
DC-TR-90-3066

AD-A229 800

THODOLOGY FOR DEVELOPMENT AND VERIFICATION
FLIGHT CRITICAL SYSTEMS

De Feo/D. Mann

'ARTA, Inc.
3041 Avenida de la Carlota
iite 400
iguna Hills, CA 92653-1507

ctober 1990

DTICIELECTE I
inal Report for Period Jan 90- Jun 90-S D 1 0 11I

pproved for public release; distribution unlimited

LIGHT DYNAMICS LABORATORY
RIGHT RESEARCH DEVELOPMENT CENTER
IR FORCE SYSTEMS COMMAND
RIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

• • i I .

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the Un'ted States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

ANTHONY P. DeTHOMAS
Project Engineer Advanced Deve ent Branch
Advanced Development Branch Flight Control Division
Flight Control Division

FOR THE COMMANDER

H. MAX bAVIS, Assistant for
Research and Technology
Flight Control Division
Flight Dynamics Laboratory

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WRDC/FIGX , WPAFB, OH 45433- 6553 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

UNCLASSIFIED.

SECURITY CLASSIFiCATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Form Approved
)MB No. 0704-0188

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY CF nEPORTApproved for public release; distribution
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE unlini t.-d

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

WROC-FR-90-3066

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANI 7ATION
(if applicable) Flight Dynamics Laboratory (WRDC/FIGX)

ARTA_ Tn_,, Wright Research Development Center
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Codie)

23041 Avenida de la Carlota, Suite 400 Wright--Patterson AFB, OH 45433-6553
Laguna Hills, CA 92653-1507

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Same as 7a FIGXj____________ F3361 5-89--C- 3608
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Same as 7b ELEMENT NO. NO. NO. ACCESSION NO.

6SS02F 3005 40 52

11. TITLE (Include Security Classification)

Methodology for Development and Verific.tion of Flight Critical Systems
12. PERSONAL AUTHOR(S)

P. De FeofD. Mann
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Oay) 15. PACE COUNT

Final FROMJan TO Th.J._1990 1990, October 33
16. SUPPLEMENTARY NOTATION

This is a Small Business Innovative Research Program, Phase I report.

J7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if neces.sary and identify by block number)
FIELD GROUP SUB-GROUP VMS, Transputers, Architecture Evaluation, Preliminary

Design, Emulation

1.'-ABSTRACT (Contiue on reverse it necessary and identify by block number)
This project addresses the technology needs of Vehicles ManagEment Systems (VMS) during
the critical phases of architecture definition and preliminary design. VMS are flight
systems which are highly integrated for enhancing maneuvering performance, weapon delivery
and fault tolerance. SPARTA has developed and demonstrated a powerful and flexible rapid
prototyping environment, Transputer base Advanced Development Envirognent or TRADE, %t cre
VMS architectures can be rapidly emulated and evaluated. The envir nment includes a SLN
workstation and a network of transputers. Transputers are single chip ccnputers which
provide extensive processing and cammunication capabilities at very low cost. The environ-
ment enables the systen designer, via a graphic based User Interface (UI), to: 1) rapidlv
and easily modify the VMS architecture as well as the structure of the software cmlhedded
in each VMS processor and 2) control the entire environment. Evaluation tools which
address system level issues are also included in the environment, so that the relative
merits of competing architectures can be quantitatively evaluated.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIEDJNLIMITED C SAME AS RPT. C OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBCL

Dr. A. DeThomas (513) 255-8474 i RDC/FIX
D Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS P.'E

iJNC LA.-.' i~ J {i)

METHODOLOGY FOR DEVELOPMENT AND VERIFICATION OF
FLIGHT CRITICAL SYSTEMS.

PHASE 1 FINAL REPORT

TABLE OF CONTENTS

Page

1.0 PROJECT SUMMARY 2

2.0 STATEMENT OF NEEDS 2

3.0 PROGRAM OBJECTIVES 3

4.0 PHASE 1 OBJECTIVES 5

5.0 PHASE 1 ACTIVITIES AND RESULTS 6

5.1 TRADE HARDWARE CONFIGURATION 7
5.2 TRADE SOFTWARE CONFIGURATION 9
5.3 TRADE SIMULATION CAPABILITIES 10

5.3.1 BUS SIMULATION 10
5.3.2 FLIGHT SOFTWARE SIMULATION 1 1
5.3.3 COMMUNICATION AND SYNCHRONIZATION 12
5.3.4 EVALUATION TOOLS 13

5.3.4.1 VARIABLE LATENCY TIMES 14
5.3.4.2 BUS UTILIZATION MONITOR 16

5.4 USER INTERFACE 16 r

6.0 CONCLUSIONS 19 0
0

Distribution

Ava1lablilty Codes
-Vai1 a d/or

Dit Special

2

1.0 PROJECT SUMMARY

This project addresses the technology needs of Vehicle Management
Systems (VMS) during the critical phases of architecture definition
and preliminary design. VMS are flight systems which are highly
integrated for enhancing maneuvering performance, weapon delivery
and fault tolerance. SPARTA has developed and demonstrated a
powerful and flexible rapid prototyping environment, Transputer
base Advanced Development Environment or TRADE, were VMS
architectures can be rapidly emulated 'and evaluated. The
environment includes a SUN workstation and a network of
transputers. Transputers are single chip computers which provide
extensive processing and communication capabilities at very low
cost. The environment enables the system designer, via a graphic
based User Interface (UI), to: 1) rapidly and easily modify the VMS
architecture as well as the structure of the software embedded in
each VMS processors and 2) control the entire environment.
Evaluation tools which address system level issues are also included
in the environment, so that the relative merits of competing
architectures can be quantitatively evaluated.

