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SUMMARY

We derive, from first principles, the least squares lattice algorithm for adaptive filtering based on
the QR decomposition (QRD). In common with other lattice algorithms for adaptive filtering, this algo-
rithm only requires 0(p) operations for the solution of a p-th order problem. The algorithm has as its
root the QRD-based recursive least squares minimisation algorithm and hence is expected to have su-
perior numerical properties when compared with other fast algorithms.

This algorithm contains within it the QRD-based algorithm for solving the least squares linear pre-
diction problem. These algorithms are presented in two forms: one that involves taking square-roots and
one that does not. Some computer simulations of a channel equaliser, using finite-precision arithmetic.
are presented in which the lattice algorithms are compared to the more established triangular systolic
array ones.

The relationship between the QRD-based lattice algorithm and other least squares lattice algo-
rithms is briefly discussed. Various extensions to this work are discussed including the multi-channel
QRD-based adaptive filtering algorithm that can be used for wide-band beamforming.
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1. INTRODUCTION

Least squares minimisation can be applied to a wide range of digital signal processing problems

including that of adaptive filtering. The adaptive filtering problem is, however, special in the sense that
the "data matrix" (Xp(n) of equation (5)) has a Toeplitz structure so that each row of the data matrix
contains only one new datum when compared to the previous row. Various algorithms [8] have been
devised that take advantage of this redundancy to reduce the computational load, for a p-th order filter,
from 0(0 2) to O(p). Unfortunately these fast algorithms are not explicitly well-conditioned and some
tend to be numerically unstable.

It is possible, however, to solve a least squares minimisation problem using the technique of QR
decomposition[8]. This technique has the advantage that it operates on the data matrix directly, rather
than the corresponding covariance matrix, and involves only orthogonal rotations, which are numeri-
cally well-conditioned. The recursive QRD algorithm can be implemented on the triangular systolic ar-

ray as devised by Gentleman and Kung[5] and subsequently modified by McWhirter[14]. This algo-
rithm solves a general recursive least squares minimisation problem and will require 0(p2) operations

to generate the solution to a p-th order adaptive filter problem. Extensive computer simulations of this
more general algorithm[28] have shown the QRD-based least squares minimisation algorithm to have
excellent numerical properties. The possibility of producing an 0(p) QRD-based algorithm for the spe-
cial case of adaptive filtering has thus long been of interest.

Here we present a full derivation of the recently derived QRD-based least squares lattice algo-
rithm[ 16] starting from the 0(p2 ) QRD-based algorithm and incorporating directly the time-shift redun-
dancy found in an adaptive filtering problem. The derivation presented here owes much to the work of
Cioffi[3]. Recently he showed how to take advantage of the time-shift redundancy that is present in the
problem of the linear prediction of time series data and produced a QRD-based "fast Kalman" algorithm
(see [ I or [ 16) for alternative, simpler derivations). This algorithm can recursively update, from one
time instant to the next, the solution to a p-th order linear prediction problem in O(p) operations. How-
ever, unlike other fast Kalman algorithms, the QRD-based fast Kalman algorithm also produces the so-
lution to all lower order problems as well (see [19]).

The QRD-based lattice algorithm, like all lattice algorithms, is designed to solve the linear predic-
tion problem recursively in time and order, again in 0(p) operations: thus it, too, solves all lower order
problems. The two classes of fast QRD-based algorithms are different however. The fast Kalman algo-
rithms are completely different in structure from the QRD-based lattice algorithms (see Slock [24] for
more discussion). In particular the fast Kalman algorithms have a smaller operation count than the lat-
tice algorithms (although both are linear in the problem order). The level at which the two different al-
gorithms can be pipelined is also different - the lattice algorithms having a higher degree of concurren-
cy. It is also worth noting that the fast Kalman algorithms implicitly have a downdating step which gives
cause for concern, from a numerical point of view, although no pnoblems have been observed in any
simulations done to date.

In recent months, the 0(p) QRD-based least squares lattice algorithm has also been derived, inde-

pendently, by two other groups: Ling[ 13] and Yang and B1hme[291. Both of these derivations begin
from a previously known (non-orthogonal l ) algorithm and by a series of transformations arrive at one



with only orthogonal operations. As such these derivations provide an interesting insight into the prob-

lem and am complementary to that presented here.

Yang and BOhme bring together the work of Lewis[9] and McWhiner[ 14]. Lewis began with the

standard (covariance domain) multi-channel least squares lattice equations and, driven firstly by the de-

sire not to explicitly invert the covariance matrices and secondly to perform all matrix computations in
a "numerically sound" way, reformulated part of the algorithm (the calculation of the reflection coeffi-
cients) by the use of the mauix inversion lemma and QR decomposition. As the bulk of the calculation

is exactly the computation of the reflection coefficients. Lewis pmoceeded no further with this re-formu-
lation and apparently failed to notice that the "non-orthogonal" part of his algorithm is in fact redundant.

Following the work of McWhiner, Yang and BOhme noticed that the adaptive filtering residuals can be

found directly: this observation results in the construction of a purely orthogonal algorithm (see Figure
1).

time series time series Cholesky/QRD

Sq-root fo R

Figure 1 Relationship to Covariance Domain Lattice Algorithm and RMGS

The other derivation, by Ling, relies on a well known equivalence[ 10] between two general least

squares minimisation algorithms: the O(p 2 ) QRD-based algorithm and the recursive modified Gram-

Schmidt (RMGS) algorithm[ I1]. Strictly speaking, the equivalence is between a modification of the

RMGS algorithm and a form of the QRD-based algorithm that does not require the square-root opera-

don2. Ling and Proakis[ 12] have shown how to create an O(p) lattice algorithm for solving the adaptive
filtering problem by taking advantage of the time-shift redundancy within the RMGS approach: the so

called "error feedback" lattice algorithm. This is arguably the most well-behaved of the least squares

lattice algorithms presented to date. Using the above equivalence, Ling [13] has recently shown that the
error feedback lattice algorithm can be reinterpreted as being a square-roct-free form of an associated

algorithm that consists only of orthogonal rotations. Comparison with the algorithm derived here shows

that Ling's associated orthogonal algorithm and that of Yang and Bhme, when specialised to the single

i. We use the phrase "orthogonal algorithm" to mean one that generates the required solution exclusively
by the application of orthogonal transformations, such as Givens rotations, to the input data.

2. See section 5 for details of the square-root-free version of the QRD-based algorithm.
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channel case, are indeed identical and are equivalent to the QRD-based least squares lattice algorithm.

Another approach to fast orthogonal adaptive filtering algorithms has been presented by Regalia
and Bellanger [20]. Based on the work of Cioffi[3], Regalia and Bellanger realised that certain quanti-

ies in the QRD-based fast Kalman algorithm were the same as those in a conventional (covariance do-

main) lattice algorithm. In particular, the identification of the reflection coefficients as the sines of cer-

tain rotation angles led them to develop an alternative, Kalman-type algorithm for solving the linear pre-

diction problem. Regalia has shown theoretically [21] that his structure is stable. However it is not as
yet clear whether the same analysis will work for the other fast QRD-based adaptive filter algorithms.

As well as presenting the QRD-based leist-squares lattice algorithm for linear prediction, the ex-

tension of this technique to the solution of the adaptive filtering problem is also given in this memoran-
dum. The resulting algorithm has a lattice-ladder structure. In common with Cioffi 's original formula-

tion of the QRD-based fast Kaiman algorithm, the lattice-ladder algorithm presented here operates on

pre-windowed data (i.e. all data before the first time instant is assumed to be zero). The extension of this

work to the multi-channel case (wide-band beamforming) is relatively straightforward and is briefly dis-
cussed in section 6.

We begin, in section 3, by reviewing the mathematics of the solution to an adaptive filtering prob-
lem using the method of QR decomposition. The key to the fast adaptive filtering algorithm is the de-
velopment of a fast (lattice) algorithm for the solution of an associated linear prediction problem. In sec-

tion 4 the connection between these two, related, problems is outlined and the O(p) solution to the linear
prediction problem, and hence the adaptive filtering problem, is developed. Section 5 discusses various

aspects involved in the implementation of the lattice algorithm. The derivation of the multi-channel lat-

tice algorithm is sketched out in section 6 and the results of some computer simulations are presented
in section 7. The algorithm is given explicitly, in the appendix, in two forms: one that involves the

square-root operation and one that does not.
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2. NOTATION

Ii L2 norm.

2 a vector of zeros3.

0 a matrix of zeros.

16 an n-dimensional vector full of zeros except for the n-th component which is
unity (pinning vector).

Q an orthogonal rotation matrix.

Q time recursive increment of Q. E.g. Q(n) = 10(n) [Q(n  I)

R an upper triangular matrix.

X a data matrix.

a reference vector.

u, v the two components of the rotated reference vector: Qy.

A,. gP the two components of the right-hand column of the matrix Qp. Alternatively,
the two components of the rotated pinning vector: Qt

e a least squares residual.

c a rotated, or angle-normalised residual.

10 the exponential weighting factor.

Tp the lower right-hand element of the matrix QP.

E the sum of the squared prediction errors.

Subscript "f" indicates a quantity connected with a forward linear prediction problem or its
solution.

Subscript "b" indicates a quantity connected with a backward linear prediction problem or its
solution.

