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FOREWORD

A workshop for research personnel involved in the
DARPA program on Expert Systems was held in Palo Alto and at
the Asilomar Conference Center, Monterey, California, from
16-18 April 1986. The purpose of the workshop was to demon-
strate working systems tools and to review progress on the
technical aspects of the research being undertaken. Research
organizations participating in the workshop included the
University of Massachusetts at Amherst; Ohio State Univer-
sity; Stanford University; the Information Sciences Instituto
of the University of Southern California; Bolt, Beranek czA
Newman Laboratories, Inc.; General Electric Corporation;
Teknowledge, Inc.; and the IntelliCorp Company. Representing
the Department of Defense in addition to the DARPA program
manager were experts from the Rome Air Development Center,
the Air Force Wright Aeronautical Laboratories, the Space and
Naval Warfare Systems Command, and the Naval Underwater
Systems Command. Also attending was a representative from
Texas Instruments, the integration contractor for the Navy
Battle Management Program.

This proceeding is intended to document important
progress being made in the knowledge-based systems part of
the DARPA Strategic Computing Program. The papers included
give a good insight into the current accomplishments.
Included in this foreword is a short documentation of the
demonstrations that were presented but are not further
described in the proceedings.

The workshop met on Wednesday, 16 April 1986, in
the new offices of Teknowledge, Inc., in Palo Alto,
California. The first morning consisted of a series of live
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demonstrations given by IntelliCorp, Ohio State University

and Teknowledge. CDR Allen Sears, the DARPA program manager,

welcomed the forty attendees to the demonstration and thanked

the Teknowledge people for their assistance in setting up the

demonstrations, providing the necessary equipment, and their
hospitality in providing conference space to view the
programs. Ohio State University prcvided the lead off demon-
stration. Dr. Chandrasekaran, the principal investigator,
explained that the program was a prototype mission planning
associate in the domain of an offensive counter air planning
task. This is, he explained, a generic tool using DSPL

representation. DSPL is a language developed at Ohio State
which uses "'-wledge representation rich in planning primi-

tives. Dave Herman, Dean Allemang and Anne Keuneke of Ohio
State explained the workings of the system as the demonstra-
tion progressed. The program accepted the plan inputs and by

use of design plans selected the aircraft type and ordnance
configuration most appropriate for the mission factors under

consideration. In making its selection the program uses a
functional representation of the plan and the capture of the

agents understanding of how things work. This includes as a
piece of knowledge the order that things are considered in

the planning cycle. The audience was able to see on the

screen the progression of the logic flow as the events
progressed.

Dr. Rick Hayes-Roth explained the genesis of the

Teknowledge research effort as the creation of a foundation
on which to build systems with reusable knowledge processing

modules and skeletal systems, modularity and standard inter-
faces, encapsulation and cooperative systems, integration of
technologies, and the ability to take partial solutions off
the shelf and put them together into new systems thus provid-
ing customized solutions to new problems. Hayes-Roth stated
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that the program is a twenty four month effort of which they
were now eleven months into the research. The Teknowledge
system, called ABE, was able to integrate new modules into
its tools catalogue and to provide a capability to use which-
ever tools best suited the problem domain. The system archi-
tects' catalog contains applications, customizations, skele-
tal systems, capabilities, abstract data types, frameworks,
and languages in a descending order of layered structures.
As goals, the ABE project deems it important to import tech-
nologies, layer systems, and glue thei together in a robust
and disciplined way. The demonstration covered six items:
the system architects catalog, a first example, composing
frameworks, importing a capability, variations, and composing
with heterogeneous frameworks. Assisting in the demonstra-
tion were Lee Erman, Jay Lark, Terry Barnes, Kamal Bijlani,

Michael Fehling, Bruce Bullock, and Neil Jacobstein.

The IntelliCorp demonstration was presented by
Richard Fikes. He explained that the essence of their pro-
gram was to take pieces of A.I. technology and integrate them
for use in systems. The outcome is to develop tools which
may be used by others. KEE, the central IntelliCorp product,
has been in use for several years, Fikes noted, and the pro-
tocols for access and use of the system have remained stand-

ard. The recent effort is to develop new tools, such as
distributed knowledge bases, and to fit these new tools into
KEE for use by applications developers. The DARPA program
has now been on-going for one year and a new initial set has
been produced called DARPA-KEE. They have built interfaces
to an assumption based truth maintenance module and to world
based problem solving routines. The demonstration was
designed to include model based reasoning, symbolic descrip-
tion and reasoning about descriptions. The domain selected
involved knowledge based tools to aid the dispatcher of a
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trucking delivery system over a mid-west geographical area.

Involred were manual ontext exploration, a semi-automatic

task completion rule system, and programmatic automatic

problem solving routines. The progression of the task was

easily followed on the terminal screen as the problem moved

from initiation to suggested solutions and as new parameters

were added or changed.

CDR Sears remarked that the demonstration proved
that a lot has happened in the year since the program was

initiated and that we are now looking at bringing technology

to the applications developers. This, he noted, will require

planning to insure successful implementation.

The remainder of the workshop was conducted at the
Asilomar Conference Center. Each of the organizations
attending presented one or more technical reviews of the

status of the expert systems research being undertaken in the

DARPA program. This proceeding contains copies of those

reviews in order to provide a wide distribution of the pro-

gram and results achieved to date. Following the technical

talks, the participants discussed applications and transition

strategy, future goals, and integration of expert system
technology with other parts of the DARPA research program.

The program concluded with a discussion of high level tools

for expert systems led by Dr. Chandrasekaran of Ohio State

University.

The cover layout for this proceedings was created
by Tom Dickerson of the Graphics Department at SAIC using

diagrams of a multicast-map from the paper: "CAREL: A

Visable Distributed Liso," by Byron Davies of the Knowledge

Systems Laboratory at Stanford University and of the Texas

Instruments Corporation. The diagrams are samples from the
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execution of the IDENTIFY-YOURSELF program which is descrioed

in Davies paper included herein. This proceedings has been

provided to the Defense Technical Information Center (DTIC)

and copies may be secured from that agency.

Lee S. Baumann
Science Applications International

Corporation
Workshop Organizer
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The BBN Laboratories Knowledge Acquisition Project:

KREME Knowledge Editing Environment

Glenn Abrett and Mark H. Burstein

BBN Laboratories
10 Moulton Street

Cambridge. MA 02238

Abstract Managing large knowledge bases is difficult.

One of the major bottlenecks in large-scale expert As knowledge bases grow in size and complexity
system development is the problem of knowledge they strain the capacities of software tools for knowledge
acquisition the construction, maintenance, and testing of editing, maintenance, and validity checking. Viewpoints at
large knowledge bases. The BBN Laboratories Knowledge the right level of detail are hard to construct.
Acquisition Project is investigating ways of easing these consistency checking takes up more and more time, and
problems and, where possible. automating the knowledge global reorganizations and modifications can no longer be
acquisition process This paper details the current state done ensily one piece at a time Eventually. user
of development of the KREME Knowledge Representation confidence in the internal coherence of the knowledge
Editing and Modeling Environment KREME is an base erodes and must be restored by the inefficient,
extensible experimental environment for developing and incomplete. and indirect method of running applications
editing knowledge bases using a variety of styles of programs using the knowledge base.
representations It provides tools for effective viewing
and browsing in each kind of representational base, Previously encoded knowledge is not re-used.
automatic consistency checking, and macro-editing
facilities to reduce the burdens of large scale knowledge It is customary to start building a new expert
base revision and reformulation. Our goal is to explore a system with an empty knowledge base, even though the
number of approaches to knowledge acquisition and completed knowledge base will contain at least some
knowledge editing that could be incorporated into general knowledge about the world. To make matiers
existing and future full-scale expert system development worse, this general world knowledge is usually entered in
environments a fragmentary and sketchy manner that adds little to the

power of the system. If general knowledge about the
world could be transferred across systems, the gradual
accumulation of detail, precision, and richness which

1. Introduction would occur would tremendously enhance the
performance and robustness of most individual expert
systems

1.1. The Knowledge Acquisition Problem
There is substantial agreement within the Al

community that the way to make expert systems more 1.2. Overview of the BBN Knowledge Acquisition Project
closely approximate the level of performance exhibited by Our goal has been to develop an environment in
people is to give the systems more knowledge The which the problems of knowledge acquisition faced by
creation of the large and detailed bodies of knowledge every knowledge engineer attempting to build a large
needed to substantially improve performance has proven expert system are minimized. To this end, we have
to be excrutiatingly painful. Beyond a certain point, organized the task of developing knowledge acquisition
several factors make the building of very large knowledge tools into two stages. First, we are developing a well-
bases a practical impossibility with turrent technology integrated knowledge representation, editing and

modeling environment, dubbed IREME Knowledge
Knowledge comes in many forms, engineers and subject matter experts with some

knowledge of basic knowledge representation techniques
Human knowledge about the world comes in many will find it easy to use KREME to acquire, edit, and view

disparate forms Squeezinr all the knowledge that an from multiple perspectives knowledge bases that are
expert system needs i-to one. or at best two, several times larger than those found in most current
representational formalis.s (e.g rules and frames) is systems KREME provides, within a uniform environment,
difficult, time consuming, often inappropriate and, in special purpose editing facilities that permit knowledge
many cases, an inadequate solution to the task at hand to be represented and viewed in a variety of formalisms

appropriate to its use, rather than forcing all knowledge
to be represented in a single, unitary formalism. During
phase two of the project, we will consider such automatic
kinds of knowledge acquisition as developing
representations from examples, and learning by analogy.

1Th;s research was supported by the Defense Advanced In addition to a general editing environment, the
Research Projects Agency of the Deportment of Defense and was first phase has also focused on developing tools that
monitored by RADC under contract number F3e602-85-C-e505 provide the kinds of validation and consistency checking



so essential during the development or modification of for frames, one for rules and one for procedures The
knowledge bases As the size of knowledge bases grow, frame and procedure editors are fully integrated into the
and more people become involved in their development, global environment and the rdle editor is in the process
this aspect of knowledge acquisition becomes increasingly of becoming so Eventually, the rule editor, the
important In the hybrid or multi-formalism procedure editor and a functional method editor will all
representational systems that are becoming prevalent be accessible through a global mechanism that treats
[II 2, 19], techniques must be provided for consistency these types of knowledge as forms of procedural

checking not only within a single representational attachment to concepts In phase two of the project, we
system, but between related systems. plan to add a language for representing causal and other

A third important area of investigation i qualitative constraint systems, and several types of
developing the KREME editing environment has been the instantiation mechanisms, including a truth maintenance
attempt to provide of facilities for large-scale revisions system for propositional representations.
of portions of a knowledge base, Our experience
iidicates that the development of an expert system
inevitably requires systematic, laige scale revisions of 1.4. The KREME Frame Language
portions of the developed representation This is often Much of the work done in the current
caused by the addition or redefinition of a task the implementation of KREME has been focused on building a
system is to perform These kinds of systematic changes knowledge editor for a frame representation language
to a knowledge base have, to date, only been possible by Such languages have been well researched, and while we
painstaking piecemeal revision of each affected element, had to have some frame language on which to base our
one at a time. Our initial approach has been to provide initial editor, we did not want to design and implement a
a macro-edt'cng facility, in which the required editing new one Our most important criteria for a suitable
operations can be demonstrated by example and applied frame representation language were that it
to specified sets of knowledge structures automatically.
We plan to provide a library of such generic macro-
editing operations for the most common and conceptually I Allowed multiple inheritance
simple (though potentially difficult to describe)
operations during phase two of the project. 2 Was a logically worked out mature language

3 Had some mechanism for internal consistency

1.3. Tht KREME Knowledge Editor checking.

KREME attempts to deal with the inextricably 4 Would allow individuals to be instantiated as
related problems of knowledge representation and objects from the definitions of frames.
knowledge acquisition in a unified manner by organizing
multiple representation languages and multiple knowledge 5, Was built on a modular object oriented base so
editors inside of a coherent global environment A key that the language could be decomposed in such
design goal for KREME was to build an environment in a way as to make it easily extensible
which existing knowledge representation languages,
appropriate to diverse types of knowledge, could be NIKL (the definitional or frame language componant
integrated and organized as components of a coherent of KL-TWO) [9, 14, 19] seemed an ideal candidate It is a
global representation system. As it is presently fully worked out frame representation language that
conceived (and for the most part implemented) the KREME allows multiple inheritance, is reasonably expressive and,
Knowledge Editor can be thought of as an extensible set perhaps most importantly, contains a fully worked out
of globally coherent operations that apply across a automatic classification algorithm that could be easily
number of related knowledge representation editors, each adapted to provide a powerful mechanism for consistency
tailored to a specific type of knowledge Our approach checking and enforcement during knowledge base
has been to integrate several existing representation development. However, no object-oriented
languages in an open ended architecture that allows the implementation of NIKL existed, and the NIKL classifier
extension of each of these languages. In addition, we was not designed to allow modification and
have provided for the incorporation of additional reclassificaaon of previously defined concepts. A second
representation languages to handle additional types of frame language. known as MSG, had been built as part of
knowledge BBN's STEAMER project and was readily available MSG is

To accomplish this goal, we envisioned a object oriented in both of the above senses but it has no
decomposition of existing knowledge representation classifier and is not as mature or thoroughly specified a
techniques, to be implemented as objects or FLAVORS [6], language as NIKL.
in terms of which we could reimplement existing To develop KREME, we elected to reimplement N.KL
representation languages, Each object encoding an as an object oriented language using MSG as a guifde.
aspect of some representation would be responsible for The NIKL data structures were decomposed into a
its own display, editing and internal formk By modular hierarchy of flavor definitions, and the KREME
organizing this "meta-knowledge base" modularly, version of NIKL was then built out of these flavors. This
behavioral objects implementing inheritance behavior, enabled us to incorporate a great deal of the fairly
subsumption testing, and coreference mechanisms. etc sophisticated instantiation mechanism of MSG with
could be "mixed in" to a number of representational minimal effort In the process, we were also able to re-
subsyctems implement the NIKL classifier algorithm to provide the

The current implementation of KREME partially kind of reclassification capability required for a
accomplishes our goal. We have organized a small library knowledge editing environment. We will refer to this
of component behavioral objects for knowledge enhanced, object oriented impciiieatuho of NIKL a

repre.sentahons and sub(eeded in reimplementinp our KREME Frames.
frame language in terms of this object base We expect The remainder of this seAio. will review the basic
this library to be an extremely useful set of building features of the KREME frames language As the
blocks as we attempt various extensions to the definitional syntax of KREME Frames conicideb 4lmost
expressive power of our system, exactly with the structure. of the NIKlZ langlage,

The current version of KREME contains individual interested readers are referi ed to [9] for more detail.
editors for three distinct representation languages. one Section 2 will describe the KREME editing environment

-2-



and the frame editor. Section 3 will discuss the lattice (those concepts that subsume it, and. thus, are
classifier, and its use in an interactive editing more general) and may define additional features that
environment, serve to distinguish it from its parent or parents.