2.0 STATEMENT OF NEED

Vehicle Management Systems (VMS) integrate flight control
functions, propulsion control functions and utility functions, to
achieve enhanced performance and mission and safety reliability.
VMS architectures are very complex, highly distributed, and perform
tasks with different levels of criticality. A generic VMS
architecture is shown in Figure 1. DoD and NASA have sponsored
several programs for identifying promising VMS architecture
configurations. Among them: 1) Design Methods for Integrated
Control Systems (DMICS), sponsored by the Air Force, 2) Highly
Integrated Digital Electronic Control (HIDEC), sponsored by NASA,
and 3) Integrated Airframe/Propulsion Control System Architecture
(IAPSA) also sponsored by NASA. These programs, and other
programs funded with IR&D money, have all identified critical
technology needs in the areas of design and evaluation of VMS
architectures. A most critical technology need exists in the area of
tools and techniques for supporting the early system development
phases, including requirements definition, specifications and

3

preliminary design. These tools are needed for establishing
feasibility, defining the specifications, and quantitatively
evaluating the relative merits of competing architectures, prior to
starting the detail design work. Examples of the critical Figures Of
Merit (FOM) of alternate configurations include: 1) the distribution
of the overall computational load among the VMS processors; load
distributions which result into even duty cycle for each processors
are one important design goal, 2) the complexity of the architecture
as is reflected, for instance, by the interprocessors data
communication requirements; architectures which minimize data
distribution requirements and evenly distribute those requirements
among all available resources, can increase the operational
reliability of the system, reduce the life cycle cost, and can support
algorithms with high dynamics content, 3) the level of partitioning
which is provided among functions with different levels of
criticality and the validation of partitioning, 4) Failure Detection,
Isolation and Reconfiguration (FDIR) issues like the fault coverage,
the time required for fai(ure isolation and reconfiguration and the
reconfiguration capabilities, 5) the statistical distributions of
computational delays and transport lags within the network; uniform
distributions result in predictable system dynamic performance.

The technology currently available for supporting those tasks is
rather limited, at best. The same technology needs are not limited to
digital flight systems but they are common to many military and
commercial applications which require highly distributed processing
architecture for performing critical real time tasks. Examples of
such applications are the control of nuclear reactors, integrated
Guidance, Navigation & Control of space vehicles including the Space
Station, and many others.

3.0 PROGRAM OBJECTIVES

SPARTA approach for addressing the critical technology needs
previously described is to develop a Transputer based Advanced
Development Environment (TRADE) where VMS architectures can be
easily and rapidly prototyped and critical performance parameters
and FOMs can be credibly and quantitatively evaluated. SPARTA has
developed a core implementation of TRADE, Phase I TRADE, for
feasibility demonstration purposes. Phase I TRADE is discussed in
detail in the following sections of this report. In the final

4

configuration TRADE will include a workstation linked to a network
of transputers. A transputer is an advanced single chip computer
which provides extensive processing and communication capabilities
at very low cost. Transputer technology makes it cost effective to
emulate complex architectures by mapping each embedded processor
into one dedicated transputer. Within the TRADE environment shared
resources, like communication busses, will also be emulated in
dedicated transputers. Critical characteristics of the embedded
flight software will be simulated in each transputer including the
real time software structure, I/O processes and synchronization
algorithms. The software simulation could be step-wise refined as
the VMS software design evolves. TRADE will use off-the-shelf
software development environment targeted to FORTRAN, C and ADA,
as the embedded languages, so that the effects of specific language
constructs, like Ada tasking in the case of ADA, on synchronization
and timing can be properly evaluated.

TRADE will include a variety of tools which support the evaluation
process of the VMS architecture including tools for: 1) evaluating
duty cycles of processors and communication links, 2)
demonstrating partitioning, 3) measuring the time to detect failures
and to reconfigure, 4) measuring statistical distributions of time
lags and transport delays. TRADE will have the hooks and scars for
hosting additional evaluation tools as needed. The tools will be
hosted in the SUN workstation and will require some
instrumentation of the transputers software.

