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SUMMARY

We derive, from first principles, the least squares lattice algorithm for adaptive filtering based on
the QR decomposition (QRD). In common with other lattice algorithms for adaptive filtering, this algo-
rithm only requires O(p) operations for the solution of a p-th order problem. The algorithm has as its
root the QRD-based recursive least squares minimisation algorithm and hence is expected to have su-
perior numerical properties when compared with other fast algorithms.

This algorithm contains within it the QRD-based algorithm for solving the least squares linear pre-
diction problem. These algorithms are presented in two forms: one that involves taking square-roots and
one that does not. Some computer simulations of a channel equaliser, using finite-precision arithmetic,
are presented in which the lattice algorithms are compared to the more established tnangular systolic
array ones.

The relationship between the QRD-based lattice algorithm and other least squares lattice algo-
rithms is briefly discussed. Various extensions to this work are discussed including the multi-channel
QRD-based adaptive filiering algorithm that can be used for wide-band beamforming.
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1. INTRODUCTION

Least squares minimisation can be applied to a wide range of digital signal processing problems
including that of adaptive filtering. The adaptive filtering problem is, however, special in the sense that
the “data matrix” (Xp(n) of equation (5)) has a Toeplitz structure so that each row of the data matrix
contains only one new datum when compared to the previous row. Various algorithms [8] have been
devised that take advantage of this redundancy to reduce the computational load, for a p-th order filter,
from O(p%) to O(p). Unfortunately these fast algorithms are not explicitly well-conditioned and some
tend 10 be numerically unstable.

It is possible, however, to solve a least squares minimisation problem using the technique of QR
decomposition{8]. This technique has the advantage that it operates on the data matrix directly, rather
than the corresponding covariance matrix, and involves only orthogonal rotations, which are numeri-
cally well-conditioned. The recursive QRD algorithm can be implemented on the triangular systolic ar-
ray as devised by Gentleman and Kung[5] and subsequently modified by McWhirter{14]. This algo-
rithm solves a general recursive least squares minimisation problem and will require O(p2 ) operations
to generate the solution to a p-th order adaptive filter problem. Extensive computer simulations of this
more general algorithm{28] have shown the QRD-based least squares minimisation algorithm to have
excellent numerical properties. The possibility of producing an O(p) QRD-based algorithm for the spe-
cial case of adaptive filtering has thus long been of interest.

Here we present a full derivation of the recently derived QRD-based least squares lattice algo-
rithm[16] starting from the O(p2 ) QRD-based algorithm and incorporating directly the time-shift redun-
dancy found in an adaptive filtering problem. The derivation presented here owes much to the work of
Cioffi[3). Recently he showed how to take advantage of the time-shift redundancy that is present in the
problem of the linear prediction of time series data and produced a QRD-based “fast Kalman™ algorithm
(see {1} or [16] for aliemnative, simpler derivations). This algorithm can recursively update, from one
time instant to the next, the solution to a p-th order linear prediction problem in O(p) operations. How-
ever, unlike other fast Kalman algorithms, the QRD-based fast Kalman algorithm also produces the so-
lution to all lower order problems as well (see [19)).

The QRD-based lattice algorithm, like all lattice algorithms, is designed to solve the lincar predic-
tion problem recursively in time and order, again in O(p) operations: thus it, too, solves all lower order
problems. The two classes of fast QRD-based algorithms are different however. The fast Kalman algo-
rithms are completely different in structure from the QRD-based lattice algorithms (see Slock [24] for
more discussion). In particular the fast Kalman algorithms have a smaller operation count than the lat-
tice algorithms (although both are linear in the problem order). The level at which the two different al-
gorithms can be pipelined is also different - the lattice algorithms having a higher degree of concurren-
cy. Itis also worth noting that the fast Kalman algorithms implicitly have a downdating step which gives
cause for concem, from a numerical point of view, although no problems have been observed in any
simulations done to date.

In recent months, the O(p) QRD-based least squares lattice algorithm has also been derived, inde-
pendently, by two other groups: Ling[13] and Yang and Bbhme[29). Both of these derivations begin
from a previously known (mn-onhogonal') algorithm and by a series of transformations arrive at one
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with only orthogonal operations. As such these derivations provide an interesting insight into the prob-
lem and are complementary to that presented here.

Yang and B6hme bring together the work of Lewis[9) and McWhirter[14]). Lewis began with the
standard (covariance domain) multi-channel least squares lattice equations and, driven firstly by the de-
sire no1 1o explicitly invert the covariance matrices and secondly to perform all matrix computations in
a ‘Tiumerically sound” way, reformulated part of the algorithm (the calculation of the reflection coeffi-
cients) by the use of the mawrix inversion lemma and QR decomposition. As the bulk of the calculation
is exactly the computation of the reflection coefficients, Lewis proceeded no further with this re-formu-
lation and apparently failed to notice that the “non-orthogonat” part of his algorithm is in fact redundant.
Following the work of McWhirter, Yang and BShme noticed that the adaptive filtering residuals can be
found directly: this observation results in the construction of a purely orthogonal algorithm (see Figure
1).

LS Minimisation §

 Orthogonalisation | :
time series
'" {Lastice Algorithm }
ume series time senes Cholésky/QRD

RMGS | . Qq. QRD E/
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Figure 1 Relationship to Covariance Domain Lattice Algorithm and RMGS

The other derivation, by Ling, relies on a well known equivalence{10] between two genera] Jeast
squares minimisation algorithms: the O(pz ) QRD-based algorithm and the recursive modified Gram-
Schmidt (RMGS) algorithm[11). Strictly speaking, the equivalence is between a modification of the
RMGS algorithm and a form of the QRD-based algorithm that does not require the square-root opera-
tionZ. Ling and Proakis| 12) have shown how to create an O(p) lattice algorithm for solving the adaptive
filtering problem by taking advantage of the time-shift redundancy within the RMGS approach: the so
called “error feedback” lattice algorithm. This is arguably the most well-behaved of the least squares
lattice algorithms presented 1o date. Using the above equivalence, Ling [13] has recently shown that the
error feedback lattice algorithm can be reinterpreted as being a square-roct-free form of an associated
algorithm that consists only of orthogonal rotations. Comparison with the algorithm derived here shows
that Ling’s associated orthogonal algorithm and that of Yang and Bbhme, when specialised to the single

1. We use the phrase “orthogonal algorithm™ to mean one that generates the required solution exclusively
by the application of orthogonal transformations, such as Givens rotations, to the input data.
2. See section S for details of the square-root-free version of the QRD-based algorithm.




channel case, are indeed identical and are equivalent to the QRD-based least squares lattice algorithm,

Another approach to fast orthogonal adaptive filtering algorithms has been presented by Regalia
and Bellanger [20]. Based on the work of Cioffi[3], Regalia and Bellanger realised that certain quanti-
ties in the QRD-based fast Kalman algorithm were the same as those in a conventional (covariance do-
main) lattice algorithm. In particular, the identification of the reflection coefficients as the sines of cer-
tain rotation angles led them to develop an altemnative, Kalman-type algorithm for solving the linear pre-
diction problem. Regalia has shown theoretically [21] that his structure is stable. However it is not as
yet clear whether the same analysis will work for the other fast QRD-based adaptive filter algorithms.

As well as presenting the QRD-based least-squares lattice algorithm for linear prediction, the ex-
tension of this technique to the solution of the adaptive filiering problem is also given in this memoran-
dum. The resulting algorithm has a lattice-ladder structure. In common with Cioffi's original formula-
tion of the QRD-based fast Kaiman algorithm, the lattice-ladder algorithm presented here operates on
pre-windowed data (i.e. all data before the first time instant is assumed to be zero). The extension of this
work 1o the multi-channel case (wide-band beamforming) is relatively straightforward and is briefly dis-
cussed in section 6.

We begin, in section 3, by reviewing the mathematics of the solution to an adaptive filtering prob-
lem using the method of QR decomposition. The key 1o the fast adaptive filtering algorithm is the de-
velopment of a fast (lattice) algorithm for the solution of an associated linear prediction problem. In sec-
tion 4 the connection between these two, related, problems is outlined and the O(p) solution to the linear
prediction problem, and hence the adaptive filtering problem, is developed. Section 5 discusses various
aspects involved in the implementation of the lattice algorithm, The derivation of the multi-channel lat-
tice algorithm is sketched out in section 6 and the results of some computer simulations are presented
in section 7. The algorithm is given explicitly, in the appendix, in two forms: one that involves the
square-root operation and one that does not.
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2. NOTATION

Mol L, nom.

0 a vector of zeros.

0 a matrix of zeros.

X, an n-dimensional vector full of zeros except for the n-th component which is
unity (pinning vector).

Q an orthogonal rotation matrix.

o) time recursive increment of Q. E.g. Q(n) = Q(n) [Q(" R D ‘j.

[o/

R an upper triangular matrix.

X a data matrix.

Yy a reference vector.

uv the two components of the rotated reference vector: Qy.

a8 the two components of the right-hand column of the matrix Q. Alteratively,
the two components of the rotated pinning vector: Qn

e a least squares residual.
a rotated, or angle-normalised residual.

B the exponential weighting factor.

% the lower right-hand element of the matrix Q,,.

€ the sum of the squared prediction errors.

Subscript “f” indicates a quantity connected with a forward linear prediction problem or its
solution.

Subscript “b” indicates a quantity connected with a backward linear prediction problem or its
solution.