Role restrictions define the necessary slot-value
pairs for any instance to be considered a member of the

1.5. Definition of KREME Frames class defined by a concept. A role restriction consists of
In KREME, a frame is called a concept, Collections a role name, a value restriction, a number restriction

of concepts are organized into a rooted inhcritance or and an (optional) default form3 ,

subsumption lattice sometimes referred to as a taxonomy The role name refers to an object called a role.
of concepts. A single distinguished concept, usually Roles in EREME, as in NIEL and some other frame
called THING, serves as the root or most general concept languages like KEE [5], and KnowledgeCraft [7], are
of the lattice. Figure 1-1 shows a simple subsumption actually distinct, first class objects Roles describe
lattice, relations between concepts. A role restriction at a

A concept has a name, a textual description, a concept is thus a specification of the ways a given role
primitiveness flag, a list of defined parents (concepts can be used to relate that concept to other concepts.
that it specializes or is subsumed by). a list of role As first--class objects, roles form their own distinct
restrictions, a list of role equivalences, and a list of taxonomy. rooted at the most general possible role,
concepts that it is disjoint from2  In KREME, as in NIKL, usually called RELATION Figure 1-3 shows a portion of a
a concept may be subsumed by more than just the simple role taxonomy
concepts that are its defined parents. Thus, classified

relation

part-of property

lrp r y o j e ti e I m b s e n g in e s iz e d e n sity c o lo r
gFigure -3: A Simple Role Taxonomy

A role has a name, a description, a list of roles
elephant that it specializes, a domain and a range. In a formal

sense, a role is a two-place relation that maps instances
of concepts in its domain onto sets of instances in its

Figure 1-1: A Simple Concept Taxonomy range The domain of a role is the most general concept
at which the role makes sense. That is, it specifies the

concepts in a KREME hierarchy also contain distinct lists class of things for which the role can name a slot. The
of those concepts that directly subsume it, and those range of a role specifies the general class of concepts
which it directly subsumes or are its direct children, that can serve as values in slots defined using that role.

All concepts filling slots whose name is a given role must
be elements of the range of that role.

(defconcept HOUSE Each role restriction at a concept has as part of
:primitive t its definition a value restriction, which is the class of
:specializes (building) allowed values for that slot The value restriction must
:role-restrictions always be a sub-class of the range of that role. and a

((residents (a person) nil (a person)) subclass of the value restrictions defined for that role at
(equivolences all concepts subsuming the one restricted. At present,

((coin-entrance) (front-door)) following the structure of NIKL, value restrictions must
disjoint (office-building apartment-building)) be defined concepts We expect to relax this constraing

in the near future.
Role restrictions also include a number restriction

Figure 1-2: LISP form of a KREME frame definition that specifies the minimum and maximum (if any) number
of things that may be related by the role to the concept

The lists of role restrictions, role equivalences and at any given time For example, if all elephants have
disjoint concepts are collectively referred to as the four legs, then the concept ELEPHANT might be defined to
features of a concept If each concept can be thought restrict the role LEGS to Exactly 4 ELEPHANT-LEGs 4  A
of as defining a unique category, then features of the number restriction must be at least as specific as all the
concept define the necessary conditions for inclusion in number restrictions for the same role at any of the
that category. If a concept is not marked as primitive (a concepts parentsS

case sometimes referred to as a defined concept) the Role Equivalences describe slots (and slots of slots)
features also constitute the complete set of sufficiont that by definition refer to the same entities. They are
conditions for inclusion in that category. A concept defined as pairs of paths whose referents are the same
inlier;'t. all features from those concepts above it in the concept A path is a list of role names, the head of which

is a role restrict-d at the concept defining the

2One con-ept is disjoint from another if being one
precludes beif.9  the other, 3Defoults were not port of the definition of NIKL
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equivalence Each subsequent role (slot name) in a path 1.5.1. Instantiation
must be a valid slot in the concept that is the value We envision that a number of different instantiation
restriction of the previous role in the path The referent mechanisms may be appropriate for KREME Frames. NIKL,
of a path is the value restriction of the last role as part of the KL-TWO system, instantiates concepts as
restriction in the chain Figure 1-4 shows a simple predications in the RUP truth maintenance system 18]. On
example of role equivalence, the other hand, MSG instantiated concepts as flavor

instances, and this is the instantiation mechanism
currently provided by KREME Frames. We plan to provide
a truth maintenance system as an alternative form of
instantiation in the future.

When a concept is defined, a corresponding flavor
por is also defined. This flavor is composed of the flavors

port corresponding to the concept's immediate parents rind an
additional flavor called KROBJECT which provides the

suction stop additional functionality required for instances of KREME
!; vFrames,

Instances of a concept (also known as objects) are
TheSUCTlONdthePUMPisequkenttothe created by the MAKE-OBJECT function, MAKE-OBJECT
INLEIaftheSUCTIONVALVEathstPLP. creates an instance of the concept's corresponding

flavor, installs defaults in unfilled slots, and installs
coreference-handling objects in each slot for which a
role equivalence was defined at the c(,ncept The same

Figure 1-4: A Role Equivalence coreference object is placed in all equivalent slots.
Concepts marked as primilie (sometimes referred These objects are "transparent" to the slot access and

to as Natural Ktinds) have no complete set of sufficient modification functions. Modifying any equivalenced slot
conditions For example, an ELEPHANT must. by changes the value of the coreference object, and
necessity, be a MAMMAL. but without an exhaustive list of accessing such slots returns the coreference object's
the attributes that distinguish it from other mammals, it value (rather than the object itself).
must be represented as a primitive concept WHITE
ELEPHANT. on the other hand, might be completely
described by stating that it is a specialization of 2. The Knowledge Editor
ELEPHANT, where the role COLOR was restricted to WHITE.

KREME Frames permit slots to have default values
as well as value restrictions. If present, the default must 2.1, Background
be the description of some concept which satisfies the The KREME Knowledge editor currently consists of
restrictions on the role at that concept. The default is three editor modules, a frame editor, a procedure editor.
used as a slot filler for instances of a concept that do and a rule editor, and a large tool-box of editing
not specify a value for the slot at instantiation time techniques that are shared among the editor modules
Defaults are inherited from the most specific parent at The original design goal was a global editing
which they are defined, just as in most other frame environment that could accommodate distinct editor
languages, rather than by logical set intersection, as the modules for the various kinds of knowledge that would be
classifier does for other KREME concept features represented. However, from the point of view of the
Specialization of defaults is not enforced. Figure user, there would be a single editor with the interfaces
1-5 shows an example of default inheritance. Here. the between the modules completely transparent. Moreover.
default color of elephant is grey, while the color of a the user would see a single, integrated knowledge base
white elephant is white, which is not a specialization of that had various means for organizing different types of
grey, knowledge. The user would move through this space by

pointing at various knowledge chunks which would cause
the system to present an appropriate view, Alternatively,

restriction clrthe user could directly request a specific view for a
specific piece of knowledge

2.2. Basic Features

2.2.1. Views
white resrictionan default Each distinct type of representation included in the

elephan color desystem (currently concepts, roles, procedures and rules)
has defined for it one or more viows. A view is a
collection of panes in a Symbolics window configuration.

Figure 1-5: Restrictions and Defaults each of which displays some aspect of the particular
piece of knowledge being edited and/or a set of editing
operations on it. A view can show various aspects of the
specific piece of knowledge as well as various details of
the context in which the piece exists

When the user desires to enter or edit a specific
4E.g., Number restriction: min - 4, max = 4; Value piece of knowledge, the system opens the most

Restriction: (on ELEPHANT-LEG). appropriate view for the type of knowledge and the
editing operation requested, When editing a particular
piece of knowledge. the user has available a menu of

SA number restriction of Exactuy I (min - max - 1) is more different views which are appropriate for different
specific then a number restriction of At most 2(min - 0, max aspects of that knowledge and can be accessed from a
- 2). menu.
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Figure 2-1: A graph with overview

2.2.2. Pointing taxonomies, pointing at the graph anywhere else but at
Pointing with the mouse is the primary means for nodes and dragging the mouse causes the grapher to pan

performing editing operations. browsing, adding, and in the direction of mouse motion, making previously
modifying definitions. In general, all visible references to obscured portions of the graph instantly visible as
an object can be painted at, in order to view the object though one was moving a window across a larger page
in more detail. For example, a concept can be displayed The grapher also provides an "overview" facility to show
as a node in a graph, as a value restriction or default, the shape of the full graphed lattice. Pointing at
as a parent of another concept, or as an item on the positions in the overview is another way to move to a
editor stack. Whatever the form of the display, the particular part of the lattice. Figure 2-1 shows a graph
displayed item will respond to the same set of operations of one portion of the STEAMER frame base, with the
when someone points at it. Similarly, when the system overview exposed.
requires the entry of a concept name, the user may Currently. the grapher can be used to display only
either type the name or point at any visible concept directed lattices with no loops, e.g., specialization
name In windows displaying features of concept hierarchies and relationships like part-whole. We expect
definitions, pointing also is used to tell KREME to replace to use the grapher to display arbitrary networks of
parts of those definitions relationships between between sets of concepts. These

Commands that cannot be performed by pointing other kinds of views are critical for displaying partially
directly at an object are usually contained in command ordered plan sequences, causal relationships and
menus which are associated with particular windows in constraint systems in general.
each editor view. Such commands are used for changing
views, entering new concept definitions, loading and
saving taxonomies, etc 2.2.4. Buffers and the Editor Stack

The editor maintains a level of indirection between
the knowledge being edited and the representation of

2.2.3. The Grapher that piece of knowledge in the knowledge base. This is
The KREME grapher is a powerful, generalized done by the mechanism of editor buffers, analogously to

facility that rapidly draws lattices of nodes and links At the distinction between a text editor buffer and an
present, its main use is to provide a dynamically updated associated file. Changes are always made to definition
di-.piy of the concept or role currently being edited and objects, which can be subsequently classified. The editor
all of its classif:er determined abstractions and maintains a stack or list of the objects that have been
specializations Other concepts may be added to the edited, and constantly displays this list, indicating which
displayed graph at any time Nimply by pointing at a node ones have beeii modifhcd and not reclassified
that is already present and requesting all of its The top item in the stack is the definition
abstractions or specializations to be displayed as well. currently being viewed and edited. The user is free to
Nodes and their children (or just the children) may also modify this definition in any way without directly
be concealed or removed from a presented graph if they effecting the knowledge base When the modified
are not relevant and are making it hard to read other definition is to be placed into the knowledge base a
portions of the graph. One may also point at nodes to defining function appropriate to the type of knowledge
show a textual form of their cr'rrcnt dchnition and to te.g., classification for concepts and roles), is executed
edit the definitions (which pushes the current definition and the knowledge base is modified.
on the editor stack, as it does by pointing at it in other
displays). The editor stack is always visible in its own window

and provides one convenient method for browsing. The
An important feature of the grapher is that it can user may make any definition item currently in the stack

dispiay graphs that are much larger than the window the top. visible item by pointing at it. The object will be
through which it is viewed When dealing with large
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Figure 2-2: The Main Concept Editing View

displayed in the same editor view as when it was last providing us access to the extensive STEAMER knowledge

edited. base of concepts and procedures

We feel that this multiple language handling facility

2.2.5. Files and Multiple Language Support is a crucial feature of KREME and are committed to

All definitions manipulated by the editor are read extending it. where possible, to other representation
languages A rich library of input translation programs

and stored in lsp-readable text fles of defining forms. will enable a knowledge base builder, working in KREME,
Files are created by the SAVE command which converts to draw upon many previously existing knowledge bases
each of the items of the current knowledge base to its to create a larger fnd more detailed whole It is our
LISP defining form and writes it to the file specified The oo hat s kind o etailed wile It is oiffiles are in human readable form and can be edited opinion that this kind of flexiblity will be cruciel if
ffline usin han rnatet eor Inf can dite knowledge bases developed in different languages are
offhine using an ordinary text editor In fact. KREME can ever to related and conveniently modified to create aread files that were developed independently using a text greater whole Given the large intersection of features
editor or some other frame editor. provided by most current-day frame language

Files are read in using the LOAD command A file representation systems. we do not see this as an
can be loaded into a blank KREME knowledge base or c-an impossible goal In the near future, we will be considering
be loaded on top of an already existing knowledge base extensions of KREME Frames to provide an environment in
rhis mechanism, which relies heavily on the use of the which many KEE knowledge bases could conceivably be
classifier to keep things coherent, enables KREME to edited One of our goals in rede. 'gning the classifier
organize information from multiple knowledge bases to was to make such extensions feasible
create a single unified whole.