An important element of TRADE will be an advanced User Interface
which will be implemented in the host workstation and which will
provide the VMS designer with a Macintosh like graphical interface.
The User Interface will support: 1) arranging the transputers in a
variety of architectures, including redundant architectures, so that
the user will not be required to change or rearrange computer boards
every time a new target architecture must be emulated; 2)
simulating a variety of rea! time software structures by simply
selecting, from a menu of options, different structures and/or
parameters 3) emulating a variety of bus protocols from a library of
available protocols. Additional protocols could be easily added as
required; 4) controlling and managing all aspects of the evaluation
environment including selecting the evaluation tools, the set of test
data, the duration of the test and the display of the results.

5

All capabilities provided by the TRADE environment are generic in
nature, and therefore they are broadly applicable to any application
which requires distributed computing architecture for performing
time critical functions. An example of such applications is
industrial process control, like the control of nuclear reactors,
continuous industrial process such as paper making, metal/plastic,
rubber sheet forming, flight systems for commercial aircraft, and
space -ystems.

4.0 PHASE 1 OBJECTIVES

The objectives of Phase 1 of this program are:

1) To establish the feasibility of the approach. SPARTA successfully
established the feasibility of the approach by developing and
demonstrating key critical features of TRADE.

2) To identify solutions to all issues which could not be directly
addressed under the limited Phase 1 effort. SPARTA has identified
promising solutions to all critical issues which could not be
demonstrated in this phase of the program because of the limited
available resources.

3) To formulate the Phase II plan including cost estimates and
schedule. SPARTA has defined in detail a development plan for
TRADE which is cost effective to the Government and presents no
technical risks. The plan effectively draws from the results of
Phase I of the program.

In summary all Phase I objectives have been achieved. Specifically,
the feasibility of the proposed approach was demonstrated by
actually implementing most of the technologically advanced aspects
of TRADE rather than simply performing a paper study. SPARTA is
confident that a Phase II program will be very beneficial to the
Government and can be carried out with minimum risks. SPARTA is
committed to support this program with internal funds beyond the
Phase II so that a versatile product for military and commercial
applications can be developed and marketed.

6

5.0 PHASE I ACTIVITIES AND RESULTS

SPARTA has developedPhase I TRADE which includes critical elements
of TRADE. Phase I TRADE has been implemented using transputer
technology, for the purpose of demonstrating the feasibility of the
proposed approach. SPARTA have combined the flexibility of a SUN
workstation interface with the distributed processing power of a
transputer network to provide a dynamically configurable, real time
hardware simulation environment of VMS architectures. A functional
diagram of the system is shown in Figure 2.

The SUN performs the functions of Host Computer for the graphic
based user interface, the embedded software development
environment and the evaluation tools. The user has full control of
the TRADE environment from the SUN.

Transputers are a product of INMOS, a British company with a large
representation in the US. Several US and foreign system houses have
used INMOS transputer chips for building single board processors and
providing integrated computing and communication environments.
The technology, however, as previously stated, is state of the art
and even integrated products require significant software
development to provide basic services. TRADE use a transputer
environment developed by Topologix, a US system house, which
includes four INMOS transputer chips (T800 model) in a single board
and which provides an integrated software development
environment. SPARTA does not intend to use Topologix technology in
the Phase II of this program, as further discussed later in this
report.

Within the TRADE network one transputer processor (T800) performs
the function of embedded bus simulator. It controls the network
topology and establishes the baud rate in response to user commands
from the SUN station. A "1553 like" bus protocol is currently
implemented in TRADE. The remaining T800 transputers emulate
embedded processors within the VMS architecture. TRADE provides
the user with the capability of rapidly prototyping the structure of
the real time software hosted in each transputer. Specifically,
multirate real time execution structures can be achieved by: 1)
implementation of executive logic trees, which direct execution to

7

alternate paths based on the required frequency of execution, or 2)
by a table structure where each entry in the table represents a
module to be executed and all entries are sequentially executed. The
user can easily select either structure and all required parameters
by using the handles provided by the user interface. TRADE
transputers, like the embedded processors in VMS architectures, can
execute synchronously or asynchronously with respect to each other.
Synchronization within the Transputer network is i/O driven, as it is
further elaborated later in this document.

All TRADE configuration parameters can be, easily selected by the
user which only interacts with the SUN workstation via a "Macintosh
like" graphical interface which was implemented utilizing X-
Windows software.

During the set-up phase, the user configures the transputer network
by utilizing the handles provided by the User Interface. User
commands are routed from the SUN to the transputer network which
automatically configures itself in response to the user's commands.
Once that the transputer network is properly configured, the user
initiates real time execution phase by pressing the start button on
the SUN set-up screen. The simulation stops automatically after an
user selected amount of time has elapsed. Simulation results, like
bus utilization and timing distributions, are periodically updated on
the control panel as the execution progresses.

TRADE is currently implemented in a distributed workstation
environment as shown in Figure 3. The transputers resides in the
VME chassis of a SUN 3/160 workstation which is connected to the
rest of the network through an Ethernet Bus. The distributed
network approach allows for the development and operation of the
simulation from any computer on the E thernet. The X-Windows
based User Interface is transportable to the VAX and therefore
TRADE can be controlled from that workstation.

