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Summary

Neural networks provide an alternative method of building models of human performance.

They can learn behavior from examples, reducing the need for many identical repetitions

and intensive analysis. A properly trained net can be very robust in its response to a novel

stimulus. This opens the door to modeling performance in the presence of an interactive

stimulus. Neural networks provide the possibility of robust models that can operate inter-

actively in real time, depending on the size and architecture, of the net and the application.

A neural network architecture derived from recurrent back propagation is presented

which learns to mimic human behavior and performance in a sample task. It shows oper-

ating characteristics similar to those of human subjects, and even makes the same kinds of

mistakes. Possible applications are discussed.
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eme:-t 62202F and Project/Task/Work Unit 6893/04/69. Operations and maintenance

support was provided by Logicon Technical Services, Inc., Dayton, Ohio, under Contract

F 33615-89-C-0532. The principal investigator for this experiment was Maj Edward Fix.

The author wishes to acknowledge the many contributions of the following people:

" LtCol William Marshak for guidance and support
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Introduction

There are many techniques for modeling systems and operations, including human operated

systems. The Manned Threat Quantification (MTQ) program at AAMRL has developed

models of human operation of air defense systems using a variety of techniques. These

models have been used for purposes including systems analysis and design, countermeasures

planning, etc. A common thread of these models is that they are based on data gathered

from realistic, man-in-the-loop simulations in the laboratory. This has made them very

useful to the users. However, they have some weaknesses.

The models are difficult and expensive to develop. It is necessary to recreate a realistic

operating position in the laboratory. The statistical nature of the analysis requires multiple

repetitions of each situation, and careful selection of the situations to present. The multiple

repetition requirement means the stimulus (i.e. the aircraft that the air defense crew is

trying to shoot down) must not react to the subject crew's actions. Therefore, while the

model may predict the vulnerability of the target aircraft, it does not model the air defense

crew's response to any novel aircraft action. If the aircrew reacts to the defense crew's

action and deviates from the flight path that was used to develop the statistical base of the

model, that model starts becoming invalid to some degree. Therefore, it is not well suited

to real-time simulation against a live aircrew.

The purpose of this effort is to develop a method for modeling the actions of a person

or crew that will react correctly to novel situations. It must be able to use data from

an uncontrolled source where the situations never repeat (that is, an interactive, realistic

environment) and traditional statistical analysis is not useful. The model could then be

based on a broad range of situations and may be more robust than those made using other

modeling techniques.

This experiment used the emerging technology of neural networks as a modeling tech-

nique. Neural networks are computer programs based loosely on what is known about the

architecture of the brain. They are "trained" on examples of behavior, and "learn" the
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correct responses. Repetitive stimuli are not required, or even desirable. The net can learn

appropriate responses from data gathered from a realistic environment. Extensive analysis

is not required; it is not necessary to know the exact reasons for a particular response, only

to show the network the input parameters, and train it ic +he correct response. Neural

network performance degrades gracefully in the presence of uncertain or noisy data. By

nature, they give uncertain or best guess responses when the input data is uncertain. When

presented with novel stimuli, they give answers interpolated or extrapolated from training

examples.

A simple video simulation like that described by Shepanski and Macy, was adapted from

an implementation by Restrepo as a test for the neural network modeling technique. Neural

network architectures and training techniques were explored and extended to achieve this

unique application of the technology.

2



Experimental Task

The task the subjects performed was based on a popular neural network demonstration

concept (Shepanski and Macy, Restrepo). It is a computer generated display showing a

two-lane circular track with several "cars" (Fig 2.1). One car is controlled by the siibject,

and the others are controlled by the computer. The cars all travel in a counterclockwise

direction, but the perspective is adjusted so that the subject's car is always at the 3 o'clock

position on the track, and everything else moves relative to the controlled car.

The subject's task was to drive his car around the track, switching lanes and adjusting

speed as necessary to avoid collisions. Although the subject was not instructed in specific

driving goals, there was a score presentation that incremented one point each time the

subject passed another car, and decremented three when-ver the subject bumped another

car. The instructions were vague in order to elicit different driving techniques from different

subjects.

The subject controlled his car through a mouse interface. The mouse pointer moved

around on a "control panel". Putting the pointer in the left half of the panel put the car

in the left (inside) lane, and the right half pu. it into the right lane. Moving the mouse to

the top of the panel accelerated the car to full speed, and moving it to the bottom stopped

the car.

2.1 Performance

There were two different testing scenarios, with two levels of interactivity in each. In one

scenario, there were four computer controlled cars. They started at random positions on

the track, two in each lane, traveling at random speeds. After a practice period, data was

gathered for four minutes. This scenario is referred to as the "continuous data" case.

In the second scenario, there were only two computer controlled cars, and they started

at the 9 o'clock position of the track (opposite the subject's car). They were either together

3



Figure 2.1: Experimental Task Screen

or spaced somewhat apart, and were set up with speeds that would either separate them

or close them together at a slow or fast rate. There were 14 different setup conditions

altogether, and each was repeated eight times in randomized order. Each setup first came

on with the screen frozen to allow the subject to get a feel for the scenario. The subject

started the simulation, and it continued until the subject had passed both of the other cars.

This scenario is referred to the "setup data" case.

The experiment included two levels of interactivity. The first was called "Variable Cars".

At infrequent, random times the computer controlled cars changed speed, and if one car

approached another from behind, it switched lanes to pass. This was at least indirectly

interactive because the exact situation the ;.ubject faced on the track was related to the

speed with which he approached the car or group of cars ahead. In the setup data case, the

cars did not vary speed or lane as they did in the continuous data case.

In the second level of interactivity, called "Hostile Cars", the computer controlled cars

changed speeds and lanes as in the first, but in addition they actively tried to prevent the

subject from passing. They sped up as the subject approached, and switched lanes, or

matched speeds with a nearby car in the other lane to block the subject. The setup data
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case of hostile cars was the same as that for the variable cars, with the addition that the

cars tried to prevent the subject from passing as in the continuous data case.

Driver training for a subject was accomplished by exposing the subject to increasing

levels of difficulty. The subject first ran a version where the other cars never changed speed

or lane until he felt comfortable controlling the simulation. When the subject was consis-

tently passing the other cars without collisions, the demonstration program was stopped

and the "Variable Cars" program started. The subject was given as much time as necessary

to become accustomed to the new situation, and then data were gathered for the continuous

case. At the completion of a four minute data collection run, the setup conditions for the

variable cars case were presented. The familiarization, continuous data, and setup data

sequence was repeated for the "Hostile Cars" case.

2.2 Data Collection

While the subject was performing the task, the position, lane, and speed of each car,

including the subject's car, were recorded each time the screen animation was updated.

After a net was trained, it was tested by presenting a novel starting position and letting it

control the simulation. Its output was gathered in the same way.

2.3 Analysis

The data from both the subject and net were analyzed for operating style. Parameters

gathered included the distance the subject or net was behind the nearest car in the same

lane when it switched lanes to pass (DL) (Fig 2.2), the closest approach to the nearest

car ahead in the same lane when the controlled car slowed enough to allow the computer

car to pull further ahead (DH) (Fig 2.3), the distance between cars that were close ahead

and close behind in opposite lanes when the controlled car switched lanes to pass between

them (D(.) (Fig 2.4), and number of cars passed with number of collisions. These can be

compared for similarities and differences.
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Adversary Car

Controlled Car + DL

Figure 2.2: Distance Behind at Lane Change (DL)

Adversary Car

Controlled Car---11

Figure 2.3: Closest Approach in Same Lane (Dn)

6



Adversary Car 1

Controlled Car

DC
Adversary Car 2

Figure 2.4: Distance Between at Lane Change (Dc)
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Neural Network Models

Neural networks "attempt to achieve good performance via dense interconnection of simple

computational elements. In this respect, artificial neural net structure is based on our

present understanding of biological nervous systems" (Lippmann). A type of neural net

known as a multi-layer perceptron seemed to be a logical approach.

3.1 Single Node Perceptrons

A single computational element or neuromime is shown in Fig 3.1. The output value is

given by is the sigmoid equation (Fig 3.2) and z represents an input vector element, w

represenu, the
NY =f: i - ) (3.1)

1=1

where
1

(a) 1 + 1 e (3.2)

connection weight, and 0 is a small random threshold. N is the number of elements in the

input vector. It can be shown (Lippmann) that Eq 3.1 describes a hyperplane boundary

(a straight line if there are two inputs) in N-dimensional space between two regions. If

vectors x = {z,...,Z} which are separable into two regions are applied to the inputs,

the weights can be adapted so that the hyperplane divides the two regions of points. The

training algorithm is

Aw, = ,(d- y)z, (3.3)

I<i<N

where d is the desired output (0 or 1). After a number of training trials, the perceptron

may converge to a solution. In this way, the perceptron can classify the input vectors. The
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Figure 3.1: Single Perceptron Node

1.0

0.5

U

Figure 3.2: Sigrnoid Function
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Outputs (Yk)

Output Layer (k)

Connection Weights
Wjk

0 0 0 . 0 Hidden Layer (j)

Connection Weights
WIq

0 0 Inputs (Xi)

Figure 3.3: Multi-Layer Feed-Forward Network

output can also be trained to continuous values from 0 to 1, to approximate continuous

functions.

3.2 Multi-Layer Perceptrons

It can be shown that an arrangement of several nodes in each of three layers, where all

nodes in one layer (or all inputs) are connected to all nodes of the next layer, can separate

an arbitrary number of classes and regions with arbitrarily complex boundaries. This ar-

rangement is schematically shown in Figure 3.3. The complexity a given arrangement can

handle depends on the number of nodes in each layer.

The extended training algorithm is called back propagation:

AW&- = 71l6 Yb (3.4)

where

6,- y,(l - yr)(d, - yc (3.5)

if the current layer is the output where d, is the desired output of node c and yc is the
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actual output or

a

if the current layer is an inner or hidden layer. In Eqs 3.4 through 3.6, x denotes an input

to a node and y is its output. Note that the output on one node can be the input to

another in the next layer. The subscript c denotes the current layer, while a denotes the

layer above and b denotes the layer below. The 0 values in Eq. 3.1 are also adapted by

back propagation. A more complete description and derivation can be found in Rumelhart,

Hinton and Williams.

3.3 Perceptron Simulation

Although perceptrons are conceptually implemented as massively parallel networks of simple

processors, they can be simulated on a conventional digital computer. These simulations

are very computation intensive, but if the net is small enough, it may be possible to run

the simulation in real time as a subroutine or on an appropriate external processor. The2

back propagation training algorithm is the most time consuming part, but once the net is

trained the weights can be transferred to a real time processor.