KREME currently will read and write definitions in
either its own frame language syntax or in NIKL syntax. 2.3. The Frame Editor
In addition, there is some customization of the displays The editor for the KREME Frames representation
viewed while editing networks in either of these language is the most fully realized editor in the KREME
languages (e.g . the presence of defaults in role system Although we have a host of improvements and
restrictions). This flexibility makes it possible for KREME additions planned for it, the current operational version
to be used regularly to examine and update a knowledge of the frame editor is already an extremely useful tool
base of approximately 1000 rcies and concepts for a for the creetion. modification and viewing of KREME
natural language query system that was built using KL- Frames networks. The main components of the frame
TWO KREME can also read files of MSG defining forms, editor arc discussed in the section which follows
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2.4. Windows and Views
The current KREME frame editor has six views, each The role restrictions command window (6) This menu

a fixed configirution of windows appearing at once on contains commands for the role restrictions window,
the screen Three windows (screen regions) are common Currently. commands are available to display the locally
to all of these views, the global command window, the defined restrictions, the full inherited set of restrictions,
editor stack window, and tle state window Figure or the inverse restrictions. In addition, there is a
2-2 shows the main concept editing view, which contains command to delete redundant defined restrictions that
most of the windows used for editing portions of a would be inherited anyway.
concept's definition The descriptions of each window The Editor Interaction Window (7) is a Lisp Listener
below will refer to the numbers superimposed on that which can be scrolled backward and forward through a
figure history of the current session This window also is used

The global command window (1) contains commands for some data entry and messages.
that operate on the network as a whole It is alwa,,s Four other views are currently defined for
visible, concepts, and one view is defined for roles.

The editor stack window (2). which is also always The role editing view (figure 2-3) appears whenever
visible, shows the names of t! e things being edited and the Edit Role or Neu, Role commands are issued. It
some information about their current edit state (eg, contains windows showing a graph of the role network
whether they have been modified) Items in the stack highlighting the currently visible role. and another
window can be removed from the editor, made the displaying the concepts that restrict the role. The role
currently visible edit item, or reclassified (if modified) by editing view also contains a role editing commands
pointing at them, window

The state window (3), which is visible in all views The four other concept views mix some of the
for concepts and roles, displays the name, textual windows above with windows for displaying and editing
description, primitive class flag, parents and information disjoint classes. role equivalences, and inverse role
on the classification state of the item restrictions In addition to the global commands window.

The concept graph window (4) displays F the editor stack and state windows. these views show the
dynamically updated graph of all of the abstractior.s and following,
specializations of the current concept This view
provides constant visual display of the relative position
of the concept being edited in the subsumption An enlarged graph window fling most of the

heacyscreen, for viewing large sections of the
hierarchy concept hierarchy (No display or commands for

The role restrictions window (5) displays a table of editing role restrictions are provided in this
the role restrictions for the current concept. Columns view
in the table show the source (where it was inherited
from) of the restriction its role name. value and number o Windows for a concept's inverse restrictions,
restrictions, default value, and a description role restrictions, equivalences and disjoint

This window can also be used to display the classes, but no graph.
concept's inverse -role restrictions, which are all of the
restrictions that use the concept as their value o Enlarged regions for all concept features. rol
restriction. This display resembles the role restrictions restrictions, equivalences and disjoint classes
display, though some parts of it cannot be edited. (but no graph).
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Figure 2-3: The Role Editing View
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o The structure editing windows and the macro Splicing out a parent both deletes that parent from the
editor displays, described in section ,! below list of defined abstractions and makes the deleted

parent's parents parents of the current concept That
is. it connects the current concept to (some of) its

2.5. Operations grandparents Commands arc also available to delete all

The basic operations used to make new concepts or defined parents that the classifier has determined are

roles, change existing ones. and delete concepts and not direct parents, and to make all classifier-discovered

roles from the network are discussed in the sections parents part of the concepts definition,

whith follow Changing names and killing concepts and roles.

Making new concepts. Clicking on the New Concept KREME allow,, the user to change the names of concepts

command in the global command menu will cause a menu and roles or to delete them completely Name changing

of possibilities to pop tup From this pop-up menu, the is accomplished simply by pointing at the concept or

user can choose to make a new concept that is similar to role's name in the state pane and entering a new name

the currently visible concept or to some other concept, a Changing the name of a concept or role directly effects

specialization of the current concept or some other the network, since the name of the concept definition, as

concept, or a specialization of several concepts well as the name of the corresponding classified concept
(if there is one). is changed All pointers to the concept

When the initial form for the new concept has been (as a parent of other concepts, in value restrictions, as
specified the system creates a new concept definition for the domain or range of roles etc..) are automatically
it and shows this new definition in the main concept updated with the new name both in the classified
view The user is then free to add specific details (slots, network and in all editor buffers
equivalences, additional parents. etc ) to the new concept
definition, classify it. or edit other concepts, leaving the Killing concepts is a somewhat complicated

new concept definition on the editor stack to be finished operation. because of the need to reconfgure the
and classified later There are no constraints on the network following the deletion In essence the Kill

order of these operations The new concept definition is command splices a concept out of 'he taxonomy by

treated like any other concept definition in an editor connecting all of its children to all of its parents. Any

buffer, except that it is marked as never having been concept that used to define the concept as a parent is

classified. reclassified If the concept was used as a value
restriction, the editor tries to find an appropriate parent

Making new roles. The operations for adding new to substitute for the killed concept Because this attempt
roles are essentially the same as those for making new is not always successful, user interaction is sometimes
concepts. required

Adding and modifying slots. Whenever the window Our current version of Kill is only one of several
displaying role restrictions is visible, as in the main that might prove useful For example, We plan to provide
concept view, role restrictions can be added or modified. a second kill function that deletes the entire lattice
A new slot is added to the defined slots of the concept under the killed concept (the concept and all of its
with the Add Slot command. When this command is issued, children) and a third Kill function that preserves the
the system asks for a role name. a value restriction, a properties of the killed concept by either moving them
number restriction and a default form. Any of these up to the concepts parents or down to all of its
items can be entered by typing or by pointing to the children.
desired name or form if it is visible If a role or concept
named in a role restriction or default does not exist the Adding and deleting etcuivalences or disjoint classes.

system will offer to mak, ne with the name given. KREME provides commands to add equivalences and

The user may mod-fy any defined slot or any slot disjoint classes. For equivalences, the user enters two

that is inherited from a parent or created by the paths whose referents are to be equated, and the system

classifier Slots are modified by pointing at the checks to make sure that both oaths are valid (all slots

aprite subfom and then either typing in or along the path are defined) and that the referents of the
appropriate bor ment form yprtion or paths are subsumption related to each other (that is, thepointing to a replacement form If any portion of an restrictions on the referents of both paths are

inherited or classifier created slot is modified, the new consistent). For disjoint classes, the system checks

slot definition becomes part of the definition of the con cent nr a disjoint fm hek

conceptwhether the concept entered can be disjoint from the
current one (i.e., a conc-pt cannot be disjoint from its

Modifying parents. The Nystem displays the classifier parents) To delete an equivalence or disjoint concept
determined parents of a concept in two places in the the ujer merely clicks on its display in the equivalence

main concept view The concept graph displays them as or disjoint concept window, respectively.
part of the abstraction hierarchy of the concept In Deleting redundant slots. Clicking on the Delete
addition, the state pane shows both the defined and Redundancies command causes the system to dlete anydirect or computed parents of the concept The Rdnace omn asstesse odlt n

defined slots whose definitions are the same as the
classifier may have found that the concept specializes inherited definitions This operation alters the definition
some concepts more specific than the defined parents, of the concept, but not its classification or completed
thus defined parents may or may not be direct parents description
In the state pane, defined parents that are not direct
parents are preceded by a "-", wllil, classifier
determined parents that were not defined parents are
preceded by a "+"

Adding new defined parents to a concept's
definition is done by clicking on the Add Iarcid command
and typing a concept name oi poitiig to unly vizibi
concept The system prohibits users from defining
concepts as parents of concepts which subsume them
(This would form an abstraction-specialization loop )

Defined parents may be deleted by clicking on their
names in the list of parents displayed in the state
window A parent can either be deleted or "spliced out"
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3. Classification in KRIEME-FRAME value restrictions for that role at the concept, or a
conjunction of several, if no single one is subsumed by

networks all the others. The effective number restriction for each
slot is similarly determined by intersecting the number
ranges in all of that slot's role restrictions.

3.1. Background Complications arise when there is more than one
One of the most time consuming tasks in building restriction for a given role in the initial list, none of

knowledge bases is maintaining internal consistency which is more specialized than all of the others. Figure
Adding. deleting and modifying slots and parents in a 3-I illustrates one way this can occur, when the most
frame taxonomy may affect the subsumption relations specific value restriction is inherited from one parent
between frames and, perhaps more important, may alter (ANIMAL) and the most specific number restriction is
the se's of properties inherited by more specific frames inherited from another parent (4-LIMBED-THING) to form
The possible consequences of a change in one part of a the restriction of LIMBS at 4-LIMBED-ANIMAL,
network grows rapidly as taxonomies get larger. Figure 3-2 shows another example of completion in
Consequently, the size and complexity of knowledge bases which the resulting value restriction must logically be
is limited by the extent to which automatic means are the conjunction of several concepts, Since ANIMAL-
provided for consistency checking. WITH-LEGS is an ANIMAL, and a THING-WITH-LEGS all of

A central feature of the NIKL representation its LIMBS must be both ORGANIC-LIMBs and LEGs. If the
language is a classification algorithm that allows one to concept ORGANIC-LEG, specializing both ORGANIC-LIMB
build networks of NIKL concepts that are not only and LEG, exists when ANIMAL-WITH-LEGS is classified for
consistent (all subsumption links in the network are
consistent with the sets of properties enclosed by nodes)
but also, for all practical purposes, complete (all
subsumption links in the network that are logically
entailed by the sets of properties enclosed by the nodes 4 limbed
are explicit in the network). t-lbi

Unfortunately the NIKL classifier can only handle
monotonic changes to a concept hierarchy. NIKL can
construct a consistent and complete network from a file o,
of randomly ordered concept definitions and users may animal limbs limb
add new concept defiiitions to existing networks, but anytnmber
once a concept has been placed in a network, it cannot
be modified or deleted, a severe shortcoming for an
interactive knowledge editor. 4

In order to develop a fully interactive knowledge
editing system we had to extend the NII'L classifier so Fexactly4
that it could deduce all of the consequences of any
modification to any part of the intertwined concept/role
taxonomies, and effect the reclassification of all
concepts and roles necessary to maintain internal
consistency. Figure 3-1: Inheritinp Number and Value Restrictions

The remainder of this section will give a brief
description of the KREME classifier. For a formal the first time, the classifier will find it and make it the
description of the NIKL classifier algorithm see 114, 15]. value restriction of the slot LEGS at ANIMAL-WITH-LEGS.
For a more complete description of a somewhat simpler It it does not exist, the classifier stops and asks if the
interactive classifier see [I]. user would like to define it.

3.2. Completion
Completion refers to the basic inheritance

mechanism used by KREME Frames to install all inherited
features of a concept in its internal description. Given a
set of defined parents and a set of defined features, the
completion algorithm determines the full, logically
entailed set of features at a concept (or role). animal limbs o
Completion always occurs before classification or
reclassification of a role or concept

The completion algorithm is broken up into modular
chunks that correspond to the decomposition of tile
frame language. There is a distinct component that deals
with role restriction inheritance, another component that
deals with disjoint class inheritance, a third that deals
with role equivalence inheritance and so on. This
organization makes it quite straightforward to extend the ar
language with new features that handle inheritance in with l leg
diffei cut ways.