Subscript "p" indicates a quantity connected with a p-th order problem or its solution (simi-
larly subscripts "p- I", "p+ I" etc.).

Hence, for example:

jibp- (n- 1) is the top component of the rotated reference vectory bp-l(n- I) associated with

the (p- l)st order backward linear prediction problem at time (n- 1).

Several rotation matrices are introduced in this memorandum that, clearly, have to be distinguished

from each other. There is, however, no obvious choice as to how they should be labelled. Following the
convention used for labelling of the reflection coefficients in the covariance-domain least squares lattice

algorithm, we choose to label these rotation matrices according to the problem to which they relate. For

example the matrix Q, P(n) is a rotation matrix used in the calculation of the solution to the p-th order

forward linear prediction problem at time n: despite the fact that it operates on the vector
_yb _ l(n - ])!

3. The dimensionality of the all zero vectors and matrices used in this memorandum should be obvious

from the context in which they are used.
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3. ADAPTIVE FILTERING

In order to simplify the analysis we consider only real signals. The extension to the complex case
is straight forward and indeed the algorithms presented in the appendix are for complex signals.

In a least squares adaptive filtering problem, a set of p (say) weights, %p(n)

(wt 0'1(n), C.o('1(n), ... , co(P 1)(n)J t, is to be found, at time n, that minimises that the sum of the dif-

ferences. squared, between a reference signal y(n) and a linear combination of p samples from a data
time series x(n-i) (0 :5 i :5 p-1). This decision is to be based on all the data accumulated SO far.

Specifically, the measure Ep(n) is to be minimised, where:

En= 1113~o(n) +(n) (41)

B(n) 0 n-... n-(2)~

4(n) =[()..pn)y(n) (4)

The diagonal matrix B(n) represents an exponential "forgetting" factor that allows the algorithm
to work with quasi-stationary signals. Note that there are effectively two time indices present in equa-
tbon (4) because it is necessary to distinguish between the components of the error vector gpn) and thc
amount of data used to calculate the coefficients (and hence the time index for.Wp(n)). Specifically we
have

C (n) = [e (1, n),e (2, n),..e (nn)]' (7)

where e (m, n) = y(m) + co ') (n) x(mn - i)(8)
i=O



is the error in estimating the datum y(m) as a linear combination of x(m-i) O(i<p- l when using the op-
timum coefficients calculated at time n. There are two quantities of particular interest: the a-posteriori
error (equation (9)) which uses the most up to date estimate of y(n) and the a-priori error (equation (10))
which is the estimation error for y(n) based on the coefficients calculated Et the previous time.

p-1

Cp(n,n) = y(n) + W 'i)(n)x(n - i) (9)
i=0

P-1

e(n- ) - y(n)+ 1 ) '(n- 1)x(n- i) (10)
i=O

The solution of least squares minimisation problems via QR decomposition is now well established

[8] and requires the determination of an orhogonal matrix Q p(n) that transforms the matrix B(n) X pn)
into an upper triangular form (as indicated by the shading). Let

so that, from equations (4) and (11),

Qp(n) B(n)egp(n) = (n n) + Lvp(n) (12)

where [VP(nj Q (n) B(n)y (n) (13)

Note that 11(n) is defined to be a p-dimensional vector so that the partitioning in equation (12) is con-
sistent. Due to the orthogonal nature of Qp (n) it is clear that

EP(n) = IIB(n) p(n)II = IIQp(n) B(n) .,(n)II R FP(n)1o (n)+ V P (n) (4

0O [Y (n)J

and by inspection it can be seen that the least squares solution is obtained when

R p(n)(n) + up(n) =.o(15)

and that 9n) {EP(n)} = IIyp(n)I (16)

6



in principle equation (15) can be solved by back substitution, since Rp(n) is a triangular matrix,

and the optimum coefficient vectorog(n) found. It is often the case, and adaptive filtering is a prime ex-
ample, that the a-posteriori residual (equation (9)) is explicitly required 4. The reason for this is the fact

that the a-posteriori residual represents that part of the reference signal uncorrelated with the data sig-
nals x(n-i) (05iSp-l) and as such is the "filtered" signal. Clearly the a-posteriori residual can be calcu-

lated. once Qp(n) is known, as the last component of 4(n) (equation (7)). It has been shown [141, how-

ever, that the adaptive filtering residual can be obtained directly from the product of two quantities nat-
urally present in the QRD-based algorithm:

%(nn) = yp(n) ap(n) (17)

where yp(n) = fn Qp(n) n (18)

a (n) = 9t v (n) (19)

and _6 [0. , 1 ] (20)

is an n-dimensional vector. Vectors of the form shown on equation (20) consisting of zeros except for

the final element, which is unity, play an important r6le in the following mathematics. These vectors are
often referred to as "pinning" vectors. In equations (18) and (19), the pinning vectors merely serve to

select the lower right-hand element of Qp(n) and the last element of Yp(n) respectively.

The ability to calculate the adaptive filtering residual directly, using equation (17), is an important

result since although inverting the matrix R p(n) is relatively easy (it is triangular and therefore can be

inverted by back-substitution) this process is potentially numerically unstable whereas the two quanti-

ties yp(n) and ap(n) are always well defined. It can be showr" '] that 'yp(n) is the square-root of the

maximum likelihood factor of more conventional algorithms. ,e follow Ling [131 in referringtoct p(n)

as the "angle normalised" residual.

It is worth noting. at this point, that there are two methods for calculating the orthogonal matrix Q:

via Givens (planar) rotations and via the Householder transformati i (a reflection). The Householder
technique leads to a lower operation count; however, unlike the Givens approach it does not admit a

time recursive implementation, which is often preferred 5.

It can not be stressed too much that once Q p(n) has been found the problem has effectively been

4. Note that it is also possible to extract the coefficient vector from the QRD-based algorithm in a systolic
fashion: see section 10.4.1.

5. Recently, Cioffi 14] and Slock [23) have published recursive QRD-based "fast Kalman" algorithms
that involve Householder transfornations, but the steps that involve time updating are operatiois on
2-dimensional vectors and as such the required Householder transformations are equivalert to Givens
rotations. There does, however, appear to be some controversy as to the validity of these algorithms:
see 1231.

i • mli • • to it a I ll Ii -| 7



solved. Knowledge of Q p(n) means that yp(n) is known and also allows o:(n) to be calculated and thus

the least squares residual may then be found. The development of the fast QRD algorithm for adaptive
filtering is based, almost entirely, on the principle of constructing partially u'iangularised matrices from

known quantities and then finding a set of rotations to complete the process. This principle is also a key
element in the derivation of the well known [5] time-recursive version of the algorithm outlined above.
Here the solution at time n, along with the new input data for time (n+l), is used to simplify the calcu-

lation of the solution at time (n+l). The approach may be summarised as follows: since

Xp(n+l) = [XP(n) ] (21)
[(n + )... x(n - p + 2)]

it follows, from equation (II). that

Q(n) _Q [ RP(n) 1L P B(n+i1) Xp(n+1)= 0 (22)t (n + 1) ... x(n - p + 2)1

Note that the matrix on the right-hand side in equation (22) is very nearly triangular and composed
entirely of known quantities. Thus the actual application of the rotations specified in equation (22) can

be circumvented by the direct construction of the partially triangularised matrix shown in equation (22).
To complete the triangularisation, define Qp (n+l) to be that set of rotations that annihilates the new
data samples by rotating them into the matrix OR p(n). In which case

Qp(n+l) P(n) L B(n+1) Xp(n+l)= LP( + (23)

As only the rotations in Q p(n+l) have to be constructed (as a series of Givens rotations[5]), the

computational load is reduced from O(np) to O(p 2 ). Note that, from equations (22) and (23),

Q p(n+l) (n-] QPt D(4

so that Yp(n+l) a .,T + I Qp(n+l) fn + 1

+n 1 p(n+l) ffn (25)

8



,(n + I (and (+I ~ n)j=~ (n) (26)Ypn J ap [(n + I

Equation (25) is significant because it shows that "direct residual extraction" is still possible knowing
only Q (n+l) - see equations (18) and (19) and associated discussion. The "time update" technique,
presented above, forms an important part of the derivation of the fast adaptive filtering algorithm pre-
sented in this memorandum. In particular, we will explicitly use the decomposition forVp(n) shown in
equation (26).