5.1 TRADE hardware configuration

TRADE is currently implemented with 4 INMOS T800 transputers
installed on a Topologix T1000 mother board which is connected to a
SUN 3/160 through a VME Bus. Each T800 processor is a complete
computer which includes CPU, floating point unit (FPU), 4

8

communication channels (interlinks) and 4 KB of memory within one
VLSI package. 4 Mbytes of external memory is added to each
transputer via the memory interface. The architecture of the T800 is
shown in Figure 4. SPARTA ran several benchmark programs for the
CPU and the FPU and clocked the processors at 5 MIPS and 600
KFLOPS respectively, which is less than the nominal speed.

The unique features of the T800 processors are the 4 interlinks.
These direct memory access (DMA) channels operate asynchronously,
in parallel, at very high rate (20 Mb). Communications on one channel
do not significantly impact either the CPU or any other channels.
Interlinks are dual ported and provide point to point communications.
The most common use is that of connecting pairs of T800. They can
also connect a T800 to a serial latch chip (IMS CO11/12), another
INMOS product, which in turn can interface with such external
devices as Analog to Digital (A/D) converters, Digital to Analog
(D/A) converters and others.

The four TRADE T800 processors are tied together on a Topologix
T1000 VME board (Figure 5). The board can be connected to numerous
other T1000 boards to form a large network capable of emulating
even the most complex VMS architectures. Transputer pairs can be
directly interlinked, as previously discussed. The key to the
expansion capability of the network is, however, the C004 Link
Crossbar Switch, another INMOS product, which can dynamically
interlink T800 pairs or link T800 to other devices like the C011/12
link adaptor. The current TRADE configuration includes the crossbar
switch but not the link adaptor. The CO11/12, or equivalent link
adaptors, will be considered for inclusion in the TRADE environment
during Phase II of this effort, to provide the flexibility of
interfacing TRADE to external equipment. The current TRADE
configuration does include, however, the C004 programmable switch
which is controlled by the T212 network controller which in turns is
controlled by the operating sycitem on the SUN. The T212 can only be
programmed during the booting process. As a result it is necessary
to reboot the T1000 every time that a new VMS configuration must
be evaluated. This limitation will be removed during the Phase II of
this program because TRADE will utilize a more advanced transputer
system than that currently used.

The Topologix T1000 board is installed on the VME bus of a SUN
3/160 workstation. Only one T800 (transputer A in Fig. 5)

9

interfaces directly to the VME bus. The other T800s must go through
processor A to access that bus. This limitation will also. be removed
during Phase II of this program.

5.2 TRADE software configuration

In the TRADE environment, the SUN workstation cor.municates to the
T800 transputers through LogixOS, an operating system developed by
the Topoloc;x Corporation. LogixOS is a UNIX like real time operating
system which is stored in each T800 and supports parallel
processing. LogixOS is integrated with the UNIX environment on the
SUN workstation and thus it provides an integrated development
environment for the T800 software which includes a T800 compiler,
a rather primitive debugger, booting, memory allocations, etc.
LogixOS also provides some basic real time services like "read" and
"write". One significant short coming of the LogixOS package is the
lack of a source level debugger which controls execution of the T800
programs and monitors the communications and messages among
processors. The lack of such debugger made the debugging of the
TRADE software a very laborious task which was only supported by a
primitive break point insertion capability. SPARTA is convinced
that the software development environment for Phase II of this
program must include a source level debugger.

Communication between TRADE processors is performed utilizing
the LogixOS services previously described. LogixOS provides bus
level and network level communications.

Bus level communications have minimum overhead; data is sent down
a DMA channel without regard for which processor is connected at
the other end. The programmer, however, is required to implement
the necessary low level functions including controlling the routing
between the communicating processors and managing the
handshaking between sender and receiver. Message routing is not a
simple task in the case of complex network and it may require to
relay data through several processors. Also The sending processor
cannot continue (will block) until the receiving processor takes the
incoming data. While bus level communications requires some
programming overhead, the speed makes it a candidate ior
communication in Phase I1.

10

TRADE utilizes network level communications. With this method,
communications messages are routed from processor to processor
(rather than data channels) until the destination processor is
reached. Background mail daemons in each T800 determine the
optimal communication path upon receipt of the data and the
attached destination address. Network level communication is very
easy to program. The system overhead, however, is much larger than
for bus level communications. LogixOS has a high overhead (600. pgs)
because it does not build a topology data base and because it
implements the system calls in "C". Other operating systems, like
Express, have much smaller overhead (100 psec.) because they use a
topology data base for determining the best routing and implement
the calls in assembly.

5.3 TRADE simulation architecture

TRADE simulation environment includes: 1) VMS bus, 2) embedded
flight software, 3) synchronization and communications, 4)
evaluation tools and 5) user interface. Each component is further
discussed

5.3.1 Bus simulation.

In TRADE we have implemented a bus e-,ironment which simulates
the functions of the Remote Terminal (RT' and Bus Controller (BC) of
the 1553 bus protocol. The BC, and the actual bus, are simulated in
the T800 bus simulator. All other T800s are simulated as RTs. Data
transmission starts with one RT processor requesting the BC for
access to the bus. If the bus is free a confirmation message is sent
to the RT and data is transferred from the originating RT processor,
through the bus simulator, to the destination processor, which is
another RT. If the bus is busy, a denial message is sent to the RT
which waits for a user adjustable interval of time and then makes
another bus request. The BC calculates the message transmission
time based on the length of data to be transferred and the bus baud
rate. The receiving TR gains access to the data after the
transmission time has elapsed. The BC also tracks and reports bus
utilization data.

