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Semiannual Report (April-September 1990)

// OPTICAL NEURAL NETS FOR SCENE ANALYSIS

1.2 APPROACH

Our approach is hybrid and multidisciplinary. We marry pattern recognition and neural
net techn'ques. We also marry optical and digital technologies. A hybrid neural net thus
results. We also concentrate on the use of one basic hybrid architecture that is useful for
implementing various optimization and adaptive neural nets. Our work thus distinguishes
between these two general classes of neural nets (optimization and adaptive) with both being
realizable on the same basic hybrid architecture. IK,, r "/., Y .-( .... .

1.3 SUMMARY OF NEURAL NETS (NNs) CONSIDERED - -

The seven neural nets we have considered are now briefly summarized.
/
/

The input neurons to the production system NN are facts (antecedents and consequents).
Objects and object parts are used in our initial work. Surface types f~r object parts (cylinder,
sphere, valley, ridge, etc.) can also be used in future work. The objects are typical of those
present in various scenes. The weights define the rules. These are initially posed as if-then
statements, with all rules written as the AND of several antecedents and the OR of several such
sets of antecedents. The output neurons that fire represent the new facts that are now learned to
be true. As the system iterates, it learns new rules and infers new results on the present input
data. We initially consider a propositional calculus system (with all parameters being exact
terms) and then plan to address a predicate calculus system (with parameters being variables)
that is much more powerful.

The E input neurons in our mixture NN each correspond to the fractional amounts of E
elements present in a mixture of elements within one region of an input scene. The outputs from
two matrix-vector multiplications are combined to form the new neuron states. After a number
of iterations, the final neuron states denote the fractional amount of each element present in the
input mixture.

The matrix inversion NN produces the inverse of a matrix that is given to the processor.
To calculate the inverse X of a matrix q, we realize that QX = 1. We formulate the solution
(the elements of the inverse of Q) as the minimization of an energy function . We solve for the X
that minimizes the energy function on a neural net. The matrix elements (weights) in this NN -

have an attractive block Toeplitz form and thus acousto-optic (AO) architectures should be very
suitable for implementing this NN. This represents the first AO NN. Since matrix inversions
are required in many pattern recognition linear discriminant function designs and in most
adaptive algorithms, this NN should have general computational use in image processing (as well
as in adaptive radar, control, etc.).

The cubic energy NN for MTT takes mea-surements on objectrs in each of three frames and
it, a.ssigns one target per measureinen t and time frame. This is useful for time seque, ntial scen ......

andysis to aLssociate objects (or object parts) i several time frames.

/ ' "
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The quadratic energy MTT NN is a simplified version of the cubic energy NN. It processes
pairs of time frames. The resultant optical architecture is much simpler than the cubic energy
NN and significantly reduces component requirements.

The symbolic NN combines a symbolic correlator, production system NN, feature extractor
and image processing NN. Its major advantage is the ability to process multiple objects in the
field of view (this is achieved by the symbolic correlator). No other NN has this ability. It
outputs a symbolic description of each region of the input that denotes which generic shapes are
present and their location. These data are then symbolically encoded and fed to an NN. The
NN is unique because of its symbolic input neuron representation. Alternatively, the locations of
regions of interest in the input scene are used to guide the positioning of window functions (for
segmentation) from which input features are extracted and subsequently fed to an NN for object
classification. These NNs again combine pattern recognition and NN techniques.

The adaptive clustering NN is our major effort. The input neurons are features, the hidden
layer neurons are prototypes of the various classes of objects and the output neurons denote the
class of the input object. Clustering techniques are used to select the original hidden layer
neurons (we allow several neurons or clusters per object class) and hence the initial input to

hidden layer weights. These represent a set of linear discriminant functions (LDFs). The output
neurons define the class of the input. The hidden to output layer weights map the clusters to
classes. Our study of criterion functions determined the type of error function used to train the
NN. Thus, advanced pattern recognition techniques are used to initialize the set of NN weights.
A new adaptive NN learning algorithm is then used to refine and improve the initial weight
estimates and to produce the LDF combinations that provide the nonlinear piecewise
discriminant surfaces finally used. This is the adaptive learning stage. This new NN combines
pattern recognition and NN techniques.