3.4 Input and Output Representations

The decision was made that the representations to the net should match what the subject

saw as closely as possible. For that reason, the data from the computer controlled cars were

presented to the network sorted by position. That is, input no. 1 is the nearest car in the

left lane, no. 2 is the nearest in the right lane, and nos. 3 and 4 are the farther cars in the

left and right lanes respectively. The parameter input to the network was the angle of each

car; A number between 0 and 1, with the 0 point at the position of the subject's car, and

increasing counterclockwise.

To emulate a memory of recent motion, from which speeds and changing relationships

(ouia be derived, the positions of the computer cars wcrt presented for the latest 10 cycles.

Each cycle represents a screen animation update. At each new time cycle, the earliest

position is dropped off, all the remaining 36 inputs (9 cycles of 4 inputs) are shifted, and

the current positions are added at the latest time position. This provided the net with the

11



1 2 3 4 ° ° " 40 41 42

1 2 3 4 1 2 3 4 1 2 3 4

Cars Cars Cars
sorted by position sorted by position sorted by position

t-9 t-r t

Current output speed

Current output lane

Figure 3.4: Network Input Representation

information to "judge" relative and absolute speeds in much the same way that a human

would.

In the continuous data case with four other cars, this makes 40 inputs to the net (Fig 3.4),

and the two-car setups give 20 inputs. In both cases, there are two more inputs; the current

speed normalized to the interval [0,1] and the current lane, either 0 or 1. In summary, there

were 42 inputs to the nets for the continuous data cases, and 22 for the setup conditions.

n all cases, the networks had two outputs. One output was used to represent speed and

the other to represent lane choice. 'rhis is unusual in that one output is used to represent a

continuously variable value (speed) and the other represents a discrete (0 or 1) value. This

architecture is somewhat unique in that most network implementations use either discrete

or continuously variable values but not both.

The speed of each car was represented internally in the simulation on an arbitrary scale

from 0-15. The speed output of the network is trained on a value of 0-1 where 1 represents

a value of 20. This is to allow the network to more easily attain the maximum speed. The

actual speed value a trained network feeds to the simulation, however, is capped at 15. The

lane output is represented to the simulation as 0 if the actual output is less than 0.5 and as

1 if the output is greater than 0.5. There is an additional constraint that the lane may not

be changed unless the output of the network is more than 0.55 different from the previous

12



lane value That is, if the previous lane value was 0, the network outpost must be greater

than 0.55 for the lane value to switch to 1, and if the previous value was !., the output must

be less than 0.45 for the lane to switch to 0. This prevents "jitter" if the net is uncertain

and the value is hovering around the midrange.

3.5 Architecture

The overall architecture was based on the standard foed-fo-ward network architecture de-

scribed in section 3.2. One hidden layer was used, colraining 20 nodes, and there were two

output nodes. One output was used to represent the Lpeed setting, and the other for the

lane choice.

Two major modifications were made to this standard architecture. First, recursion was

used in the hidden layer to introduce a time delay t,) en.>!at.e reaction time. Originally, this

was accomplished by treating the outputs of the hidden units from the previous iteration

as additional inputs, fully connected to the hidden laver Pineda, Almeida). Training was

accomplished by straightforward application of the back propagation algorithm to the re-

cursive weights as well as the feed forward weights. However, examination of the trained

weights revealed that the weight connecting each hidden node to itself was at least an o,-

der of magnitude larger than the weights connecting that node to the other hidden nodes.

Therefore, the architecture was modified to include only onc connection from the output of

each hidden unit to its own input. This architecture and training caused the net to tich.'-ve

with realistic time delays, and sometimes a rapid change would overshoot the target alc.

just as would be observed in human performance.

The second modification to the net architecture % as neccssary because the net faiie"3

to recognize ard treat rare occurrences adequately. It V, -ac ]iscovered that subjects tendeA

to act quite differently in two different circumstances. In the case where the other cars

were spaced out ahead of the subject's car, the driver tended to drive full speed and irerely

switch lanes to avoid collisions. This occurred most of the time. However, when there werQ

cars in both lanes ahead of the subject's car, with insufficient room to pass betwee. tiem,

the subject would slow down to their speed or less and wait for them to separate. The

subject would sometimes abruptly slow too much and o-ershoot the desired slower ped.

This was especially true in the "Hostile Cars" case. T.he net, traine6 on the whole subject
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Speed Lane

I Output Layer

o 0 0 0 0 Hidden Layer
(20 Nodes)

o 0 0 0 0 0 Input Layer

Figure 3.5: Network Architecture

data set, was unable to emulate this dual strategy characteristic.

The solution was to use two redundant sets of feed forward weights; in effect use two

nets with a common recursive connection (Fig 3.5). One set of weights emulates behavior in

the frequent condition and the other in the rare condition. This architecture is essentially

a neural network set controlled by a simple expert system. Arrangements of this type have

been described before (Hiolden), and appear to combine the strengths of neural and expert

systems.

3.6 Training

The back-propagation training algorithm was modified as described by Fix (1988). Briefly,

the y(1 - y) term in Eq 3.5 at the output layer is replaced by

y(l - y)u(flip)+ 0.25 u(-flip) (3.7)

where:

flip = sgn(d - 1/ 2 )(y - 1/2) (3.8)
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Sgn(x) is the signum function that returns ;-1 if the rrgulnient is positiv e or 1 if ;hI

argument is negative, and u(x) is th,, tu,t -tPp iunction tl!z.* :eurn G for negati ,e argurnon s

and 1 for positive arguments. This modification can -- c " Lrainmg in the iniLial stages.

The networks were trained using the data gathered fr',, the subjects. Both rea.,.ia..t

sets of weights, the recursive weights, and the thresholds were iniia!ized to small random

values between -i and 1. The hidden layer outputs wero in]t'alized to 0.0 for the recursloi.,

and all time slices in the input layer were loaded t+, the initii' -oosit. _ ns of the cars. [raining

was incremental - that is, the weights were updated aiier eacL pr'sentation of an inIut

vector. The training vectors were always presented in th- ,Hde. in wli"ch they occurred it"

the training data set. For each subject, four nets werc trai ed, one each for variable cars

continuous data and setup data, and for hostile cars co,,t},,aous and setup data.

Training progress was measured by a mean absolute :-rr.,," .c.'ae. This was caiculateu

by computing the absolute value cf the error at each o'Aut node after presenting Fn

input vector and averaging that value over the output nodes. That was repeated ':I cal.

input/output training vector pair, and averaged over all. Ar the nonipletion of eacl cycle

through the training data set, this value was recorded and rrset for the next cycle. When

the rate of change of the error value became small, the rel .vas considered trained. the

final error value of the networks was typically between 0.002 and P.006.
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Results

Only results from the continuous data cases are presented here. The network models were

compared to the human subjects by four measures of operating style besides the number of

cars passes versus number of collisions. The four parameters were:

D 1 - Distance behind nearest adversary car at lane change.

D(:- Distance between two adversary cars in opposite lanes when passing between them.

DH- Closest approach to nearest car in same lane when slowing to back off to avoid a

collision.

Speed- Relative frequency plot of speed.

These parameters were gathered for both the subject data used to train the network, and

from the network model when it was tested after training. These measures were compared

between each subject and the model trained from that subject for both the variable cars

and hostile cars scenarios.

Because of the large variability in the conditions, and the fact that no criteria for "good

enough" model fit were established, it was decided to present the data visually rather than

perform statistical comparisons. The plots of these data are given in Appendix A.

The first page for each subject shows relative frequency plots of speed for both the

variable and hostile cases, with the number of data points in DL, Dc, and DR. Since most

subjects spent a disproportionately large amount of time at full speed, the number of data

points at full speed (15) is given separately from the plot. This allows more detail to be

observed in the rest of the plot.

The second page contains plots showing the distribution of DL, Dc, and DR. The large

circle in each plot represents the track in the original simulation. It is divided into segments,

each containing a small, solid circle. The area of each solid circle represents the relative

frequency of occurrence of values in that segment. From thi- the observer can get a sense

of the comparative distribution of each parameter between the subject and network model.
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Match Between Subject and Network
-Su-bject ] Speed I D 0 DD Match 

1 - - + +
2 + - +
3 + + + +
4 + + 4 +
5 + 0 0 0
6 0 + 0
7 + +
8 + + + + +

9 + + + +
10 + + + - +
11 + +
13 + +

+ Good,- Fair, 0 Poor

Table 4.1: Variable Cars Model Match

Tables 4.1 and 4.2 give subjective estimations of the success of each model in emulating

the respective subject. In the variable cars case, there were 5 good matches, 6 fair matrhes,

and 2 that did not match. In the hostile case, there were 4 good matches, 2 fair matches,

and 7 that did not match. This assessment is offered only as a top-level comparison between

paradigms, and as an indication that this technique shows promise as a modeling technique.

No objective criteria were established for goodness of fit, and the observer is free to apply

his own criteria in evaluating the results. However, the overall match was judged good if no

more than one single parameter was fair, poor if any single parameter was poor, and fair

otherwise.

Once a network architecture and training paradigm were found to work acceptably on

one subject, the same were applied to all the subjects. As was observed on the original

subject, things like gathering another training data set, changing the input representation,

changing the number of hidden nodes, and in general tinkering with the network can produce

improved results. Therefore, it is not particularly discouraging that there were some failures

with the architecture that was used.
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Match Betw'en Subject and Network

SSubject Speed DH Dc DI, ~fMatch

1 - + + +
2 0 - 0 0 0
3 + - 0 - 0
4 0 + - - 0

5 0 0 - 0 0
6 0 0 - 0 0
7 + - + + +
8 + + + + +
9 - + + + +
10- - - --

11 - - - 0 0

S12 - - - 00

1 3 + - + + 4

+ Good, - Fair, 0 Poor

TFable 4.2: Hostile Cars Model Match



Conclusion

A neural network architecture has been developed which shows promise for modeling and

emulating human behavior and performance. It is based on a multi-layer, feed-forward

architecture, but has a more complex architecture.

The hidden layer has recursive connections which allow the network to emulate reac-

tion time. The architecture also includes multiple sets of feed-forward connection weights.

These different weights are trained and used under different situations to emulate different

strategies. This makes the overall system a hybrid neural network/expert system.

The system has successfully emulated human performance in a computer simulation of

a driving task. It will be adapted to more complex and realistic tasks in the near future.

5.1 Lessons Learned

It is important that the input to the network matches what the human operator sees as

closely as possible. This allows the network to interpolate and extrapolate from the training

examples more reliably. The internal transforms the net is using may be closer to what the

person used.