Subscript “p” indicates a quantity connected with a p-th order problem or its solution (simi-

larly subscripts “p-17, “p+17 etc.).
Hence, for example:

!b.p-l(“'l) is the top component of the rotated reference vector ¥b,p-1(“' 1) associated with
the (p-1)st order backward linear prediction problem at time (n-1).

Several rotation matrices are introduced in this memorandum that, clearly, have to be distinguished
from each other. There is, howevet, no obvious choice as to how they should be labelled. Following the
convention used for labelling of the reflection coefficients in the covariance-domain least squares lattice
algorithm, we choose to label these rotation matrices according to the problem to which they relate. For
example the matrix Q,. p(n) is a rotation matrix used in the calculation of the solution 10 the p-th order
forward linear prediction problem at time n: despite the fact that it operates on the vector

l’mﬂ(n‘ 1!

3. The dimensionality of the ali zero vectors and matrices used in this memorandum should be obvious
from the contexi in which they are used.




3. ADAPTIVE FILTERING

In order to simplify the analysis we consider only real signals. The extension to the complex case
is straight forward and indeed the algorithms presented in the appendix are for complex signals.

In a least squares adaptive filtering problem, a set of p (say) weights, @y(n) =

[u);o) (n), n);l)(n), ceey mép' l)(n)] l, is to be found, at time n, that minimises that the sum of the dif-

ferences, squared, between a reference signal y(n) and a linear combination of p samples from a data
time series x(n-i) (0 € i S p-1). This decision is to be based on all the data accumulated so far.
Specifically, the measure Ep(n) is to be minimised, where:

Ep(n) = IB(n) gy(m)! (n

p-1 0 ...0
B(n): 0 Bn—2 ...0 (2)

0 0 .1
0<ps1 3
gp(n) = XM @y(n) + y(n) )

x(1) x(0) ... x(2-p)
X_(n) = x(2) x(1) ... x(3-p) )
P . . .

x(.n) x(n; ... x(n—‘p+ 1)_]I

¥n) = [y(1), ..., ym' (6

The diagonal matrix B(n) represents an exponential “‘forgetting™ factor that aliows the algorithm
to work with quasi-stationary signals. Note that there are effectively two time indices present in equa-
tion (4) because it is necessary to distinguish between the components of the error vector &p(n) and the
amount of data used to calculate the coefficients (and hence the time index for@,(n)). Specifically we
have

;P(n) = [cp(],n), ep(2, n), ...,ep(n, n)]t @)
p-1
where e (m, n) = y(m)+ ‘Zoo);')(n)x(m ~1) (8)
5




is the error in estimating the datum y(mn) as a linear combination of x(m-i) 0Si<p-1 when using the op-
timum coefficients calculated at time n. There are two quantities of panticular interest: the a-posteriori
error (equation (9)) which uses the most up to date estimate of y(n) and the a-priori error (equation (10))
which is the estimation error for y(n) based on the coefficients calculated at the previous time.

p-1
e = ym+ ¥ o (mx(n-i) ®)
i=0
p-1
emn~1) = ym+ Y m;"(n— Dx(n - i) 10)
i=0

The solution of least squares minimisation problems via QR decomposition is now well established
{8] and requires the determination of an orthogonal matrix Qp(n) that transforms the matrix B(n) >‘p‘")
into an upper triangular form (as indicated by the shading). Let

Q,(m B(n) X, () = [Rré")} ()

so that, from equations (4) and (11),

Q () B(n) gp(n) = RP(n) o(n) + up(n)-l (12)
’ 0 vy(n)
.
where L = a3
y,(n) 4

Note that p(n) is defined 1o be a p-dimensional vector so that the partitioning in equation (12) is con-
sistent. Due to the orthogonal nature of Qp(n) it is clear that

[Rp(n):lg)(n) + %™ ‘ (14)
o vy

and by inspection it can be seen that the least squares solution is obtained when

Ep(n) = IB(n) gp(n)ll = IIQp(n) B(n) gp(n)ll =

Rp(n)m(n) + up(n) =0 a15)
and that mig {E;m)} = |y, ()} (16)
6
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In principle equation (15) can be solved by back substitution, since Rp(n) is a triangular matrix,
and the optimum coefficient vector @(n) found. It is often the case, and adaptive filtering is a prime ex-
ample, that the a-posteriori residual (equation (9)) is explicitly requirad". The reason for this is the fact
that the a-posterioni residual represents that pant of the reference signal uncorrelated with the data sig-
nals x(n-i) (O<i<p-1) and as such is the “filtered” signal. Clearly the a-posteriori residual can be calcu-
lated, once gzp(n) is known, as the last component of gp(n) (equation (7)). It has been shown [14], how-
ever, that the adaptive filtering residual can be obtained directly from the product of two quantities nat-
urally present in the QRD-based algorithm:

eptnn) =y (m) o (n) an
where Y= £, Q) 1, (18

o= & wm (19)
and x,=10,...0,1]" Q0)

is an n-dimensional vector. Vectors of the form shown on equation (20) consisting of zcros except for
the final element, which is unity, play an important r6le in the following mathematics. These vectors are
often referred to as “pinning™ vectors. In equations (18) and (19), the p:nning vectors merely serve o
select the lower right-hand element of Qp( n) and the last element of Y, (n) respectively.

The ability to calculate the adaptive filtering residual directly, using equation (17), is an impornant
resull since although inverting the matrix Rp(n) is relatively easy (it is triangular and therefore can be
inverted by back-substitution) this process is potentially numerically unstable whereas the two quanti-
ties ¥ (n) and a_(n) are always well defined. It can be showr™ ] that yp(n) is the square-root of the
maximum likelihood factor of more conventional algorithms. ¢ follow Ling {13]in referring to ap(n)
as the “‘angle normalised™ residual.

It is worth noting. at this point, that there are two methods for calculating the orthogonal matrix Q:
via Givens (planar) rotations and via the Householder transformaticn (a reflection). The Householder
technique leads to a lower operation count; however, unlike the Givens approach it does not admit a
time recursive implementation, which is often preferred®.

It can not be stressed too much that once Qp(n) has been found the problem has effectively been

4. Note that it is also possible 10 extract the coefficient vector from the QRD-based algorithm in a systolic
fashion: see section 10.4.1.

5. Recently, Cioffi [4) and Slock [23] have published recursive QRD-based “fast Kalman™ algorithms
that involve Houscholder rransformations, but the sieps that involve time updaling are operations on
2-dimensional vectors and as such the required Householder transformations are equivalert o Givens
rotations. There does, however, appear 1o be some controversy as to the validity of these algorithms:
see [23).

— -




solved. Knowledge of Qp(n) means that yp(n) is known and also allows up(n) to be calculated and thus

the least squares residual may then be found. The development of the fast QRD algorithm for adaptive
filering is based, almost entirely, on the principle of constructing partially triangularised matrices from
known quantities and then finding a set of rotations to complete the process. This principle is also a key
element in the derivation of the well known [5] time-recursive version of the algorithm outlined above.
Here the solution at time n, along with the new input data for time (n+1), is used to simplify the calcu-
Jation of the solution at time (n+1). The approach may be summarised as follows: since

X (n+) = [ Xp(n) } @2n
P x(n+1)...x(n—p +2)

it follows, from equation (11), that

BR(m)
[Q"(n) EIJ Bn+1) X(n+1) = 8 (22)
o' 1

x(n+1)...x(n-p+2)

Note that the matrix on the right-hand side in equation (22) is very nearly triangular and composed
entirely of known quantities. Thus the actual application of the rotations specified in equation (22) can
be circumvented by the direct construction of the partially triangularised matrix shown in equation (22).
To complete the triangularisation, define Qp(n+l) 1o be that set of rotations that annihilaies the new
data samples by rotating them into the matrix BRp(n). In which case

& ey | ™0 B(n+1) X (n+1) = Ryo+1) @3
p Ql 1 O

As only the rotations in Qp(m»l) have to be constructed (as a series of Givens rotations[5}), the

computational load is reduced from O(np) 10 O(p2 ). Note that, from equations (22) and (23),

Q,nen)= Q (nen) | 2™ © 24)
o' 1
so that P AL SO ALY VE S
=E:|+l Qp(MI) En#l 25)
8

e



and = Q1) By (m | = | Byym 26)

[up(n + x)} . Bum| v n+1)
(n+ 1) an+1)

Equation (25) is significant because it shows that “direct residual extraction™ is still possible knowing
only Q (n+1) - see equations (18) and (19) and associated discussion. The “time update” technique,
presented above, forms an ifportant part of the derivation of the fast adaptive filtering algorithm pre-
sented in this memorandum. In particular, we will explicitly use the decomposition for y,(n) shown in
equation (26).