11

The bus structure is specified by the user from a file in a table
format as shown in Figure 6. The first column in the table
represents the bus identifier number. Each remaining column
represents a unique processor which can be either the bus BC (-1
designator), an RT (1 designator) or not connected to the bus (0
designator). In this example a pipeline structure is specified. There
are two buses, 0 and 1. Bus 0 connects processors 1 and 2, while
bus 1 connects processors 2 and 3. With this method bus topologies
can be rapidly changed by loading a new bus specification file. The
number of processors required to simulate a bus depends on the
number of processors connected to the simulated bus.

5.3.2 Simulation of embedded flight software.

TRADE provides the capability of easily and rapidly prototyping
flight software embedded in each processor. The structure of the
programs, execution times, parameter updates, and communication
requests are specified in a processor format file (PFF). There is one
PFF per each processor. An example of PFF, for processor 1, is shown
in Figure 7. The software includes 6 tasks, task 0 through 5 (column
1). The table shows the order of execution of the tasks (0, 1, 3, 0,
etc.). After the last task (task 5) of the sequence is executed, then
control is transferred back to the first task of the sequence (task 0)
and the entire sequence is executed again. The process is repeated
until the user interrupts the execution. Task 0 is executed four
times in the sequence, the highest execution rates of all tasks,
because it includes the processor 1 functions with the highest
dynamic content. Tasks 1 and 2 are executed twice; their algorithms
have less dynamic content than those of task 0. Tasks 3, 4 and 5 are
executed only once in the sequence. They have the lowest dynamic
content. Task 5 represents low priority, interruptable, background
activities, with no real time consequences. In column 2 the number
of variables which are updated in each tasks are shown. Tasks 1, 2
and 3 update one variable each; tasks 0, 4 and 5 do not update any
variables. The estimate of the execution time of each task in the
target processors are shown in column 3. The execution time of task
0 is estimated to be 5 msec. In column 4 the destination processor
is shown for the data updated in processor 1 (a negative number
means that the data is not sent to any processors). The ID of the bus
used for data transmission is shown in column 5. Finally in the last
column the source processor is shown for data which may be

12

required by the tasks executing in processor 1. A negative value
indicates that no data is needed.

The PFFs drive the execution sequence in each T800 processor. When
the simulation is initialized, each processor reads its PFF. At the
start of a new task, each processor first checks if data is to be sent.
If so, a data message is formed and a bus request is made to the BC.
Program execution in that T800 stops until the bus is available.
Next the processor receives data if so specified in the PFF. The
mechanism for each T800 to get access to data from other
processors is explained later. Finally, the program enter a wait loop
of duration equal to the estimated execution time in the PFF for that
task. In Phase II of this program the facility of simulating the
embedded flight software will be provided.

Each parameter that is generated is marked " a global time
stamp. This stamp is passed with the data between processors and
is used to measure the age of the data. During the instruction step
when data has been received the age of the variables are recorded.
These ages or delays are transformed into a histogram and passes to
the host computer for user evaluation.

The PFF structure implemented in TRADE is a powerful tool for rapid
prototyping the execution sequence of the flight software. In Phase
II the PFF structure will be enhanced so that different tables can be
made "active" for each processor based on the status of logic
variables. Then the structure of the software executing in each
processor can be changed in real time. This allows for simulating: a)
the different execution paths in the flight processors due to flight
conditions and control mode switching, and b) software
reconfiguration due to failures.

5.3.3 Interprocessors communications and synchronization.

Interprocessors communication are supported by the "mail daemon" a
LogixOS background process hosted in all T800 processors. When one
processor "send" data to another processor, the data is initially
stored in the mail daemon First-In-First-OUT (FIFO) buffer of the
receiving processor. "Send" is an "unblocked" instruction because
program execution resumes immediately after execution of "send".
In the receiving processor, the data is transferred from the FIFO

13

buffer to memory by executing a "receive" instruction. "Receive" is a
"blocked" instruction because program execution can only resume
after the data is actualiy available in the FIFO buffer.

TRADE utilizes the data exchange facility of LogixOS for
synchronizing pairs of processors. For this, in both processors a
"send" instruction is immediately followed by a "receive" instruction
(Figure 8). Processor A executes the "send data to B" instruction.
Next A instruction is a "receive data from B". Because the data from
B is not available yet, A puts itself into a waiting loop until that
data is available. Finally processor B executes the "send data to A"
instruction and immediately afterwards executes the next "receive
data from A" instruction. At the same time A can also execute the
"receive data from B" instruction, and synchronization is achieved. A
limitation of this approach is that it works for only 2 processors. In
Phase II, SPARTA will develop a synchronization technique based on
unblocked broadcast instructions which will provide a mean of
synchronizing more than two processors. The technique will be used
to simulate broadcast interrupts issued during the background task.