To successfully emulate human behavior, it is necessary to build in reaction time. This

was done here with the recursive weights in the hidden layer. This means the network

will not be able to change instantaneously to changing circumstances, but must change

smoothly.

Each unique situation that elicits a different strategy from the operator must be repre-

sented by a separate set of feed-forward connection weights. The resulting expert system

"executive" can be very simple. It only looks at the external situation and switches in the

correct network to give the correct actions.

Highly skilled operators are easier to model then less skilled ones. They tend to have

consistent strategies which the network is able to emulate. A subject who is more erratic
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tends to "confuse" the net and it does not converge as well. One possible way to avoid

this problem is to carefully pick the examples from the training set to actually train the

network. This will allow the network to train on the provided samples, but care must be

taken to ensure the chosen samples are truly representative of the desired behavior.

5.2 Future Work

First, we will continue to adapt this modeling technique to the setup data cases. This data

presents unique challenges and opportunities due to the limited engagement time of each

setup, and the multiplicity of runs and repeatability of the environment.

We will extend the technique to the performance of the crew of a surface-to-air (SAM)

missile system. This is being done at AAMRL in the Threat Assessment Facility by linking

an existing simulation of a Soviet SAM with a simulation of a B-52 electronic warfare

station. These will be run in an interactive, two-sided simulation to gather data for training

the model.

Once a set of tools has been built that can model a SAM system, we will get data

from some of the many realistic training and simulation facilities. These could include the

training ranges at Navy Fallon or Nellis, or the REDCAP facility. We will then be able to

use this data to build high fidelity models.

Models generated from these realistic environments could be used to run real-time sim-

ulations to give aircrews intelligent adversaries. Two obvious applications are unmanned

threat emitter sites on the training ranges or SAC low level training routes, and aircrew

training simulators including weapon system trainers.
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Appendix A

Model Results Plots
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Appendix B

Simulation C Source Code
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varicar. c

Program to gather data in the "variable cars" case.

Requires:
imit. c
graph.c

drive. c
randvary. c

util. c

#include "cars.h"

#include "carvars.h"

main()

mnt i, j, k, lswitch, oldscore, score, testnr, testype, flag[2);
static mnt bump[MYCAR] = {O, 0, 0, 0};

float temnp;
FILE *out, *testin;
long endtine, timer;

char name [50] , fname[S0];

char *path, *trainext, *testext, *title;
extern FILE *fopeno;

extern float normal();

path ="data!";

trainext ".sev";
testext =.s"

title = "VARIABLE SPEED AND LANE";
initvar()
printf("Enter subject's name . ..

scanf("7.s", name);
i copy~path, fname, 0, 6);
i copy(naie, fname, i, 50);
i = copy(trainext, fnaxne, i, 5);

out fopen(fname, "w");

if (out ==0) exit(0);

initscreen()
header(title, length(title), 0);

for(i=O; i<NUMCARS; ++i)

putcar(i, 0, &score);

putinarkero;
score = 0;
oldscore = 0;
while((getbutton(LEFTMOUSE)) != 1) /* Begin familiarization session *

{o~=;jDEA;+jf
for(j=0; j<DELAY; ++j){}

for(i=O; i<MYCAR; ++i)
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varyspeed(i);

lswitch = varylane~i);
putcar(i, lswitch, &score);

putmarkero;
idrive()

for(i=O; i(MYCAR; ++i)

if(collision(i) I& !burnp[i))

score - 3;
bump~i] = 1;

if(!collision(i)) buinp[i] =0;

if(oldscore != score)

scoreboard((CENTERX + 290), (CENTERX + 299),

(CENTERY - 100 + (2 * score)),
(CENTERYf - 100 + (2 * oldscore)),
(CENTERY - 100));

oldscore = score;

footero; /* Set up for Data Run *
score = 0;
scoreboard((CENTERX + 290), (CENTERI + 299),

(CENTERY - 100 + (2 * score)),
(CENTERY - 100 + (2 * oldscore)),
(CENTERY - 100));

oldscore =0;
time(&timer);
endtime = timer + END;
while(time(&timer) < endtime) /*Begin Continuous Data collection *

solidbox((CENTERX + 401), (CENTERI + 410), (CENTERY + 100),
(CENTERY + 100 - (int)(((float)(END - endtime + timer)
/ (float)END) * 200)), BLACK);

for(j=0; j<DELAY; ++j){1
for(i=0; i<MYCAR; ++i)

varyspeed(i);

lswitch = varylane(i);

putcar(i, lswitch, &score);

putmarkero;
idriveo)
for(i=0; i<MYCAR; ++i)

fprintf(out, "%f ..' vii);

fprintf(out, "/.f '/d ", angle[iJ, lane~u]);
if(collision(i) kk !bump~u])

score - 3;
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buinp[iJ 1;

if(!collision(i)) buinp~il = 0;

fprintf(out, "%/f %/d\n", v[MYCARI, lane(MYCAR]);
if(oldscore != score)

scoreboard((CENTERX + 290), (CENTERI + 299),
(CENTERY - 100 + (2 * score)),
(CENTERY - 100 + (2 * oldscore)),

(CENTERY - 100));
oldscore = score;

fprintf(out, "/.f %f %~d", 0.0, 0.0, 0);
fclose(out); /* End Continuous data collection *

i= copy(path, fname, 0, 6); /* Set up for setup data collection *
i = copy~nane, fnarne, i, 50);

1 = copy(teatext, fname, i, 5);
out = fopen(fnaxne, "w");

if (out ==0) exit(-1);

testin f fopen ("testcar. dat', "r");
if(testin == 0) exit(-1);

lane[0] = 0;
lane[1] = 1;

fscanf(testin, "Yd", &testnr);
for(k=0; k<testnr; ++k) /* Begin setup data collection *

initscreen()
header(title, length(title), 1);

unscoreo)

solidbox((CENTERX + 401), (CENTERX + 410), (CENTERY + 100),

(CENTERY + 100 - (int)((float)(k - 1)
/ (float)testnr) * 200)), BLACK);

fscanf(testin, "U"d, &testype);

for(i=0; i<2; ++i)

fscanf(testin, '%f", &v[iJ);
for(i=0; i<2; ++i)

fscanf(testin, "Uf, kangle[i));
if(testype <8) angle[i] = normal(angle[i], .05);

for(i=0; i<2; ++i)

putcar(i, 0, &score);
lane [MYCAR] =0;

angle[MYCAR] 0.0;
putmycar(BLUE);
putmarkero;
while((getbutton(LEFTMOUSE)) 1{
flag[1] = 0;
flagto] =0;
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fprintf (out, "Xd\n", testype);
while~flag[1] =0 11 flag[O) = 0)

for(j=O; j<DELAY; ++j){1
for(i=O; i<2; ++i)

score =0;
putcar(i, 0, &score);
if(score == 1) flag[i) 1;

putmarkero;

idrive()

for(i=O; i<2; ++i)
fprintf(out, "%.f '/.f %d "

v~i] , angle[il , lane~il);
fprintf(out, 'Yf 7.d\n', v[MYCAR], lane[MYCAR]);

fprintf(out, "%.f %f 7.d\n", 0.0, 0.0, 0);

I
f close Cout)

color (BLACK);
ginit()
clear()
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hostilcar .c

Program to train and gather data in the "hostile cars" case.

Requires:

init .c
graph. c

drive. c

randvary. c
hostile. c

util.c

#include 'cars .h"
#include "carvars .h'

main()

mnt i, j, k, iswitch, oldscore, score, testype, testnr, flag[2];
static mnt bump[MYCAR] = {0, 0, 0, 01;
static mnt hostility[MYCAR] = {0, 0, 0, 01;

FILE *out, *testin;

long endtime, timer;
char name [50] , fnaine[50];
char *path, *trajnext, *testext, *title;
extern FILE *fopeno;
extern float normal();

path = "data!";
trainext -. e"
testext ".s"
title = "THE HOSTILE TAKEOVER";

initvar()

printf("Enter subject's name..
scanf("U~", name);
1 = copy(path, fname, 0, 6);

1 = copy(name, fname, i, 50);

1 = copy(trainext, fname, i, 5);

out = fopen(fname, "wi");
if (out == 0) exit(0);

initscreen()

header(title, length(title), 1);
for(i=0; i<NUMCARS; ++i)

putcar(i, 0, &score);
putmarkeroi;
score = 0;

oldscore = 0;
while((getbutton(LEFTMOUSE)) !=1) 1* Begin familiarization run *

for(j=O; j<DELAY; ++j){} s. et screen animation speed *
for~j=0; j<DELAY; ++j){1

54



for~i=0; i<MYCAR; ++i)

if((angle[i) < 0.1) &h (lane~ji]! laneEMYCIRM)

lswitch =stoppass(i, &hostilityl);
putcar(i, lswitch, &score);

else

varyspeed(i);

lswitch zvarylane(i);
hostility[i] =0;
if((following[iJ == -1) kk (oldspeed~il > 0.0))

v [i] = oldspeed [i)
oldspeed[i] = 0.0;

putcar(i, lswitch, &score);

putmarkero;
idriveo)
for(j=0; i<MYCAR; ++i)

if(collision(i) && !bump~il)

score - 3;
buinp~i] = 1;

if(!collision(i)) buinp[iJ = 0;

if(score != oldscore)

scoreboard((CENTERX + 290), (CENTERX + 299),
(CENTERY - 100 + (2 * score)),
(CENTERY - 100 + (2 * oldscore)),
(CENTERY - 100));

oldscore = score;

footer(); /* Set up for data collection *
score = 0;

scoreboard((CENTERX + 290), (CENTERI + 299),
(CENTERY - 100 + (2 * score)),
(CENTERY - 100 + (2 * oldscore)),
(CENTERY - 100));

oldscore = 0;

time (&timer);
endtime =timer + END;
while(timeC&timer) <endtime) /* Begin continuous data collection *

solidbox((CENTERX + 401), (CENTERI + 410), (CENTERY + 100),
(CENTERY + 100 - (int)(((float)(END - erndtime + timer)