1.4 YEAR 1 SUMMARY

In Year 1 (April 1989 - March 1990), we advanced six new optimization neural nets (NNs).
These include: a mixture NN (with an imaging spectrometer case study), a cubic energy
multitarget tracking (MTT) NN, a quadratic energy MTT NN, a symbolic correlator NN, a
production system NN, and a matrix inversion NN. We also advanced a new adaptive clustering

neural net (ACNN).

We devised a hybrid optical/digital NN hardware architecture and began fabrication of it.

It employs a digital HNC NN, and an optical NN with electronic support.

The key feature of this NN hardware is that it is multifunctional and able to realize all
seven of our optimization and adaptive NNs.
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2. YEAR 2 EFFORT (6 Month Summary)

2.1 YEAR 2 TASKS

The eight Year 2 tasks to be considered follow. These are briefly discussed in Section 2.2.

* TASK 1: Fabricate initial laboratory hardware system (film mask).
* TASK 2: Demonstrate initial laboratory hardware system for selected associative

processor, optimization and our adaptive NNs.
" TASK 3: Perfect the new error diffusion computer generated hologram (CGH)

interconnection concept.
" TASK 4: Address capacity and real time extensions of the laboratory NN.
" TASK 5: ACNN distortion- invariant feature space.
" TASK 6: ACNN extensions.
" TASK 7: New matrix inversion NN algorithm studies.
" TASK 8: New predicate calculus NN algorithm studies.

2.2 OVERVIEW

Tasks 1, 3, and 4 address the fabrication of our laboratory hardware. Task 1 refers to the
initial system. Task 3 addresses the interconnection mask. Task 4 involves new components.

Task 2 considers laboratory demonstrations

Tasks 7 and 8 represent brief studies of 2 aspects (specific applications) of our ANN.

Tasks 5 and 6 consider the ACNN and are our major emphasis.

The thrust of our approach has been to assemble a multifunctional ANN (capable of
solving a variety of NN problems). We have achieved this by simulation and have produced
several laboratory examples.

2.3 FUTURE PLANS

This present approach results in a project with many aspects (many different ANNs) and
many new NN algorithms. To provide more focus, our remaining Year 2 effort (and all of Year
3) will emphasize laboratory hardware and adaptive learning ANNs (the ACNN and variations
of it).

2.4 PUBLICATIONS (DOCUMENTATION)

We have provided a plethora of papers on the various new aspects of our NN work. These

are noted here, summarized in subsequent subsections with all references (papers) sent. earlier.

Our multifunctional ANN I1] (Section 2.5) is hybrid optical/digital hardware and provides
a system that solves all major types of ANN problems. Other optical NNs are not
multi functional.

The hardware for our system [21 (Section 2.6) is d :,t ailed (circa Jahnuary 1990).
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Most ANNs cannot accommodate multiple objects in the field of view. The Neocognitron
cannot easily and cost-effectively achieve this [3]. Our symbolic correlator ANN (Section 2.7)
can achieve this and is the most efficient type of ANN for this vital case. Its concept [4],
simulation [5], and laboratory verification [6] have been obtained. This task has been terminated
due to funding constraints.

Our associative processor (AP) ANN work resulted in a new H-K AP and robust versions
of it [7]. These aspects are presently not being pursued under our DARPA contract, due to
budget and research direction constraints (see Section 2.8).

Our optimization ANN work has resulted in new formulations of these NNs as a matrix
times a vector plus a vector. In this area of ANNs, we have considered image spectrometry [2]
and multitarget tracking ANNs, plus matrix-inversion ANNs. Our matrix-inversion ANN study
resulted in very new and significant algorithms [8] that insure that an NN is used and that its
number of computations is competitive with other techniques (Section 2.9).

Our ACNN work has involved 4 papers. These involved new feature spaces 19,10] (Section
2.10) and our ACNN algorithm [11,12] (Section 2.11). This algorithm removes ad hoc
parameters present in most NNs and combines pattern recognition and neural net techniques
with a vastly more efficient number of iterations resulting.

Our software now includes the calibration and control for our hybrid optical/digital NN
(Section 2.12) and all input neuron representation spaces and classifiers plus our ACNN (Section
2.13).