4. LINEAR PREDICTION
4.1. Motivation

The 0(p2 ) QRD-based algorithm for the solution of a p-th order adaptive filtering problem devel-
oped above has many desirable features including being a “data domain” algorithm and having a time-
recursive formulation, a time-independent computational requirement and a systolic architecture [28).
The time shift redundancy in the adaptive filtering problem can, however, be used to reduce the com-
putational load still further: from 0(p2) to O(p). Note that the set of rotations, either Qp(n) or Q p(n).
that are necessary for the solution of the problem are entirely dependent on the matrix X_(n). The matrix
X_(n) can, however, be built up in an order recursive manner by adding extra columns which, because
otp the Toeplitz nature of X(n), consist of one new element and a time-shifted version of the previous
column. Consider the following decompositions:

x(1) ... x(2-p)

Xp(n) = : (27)

x(n) ... x(n=p+1)
= [Xpo i) g, ) 2%

t
Z | XM z 29)
ym X, _y(n-1)

where Y0 = (2. ... x(mt €4
Yy pu M = X2, ., x(n-p+1)} 31
and 2= (x(0), ..., x2-p)} (32)

Note that, from equation (28), if we had already determined the rotation matrix Qp_l(n) that tnian-

gularises the matrix® Xp_l(n) then we could use it 10 operate on Xp(n) 10 produce a partially triangular-
ised matrix. In doing so we also have to rotate the vector y, M(n) however these are exactly the steps

that are required in the QRD-based solution of the (p-1)st order backward linear prediction problem. In
the (p-1)st order backward problem, an estimate, at time n, of x(n-p+1) is formed from a linear combi-
nation of the data {x(n), ..., x(n-p+2)}. The solution to this problem depends on the triangularisation of
the matrix Xp‘l(n) and the transformation of the reference vecior Xb,p-l(") - see equation (31). Hence,

knowing the solution to the (p-1)st order backward problem at time n would allow us to construct a par-

6. We really mean the matrix B(n) Xp_l(n) but for the sake of readability B(n) will often be omitied.

10




tially triangularised version of Xp(n) and so save a certain amount of computation.

Equation (29) allows another partially triangularised version of Xp(n) to be constructed, this time
using quantities from the (p-1)st order forward linear prediction problem. The (p-1)st order (forward)
linear prediction problem, at time n, is defined as the estimation of x(n) based upon the data {x(n-1), ...,
x(n-p+1)}. This involves the triangularisation of the matrix 1(@0-1) and the transformation of the rel-
evant reference vector y(n) - see equation (30). As before we can use the decomposition given in equa-
tion (29) to produce a partially triangularised version of Xp(n) from known quantities. It should now be
clear that the two linear prediction problems of order (p-1) are intimately connected to the problem of
determining a set of rotations that triangularise the data matrix xp(n). The triangularisation of X_(n) is
however central not only to the adaptive filtering problem but also to the p-th order linear prediction
problems. We therefore have the beginnings of an order recursive algorithm for linear prediction and
for adaptive filtering.

4.2. Forward Linear Prediction
The p-th order forward linear prediction problem, at time n, requires the determination of the vec-

1
tor of filler coefficients g () = [ﬂ)f(_og (n), ..., mr(f;- n (n)] that minimises the total prediction error

Ef,p(n) = IB(n) gf‘p(n)ll where

& pM =X, (1) @ (0) + yg(m) (33

As in section 3, the least squares solution to this problem can be found by the method of QR de-
composition. It is necessary 1o determine the rotation matrix Qp(n-l) that triangularises the weighted
data matrix B(n-l)Xp(n-l) and then to apply it to the weighted vector B(n-1) y{n) in order to calculate
the angle normalised residual af'p(n) (cf. equation(19)). We also need to be able to calculate yp(n-l)
(see equation(18)) in order to generate the a-posteriori prediction residual. Note also that the triangular-
isation of Xp(n-l) is exactly what is required in the solution of the p-th order adaptive filtering problem
at time (n-1) - see equation (4). Consider, therefore, the following composite matrix:

[ym X -1 y-Dx, | (34)

From equations (22) and (23), it is clear that

QD &, = Qn- D, _, = (a0l yn-1)f (35)

where 3_(n-1) is a p-dimensional vector. It should be clear, therefore, that we include the vectorg, , in
the above matrix (equation (34)) in order to be able to calculate yp(n-l) just as the vector y(n) is present
to allow o, p(n) to be calculated. Similarly the presence of the vector y(n-1) will allow us to calculate

up(n-l). !

From equation (28) we have that
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[ym X, 1) ytn - D8,y = [y X, yt0-1) Yop-i®@-Dy@-Dx,_] a6

Hence Qpl(n-l) B(n-1) [yf(n) X,_i(n-1) Yo p- =D yn-Drx, _,
_ [P @Ry 1) x_g,,.,,";f_.,(b Dy, y(0-Da,_,(a-1) a7

Yf_p_l(n) o !g,;”:_'l(n"l) Yp_j(n-l) sp-l(n-l)
where gy (D)= 1% yp_l(n-l)]l (38)

It is clear that ¥e p_l(n) and v, p_1(n~1) must have a time recursive decomposition similar to that
given in equation (26) for !p_l(n-l). Hence

Yoo MR a1 Oy p-3=1u,_,(n-1) 3, ,(n-1)
¥y p-1(m) o Yop-1@— Dy, y(n-Dg (-1

Vrpoa@®  Ry_4ln=1) By, y(a=1) u,_,(n-1) a,_,(n~1)
= By ,_(n-1) o) Byy, p-1(r—2) By, ,(n-2) 0 ’
1

(39)
a1 o “b.p-x(""l) a,_,(n-1) yp_](n—l)J

Now suppose that we had already calculated a rotation matrix, Qf p(n-l) say, that rotates the veclor
Y p-1("'2) into a form where only the top element is non-zero. Then

1 Vpo1®  Rp0=1) gy -1 w,_(=1) 2,_,(n-1)
I:Qr.p(n— )Kj Byi, (0= 1) 0 Byb'P_‘(n—Z) By, (n-2) 0

t

[ af'p_l(n) o' ub,,_t(“—l) o, _y(n-1) Yp—l(“'l)_]
Vip-1) Ry sn=D wpy, 0=1) u,_0-1) a,_(n-1)] GO
= Bp'f'p-1(n-l) Ql Beb'p_l(n-z) ﬂl»lp_,(n"z) 0
BA; ,_y(n-1) o 0 BA,_y(n-2) 0 ’
o,y o' Oy pgB=1) @ _(=1) y,_ (1)

where the new quantities e 'p_l(n-l), Lf,p_l(n-l). up_l(n-Z), L'H(n~2) and &, 1(n-1) are defined by
this operation. Note by analogy with equation (16) that & p_l(n-Z) is the (p-1)st order backward predic-
tion energy at time (n-2). Now in order to complete the triangularisation of the matrix xp(n~ 1) (see equa-
tion (37)) all that is required is the annihilation of the single element °‘b.p~l(“'1 ). This can be carried
out using a single Givens rotation:
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Vip1M  Ro_y(n=1) gy, 40=-1) p,_0-1) a,_,(n-1)
Bre,,(0-1) o B \-)Bp,_(0-2) 0
BA,n-1) O 0 BA,_,0-2) o

o @ o' o -1 o (n-1) y,_,(n-1)

Q f. 'p(n)

nf,p-l(n) Rp_l(ﬂ"‘l) hb’p;_}(ﬁ“l) Up_l(n‘l) ap_l(n"l)

= u,‘P_,(n) Ql eb,p-l(n-’l) up-l(n— 1) Kp(n -1 73
P, 0~ O 0 BA,_yn-2) o
a, ) o' 0 (-1 y@-1

o [P pmR-Dum-Dac-1
YipMm O y-Dg-1

where x_(n-1) is defined by this operation and the identity in equation (42), and hence the labelling of
some of the elements in the second matrix above follows by definition (see equation (37)). Thus the se-
quence of orthogonal transformations shown in equations (37), (40) and (41) solve the p-th order for-
ward linear prediction problem. Note, however, that the intermediate matrix shown on the right-hand
side of equation (40) consists entirely of quantities that would be available if the (p-1)st order forward
and backward problems had already been solved. If this assumption were true then we could have con-
structed this intermediate matrix directly, thereby circumventing the need for the operations as outlined
in equations (37) and (40). Only the single Givens rotation of equation (41) need actually be performed.
This requires a fixed amount of computation because only eight elements, one of which is zero, of the
left hand matrix in equation (41) are affected by the required rotations. In order to complete the lattice
algorithm for the lincar prediction problem, the fast update for the auxiliary (backward) problem must
be derived. This can be done along similar line 1o the above (sec section 4.3).

Before considering the backward linear prediction problem, note from above that the “new" quan-
tities Kp(n-l) and A, ,p-1("'1) have the following interpretation:

A p D)=y 1) CR)

PNCESY I .
I:Kp(n-l) =50 @

Note also that equation (41) provides a recursive decomposition of the matrix Rp(n- 1). This shows
that the diagonal elements of this matrix are in fact the backward prediction residual energy terms for
each of the sub-order problems. It also explains why the Givens rotations used in QRD-based Jinear pre-
diction algorithms should ensure that the diagonal elements of the R matrix are positive (see Bellanger
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and Regalia[20] for further insight).