A concept inherits all the role restrictions from all
of its direct parents and adds them to the list of
restrictions that it defines locally. For each role naming
a slot in the combined list, the algorithm creates a single Figure 3-2: Combining Value Restrit.ons
restriction that conjunctively combines all restrictions
for that role at that concept The effective value In general, whenever a value restriction can only
restriction is either the single most specific of all the be defined as a conjunction of several concepts. KREME
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offers to form a concept representing the conjunction, defined or redefined. The classifier first completes the
and asks for a name for the new concept 6 As it turns definition by gathering all of its inherited features, and
out. forming the suggested conjunction is not always the then determines exactly where it should be placed in the
right thing to do. It often indicates a missing lattice. If the object has never been classified before.
subsumption relationship between the concepts involved the basic classifier algorithm is run to find the most
IREME provides several options at this point, as specific parents and children of the completed definition.
described in -ction 3 6 and insert the new object into the network

If the new definition redefines a previously
classified object, the process is more complex, First, the

3.3. Subsumption checking previously classified object must be spliced out of the
The KREME classifier algorithm is built around a network, and the basic classifier algorithm is run to find

modularly constructed test for a valid subsumption the correct position for the new definition Since
relationship between two objects, based on their changing the subsumption relationships of an object can
effective, inherited features. When a definition is being change the positions of objects rcferring to it. the
classified. it is repeatedly compared to other, potentially reclassifier must then find all other objects that must be
related, objects in the lattice to see whether its reclassified because of the change The system compares
completed definition subsumes or is subsumed by those the previously classified object with the redefined object
other ubjects The subsumption test compares featurc- ii order to determine which other objects, dependent on
of one with features of the other. For CI to subsume C2 the old definition. might be affected by the changt
in this sense means that the features of Cl form a These objects must all be reclassified. As one might
proper subset of the features of C2. expect, reclassifying those other objects may itself cause

KREME partitions the work of this subsumption further reclassifications to be necessary
check in much the same way it deals with inheritance The reclassification algorithm which accomplishes
Each feature type (i.e role-restriction, disjoint-class this resembles the consistency maintenance algorithms
etc) decides whether, with respect to that type. CI found in truth maintenance systems. A queue of objects
subsumes C2, Cl is equivalent to C2. or Cl does not waiting for reclassification is maintained, called the
subsume C2. If any of th ,se tests return DOES-NOT- pending reclassification queue As each object is
SUBSUME, the the entire subsumption check fails reclassified, all objects that could be affected by the
immediately. If all of the checks return EQUIVALENT or changes caused by its reclassification are collected and
SUBSUMES, then the subsumption test succeeds as long placed in the queue if they weren't there already. 7

as there was one vote for SUBSUMES. The advantage of
this kind of modular organization is extensibility, If a Although the above algorithm is relatively
new feature that contributes to concept subsumption is straightforward in outline. its efficiency and correctness
added to the language one need only define a depends on determining exactly those dependent objects
subsumption predicate for that feature, and objects that need reclassification The algorithms efficiency
having that feature will be appropriately classified, depends on reclassifying only those objects that require

it (i.e.. whose classifier determined position may change).
Its accuracy and completeness depend or reclassifying all

3.4. The Classifier objects which require it

The basic classifier algorithm takes a completed The power of reclassification in an editing
definition (that is. a definition plus all its effective, environment can be illustrated with the following

inherited features) and determines that definition's single relatively simple example Suppose a knowledge base

appropriate spot in the lattice of previously classified developer had defined both GASOLINE-POWERED-CAR and
deftons. The result of a classiication is a unique set INTERNAL-COMBUSTION-POWERED-CAR as specializations of

of the most specific objects that subsume the definition CAR, but had inadvertently defined INTERNAL-
and a unique set of the most general objects that are COMBUSTION-ENGINE as a kind of GASOLINE-ENGINE In
subsumed by the definition When the classified this situation, the classifier would deduce that
definition is installed in the lattice all the concepts that INTERNAL-COMBUSTION-POWERED-CAR must be a

subsume its features will be above it in the lattice and specialization of GASOLINE-POWERED-CAR, as shown in
all the concepts that are subsumed by its features will figure 3-3, since the former restricted the role ENGINE

be below it to a subclass of the latter's restriction of the same role

The details of the classifier's implementation and
operation are beyond the scope of this paper. It should
be noted that the basic classifier is nearly functionally
equivalent to the NIKL classifier Ilowever, NIKL merges 6The NIKL classifier forms such conjunctive concepts
concepts that are exactly classifier equivalent, while the automatically, but does not give them names.
KREME classifier does not normally do this. The decision
not to merge concepts in KREME is due in part to the
different environments in which these classifiers are
being used. In an editing environment, where defiiALions
are expected to change, there may be more to a
concept's definition than had been stated when it was Concepts that depend on each other pose special problems,

but the detoils of how this is handled ore beyond the scopefirst defined In addition, we foresee a time wlhen not all of this document.
of a concept's defined properties are classifier sensitive
In such an environment, merging concepts when their
classifier sensitive properties are identical would be a
mistake

3.5. Reclassification of KREME networks
We are now ready to give a brief description of the

mechanism that KREME uses to propagate modifications of
a definition to related concepts and roles. The KREME
classifier is invoked whenever a concept or role is
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Defined/Completed feature displays, The frame
editor uses the classifier's completion algorithm in its
display and editing of role restrictions (slots), role
equivalences and disjoint classes, and -n displaying the
set of all concepts using a role in a value restriction (in
the role editing view) When the role restrictions window
is visible, the user may toggle between a display that
shows the defined role restrictions for the current
concept and a display that shows all the effective role
restrictions at the concept When all role restrictions

car eirne engine are displayed, the user may modify a restriction that was
inherited or created by the completion algorithm.
Modifying a resriction automatically adds the modified
restriction to the list of defined restrictions at the

lie gonl:-ept Similar mechanisms are available for viewing
and modifying role equivalences, disjoint concepts andconcepts restricting a role,

Classification from the editor. One especially useful
feature of the KREME frame editor is its ability to
immediately display the effects of classifying a concept

ior role definition. When the user modifies a concept or
e ¢mbU0S0 role's definition and classifies it, the editor redisplays

the relevant visible windows to show all classifier added
inforrr~tion For example. the graph of a concept will
show the concept's possibly modified place in the

-defined parent taxonomy Links added or deleted by the classifier seem
to appeai or disappear instantaneously

Making new concepts and roles needed by the
classifier, The I REME dasifier ,ometimes need, to form

Figure 3-3. An Error Affecting Classification new concepts in order to satisfy some logical
relationship This occurs primarily during role

Redefining INTERNAL-COMBUSTION-ENGINE as a kind restriction completion. when the effective value
of ENGINE. rather than a GASOLINE-ENGINE and rertriction for a slot can only be described as a
reclassifying causes all of INTERNAL-COMBUSTION- conjunction of two defined concepts, rather that a single
ENGINE's dependents to also be reclassified, incluaing concept (See section 3 2) It also happens occasionally
INTERNAL-COMBUSTION-POWERED-CAR Since GASOLINE- when a similar condition arises in determining the
ENGINE no longer subsumes INTERNAL-COMBUSTION- effective restriction on the range of a role These
ENGINE, the restrictions for GASOLINE-POWERED-CAR no classifier required conjunctions are sometimes called
longer subsume those of INTERNAL-COMBUSTION- CMEETs.
POWERED-CAR, and the classifier therefore finds that While forming the appropriate conjunction is the
GASOLINE-POWERED-CAR does not subsume INTERNAL- logically correct thing to do to ensure consistency of the
COMBUSTION-POWERED-CAR This is shown in figure 3-4, knowledge base os then defined, it often turns out that

the conjunction suggested by the classifier is needed
because one of the concepts to be conjoined has been
improperly defined. In particular, a CMEET condition
most frequently arises because the concept used as the
value restriction of a role in the concept being classified
is not subsumed by the restriction for the same role at a
higher concept, and the restriction must logically satisfy
both constraints. This is illustrated in figure 3-5. The
figure shows 2-PORT-TANK defined as both a TANK and a

cr e2-PORT-DEVICE Each of those concepts restricts the
role INLET-VALVE The classifier finds that the
restriction for slot INLET-VALVE at 2-PORT-TANK must be
both a VALVE and a STOP-VALVE, given the restrictions of
that slot at 2-PORT-TANK's parents Since STOP-VALVE

com-ulbio e was not defined as a kind of VALVE, the conjunction is
d car not the single concept STOP-VALVE, and so the classifier

asks if it should create a new concept, the CMEET of
gasolineVALVE and STOP-VALVE

pgsoine Whenever the KREME classifier requires that a
CMEET be formed, it stops and queries the user, explains
the situation and requests a name for the concept to be
formed for the conjunction, and enumerates several
alternative options If all of the concepts are defined
correctly, and the proposed CMEET correctly describes

Figure 3-4: After Reclassification the required restriction, the user simply enters a name
for the new concept and classification continues. If the
problem really lies with an existing definition, as is the
case with VALVE and STOP-VALVE, the user can choose an

3.6. Editor Interactions with the Classifier alternative course of action, rather than introducing a
The following sections describe several ways in useless new concept Most often, the correct action is

which the frame editor and the classifier interact to to alter the subsumption relations between the named
support the knowledge acquisition process concepts, so that one of them is subsumed by the others.
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This is done simpl" by naming one of the concepts to be We are taking two different approaches to this
conjoined instead of giving a new name In our example. problem First, we have developed a macro facility for
the user would simply type STOP-VALVE. %n response to reformulations that can be expressed as sequences of
the query The classifier would then make STOP-VALVE a standard, low-level editing operations which allows users

to define editing macros that can be applied to sets of
concept definitions by giving a single example Second.
we are building a small library of functionr providing
operations that cannot be defined simply as sequences of
low level editing operations Our main purpose is to

deve V" valve collect and categorize these utilities, and explore their
usefulness in a working environment. Our hope is that a
large fraction of these operations can be conveniently

tank described using the macro facility, as it is more
valve accessible to an experimental user community than any

set of "prepackaged" utilities, and can be more
responsive to the. as yet. largely unknown special needs

2ank Inlet e w~aOPLve. of that community
The current state of this research effort is

described below. First. we will describe and provide
illustrations of the macro-editing facility, Then we will
describe an example of the latter class of operations, a

a missing subsumer "generalization" utility for discovering and presenting
Figure 3-5: Discovering spotentially useful generalizations of concepts to the

kind of VALVE and continue classifying 2-PORT-TANK, knowledge engineer
resulting in U -! relations shown in figure 3-6

4.1. The L.aero and Strut '.ire Editor
Oi.e of the views available when editing concepts in

KREME s the macro and structure editor. This view (See
2 port figure :-I ) provides display and editing facilities for

no valve A tconcer. definitions, which is based loosely on the kind of
device Vale structure editor provided in many LISP environments.

The view provides two windows for the display of stylized
defining forms for concepts The current edit window

tank Inlet stop displays the definition of the currently edited concept
vale vlve(the top item on the editor stack). The displayf window'

is available for the display of any number of other
2 port Inlet concepI/ Any concept which is visible in either window

can be edited, and features can be copied from one
concept to another by pointing. Both windows are
scrollable to view additional definitions as required.

As in the normal KREME editing views, both
inherited and defined features can be displayed. Clicking

Figure 3-6: After interaction with the classifier the mouse over the keyword indicating each feature class
in a concept's definition (e.g. Abstractions.. Role

This interaction effectively allows a user to correct Restrictions . Equivalences., etc ) toggles the display of
aih oversight in a previously defined concept's definition that component between defined and all inherited
at the point the error is detected by the classifier's features of that type That is, clicking on the Role
completion algorithm. By making the classifier less Restrictions changes the display of the concept's role
"automatic" in this way, we have made it more effective restrictions from locally defined role restrictions to All
as a consistency maintenance tool. and avoided some of Role Restrictions and vice versa
the problems incumbant in using a classifier with a less There is a menu of commands for displaying and
than totally complete and accurate knowledge base editing definitions that includes thc commands Add

We are investigating additional ways in which the Structure, Change Structure, Delete Structure, Display
classifier, as well as other kinds of consistency Concept and Clear Display. Arguments (if any) to these
maintenance facilities, can be used interactively to aid commands may be described by pointing or typing. Thus,
the acquisition and refinement of knowledge bases We to delete a role restriction, one simply clicks on Delete
feel this kind of functionality will become increasingly Structure and the display of the restriction to be
important as the size of knowledge bases grows deleted. Adding a structure is done by clicking on Add

Structure. tlk± keyword of the feature class of the
concept one wishes to add to (e.g., Role Restrictions:).

4. Macro Editing of Knowledge The new restriction itself may be copied from a displaycd
concept by pointing, or a new one may be entered from

Bases the lheyboard Changing (that is, replacing) a structure
An important focus of the first phase of the BBN can be done either by poiliting in succession at the

"n"'iedge Acquisit-on Project that will be cnniin'el in Change Structure command, the item to be replaced, and
phase two is an investigation of and development of tools the thing to replace it with In most cases. Change
supporting macro-edtitng procedures for automatic Structure can also be invoked simply by pointing at the
modification and erhianeement of partially defined structure to be replaced. without the menu command.
knowledge bases The need for methods of expressiig The last two commands in the structure view's main
and packaging conceptually clear reformulations of menu provide the means to change what :s displayed in
concepts and other representationc, as well as' similar the display window Pointing at Display Structure and
facilities for developing new concepts from old ones is then at any visible conctpt name places the definition of
clear.
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Figure 4-1- The Macro Structure Editor View

that concept in the display window Clear Display defining a macro is placed on a stack called the macro
removes all items from the display window Individual items fist, together with a pointer to the command that
concepts can be deleted from the display window by caused the item to be displayed
pointing at them and clicking The Edit Concept For example, if one was editing the concept
command is used to change what is displayed in the ELEPHANT, a command to Display the concept that was
current edit window Editing a new concept moves the the valie restriction of the role LEGS at that concept
old edit concept to the bottom of the display window, would both place ELEPHANT-LEG in the display window

and add that concept to the macro items list.
Thereafter, all editing commands issued that involve

4.2. Developing Macro Editing Procedures pointing at ELEPHANT-LEG or any part of it are recorded
These operations. together with the globally in the macro as operations on the item in the macro item

available commands for defining new concepts and making list at the position ELEPHANT-LEG was when the macro
specializations of old concepts essentially by copying was defined. The utility of this form of reference can be
their definitions, provide an extremely flexible made clear with a couple of examples
environment in which to define and specify modifications
of concepts with respect to other defined concepts.
Virtually all knowledge editing operations can be done by 4.2.1. Macro Example 1: Adding Pipes

a sequence of pointing steps using the current edit When the STEAMER [20] system was developed, a

window and the display window. This style of editing is structural model of a steam plant was created to

also used in the rule editor (See section 5 ) This represent each component in the steam plant as a frame,

combination of editing features and mouse-based editor with links to all functionally related components (e g,

interaction style provides an extremely versatile inputs and outputs) represented as slots pointing at
environment for the description, by example, of a large those other objects So. for example, a tank holding
class of edtig macros water to be fed into a boiler tank through some pipe

that was gated by a valve was represented as a frame
The remaining windows in the Macro and Structure with an OUTPUT slot whose value was a VALVE. The

Editor View are used for defining, editing, and running OUTPUT of that VALVE was a BOILER-TANh The pipes
macros composed of structure editing operations Macro through which the water was conveyed iere not
operations are defined by editing a concept for which represented since they had no functional value in the
the macro will make sense, and then invoking the Define simulation model
Macro command from a menu Until the macro definition
is terminated, all editing and concept display operations If it became important to model the pipes, say

performed are recorded as steps in the macro Some because they introduced friction or were susceptible to

basic facilities are also provided for editing (inserting leaks or explosions, then the representational model that

and deleting steps. changing referents) macros once t.ey STEAMER relied on would have required massive revision

are defined Each component object in the system would have needed
editing to replace the objects in its INPUT and OUTPUT

If the macros defined in this fashion are intended slots with new frames representing pipes that were in
to work on concepts other than those for which thev turn connected by their OUTPUT slots to the next
were defined, the operations recorded c'nnot refer uoaponeal, In the system
directly to the concepts or objects which were being n the systemeditd wen te mcro as efied Isted, akin ofOne of our goals in developing the KREME macro
edited when the macro was defined Instead, a kind of editor was to be able to make such changes, which are
implicit variablization takes place, to replace the named simple to describe but require many tedious editing
objects with their relationship to the initially edited spe to decib h but ru e many tedious etobject In most cases, these indirect references can be operations to accomplish, given the number of concepts

e . cted In the example below, we show how a macro is
thought of as references to the location of the object in ' -med that can bc applied to all objects in a system
the structure editor's display windows In fact, each new

object that is displayed or edited in the course of with OUTPUT slots, in order to generate and insert PIPEs
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Figure 4-2: View when defining the PIPE macro

into those slots The macro also sets the OUTPUTs, of
those PIPEs to be the concept that was the old value of Steps in PIPE macro
the OUTPUT slot in the concept edited.