During Phase II of this program SPARTA intends to develop and
evaluate another approach for synchronizing T800 processors based
on time interrupts issued by the BC which is hosted in the bus
simulator.

5.3.4 TRADE evaluation tools.

In its final configuration TRADE will include a variety of tools to
primarily address architectural and design issues. The tools will be
hosted in the SUN workstation and may require special
instrumentation of the simulated target software. It is anticipated
that TRADE will effectively support a variety of applications which
require distributed processing architectures. TRADE will need then
to be tailored to reflect the specific requirements of the products
supported and those of the user development environment. In any
case, TRADE is not expected to be a static environment. On the
contrary, as the user becomes more familiar with the capability of
TRADE, he will most likely discover the need of special tools that
hewishestohave integrated within the TRADE environment. All this
leads to the need for TRADE to provide an environment which can be
easily modified and new tools accommodated. This is one of the

14

reasons why SPARTA decided to use a SUN workstation as the host
computer of TRADE. The SUN workstation with a VME based
transputer system provides the greatest flexibility for future
expansion and product support.

During Phase I of this program SPARTA has developed, and integrated
in the TRADE environment, two tools for evaluating critical figures
of merits of the target architectures. The tools are clearly not in
their final version, and still much work needs to be done to improve
their performance and ease of use. The tools, however, demonstrate
the feasibility of the approach because they required the
implementation of some critical functional capabilities.

5.3.4.1 Variable latency.

This tool computes the latency of user selected variables as the
difference between the time the variables are used in one processor
and the time the variables were last updated in another processor.
Latency time of each variable varies every simulation execution
cycle as a function of many factors including bus utilization and
computational skewness between the processors (the time
granularity of the T800 is 64. lpsec.). As a result, at the end of a
simulation run, the latency time of each variable is an histogram,
rather than a single value. Of particular relevance to VMS
configuration is the definition of the highest latency values during a
simulation run. High values are not desirable because they decrease
the stability of control loops and limit the dynamic content of the
embedded algorithms.

The implementation of this tool requires the establishment of a
global time which is common to all processors, so that the time
tagging process is independent from the processor where tagging
takes place. Each processor has its own clock, and therefore, its own
time. Time zero within a processor is defined by LogixOS when the
node is booted. The nodes are booted from the host in a serial
fashion which results in time offsets among the processors equal to
the time it takes to boot a node (Figure 9). For the Topologix
operating system (used in Phase I) this offset is on the order of 20
seconds; other Operating Systems, like Express, require much less
time to boot (about 1 sec) and generate correspondingly smaller
offsets. In any cases, the time offset among all processor pairs

15

must be either eliminated or accurately determined so that the
effects can be properly biased out.

In the TRADE environment the clock time of one processor, called
reference processor, is arbitrarily chosen to represent the network
global time. All other processors estimate their offset from that
global time. The process of determining the time offsets is called
"time registration" which is a timed handshake process. The time
offset is estimated by timing the response of a remote processor to
a "send time" request from the reference processor (Figure 10). The
reference processor first records its own global time (tG1) and
immediately requests the local time from a remote processor. As
soon as the remote processor receives the request, it records its
own time (tL2) and returns a copy of it to the reference processor.
Finally the reference processor records the time that the response
is received (tG3). The reference processor can then estimate in
global time units when the remote processor recorded its own time
(tG2):

tG2 = (tG3 + tG1)/2

The time bias (tb) between the two processors can then be
estimated by:

tb = tL2 - tG 2

The same process is repeated throughout the network so that each
processor has an estimate of its own offset with respect to the
global time. This process proved to be very accurate and repeatable
among all combinations of the 4 available processors. The
handshake time (tG2) was determined to be equal to 1.3 ms in all
cases.

During the Phase II of this program an alternate method will be
implemented and evaluated for synchronizing the clocks. In this
method all clocks will be initialized to zero when a global interrupt
is given. An interrupt timing scheme poses a communication
challenge in a mesh network environment, like that of TRADE. In
fact, transputers utilize dual port communications which prevent
the implementation of broadcast interrupt which are simultaneous
to all processors (Figure 11). In the TRADE environment a cascaded

16

interrupt is utilized to broadcast a message. An arbitrary processor
is chosen to start the process. It sends the interrupt to its
immediate neighbors which then record the local times and
immediately send another interrupt to their neighbors, and so on
until all processors have been interrupted. The time offsets among
processors is expected to be negligible and certainly well within the
clock granularity. The relative merits and weaknesses of the two
methods, the time handshake and the cascaded interrupt, will be
evaluated during Phase II of this program.