/(float)END) * 200)), BLACK);
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for(j=0; j<DELAY; ++j){}
for(i=0; i<MYCAR; ++i)

if((angle[il < 0.1) kk (lane[i) != lane[MYCARI)

lowitch = stoppass(i, khostility~i]);

putcar(i, lswitch, kscore);

else

varyspeed(i);
lswitch = varylane(i);

hostility ti] = 0;
if((following~i] = -1) kk (oldspeed~i] > 0.0))

v[i] =oldspeed[i);
oldspeed[iJ = 0.0;

putcar(i, lswitch, kscore);

putmarkero;
idriveo)
for(i=0; i<MYCAR; ++i)

fprintf(out, "%f ", v~il);
fprintf (out, "%f %d ", angle [il, lane [il);
if(collision(i) kk !buinp(i])

score - 3;

buinp~il = 1;

if(!collision(i)) buinp[i] = 0;

fprintf(out, "/.f Y/.d\n", vEMYCAR], laneMYCARJ);
if(score != oldscore)

scoreboard((CENTERX + 290), (CENTERI + 299),
(CENTERY - 100 + (2 * score)),

(CENTERY - 100 + (2 * oldscore)),
(CENTERY - 100));

oldscore = score;

fprintf(out, "/1 .f Yj d', 0.0, 0.0, 0);
fclose(out); /* End continuous data collection *

1 = copy(path, fname, 0, 6);
1 = copy(nane, fnarne, i, 50);
1 = copy(testext, fname, i, 5);

out = fopenfnane, "w");
if (out ==0) CXit(-1);

testin =fopen("testcar.dat", "r);
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if(testin == 0) exit(-1);

fscanf(testin, "W"., &testnr);
for(k=0; k<testnr; ++k) /* Begin setup data collection *

initscreen()
header(title, length(title), 1);

unscoreo;
solidbox((CENTERX + 401), (CENTERX + 410), (CENTERY + 100),

(CENTERY + 100 - (int)((float)(k - 1)
/ (float)testnr) * 200)), BLACK);

fscanf(testin, "W",d., &testype);
for(i=0; i<2; ++i)

fscanf(testin, "%f", &v~i]);

oldspeed[i] =0.0;
following[i] -1;

for(i=0; i<2; ++i)

fscanf(testin, %U", &angle[i]);

if(testype < 8) angle[i] normal(angle~i), 0.05);

lane[O] =0;

lane~l] = 1;

for~i=O; i<2; ++i)

putcar(i, 0, &score);
lane [MYCAR] 0;

angleiMYCAR) 0.0;
putrnycar(BLUE);

putmarkero;

angle[2] = 0.75; /* not used *
angle[3] = 0.75; 1* not used *
while((getbutton(LEFTMOUSE)) != 1){

flag~l] = 0; /* Passed Car 1 flag *
flag[0) = 0; /* Passed Car 2 flag *
fprintf(out, "%d\n", testype);
while(flag[0) == 0 11 flag~l == 0)

for(j=0; j<DELAY; ++j){}
for(i=0; i<2; ++i)

if(angle~iJ < 0.1) kk (lanefli) lane[MYCAR)

lowitch =stoppass(i, &hostility[u));

else

lswitch = varylane~i);

hostility [ii = 0;

if((folloving[iJ == -1) kk

(oldupeedti) > 0.0))

v[i) oldepeed~iJ;
oldspeedfll] =0.0;
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score = 0;
putcar(i, lawitch, &score);

if(score == 1) flag[i] = 1;

putinarkeroC;

idriveo;
for(i=O; i<2; ++i)

fprintf (out, "%f %f %d ", v (iJ , angle [iJ, lane [ill);
fprintf(out, "/.f W/dn., vEMYCAR, lane[MYCAR]);

I
fprintf (out, "/hf %f Wdn', 0.0, 0.0, 0);
I
fclose(out);

color(BLACK);

ginit()

clearo;
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randvary. c

Contains functions to vary speed and lane of computer controlled

cars.

#include "cars.h"

#include "carextvar.h"

varyspeed(car)

int car;

extern float normal();

if(drand48() > .98)
v~car] norinal(vllcarl, 2.0);

if(v~lcarl > 12.O)v[carl 12.0;

if(v[car) < 3.0)v~car) 3.0;

int varylane(car)

mnt car;

mnt i;
mnt lswitch = -1;
mnt slowdown = 0;

float fwdangle, aftangle;

if((following~car] > -1) && (lane~following~car]! lane[carJ))

following[car] 1
v[car] = oldspeed[car],

oldspeed~carl = 0.0;

if(following[car) > -1)

v~car] = v[following~car]

for(i0O; i<NUMCARS; ++i)

ifC(i != car) && (i !=following[car]))

refangles(&fwdangle, kaftangle, car, i);
if(safetopass(fwdangle, aftangle, angle [car),

lane (car] , lane EiJ)= 0)

slowdown =1

if (slowdown == 0)

v~car] oldspeed [car);
oldspeed[car] 0.0;

lawitch = 1;
following[car] -1;
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else

for(i=0; i<NUMCARS; ++i)

if(i car)

ref angles(kfwdangle, kaf tangle, car, i);
if(needtopass(fwdangle, angle[carl, lane~car], laneiji,

v [car] , v Ei])
lswitch = i

else if(!safetopass(fwdangle, aftangle, angle~car],

lane~car), lane[i]))
slowd~wn =1

if((lswitch > -1) && (slowdown M=1)

oldspeed[carJ = v~car];
V~car) = v[lswitch];

following~car] = lswitch;
lswitch = 0;

else if~lswitch > -1)

lswitch = 1;

lane [car = I - lane [car];

else lswitch =0;
return~lswitch);

int needtopass(refer, angle, mylane, hislane, myspeed, hiaspeed)
float refer, angle, myspeed, hisspeed;
int mylane, hislane;

if((refer < (angle + .05)) && (refer > angle) kk
(hislane == mylane) && (myspeed > hiaspeed))

return C );
else

return(0);

int safetopass(fwd, aft, angle, rnylane, hislane)
float fwd, aft, angle;
int mylane, hislane;

if((fwd < (angle + .05)) H& (aft > (angle - .02)) &&
(mylane != hislane))

return(0);
else

return(1);
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refangles(fwd, aft, me, him)

float *fwd, *aft;

int me, him;

if((angle1mej + .05) >7 1.0) && (angle[him] < 0.05))
*fwd = angle~him] f1.0;

*fwd aig Ie[lhi im]

i f(((ng Ic e I] - .02) < 0.0) &A (anglo[him] > 0.98))
*af t 1 .0 - angle [him]

*af t - angle [him I



hostile. c

Module that controls computer cars in "hostile cars" case. Provides

reactions to subject's attempts to pass.

#include "cars .h"

#include "carextvar.h"

stoppass(car, hostility)
int car, *hostility;

mnt i;
mnt lswitch =0;
extern float normal()J;

static mnt timer[MYCAR] f O, 0, 0, 0};

if(*hostility == 2)

lswitch = varylane(car);

if(followinglcarl > -1)
*hostility = 0;

ifC*hostility < 2)

for(i=0; i<MYCAR; ++i)

if((i car) && (lanelli] !=lane[car]))

if((fabs(angle~carl - angle[i)) < 0.02))

if(oldspeed[car] == 0.0)
oldspeed[car] v[car];

v[car] = vi]i;

*hostility = 2;

timer[carl = 0;

if(*hostility 0)

oldspeedicar3 vtcar];
timer[car] 20;

*hostility = 1;

if(*hostility ==1)

timer [car]--

v[car) =vicar] + .2;

if(timer[carJ <= 0)

lswitch = 1;
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lane [car] = I - lane[carl];
*hostility = 0;
if(oldspeedlcar) > 0.0)

v [Carl = oldspeed [car]
oldspeed~car) = 0.0;

tiiner[carJ = 0;

return(lswitch);
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drive.c

Module f or controlling the subject's/net's car.

float cost[400J, sint[400];

#include "cars .h'
#include "carextvar.h"

idrive() /* determine the commanded speed and lane for the subject's car

putmycar(BLACK);
if(getvaluator(MOUSEX)<(CENTERX + 350))

lane EMYCAR] =0;
else

lane[MYCAR] 1;
putmycar(BLUE);
v[MYCAR] = MAXVEL * (1 - (((CENTERY + 100) - getvaluator(MOUSEY))/

200.0));

putmycar(color) /* place subject's car in the proper lane *
int color;

mnt x;

x = CENTERX + (lane[MYCAR] * LANEWID + LANEDIAM);
solidcirc(x, CENTERY, 8, color);

putcar(i, lswitch, score) /* place computer car in new position *
mnt i, lawitch, *score;

mnt index, x, y;
float z, w;

index = angle[iI * 400.0;
z =lane[i];

if~lswitch == 0)

w = lane~i];

else

w 1 - lane[i];
x =CENTERX + costilindexi * (w * LANEWID + LANEDIAM);
y = CENTERY + sint[index] * (w * LANEWID + LANEDIAM);
solidcirc(x, y, 8, BLACK);
computeangles(i, score);

index =angle[i] * 400.0;
x = CENTERX + costlindex) * (z * LANEWID + LANEDIAM);
y = CENTERY + sintrindexJ * (z * LANEWID + LANEDIAM);
solidcirc(x, y, 8, RED);

putmarker()
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mnt index, xl, yi, x2, y2;

static float marker;

index =marker * 400.0;
x1 = CENTERX + cost~index] * 161;

Y1 = CENTERY + sint~index] * 161;

x2 = CENTERX + cost~index] * 199;
Y2 = CENTERY + sint[index) * 199;

color (BLACK);

move2i~xl, yl);

draw2i~x2, y2);
marker = marker - v[MYCARI * DT;

if (marker > 1.0) marker =marker - 1.0;
if (marker < 0.0) marker zmarker + 1.0;
index = marker * 400.0;
xI = CENTERX + cost[indexj * 161;

y1 = CENTERY + sint~index] * 161;
x2 = CENTERX + cost[imdex] * 199;

Y2 = CENTERY + sint~index] * 199;
color(WHITE);

move2i(xl, yl);
draw2i(x2, y2);

mnt collision~i)
mnt i;

if(((angleti] > 0.9925) 11 (angle[iJ < 0.0075)) kk
(lane Fi] ==lane [MYCAR])

return(l);
else

return(0);

scoreboard(left, right, value, oldvalue, zero)

mnt left, right, oldvalue, value, zero;

if(oldvalue > zero)
solidbox(left, right, oldvalue, zero, BLACK);

else

solidbox(left, right, zero, oldvalue, BLACK);

if (value > zero)
solidbox~left, right, value, zero, RED);

else
solidbox(left, right, zero, value, RED);
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init c

Functions to initialize screens and variables.