4.3. Backward Linear Prediction
The p-th order backward linear prediction problem, at time n, requires the determination of the vec-

tor of filter coefficients [0 ‘p(n) = [mé.oz

F’b.p(n) = liB(n) S 'p(n)ll where

t
), ..., m,f'”p' » (n)] that minimises the total prediction error

& 5™ = X0 @y (1) + ¥y () @s)

Again the least squares solution to this problem ¢an be found by the method of QR decomposition.
It is necessary to determine the rotation matrix Qp(n) that triangularises the data matrix Xp(n) and then
to apply it to the vector Xb.p(") in order to calculate “b.p(") (cf. equation (19)). We also need to be able
to calculate yp(n) (see equation (18)) in order to generate the a-posteriori prediction residual. Consider,
therefore, the following composite matrix and the illystrated decomposition:

. 212 o o' 0 0 46
[P(")Yb.p(n) 'J [Yf(n) Xp—x(“'l)Yup—x(n’l)E““ ~

In equation (46), it has been assumed that the data sequence x(n) is pre-windowed (i.e. x(n) = 0 for
n £ 0). Note that this is the only place in the analysis that requires this assumption. Consider the effect
of the rotation matrix Qp_l(n-l) on the lower n-1 rows of the matnx in equation (46) - afier weighting
by B(n) of course:

1 o' B | X1 o' 0 0
0Q,_ (n-1) YmXp n=-Dy, _,0-Dr,

B Tx(1) o' 0 0
= Ve MRy _yn=Duwy, _((n-Da,_,(n-1) 47
¥ pa(M 0] Yppn-Dg (-1

As before, all the vectors on the bottom row of the above matrix have a decomposition in terms of
their value at the previous time instant and a new element:

’ 14

P



- lx(1) o 0

Pip1 MRy _jn=1py , (0~

0
Da, ,(n-1)

Y['p_](n) (&) yb,p-l(n-l) gp_!(n"l)

8- x(1) o' 0 0
”f,p-l(n) R ](n 1) pb, p- 1(“ 1) 3 l(n - 1)
ﬁyf.p_‘(n'- ) O By, (-2 o

a&p-‘(n) Q‘ ab,p—](“-l) Yp-](n— l)

(48)

Now suppose that we have already constructed a rotation matrix Qb (n-1) that annihilated the
vector y; 1 ,(n-1) by rotation against the element B"2x(1). Then

B Ix(1) o' 0 0
Q. (n-Do Up-i() Ry 0-1) uy,,_i(n=1) 2,_,(n~1)
1(P¥gp_y(n-1) 0 By p-1(1-2) 0

df'p_‘(n) of %y o= 1D Y, (0= 1)

Q(

Bef,p__l(n-— 1) o Bp.b'P_ ,n=2) 0 -|
Vip-1i® R_o-1 p,_(n-1) a,_(n-1)
Q 0 Blbrp' ](n ”2) [

uf.p-l(n) o) ab,p~1(n—l) Yp-l(n—l)J

(49)

Let Qb p(n) be the rotation matrix that annihilates the element a, pl(") by rotation against the el-
ement ﬂcf 1(n 1). Application of the transformation Qb p(n) to the above matrix thus yields the result:

Pegpyo-1) o' Bu, (-2) 0
Pep-1® Ry_yn=-1 p,  (0-1) a _n-1)

Qy oM
Qop 0 O  BA,,. (-2 o
- @) o' oy (=1 ¥, (n~1)
e(.p- 1(“) o' l-lb, p- ,(n -1) ¢P(n)
= ”"p_i(“) Rp-](n‘l) Db.p_,(n"l) ap_l(n_l) (50)
0 o By p-1(n=-2) 0
0 o' o, (N pAL)
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where the new quantity cpp(n) is defined by this equation. The identity of the elements in the bottom row
of the above matrix follows because of the following reasoning: bearing in mind the underlying data
matrix (see equation (46)), we are attempling 1o create an upper-triangular pxp matrix in the upper lefi-
hand comer on the matrix in equation (50). At present this sub-matrix is rather sparse and a little thought
shows that it is easy to construct a matrix (Qp, p(n) say )that will perform this triangularisation’. Spe-
cifically,

éf:p_,i(h) o' My p- =1 (pp(n)
B po® Ry _ja-1) by, (0-1) 3,_y(n-1)

Qo p(n) o 53-;,. i, [(n-2) 0
0 o' 0y, p(0) p ALY
_ [Rp®@ uy, ;) 2,(m) sh
O v, g, m

The important thing to note is that the action of the matrix éb‘ p(n) on the above matrix only af-
fects the upper p rows of elements. Thus we conclude that the lower n-p rows of elements of the matrix
in equation (50) must be equal to the lower n-p rows of elements of the matrix in equation (51) and the
result holds.

Hence the sequence of orthogonal rotations given in equations (47), (49), (50) and (51) solve the
p-th order backward linear prediction problem. Following the development of the solution to the for-
ward problem in section 4.2, note that the data matrix on the left-hand side of equation (50) can be con-
structed directly given the solutions to the (p-1)st order forward and backward problems. Thus the trans-
formations shown in equations (47) and (49) can be by-passed. Furthermore, as both o.b‘p(n) and yp( n)
are available in the matrix on the right-hand side of equation (50), the transformation shown in equation
(51) is not required either, provided we are only interested in the prediction residuals. Thus only the ro-
tations summarised in equation (50) need actually be performed explicitly. This requires a fixed amount
of computation because only six elements, one of which is zero, of the left hand matrix in equation (50)
are affected by the required rotations.

7. In actual fact, it is not necessary that we specify how this triangularisation is achieved since the QR
decomposition theorem guarantees us that it is possible. Note, however, that it is crucial to QRD-based
fast Kalman algorithm that this transformation is done in a specific way. Interestingly, it has recently

been pointed out [20] that the sines of the angies involved in the Qy, p(n) rotation are in fact the re-
flection coefficients of a “conventional” least squares latice algorithm.
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Figure 2 QRD-Based Lattice Algorithm
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Figure 3 QRD-Based Fast Kalman Algorithm

TIME (N-1)

Note, in passing, that the “new"” quantities Qp(n) and -'—‘b > l(n-2) have the tollowing interpretation:

Abvp’l(n-z) = ¥p p(01) (52)

o, | _ 53
Lp-](“‘ 1)] —ap(n) (53)

Gathering 1ogether the results of sections 4.2 and 4.3 we see that it is possible to transform various
quantities from the solution to the (p-1)st order forward and backward linear prediction problems, at
time n and (n-1) respectively, into the same quantities from the solution to the p-th order problems at
time n (see Figure 2). Thus, given that O-th order linear prediction is trivial, we can generate the solution
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to the p-th order problem by iteration in order. The resultant architecture has a lattice structure and, since
the number of operations per stage is fixed, requires O(p) operations. Note that by including the adaptive
filtering reference vector y(n-1) in the calculation of the p-th order forward linear prediction problem
(section 4.2) we automatically solve the p-th order adaptive filtering problem for time (n-1).

In most cases, the fact that the adaptive filiering residual is delayed by one time-step will be of no
consequence, especially given the regularity of the algorithm/architecture and the benefits this brings
with it. It is possible, however, to alter the algorithm presented above so as to solve the adaptive filtering
problem at time n but at the expense of more complicated mathematics and a slightly less regular archi-
tecture: see section 10.1 for more details.

Note from equation (41) and equations (50) and (51) that it is possible to transform a matrix of
quantities from the solution to the (p-1)st order forward problem at time n and a similar matrix from the
solution to the (p-1)st order backward problem at time n into the same quanﬁty (viz Rp(n)). Thus it is
possible to transform quantities from the forward problem at time n into quantities from the backward
problem at time n, although this involves a numerically unsound “inverse rotation™. This is one of the
crucial steps in the derivation of the QRD fast Kalman algorithm[3] (see Figure 3). The remaining step
is 10 deduce the rotation Q (n+1) from knowledge of quantities from the backward problems at time n
and (n-1). This latter step involves using the pinning vector as in the classical Fast Kalman algorithm
(see Proudler, McWhirter and Shepherd[16) for more details).
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5. IMPLEMENTATION

The QRD-based lattice algorithm developed above can be implemented using the processor archi-
tecture shown in Figure 4. The functionality of the processing elements (PE’s) is shown in Figure 5 and
a “pseudo-code” listing of this algorithm is given in section 10.3.

In the derivation of the algorithm (section 4), no mention was made of how the Givens rotations
were to be implemented. There are several ways in which this can be done. The obvious, or “normal”,
approach involves the calculation of a square-root (see Figure 5), which is a computationally intensive
step when using floating point numbers. It is possible to implement the square root operation efficiently
by use of CORDIC algorithms[27). However this requires the use of fixed point arithmetic and it has
been found [28] that for most practical applications, a floating point implementation is required. On the
other hand, Gentleman([6] and Hammarling(7] have derived a modified Givens rotation that requires no
square-root operation and this is clearly advantageous for floating point implementations.

The essence of this “square-root-free” technique is to factorise the triangularised matrix (e.g.
Ry,(n)) into two parts, one of which contains all the quantities which involve a square-root. This latter
factor can be calculated indirectly as its square thus avoiding the square-root operation (see section
10.2). However this means that the rotation (an orthogonal! transformation) is now implemented by two
separate non-orthogonal transformations acting upon the factorised quantities. As such, one would be
quite justified in questioning whether or not this square-root-free Givens rotation leads to an orthogonal
algorithm. Nevertheless, simulations have shown that, in floating point arithmetic at least, the square-
root-free version is more stable numerically (see section 7). This is despite the reservations about the
*“square-root-free” Givens rotations algorithm that have been raised by the numerical analysis commu-
nity {6](7).

Closer analysis of the normal Givens rotation shows that square-root operation is required only in
situations where the square-root of the sum of the squares of two quantities is required. The numerical
stability of the “square-root-free” method may well be due® to the fact that the act of squaring these two
numbers only to take the square-root of their sum is numerically inferior to propagating the squared
quantities directly.

The “square-root-free” algorithm mentioned above is an algorithm for calcularing the required pla-
nar rotation. In the QRD-based least squares minimisation problem these rotations also have to be ap-
plied to various vectors. It is possible to implement a rotation in two ways: in a feedforward or a feed-
back mode. When implementing a planar rotation (a two-input, two-output transformation), the normal
choice would be to calculate each output in terms of the two inputs separately. This leads to a “feedfor-
ward” system. However, it is possible to reformulate the transformation so that one output is now de-
pendent on one input and the other output. Initially the motivation behind this reformulation was to re-
duce the number of multiplications required [25]. It has been shown, however, that this altemnative im-
plementation corresponded to the “error-feedback™ technique proposed by Ling and Proakis [12].