9



4. LINEAR PREDICTION

4.1. Motivation

The 0(p2) QRD-based algorithm for the solution of a p-th order adaptive filtering problem devel-
oped above has many desirable features including being a "data domain" algorithm and having a time-

recursive formulation, a time-independent computational requirement and a systolic architecture 128).
The time shift redundancy in the adaptive filtering problem can, however, be used to reduce the corn-
putational load still further: from 0(p2 ) to 0(p). Note that the set of rotations, either Qp(n) or Qp(n),

that are necessary for the solution of the problem are entirely dependent on the matrix XP(n). The matrix
X (n) can, however, be built up in an order recursive manner by adding extra columns which, because
ofthe Toeplitz nature of Xp(n), consist of one new element and a time-shifted version of the previous
column. Consider the following decompositions:

x(1) ... x(2 -p)
Xp (n) = : (27)

x(n) ... x(n -p + l)j

= p_ (n) Yb, p- P (28)

x(l) (29)

yf(n) Xp_ (n - 1(9

where yf(n) = [x(2) ..., x(n)] l  (30)

yb,p=l(n) =x(2-p) ..., x(n-p+l)]' (31)

and z= x(0) ..., x(2-p)ll (32)

Note that, from equation (28), if we had already determined the rotation matrix Qp. (n) that trian-

gularises the matrix 6 Xp. 1(n) then we could use it to operate on Xp(n) to produce a partially triangular-

ised matrix. In doing so we also have to rotate the vector yb,p_(n) however these are exactly the steps

that are required in the QRD-based solution of the (p-l)st order backward linear prediction problem. In
the (p-I)st order backward problem, an estimate, at time n, of x(n-p+l) is formed from a linear combi-
nation of the data { x(n) ..., x(n-p+2)). The solution to this problem depends on the triangularisation of

the matrix Xp. 1(n) and the transformation of the reference vectory b,pl(n) - see equation (31). Hence,

knowing the solution to the (p- l)st order backward problem at time n would allow us to construct a par-

6. We really mean the matrix B(n) Xp.,(n) but for the sake of readability B(n) will often be omitted.

10



dally biangularised version of Xp(n) and so save a certain amount of computation.

Equation (29) allows another partially triangularised version of Xp(n) to be constructed, this time

using quantities from the (p-1)st order forward linear prediction problem. The (p-l)st order (forward)
linear prediction problem, at time n, is defined as the estimation of x(n) based upon the data Ix(n-l),....
x(n-p+l)). This involves the triangularisation of the matrix Xpi_(n-1) and the transformation of the rel-
evant reference vector yn) - see equation (30). As before we can use the decomposition given in equa-
tion (29) to produce a partially triangularised version of Xp(n) from known quantities. It should now be

clear that the two linear prediction problems of order (p- I) are intimately connected to the problem of

determining a set of rotations that triangularise the data matrix X p(n). The triangularisation of X (n) is

however central not only to the adaptive filtering problem but also to the p-th order linear prediction
problems. We therefore have the beginnings of an order recursive algorithm for linear prediction and

for adaptive filtering.

4.2. Forward Unear Prediction

The p-th order forward linear prediction problem, at time n, requires the determination of the vec-

tor of filter coefficients lf(n) - CO (0) (n) ..... (P 1) (n)] that minimises the total prediction error

Ef(n) = 1IB(n) Cf (n)11 where

gf.p(n) = Xp(n- 1)l1fp(n) + y1(n) (33)

As in section 3, the least squares solution to this problem can be found by the method of QR de-

composition. It is necessary to determine the rotation matrix Q p(n-I) that triangularises the weighted

data matrix B(n-I)Xp(n-I) and then to apply it to the weighted vector B(n- I) y,(n) in order to calculate

the angle normalised residual cafp(n) (cf. equation(19)). We also need to be able to calculate yp(n-1)

(see equation(18)) in order to generate the a-posteriori prediction residual. Note also that the triangular-

isation of X p(n- 1) is exactly what is required in the solution of the p-th order adaptive filtering problem

at time (n-I) - see equation (4). Consider, therefore, the following composite matrix:

[yn) XP(n - I) y(n- 1) t n _ 1] (34)

From equations (22) and (23), it is clear that

Qp(n-I) an_, = Op(n - 1)in_ I = [a'p(n ' l). ° t yp(n-l)] t  (35)

where i3p(n-l) is a p-dimensional vector. It should be clear, therefore, that we include the vector 7l in

the above matrix (equation (34)) in order to be able to calculate yp(n- 1) just as the vector y(n) is present

to allow caf p(n) to be calculated. Similarly the presence of the vector y(n-1) will allow us to calculate

ap(n-1).

From equation (28) we have that

II
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[y~nXpn- )y(n- xzf- ] = [y nX n- ) Yb~ (n- 1)yn-1 (36)

Hence Q. 1 (n-1) B(n-l) [y,(n) Xp_ t(n - 1) yb. p_ (n -1) y(n -1) In

gf Ffp _ (n) Rp in-)i, 1(n -1)I up_(n- l)3 _1(n -IL f -_ (n) 0 y,_ n-1)yp- (n - g- I ("- 7

where gl(n-1) = [dt Yp_(n-l)]t (38)

It is clear that yf ,p(n) and .bX,(n-1) must have a time recursive decomposition similar to that
given in equation (26) for y (n- 1). Hence

L p- (n) Rp 0 _(n- 1) ub, -(n - 1) Up (n - )p (n - I
f,p_ (n) 0 yb, p_I(n - 1) yp_ (n - l) 1 p (n l

p .f, p_ 1(n) Rp_ 1(n -1) I~b, p_ (n -1) U~p _(n- 1) jap _ ,(n -

= IY, p_ 1(n- 1) 0 Pyb_,-(n- 2) Pyp- 1(n- 2) Q (39)L af, P-_ (n)  9' %tp-,(n-1) ap-l(n-1) y _ (n -l

Now suppose that we had already calculated a rotation matrix, Qfp(n- 1) say, that rotates thc vector

Xb p-l(n-2 ) into a form where only the top element is non-zero. Then

(n lf, p_ 1(n) Rp_i1(n -1) Ub, _ (n -1) U~p (n -1) gp l(n -1

f P-) 3 YfP-_1 (n- 1) 0 DYbp-l(n-2) P3Yp_(n-2) )
L0 Pfptn I _,(n-1) a~p l- 1) y p (n-

p if, p _ (n)  Rp_ 1(n- 1) 11b, p-10_1) up_ (n - ) ap_ (n -)1 (40)

SI3if,,_ 1(n- 1) 9t  3Eb,p, (n- 2) iJ.p_ l(n- 2) 0

P.f,p_ 1 (n- 1) 0 9 -p _ 1 (n- 2) 9
Laf~p-t1(n) 0' ° % ,-(n-l1) ap - (n -1) Yp-t (n - l

where the new quantities f- l(n-1), kf_ (n-1) I- (n-2), 1 (n-2) and b .(n-l) are defined by

this operation. Note by analogy with equation (16) that Ebp.l(n-2) is the (p- l)st order backward predic-
tion energy at time (n-2). Now in order to complete the triangularisation of the matrix X,(n- 1) (see equa-
tion (37)) all that is required is the annihilation of the single element tb,p.j(n-I). This can be carried
out using a single Givens rotation:
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pf a, _- 1() R ( b,~-)pP_1n-1 I_(

fP_(n- 1) p t Peb, P.(n-- 2) N±p_ (n - 2) 0

Qff(n [ P _ (n - 0 p Pip_ (n -2) p

F f.P-1 (nfl ) P a)Ppl(l) 1  (n-l 3n1 ) p- (n-

ijf n R,' 101- 1) V,,.:p- J(- UPn I,,_ ,(n -I)>

= 1f, tP_(n) 9' Eb,,I(n-l) gPt(n-1) cpn-1) (41)

0 (n - 1) 0 .(n - 2) O

a f, p(n) 0 0 (p(n(- 1) yp(n -1)1

a. fLp (n) Rgp(n - 1) up(n - 1) jip(r - (41.,P (n) 0 P (n -1) g(n-14

where K (n-1) is defined by this operation and the identity in equation (42), and hence the labelling of
some of the elements in the second matrix above follows by definition (see equation (37)). Thus the se-
quence of orthogonal transformations shown in equations (37), (40) and (41) solve the p-th order for-
ward linear prediction problem. Note, however, that the intermediate matrix shown on the right-hand
side of equation (40) consists entirely of quantities that would be available if the (p- I)st order forward
and backward problems had already been solved. If this assumption were true then we could have con-
structed this intermediate matrix directly, thereby circumventing the need for the operations as outlined
in equations (37) and (40). Only the single Givens rotation of equation (41) need actually be performed.
This requires a fixed amount of computation because only eight elements, one of which is zero, of the
left hand matrix in equation (41) are affected by the required rotations. In order to complete the lattice
algorithm for the linear prediction problem, the fast update for the auxiliary (backward) problem must
be derived. This can be done along similar line to the above (see section 4.3).

Before considering the backward linear prediction problem, note from above that the "new" quan-

tities Klp(n-I) and ,f, .(n-I) have the following interpretation:

_jf.p.l(n-1) = y,,p(n-l) (43)

p_ i(n - p= p(n-l) (44)

K p(n - 1) .

Note also that equation (41) provides a recursive decomposition of the matrix R p(n- 1). This shows
that the diagonal elements of this matrix are in fact the backward prediction residual energy terms for
each of the sub-order problems. It also explains why the Givens rotations used in QRD-based linear pre-
diction algorithms should ensure that the diagonal elements of the R matrix are positive (see Bellanger

13



and Regalia[20] for further insight).

4.3. Backward Linear Prediction

The p-th order backward linear prediction problem, at time n, requires the determination of the vec-

rt
tor of fter coefficients lab (n) = [o)(n),.. , ' (nj that mmnimises the total prediction error

Ebp(n) = IIB(n) fb,$ (n)ll where

. ,p(n) = Xp(n) 1llbp(n) + Ybp(n) (45)

Again the least squares solution to this problem can be found by the method of QR decomposition.

