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The project proposal discussed two problem areas1  A

1) The solution of large sparse systems of linear equations) /JI
(2) The solution of sparse least squares problems.
We report significant progress in both of these areas and in a third area, the
solution of the algebraic eigenvalue problem.

The progress in solving systems of linear equations included an algorithm for
computing ordering for efficiently factoring sparse symmetric, positive definite
systems in parallel. We also made important progress in computing the ordering
itself in parallel. Other progress included a method for handling singular blocks
in a one-way dissection ordering and an error analysis of Gaussian elimination in
unnormalized arithmetic.

(See attached sheet) .

14. S&WECT TEPMSw 15. NUMR of PAGS
Sparse matrix computations, linear equations, least squares 7

problems, eigenvalue problems, graph algorithms. 1L POOE CODE
17. cCIJIIT I ASSWI"CATON it HCURITY CaASswIC N It. #sCUM" ASSC ATIYOU3. IL MITAIO OF ASSTRACT

OF REPORT OP THIS PAGE OP ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

MISN 7SdO.G ISO. ,,anmm Pam in (R w28-49



For linear least squares problems we developed an efficient reliable method

for detecting the rank of a sparse matrix without column exchanges. The
method used a static data structure. We also analyzed and compared methods

for computing sparse and dense QR factorizations on message passing
architectures.

On the algebraic eigenvalue problem, we participated in resolving long standing
open questions on relative perturbation bounds on certain diagonally dominant

eigenvalue problems.
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This proposal considered two major problems in sparse matrix computations: the solution of
sparse systems of linear equations and the solution of unconstrained and constrained least squares
problems.

1. Sparse systems of linear equations. We have designed algorithms for computing order-
ings for efficiently factoring sparse, symmetric positive definite matrices in parallel. Jess and Kees
(1982) had suggested a two-step approach for computing a good parallel ordering: (i). compute a
fill-reducing ordering of the matrix; (ii). reorder the filled chordal graph of the Cholesky factor L
from the step (i) to obtain an ordering that permits the maximum possible parallelism at each step,
without incurring any additional fill. The ordering obtained from step (ii) leads to the shortest
elimination tree of the Cholesky factor L which preserves the fill in L

Previous algorithms for implementing step (ii) had space and time requirements that were
much greater than the requirements of step (i); hence these algorithms were impractical for large
problems. In [1], in joint work with Lewis and Peyton, we designed an algorithm for the second
step that was linear in the number of compressed subscripts for L by making use of a new data
structure, the clique tree. This algorithm requires much less space and time than the initial fill-
reducing ordering. We also provided some justification for this two-step approach by showing that
the problem of computing the parallel ordering of A that leads to the shortest elimination tree
irrespective of the fill is NP-complete and hence intractable [3].

We have considered an algebraic approach to computing good orderings in parallel. The pa-
per [12] (joint work with Simon) concerns the design of a parallel algorithm for computing the
parallel ordering. It presents a solution to the problem of computing good separators (this is one
step in a parallel ordering algorithm), which makes use of the eigenvectors of the Laplacian ma-
trix of a graph. This spectral approach computes smaller separators than the Automated Nested
Dissection algorithm. We have also shown that iower bounds on separator sizes can be obtained
from the eigenvalues of the Laplacian matrix. A third paper (in preparation) [11] make. use of the
above algebraic approach for a parallel algorithm for reducing the envelope of sparse matrices.

We have also investigated the role played by the clique tree data structure (introduced to
compute a Jess and Kees ordering) in other sparse matrix problems.

We have completed an implementation [14] of a multifrontal sparse Cholesky factorization
algorithm for an iPSC/2 hypercube, and are involved in studying the influence of good orderings,
mappings, and clique tree structures on its efficiency. In other work [2], we have been studying what
constitutes a 'supernode', a group of columns of the Cholesky factor L that forms a maximal dense
submatrix. The difficulty is that this concept depends on the algorithmic context. It can be shown
that (according to one definition) a set of supernodes can be obtained from the clique tree by an
O(n) time algorithm. (Here n is the order of the matrix.) Supernodes have been used by Ashcraft
et al. (1987) to enable vectorization in the computation of sparse numerical factorization at speeds
comparable to dense matrix factorizations on vector supercomputers. The report [4] describes our
preliminary study of supernodes in sparse factorizations.