It is believed that this feedback has a stabilising effect when errors are made in the calculation duc
to finite-precision effects in the arithmetic. Indeed, computer simulations (see section 7) have shown

8. P A Regalia, Private Communication.
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that this error-feedback has a significant effect on the numerical stability of the QRD-based lattice al-
gorithm: the feedback version is quite capable of working with 4 bit mantissas (at least for sequence
lengths of up to 10,000 - the longest simulation run so far). It is interesting to note that the feedback
structure can be thought of as one half planar rotation and one half hyperbolic rotation. It is well known
that a planar rotation is numerically superior to a hyperbolic rotation; however, it would appear that this
half-and-half mixmwre is better than both.

Combined with the two methods for calculating the rotation parameters, the feedforward/feedback
choice results in four different variations. The computer simulations of section 7 show that, of these four
possible variations, the one that is equivalent to the RMGS error-feedback algorithm (square-root-free
with feedback) performs the best in terms of numerical stability. A “pseudo-code” listing of this version
of the algorithm is given in the appendix. It is worth emphasising that the basic architecture (Figure 4)
is not affected by the choice of rotation technique so that the only difference between the different op-
tions is a change of PE's. The function of the “square-root-free with feedback™ PE’s is shown in Figure
6. Comparison with the O(pz) QRD-based algorithm [28] shows that the PE’s presented here are exactly
the same as used in the triangular systolic array. Indeed, when the QRD-based lattice algorithm is gen-
eralised to the multi-channel case (section 6), the processing required in each of the lattice stages neces-
sitates the use of triangular arrays of PE’s. In fact the lattice stages shown in Figure 4 may be considered
1o consist of 1x1 triangular arrays!
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Sxp+t Caprl £ = (ﬁey'p)2+|ay»P|2;

IFe' = 0 THENc
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p P - . - '
@ ELSEC, 1 =Bty o/ €8y =0y 5/ €
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- s 2.
e =B Ey.p+5p ley pl*:
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6. MULTI-CHANNEL CASE

x(n)  Xp(n) xp(n) y(m)
L il

Figure 7 Multi-channel Adaptive Filter

6.1. Problem Deflinition

The extension of the adaptive filtering algorithm presented above to the wide-band beamforming
problem is relatively straight forward: all that is require is that centain scalar quantities be replaced by
vectors and some vectors be replace by matrices. The essential features of the derivation presented in
section 4 carry over exactly. Rather than reproduce the mathematics of section 4, in the following we
merely outline the salient points of the derivation of the multi-channel algorithm. As before, we consid-
er only real signals: the extension to the complex case is straight forward.

In a multi-channel least squares adaptive filtering probiem, a set of N p-dimensional weight vec-
tors, g)‘(,i)(n) {0 <i<N-1),is to be found, at time n, that minimises that the sum of the differences,
squared, between a reference signal y(n) and a linear combination of N samples from each of p data time
series x;(n-j) (1 Si<p, 0<j<N-1). This is equivalent to adaptively filtering p separate time series in
order to form the best estimate of the reference signal (see Figure 7). If the p data sequences come from
spatially separate antennae then we have a spatial as well as a temporal filtering problem. Specifically.
the measure IB(n) en(n)il is to be minimised, where:

en(n) = Xn(n) @N(n) + y(n) (5%
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X =

(0 x(1) o x) X (0)  x(0) . x(0) 3(2-N)  x2-N) .. x@2-N)
x;(n) xz.(n) xpl(n) xl(n.- 1) xz(n'— 1) ... xp(n— ) ) R x,(n—.N+ 1) x5(n —.N+ 1) ... xp(n -.N-o 1)
(55)
() ... ¥'Q2-N)
=] . . (56)

x(n) ... x'(n-N+1)

0% m
(1)
oxm=| @ M | 57)
)
and ¥ = [y(1), ..., ymJ! (58)

Equation (56) serves to define the new vector quantity x(n). Note that, apart from the change from
scalar to vector quantities, equation (56) is identical to equation (5). The solution of this least squares
minimisation problem via QR decomposition is no different from any other: it requires the determina-
tion of an orthogonal matrix QN(n) that transforms the matrix B(n) XN(n) into an upper triangular form.
The fact that the matrix Xn(n) is block-Toeplitz allows us 10 use the ideas developed in section 4 to
construct an order recursive algorithm. Again this relies on the iterative structure present in the multi-
channel linear prediction problems.

6.2. Forward Linear Prediction

In the N-th order multi-channel forward linear prediction problem, an estimate of the vector x(n)
is formed, at time n, from a linear combination of the data {x(n-1), ..., x(n-N)}. Thus it is necessary (0
determine the rotation matrix QN(n- 1) that triangularises the data matrix XN(n-l). Consider, therefore,
the following composite matrix:

[Yam Xy -1y -1 5, _ ] (59)

where the “reference matrix™ Y(n) is defincd as
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Q) (%12 x,2) ... x,2)
Y'(n) = : = . . .

. : : (60)
) xa@) xm) Lo x )

and it the multi-channel equivalent to y«(n) - see equation section (30). From equation (56) we have that

(Y Xy -0 y-D 5, _)] = [Yén) Xy _y-1) Yy 4= D ya-1 5, _,] 61

where Yy, .1(n-1) is the reference matrix for the (N-1)st order backward linear prediction problem at
time (n-1) (see section 4.3):

X2-N|  [}@-Nx@2-N) ... x 2-N)
Ypn_i(a=D= : = : : : (62)
x'(n=N) x;(n=N) x,(n=N) ... xp(n—N)

Hence Qn. (-1 B(n-1) [Y,-(n) Xnan=1 Yy, n_(n-D)y(n-1) gn_l]

(Ui Ry =D Uy =D ug (= 1) 2y ytn = 1))

= (63)
Vin-im O Vg,,N-g(ﬂ—l)yN_l(n—l)gN_l(n—l)_j

where the matrices Ugn.1(n), ViN.1(n), Upn.1(n-1) and Vi, j(n-1) are the multi-channel equivalents
of ¥gp.1 (M), ¥rN.1(N), Up p1(P-1) and vy, 1(p-1) respectively. Note that Vg 1(n) and Vi N_y(n-1) have
a time recursive decomposition similar to that given in equation (26) rorxp_l(n-l) and that Ry (n-1) is
a (N-1)px(N-1)p upper triangular matrix.

Now suppose that we had already calculated a rotation matrix, Qr N(n-l) say, that transforms the
matrix Vy y_;(n-2) into an upper-triangular form®. Then

t

Ugnoim) Ry_yn=1) Upy_qlo=1) uy_,(n=1) ay_,(a=1)
9 }

l:Qf,N(n—l)Q BV w_ii=1) O BV, y_ -2 Pyy_,(=2) o
o n_ () o' @l noy0-D oy (-1 Yy, (-1
Uf.N—l(n) Ry_(a=1) UhN—l(n_” pN_‘(n—l) 3N-1("“)
C[BM (- 1) o BE, n_ 02 By, (n-2) 0
C[BAN_,0-1) O o BAy_n-2) o

l gtb."*](n_l) uN_l(n_]) YN_,(n—l)_J

()

t
o n-(M 0

9. Remember that we are restricted 10 using only orthogonal operations!
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Note that there are now p residuals for both the forward and backward lincar prediction problems hence
the vectors g . (n) and @y, 5.1 (n-1). Now in order to complete the triangularisation of the matrix Xy(n-
1) all that is required is the annihilation of the vector g n.1(n-1). This can be carried out using a se-
quence of Givens rotations rather like that used in equation (23):

Upn-a®  RyZitn=1) Uy y_q=1) oy (0= 1) ay_y(n-1)

- BM y_,(n=1) O  BE, \ a-2)PBp,_,0-2) o
Qi@ BAfN_(n-1) o o PAy_y(n=-2) 0
o N3 o' By noaB=1) oy (n=1) vy _y(n-1)
Uy Ry in=1 Uy y_yi0=-1) uy_;(n-1) ay_,(n-1)
- MI,N—I(n) o Eyn-n-1) E’N—l(n_l) Kyn-1) 5)
BALN_ (0= 1) o o Bry_(n-2) °
o} N(n) o' o' ayn-1  yyn-1)

Note that the intermediate matrix shown on the left-hand side of equation (41) consists entirely of
quantities that would be available if the (N-1)st order forward and backward problems had already been
solved. Thus only the Givens rotations defined by equation (41) need actually be performed. This can
be implemented on the standard triangular systolic array [28] in O(p2 ) operations per time instant.

6.3. Backward Linear Prediction

The N-th order backward linear prediction problem is defined as the estimation, at time n, of
x(n-N) from a linear combination of the data {x(n), .... x(n-N+1)}. Consider, thercfore, the following
composite matrix and the illustrated decomposition:

v t !
X (n) Y =5 o ° ’ o0
[ oM Yp n(0) E'J [Yf(n) XN =D Y,y (" -Dr, (

The rotation matrix Qx;.;(n-1) will triangularise the data matrix Xx_,(n-1) hence:

1 o' B(n) x'(D) o' o' 0
o0 Qn_ (n-1) Y,(n)XN_,(n—l)Yb'N_,(n—l)zt“_1

B 1x}(1) o' o' o |
P _ Ugnoi(m) Ry_y(n=1) Uy y_(n-1) ay_,(n-1) )
BVin-_,(n=D) 0 Bvb,N—l(n_z) I
I’ g';'.N—](n) o' Q';.N-l(“‘ 1) In-in- I)J
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where we have explicitly used the familiar decomposition for the matrices V. (n) and V), (n-1).