In this example, the macro is defined by editing a Edit TANKI
simplified representation of a tank (TANKI) connected (by Click on Define Macro (Makes Macro Item 0 =TANKI)
role OUTPUT) to a valve (VALVE2), as shown in figure 4-2
The sequence of steps required is shown in figure 4-3,
as they appear in the Macro Definition window. (The I Make a new concept which specializes PIPE.
italic comments in parentheses do not appear in the named by generating a numbier suffix (Creoles
actual window) Each step describes an editing operation PPOa ie ,pt t'ntecretei
invoked with the appropriate mouse operations, starting item window)
with the old definition of TANK1, as shown in the Current 2 hneteIPl au etito fie
Ed-it Item: window in figure 4-2 Figure 4-4 shows the (.CagteINPUT valu restrEOio to item 0I
state of the editor at the end of this definition process (NU fPPO oie TNY

The PIPES macro shown here is sufficient to insert 3. Change the OUTPUT value restriction of item 1
concepts representing pipes between concepts with a (OUTPUT of PIPEO) to the OUTPUT value
single OUTPUT and the concepts represented as receiving restriction of item 0 (OUTPUT of TANK?
that output The macro works as long as the role VALVE?)
OUTPUT, or a specialization of that role, exists at the
affected concepts. 4 Classify the current edit concept (Defin~res

The current KREME macro and structure editor is PIPEO)
still a very ri-eliminary version. and there are still a
number of i ---s to be addressed We are working on the 5 Change the OUTPUT value restriction of item 0
general problem of extending thF macro facility so that (OUTPUT of TANK? was VALVE?) to item 1
macros of this type will work when component objects (PIPEO).
have multiple OUTPUT slots, with different names What
is required is a way to specify that a macro should be 6 Classify item 0 (TANK?)
applied to all such slots

7 Edit the OUTPUT value restriction of item 1

4.2.2. Example 2: Changing features into concepts (Creates 'item 2 = VAL VEI)
Our second example is of a more common kind of 8 Change the INPUT value restriction of item 2

rce;tritun-, that -, u.; %i1ea1 deu A)Iuj; It u1110 (INPUT of 1,ALI'E1 = TANAI) to item 1 (PIPA'O)
knowledge bases. In developing frcme representations.
the choice must often be made between giving frames a
slot to denote that the concept has some attribute and End Macro PIPE
doing the same thing by defining it as specializing
another concept denoting the set of all objects with that
attribute Neither option is exclusive, but only one way is Figure 4-3: Steps in PIPE Macro
typically needed for the purposes of a given application
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Figure 4-4: View after defining the PIPE macro

Quite frequently the choice made early on in the

Steps in COLOR-OBJECTS macro development of a KB proves to be inappropriate, and
massive editing is required to convert the accumulated

Edit RED representation base A macro facility of this type will
make these decisions easier to reverse and, therefore,

Click on Define Macro less disruptive and costly in their pragmatic

(Makes Macro Item 0 = RED) consequences

We illustrate this kind of restructuring operation

1 Make a new ccncept which specializes OBJECT, with a macro that provides a way of forming a concept

named by adding as prefix item O's name RED-OBJECT denoting the set uf all objects with the role

(Creates RED-OBJECT as item 1. puts it in the restriction COLOR = RED, and then removing those COLOR

current edit item uwndow) slots Figure 4-5 shows this macro's steps.

This macro uses the classifier to help make some of

2 Change the COLOR-OF value restriction of item the required deductions First, for a given COLOR, say

I to item 0 (RED) RED. it defines RED-OBJECT, a non-primitive

specialization of OBJECT, with COLOR-OF restricted to

3 Change the primitiveness of item 1 to No RED. Classifying this concept automatically places all

other objects with COLORI-OF restricted to RED (or

4 Classify item I (This finds all concepts uwth specializations of RED) beneath it in the specialization

COLOR-OF slots restricted to RED. and makes hierarchy
8
, which simplifies the job of defining the macro

them specializations of RED-OBJECT) considerably.

The remaining steps make these specialization
links defined links, and remove the COLOR-OF The remaining steps in the macro remove the

slots completely. COLOR-OF restriction from RED-OBJECT and all of its

specializations. First, the concepts the classifier found

5 Do on SPECIALIZATIONS of item I. Add item I to to specialize RED-OBJECT must be given RED-OBJECT as

the parents of iteration item (This makes each one of their defined parents RED-OBJECT must also be

red object have defined parent RED-OBJECT.) made primitive before it is reclassified, since it no longer

has any defined features to distinguish it from OBJECT

6 Do on SPECIALIZATIONS of item I Classify The steps required to add defined parents to

iteration item specializations of RED-OBJECT and to remove their

COLOR-OF restrictions make use of the KREME MAP-EDIT

7 Change the primitiveness of item I to Yes command This command is used to perform a single

editing operation on a set of concepts related to the one
e Delete 't,,c COLOTR Or rest, ... tun uf itLii i

9 Do on ALL SPECIALIZATIONS of item I Delete the
COLOR-OF restriction of iteration item

10 Classify item I 
8
RED.-OBJECT must be marked non-primitive, since it is fully

defined by the feature that distinguishes it from OBJECT, its

restriction of the COLOR-OF slot to RED. If marked primitive,

i t would only subsume concepts that delgned it as one of

Figure 4-5. Changing RED to RED-OBJECT their parents.
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being edited (e g direct specializations, all exhaustive search Potentially useful generalizations Lre
specializations, abstractions, all abstractions) The found by searching for sets of concept features
limited iteration mechanism provided by MAP-EDIT has (primarily role restrictions) that are shared by several
proven useful in several macros. and at present we have unrelated concepts Finding concepts with a given set of
not found the need to extend the macro language with features is relatively easy since KREME indexes all
further control mechanisms concepts under each of its features

When the generalizer finds a set of at least k
4.2.3. Future Directions features shared by at least m concepts, where k and m

Work on macro editing has really just begun are user setable parameters, the system forms the most
However. it already shows promise as a method for specific concept definition that would enclose all of the
accomplishing a number of large scale restructurings of features but would still be more general than any
knowledge bases which are relatively simple to describe, concept in the set This concept definition is displayed
but tedious to perform As example 2 above shows, to the user For example, figure 4-6 shows three
macros can also make use of the classifier to discover concepts that are all ANIMALs and independently define
relationships in the knowledge base and exploit them the slot WINGS Given this, the generalizer would suggest

forming a specialization of ANIMAL with the slot WINGS
At present, the macro editor is only available for that these concepts would all specialize. If the user

editing concepts in the KREME frame language As the wanted to introduce this concept, he would respond by
PIPEs example shows, there are still limitations on its naming the new generalization, which is then classified
capabilities, even there We are continuing to develop the and inserted into the network The featvres that are
abilities of the macro edito' and in future will have enclosed by this new. more general concept, are removed
versions that can be used Wilt. the other representation automatically from each of the more specific concepts
languages that KREME can manipulate As it stands, the being generalized. Figure 4-7 shows the result with a
system is already powerful enough to describe a number new concept named FLYING-ANIMAL.
of transformations between semantically equivalent
though functionally and syntactically distinct As one might imagine, the generalizer algorithm is
representations We are building a library of these fairly slow (taking about 8 minutes to go through a
operations so that other users of KREME will not be network of 500 concepts and 300 roles) It must look at
required to reinvent them a fair percentage of all the possible combinations of

features in the network. Consequently, we have designed
We see our ivestigaton of macro editing as only the algorithm to run in a low priority background

the first step in developing a knowledge reformulation process, looking for generalizations only when the editor
facility that will have and make use of more is waiting for input from the user
understanding of the logical structure of the represented
knowledge as well as providing a basic means of As yet, the effectiveness of :his generalizer remains
describing procedures to manipulate the syntactic substantially untested We have used tried it on the two
structure of knowledge representations During the reasonably large taxonomies that we have available, and
second phase of this project. we will be attempting to it finds several potential generalizations in each, but the
generahze the functionality provided by this library in a real test must wait until there are new apphcations
system that is capable of reasoning about the kinds of under development using the KREME environment The
structural changes the macro editor can perform taxonomies that we have available currently have been

carefully developed over long periods of time, and have

4.3. The Generalizer
One of the tasks faced by knowledge engineers in

developing robust computerized knowledge bases is
getting experts to express their often unconscious
generalhzations about their domains of expertise While animal
much of the detailed information about particular
problems can be accessed and represented by looking at
specific examples and problems, the expert's abstract
classification of problem types and the abstract features
he uses to recognize those problem types are 1- -d.!;birrn h p m edr
available isc

Experienced knowledge engineers are often able to
discover and define useful generalizations that help
organize the knowledge described by a human domain b-
expert The expert. although not previously aware of fly
such a generalization, will often immediately perceive its E.l
relevance to and existence within his own reasoning
processes. going so far as to suggest improvements, w
related generalizations, more abstract generalizations
and so forth

An automatic facility for deducing potentially useful
generalizations from a network of relatively specific
concepts would be an extremely useful epability for a Figure 4-6: Find a CcnvrahTzaton
Lnowledgr editing ystem to provide An overriding
difficulty in building such an engine is the difficulty of
establishing criteria for determining what constitutes an
"interesting" or useful generalization

As an initial experiment in automatic generalization
within frame taxonomies. KREME provides a relatively
simple generalizer algorithm that deals with this
difficulty by rel,-ing on the user to select from a set of
potential generalizations discovered essentially by
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5. Editing Rules in the KREME
Environment

We are in the process of incorporating into the
animl flingKREME environment an editor for rules written in the

animalFLEX rule language 116] FLEX is similar to the rule-
tbased portion of the LOOP1S language and currently runs
on a Symbolics 3600 FLEX provides rule packets. end
rull- objects Rnile packeltz provide a way to organize

mammal bird insect rules Rule packets Lan be invoked like functions. with
arguments and local variables, and return values vie the

wngs wing ZETALISP multiple-values mechanism Flex incorporates a
mechanism for dealing with uncertainty, based on that in

bat blujay flyEMYCIN [18] The system also provides en elementarybat bueja flyhistory and tracing mechanism. and an explanation
system tbat p~roduces pseudo-English explanations from
rule traces

The forward chaining rule packets come in four
Figure 4-7. After Generalization Added var.eties. indicating the type of control mechanism used

for rule firing
few remaining "holes"

We are also considering developing another version o do-i-rule-packets execute the first rule
of this generalizer that would attempt to find new whose test succeeds
concepts in sets of conditions repeatedly appearing as
parts of rules Introducing such concepts could o do -all-rule -packets execute all rule:; whose
conceivably simplify, and reveal more of the structure of tests succeed
the reasoning involved in rule sets It might also make
extending such rule sets easier A generaliz~r of this
type will be investigated during phase two of the project

-0 If [ORRUD RLICINEI-SIRTUS] ts RLICIVED then SIRIUS - ALIC1IEO.
If (RLPNR-SIJPPLY4III11E ULIC"HE"I-SJITIUSI Is "OT-ALICNED then STATUS - PARIIRLLY-RLIC"ED.
ITt9(RRUo RLICHNff-SIRIUSI Is NDT-RLICIIED then STAIUS - PARTRILLY-FILICIIEO.