5.3.4.2 Bus utilization.

In VMS configurations common resources like communication busses
are shared by many processors which typically perform functions
with vastly different dynamic contents and levels of criticality.
Architectures which require high frequency interprocessors
exchanges of large volume of data put high demand on the bus
bandwidth. This is not desirable because high bandwidth utilization
increases the system failure rate, increases the life cycle cost,
induces instability in high dynamics control algorithms, and reduces
the capability of system growth. Bus bandwidth utilization is
therefore a critical FOM of VMS architecture which must be properly
estimated and evaluated. Bus bandwidth utilization is not constant
with time but varies as a function of flight control modes, flight
conditions, and more generally, as a function of the program paths
executed each frame. It is important to determine the statistical
distribution of bandwidth utilization so that the conditions of peak
demands are identified and evaluated.

TRADE includes a core implementation of a tool for identifying and
displaying bus utilization. Bus utilization is measured by the BC. A
percent utilization is displayed for each bus in the users control
panel which will be described in the next section. Bus utilization is
defined as the ratio between the time data is actually transferred
through the simulated bus, to the total run time of the simulation.

5.4 User Interface (UI).

The TRADE user can manage and control the entire simulation
environment through a graphical interface running on a SUN
workstation. The SUN is part of an Ethernet based distributed

17

workstation environment. The Ul program is written using X-
Windows so that it provides a "Macintosh like" look and feel. Any
workstation in the network can remotely operate the simulation.
Furthermore, since X-Windows is an open standard, the simulation
can easily be ported to other workstations such as VAX, Hewlett-
Packard, or Apollo. The current TRADE Ul is rather basic and provides
limited capabilities only. It does demonstrate, however, the
feasibility of the approach and gives a feel of the capabiiities which
can be implemented using the powerful graphic environment of X-
Windows. TRADE UI will be much enhanced during the Phase II of this
program.

The UI includes two panels: the control panel and the display panel
(Figure 12). The typical user course of action includes: a) simulation
of the architecture, b) simulation of the embedded software
structure, c) invocation of the evaluation tools, d) running the
simulation, and e) displaying the results. Each action is discussed
further in the following paragraphs.

Simulation of the architecture. The User selects the bus
topology among the options provided under the "Processor topology"
heading of the control. TRADE currently includes two topologies:
pipeline and shared bus. These two topologies are selected by
clicking the mouse in the appropriate check boxes. The chosen
topology is graphically displayed in the topology window. In this
example, the shared bus structure has been chosen.

Simulation of the embedded software structure. The user
specifieq the embedded program architecture by creating PFFs, one
for each T800 in the network. The current Ul allows the user to
preset PFFs and to group them into directories. Each directory
includes four prespecified PFFs, one for each of the four T800 in
TRADE. The user can select, edit, and create directories and PFFs by
pressing the "Load Processor" button in the control panel. After
properly configuring the PFFs, the user can load the software in the
respective processors by simply clicking on the "LOAD" button (not
shown in Figure 12). At this point, the entire simulation has been
configured and is ready to run.

Invocation of the evaluation tools. The user can select: a)
which variables to monitor relative to time latency, b) which bus to
monitor relative to bus utilization.

18

The user is able to tailor the simulation with three groups of
controls. The first group, "variable selection", allows the user to
select which parameter to track during the simulation. The
generating processor ID is entered for the node number and the
parameter ID number is entered for the variable number. These
values are placed in a global register for use by the embedded
programs during operation.

The second group, "histogram controls", allows the user to control
the histogram of time latencies of critical variables. The maximum
and minimum delay values of the histogram are set with two slide
switches. Because the histogram has a fixed number of bars, the
minimum and maximum values also sets the resolution of the
histogram. This method allows the user to pan and zoom the time
delay of the variable of interest.

The third group, "system overhead", allows the user to insert two
overhead values into the simulation: the process and the
communication overhead. The process overhead is a delay value
added to each of the processor tasks defined in the process
specification table. This allows the user to simulate system
overhead induced by the real time executive hosted in each TRADE
processors. The communication overhead is a delay inserted at the
beginning of each message passed between processors. This allows
the user to simulate the communication overhead generated by the
the bus protocol.

Running the simulation. After all Simulation parameters have
been properly set the user can initiate the execution of the
simulation. Execution is initiated and terminated by toggling the
start/stop button in the right center of the control panel. During the
simulation, the current frame number of processor 1 is displayed in
the upper right hand corner of the display panel. By default, the
simulation will stop after 1000 frames have been executed.

Displaying the results. The average bus utilization during the
entire simulation run is computed by the BC. Bus utilization and the
histogram of variable latency time are passed to the UI program
after the simulation execution is halted. The bus utilization is
displayed as a percentage in the upper right hand corner of the

19

control panel. The delay histogram is plotted in the lower right hand
display window.