The calculation of the quantities necessary for direct residual extraction can now be achieved in
three steps. First imagine that we had operated on the above matrix with an orthogonal transformation
(Qé_e;q(n — 1)) that moves the 1op row of elements down to the row just above the top of the matrix
Vix-1(n-1). Then suppose that we have already constructed a rotation matrix Q, x{n-1) that performed
a QR decomposition on the composite matrix

B2 )
Vin-i(n-1)

Then

i Bn*lx((l) o( Ql 0
QN -1 ol lQiAn-1)g|| Ven-1® Ry_y@=1) Uyy_y(n-1 ay_(n-1)
o 1) C o |BVinoa=D) 0 BV, -2 o

o Ny o' VG R VIR (LR R V]

o

r

Uf.N-I(n) RN—](n_l) Ub,N—I(n-l) ?N-l(n_li

_|BE n_y(n-1) (o} BM, y_,(n-2) 0 (69
- (o) 0 BA, -1 (n—2) 0 )

L Q},N_,(n) o' RNCERY YN-x(“"l)Jl

Finally, following section 4.3, let Qb A{(n) be the rotation matrix that annihilates the row vector
g‘r' N - 1(n) by rotation against the triangular matrix BE; y.,(n-1). Then

Ugnog@® Ry yn=1) Uy y_y(n=1) ay_,(n-1)
3 BE; n.4(n=1) 0] BMy n_,(n-2) )
b 0 O PAn,n-2 o

%N -1 0 D= D Yy 1)

Ugn-1®) Ry_yfn=1) Uy (n=1) ay_(n=1)
Egnaim) O My yn-1) gyn) 0
= )
O o) BA, N_,(n-2) o

t 1

0 (4 o, N Ya(n)
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and we have achieved our objective. As in section 4.3, we do not have to complete the tormation of the
triangular matrix (an NpxNp matrix in this case) since any operation necessary to achieve this would
not affect the lower two rows of the composite matrix shown in equation (50). Again the rotation shown
in equation (50) can be implemented using a triangular systolic array in 0(p2 ) operations.

Thus by the use of equations (41) and (50), we can calculate the solution to the N-th order multi-
channel linear prediction problems in O(p2 ) operations given the solutions to the (N-1)st order prob-
lems. As before, the rotation that are necessary 1o solve the forward linear prediction problem automat-
ically solve the p-th order adaptive filtering problem for time (n-1) as well. The resultant architecture
(see Figure 8) has a lattice structure where each stage of the lattice contains two triangular systolic ar-
rays (Figure 9). Each of these arrays solve a p-th order recursive least squares minimisation. The total
number of operations necessary to solve an N-th order multi-channel adaptive filtering problem, with p
channels, is O(Np?).

Once again, it is possible to alter the algorithm presented above so as to solve the adaptive filtering
problem at time n but at the expense of more complicated mathematics and a slightly less regular archi-
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tecture: see section 10.1 for details of the single channel case: the extension to the multi-channel case
should be obvious.
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7. SIMULATIONS

» Delay
- x(n)
Training
Sequence Channel |—»
Measurement
Noise
Figure 10 Channel Equaliser Experiment.

The single-channel QRD-based lattice filter algorithm has been simulated on a computer and com-
pared with the full O(p2 ) QRD triangular array algorithm. The results show that the two algorithms pro-
duce virtually identical results for “sensible™ wordlengths. As the wordlength is reduced the lattice al-
gorithm begins to suffer before the full triangular array does. This is 10 be expected as the lattice algo-
rithm relies on an exact mathematical relationship between the forward and backward linear prediction
problems which is progressively made void as numerical errors are made.

The situation considered'? is that of a channel equaliser (Figure 10) for a data channel that has a
“raised cosine” impulse response (equation (71)).

1 2n
h(n) = 5[l+cos(w(n—2))J n=1,2,3 1)

0 otherwise

By varying the parameter W, the amount of intersymbol-interference between a given symbol and the
two either side of it can be changed. This in effect controls the eigenvalue spread of the data covariance
matrix (see Table 1.).

An 11th order adaptive QRD-based least-squares lattice filter is used 1o equalise the channel re-
sponse. In order to “train” the equaliser, the transmission channel is fed with a polar (1 1) pseudoran-
dom training sequence. This sequence, delayed by seven time instants, is used as the reference signal
for the adaptive filtering algorithm. The delay is inserted 1o ensure that the adaptive filter has an impulse

10. Suggested by S Haykin.
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29 6.1

3.1 11.2

33 219

35 475

Table 1. Eigenvalue Spread

response that is symmetrical about the centre tap. A small quantity of “‘measurement” noise, in the form
of a pseudorandom sequence with an approximately gaussian probability distribution function, is added
1o the channel output. The noise sequence used has zero mean and a variance of 0.001. The “forget fac-
tor” B (see equation (2)) was fixed ai a value of 0.996, which implies an effective data window of 250
time samples.

All calculations within the algorithm were performed using limited-precision floating point arith-
metic. Only the number of bits in the mantissa are varied in the experiments: the number of bits in the
exponent is fixed at eight. No quantities intemal to the adaptive filtering algorithm are held to a greater
precision than for the outputs: the results of aif arithmetic operations are immediately reduced to the
required precision.

The performance of the equaliser is monitored by recording the ensemble-averaged, squared a-pri-
ori equalisation error (see equation (10)). This has the advantage that it shows how close to convergence
the algorithm is whilst still showing, asymptotically, the least square equalisation error. The ensemble
average is taken over 100 realisations of the experiment. Several experiments were performed using
various combinations of parameters and algorithms The main results are discussed below, however, for
completeness a complete set of results are reproduced in the attached annex.

Figure 11 and Figure 12 show the basic performance of the QRD-based lattice equaliser system for
different values of wordlength and eigenvalue spread. Figure 11 shows that, with double-precision
arithmetic, the rate of convergence is more or less insensitive to the different eigenvalue spread seuings:
as would be expected from a recursive least squares minimisation process. Figure 12 illustrates how the
wordlength affects the performance for a fixed eigenvalue spread (W=2.9). Note that there is very little
discemable difference between the systems using 12, 16 and 56 IEEE double-precision) bit mantissas.

Figure 13 shows a comparison of the QRD-based lattice algorithm with the full QRD-based trian-
gular systolic array version. Two other systems are also shown in this figure: they are the *‘square-root-
free with feedback™ forms of the lattice algorithm and the array algorithm. This figure shows the case
of 4 bit mantissas and a fixed eigenvalue spread setting (W=2.9). This may be considered to be an ex-
cessively short wordlength. The reason for this choice is that ofien finite precision effect are often only
manifested after the round-off errors have had time to accumulate [2). By using a small wordlength, the
appearance of such effects occur sooner thus reducing the time necessary to perform the simulation.

In most cases. a p-th order adaptive filter will converge within 2p time instants. At this point the
a-priori residual will have reached a value primarily determined by the eigenvalue spread and not the
wordlength. As round-off errors accumulate, the a-priori emror will increase indicating a loss of accuracy
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Figure 12 Normal QRD Lattice: Effect of Wordlength.

in the algorithm. Up to a run length of 10000, the longest simulation run to date, the normal lattice al-
gorithm retains its post-convergence accuracy for 12 bit mantissas. In the case of the square-root-free
with feedback lattice, the same behaviour is seen using only 4 bit mantissas.

It can be seen, in Figure 13, that the faster, lattice algorithm is only marginally worse than the full
triangular array version thus demonstrating that little penalty has been paid in reducing the computa-
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Figure 14 Comparison of Givens Algorithms.

tional load. As expected, the square-root-tree with teedback versions ot the algorithm perform betier
than the basic version. There was no discemable difference between the lattice version and the array
version in any of the simulations run so far. This would seem to demonstrate the power of the feedback
technique in improving the numerical accuracy of these algorithms.

The relative effect of the square-root-free and the feedback techniques can be seen in Figure 14.
This shows the performance of the lattice algorithms with 4 bit mantissas and fixed eigenvalue spread
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setting (W=2.9) for the four possible Givens rotation algorithms. From this it can be seen that there is
indeed a numerical advantage to avoiding the square-root operation but that the most significant im-
provement comes about by introducing the “error feedback”.

All of the above observations appear to hold essentially independently of the eigenvalue spread.
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8. CONCLUSION

We have presented a derivation, from first principles, of a fast QRD-based lattice-ladder algorithm
for solving the adaptive filter problem (with pre-windowed data). Contained within this algorithm is a
new lattice filter algcrithm for least squares linear prediction. The extension to the multi-channel case
highlights the similarity of the adaptive filtering algorithm with the more general O(p2 ) QRD triangular
systolic array. The derivation resented here shows that other, recent, orthogonal least squares lattice al-
gorithms are true QRD-based algorithms. The relationship between these different derivations has been

highlighted.

The algorithm has as its root the QRD recursive least squares minimisation algorithm and therefore
is expected to be numerically stable. Computer simulations would seem to confirm this expectation: the
results of the simulations of the new algorithm, using limited-precision floating-point arithmetic, show
that very little penalty has been paid in reducing the computational load. The QRD-based lattice algo-
rithm works essentially as well as the QRD-based triangular systolic array aigorithm but requires only
O(p) operations per time instant as compared with O(pz ) for the array.