The clique tree is a compact representation of the structure of the Cholesky factor L. Never-
theless, at the expense of some computation, it is possible to obtain more compact representations.
In [13], we have investigated a data structure called the compact clique tree. This data structure
has applications in communication efficient parallel factorization algorithms and in storage efficient
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out-of-core algorithms. We have proved that the compact clique tree never requires storage greater
than the skeleton graph (a concept introduced by Liu), and on some worst-case examples requires
only 0(n) storage when the skeleton graph requires 0(n 2) storage. On all of the computational
problems that we have experimented with, the two require almost identical storage; this is typically
about a fourth of the storage needed for the clique tree.

2. Linear least squares problems. Work has been done on several issues that arise in the
solution of dense and sparse least squares problems on both sequential and parallel computers.

An algorithm for computing the block upper triangular form of rectangular and square sparse
matrices was described and implemented in [6]. This form computes the irreducible blocks of the
given matrix, and since only these blocks need to be factored to solve linear systems and least
squares problems, can save the storage and time needed to factor the given matrix. It is also is
useful in correctly computing the nonzero structures of the factor matrices Q and R during symbolic
factorization.

The paper [51 presents an algorithm for computing a sparse basis for the null space of the equi-
librium matrix of a physical structure. This problem arises in the solution of equality constrained
least squares problems in structural analysis. By making use of the additional information available
in the physical situation, sparser null bases could be computed; the algorithm was also faster than
previous algorithms.

Several parallel algorithms for computing the orthogonal factorization of a dense matrix on
a distributed memory multiprocessor were described in [7,8,9]. Both Givens and Householder
orthogonalization algorithms were considered. The time and communication complexities of the
algorithms were analyzed, and shown to agree with the time taken by the algorithms.

The above work laid the foundation for our work on the sparse linear least squares problem.
The paper [10] describes a parallel algorithm for the numerical factorization step (the dominant
step in the time complexity) in the orthogonal decomposition of a sparse matrix on a hypercube
multiprocessor. This algorithm computes the orthogonal factorization by means of a sequence of
submatrix merges involving upper trapezoidal matrices. The merges are performed by the use of
row oriented Householder transformations, and is organized around a merge tree data structure.
We have shown that this algorithm has small arithmetic and communication complexities and we
obtain good parallel efficiencies in our implementation on an iPSC/2 hypercube multiprocessor.
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The project proposal discussed two problems in sparse matrix computations:(1)
the solution of systems of linear equations ; (2) the solution of linear least squares
problems. We made progress in both of these areas and in a third area: the solution
of the algebraic eigenvalue problem. The work in linear least squares resulted in a
new direction not discussed in the proposal. Our results have implications in the
development of stable parallel algorithms to solve these problems.

1. The Solution of Linear Systems of Equations. This part of the effort
yielded two significant results. The first concerned the technique of one-way dissection
or domain decomposition. It is commonly used in the numerical solution of partial
differential equations. The resulting system has a block bordered form which is nearly

ideal for parallel computation.
In some contexts, in particular, in the solution of Stokes flow problems [22] , the

diagonal blocks may be singular even though the matrix is nonsingular. We developed
an improvement of a direct method for solving this problem due to Gunzberger and
Nicholaides [22]. We examined the stability of various methods for resolving the
singularity and proposed a better back substitution algorithm [8]. We tested our
algorithm on the Intel iPSC/1 and it produced linear speedups.

Special purpose devices have an important role in sparse matrix computations.
Digit online arithmetic is often used for special purpose devices because its ability to
"pipe on digits" speeds up computations by factors ranging from 2 to 16 [20]. A PhD
thesis from Penn State [29] pointed out that such arithmetics produce unnormalized
results and thus numerical algorithms may not have the same stability properties.

Cavellaro et al.[15] recently used this arithmetic in the design of a robot control device.
As an example, we considered the error analysis of Gaussian elimination in un-

normalized arithmetic [12]. The algorithm exhibits exactly the same properties as in
standard arithmetic for the diagonally dominant matrices that arise in the numerical
solution of partial differential equations. For general matrices, there are subtle dif-
ferences between the error analysis for unnormalized arithmetic and standard floating
point arithmetic.

2. The Solution of Linear Least Squares Problems. We developed algo-
rithms for two different constrained least squares problems. We have also developed
an efficient method for detecting the rank of a sparse matrix. The method allows
one to use a static data structure throughout the algorithm. Finally, we proved the
stability of a parallel method for computing the sample variance.