Mark before Add Delete Find Show Property Accessil oen easent 1,,1,11tRWl
Mark after Copy flaememnrber Describe I Add Property Ilegal Save 1

4
5toty

Advanbc, mnark Move* Roca$ Not Mollfied Edt Property Verify Ref erences Delete
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Figure 5-1. The FLEX Rule Editor
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" while-l-rule-packets repeatedly test all rules. 6. Editing Procedures in the
firing one. until no tests succeed KREME Environment

o while-all-rule-packets repeatedly fires all
rules whose tests succeed, until none succeed

6.1. The KREME Procedure language

An important feature of FLEX is the capability to
compile rules into a lower level language, and run 6.1.1. Background
without the rule interpreter present For example. An obvious weakness of many knowledge
forward chaining rule packets can now be compiled representation languages is their inability to handle
directly into LISP functions This compiling can be declaratively expressed knowledge about procedure., as
handled by a separate code generator or translator partially ordered sequences of actions, particularly if
which can produce code for other languages that knowledge is represented at multiple levels of

Rule packets in FLEX can be connected to KREME abstraction Although a number of systems have been
frame systems or other data contexts by specifying an developed that do various forms of planning,
access environmcnt An access environment is an object [4. 12, 13, 17], most have not encoded their plans in an
that receives messages dealing with the accessing of entirely declarative or inspectable fashion Certainly the
values for references in the rules It handles all current generation of expert system tools does not
messages to get or set the values of variables and their provide for the description of this kind of knowledge
confidences Flex uses the notion of paths. These are Although it is clear that much of an expert's knowledge
composed references Flex sends the access environment about a domain is about procedures and their
messages to resolve paths that it encounters in rules application, little work has been done on devising ways
When connected to KREME frame hierarchies, these paths to capture that information directly
describe role or slot chains, as in role equivalences The STEAMER project began to address the issue of

declarative representations for procedures in the course
of developing a mechanism to teach valid steam plant

5.1. The FLEX Rule Editor operating procedures. The representation system
The original FLEX rule editor, shown in figure 5-1. developed for this task had to be directly accessible to

was a predecessor of the KREME structure editor, in the students who were the system's users, and it had to
terms of its functionality and style of interaction Thus, serve as a source of explanations when errors were
its functionality closely resembles that for the frame made STEAMER was able to describe these procedures,
editor described above One defines and edits rules by decompose them, show how they were related to similar
specifying and filling out portions of rule templates The procedures and, in general, deal with them at the
user refines these templates either by using the mouse "knowledge level" [101 rather than as pieces of programs
to copy parts of existing rules or by pointing at slots to or rule sets Although the syntax of the language was
be filled and typing in the desired values Once a rule- quite primitive, with no provisions for branching or
set has been developed, the FLEX editor provides iteration, the mechanisms for procedural abstraction,
commands to run packets and debug them It can also specialization, and path or reference reformulation that
generate traces or rule histories paraphrased in pseudo- formed the heart of the language seemed to form the
English Mechainsms are also provided for deleting and kernel of an extremely useful representational facility
reordering rules, and loading and saving them from files The STEAMER procedure language was well

integrated with the MSG frame language that was one of
the starting points for KREME Frames, and minimal effort

5.2. Interactions with the Frame editor was necessary to incorporate a very similar language
Although FLEX was originally designed as a stand- into EREME. We refer to the results of this effort as

alone system, packages of rules can now be written that KREME Procedures We expect to expand the KREME
refer to instances of KREME Frames using the KREME Procedures language, and provide much improved editing
Frames-ACCESS-ENVIRONMENT This access environment facilities for procedures in the near future,
provides the interface functions necessary for FLEX rules
to refer to KREME frame instances, and their slots, It
also allows one to write rule packets that serve as 6.1.2. Basic syntax
methods on frames A procedure consists of a its name, its description,

the action that the procedure is meant to accompish, a
The KREME access environment allows the FLEX rule list of steps, and a list of ordering constraints that

editor to validate references (paths) to slots in KREME determine the partial ordering of the steps Procedures
frames when building and debugging rules When an are attached to specific frames (concepts)
unresolvable reference is encountered, the invalid
portion of the path is pinpointed and a menu of possible A step consists of an action and a path. The path
actions to fix it is offered to the user The options at (as in role equivalences refers to a particular concept
this point include switching to a KREME view in which the which is said to be the oblect of the step For example,
suspect concept or role can be edited, defining new a concept called SUCTION-LINE might have a slot for a
concepts, changing the invalid path element, and part named PUMP, which is restricted to being a
changing the root element of the path CENTRIFUGAL-PUMP We might define a procedure forALIGNng the SUCTION-LINE which would have a step to

We are still in the process of integrating this rule OPEN the DISCHARGE-VALVE of the PUMP This would be
system into the KREME world In the near future, it will expressed in step form as OPEN --PUMP DISCHARGE-
also be possible to associate rule packets with conrepts, VAI,VE , and would indo ate a step that opened the
and browse or edit those packets from within the KREME discharge valve of the centrifugal pump which was the
editing environment pump of the suction line

A constraint is an ordering between two steps (the
before step and the after step) Each constraint is
supported by a principle A principle consists of its
name. a description of its rationale and a numeric
priority
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Each step in a procedure may either be a primitive new procedure organizes the steps and their ordering
action or another procedure If the object of a step constraints, with suitably reconstructed paths to form a
defines a procedure for the action of that step then this template on which the new procedure can be built As
procedure is said to he a sub-procedure of the yet this facility does not have the ab:hty to do detailed
enclosing procedure Using our example from abo,,e. the reasoning with constraints on steps. as NOAH does We
ALIGN procedure attached to the concept SUCIION-LINE expect to greatly expand this capability during phase two
could have a step ALIGN <PUMP'. If the concept of the project
CENTRIFUGAL-- PUMP, which is the object of this step in
ALIGN<SUCTION-LINE . defined a procedure for the action
ALIGN, then the step ALIGN <PUMP , could be expanded 6.2. The Procedure Editor
into the steps of the procedure for aligning a centrifugal When procedures are attached to particular
pump concepts. a procedure editing view is one of the views

available for that concept In this view, the editor

6.1.3. Procedural abstraction and structure mapping displays a list of all of the existing KREME Procedures

For knowledge acquisition purposes, it would be for the current concept (See figure 6-1 ) When the

very useful if procedures were represented in an procedures view is visible, the user can choose to delete

abstraction hierarchy iLe that for concepts In a strong any existing procedure, edit a procedure or create a new

sense, saying that one abstract procedure subsumes procedure Several procedures can be edited

another seems infeasible However much power can be simultaneously, with the topmost ,rocedure in the

gained if abstract procedures form templates upon which procedure list window being the current, visible

more specific procedures can be built, much as was done procedure

in NOAH [13] For example. if you have some idea about The current procedure (of the current concept) has
how to grow plants in general and you want to grow its steps and ordering constraints displayed Steps and
tomatoes, you will use your knowledge about growing constraints can be added to or deleted from the current
plants in general as a starting point for learning about procedure Editing of the current procedure can be
growing tomatoes The final procedure for growing interrupted by the user choosing another procedure to
tomatoes will include some (presumably more detailed) edit, switching views for the controlling concept or
versions of steps in the more general procedure, and may inttrrupting the edit of the controlling concept
also include steps that are aialogous to those used in When the user is satisfied with the definition of a
growing other plants for which more detailed knowledge procedure he has edited, it is ready to be inserted into
exists 9 KREME Procedures has a mechanism for building the knowledge base The Define Procedure command
templates of new procedures out of abstract procedures accomplishes this by firbt ordering the procedure's steps
When a new procedure is being defined at a concept, the based on their ordering constraints If the constraints
procedural abstraction function determines whether any are contradictory, the user must resolve the
of that concept's parents have a procedure for contradiction by eliminating constraints or by making
accomplishing the same action If one or more do. the some constraints higher priority than other3 Next, a

Edit Conce g
Concept: FUEL-OIL-SERUICE-PURP p [.... riL- iFilt-s-ml
P,'i ltive: 10 tClassified; Unnodifled] -'.I 2-fFT-DEVICE
Specializes: PUNP-JITH-POTOR POSITIUE-OISPLCEMENT-PUIP ,l.3I 'IALE
OscripLton: fuel oil service pump I#) fE."FL-Et, lAti -atLE

Att-', F ~ccdure nsito C-,cr 1,t, i t C i!
TAFT "TcFT-F, .F i *.) oil 1i. i E,, i ,ii Ndlif.il I

Ac lt ALlLmftt-'.P 311,1,6 3 N. Oil '. 1 . , ,i (lot h) Editor)

I ;rclin the !,lction vrlv. 8,' E-t" -tep , .5 i-t evne hetore :et, -
- .. Ii , the ),. i l, ::.1 e , t,- t ,.rt.-,ii . i.e B. EO.. :tep :. rmlt c,.c el. , 

t
ep "

Open the ,h-:clhil'e *, ,1 e B . ,'riTuPOLLE[,-FLOTy -t p must c.cve before -tep
,i -'el _- tie ril.tcIt '-IJe d ted t. t :-Itch .'4 O1ITFOlLLEE[-FLOT itel, I mut ,.,e Ietore -lte I  .

', t F iiithi rootoi ii PF rTIlli B.'E,:, :t. p A rniit %9 . , Or.e :t 5
,Felerte the i t1 t.l toi :t,i i

t
h .. 1t !, Ott t . t, mutt ccte tore -tep

Figure 6-1: The Procedure Editor

9
For a detailed discussion of related issues see Corbonell

(3] on dervotional analogicol planning
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procedure object is made and associated with the Now that we are well along in constructing a first.
classified version of the concept in the knowledge base experimental version of the editing environment, we are
The procedure may also be compiled into a flavor method beginning to address the second aspect of our research
that becomes part of the behavior associated with the plan, the development of more automatic tools for
concept After a procedure has been installed. the knowledge base reformulation and extension An
procedure editor redisplays the procedure steps, showing important part of this endeavor is the discovery,
them in their proper partial order categ,-ization and use of explicit knowledge about

Clicking on a step that is itself a procedure causes knowledge representations, methods for viewing different
the editor to replace the step with the steps of that knowledge representations, techniques fo, describing
procedure. adjusting the paths of the expanded steps knowledge base transformations and extrapolations,
and adding appropriate constraints so that the expansion techniques for finding and suggesting useful
falls logically between the steps surrounding its generalizations in developing knowledge bases, semi-
unexpanded form in the original procedure automatic procedures for of eliciting knowledge from

experts, and extensions of consistency checking
A step expansion can be closed by clicking on any techniques to provide a mechanism for generating

of the expanded steps The editor simply replaces the candidate expansions of a knowledge base
expanded set of steps with the original step and adjusts
constraints accordingly Expanded steps are made Our ultimate goal is to explore a number of
permanent when the Define Procedure command is approaches to knowledge acquisition and knowledge

invoked. editing that could be incorporated into existing and
future development environments, not to develop the

A new procedure is entered by typing the definitive knowledge editing environment Al is still a
procedure name. description and action The procedure young field. and new knowledge representation techniques
editor checks to see ii any of the parents of the will continue to be developed for the foreseeable future.
controlling concept have procedures for the same action We are attempting to provide a laboratory for
If so, an initial procedure template is built by combining experimenting with new representation techniques and
the steps and constraints of all the inherited, more new tools for developing knowledge bases If we are
abstract procedures The paths of the steps are successful, many of the techniques developed in our
adjusted to use "local" slot names, as much as possible, laboratory will be adopted by the comprehensive
using the concept's role equivalences as described in knowledge acquisition and knowledge representation
section 6 The procedure definition object thus formed systems required to support the development and
is then displayed for editing maintenance of Al systems in the future

The KREME Procedures language is currently being
refined for use in a new training system under ACKNOWLEDGEMENTS We would like to thank the
development at BBN That system will teach diagnostic other members of the BBN Labs Knowledge Acquisition
procedures for the maintenance of a large electronics Project Richard Shapiro and Albert Boulanger Rich and
system We expect that KREME will greatly ease the Albert jointly developed the FLEX rule system and editor,
knowledge acquisition problems faced by the developers and Rich was also largely responsible for the
of that system It will also provide the first serious test implementation of the Macro and Structure Editor Dr
of the effectiveness of the RREME acquisition environment Ed Walker read and substantially edited several drafts of
in general this paper

7. Conclusion
The goal of the BBN Labs Knowledge Acquisition

Project is to build a versatile experimental computer
environment for developing the large knowledge bases
which future expert systems will require We are
pursuing this goal along two complementary paths First,
we have constructed a flexible, extensible, Knowledge
Representation. Editing and Modeling Environment in
which different kinds of representations (initially frames,
rules, and procedures) can be used, and we can
investigate the acquisition strategies for a variety of
types of knowledge representations In building and
equipping this "sandbox". we are adapting and
experimenting with techniques which we think will make
editing, browsing, and consistency checking for each
style of representation easier and more efficient, so that
knowledge engineers and subject matter experts can work
together to build with significantly larger and more
detailed knowledge bases than are presently practical

-20-



References

[1] Balzac. Stephen R. [13] Sacerdoti. Earl D.
A System for the Interactive Classification of A structure for plans and behavior.

Knowledge Technical Report 109. SRI Artificial Intelligence
Technical Report M S. Thesis. M.I T Dept of E.E. Center. 1975

and C.S, 1986 [14] Svhmolze. J and Israel, D.
[2] Brachman. R.J . Fikes. R E. and Levesque, H J. KL-ONE. Semantics and Classification.

Krypton. A Functional Approach to Knowledge In Research in Knowlege Representation for
Representation. Natural Language Understanding. Annual

IEEE Computer. Special Issue on Knowledge Report. I September 1982 to 31 August
Representation , October, 1983. 1983.BBN Report No. 5421, 1983.

[31 Carbonell, Jaime G. [15] Schmolze, J.G., Lipkis, T.A.
Derivational Analogy. A theory of reconstructive Classification in the KL-ONE Knowledge

problem solving and expertise acquisition, Representation System.
In Michalski, R. S., Carbonell, J. G. and Mitchell. In Proc 8th IJCAI. 1983.

T. M. (editor), Machine Learning. Volume I
pages 371-392.Morgan Kaufmann Publishers, [16] Shapiro, Richard.
Inc., Los Altos, CA, 1986. FLEX. A Tool for Rule-based Programming.

Technical Report 5643. BBN Labs. 1984.
[4] Ernst, G.W and Newell, A.

GPS. A Case Study in Generality and Problem [17] Stefik. Mark.
Solving. Planning with Constraints: MOLGEN.

Academic Press, New York, 1969. Artificial Intelligence 16(2).111-169, 1981.