6.0 CONCLUSIONS

All the key objectives of the Phase I program have been achieved and
successfully demonstrated. Specifically we have demonstrated that
it is feasible and cost effective to develop TRADE, a rapid
prototyping facility of VMS configurations by utilizing transputer
technology. SPARTA has achieved the objectives by developing Phase
I TRADE which integrates many of the critical requirements of that
environment. Phase I TRADE is just a core implementation of that
environment. During Phase II of this program SPARTA plans to
develop a prototype version of TRADE, PHASE II TRADE, and during
Phase III of this program, which will be internally funded, a
production unit of TRADE will be developed. Phase II TRADE will use
a set of hardware and software different from that of Phase I
TRADE. Phase I TRADE utilizes resources available at SPARTA at no
cost to the Government. The full set of capabilities which will be
included in the final product will be developed and integrated in
Phase II TRADE. Phase II TRADE will include a fully validated Ada
software development environment for simulating the target
software. It will also include a fully developed simulation
capability, analysis tools including code instrumentation facility
and fault insertion mechanisms, and a graphic oriented user
interface. Phase II TRADE will be delivered to the Government and
will be configured to emulate a VMS configuration which will be
jointly selected by the Government and SPARTA. The attached Phase
II proposal further elaborates on the Phase II objectives.

20C

LU

m~ (AI0

0

U)

zz

w 0 LL

m z - - -o Z I-

zc z

aC.0-U

21

0 0

3U.) (3
u L L
0~U F
a: D
CLU< C

Z < Uacf

a:Z 00 0

z: 0 V U O
Li H0 <EtX a LLu

a:x a: <

H 000u
F-~~ H- J J-

LUH I.LU
0

D (-1 --

0 -'

LL- LuV L n

F- H< a_(cr LL

w 0 0<~
LO>-- L- H CD

0)i 0 c- ,

0 06 i
0 z :ZU

<< -00 U) ! @0 <

< <a< <<<

0 j - L. H- co

ix C!) C!)! **

Li- HH s CC4

I H H

ui 0-

0 LL. z
< i I Lii

z 0
L FH

CLo~ 0

0 vH

LLii

za

Lii

a-

LU

23

C,,

WI.-

I-L

0 w
Un.

cwn

C.) (IL C.

5 75

S V)

0 .u Cl) f nM
t-0 I-z

-. J <In CV

'tin

cc*~ >-
v v LC M

24

SYSTEM T1
NETWORK SYTM-M
LINKS TO NEWR INEFC
OTHER <OTOLE
BOARDS CNRLE

TRANSPUTER - - ______

NETWORK 00DA

LINKS TO<
OTHER U
BOARDSV1

90D0750

FIGUR 5.TPT8IXP 00 RBADACIETRE

25

-0

r4fww

wL 0

0) u

= Cr
I-

CE 0
C-) -V I

- 0 LL-

LL =

U
UI

IL

cou a~

26

PROCESSOR FORMAT FILE (PROCESSOR 1)a

x Task #Uars Time(mms) Send node Send Bus Receive

0 0 5,000 -1 0 -I

I 1 10,000 -1 0 -1
3 1 15,000 -1 0 -1

0 0 5,000 -1 0 -1

2 1 25,000 -1 0 -I

0 0 5,000 -1 0 -I

I 1 10,000 -1 0 -1

4 0 15,000 -1 0 - I
0 0 5,000 -1 0 -1

2 1 25,000 -1 0 -1

5 0 80,000 2 0 2

TASK 0
0 TASK 1

N= I,3 N=2,4 TASK 3
TASK 0 FRAME
TASK 2

TASK 0
N= I N=3 TASK 1

TASK 4

LOGIC TREE 2 TASK 0
N=l N=2 TASK 2

N=2 N N=3 BACKGROUND
H=4 IN=1 2,3 N 3 N=4

NH=4 -N=I

BKGRO

FIGURE 7, PROCESSOR FORMAT FILE

27

PROCESSOR A PROCESSOR B

SEND
RECEIVE WAIT

SEND
RECEIVE RECEIVE

t t

FIGURE 8. DUAL PROCESSOR SYNCHRONIZATION

GLOBAL TIME
(PROCESSOR A) I I

0 10 20

PROCESSOR B A

0 10 20
t

At
PROCESSOR C IB

0 10 20
At c

PROCESSOR D I C I ,
I I Iw

0 10 20

A t - ESTIMATED REGISTRATION OFFSET

FIGURE 9. TIME REGISTRATION OF AUTONOMOUS PROCESSORS

28

REFERENCE PROCESSOR REMOTE PROCESSOR

MESSAGE
PASSING

GET
t1 REFERENCE

tG1 TIME

SEND REMOTE RECEIVE
TIME REQUEST TIME REQUEST REQUEST

I
GET LOCAL

G2 TIME tL2
tL2

IL

RECEIVE 4 SEND

tL2 TIME RESPONSE tL2L22

I
GET

_ REFERENCEtG3 TIME

t3

ESTIMATE
TIME

OFFSET

TIME TIME

90/DM0705-01

FIGURE 10. GLOBAL TIME REGISTRATION

29

0~0

DD

cr

zz

0 0 0

Hr u

LUL

LI-

30

)t ?t

73 10 E

ac <
a U 2 0

2 s 0j

o o0 I

.C o2 0

0 .0lL

Ecc

IIn

7 101

- 00

00 00

uw 00 0
o nfl

31
.u 0

a~vrmn flfitn -C 0s