#include "cars~h

#include "carextvar.h'

initscreeno)

mnt X, Y;

x = getvaluatorCMOUSEX);

y =getvaluator(MOUSEY);

cursoff()
ginit()

color (BLACK);
clearo;

setvaluator(MOUSEX, 0, 0, 1);

setvaluator(MOUSEY, 0, 0, 1);
circle(CENTERX, CENTER!, 200, WHITE);
circle(CENTERX, CENTERY, 180, WHITE);
circle(CENTERX, CENTER!, 160, WHITE);
box((CENTERX + 300), (CENTERX + 350), (CENTERY - 100), (CENTER! + 100),

WHITE);
box((CENTERX + 350), (CENTERX + 400), (CENTER! - 100), (CENTER! + 100),

WHITE);
solidboxC(CENTERX + 401), (CENTERI + 410), (CENTER! + 100),

(CENTERY - 100), YELLOW);
setvaluator(MOUSEX, x, (CENTERX + 300), (CENTERX + 400));
setvaluator(MOUSEY, y, (CENTER! 100), (CENTER! + 100));
color(WHITE);
cmov2i((CENTERX + 387), (CENTER! + 110));
charstr(TIME');
cmov2i((CENTERX + 272), (CENTER! + 110));
chars tr("SCORE');
curson();

unscoreo(

color(CBLACK);

cmov2i((CENTERX + 272), (CENTER! + 110));
chars tr('SCORE");

color(WHITE);

initvar() /* set up initial values of several variables *

long timer;

float x;

int i, j, k;
unsigned mnt 1;
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extern float normnal();

1 =timeC&timer);

srand48(timer);

for (i = 0; i < 400; i++)

x =i/400.0 * 2 *PI;

costrii = cos(x);
sintflul = sin(x);

randangleo;

for(i=0; i<MYCAR; ++i)

v[i] =norinal(8.0, 2.0);

v[MYCARI = 8.0;

randangleo) /* Set up initial random starting positions *

int i;

for(i=0; i<MYCAR; ++i)

angleflul= drand480;
angleIMYCAR] = 0.0;
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/** *l* **********************i************************i*i***iillliilliilllli***

util.c

Contains miscellaneous functions for the driving programs.

#include "cars.h"
#include "carextvar.h"

float normal(mean, sdev)
float mean, sdev;

{
int i;

float s = 0.0;

for (i=O; i<12; ++i)
s s + drand48();

s = (s - 6.0) * sdev + mean;

return(s);

computeangles(i, score)

int i, *score;
{

angle[i] = angle[i] + (v[i] - v[MYCAR]) * DT;
if (angle[i] > 1.0)

angle[i] = angle[i] - 1.0;
if (angle[i] < 0.0)
{

angle[i] = angle[i] + 1.0;
(*score)++;

}

copy(sl, s2, start, lim)
char sl[], s2[1;

int start, lim;
{

int i;

for(i=O; i<lim; ++i)
{

s2[i+start] = sl[i];
if(sl[i] == '\0') break;

}

i i + start;

return(i);

length(c)

char *c;
{

char *p = c;
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while (*p !=1\0

return(p -C)
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graph.c

Graphics routines for the rest of the program. Actual library function
calls are Silicon Graphics specific, and would need to be replaced
if this is implemented on another machine.

#include "gl.h"

circle(centerx, centery, radius, c) /* Draw a circle at the given x and y */

/* center and radius in color c */
int centerx, centery, radius, c;
{

color(c);
circi(centerx, centery, radius);

}

box(left, right, top, bottom, c) /* Draw a box between left and right, */
/* top and bottom in color c

int left, right, top, bottom, c;
{

color(c);
recti(left, bottom, right, top);

}

solidcirc(centerx, centery, radius, c)/* Draw a filled circle at the given */
/* x and y center and radius */

/* in color c */
int centerx, centery, radius, c;
{

color(c);

circfi(centerx, centery, radius);
}
solidbox(left, right, top, bottom, c) /* Draw a filled box between left and */

/* right, top and bottom in color c */
int left, right, top, bottom, c;
{

color(c);
rectfi(left, top, right, bottom);

}

header(title, len, i) /* Put explanatory text on the screen */
char *title;

int len, i;
{

color(WHITE);
cmov2i(327, 50);
charstr("Press Left Mouse to Start Data Collection");
cmov2i((513 - ((len * 9) / 2)), 700);

charstr(title);

cmov2i(490, 684);
charstr("RUN ");
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if (i == 0)
charstr(I"');

else

charstr(1"2");

playhead(ti'.1le, len) /* put title heading for playback programs *
char *title;

int len;

color(WHITE);
cmov2i((513 - ((en * 9) / 2)), 700);
charstr(title);

line2(a, b) /* put second explanatory line of text on screen for playback *
mnt a, b;

char line [So];
mnt len;

line[0) = 0;
solidbox(200, 700, 675, 695, BLACK);
color(WHITE);

strcat(line, "Run Type '9;
len = strlen(line);
line~len + 1] = 0;
line~len] = b
if(a<0)

strcat(line, " Trained Net 1

else

strcat(line, "Trial )

len = strlen(line);
line~len + 1] = 0;
line[lenJ = '0' + a;

cmov2i((513 - ((strlen(line) * 9) I2)), 680);
charstr(line);

footer() /* put bottom line telling whether practice of data run *

color (BLACK);
cmov2i(327, 50);
charstr("Press Left Mouse to Start Data Collection");
color(WHITE);

cmov2i(445, 50);
charstrC'Collecting Data');

zeroline~y, st-x, end-x) /* draw a horizontal line from st-x to end-x at y *
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int y, at-x, end-x;

movei(st-,c y, 0);
color(WHITE);
drawi(end-x, y, 0);
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/*******************************************************************************
cars.h

Definitions and includes for the driving routines.

#include "stdio.h"
#include "math.h"
#include "time.h"
#include "gl.h"

#include "device.h °

#define PI 3.1415926

#define DT .001

#define NUMCARS 5
#define MYCAR 4
#define MAXVEL 15
#define DELAY 4000
#define CENTERX 325

#define CENTERY 400
#define LANEWID 20
#define LANEDIAM 170

#define END 180
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carvars .h

Global variable declarations for the program module zontaining main()

float cost[L400] , sint [400];
float v[NUMCARS] , angle[NUMCARS];

int lane[NUMCARS] = {O0,1,1,01;
mnt following[NUMCARS]3 f -1, -1, -1, -1, -1);
float oldspeed[MYCAR) = 0.0, 0.0, 0.0, 0.0};
float cost[400] , sint[400];
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carextvar.h

External global variable declarations for the driving routines

external modules.

extern float cost[], sint[l, v1, angle[], oldspeed[];

extern int lane[I, following[];
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Appendix C

Network C Source Code
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* File "vcontrn.c" Trains net on 4-car continuous data. *

. Variable Cars *

, Input file is *"*.sev". Output file is

* Revised: "*.wev" for weights, and "*.eev" for training *

* 29 Jul 89 error data. *

, Makes cvtrn.exe *

* Requires: *

* weights.c *

, backprop.c *

* net.c *

, inputs.c *

* util.c *
, *

* *

* File "hcontrn.c" Trains net on 4-car continuous data. *

* Hostile scenario *

* Input file is "*.seh". Output file is *

* Revised: "*.weh" for weights, and '*.eeh" for training *

* 29 Jul 89 error data. *

* Makes chtrn.exe *

* Requires: *

* weights.c *

* backprop.c *

* net.c *

* inputs.c *

* util.c *

#include "cars.h"
#include "fourcars.h"

#include "net.h"

#include "ffourin.h"

#include "carvars.h"
#include "netvars.h"

main(argc, argv)

int argc;
char *argv[];
{

int i, j, k, count, attention, lan 0;

float outvec[21;

float averror, oldv, oldl, eta, ajpha, goodenuff, speed = 0.0;
FILE *err, *in, *indat;

long timer, 1;

char fname[50], errname[50), wtname[50, rawname[50], indatname[50];

char *path, *trainext, *errext, *wtext, *rawwts;
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extern long tixeo;
extern FILE *fopeno;

extern float backpropo);

path = "hed$disk: [efix.rmets.ciriver.dataJ";
if(argc == 0)

f
printf('Useage: \'CVTRN subject-name Einput-dat-fileJ [attention) V\n");

exit (0)

I
if(argc >= 3)

strcpy(indatnane, path);
strcat(indatname, argv[2D);
indat = fopen(indatnane, "r");
if(indat == 0)

printf('lnput Data File %a not found\n", argv[2]);
exit (0)

fscanf(indat, "%~f %f Y.f', &eta, &alpha,
kgoodenuff, &attention);

fclose(indat);

else

eta = ETA;
alpha = ALPHA;
goodenuff = GOODENUFF;
attention = 0;

printf("%d\n~s\ns\n", argc, argv[l) , argv[2J);
printf('eta = %f alpha = %/f goodenuff =%f, attention %dn=

eta, alpha, goodenuff, attention);
trainext = ".sev"; /* ".seh" for hostile cars *
errext = ".eev'; /* ".eeh' for hostile cars *
wtext = .wev"; /* ".weh' for hostile carse *
rawwts = "rawwts.txt";
strcpy(fnane, path);
strcat(fnane, argv[1));
strcat(fname, trainext);
strcpy~errname, path);
strcat(errnane, argv[1));
strcat(errnane, errext);
strcpy(wtname, path);
strcat(wtname, argv[1]);
strcat(wtnane, wtext);
strcpy(rawname, path);
strcat(rawname, rawwts);
initial(wtname, rawnane, &count, I, &speed, klan);
for(i=0; i<10; ++i)

get4 inputs (oldv, oldi, I); /* Load Initial Inputs *
for(k=O; k<1000; ++k)
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for~j=0; j<J; ++sj)
hidden~j] 0.0;

j =0;
averror = 0.0;

if(k >= 5)

attention =1;

in = fopen~fname, "r");
if(in == 0)

printf ("%s~ not found.\n", fname);
exit (0)

while~l)

for(i=O; i<MYCAR; ++i)

fscanf(in, "%~f %f %d, &v[i], &angle[i]I
&lane[i]);

if((v[iJ == 0.0) && (angle~i] ==0.0) kk
(JlanefiJ == 0)) /* End of the data run *

goto iterate;

oldv=v[MYCAR) / MAIVEL;
oldl=lane[MYCAR];

fscanf(in, "'/,f Yd", &v[MYCARI, &IaneIIMYCARI);
outvec[SPEED] v[MYCARJ / (MAIVEL + 5.0);
outvec[LANE] =lane [MYCAR];
get4inputo(oldv, oldi, I);
if((input[I-6] < 0.2) k& (input(I-5I < 0.2) k&

(fabs~input(I-6J - input[I-5J) < 0.07) k&
attention)

averror = averror + backprop(outvec, I, eta, alpha,

goodenuff, CLOSEIN, 1);
else
averror = averror + backprop(outvec, I, eta, alpha,

goodenuff, NORMAL, attention);
count++;
j ++;

iterate:

fclose(in);
av~rror = averror / j;
err =fopen(errname, a.);
if (err == 0)

printf(",u not found.\n", f name);
exit (0)

fprintf(err, 11%5d, %f\n', count, averror);
fclose (err);
wtsave(wtname, count, I, speed, lan);
if(averror < goodenuff)
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goto end;

end:;
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backprcp .c

This module implements the back-propagation algorithm modified by

Fix.