Of the four possible algorithms for implementing the Givens rotations, the simulation results show
that the square-root-free with feedback form of the algorithm is empirically better than the standard
form. The former implementation coincides with the previously known RMGS lattice algonthm of
Ling, Manolakis and Proakis [11}. The algorithm is explicitly presented in both the normal (square-root/
feedforward) and square-root-free with feedback forms.
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10. APPENDIX
10.1. Joint Process Estimation

It was shown in sections 4.2 and 4.3 that a lanice filter algorithm could be developed 10 solve the
p-th order adaptive filtering problem for the previous time instant. Producing the adaptive filtering re-
sidual for time (n-1) at time n may well be sufficient for some purposes, however, it is possible 10 obtain
the most up-to-date solution possible by including the effect of the very latest datum x(n). Consider the
following data matrix:

X _|xm o' y) 0 n
[X,® yo) 7] Y X, =D YO 5., )
where ) =[y(2), ... ym) (13)

is the reference vector of what may be considered 10 be an auxiliary joint process estimation problem.
Note that this definition is more closely akin to that for forward linear prediction (equation (30)) than
the original definition of the adaptive filtering problem (equation (6)). In equation (72), it has again been
assumed that the data sequence x(n) is pre-windowed (i.e. x(n) = 0 forn < 0).

By comparison with the development of the order update for backward linear prediction (section
4.3) it should be clear that the matrix Xp(n). in equation (72), can be triangularised by the series of ro-
tations outlined in equations (47), (49), (50) and (51). In fact

. . Q, (n—1) ol {1 o x(1) o' y) 0
@ » P
Qo (M) Qp n)|: o J I:Q Q,_,(n- 1)} ) Lr(") X, (=D ymz, _,

= {Rp(n) ug(n) ap(n)} (74)

O vyn) g (M

As before, because certain matrices can be constructed directly, given the solutions to the (p-1)st
order problems, only the rotations summarised in equation (50) need actually be performed i.e.




Begptr=D o Bu,, -1 0
Bop-i®) Ros-1) @) 2, (-1

Q4 ()
Qb,p n 0 () Blv.p— =1 0
.. p_g(n) o' Oy oo () Yp- n-1)
ef.f- @ o Hy, p-1(®) 9,
U@ Rpyn=1) wy () 2, ,(n-1) (75)
o o Ay poi(n—1) 0
0 o' up(n) yp(n)

Note that we have had to introduce some extra quantities similar to those introduced, in equation (49),
for the backward problem. It should now be clear that if we have available the auxiliary angle-normal-
ised residual av-rl(")- then we can use the matrix Qb p(n) to calculate the adaptive filtering residual

ap(n).

All that remains is 1o show how the auxiliary adaptive filtering residual u\y,pl(“) can be calculated
in an order recursive manner. Due to the fact that : 1(M) is just an angle-normalised adaptive filtering
residual, albeit based on the sequence y(n), it can be calculated along with the forward linear prediction
residual just as ap(n-l) was (see section 4.2 but with y(n-1) replaced by y(n)). We then find the follow-
ing order update (cf. equation (41)):

Yoo Ry n=D wy, n-1) w0 3p_,(n_19[
Bpf,p—](n_l) 9‘ Bsb‘p_](n-z) Buw,p-—l(n_l) 0
Ao -1 O 0 BAy,in=1 o

oy o o=l o,y 0=

Q™

YoM Ro_=Duy, , 0~ u,,_ 0 ap_l(n-lﬂ

= uf.p_l(n) Ql eb,P‘](n- 1) uw.p_l(n) Kp(n— ]) (76)
Bai,_n-1) O 0 Bry,-in-1 o
o () o' 0 a, n Y (n-1)

The resulting architecture is shown in Figure 15: the PE's can be either those shown in Figure 5 or
Figure 6 depending on the type of Givens rotation method preferred.
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10.2 Glvens Rotations

As mentioned in section S, there are two ways of calculating the parameters of a Givens rotation:

with and without a square-root operation. In this section the basic mathematics is sketched out.

A Givens rotation is a planar rotation that annihilates one component of a 2-D vector. Assuming

complex quantities, let

¢ s'||{Pe(-1)| _ [e(n)

-s ¢]lan-1) 0
where, without loss of generality, ¢ is real and

¢ Be@-1) +s" an-1)=€(n)

ca(n-1)-sBen-1)=0

aisil=1

now from equation (79) s=co(n-1)/Pe(n-1)

then from equation (81), assuming € to be real:

(1 +lan-DE / Bem-1)D) =1

hence c=Pem 1)/ (Betn- 1)) 2+ a(n - 1).2

s=an-1)/ J(Be(n - 1))+ jon — 1) 2

Note that em = J (Be(n - 1)) 2+ jan - 1)

an

a8)

a9

(80)

(81)

(. 0]

(83

(83)

(85)

In order to avoid calculating a square-root, we factorise the upper triangular matrix (R say) as fol-

lows:

R = D'?R
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where 87

It is also necessary to remove the factor of D' from any other quantities that are operated upon
by the Q matrix. Hence let

[Be(n— 1)Butn-1 0 } _BEm-D 0 1 fn- 1)0] @)
agn) a,_,(m Y, (0 0 (5p_l(n) a(n) &p_l(n)l
<] BJEm - fin-1)0
so that {C S:lB en-1 0 ]Ll E(n ])(l)l
-s ¢ 0 8, _ )| jadn) a,_,(n) 1
RECN
L0 o m [0%m ]
(where o represents a quantity of no interest). Thus we find that
&n) = B%(n- n+8, (M @gn) 190)
fitn) = (B2 - 1)f(n - 1)+5p_I(n)(’i;(n)ﬁp_l(n))/é(n) TN
= Citn-D+5"@,_,(n) @)
where ¢ = (B*E(n-1)/&m)and § = (8, (M)Tn)) /En) (93
Similarly &p(n) = &p_ ,(n) = adnmji(n - 1) (94)
. BlE(n- 18, _,(n) "
using the fact that 5p(n) = - €3, _,(n). 95)

From equations (90) and (93) note that

4]




c+ &,(n)i' =1 (96)
and hence, from equations (92) and (94), that
fi(n) = fi(n~1)+ i'ap(n) 97

This latter form (equation (97)) of the update for the quantity ji(n) is the most stable method for
implementing the square-root-free algorithm and is intimately connected with the “error-feedback™ al-
gorithm of Ling and Proakis{11).




10.3. Algorithms

These algorithms, written in pseudo-ALGOL, calculate the adaptive filter residual for a p-th order
system fed with a pre-windowed data sequence x(n) and a reference sequence y(n). The first algorithm
uses the obvious implementation of Givens rotations using square-roots. The second one avoids taking
square-roots by calculating transformed quantities and implements the rotations via the feedback algo-
rithm.

10.3.1. “Normal” algorithm

START
INITIALISE {all variables} := 0;
FOR n FROM 1 DO
LET oy (n) := x(n); &, o(n-1) := x(n-1); ag(n-1) := y(0-1); Yo(n-1) == L
FOR q FROM 1 TO p DO
LET '—b.q-l(““) = J(Beb'q_ 1(n—-2)) 24 |ab.q_ n— 1)|2;
IF sb_q_l(n-l) =0 THEN LET Cq = 1; Sq = 0
ELSE LET Cq = Beb'q_l(n-Z) / eb.q_l(n-l); Sfq = ab'q_,(n-l) /Eb.q_l(n-l)
END_IF;
LET b q.1(0) = G g Bhg q.1(n-1) + Sp @g o y(n):
O (M) = Cpq O g 1 (M) - Sg g Bug g1 (-1
uq_,(n~1) =Chq Buq_,(n-2) + s;_ qaq_,(n-l);
aq(n- 1 ) = Cf'q aq_ I(n' 1 ) - S['q Buq_l(n-Z);
Yq(’n']) = cr'q Yq_[(n'])v.
COMMENT prediclion residual ef'p(n.n) = yq(n-l) aqu(n) COMMENT
ep(n-l.n-l) = yq(n-l) aq(n-l) COMMENT q-th order filicred residual COMMENT

LET g4, = [ (Be; (- 1) 2 +]oy ()%
IF em_](n) =0THEN LET Chgq = 1; Sbq = 0
ELSE LET Chgq = BCf‘q_](n'l) / E{_q_l(n) B Sb‘q = Qf.q_](n) / Cf‘q_ (n
END_IF,
LET “b,q-l("']) =Cpgq Bub'q_,(n-2)+ s;'qab‘q_l(n-l);
“b.q(“) =Cpq %_q.l(“'l) “Spq Bub‘q,,(n-Z);
COMMENT yq(n) =Chq yq_,(n-l ). backward prediction residual eb_p(n.n) = yq(n) ab‘q(n)
COMMENT
END_DO
END_DO
FINISH
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10.3.2. “Square-root-free with feedback” algorithm

START
INITIALISE ({all variables} := 0;
FORnFROM 1 DO
LET em(n.n-l) = x(n); eb_o(n-l.n-Z) =x(n-1); eg(n-1.n-2) := y(n-1); 80(n.1) =1,

FOR q FROM 1 TO p DO
LET &y, ¢ 1(0-1) 1= B8y 0.y (0-2) + & (-1) ley .y (0-Ln-2)%:
IF Ep,g.1(n-1)= OTHEN LET &g = 1; §7 =0

ELSELET &y = BZEb,q-x(n-z)/ Epq 113 S5 =8 (-1 ep g 1(0-10-2) / Ep o y(-1)
END_IF; )
LET egq(nn-1) = eg g 1(n-1) - €y 0 1 (0-1:0-2) Pg g 4 (0-1);