It is necessary to determine the rotation matrix Q p(n) that triangularises the data matrix Xp(n) and then
to apply it to the vectorybp(n) in order to calculate %r~p (n) (cf. equation (19)). We also need to be able

to calculate yp(n) (see equation (18)) in order to generate the a-posteriori prediction residual. Consider,

therefore, the following composite matrix and the illustrated decomposition:

[Xp(n) (n) fn,= x~ l) 
- ' 0 0 (46)Ybp f(n) Xp (n -( ) bp - l n-(6

In equation (46), it has been assumed that the data sequence x(n) is pre-windowed (i.e. x(n) = 0 for
n : 0). Note that this is the only place in the analysis that requires this assumption. Consider the effect

of the rotation matrix Q p.(n-1) on the lower n-I rows of the matnx in equation (46) - after weighting

by B(n) of course:

Q (n - j f(n) XP (n - 1) 'bp_ (n - 1) f_

BQn 0 ) b

- ~) .t0 0 1
= , (n) Rp_ (n - 1) llb,p- 1( n - I) it I(n -) (47)

Ly P_ 0(n) 0 Yb,p_ l(n - 1) g P-1(n 1

As before, all the vectors on the bottom row of the above matrix have a decomposition in terms of

their value at the previous time instant and a new element:
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n -Ix(I) pt  0 0

Vfp - (n) Rp (n - 1) )bp- 
I(n- Op- (n-

f p -(n) 0 Ybp l(n 1) Sp- (nJ-

S_ (n, ,- clbp-(n_-1) YP 4(n8-

Now suppose that we have already constructed a rotation matrix Qbp(n-l) that annihilated the
vector-ff p,(n- 1) by rotation against the element On'2x(l). Then

0't 0 0

[Qbp(n- I
3) olVfp. --I(n) RP-I(n-I) Ub.p-,(n-1) a-l(n-.)

L " Ij Oyf1 _-(n-1) 0 I y,p -_(n- 2) p

L ap_,(n) I, ab,p- (n- 1) yp_ (n - I

~~ (n1 - ' t ON, p.(n -2) 0 1
= .pl (n) Rp_ (n -1) bp (n- 1) pp- (n - (49)

-Q 0 f~bp-(- 2 ) p

L c, P- I(n) abp 1(n-l) yp _(n-

Let b,p(n) be the rotation matrix that annihilates the element af,p.lI(n) by rotation against the el-
ement Pef~p-1 (n-I). Application of the transformation Qb.P(n) to the above matrix thus yields the result:

pe P_ l(n -1) o b, p_ -(n - 2 ) 0

b -p(n)  llf,, P (n) Rp - I ) Ub,p- (n- 1) Yap _ (n-

'O 0 4bpI (n -2) I
CL& - Jn) b, p_ ](n - I _ ](n

9'b, p - |(n - (PP(n)

= t llfp () Rp_-1(n - ) lbp_l(n- ) p_](n- 1) (50)

0 Ab, p_ -(n - 2) 0

9t ab. (n) Yp (n)
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where the new quantity p p(n) is defined by this equation. The identity of the elements in the bottom row
of the above matrix follows because of the following reasoning: bearing in mind the underlying data

matrix (see equation (46)), we are attempting to create an upper-triangular pxp matrix in the upper left-
hand comer on the matrix in equation (50). At present this sub-matrix is rather sparse and a little thought
shows that it is easy to construct a matrix (Qb, p(n) say)that will perform this triangularisation 7. Spe-

cifically,

Rib,p(n) i ( Rp -l) Ib,p-l(n-l) jp_l(n-) 1
QbP0 ° b'P-j(n- 2 ) p0

0t o0b, p(n) yp(n)

p[R ft) -U b, P(n)U b p n lp(n)
= { b, p(n) (51)

The important thing to note is that the action of the matrix Qb. p(n) on the above matrix only af-

fects the upper p rows of elements. Thus we conclude that the lower n-p rows of elements of the matrix

in equation (50) must be equal to the lower n-p rows of elements of the matrix in equation (51) and the

result holds.

Hence the sequence of orthogonal rotations given in equations (47), (49), (50) and (5 1) solve the

p-th order backward linear prediction problem, Following the development of the solution to the for-

ward problem in section 4.2, note that the data matrix on the left-hand side of equation (50) can be con-

structed directly given the solutions to the (p- l)st order forward and backward problems. Thus the trans-

formations shown in equations (47) and (49) can be by-passed. Furthermore, as both ab,p(n) and " P(n)

are available in the matrix on the right-hand side of equation (50), the transformation shown in equation

(51) is not required either, provided we are only interested in the prediction residuals. Thus only the ro-

tations summarised in equation (50) need actually be performed explicitly. This requires a fixed amount

of computation because only six elements, one of which is zero. of the left hand matrix in equation (50)

are affected by the required rotations.

7. In actual fact, it is not necessary that we specify how this triangularisation is achieved since the QR
decomposition theorem guarantees us that it is possible. Note, however, that it is crucial to QRD-based
fast Kalman algorithm that this transformation is done in a specific way. Interestingly, it has recently

been pointed out [201 that the sines of the angles involved in the Qb. p(n) rotation are in fact the re-
flection coefficients of a "conventional" least squares lattice algorithm.
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Figure 2 QRD-Based Lattice Algorithm

TIME N TIME N+ (

BACKWARD ,"-BACKWARD
ORDER P L]PINNING ] ORDER P

TIME (N-1) "lVECTFOR] TIME N

Figure 3 QRD-Based Fast Kalman Algorithm

Note, in passing, that the "new" quantities (pp(n) and 4 ,p- 1(n -2) have the fllowing interpretation:

4o,p.l(n-2) = b,p(n-1) (52)

p _ - ( n -P ( n r) ( 5 3 )

Gathering together the results of sections 4.2 and 4.3 we see that it is possible to transform various
quantities from the solution to the (p-I)st order forward and backward linear prediction problems. at
time n and (n-1) respectively, into the same quantities from the solution to the p-th order problems at
time n (see Figure 2). Thus, given that 0-th order linear prediction is trivial, we can generate the solution

17



to the p-th order problem by iteration in order. The resultant architecture has a lattice structure and, since

the number of operations per stage is fixed, requires O(p) operations. Note that by including the adaptive

filtering reference vector y(n-1) in the calculation of the p-th order forward linear prediction problem

(section 4.2) we automatically solve the p-th order adaptive filtering problem for time (n-1).

In most cases, the fact that the adaptive filtering residual is delayed by one time-step will be of no

consequence, especially given the regularity of the algorithm/architecture and the benefits this brings

with it. It is possible, however, to alter the algorithm presented above so as to solve the adaptive filtering

problem at time n but at the expense of more complicated mathematics and a slightly less regular archi-

tecture: see section 10.1 for more details.

Note from equation (41) and equations (50) and (51) that it is possible to transform a matrix of

quantities from the solution to the (p-l)st order forward problem at time n and a similar matrix from the

solution to the (p-1)st order backward problem at time n into the same quantity (viz Rp(n)). Thus it is

possible to transform quantities from the forward problem at time n into quantities from the backward

problem at time n, although this involves a numerically unsound "inverse rotation". This is one of the

crucial steps in the derivation of the QRD fast Kalman algorithm[31 (see Figure 3). The remaining step

is to deduce the rotation Q(0n+l) from knowledge of quantities from the backward problems at time n

and (n-1). This latter step involves using the pinning vector as in the classical Fast Kalman algorithm

(see Proudler, McWhiner and Shepherd[ 16] for more details).
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5. IMPLEMENTATION

The QRD-based lattice algorithm developed above can be implemented using the processor archi-
tecture shown in Figure 4. The functionality of the processing elements (PE's) is shown in Figure 5 and
a "pseudo-code" listing of this algorithm is given in section 10.3.

In the derivation of the algorithm (section 4), no mention was made of how the Givens rotations
were to be implemented. There are several ways in which this can be done. The obvious, or "normal",
approach involves the calculation of a square-root (see Figure 5), which is a computationally intensive
step when using floating point numbers. It is possible to implement the square root operation efficiently
by use of CORDIC algorithms[27]. However this requires the use of fixed point arithmetic and it has
been found [28] that for most practical applications, a floating point implementation is required. On the
other hand, Gentleman[6] and Hammarling[7] have derived a modified Givens rotation that requires no
square-root operation and this is clearly advantageous for floating point implementations.

The essence of this "square-root-free" technique is to factorise the triangularised matrix (e.g.

Rp(n)) into two parts, one of which contains all the quantities which involve a square-root. This latter
factor can be calculated indirectly as its square thus avoiding the square-root operation (see section
10.2). However this means that the rotation (an orthogonal transformation) is now implemented by two
separate non-orthogonal transformations acting upon the factorised quantities. As such, one would be
quite justified in questioning whether or not this square-root-free Givens rotation leads to an orthogonal
algorithm. Nevertheless, simulations have shown that, in floating point arithmetic at least, the square-
root-free version is more stable numerically (see section 7). This is despite the reservations about the
"square-root-free" Givens rotations algorithm that have been raised by the numerical analysis commu-
nity [6][7].

Closer analysis of the normal Givens rotation shows that square-root operation is required only in
situations where the square-root of the sum of the squares of two quantities is required. The numerical
stability of the "square-root-free" method may well be due8 to the fact that the act of squaring these two
numbers only to take the square-root of their sum is numerically inferior to propagating the squared
quantities directly.