#include "net .h'

#include "netextvar.h"

float backprop(outvec, I, eta, alpha, goodenuff, version, attention)

float outvec[), eta, alpha, goodenuff;

mnt I, version, attention;

float suinEJ]
float delta, cost, temp, flip;

mnt i, j, k, 1, v;

extern float fabso;

for(j=0; j<J; ++j) suin~j]=O;
net(I, version);

cost = (fabs(output[O) outvec[O]) + fabs(output[1) - outvec[1))/

(0.1 / goodenuff)) /K;
for(k=0; k<K; ++k)

flip = sign~outvec[k] - 0.5) ( output[k) 0.5);

delta =(output~k) (I cutput[k)) *u(flip) +

0.25 *u(-flip)) *(outveclkl - output Ik));

for(1=0; 1<J; ++l)

j=1 + (J version);
temp =w2j][k] + eta * delta*

hiddem~l) + alpha * (w2Ilj) Ik] -w2p~lj l~k));

w2p~lj) Ik] = w2Ilj][Ik);
w2[j) k = temp;

sum (11] = sum [1] + delta * w2 [j] Ilk]
if(Oattemtion) kk (MAXVERSIONS > 0))

for(v=1; v<MAIVERSIONS; ++v)

w2Il1+(v*i)]Ilk] = w2Il) Ik];

thetak~lk + (K * version)] = thetak~lk + (K *version))]

eta * delta;

if((attention) k& (MAIVERSIONS > 0))

for(v=1; v<MAIVERSIONS; ++v)
thetak~k+(v*K)] = thetak~lk)

for(J=0; J<J; ++j)

delta =hiddenljJ * (I - hidden~li]) * sum~lJ;
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for(1=0; 1<1; ++I)

1 = 1 + (I * version);

temp = wi[i][jJ + eta *delta * (inputti) - 0.5) +

alpha *(wliJi]j] -wiplilili);

wlp10i] j= wili] [j];
wi[i][j] =temp;
ifCCattention) &k (HAXVERSIONS > 0))

for(v=i; v<MAXVERSIONS; ++v)

wl[l+(v*I)J[j] ul11ij];

thetaj[j + (3 * version)]) thetaj[j + (J version))]

eta * delta;
if((attention) && (MAIVERSIONS > 0))

for(v1l; v(MAXVERSIONS; ++v)
thetaj[j+(v*J)] = thetaj~jJ;

oldhidwts~jl = oldhidwts[j] + eta *delta *oldhidden~jJ;

return(cost);

int sign(x) /*signum function *
float x;

int i;

if(x <~ 0)

else

return i;

int u(x) /* unit step function *
float X;

int i;

if(x <0)

i =0;

else

i =1

return i
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* File "net.c" Calculates network output from *

* input array using weights matrices *

* Revised: *

* 30 Jul 89 Uses Recursion *

* Also uses redundant weights for *

multiple conditions.

#include "net.h"

#include "netextvar.h"

net(I, version)
int I, version;
{

extern float sigmoido;

float x;
int i, j, k;

for(j:O; j<J; ++j)
{

x = 0.0;

for(i=O; i<I; ++i)
{

x = x + w1[i + (I * version)] [j] * (input[i] - 0.5);
}
x = x + oldhidwts[j] * hidden[j];
oldhidden[j] = hidden[j];
hidden[j] = sigmoid(x-thetaj[j + (J * version)]);

for(k=O; k<K; ++k)
{

x = 0.0;
for(j=O; j<J; ++j)
{

x = x + w2[j + (J * version)] [k] * hidden[j];
I
output[k] = sigmoid(x-thetak(k + (K * version)]);

}

/* SIGMOID FUNCTION */

float sigmoid(x)
float x;

{ float y;

extern float expo);

if((BETA * x) < -50)
y =0.0;
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else if((BETA * x) > 60)

y =1.0;
else

y =I / (I + exp(-BETA * x)

return (y);
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weights .c

Module contains routines to save and retrieve weights from

files.

#include 'cars .h"

#include "net .h'

#include "carextvar.h'

#i-nclude "netextvar.h"

wtsave(f-.ame, count, I, speed, lane)

char f name [];
int count, I, lane;
float speed:

f extern FILE *fopeno;
FILE *dat;
mnt i, j, k, 1;

removeCf name);
dat =fopen(fnane, "w");
if(dat ==0) exit(0);

for(j=O; j<(J*MAXVERSIONS); ++ji)

fprintf~dat, "413.10f ", thetaj~ji);

fprintf(dat, "\n");

for(k=0; k<CK*MAXVERSIONS); ++k)

fprintf~dat, "%13.10f ", thetakilk));

fprintf(dat, "\n");

for(j=O; j<J; ++j)

fprintf~dat, "/.13.10f ", olcihidwts[jJ);

fprintf(dat, "\n");

for(i=0; i<(I*MAXVERSIONS); ++i)

for(J=O; j<J; ++j)

fprintf(dat, "%1..Of ",wi[iJ(jJ);

fprintf(dat, "1\n");

for(J=O; J<(J*MAXVERSIONS); ++J)

for(k=0; k<K; ++k)
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fprintf(dat, "%.13.10f ", v2[jJ[kJ);

fprintf(dat, "\n");

fprintf(dat,"%/d %6.4f Yd\n", count, speed, lane);
fclose(dat);

initial(fname, rawname, count, I, speed, lane)
char fname [J, rawnane[

float *speed;
f extern FILE *fopen();

FILE *dat;
int i, j, k, new-flag = 0;

dat = fopen(fname, "r);
if(dat == 0)

printf("No previous weights file\n");
new-flag = 1;

dat = fopen~rawnane, "r);
if(dat == 0)

printf("No raw weights file\n");
exit (1)

for~j=O; j<(J*MAXVERSI0NS); ++j)

fscanf(dat, '7.f", thetaj+j);

for(k=0; k<(K*MAXVERSIONS); ++k)

fscanf(dat, "U", thetak+k);

for(j=O; j<J; ++j)

fscanf(dat, "/%f ", koldhidwts[jJ);

for(i=O; i<(I*MAXVERSIONS); ++i)

for(j=O; j<J; ++J)

f scanf (dat , "%f ", kwl (i (j]
wlp[i) [jJ = W1 [i] [jJ

for(J=O; J<(I*MAXVERSIONS); ++J)
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for~k=O; k<K; ++k)

fscanf(dat, "Yf ", &w2[jJ[k));

w2p[j] [k] = w2[j) [k];

if( 'new-flag)
fscanf(dat, "%d %~f %d", count, speed, lane);

else

*counlt =0;
*speed =0.0;

*lane = 0;

for~j=O; j<J; ++j)
aldhidwts[j] 0.0;

fclose~dat);
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* File 'inputs.c" Sets up inputs for the nets.
* "get4inputsO)" sets up inputs for the *

* Revised: case of 4 cars and continuous data, and*

* 20 Jun 89 "get2inputso" sets up input vectors for*
* the case of multiple setups and two

* other cars.*

#include 'not *jj

#include "cars.h'

#include 'netextvar .h'
#include "carextvar.h"

get4inputs(s, 1, 1)

int I;
float a, 1;

mnt i, j, k;
1'.t laneO[4J = {VOIDCAR, VOIDCAR, V0IDCAR, VaIDCARJ;
mnt lai-.el[4] ={VOIDCAR, VOIDCAR, VOIDCIR, VOIDCAR};

mnt countO = 0;
int counti = 0;

for~i=0; i<4; ++i)

if(lane[iJ = 0)
laneO~count0++] =i

else
lanel~countl++] =i

j

while(j==1)

j =0;
for(i=0; i<3; ++i)

if((laneO[iJ != VOIDCAR) kk (lane0[i+1) 1 VOIDCAR))

f
if (angle [laneO [i)] > angle [laneO [i+I1)

j =swap(klane[i], klaneoLi+1]);

if((lanel~i] != VOIDCAR) && (lanel[i+1) ! VOIDCAR))

f
if(angle(lanel[il) > angle~lanel[i+11))

j =swap(klanel [iJ, klanel [i-si)

for(i=0; i<I-6; ++i)
input ti] = inp'it[i+4J;
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for(k0O; k<2; ++k)

i = k * 2 + (I - 6);
if(lane0[k] !=VOIDCAR)

inputi = angle (lane0 Ek)I;

else

input[i) = 0.75;

if(lanel[k] != VOIDCAR)

input[i+1J = angle[lanel[k]];

else

input[i+1J = 0.75;

input [I-2] = s
input[I-1i = 1;
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util.c

Module contains miscellaneous functions f or the driving routines.

#include "cars .h"

#include "carextvar.h"

float normal(mean, sdev)

float mean, sdev;

int i;
float s = 0.0;

extern float frandomo);

for (i=0; i<12; ++i)

s=s + frandomo;

6 -60) * sdev + mean;
return(s);

computeangles~i, score, MYCAR)

mnt i, *score, MYCAR;

angle~i] = angle~iJ + (v[iJ - v[MYCAR]) DT;
if (angleri] > 1.0)

angle(i) = angle~i] - 1.0;
if (angle~i] < 0.0)

angle [ii= angle[iJ + 1.0;
(*score)++;

int swap(a, b)
int *a, *b;

mnt c;

c *a

return(1);

float frandom()

float x;

x = (float) rand() 2147483646.0;
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return(x);

I

int collisioi~i, MYCAR)

int i, MYCAR;

if(((angle[i] > 0.9925) 11 (angle[i) < 0.0075)) At
(laxie[i] ==lane(MYCARJ))

return(1);
else

return(0);
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/ *******************************************************************************

net.h

Defines for network

#define J 20 /* Number of Hidden Nodes /*
#define K 2 /* Number of outputs [*
#define GOODENUFF .01

#define ETA 0.7
#define ALPHA 0.3
#define BETA 1.0
#define LANE 1
#define SPEED 0

#define MAXVERSIONS 2
#define NORMAL 0
#define CLOSEIN 1
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fourin.h

Sets network input size for four cars, continuous data

#define I 42
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/ *******************************************************************************

car.h

Defines and Includes for the car programs

#include <stdio.h>
#include <math.h>

#include <time.h>

#define PI 3.1415926
#define DT .001

#define VOIDCAR -1
#define MAXVEL 15
#define DELAY 4000
#define CENTERX 325
#define CENTERY 400
#define LANEWID 20