For the constrained least squares problem

(1) min f - Ex 112

xE R"

subject to the constraints

(2) Cx = g

where C is an m, x n matrix, E is an M 2 x n matrix, we made progress on direct
approaches. The error analysis of a weighting procedure with deferred correction

1



was completed [5,1]. A sparse version of the algorithm was developed in [10,11,28].
There were two important results from this. The first is that the deferred correction
procedure converges in only two iterations for a large class of problems [11]. This
development also lead to a more robust implementation of the strategy. The second
development concerned the the problem of accurately detecting the rank of C [10]
which is crucial to the solution of (l)-(2). We developed a strategy which is about as
accurate as maximal column pivoting and is provably more accurate than the strategy
in SPARSPAK-B [21]. The strategy allows one to use a static data structure. It can
be used to detect the rank of a general sparse matrix and does not require access to the
elimination tree as does a related approach by Bischof, Pierce, and Lewis [13]. This
rank detection procedure can also be used in conjunction with the iterative procedure
for (1)-(2) given by Barlow, Nichols, and Plemmons [6].

Joint work with G. Toraldo [7] is in progress on the solution of the bound con-
strained quadratic programming problem

(3) min uT Au - UTb
uER- 2

subject to

(4) c < x < d

where c and d are n-vectors. We have considerd the projected gradient strategy for
this problem due to More' and Toraldo [26,27]. This strategy tends to find the active
set much faster than classical active set strategies. We show that if A can be scaled
to the form

A=I-N

where N is symmetric, positive definite, then the strategy will always take large pro-

jected gradient steps. The results can be strengthened considerably if A is a Steiltjes
matrix, and the constraint (4) is

(5) u > 0.

In that case, if A is positive definite, we are solving the linear complementary prob-
lem. Our simplifications to the projected gradient strategy avoid evaluations of
F(u) = 1UTAu - uTb entirely. Our strategy solved a free boundary problem with
3337 variables in 85.62 seconds on a SUN/4. The underlying linear equation solver
was Jacobi preconditioned conjugate gradient. However, we think that the method

may be suitable for use with direct factorization methods for A. Preliminary results
are in the report [7].

An incidental result was the error analysis of an algorithm due to Chan, Golub,
and LeVeque [16] for computing the sample variance. The algorithm computes the
variance of a sample of size n in O(log n) parallel steps with only one pass through

the sample data. Its stability had been an open question. Our analysis showed that
the algorithm was indeed stable.

3. The Solution of the Algebraic Eigenvalue Problem. The algebraic eigen-
value problem is that of solving

(6) Ax = ABx



for the scalar A and the n-vector x. In our research, we considered the case where A
and B are symmetric n x n matrices and B is positive definite. The problem (6) arises
in structural analysis.

In [41, we considered the problem where A is of the form

(7) A = A(E + N)A.

Here A and E are diagonal matrices, A is nonsingular, 11 N 112= -Y < 1, and the
diagonals of E are ±1. Thus A is diagonally dominant in the Euclidean matrix norm.
This class of matrices includes all consistently ordered diagonally dominant matrices
that are solvable by the classical iterative methods.

We show that for the case where B = I or A is positive definite, we can ob-
tain much better perturbation bounds on both the eigenvalues and eigenvectors than
presently given in the literature. These results resolved a well known open question
regarded relative error bounds on eigenvalues.

These bounds led to more robust algorithms that will be incorporated in the LA-
PACK linerr algebra library [4] for shared memory high performance architectures.
Some of the algorithmic questions arising from this analysis have been answered. So
far, only bisection followed by inverse iteration has been shown to satisfy all of the
bounds discussed in [4]. For the singular value decomposition, the Jacobi algorithm
[18] achieves these bounds and the QR algorithm achieves them for the bidiagonal
SVD. However, the QR for general symmetric tridiagonal matrices does not achieve
relative accuracy. For the new divide-and-conquer algorithms that have been consid-
ered for implementation in LAPACK, no results on relative accuracy have been proven
or disproven.

In [24,25,23], we develop bounds on the eigenvalues of banded Toeplitz matrices.
We also develop a method for finding the eigenvalues of these matrices that uses the
Bunch, Nielsen, and Sorensen [14] update procedure. For banded symmetric Toeplitz
matrices, the procedure is faster than the QR algorithm and just as stable.
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