The "square-root-free" algorithm mentioned above is an algorithm for calculating the required pla-
nar rotation. In the QRD-based least squares minimisation problem these rotations also have to be ap-
plied to various vectors. It is possible to implement a rotation in two ways: in a feedforward or a feed-
back mode. When implementing a planar rotation (a two-input, two-output transformation), the normal
choice would be to calculate each output in terms of the two inputs separately. This leads to a "feedfor-
ward" system. However, it is possible to reformulate the transformation so that one output is now de-

pendent on one input and the other output. Initially the motivation behind this reformulation was to re-
duce the number of multiplications required [25]. It has been shown, however, that this alternative im-
plementation corresponded to the "error-feedback" technique proposed by Ling and Proakis E 12].

It is believed that this feedback has a stabilising effect when errors are made in the calculation due
to finite-precision effects in the arithmetic. Indeed, computer simulations (see section 7) have shown

8. P A Regalia, Private Communication.
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that this error-feedback has a significant effect on the numerical stability of the QRD-based lattice al-
gorithm: the feedback version is quite capable of working with 4 bit mantissas (at least for sequence

lengths of up to 10,000 - the longest simulation run so far). It is interesting to note that the feedback

structure can be thought of as one half planar rotation and one half hyperbolic rotation. It is well known

that a planar rotation is numericaly superior to a hyperbolic rotation; however, it would appear that this

half-and-half mixture is better than both.

Combined with the two methods for calculating the rotation parameters, the feedforward/feedback

choice results in four different variations. The computer simulations of section 7 show that, of these four

possible variations, the one that is equivalent to the RMGS error-feedback algorithm (square-root-free

with feedback) performs the best in terms of numerical stability. A "pseudo-code" listing of this version

of the algorithm is given in the appendix. It is worth emphasising that the basic architecture (Figure 4)

is not affected by the choice of rotation technique so that the only difference between the different op-
tions is a change of PE's. The function of the "square-root-free with feedback" PE's is shown in Figure

6. Comparison with the O(p2) QRD-based algorithm [28] shows that the PE's presented here are exactly

the same as used in the triangular systolic array. Indeed, when the QRD-based lattice algorithm is gen-

eralised to the multi-channel case (section 6), the processing required in each of the lattice stages neces-

sitates the use of triangular arrays of PE's. In fact the lattice stages shown in Figure 4 may be considered

to consist of IxI triangular arrays!
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Figure 6 "Square -root- free with Feedback" Rotation PE's

21



6. MULTI-CHANNEL CASE

x1(n) x2(n) x,(n) y(n)

+ T.....

T

Figure 7 Multi-channel Adaptive Filter

6.1. Problem Definition

The extension of the adaptive filtering algorithm presented above to the wide-band beamforming
problem is relatively straight forward: all that is require is that certain scalar quantities be replaced by
vectors and some vectors be replace by matrices. The essential features of the derivation presented in
section 4 carry over exactly. Rather than reproduce the mathematics of section 4, in the following we
merely outline the salient points of the derivation of the multi-channel algorithm. As before, we consid-
er only real signals: the extension to the complex case is straight forward.

In a multi-channel least squares adaptive filtering problem, a set of N p-dimensional weight ,cc-
tors, i(i)(n) (05 i S N-I), is to be found, at time n, that minimises that the sum of the differences,

p
squared, between a reference signal y(n) and a linear combination of N samples from each of p data time
series xi(n-j) (I S i 5 p, 0S j < N-1). This is equivalent to adaptively filtering p separate time series in
order to form the best estimate of the reference signal (see Figure 7). If the p data sequences come from
spatially separate antennae then we have a spatial as well as a temporal filtering problem. Specifically.
the measure 1iB(n) 9N(n)lI is to be minimised, where:

CN(n) = XN(n) 10N(n) + y(n) (54)
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XN(n) =

XI(1) X2(1) ... xP(I) x'(0) x 2(0) ... xP(O) .......... x(2- N) x2(2-K) ... x P(2- N)

Lx,(n) x2(n) ..x p(n) x,(n -) x2(n -1) ... x P n-1) .......... x,(n-N+ 1) x,(n-N+ 1) x Xp(n-N+ 1)

(55)

X'(1 ... st(2 -N)

: (56)
X '(n) .. '(n - N + l)j

10 (1) (n)
_O(n) (n) j, (57)

CN-p 1) (n)

and y(n) = [y(l),.... y(n)]1  (58)

Equation (56) serves to define the new vector quantity I(n). Note that, apart from the change from

scalar to vector quantities, equation (56) is identical to equation (5). The solution of this least squares

minimisation problem via QR decomposition is no different from any other: it requires the determina-

tion of an orthogonal matrix QN(n) that transforms the matrix B(n) XN(n) into an upper triangular form.
The fact that the matrix XN(n) is block-Toeplitz allows us to use the ideas developed in section 4 to

construct an order recursive algorithm. Again this relies on the iterative structure present in the multi-

channel linear prediction problems.

6.2. Forward Linear Prediction

In the N-th order multi-channel forward linear prediction problem, an estimate of the vector x(n)
is formed, at time n, from a linear combination of the data x(n-l) .... x(n-N)]. Thus it is necessary to

determine the rotation matrix QN(n-1) that triangularises the data matrix XN(n-1). Consider, therefore.

the following composite matrix:

[Yrn) XN(n- 1) y(n- 1)-In - (59)

where the "reference matrix" Y1(n) is defined as
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-~) (60)

and it the multi-channel equivalent toygfn) - see equation section (30). From equation (56) we have that

[Y~)X( )yn-1 f 1=[ln ,_( )YNIn-1 ~ )Z._1 (61)

where Yb.t(n-1) is the reference matrix for the (N-l)st order backward linear prediction problem at
time (n-1) (see section 4.3):

'(2 -N) x (2 -N) X2(2 -N) ... x(2 -N)]Lb ( )_ (62)

SFf, N.-.I(n) RN - (n- 1) U.N- (n- 1) 1Ndn ) g~ 1n -

f, N -(n) 0 VbN..n- 1) YN1(n - )N(n -1 (63)

where the matrices UfN.I(n). VrN 1(n), Ub.N 1(n-l) and VbNI(n-l) are the multi-channel equivalents
of mj.,(n), Xf.N.1(n),pjjp ,(p-1) and yb.p-I(P-l) respectively. Note that VrN-I(n) and Vb.NI(n-I) have
a timec recursive decomposition similar to that givcn in equation (26) foryp, 1(n-l) and that RN.I(n-l) is
a (N-l)px(N.1)p upper triangular matrix.

Now suppose that we had already calculated a rotation matrix, Qf.N(n-1) say, that transforms the
matrix VbN I (n-2) into an upper-triangular form'. Then

t, P3Vf N (n - 1) 0 I3VbN (n 2) PYN - (n -2)

O3MfNl~n-l) 0 J3EbN (n - 2) ANI(n-2) 9 64
P3A N(n- 1) 0 0 4~ N (n - 2 ) 9

gf N - 1 (n) p t  01. N-I(nl aN - (n I) Y (n -

9. Remember that we are restricted to using only orthogonal operations!
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Note that there are now p residuals for both the forward and backward linear prediction problems hence
the vectorsgf.NlI(n) andg UbN (n- 1). Now in order to complete the triangularisation of the matrix XN'(n-
1) all that is required is the anniihilation of the vector giN.1(n-l). This can be carried out using a se-
quence of Givens rotations rather like that used in equation (23):

OfNn P N- I(n -1) 0 PEbN -(a -2) OL'N (n - 2) 9
I 3AfN (n- 1) 0 0 R~N (n - 2 ) 9

L 9' fN -t (n g9-~(l cN - (n - ) N_(-

UfArN- () R -~-)b -~-)-l(n- 1) AN0I-I(n -l

MfNI(n) 0 Eb N .r- LN -I~ 1 (n - 1 ) n (65)

Note that the intermediate matrix shown on the left-hand side of equation (41) consists entirely of
quantities that would be available if the (N-l)st order forward and backward problems had already been
solved. Thus only the Givens rotations defined by equation (41) need actually be performed. This can
be implemented on the standard triangular systolic array [28] in 0(p 2) operations per time instant.

6.3. Backward Linear Prediction

The N-th order backward linear prediction problem is defined as thc estimation, at time n. of
A(n-N) from a linear combination of the data (I(n),.x(n-N+l1)). Consider, therefore, the following
composite matrix and the illustrated decomposition:

[X,(n) YbN (n) it,] t( O' o' llt (66)

The rotation matrix QN.I(n-l) will triangularise the data matrix X. 1(n-1) hence:

E1Q1 4!O > B(n)31) t9t
1 3tQ t ( YptX n-1)YN-(

f3VN - ) 0 V ~~-) (n) RN _ (n -l) Ub N -I(n-l1) AN - (n - (67)

- lf ~fN -(n) 0 t  bN (n - ) yN _l(n -
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where we have explicitly used the familiar decomposition for the matrices VfN.1 (n) and Vb.N.,(n-1).