#define LANEDIAM 170
#define END 180
#define TYPES 14
#define TIME-UP 8535
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carvars.h

Global car variable declarations

float v[NUMCARS], angle[NUMCARS];
int lane[S] = {O,0,1,1,01;

int following[5] = {-1, -1, -1, -1, -1};
float oldspeed[4) = {O.0, 0.0, 0.0, 0.01;
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fourcars.h

Defines of number of cars for continuous data

#define NUMCARS 5
#define MYCAR 4
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netvars .h

Global variables for the network

float input[IJ, hidden[J), oldhidden[J), output[KJ;
float wi[CI*MAXVERSIONS)] [3), w2[(J*MAIVERSIONS)J [K),

wlp[(I*MAXVERSIONS)] [3], w2p[(J*MAXVERSIONS)J [K);
float thetak[(K*MAXVERSIONS)J , thetajE(J*MAXVERSIONS)), oldhidwts[1];
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netextvar.h

External global variable declaration for the network.

extern float input[, hidden[], oldhidden[J, output([], wi[3], w2[][K],
wipE)[3), w2p[] [K) , thetakfl, thetaj El, oldhidwts[Ji)
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Appendix D

Net Testing C Source Code
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* File "vcontest.c- Tests trained net on continuous data*
* with four other carse

Revised:

5 5Sep 89

* Makes cvtest.exe

* Requires:
* weights. c
* net. c
* inputs-c
* drive. c
* util.c*
* initrand. c

#include "cars .h'
#include "fourcars.h"

#include 'net .h"
#include "fouxin.h'

#include "carvars .h'
#include "netvars .h"

main(argc, argv)

mnt argc;
char *argv[];

mnt i, j, k, lswitch, score, testnr, testype, flagi, flag2, lan =0;
float speed = 0.0;
static mnt buznp[MYCAR] = {0, 0, 0, 01;
FILE *out, *testin;
long endtime, timer;
char outnane [50] , wtnaie [50] , f name [50]
char *path, *wtext, *outext;
extern FILE *fopeno;

fname,[0] = 0;
outname[0) 0;
wtnane [0] =0;

path = hed$disk: [efix.nnets.driver.dataj";
wtext " . wev";
outext =.e"

strcat (fname, path);
strcat(outnane, path);
strcat (outname, argv 11);
strcat~outname, outext);
strcat(wtnane, path);
strcat(wtname, argv[1II);
strcat(wtname, wtext);
initial(wtnaie, wtname, kk, I, &speed, klan);
out = fopen~outnane, "w");
if (out == 0) exit(1);
seed()
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randangle(MYCAR);

randvel(MYCAR);

for(i=O; i<MYCAR; ++i)

computeangles(i, tj, MYCAR);

for(j=0; j<J; ++j)
hidden~j) = 0.0;

for (i=O; i<10; ++i)

get4inputs(C8.O/MAXVEL), 0.0, 1);

for(j=0; j<TIME-UP; ++j)

for(i=0; i<MYCAR; ++i)

varyspeed(i);

lswitch = varylane(i, NUMCARS);

coniputeangles~i, kk, MYCAR);

ifC(input[I-5] < 0.2) &k(inputtl-6J < 0.2)
&& (fabs(input[l-5] input[I-6)) < 0.07))

netdrive(I, NUNCARS, MYCAR, CLOSEIN);

else

netdrive(I, NUMCARS, MYCAR, NORMAL);

for(i0O; i<MYCAR; ++i)

fprintf(out, "%/f ", vi

fprintf(out, "'.f %d 1, angle~i], lane[i]);

fprintf (out, "%f %/d\n", v (MYCARJ, lane [MYCAR]);

fprintf(out, "Yf %f. %/d", 0.0, 0.0, 0);
fclose(out);
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*File 'hcontest.c" Tests trained net on continuous data,
* four other cara, hostile scenario*

* Revised:

* 18 May 89 Makes the program chtest.exe

* Requires:
* weights .c*
* net. c
* inputs. c*
* drive. c
* util.c
* initrand.c*
* hostile. c*

#include "cars.h"

#include "fourcars.h"
#include "net .h"
#include 'fourin.h'
#include 'carvars.h"
#include "netvars .h"

main~argc, argv)
mnt argc;

char *argv[];

mnt i, j, k, lawitch, score, testnx, testype, lan =0;
float speed = 0.0;
static mnt bumpEMYCAR] = {O, 0, 0, 0};
static mnt hostility[MYCAR] 0 {, 0, 0, 0};
FILE *out, *testin;
char fnaie [So] , wtname [SO) , outname [50];
char *path, *wtext, *outext;
extern FILE *fopeno;

outname [0] =0;
wtname[0] =0;

fname[0] 0;
path ="hed$disk: [efix.nnets.driver.dataJ";
wtext ".e"

outext .e;
strcat(f name, path);
strcat(outname, path);
strcat (outname, argv [iJ);
strcat(outnane, outext);
strcat(wtname, path);
strcat (wtnane, argv [iJ);
strcat(wtnaie, wtext);
initial(wtname, wtname, &k. I, &speed, &Ian);
out = fopen~outnane, $'W;

if (out == 0) exit(1);
seedo;
randangle(MYCAR);
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randvel(MYCAR);

lane [MYCAR] = 0;
for(i=0; i<MYCAR; ++i)

coinputeangles~i, &j, MYCAR);
for(i=0; i<10; ++i)

get4inputs(8.0, 0.0, 1);
for~j=O; j<J; ++j)

hidden[jJ = 0.0;
for(j=O; j<TIMEUP; ++j)

for(i0O; i(MYCAR; ++i)

if((angle[i] < 0.0) && Clane[i) 1 lane[MYCARJ))

lowitch =stoppass(i, &hostility[iJ,
MYCAR, NUMCARS);

computeangles(i, &k, MYCAR);

else

varyspeed(i);
lswitch = rlane(i, NUMCARS);
hostilitytii =0;

ifC(following~i] == -1) && Coldspeed[iJ > 0.0))

v Ci) = oldspeed[i];
oldspeed~i) = 0.0;

computeangles~i, &k, MYCAR);

if((input[I-6J < 0.2) && (input[I-5) < 0.2) &&
(fabs(input[I-6] - input[I-5)) < 0.1))

netdrive(I, NUNCARS, MYCAR, CLOSEIN);
else

netdrive(I. NUNCARS, MYCAR, NORMAL);
for(i=0; i<MYCAR; -H-i)

fprintf(out, -I'/f 11, v~i));
fprintf (out, "%f %d ", angle Fi], lane [iJ);

fprintf(out, "%f '/d\n", v[MYCAR), lanOeMYCAR]);

fprintf(out, "/.f %f %dn", 0.0, 0.0, 0);
fclose(out);
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* File "net.c" Calculates network output from *
* input array using weights matrices *

* Revised: *

* 30 Jul 89 Uses Recursion *

* Also uses redundant weights for *

* multiple conditions. *

#include "net.h"

#include "netextvar.h"

net(I, version)

int I, version;
{

extern float sigmoido;

float x;

int i, j, k;

for(j=0; j<J; ++j)
{

x = 0.0;
for(i=O; i<I; ++i)

{
x = x + wa(i + (I * version)] [j] * (input[i] - 0.5);

}
x = x + oldhidwts[j] * hiddenj];
oldhidden[j] = hidden[j];
hidden[j] = sigmoid(x-thetaj[j + (J * version)));

for(k=O; k<K; ++k)
{

x = 0.0;

for(jO; j<J; ++j)
{

x = x + w2[j + (J * version)] [k] * hidden[j];
}
output[k] = sigmoid(x-thetak[k + (K * version)]);

}

/* SIGMOID FUNCTION */

float sigmoid(x)

float x;

{ float y;

extern float expo;

If((BETA * x) < -50)

y = 0.0;
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else if((BETA * x) > 50)
y =1.0;

else

y =1/(I + exp(-BETA * x)
return (y);

107



* File "inputs.c' Sets up inputs for the nets.
* '"get4inputsO'" sets up inputs for the *

* Revised: case of 4 cars and continuous data, and*
* 20 Jun 89 'get2inputsO'" sets up input vectors for*

* the case of multiple setups and two *

* other cars.

#include "net .h"
#include "cars.h"

#include "netextvar.h"

#include "carextvar .h"

get4inputs(s, 1, 1)
mnt I;
float s, 1;

mnt i, j, k;
mnt laneO[4] ={VOIDCAR, VOIDCAR, VOTOCAR, VOIDCAR};
mnt lanel[4] = {VOIDCAR, VOIDCAR, VOIDCAR, VOIDCAR};
mnt countO = 0;
mnt counti = 0;

for(i=0; i<4; ++i)

if (lane [i] == 0)
laneO[countO++] = i

else
lanelcountl++) = i

j =1

while(j==1)

j = 0;
for(i=0; i<3; +,+i)

if((laneo[iJ != VOIDCAR) kk (laneO[i+1J VOIDCAR))
f
if (angle [laneO [iJ J > angle (laneO [i+i]J)

j = swap(klaneOi, klaneOIi+1J);

if((anel~iJ != VOIDCAR) kk (lanel[i+1) != VOIDCAR))
f
if (angle [lanel [Ii)J > angle [lanel [i+1]J)

J = swap(klanel~i), klanel[i+1J);

for(i=0; i<1-6; ++i)

input [i) = input [i+4];
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for(k0O; k<2; ++k)

1 = k * 2 + (I - 6);
if(laneO[k) ! VOIDCAR)

input[i] = angle~laneo[kJJ;

else

input [iJ 0.75;

if(lanel[k) != VOIDCAR)

inputfi+1] angle[lanel~rk]];

else

input[i+1] = 0.75;

input[I-2) = s;
input[I-1) = 1;
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hostile. c

Module with the logic for the adversary cars to work against

the subject or net in the hostile cars scenario

#include "carextvar .h'

stoppass(car, hostility, MYCAR, NUMCARS)
mnt car, *hostility, MYCAR, NUMCARS;

int i;
mnt lswitch = 0;
static mnt timer4l =0, 0, 0, 0};
extern float normal();
extern float fabsO);

if(*hostility ==2)

lswitch = varylane(car, NUMCARS);
if(following[carl -1)

*hostility =0;

if(*hostility < 2)

for(i=0; i<MYCAR; ++i)

if((i !=car) kk (lane~iJ != lane~carl))

if((fabs(angle~carJ - aingle[iJ) < 0.02))

if(oldspeed[carJ == 0.0)

oldspeed[carJ v~car);
v~car) = v~i);
*hostility =2;

timer~car) 0;

if(*hostility ==0)

oldspeed [car) v~car);
tiner~car) = 20;
*hostility = 1;

ifC*hostility =1

tiier [car)---;
v~car) = v~car) + .2;
if(timer[carJ <= 0)

lswitch = 1;
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lane [carJ = 1 - lane[car);
*hostility =0;

if(oldspeed(carj > 0.0)

v~car) oldspeed[car);
oldspeed~car) = 0.0;

timer~carJ = 0;

return(lawitch);



initrand. c

Module contains functions to initialize random scenarios and
inject random variation into the scenarios.