Our new predicate calculus NN concepts have been advanced (Section 2.14) and placed on
hold pending laboratory and ACNN results.

Our optical laboratory results on the initial laboratory system include new associative
processors (with storage greater than any other associative processor) and multitarget tracker
optimization ANN laboratory results [7] (Section 2.15).

2.5 MULTIFUNCTIONAL ANN [11

Reference I1 details our architecture, how it combines optical and digital NN hardware,
and how it allows solutions of all major NNs on one hybrid processor.

2.6 HYBRID OPTICAL/DIGITAL HARDWARE [21

Reference [2] details our hybrid hardware. It consists of a digital NN interfaced to an
optical NN with a control computer providing versatility.

2.7 SYMBOLIC CORRELATOR ANN [3,4,5,61

This most unique ANN uses an optical correlator interfaced to a production system !4
ANN with symbolic encoded ANN inputs. For the specific case we considered, the multiple
correlation filters were formed from generic object. parts. We provided simulations 15] and
laboratory [6] results. We also showed [3] how other ANNs (such as the Neocognitron) cannot
easily address this problem of processing multiple objects in the field of view in parallel.



2.8 ASSOCIATIVE PROCESSOR ANNs [71

We have developed new associative processor (AP) ANN algorithms with larger storage
capacity than any other AP) . \Ve have also demonstrated their optical realization on our initial
hardware [7].

2.9 OPTIMIZATION ANNs [7,8]

We have formulated new optimization ANN algorithms (matrix times vector plus vector)
for 3 different optimization NNs. We have demonstrated the multitarget version of this new NN
algorithm [7], analyzed an imaging spectrometer optimization NN [21, and developed new and
practical matrix-inversion ANN algorithms [81.

2.10 ACNN FEATURE SPACES [9,101

A new feature space NN input with reduced dimensionality and improved invariance and
performance has been devised 191 and tested [10].

2.11 ACNN [11,121

Our ACNN has been detailed and demonstrated [11,12]. It performs as well as the
backpropagation ANN with no ad hoc parameters and with about 1000 times fewer iterations.
It is characterized by the hybrid combination of pattern recognition and neural net techniques
with new linear algebra algorithms used to provide better performance and convergence.

2.12 SOFTWARE SUPPORT (June 1990 Report)

The software support for our hybrid optical/digital NN has been produced and
documented.

2.13 ALGORITHMS/TRAINING/FEATURE SPACES ON DIGITAL
NN (October 1990 Report)

We have encoded all major feature space generation and our ACNN algoriIam in digital
NN hardware.

2.14 PREDICATE CALCULUS ANN (October 1990 Report)

This significant advancement to our original propositional calculus ANN has been detailed.
The steps and remaining work in it have been described and new ideas generated. This task is
presently on hold.

2.15 OPTICAL LABORATORY RESULTS [71

These laboratory results on our initial laboratory system included our new associative
processors (with larger storage than any other associative processor) and one of our new
optimization NNs (for multitarget tracking).
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Dr. Robert D. Burnham
Technical Director, Integrated Optoelectronics Devices Group
AMOCO Technology Company
AMOCO Research Center

Warrenville Road and Mill Street
P.O. Box 3011, F-4
Naperville, IL 60566

Dear Bob,

Things are really proceeding well here. There are 3 items that need immediate
attention.

1. I don't have a new 1990-1991 consulting agreement effective 1 September
1990.

2. Don Holmgren and you have to make a choice on the LD
focusing/collimation specs to aim for and the LDs to be used. This has to
be done pretty soon We need the LD angle and spacing specs (we can't 1-D
collimate the present 10 stripe array as the LDs are too close together, thus
your IQ 1991 goal must change) especially for the 200 pm wide aperture LD
array, and the entrance angle for the FO and crystal.

3. We need 10K to cover clean room etc. overruns we discussed and need a
decision on (2) to proceed. When (2) is done, I can send you a new P.O.
from my company for these CGIIs.

As Always,

David Casasent
George Westinghouse Professor
Director, CEODP

cc: E. Schlesinger, CMU

DC: injl
Encol.
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