The calculation of the quantities necessary for direct residual extraction can now be achieved in
three steps. First imagine that we had operated on the above matrix with an orthogonal transformation-(e)(Qb. Nn - 1)) that moves the top row of elements down to the row just above the top of the matrix

Vf. .2 (n-1). Then suppose that we have already constructed a rotation matrix Qbn-l) that performed
a QR decomposition on the composite matrix

[ N - (n j- ) (68)

Then

Etwi1V-l 01 3 0ln2 t

=b, N(n- ) (n-I) UN-I(n) RNI(n-) AN- (n-I1

L fN ) N -n 1 .b, NN l(n- 1)

Eft N~ -1) OVN n 1)Mb 0(n 2) .N I -2
= O~ ~ O AN(n - 1) (n 16)(n) 9'- N> -' YN1

UfN-~n) N-I~-1) b.N-l(n- l) AN - (n -])

Finally, following section 4.3, let (b,n) be the rotation matrix that annihilates the ro vector

9,N - (n) by rotation against the triangular matrix lEf4, 1(n-1). Then

SUf, N - (n)  RN-_I(n- 1) Ub N - (n- 1) ASN_-(n-I 1

Ob.N(n) PEf N _(n- 1) 0 OMbN -(n -2)

0 0 AAb, N - i(n - 2 )

IUN (n) N_ 1 (n )1) yN
U Lb N - N _ 1(n

UrN_..I(n) RN 1(n-I1) UbN -(n - 1) N 1 (nl
Ef,N.l(n) 0 M b N (n- 1) -TN(n) (70 )

0 0 PAb, N- I(n - 2) 0
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Figure 9. Triangular Systolic Array.

and we have achieved our objective. As in section 4.3, we do not have to complete the ormation ol the

triangular matrix (an NpxNp matrix in this case) since any operation necessary to achieve this would

not affect the lower two rows of the composite matrix shown in equation (50). Again the rotaion shown

2r

in equation (50) can be implemented using a triangular systolic array in O(p2) operations

Thus by the use of equations (41) and (50), we can calculate the solution to the N-th order multi-
channel linear prediction problems in (p2) operations given the solutions to the (N-I )st order prob-

lems. As befor, the rotation thai are necessary to solve the forward linear prediction problem automat-

ically solve the p-th order adaptive filtering problem for time (n-) as well. The resultant architecture
(see Figure 8) has a laice structure where each stage of t lattice contains two triangular systolic ar-

rays (Figure 9). Each of these arrays solve a p-th order recursive least squaras minimisation. The total

number of operations necessary to solve an N-th order multi-channel adaptive filtering problem, with p

channels, is p(Np2).

Once again, it is possible to alter the algorithm presented above so as to solve the adaptive filtering

problem at time n but at the expense of more complicated mathematics and a slightly less regular archi-
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tecture: see section 10.1 for details of the single channel case: the extension to the multi-channel case
should be obvious.
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7. SIMULATIONS

S y(n)

Trainng Channel . x(n)iteAdaptive ,

M easurement
Noise

Figure 10 Channel Equaliser Experiment.

The single-channel QRD-based lattice filter algorithm has been simulated on a computer and com-
pared with the full O(p2 ) QRD triangular array algorithm. The results show that the two algorithms pro-
duce virtually identical results for "sensible" wordlengths. As the wordlength is reduced the lattice al-
gorithm begins to suffer before the full triangular array does. This is to be expected as the lattice algo-
rithm relies on an exact mathematical relationship between the forward and backward linear prediction
problems which is progressively made void as numerical errors are made.

The situation considered1 ° is that of a channel equaliser (Figure 10) for a data channel that has a
"raised cosine" impulse response (equation (71)).

2[ I+cos(W(n -2) n =1, 2,3. (1

0 otherwise

By varying the parameter W, the amount of intersymbol-interference between a given symbol and the
two either side of it can be changed. This in effect controls the eigenvalue spread of the data covariance
matrix (see Table I.).

An 1 th order adaptive QRD-based least-squares lattice filter is used to equalise the channel re-
sponse. In order to "train" the equaliser, the transmission channel is fed with a polar (±1) pseudoran-
dor training sequence. This sequence, delayed by seven time instants, is used as the reference signal
for the adaptive filtering algorithm. The delay is inserted to ensure that the adaptive filter has an impulse

10. Suggested by S Haykin.
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"2.9 6.1

3.1 11.2
3.3 21.93.5 4"7.5

Table 1. Eigenvalue Spread

response that is symmetrical about the centre tap. A small quantity of "measurement" noise, in the trm
of a pseudorandom sequence with an approximately gaussian probability distribution function, is added
to the channel output. The noise sequence used has zero mean and a variance of 0.001. The "forget fac-
tor" ft (see equation (2)) was fixed at a value of 0.996, which implies an effective data window of 250
time samples.

All calculations within the algorithm were performed using limited-precision floating point arith-
metic. Only the number of bits in the mantissa are varied in the experiments: the number of bits in the
exponent is fixed at eight. No quantities internal to the adaptive filtering algorithm ae held to a greater
precision than for the outputs: the results of all arithmetic operations are immediately reduced to the
required precision.

The performance of the equaliser is monitored by recording the ensemble-averaged, squared a-pri-
ori equalisation error (see equation (10)). This has the advantage that it shows how close to convergence
the algorithm is whilst still showing, asymptotically, the least square equalisation error. The ensemble
average is taken over 100 realisations of the experiment. Several experiments were performed using
various combinations of parameters and algorithms The main results are discussed below, however, for
completeness a complete set of results are reproduced in the attached annex.

Figure II and Figure 12 show the basic performance of the QRD-based lattice equaliser system for
different values of wordlengib and cigenvalue spread. Figure I I shows that, with double-precision
arithmetic, the rate of convergence is more or less insensitive to the different eigenvalue spread settings:
as would be expected from a recursive least squares minimisation process. Figure 12 illustrates how the
wordlength affects the performance for a fixed eigenvalue spread (W=2.9). Note that there is very little
discernable difference between the systems using 12. 16 and 56 (IEEE double-precision) bit mantissas.

Figure 13 shows a comparison of the QRD-based lattice algorithm with the full QRD-based trian-
gular systolic array version. Two other systems are also shown in this figure: they are the "square-root-
free with feedback" forms of the lattice algorithm and the array algorithm. This figure shows the case
of 4 bit mantissas and a fixed eigenvalue spread setting (W=2.9). This may be considered to be an ex-
cessively short wordlength. The reason for this choice is that often finite precision effect are often only
manifested after the round-off errors have had time to accumulate [2]. By using a small wordlength, the
appearance of such effects occur sooner thus reducing the time necessary to perform the simulation.

In most cases, a p-th order adaptive filter will converge within 2p time instants. At this point the
a-priori residual will have reached a value primarily determined by the eigenvalue spread and not the
wordlength As round-off errors accumulate, the a-priori error will increase indicating a loss of accuracy
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Figure I1I Normal QRD Lattice: Effect of Eigenvalue Spread.

I IEEE Pj

Figure 12 Normal QRD Lattice: Effect of Wordlength.

in dhe algorithm. Up to a run length of 10000, the longest simulation run to date, the normal lattice al-
gorithm retains its post-convergence accuracy for 12 bit mantissas. In the case of the square-root-free
with feedback lattice, the same behaviour is seen using only 4 bit mantissas.

It can be seen, in Figure 13, that the faster, lattice algorithm is only marginally worse than the full
triangular array version thus demonstrating that little penalty has been paid in educing the computa-
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Figure 14 Comparison of Givens Algorithms.

tional load. As expected, the square-root-h'ee with feedback versions of thc algorithm perform beter
dwthe basic version. There was no discernable difference between the lattice version and the array
version in any of the simulations Tun so far. This would seem to demonstrate the power of the feedback
technique in improving the numerical accuracy of these algorithms.

The relative effect of the square-root-free and the feedback techniques can be seen in Figure 14,
This shows the performance of the lattice algorithms with 4 bit mantissas and fixed eigenvalue spread
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seting (W=2.9) for the four possible Givens rotation algorithms. From this it can be seen that there is
indeed a numerical advantage to avoiding the square-root operation but that the most significant im-
provement comes about by introducing the "error feedback".

All of the above observations appear to hold essentially independently of the eigenvalue spread.
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8. CONCLUSION

We have presented a derivation, from first principles, of a fast QRD-based lattice-ladder algorithm

for solving the adaptive filter problem (with pre-windowed data). Contained within this algorithm is a

new lattice filter algc-ithm for least squares linear prediction. The extension to the multi-channel case

highlights the similarity of the adaptive filtering algorithm with the more general 0(p2) QRD triangular
systolic array. The derivation resented here shows that other, recent, orthogonal least squares lattice al-

gorithms are true QRD-based algorithms. The relationship between these different derivations has been

highlighted.

The algorithm has as its root the QRD recursive least squares minimisation algorithm and therefore

is expected to be numerically stable. Computer simulations would seem to confirm this expectation: the

results of the simulations of the new algorithm, using limited-precision floating-point arithmetic, show

that very little penalty has been paid in reducing the computational load. The QRD-based lattice algo-
rithm works essentially as well as the QRD-based triangular systolic array algorithm but requires only

0(p) operations per time instant as compared with O(p 2 ) for the array.

