for the other TE,,,2,1 modes were estimated by scaling the TE6,2,1 mode

Q factor by the square of the resonant frequency. The effect of competition between the

two rotational polarizations is treated separately below.

The time evolution of the mode output powers is shown in Fig. 9 for a magnetic field of

2.75 T. As expected from the change in cyclotron frequency during the voltage ramp, the

initial interaction is with the TE- 7,2,1 mode.01 ) The TE-6,2,1 mode becomes dominant as

the peak voltage is reached. The principal competing modes are the TE- 7,2,1 and TE-5 ,2,1

modes, consistent with the three-mode interaction model. These modes are not suppressed

completely, but achieve an equilibrium at a power level of about 3% of the dominant mode.

The mode density parameter To = 2.7 for this configuration.

The equilibrium output power as a function of magnetic field is shown in Fig. 10.

The experimental data has been normalized to a peak power of 100 MW. The particle

simulation code results obtained by Lin et al. are also shown.( 1 2) The present calculations

show the transition from the TE-,5,2 to the TE- 6 ,2 mode occurring at about 2.47 T, the peak

TE- 6,2 efficiency (18%) occurring at about 2.55 T, and the transition from the TE_ 6,2 to the

TE- 7 ,2 mode occurring at about 2.77 T. The magnetic field range of TE-6 ,2 mode operation

obtained by the present calculations are shifted up by about 8% relative to the experimental

data. This discrepancy may be due to approximations in the theory such as the neglect

of self-fields or beam temperature, to calibration errors in the experimental voltage or

magnetic field, or to differences between the experimental and theoretical voltage pulse

and velocity pitch ratio. In particular, the diode voltage waveform was highly transient in

this experiment, and an accurate measurement of beam voltage as a function of time was

difficult to achieve. In order to understand the physics, this has been simulated as a 5 nsec

14



ramp from 500 to 735 kV, followed by a period of constant voltage which was not present in

the experiment. The calculated peak TE_6, 2 mode efficiency and optimum magnetic field

agree well with the simulation results of Lin et al., but the TE- 5,2 to TE-6,2 mode transition

obtained by Lin et al is shifted up about 4% compared to the present results (or about 12%

relative to the data. The particle code results are less single-moded in that significant power

is obtained in the TE- 5,2 mode well into the magnetic field range in which TE- 6,2 mode

is dominant. The reason for this difference is not clear. The two theoretical approaches

agree in the single-mode approximation(12) and, although the numerical methods are very

different, the main difference in the physical models is that the Lin theory uses a self-

consistent (non-fixed) profile for the mode axial structure in the cavity. One would expect

this feature to affect the single-mode as well as the multimode results.

An interesting effect observed in the NRL experiment was the generation of azimuthal

"standing" modes, that were observed in a breakdown cell, and could be used as a diagnos-

tic for the radial and azimuthal structure of an operating mode.(1 ) The generation of clear

standing patterns was easily achieved experimentally by placing the electron beam at a ra-

dius for which the coupling was approximately equal to the co-rotating and counterrotating

polarizations of a particular TE±,,,2 mode. In order to understand this effect, calculations

have been carried out to investigate the competition between the two circular polarizations

of the TE6,2, 1 mode as a function of the radius of the annular beam. It was found, as ex-

pected, that the polarization with the stronger coupling to the beam suppresses the other

polarization so that the equilibrium state should have a single polarization. On the other

hand, the rate of suppression is slow for almost equal coupling so that both polarizations

could be present in a short pulselength experiment. This effect is shown in Fig. 11 and

is consistent with the NRL experiment.(1 ) The calculated equilibrium or near equilibrium

mode output power is shown as a function of beam radius in Fig. 12 along with the ±m

mode coupling coefficient.
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IV Discussion and Conclusions

A fully nonlinear, time-dependent, multimode theory has been formulated for waveguide

cavity gyrotrons and applied to two configurations which have been investigated experi-

mentally. The calculations, although lengthy, can be feasibly carried out on a fast computer

such as the Cray. The agreement obtained between theory and experiment is good for the

MIT 140 GHz gyrotron considering that the results are sensitive to the beam a which was

not characterized experimentally. Better agreement might also be obtained by using the

more realistic Gaussian axial RF field profile in the cavity instead of the sinusoidal profile.

Qualitative agreement between theory and experiment was obtained for the NRL 35 GHz

intense-beam gyrotron experiment. Multimode effects were found to cause little reduction

in the peak efficiency of either configuration. The equilibrium state of the MIT gyrotron

was always single-moded. A single transverse mode dominated the equilibrium states of

the NRL gyrotron, but the competing modes were not entirely suppressed. This lack of

total suppression may be a feature of the three-mode interaction which occurs in the latter

configuration. The mode density parameter To - 3 for both configurations. Gyrotrons

currently under development have much values of this parameter and may be more limited

by multimode effects.
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