ﬁf,q-](n) = L_l[,q_](n-l) + §;' qef,q(n.n'l);

eq-1.n-2) := ey 1 (1-1.n-2) - €y o 1(n-1.0-2) [ 1 (n-2);

ﬁq_l(n-l) = ﬁq_](n-l) + 5;'qeq(n-l.n-2);
Sq(n-l) = Ef_q Bq_‘(n-l);
COMMENT prediction residual ef’p(n.n) = Sq(n-l) er_q(n.n-l) COMMENT
eq(n-ln-l) = Sq(n-l) eq(n-l ,1-2) COMMENT g-th order filtered residual COMMENT

LET Ef,q-l(n) = Bzéf‘q_l(n-l) + sq_](n-l) le['q_l(n_n.])@;
IF sf,q_l(n) =0THEN LET Cb.q =1 Sb,q =0

ELSELET Eb.q = Bzé[,q_}(n-l) / é['q_l(n) . §b,q = Sq-t(n-l ) Cf‘q.)(n,n-l) / E['q_](n)
END_IF;
LET ep g(nn-1) := ey ¢ 1(n-1.0-2) - ¢7 ¢ y(nn-1) Hpg-1(0-2)

Hp gD =y 0 j0-2) + 5 qep o y(un-1);
COMMENT Sq(n) =C bg Sq.l(n-l); backward prediction residual eppn) = Sq(n) ep g(nn-1)
COMMENT
END_DO
END_DO
FINISH
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Figure 16 Paralle]l Weight Extraction

10.4 Post-processor Architectures

The algorithm presented in this memorandum solves a canonical adaptive filtering problem where
the reference signal (y(n)) is known. There are situations, however, when no such reference signal is
available and a constrained least squares minimisation is required (e.g. wide-band MVDR beamform-
ing). The algorithm also calculates the adaptive filtering residual directly without finding the optimum
coefficients. It is useful in system identification problems to know what the optimum coefficients are
and as such the algorithm derived so far cannot be used. All of the above draw-backs also apply 10 the
triangular systolic array {28] and a series of pre- and post-processor architectures have been developed
to over come them [15]{25](26]{30). It is of great interest. therefore, to consider the application of these
techniques to enhance the lattice algorithm presented here.

10.4.1 Parallel Welght Extraction

It has been shown [26] that it is possible to extract the optimum weight vector (e.g. @ in equation
(4)} in parallel with the computation of the standard triangular systolic array (Figure 16). The rotation
parameters (Qp(n)) are passed across into an “inverted” triangular array of processors that apply these
rotations. The data that is fed into this array is a vector of zeros. As this vector passes down the array it
is transformed into the optimum weight vector.

Now if the data x(n) is in fact delayed samples from a time series, then the system is an adaptive
filter and the left-hand triangle in Figure 16 can be replaced by a lattice filter. Note however that the
rotation parameters (Qp(n)) are still produced by the lattice. This can be seen as follows: consider the
series of Givens rotations that constitute the matrix Qp(n). Recall that these operations are intended to
annihilate the new data vector by rotation against the previous version of the triangular matrix Ry(n-1)
(see equations (22) and (23)):
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BR,n—1)
Qyn) 0 - [Rvg“’} ©8)
x(n) ... x(n~-p+1)

The sequence of Givens rotations are construcied | 5] such that the element x(n) is annihilated firsi,
by rotation against the top row of the matrix R (n-1), next the second element of the bottom row
(x(n-1)) is annihilated by rotation against the second row of BR(n-1) and so on. Consider the situation
after the first g < p (say) elements of the bottom row have been annihilated:

R v, m S
1
-1 o' Pe, -1 7
Qqu_l...Qll:QP(nl )Q}B(n)xp(n) =| 0 qg T o
o (o} 0 o
o e m 7

where Q, is a Givens rotation and we have used the fact that the (q+1)st diagonal element of Ry(n-1) is
ep o(n-1) (see last paragraph of section 4.2). The identity of the elements py, o(n) and o, ((n) follows from
the underlying data matrix and the fact that upper-triangular matrix Rq(n) has been formed. It is clear
that the Givens rotation Qg is that which annjhilates the element o, q(N) by rotation against Bep (-1
but this is exactly the definition of Q;.q.l(nﬂ) (see equation (41)). Thus the lattice algorithm does cal-
culate the rotations that constitute Qp(n) and it is possible to “bolt-on” the weight-extraction processor
10 the lattice (Figure 17).
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Figure 18 Linearly Constrained Least Squares Minimisation

10.4.2 Linear Constraints

It has been shown [25] how the triangular systolic array can be adapted 1o solve a linearly con-
strained least squares problem. The technique is to use a trapezoidal preprocessor in front of the trian-
gular array (Figure 18). Briefly, system works as follows: the constraint vectors are first fed into the
combined array followed by the data in the usual way (note that the combined array is triangular). After
the constraint vectors have been entered into the array, the preprocessor section is “frozen™, that is to
say the stored parameters that are normally updated from time instant to time instant are kept constant.
As the data subsequently passes through the preprocessor, the constraints are incorporated into the data
before the least squares minimisation is performed in the standard triangular array.

It would be very useful to be able to solve linearly constrained adaptive filtering problems effi-
ciently. However, when a constrained least squares minimisation problem is re-formulated as a canon-
ical one (see {25]) the data matrix does not have Toeplitz symmetry (even if the input data does). Thus
it is not possible to “collapse” the triangular array into a lattice. It would be interesting to know what
function the lattice equivalent to the architecture shown in Figure 18 performs. By equivalent architec-
ture we mean a lattice where the first q (say) lattice stages were operated frozen mode once the con-
straint data had been fed into them.

The pre-processor architecture for implementing the linear constraints has many desirable features
however it is not the only method for achieving this aim [30]. It is possible to apply constraints to the
least squares minimisation problem using a post-processor: this architecture is a modification of the
systolic QRD-based MVDR beamforming meiiod [15).
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The MVDR beamtorming problem is a least squares minimisation problem with a single lincar
constraint: namely that the antenna gain in the “look™ direction is fixed. The QRD-based architecture
she am in Figure 19 can be used to produce a MVDR residual. The triangular array is fed with data to
initialise it, then the constraint vector is fed into the array which, operating in the frozen mode, outputs
a vector that is loaded in to the new array on the right hand side. The *riangular array is then retum to
its normal adaptive mode and, as more data arrives, it passes the rotation information Qp(n) 1o the post-
processor. The output of the combined structure is the MVDR beamformer residual.

Clearly because the QRD-based lattice is “‘black box™ equivalent to a triangular array fed by a
tapped delay line, we may use the same technique to implement a MVDR spectrum analyser. The main
advantage to this post-processor MVDR technique is that several single constraints, or look directions,
can be implemented simultaneously since the rotation parameters in Qp(n) can be fed to any number
of post-processors. The main draw-back is that the magnitude of the numbers stored in the post-proces-
sor continually diminishes as time progresses and the processor requires periodic re-initialisation (as
above) if serious numerical problems are to be avoided.

Yang and B8hme {30] have shown that by combining the outputs of several different MVDR prob-
lems, the solution to a multiply constraincd problem can be generated (Figure 20). Apart from the prob-
lem with the MVDR post-processor mentioned above, this technique has the draw-back that the final
trapezoidal array has to implement a hyperbolic rotation which is numerically unstable.

48




y(n)

x(n)

_—’, TG

_’EE e

—
(o)

o

:] Standard Array

SM\\\2

Additional PE’s

2

-

e(n,n)

Figure 20 Constraint Post-processor

49




11. ANNEX

As was mentioned in section 7, many computer simulation experiments were undertaken and only
the salient points have been discussed so far. For the sake of completeness, all of the simulation results
run to date are included in this annex.

Each of the following graphs has a key which lists all the relevant parameters. The following is a
short explanation of each item:

FILTERORDER......... the order of the adaptive filter (always = 11).

CHANNELORDER...... the order of the “raised cosine” channel (always = 3).

REF.DELAY ........... the amount of delay in the reference signal path (always = 7).

APRIORIERROR. . ....... confirmation of the type of error being plotted.

WINDOW .............. value of B (see equation (2)).

PRE-LOAD............. value used to initialise energy terms.

BITS ... ... .. ... number of bits in the mantissa (0 = double precision).

ZERO...........coounl. value below which quantities are considered to be effectively
zero.

ITERATIONS ........... number of realisations of the simulation used to calculate the
ensemble-average error.

SPREAD ............... value of W (see equation (71)).

VARIANCE ............ variance of gaussian measurement noise (always = 10‘3).

G.APPROX ............ number of iid random variables added together to form a
gaussian random variable (central limit theorem!).

SEED.................. seed value for random number generator.

Several different algorithms were used in the simulations and each one was allocated a different tag:

NORMAL LATTICE ..... Lattice algorithm, normal Givens rotations.

SQROOT LATTICE . ... .. Lattice algorithm, square-root-free with feedback Givens
rotations.

E/FB LATTICE.......... Lattice algorithm, square-root with feedback Givens
rotations.

SF-EF LATTICE......... Lattice algorithm, square-root-free without feedback Givens
rotations.

FULL SQRT ARRAY ... .. Lattice algorithm (sic), normal Givens rotations but with
double precision arithmetic inside the square-root operator.

NORMAL ARRAY....... Triangular systolic array algorithm, normal Givens rotations.

SQROOT ARRAY ....... Triangular systolic array algorithm, square-root-free with
feedback Givens rotations.
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