Of the four possible algorithms for implementing the Givens rotations, the simulation results show
that the square-root-free with feedback form of the algorithm is empirically better than the standard

form. The former implementation coincides with the previously known RMGS lattice algonthm of
Ling, Manolakis and Proakis I 11]. The algorithm is explicitly presented in both the normal (square-root/

feedforward) and square-root-free with feedback forms.
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10. APPENDIX

10.1. Joint Process Estimation

It was shown in sections 4.2 and 4.3 that a lattice filter algorithm could be developed to solve the
p-th order adaptive filtering problem for the previous time instant. Producing the adaptive filtering re-
sidual for time (n-1) at time n may well be sufficient for some purposes, however, it is possible to obtain
the most up-to-date solution possible by including the effect of the very latest datum x(n). Consider the
following data matrix:

[Xp(n) y(n) gn]= j x() t y(l) 0 (72)
Ly$n) Xp_ t(n - 1) N(n) (72

where vn) = [y(2) .... y(n)]t (73)

is the reference vector of what may be considered to be an auxiliary joint process estimation problem.
Note that this definition is more closely akin to that for forward linear prediction (equation (30)) than
the original definition of the adaptive filtering problem (equation (6)). In equation (72), it has again been
assumed that the data sequence x(n) is pre-windowed (i.e. x(n) = 0 for n < 0).

By comparison with the development of the order update for backward linear prediction (section
4.3) it should be clear that the matrix Xp(n), in equation (72). can be triangularised by the series of ro-
tations outlined in equations (47). (49), (50) and (51). In fact

bPn)QPn [bpn-lt~ I L Q ~ ) ')(l) 0]
'l P t ,p t(n I Ly,(n) Xp_ (n - 1) y](n) Ecn _

( R(n) Up(n) p(n) (74)

L 0 P(n) p(n)

As before, because certain matrices can be constructed directly, given the solutions to the (p- I)st

order problems, only the rotations summarised in equation (50) need actually be performed i.e.

37



,' I l±',- 1(n- 0 1
Obpn z "PI(t)i RP-1(n -1) lVW'P-_ (n) Pp- (n - 1)

'n0 01", ,P_ 1(n - 1)

C 0 t Aw. Pt 1(n)  TP(n)

1tr.V,(n) Rp t,(n-1) U ,P_1 (n) qpt(n-(

0 0 [A., p_ n -1) Q

[ 0 9t  CEp(n) yP(n)

Note that we have had to introduce some extra quantities similar to those introduced, in equation (49),
for the backward problem. It should now be clear that if we have available the auxiliary angle-normnal-
ised residual av,p.,(n), then we can use the matrix Qb~p(n) to calculate the adaptive filtering residual
crP(n).

All that remains is to show how the auxiliary adaptive filtering residual (/,P 1 (n) can be calculated
in an order recursive manner. Due to the fact that a,,.l(n) is just an angle-normalised adaptive filtering
residual, albeit based on the sequence 3g(n), it can be calculated along with the forward linear prediction
residual just as aX(n- 1) was (see section 4.2 but with y(n- 1) replaced by W(n)). We then find the follow-
ing order update (cf. equation (41)):

u Pp-1(n) Rp-,(n-1) up-,(n-I) uv, p_ I(n, ppln l

[n 1Opf, P (n - 1) P IEb,p_ 1(n-2) Pp_ (n -1) 0
Qf*'(n) I 3 Pfpl(n- 1) 0 9 P wp_ (n-1) o

a ( iP-I(n) 9 t %Pl_ 1(n -1) a. .P_,(n) /p _ (r-I2

.u, P- 1(n) Rp- 1(n - 1) ub'P- l(n - "1) . , _ (n) jLP_ 1(n - 1)

- }.fp_ 1 (n) pt  b, pl(n -) g. p_ (n) Kp(n-i) (76)

P fp_ (n-l) 0 9 PW,p P-(n- I)

Xf, p(n) p1 0 a Wp(n) YP(n- J

The resulting architecture is shown in Figure 15: the PE's can be either those shown in Figure 5 or
Figure 6 depending on the type of Givens rotation method preferred.

38



rg*rg

Inu

39



10.2 Givens Rotations

As mentioned in section 5, there are two ways of calculating the parameters of a Givens rotation:
with and without a square-root operation. In this section the basic mathematics is sketched out.

A Givens rotation is a planar rotation that annihilates one component of a 2-D vector. Assuming

complex quantities, let

F c s -[I)] = -E(n)1 (77)

where, without loss of generality, c is real and

c Wn- 1) + s* ct(n- 1) =E€(n) (78)

c t(n-l) - s [(n-l)= 0 (79)

C2 + sI12 = 1 (80)

now from equation (79) s = c Wn-l) / k(n-l) (81)

then from equation (81), assuming e to be real:

c (1 + la(n-1)12 /( E(n-1))2)= 1 (821

hence c= 3 E(n-1)/ . P(n- 1)) 2 + Oc(n- 1)2 (81)

s= (n-l)/ (13E(n- 1)) 2 + la(n - I)' 2  (94)

Note that E(n) = ,J( PE(n - 1)) 2 + I a(n - 1)12  (85)

In order to avoid calculating a square-root, we factorise the upper triangular matrix (R say) as fol-
lows:

R = Dl/2R (86)

40



where D= 22 (87)

jP

It is also necessary to remove the factor of Dt1 2 from any other quantities that are operated upon

by the Q matrix. Hence let

r1E(n -1) Pp(n-I1) 0 1 -( !c- 1) 0 1[I (n-I1)0 (8
L(xn) aOp_ (n) y_ t(n - 0 o( f(n) apl(n) (88)

' = (n- ) 0(n)

(n) = ( 2g~~~~~~~n -l )(n -ln () . ~)/()(1

so that C (n- ) 0 p n1 I2
- (n L ) (n) (n) 1

1 = (n) 0 '- 4(n)1  n(89
- 4L 0 5 (n )! [0  d(n) Ij

(where *represents a quantity of no interest). Thus we find that

E(n)=p2rn-)+5p () (n 9

(n) =(1
2t(n - 1)4(n -1 -I(~;naP () n 91)

= cl..(n -1) + -%*UtP I(n) (92)

where Z (p2 (n - M))/f(n) and i =(8_, nd) /n)91

Similarty Et P(n) = dp_ (n)- &n)i(n -1) (94)

using the fact that 5 (n) = E3~n-)~(n) E8P 1 (n). (95)

From equations (90) and (93) note that
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+ = (96)

and hence, from equations (92) and (94), that

(n) = j(n - I) + .i* p(n) (97)

This latter form (equation (97)) of the update for the quantity I(n) is the most stable method for
implementing the square-mot-free algorithm and is intimately connected with the "error-feedback" al-
gorithm of Ling and Proakis I I].
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10.3. Algorithms

These algorithms, written in pseudo-ALGOL, calculate the adaptive filter residual for a p-th order

system fed with a pre-windowed data sequence x(n) and a reference sequence y(n). The first algorithm

uses the obvious implementation of Givens rotations using square-roots. The second one avoids taking

square-roots by calculating transformed quantities and implements the rotations via the feedback algo-

rithm.

10.3.1. "Normal" algorithm

START
INITIALISE (all variables) := 0;
FOR n FROM I DO

LET to~t,(n) := x(n); obo(n- 1) := x(n- 1); o(n- 1) := y(n- 1); U0n- 1) :=- 1;

FOR q FROM I TO pDO

LET b.q.l(n)n - 2))2 + la. q - 1)12;
IF E.b,qI(n-t 1) = 0 THEN LET Cf~q := ; Sfq := 0

ELSE LET Cf,q := b,q.l(n-2 ) / Eb.q.I(n-l); sf,q -boq. I(n- 1) /b,q. (n-1)

ENDEF;

LET Mf,q.(n):= Cfq Ptfq.l(n-I) + s;, qO-,q.l(n);

O-,q(n):= cf,q oafql(n) - Sf,q Lgfiq~l(n-I);

Atq.l,(n- 1) := cf~q Pg q_ ,(n-2) + sf, , q_ , (n- 1);

q(n-1) c-q cq Sf,q 09q. (-
2

)

yq(n-) := Cfq q I(n-1);
COMMENT prediction residual ef.p(n.n) = yq(n-1) ofq(n) COMMENT

ep( .n- 1) = yq(n- 1) aq(n- 1) COMMENT q-th order filtered residual COMMENT

LET cfq.l(n):= i(PEf, q - (n - 1)) 2 + jtI q (n)l 2

IF efi.l(n) = OTHEN LET Cbq := 1; sb.q:= 0

ELSE LET Cbq - fq. l(n- !) / E,q-,(n) ; Sb.q :af.,q-(n) / Cf.q- (n)

ENDIF;

LET 4b,q l(n-1) := Cb.q lb,q.l(n-2) + s, q',q.q-l(n-');

OCbq(n) := Cbq bq.l(n- 1) - Sb,q flJ-bq.t(n- 2).