[5] IntelliCorp. [18] van Melle. W.
KEE Software Development System A domain independent production-rule system for

lntelliCorp, 1984. consultation programs.
In Proceedings of IJCAI-6. pages 923-925. Augusi

[6] Keene, Sonya E. and Moon, David. 1979.
Flavors: Object-oriented Programming on Symbolics

Computers. 119] Viai, Marc.
Symbolics. Inc. The Restricted Language Architecture of a Hybrid
1985 Representation System.

In Proceedings, IJCAI-85, pages 547-551.
[7] Carnegie Group. Inc. International Joint Conferences on Artificial

KnowledgeCraft. Intelligence. Inc.,, August. 1985.
Carnegie Group. Inc, 1985. [20] Williams, M., Hollan, J., and Stevens, A.

[8] McAllester. D. A. An Overview of STEAMER. An Advanced Computer-
Reasoning Utility Package User's Manual. Assisted Instruction System for Propulsion
Technical Report Al Memo 667. M.I.T. A.I. Engineering.

Laboratory, April, 1983. Behavior Research Methods and Instrumentation
14.85-90, 1981.

[9] Moser, Margaret.
An Overview of NIKL
Technical Report Section of BBN Report No. 5421,

Bolt Beranek and Newman Inc., 1983.

[10] Newell, A.
The knowledge level.
Al Magazine 2(2).1-20, 1981.

[11] Rich. C.
Knowledge Representation Languages and Predicate

Calculus. How to Have Your Cake and Eat It
Too

In Proc. AAAI, pages 192-196. 1982.

[IP] Sacerdoti. E. E.
Planning in a Hierarchy of Abstraction Spaces
Artificial Intelligence 5(2) 115-135, 1974.

-21-



Experimental Knowledge
Systems Laboratory

Progress Report on Reasoning
Under Uncertainty

University of Massachusetts
Anlheist, Mass. 01003

1. Introduction 2. Management of Uncertainty in

This paper describes four projects to develop tech- Medicine
niques for reasoning under uncertainty in knowledge

systems. The work is based on the premise that knowl- 2.1 Introduction
edge about sources of uncertainty and evidence should MUM is a knowledge-based consultation system de-

be represented explicitly, so that knowledge systems can signed to manage the uncertainty inherent in medical

reason about their uncertainty. This position raises digndis ( the a nym tands o naeent of Unc

manydiagnosis 
(the acronym stands for Management of Un-

tainty be represented? what aspects of uncertain sit- certainty in Medicine). Managing uncertainty means

uations should be explicit? How should evidence be planning actions to minimize uncertainty or its conse-
cominesd e? How shound asystemminimieinceaiquences. Thus it is a control problem - an issue for the

combined? How can a system minimize its uncertainty? component of a knowledge system that decides how to
How are decisions taken under uncertainty? These and proceed from an uncertain state of a problem. Uncer-

other questions are the foci of the four research efforts c e managertan state giem. d e r-

described here. One project has resulted in an archi- tainty can be managed by many strategies, depending

tecture for planning medical consultations, that is, de- on the kind of problem one is trying to solve. These may

termining appropriate questions, tests, and treatments include asking for evidence, hedging one's bets, deciding

given previous results during the consultation. The goal arbitrarily and backtracking on failure, diversification
of the project is to integrate current research on explicit, or risk-sharing, and worst-case analysis. The facility

sopthetprojectisto witrtehurrntrear explicit, reswith which a consultation system such as MUM man.
sophisticated control with explicit reasoning about un- ages uncertainty is evident in the questions it asks: it

certainty: the causes of uncertainty and characteristics should ask all necessary questions, no unnecessary ques-

of evidence effect control decisions. A second project tions, and it should ask its questions in the right order.

shares this concern for control: we have developed a tos n tsol s t usin ntergtodr

shnaethoncer for control: weiav devdelne- a These conditions, especially the last one, preclude uni-

general method for constructing decisions under uncer- form and inflexible control strategies. They prompted
tainty. By classifying decision-making situations, one the development of the MUM architecture in which con-

can "read off" actions that will transform uncertain de- trol decisions are taken by reasoning about features of

cisions into more tractable ones. This opens the pos- erlden a rcen by reainy.

sibility of sophisticated control by table lookup. The evidence and sources of uncertainty.

third and fourth projects focus on the representation of

uncertainty., One proposes a model for reasoning about

the uncertainty inherent in semantic matching prob- 2.2 The Goals of MUM

lems. The other extends this work to a view of com- MUM diagnoses chest pain and abdominal pain. This

mon sense inference as "generalized syllogisms" over an includes taking a history, asking for physical findings,

associative knowledge base. ordering tests, and prescribing trial therapy. Physi-

This revort is taken from three recent papers: "Man- ciar6 4c1 4l ditgnubtic bequeiice of questions and tests a

aging Uncertainty in Medicine" by Paul Cohen, David workup. MUM's primary goal is to generate workups for

Day, Jeff Delisio, Mike Greenberg, Rick Kjeldsen, and chest and abdominal diseases that include, in the cor-

Paul Berman, M.D.; "A Typology for Constructing De- rect order, all necessary questions and tests and none

cisions" by Adele Howe and Paul Cohen; "Classification that are superfluous. Since we built MUM to study the

by Semantic Matching" by Paul Cohen, Philip Stan- nanagernent of uncertainty, the goalofcorrect diagnosis

hope, and Rick Kjeldsen. The section on plausible in- msasent o uneraing the correct diagnosis

ference was written by Paul Cohen and David Lewis. is Secondary to generating the correct workup. We were
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influenced by a distinction physicians make between ret- - managing uncertainty and control - only because un-
rospective diagnosis, in which all evidence is known in certainty and control have, with a few exceptions noted
advance and the goal is to make a correct diagnosis, and below, been viewed as different topics. In fact, if con-
prospective diagnosis, which emphasizes the workup and trol decisions are based on features of evidence, then
proper management of the patient, even under uncer- control and managing uncertainty are the same thing.
tainty about his or her condition. MUM is definitely This is the principle that motivates the design of MUM
prospective. Figure 1 illustrates part of the workup for discussed in Section 2.3.3.
coronary artery disease. Clearly, we could build a sys-
tem that follows this and other stored workups, but the 2.2.2 Related Work
point of the research is to be able to reason about the
features of evidence, and the uncertainty in partially. The close association between control and manag-
developed diagnoses, to decide which questions to ask ing uncertainty has been apparent in the literature on
next. If MUM does this properly then its questioning sophisticated control for several yeats I but is lar-ely
will correspond with a standard workup, or at least be absent from the Al literature on reasoning under un-
a reasonable alternative workup. certainty. Three important results have emerged from

research on control: First, complex and uncertain prob-
2.2.1 Managing Uncertainty and Control lems must be solved opportur,ictically and asynchronousil

- working on subproblems in an order dictated by theMUM is based on the idea that managing uncer- availability and quality of evidence (Hayes-Roth and
tainty and controlling a complex knowledge system are Lesser, 1977). Second, since control tends to be accom-
manifestations of a single task, namely, acquiring evi- plished by local decisions about focus of attention, the
dence and using it to solve problems. There would be behavior of complex knowledge systems sometimes lacks
little basis for variation in problem-solving strategies if global coherence. Coherence can be achieved by plan-
all evidence was equally costly, reliable, available, and ning sequences of actions instead of selecting individual
pertinent; but if available and attainable evidence is actions by local criteria 2. Third, programs are impossi-
differentiated along these and other dimensions, then ble to understand if the factors that affect control deci-
problem-solving can be guided by the ideal of maxi- sions are implicit. For example, the focus of attention
mum evidence for minimum cost. For example, here is in Hearsay-Il was difficult to follow because it depended
a strategy for focusing attention on available evidence: on many numerical parameters calculated from data and

CONTEXT: to minimize cost combined by empirical functions with "tuning" parame-
ters (Hayes-Roth and Lesser, 1977). A better approach

CONDITIONS: test, and test2 are pertinent, and is to explicitly state and reason about the implicit fac-
test, is potentially-confirming, and tors, called control parameters (Wesley, 1983), that the
teSt 2 is potentially-supporting, and numbers represent (Davis, 1985; Clancey, 1983). If the
cost(testl) >> cost(test 2 ) control parameters are features of evidence and uncer-

tainty, then control strategies can be developed to man-
ACTIONS: begin age uncertainty.

do test 2  This last point colors our reading of the Al literature

if supporting then do test, on reasoning under uncertainty. Much of it is concerned

else do not do test, with the mathematics of combining evidence, the calcu-
end lation of degrees of belief in hypotheses. (A represen-

tative sample includes Shortliffe and Buchanan, 1975;
Duda, Hart, and Nilsson, 1976; Zadeh, 1975; Shafer,

That is, given cheap, weak evidence and expensive, 1976. See Cohen and Gruber, 1985; and Bonissone,
strong evidence, get the weak evidence first and don't 1985, for literature reviews, including nonnumeric ap-
incur the cost of the strong evidence unless the weak proaches to uncertainty; and Szolovits and Pauker, 1978
evidence lends support. The rule serves to manage the for a discussion of uncertainty in medicine.) Degrees of
uncertainty associated with the weak evidence - it says belief can serve as control parameters, but it is neces-
seek strong corroboration only if the weak evidence is sary to maintain a distinction between combining ev-
positive. it ahIo uses features of evideniie such as cost idence and control. Otherwise, degrees of belief (and
and reliability to control the acquisition of evidence; 'For example, the classic paper by Erman, Hayes-Roth, Lesser,
for example, it explains why an angiogram (an expen- and Reddy (1980) is called "The learsav-il sveech understandine
sive, risky, and excruciating test) is done only after a systenm: Integrating knowledge to resolve uncertainty.'
stress test in Figure 1. We distinguish these functions 2Personal communication, Victor Lesser.
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the functions that combine them) have to be "uned" 2.3 An Architecture for Managing Un-
not only to find the most likely answer but also to fo-
cus attention in a reasonable way. Inevitably they bN

come ambiguous summaries of implicit control parame- Managing uncertainty in MUM requires many kinds
ters. For example, MYCIN's certainty factors contained of knowledge, discussed in this section. Anticipatingprobabilistic and salience information, an indirect result section 2.3, on control, it may be useful to think of data

of using them to focus attention (Buchanan and Short- moving bottom-up through Figure 2 as it triggers hy-liffe, 1985). potheses and is requested by MUM's planner.

Another important reason to maintain the distinc-

tion between combining evidence and control is that 2.3.1 Types of Knowledge
combining evidence is only a p4rt of the problem of rea- Dta e n a erp
soning under uncertainty. Other aspects include formu- atEvidence absratd fntromrdtathroug iunterpne-

latig dcisonsassssig th ned fr moe eidece, tation functions. All data about a patient are stored

planig owtogeit dedin whether up fsoort

planinghow o gt it deidig whthe it s wrthin frames that describe personal history, family history,the cost and, if it isn't, hedging :gainst residual uncer-

tainy.hne UM e ddrsstheprole ofcobinngtion functions map data to evidence; for ample, in-
uncertainty in the context of these other tasks. forftiocthtainto

a day is abstracted to the evidence heavy-smoker by
an interpretation function that maps data about smok-
ing habits to one of (non-smoker 2ght-smoker moderate-
smoker heavy-smoker). Interpretation functions are of.
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..... 2 only if "positive" (i.e., shows ischemic changes.)
i I.tie I.... dit, I Once confirmed (or disconfirmed), a hypothesis

,Iit supp.reflec.I.r-7 requires no further evidence, though a diagnos-Comol "I As- ftaM )"~v €offil"l01-fvtloo

6 (o . civ.tt,*) -11 o. ~.-tician may continue working to disconfirm other(CONFlrne {€luster-4) ) to" OV1p09"O

the, ,.ni,..u e -it.wp.€,,(c,,er.-2) hypotheses, especially if they are dangerous.
I I :o"flrvh4dCluster I ) the supported
the" detracted l{S(VX~i{ ete"* .'.:.'€ ''--ikPotentially-supporting and potentially-detracting.

*iiI. . I4.e Ik . . .i1u.. Like potentially-confirming and potentiallydiscon-

firming, hut not conclusive. However, combi-
Cluster7-- rest -... nations of supporting or detracting evidence may

be confirming and disconfirming, respectivelv (see

"(-wem.ee.c.w ,o-,,1 "Combining Func tions," below). The combina-
th" . ti. Nm.., -) tion referred to as cluster-2 (F-g. 2) is potentially-

Il t [supporting with respect to disease-2; cluster-1 is
thft etroc; ledpot entially-detracting with respect to disease-i.

Trigger. A piece of evidence plays the triggering role
with respect to a hypothesis if its presence focuses

IA ff~.f i,. ,t~wnrtee-t u.. attention on the hypothesis, or "brings the hy-'WCIlo (blif If ltlet go00ke
cve)- )k. 2: bode-luok.r pothesis to mind," or, in MUM, adds the hypoth-

P ,,4 1 11"t 2 MU. esis to a list of potenLial diagnoses. Cluster-4, if it

Pock 0 k sfe is supported triggers disease-i (Fig. 2). This role

DATA Aof evidence is found 'n virtually all medical expert

fICURE 2: KNOWLEDGE STUCTUt[S IN systems.