#include "cars.h"

#include "carextvar.h"

randangle(MYCAR) /* initialize cars at random positions *
mnt MYCAR;

int i;
extern float frandom();

forUi=O; i<MYCAR; ++i)

angle[i] =frandomo;

angle[MYCAR] = 0.0;

randvel(MYCAR) /* initialize cars at random speeds *
mnt MYCAR;

mnt i;
extern float normnal();

for(i=0; i<MYCAR; ++i)

v~i] = normal(8.0, 2.0);

v[MYCAR] = 8.0;

varyspeed( car)
mnt car;

float x;
extern float frandomo;
extern float normal();

x =frandono;

if(x > .98)
v[car) = normal(v[carJ, 2.0);

if(v[carj 12.0)v[car] 12.0;
if(vtcarJ < 3.0)v~car3 3.0;

mnt varylane(car, NUNCARS)
int car, NUMCARS;

int i;
int lswitch =-1;
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int slowdown = 0;
float fwdangle, aftangle;

if((following~car] > -1) kk (lane[following~carll lane~car]))

following~carl = -1;
v [car] = oldspeed[carJ;
oldspeed[carJ = 0.0;

if(following~carJ > -1)

v~car) = v~following[carJ];

for(i=0; i<NUMCARS; ++i)

if((i != car) && (i !=following~carl))

refanglesCkfwdangle, kaftangle, car, i);
if Csafetopass(fwdangle, aftangle, angle~carl,

lane [car] , lane~i)= 0)

slowdown =1;

if (slowdown == 0)

v[car] = oldspeed[carl;
oldspeed~carJ 0.0;
lswitch = 1;
following~car] -1;

else

for(i=0; i<NUMCARS; ++i)

if(i =car)

refangles(&fwdangle, kaftangle, car, i);
if(needtopass(fwdangle, angle [car), lane [car), lane~i),

v~car), v[il))
lswitch =i

else if C'safetopass(fwdangle, at tangle, angle(carJ,

lane [carJ, laneU[i)
slowdown 1;

if((lswitch > -1) && (slowdown = )

oldspeed[carJ = v [car];

v~car] = v~lswitch);
following~car) lswitch;
lswitch =0;

else if(lswitch > -1)

113



lswitch = 1;
lane [car] 1 - lane [car];

else lawitch =0;
return(lawitch);

int needtopass(refer, angle, mylane, hislaie, myapeed, hisspeed)
float refer, angle, myspeed, hisspeed;
int mylane, hislane;

if((refer < (angle + .05)) kk (refer > angle) k
(hislane ==mylane) kk (myspeed > hiaspeed))

returnC 1);
else

return(0);

int safetopass(fwd, aft, angle, mylane, hislane)
float fwd, aft, angle;
int mylane, hislane;

if((fwd < (angle + .05)) kk (aft > (angle -. 02)) A
(mylane != hislane))

return(0);
else

return(l);

refangles(fwd, aft, me, him)
float *fwd, *aft;
int me, him;

if((angle~me] + .05) >= 1.0) &A (angle~him] < 0.06))
*fwd =angle~him] + 1.0;

else
*fwd = angle~him];

if((angle[me] - .02) < 0.0) kk (angle~him] > 0.98))
*aft = 1.0 - angle~him];

else

*aft = angle!Ihim];

seed()

long timer, 1;
int seed;

1 = time(&timer);
seed =(int)l;

srand(seed);
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/***************************************,****************************************

util.c

Module contains miscellaneous functions for the driving routines.

#include icars.hi

#include "carextvar.h

float normal(mean, sdev)

float mean, sdev;
{

int i;

float s = 0.0;

extern float frandomo;

for (i=O; i<12; ++i)

s = s + frandom();

s = (s - 6.0) * sdev + mean;

return(s);

computeangles(i, score, MYCAR)

int i, *score, MYCAR;
{

angle[i] = angle[i] + (v[i] - v[MYCAR]) * DT;

if (angle[i] > 1.0)

angle[i] = angle[i] - 1.0;

if (angle[i] < 0.0)
{

angle[i] = angle[i] + 1.0;
(*score)++;

I

int swap(a, b)

int *a, *b;
{

int c;

c =*a
*a =*b;

b= c;

return(1);
I

float frandom()
{

float x;

x = (float) rand() / 2147483646.0;

115



return(x);

I

int collision~i, NYCAR)

int i, MYCAR;

ifC((angle[i] > 0.9925) 11 (angle[i] < 0.0075)) k
(lane Ei] ==lane [MYCARD)

return(1);
else

return(0);
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drive. c

Module with netdrive() function to e1.low the network model to control
the car.

#include -net.h'
#include "cars .h'
#include "carextvar .h"
#include "netextvar.h"

mnt netdrive(I, NUNCARS, MYCAR, versicn)
mnt I, NUNCARS, NYCAR, version;

jint i;
float p;

if(NUMCARS == 3) /* then we're in the setups scenario with 2
adversary cars *

get2input3((v[MYCARJ / MAXVEL), (float)laneEHYCARJ, I);
else if(NUMCARS == 5) /* then we're in the continuous data scenario

with 4 adversary cars *
get4inputs((v[MYCAR] / MAXVEL), (float)lane[MYCARJ, I);

if(output[LANE] !=1.0 && output[LANE] n~ )
output[LANE] 0.0;

p z out put ILANE];
net(I, version);

if(fabs(output[LANE] -p) > 0.55)
output [LANEI -1.0-

else output[LANE] = p
lane(MYCAR] = (int)output[l];
v[MYCAR] = (MAXVEL + 5.0) * output[SPEED];
if~v[MYCAR] > MAXVEL) vIIMYCAR] = I4AXVEL;
return(version);
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weights .c

Module contains routines to save and retrieve weights from

files.

#include 'cars .h"

#include "net .h'

#include 'carextvar.h"
#include 'netextvar.h"

wtsave(fnane, coi"nt, 1, speed, lane)

char fnane [1;
int count, I, lane;
float speed;

{ extern FILE *fopeno;
FILE *dat;

mnt i, j, k, 1;

remove(fnaine);
dat =fopen(fname, "w");
if(dat == 0) exit(0);

for(j=0; j<(J*MAXVERSIONS); ++j)

fprintf(dat, 11713.10f ", thetaj[ji);

fprintf (dat, "\n");

for(k=O; k<(K*MAXVERSIONS); ++k)

fprintf(dat, "Y%13.l0f ", thetak~kJ);

fprintf(dat, "\n");

for(j=0; j<J; ++j)

fprintf(dat, "Y%13.10f ", oldhidwts[jJ);

fprintf(dat, "\n");

for(i=0; i<(I*MAXVERSIONS); ++i)

for(j=0; j<J; ++j)

fprintf(dat, 11%13.10f 11, wii[i));

fprintf(dat, *'\n,);

for(j=O; j<(J*MAXVERSIONS); ++j)

for(k=O; k<K; ++k)
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fprintf~dat, "Y.13.10f ", w2[j][k));

fprintf(dat, "\n");

f printf (dat,'"/.d '/6.4f %/d\n", count , speed, lane);

fclose(dat);

initial(fname, rawname, count, I, speed, lane)

char fnane [1 , rawnane [I]
int *counlt, I, *lane;
float *speed;

f extern FILE *fopeno;

FILE *dat;

int 1, j, k, new-flag = 0;

dat = fopen(fname, "r");

if(dat == 0)

printf("No previous weights file\n');

new-flag =1;

dat = fopen~rawnane, "r");

if(dat ==0)

printf('No raw weights file\n');

exit C );

for(j=O; j<(J*MAXVERSIONS); ++j)

fscanf(dat, "U~", thetaj+j);

for(k0O; k<(K*MAXVERSIONS); ++k)

fscanf(dat, "/.f", thetak+k);

for(j=O; j<J; ++j)

fscanf (dat, "%f ", koldhidwts [ji);

for(i=O; i<(I*MAXVERSIONS); ++i)

for(J=O; j<J; ++j)

fscanf(dat, "Yf ". kwl[ijJ);

wili] [ji =i iJ [(j)

for(j=0; j<(J*MAXVERSIONS); ++J)
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for(k=0; k<K; ++k)

fscanf(dat, "%f ", kw2[j)[kJ);

w2p~j] Ek] = w2[jJ Ek];

if( !new.A lag)
facanf(dat, "%d %f Yd', count, speed, lane);

else

*count = 0;
*speed = 0.0;
*lane = 0;
for(j=O; j<J; ++j)

oldhidwts[j] =0.0;

fclose(dat);
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net.h

Defines for network

#define J 20 /* Number of Hidden Nodes /*
#define K 2 /* Number of outputs /*
#define GOODENUFF .01
#define ETA 0.7
#define ALPHA 0.3

#define BETA 1.0
#define LANE 1

#define SPEED 0
#define MAXVERSIONS 2
#define NORMAL 0

#define CLOSEIN 1
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fourin.h

Sets network input size for four cars, continuous data

#define 1 42
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fourcars.h

Defines of number of cars for continuous data

#define NUMCARS 5

#define MYCAR 4
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car.h

Defines and Includes for the car programs

#include <stdio.h>

#include <math.h>
#include <time.h>

#define PI 3.1415926
#define DT .001

#define VOIDCAR -1

#define MAXVEL 15

#define DELAY 4000
#define CENTERX 325

#define CENTERY 400

#define LANEWID 20
#define LANEDIAM 170

#define END 180
#define TYPES 14

#define TIME-UP 8535
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carvare..h

Global car variable declarations

float v[NUMCARS]. angle[NUMCARS];

int lane[S] = {0,0,1,1,0};

int following(5] {-1, -1, -1, -1, -11;
float oldspeed[4] = {O.0, 0.0, 0.0, 0.01;
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netextvar.h

External global variable declaration for the network.

extern float input[], hidden[], oldhidden[l, output[], wl[[J(J, w2[J[K],
wlp[][3), w2p[3[ W, thetak[l, thetaj[], oldhidwte[J);
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carextvar .h

External Global Variable Declarations

extern mnt lane [I], following[];

extern float v[), angle[], oldspeed[l;
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