COMMENT yq(n) "= Cb,q Yq- (n-1); backward prediction residual eb P(nn) := q(n) Otb,q(n)

COMMENT
ENDDO

END_DO
FINISH

43



10.3.2. "Square-root-free with feedback" algorithm
START

INMTALISE (all variables) :=0;
FOR n FROM I DO

LET ef 0(nn-I) :=x(n); ebO(n-I~n-2): x(n-l); e0(n-I .r-2): y(n-I); 8o(n- W= 1;
FOR q FROM 1 TO p DO

LET Zbq1(flI) := p2 Iqn2 qn1ebq.I(fllnf2) 2.
IF Ebq.1(fli) = 0 THEN LET Ef,q: 1; ifq= 0

ELSE LET Ef~q: 02Eb.(t-2)I/ fbql(n-I); kq*= Sq.j(fl-I) eb~q4(n-ln-2 ) / bq-l(n-l)
ENDJF
LET ef~q(fl~fli): efq,(l~f1) - eb,q.I(fln-fl 2) jfqj(nl)

Sf, qC~~lf*)

eq(n-I~n- 2): eql(f-l~f 2) - eb,q.l(n.I.n. 2) i q.i(n-2),

COMMvEN'T prediction residual ef,p(n~n) = Bq(n- 1) ef~q(nn- 1) COMMENT

e q(f-lnIJl):=8q(n-I)eq(n-Iln-2) COMMENTq-th order filtered residual COMMAENT

LET Efqi,(n) D2E fqi,(fli) + 8qI(n-1) lef,q_1(n~n-I)1 2;

IF Efql() = 0 THEN LET Eb,qz 1; Sq= 0

ELSE LET Cb,q := 2 E fq,l(fli) / Efq-l(fl):iq= 8q-j(fl-) efq.I(n~n-IJ / E£fq-j(f)

END-IF;
LET Cb,q(fl~fl1): Cb,q.] (n-I .n-2) C f,q 1(n.n- 1) Wb,q.1(n-2),

W~bq.1(flI): Pbq- 1(n-2) + S~b qebq. (n~n- I)-.

COMAEN'T 8q(fl) :=E ,q 8q. 1(n-1); backw ard predi ction resi du al ebp(n~n) 8q(fl) Cbqfl~n I
COMM1ENT

END-DO
ENDDO

FINSH
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Figure 16 Parallel Weight Extraction

10.4 Post-processor Architectures

The algorithm presented in this memorandum solves a canonical adaptive filtering problem where
the reference signal (y(n)) is known. There are situations, however, when no such reference signal is
available and a constrained least squares minimisation is required (e.g. wide-band MVDR beamform-
ing). The algorithm also calculates the adaptive filtering residual directly without finding the optimum
coefficients. It is useful in system identification problems to know what the optimum coefficients are
and as such the algorithm derived so far cannot be used. All of the above draw-backs also apply to the
triangular systolic array 128] and a series of pre- and post-processor architectures have been developed
to over come them 15]125][26]130]. It is of great interest, therefore, to consider the application of these
techniques to enhance the lattice algorithm presented here.

10.4.1 Parallel Weight Extraction

It has been shown [26] that it is possible to extract the optimum weight vector (e.g. o in equation

(4)) in parallel with the computation of the standard triangular systolic array (Figure 16). The rotation
parameters (Qp(n)) arm passed across into an "inverted" triangular array of processors that apply these
rotations. The data that is fed into this array is a vector of zeros. As this vector passes down the array it
is transformed into the optimum weight vector.

Now if the data 1(n) is in fact delayed samples from a time series, then the system is an adaptive
filter and the left-hand triangle in Figure 16 can be replaced by a lattice filter. Note however that the

rotation parameters (Qp(n)) are still produced by the lattice. This can be seen as follows: consider the
series of Givens rotations that constitute the matrix 0,(n). Recall that these operations are intended to
annihilate the new data vector by rotation against the previous version of the triangular matrix Rp(n- 1)
(see equations (22) and (23)):
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Figure 17 Parallel Weight Extraction from a Lattice

QOn E fRP(n - 1) 1 R(n)](~
O p(n) 0 = (98)

x(n) ... x(n-p+ 1)]

The sequence of Givens rotations are constructed 151 such that the element x(n) is annihilated first,
by rotation against the top row of the matrix 13,(n-l), next the second element of the bottom row
(x(n-1)) is annihilated by rotation against the second row of PRp(n-l) and so on. Consider the situation
after the first q < p (say) elements of the bottom row have been annihilated:

Rq(n) Vb q(n) S

_QP (n - 1).99t P b ~QqQq QI... 4 j B(n)X(n) 0 T (99)

0 0
t O'b. q(n) zt

where Q, is a Givens rotation and we have used the fact that the (q+ I)st diagonal element of RP(n- 1) is
Cb.q(n- 1) (see last paragraph of section 4.2). The identity of the elements Ml.q(n) and Otb.q(n) follows from
the underlying data matrix and the fact that upper-triangular matrix Rq(n) has been formed. It is clear
that the Givens rotation Q,. is that which annihilates the element abq(n) by rotation against Oeb,q(n- 1)
but this is exactly the definition of Qi,q. (n+ 1) (see equation (4 1)). Thus the lattice algorithm does cal-
culate the rotations that constitute Qp(n) and it is possible to "bolt-on" the weight-extraction processor
to the lattice (Figure 17).
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Figure 18 Linearly Constrained Least Squares Minimisation

10.4.2 Linear Constraints

It has been shown [25] how the triangular systolic array can be adapted to solve a linearly con-
strained least squares problem. The technique is to use a trapezoidal preprocessor in front of the trian-
gular array (Figure 18). Briefly, system works as follows: the constraint vectors ame first fed into the
combined array followed by the data in the usual way (note that the combined array is triangular). After
the constraint vectors have been entered into the array, the preprocessor section is "frozen", that is to
say the stored parameters that are normally updated from time instant to time instant are kept constant.
As the data subsequently passes through the preprocessor, the constraints are incorporated into the data
before the least squares minimisation is performed in the standard triangular array.

It would be very useful to be able to solve linearly constrained adaptive filtering problems effi-
ciently. However, when a constrained least squares minimisation problem is re-formulated as a canon-
ical one (see [25]) the data matrix does not have Toeplitz symmetry (even if the input data does). Thus
it is not possible to "collapse" the triangular array into a lattice. It would be interesting to know what
function the lattice equivalent to the architecture shown in Figure 18 performs. By equivalent architec-
ture we mean a lattice where the first q (say) lattice stages were operated frozen mode once the con-
straint data had been fed into them.

The pre-processor architecture for implementing the linear constraints has many desirable features
however it is not the only method for achieving this aim 130). It is possible to apply constraints to the
least squares minimisation problem using a post-processor: this architecture is a modification of the
systolic QRD-based MVDR beamforming method [ 15).
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Figure 19 MVDR Beamforming

The MVDR beamlorming problem is a least squares minimisation problem with a single linear
constraint: namely that the antenna gain in the "look" direction is fixed. The QRD-based architecture
she wn in Figure 19 can be used to produce a MVDR residual. The triangular array is fed with data to
initialise it. then the constraint vector is fed into the array which, operating in the frozen mode, outputs
a vector that is loaded in to the new array on the right hand side. The riangular array is then return to
its normal adaptive mode and, as more data arrives, it passes the rotation information Qp(n) to the post-
processor. The output of the combined structure is the MVDR beamformer residual.

Clearly because the QRD-based lattice is "black box" equivalent to a triangular array fed by a
tapped delay line, we may use the same technique to implement a MVDR spectrum analyser. The main
advantage to this post-processor MVDR technique is that several single constraints, or look directions,
can be implemented simultaneously since the rotation parameters in Qp(n) can be fed to any number
of post-processors. The main draw-back is that the magnitude of the numbers stored in the post-proces-
sor continually diminishes as time progresses and the processor requires periodic re-initialisation (as
above) if serious numerical problems are to be avoided.

Yang and Bhne (30] have shown that by combining the outputs of several different MVDR prob-
lems. the solution to a multiply constrained problem can be generated (Figure 20). Apart from the prob-
lem with the MVDR post-processor mentioned above, this technique has the draw-back that the final
trapezoidal array has to implement a hyperbolic rotation which is numerically unstable.
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11. ANNEX

As was mentioned in section 7, many computer simulation experiments were undertaken and only

the salient points have been discussed so far. For the sake of completeness, all of the simulation results
run to date are included in this annex.

Each of the following graphs has a key which lists all the relevant parameters. The following is a
short explanation of each item:

FILTER ORDER ......... the order of the adaptive filter (always = 11).
CHANNEL ORDER ...... the order of the "raised cosine" channel (always = 3).
REF. DELAY ........... the amount of delay in the reference signal path (always = 7).
APRIORI ERROR ........ confirmation of the type of error being plotted.

WINDOW .............. value of j3 (see equation (2)).
PRE-LOAD ............. value used to initialise energy terms.
BITS .................. number of bits in the mantissa (0 = double precision).
ZERO .................. value below which quantities are considered to be effectively

zero.
ITERATIONS ........... number ofrealisations of the simulation used to calculate the

ensemble-average error.
SPREAD ............... value of W (see equation (71)).
VARIANCE ............ variance of gaussian measurement noise (always = 10-3).

G. APPROX ............ number of iid random variables added together to form a
gaussian random variable (central limit theorem!).

SEED .................. seed value for random number generator.

Several different algorithms were used in the simulations and each one was allocated a different tag:

NORMAL LATICE ..... Lattice algorithm, normal Givens rotations.
SQROOT LATTICE ...... Lattice algorithm, square-root-free with feedback Givens

rotations.
E/FB LATTICE .......... Lattice algorithm, square-root with feedback Givens

rotations.
SF-EF LATTICE ......... Lattice algorithm, square-root-free without feedback Givens

rotations.
FULL SQRT ARRAY ..... Lattice algorithm (sic), normal Givens rotations but with

double precision arithmetic inside the square-root operator.
NORMAL ARRAY ....... Triangular systolic array algorithm, normal Givens rotations.
SQROOT ARRAY ....... Triangular systolic array algorithm, square-root-free with

feedback Givens rotations.
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