Modifying. Some evidence does not support or detract

ten graphs called belief curvies that relate ranges of a from a hypothesis so much as it alters the way di-

continuous data variable to belief in evidence. Figure agnosis proceeds. For example, risk factors for
ros v e reli the cdurur of chet coronary artery disease (e.g., hypertension, ele-p shows th belief ches vated cho[,, ,. rol) play a modifying role with re-pain to the evidence classic-anginat-pain. Belief curves spect to the hypothesis of angina since diagnosis

and other interpretation functions are acquired from an will proceed aggressively if they are present and

expert. They provide the same functionality as fuzzy less aggressively otherwise.

predicates (Zadeh, 1975), and generalize Clancey's view
of data abstraction as categorical (Clancey, 1983). These are the only roles currently used in MUM;

others are contemplated. Note that evidence can play
Features of Evidence. Evidence may be character- multiple roles with respect to any hypothesis; for ex-
ized by its cost, reliability, and roles. The cost of evi- ample, risk factors are both potentially-supporting and
dence reflects monetary cost as well as discomfort and modifying with respect to angina; and most triggers are
risk to the patient (later versions of MUM will separate individually or in combinatic n with other evidence at
these and other determinants of cost). Reliability refers least potentially-supporting (e.g., note the roles cluster-
to several factors, including false-positive and miss rates 4 plays with respect to disease-1 in Fig. 2). Also, one
of tests, and also the belief in evidence derived from be- piece of evidence can play different roles with respect
lief curves (e.g., is classic-an ginal-pain at least supported to several hypotheses (illustrated by the roles cluster-2
by data about the pain duration?) The most important plays with respect to disease-i and disease-2 in Fig. 2).
feature of evidence is the roles it can play with respect Finally, note that somc evidence potentially plays two
to evaluating hypotheses. MUM recognizes five roles, symr.ietric roles, while some are "asvnimetric". For ex-
two of which are symmetric pairs: ample, a stress te-t will either support coronary artery

d,,ease or detract from it, while an EKG supports angina
Potentially-confirming and potentially-discon firming. if it is positive arid is useless otherwise. That is, EKG

if evidence plays a potentially-confirming role with plays a potenttially-supporting role only.
respect to a hypothesis, then acquiring it might
confirm the hypothesis, though not all potentially-
confirming evidence will, in actuality, confirm. For
example, an EKG confirms the hypothesis of angina
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A belief curve plotting the datum Duration oi Pain in Minutes
vs belief in the evidence 'Classic-Angin.l-Pain"
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Clusters. Physicians often see cof!ections of eviderne Strategic Knowledge. We characterize strategic kno
that play particular roles in diagnosis; for example, short- ledge as heuristics for deciding which triggered disease
ness of breath that comes on suddenly but is unrelated hypotheses to focus on, and how to go about selecting
to exercise or other inciting factors trigger. ae diagno- actions to gather evidence pertinent to these hypothe-
sis of pulmondry embolism. Just as - vidence has roles ses. These heuristics have the same contingent nature
with respect to clusters, so cluster' have roles with re- as Davis' reta-rules (Davis, 1985) and control rules in
spect to diseases, and these roles need not be support- Npomycin (Clancey, 1985). Strategies are represented
ing; for example, the cluster (patient-age < SO and no- as rules which include:
family-history-of-coronary-events) plays a potentially-de-
tracting role with respect to all coronary diagnoses of * conditions for selection of the strategy;
chest pain. Instead of saying that the availablt evidence * a focus policy which guides the choice of a subset
is a poor match to coronary diagnoses, we can say the of the triggered disease hypotheses to focus on;
evidence is a good match to a cluster that potentially
detracts from or disconfirms coronary diagnoses. 9 planning criteria which guide the selection of ac-

tions to gather evidence for and treat diseases cur-
Combining Functions. Every cluster includes a func- rently in the focus.
tion, specified by the expert, that combines the avail- Examples of focus policies are plausibility (choose
able evidence for the cluster and returns a value for the hypotheses based on their degree of support); criticality
cluster given evidence. The values returned by combin- (focus on hypotheses that, if true, would require imme-
ing functions are just "realizations" of potential roles of diate action); and differential (focus on hypotheses that
evidence. For example, the value returned by the com- offer alternate explanations for the symptoms). Exam-
bining function of a cluster supported by potentially- pies of planning criteria are cost (prefer evidence that
confirming evidence could be confirmed. The value is easy to obtain, and inexpensive on somc cost metric);
for a cluster with several pieces of potentially-detracting roles (prefer potentially-confirming over potentiaily-sup-
evidence might be disconfirmed, or perhaps detracted. porting); and diagnosticity, meaning that a given result
Combining functions are further discussed below, has the potential to increase the belief in one hypothesis

and decrease belief in the other, as indicated by belief
Diseases. A disease is technically a cluster. It is a col- curves.
lection of clusters, each of that plays an evidential role
in diagnosis and is combined by combining functions
with other clusters. Thus diseases reside at the top of a
hierarchy of clusters (as shown in Fig. 2), each of which
has its own combining function and specifications of the
roles played by the clusters below it.
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2.3.2 Combining Evidence and Propagating Be- for which F3 is needed. In this case, cluster-4 and
lief cluster-2 indwidually play potentially-supporting roles,MUM combines evidence with local combining func- and taken together increase the level of belief in disease-

tions, as shown in Figure 2. Typically, knowledge sys- 2 to strongly-supporting.
tems require three functions to combine evidence and Local combining functions have many advantages.
propagate belief. These are illustrated in tihe'context of Foremost is the ease with which an expert can specifytwo inference rules: precisely how the level of belief in a cluster depends

on the levels of belief in the evidence for that cluster.
RI: ( A AND 13) -* C Control of combining evidence is not relinquished to anR2: ( D AND E) -. C algorithm, but is acquired from the expert as part of

his or her expertise. Since local combining functions areOne function calculates the degree of belief (dob) in a specific to clusters, they can be changed independently.conjunction from degrees of belief in the conjuncts: And since the values passed between them in MUM are

dob(AND A B) = F1(dob(A)dob(3)) few, it is easy to trace back the derivation of a levelof belief and pinpoint a faulty local combining function.
The second function calculates the degree of belief in a The prospect of having to acquire many functions seemsconclusion from daunting, but we have found it easy and intuitive, andmuch easier to explain than a global numeric method.
a) the degree of belief in its premise (computed by F)m

b) the "conditional" degree of belief in the conclusion 2.3.3 Control of Diagnosis in MUM
given the premise; Strategic control knowledge, which may be acquired

and modified like any other domain knowledge, will be
often called the degree of belief in the inference rule: d i ed i e cn t o the a i c n o le loo w i chdescribed in tihe context of the basic control loop which

dob(Cl?) = F2(dob(AND A B),dob(CI(AND A B))) it directs. The implementation of MUM's basic control
involves three components:

The third increases the degree of belief in a conclusionwhen it is derived by independent inferences: User Interface: uses data description frames in theknowledge base to ask questions and create pa-
dob(Cl& R2) = F3(dob(CRI),dob(CR2)) tient data frames for tile results;

In MUM, these three kinds of combining are main- Matcher: uses the interpretatior and combining func-tained, but with two important differences. First, there tions to record the effect incoming data has on theare no global functions corresponding to F, F2 , and belief states for clusters and disease frames, andF3; all combining is done by functions local to clusters, triggers new hypotheses as appropriate;Second, instead of the usual numeric degrees of belief, Planner: uses strategic control rules from the knowl-MUM has seven levels of belief: disconfirmed, strongly- edge base to guide the selection of focus and thedetracted, detracted, unknown, supported, strongly-sup planning process.
ported, confirmed. These are just "realizations" of the
roles of evidence described earlier. The planner controls the user interface and the matcher

Combining evidence and propagating belief in MUM by requesting their services as described below.is illustrated in Figure 2. Each cluster, including dis- Basic Control. The planner follows a basic controleases, has its cwn local combining function, specified by loop within which it interprets strategic control rules.an expert. For example, cluster-i is strongly-supported It is implemented in a blackboard system, with knowl-if the data support evidence-1 and if the data on a pa- edge sources specified in the same syntax as that which
tient's smoking habits support evidence that he or she strategic control rules are compiled into. This facili-is a nonsmoker. This is a conjunction of evidence of tates modification of the basic control described herethe kind cat(ulated by F1 , above. Another is found in as dictated by the strategic knowledge. The design oftile combining function for disease-1. If cluster-2 and the blackboard system was influenced by Hayes-Rothcluster-4 are both confirmed, then disease-I is stronqlv- (1985). and sharps the emphasis on Pxplirit olition tosupported. This illustrates the kind of combining for the control problem. We first describe the basic control
which F2, above, is required: even when the evidence loop, then strategies and their selection.
for a disease is itself certain, the conditional belief in the The basic control loop is initiated with the choicedisease given tile evidence may not, be certain. Disease- of a strategic phase. All strategic phases but one in-2 also contains a conjunctive rulc, but the entire corn- elude a focus policy that directs MUM's attention tobining function illustrates the corroborative situation a subset of catididate hypothe3es. This is followed by

-27-



the generation of short-term plans to gather evidence As soon as the easy questions for triggered hypothe-
and select treatment pertinent to these hypotheses (the ses have been asked, MUM decides between the next two
rule in Section 2.2.1-represents such a-plan). Since the phases based its belief in the hypotheses and whether
effort of developing lengthy plans may well be wasted any of the hypotheses are critical, that is, require im-
in a domain permeated with uncertainty, we currently mediate treatment if supported. Critical hypotheses are
constrain plans to single actions or sequences of two ac- dealt with first.
tions where the applicabiPty of the second depends on The Deal With Critical Hypotheses phase places
the outcome of the first. Several short-range plans may all candidate critical hypotheses in MUM's focus. The
be generated and executed. short range planner is then directed to attempt to rule

Carrying out plans typically consists of invoking the out these hypotheses. It begins with potentially-discon
user interface to request some information, updating the firming or potentially-detracting evidence. If it fails to
status of the diseases with the matcher, and conditional
continuation of the plan. When no short-term plans
remain, the system iterates the basic control loop to de-
termine if a new strategic phase is appropriate, update Strategic Phase: Get General Picture.
the focus, and generate new short-term plans. MUM Conditions: No c:,ndidate hypotheses.
may respond to asynchronous events such as the alter- Focus Policy: None.
ation of a previously obtained data item by interrupting Planning Criteria: Evidence must play trigger

this basic control loop to reconsider its strategy. role; prefer low cost on- all
cost metrics.

Strategic Control. We represent MUM's overall
strategy as an ordered set of rule-like strategic phases, Strategic Phase: Initial Assessment for

shown in Figure 4. Each phase has-conditions that acti- Triggered Hypotheses.

vate it. Once activated, a phase controls MUM's focus Conditions: One-or more hypotheses

of-attention and the-choice of actions pertaining to the are triggered.
hypotheses in this focus. Focus Policy: Focus on triggered hypotheses.

Thpohse Planning Criteria: Must-be low on all cost

The phase Get General Picture is invoked when metrics; prefer stronger roles.
the system is started, and may also-be used if all pre-
viously considered hypotheses are ruled out. It has Strategic Phase: Deal With Critical Possibilities

no focus policy because no hypotheses are active when Conditions: There are critical hypotheses
it is invoked. It directs the planner to ask for evi- which have not been confirmed,
dence that plays the potential-trig'er role for one disconfirmed or strongly
or more hypotheses, pursuing the lowest-cost evidence detracted, and if they are
first. The cluster initial-consultation (consisting of detracted, no other hypothesis
age, sex, and primary complaint) meets the criteria of is confirmed.
potentially triggering many hypotheses and costing lit- Focus-Poicy: Criticality.
tIe. The initial consultation usually triggers some hy- Planning Criteria: Rule Out if possible,
potheses, which result in a new strategic phase being else gather support.
selected. If no hypotheses were triggered, the planner Utility-of evidence. Low cost
asks for potential-triggers of higher cost. first; as-needed let discomfort

The Initial Assessment for Triggered Hypothe- and monetary cost increase.
ses phase is invoked when new hypotheses are triggered.
Since the conditions of the other strategic phases de- Strategic Phase: Discriminate Strongest Hypotheses
pend somewhat wn the level of belief in candidate hy- Conditions: More than one hypothesis
potheses, this pnase gathers preliminary evidence for is supported.
the-hypotheses. The focus is on the triggered hypothe- Focus-Policy: Plausibility.
ses, so only evidence playing some role relative to these PliCy: Plausiityhypthse i cosierd y te lane. Tisphse Planning Criteria: Diagnosticity, Low cost first.
hypotheses is considered by the planner. This phase Utility of evidence. Substitutedhe Lt th e p~la nt t v g th l~ ow-tomt evide nt~e fui he high cost confirm ation

hypotheses. For example, MUM asks about aspects of hih ot co 
the patient's episode (the event which is the primary for one hypothesis with lower cost
complaint) which bear on the triggered -hypothesis, and disconfiriation for the-other.
about risk factors.

Figure 4: Four Strategic Phases in MUM's Diagnosis
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find any, then it looks for potentially-supporting evi- Much work remains to be done. Currently, MUM re-
dence. It will not seek evidence that plays a lesser po- sembles a programming environment more than a medi-
tential role than evidence it already has. For example, cal expert system. We are devoting ourselves to building
it will not seek potentially-supporting evidence for a hy- up its knowledge base of clusters, functions, and control
pothesis that is already strongly supported, but rather rules, while experimenting with improved representa-
focuses on potentially-confirming evidence. The plan- tions for them.
ner will focus on low-cost evidence first, but it is not Although MUM was designed for medical problems
prohibited from pursuing high-cost evidence as it was and is discussed in that context, we believe the approach
in the previous phase. to uncertainty and control it engenders is general to

If the focus of attention is not captured by critical classification problem solvers, as well as to other sys-
hypotheses, it is dictated by plausibility. The strategic tems responsible for the management of uncertainty. An
phase Discriminate Strongest Hypotheses discrim- empty version of MUM called MU is being developed
inates competing alternatives with as little cost to the and will be tested in other domains.
patient as possible. As before, the potential roles of ev-
idence are used to decide whether it is worth acquiring. 3. A Typology for Constructing

Currently MUM stops work when a hypothesis is Decisions
confirmed and no critical hypotheses remain in its focus.
We are implementing the next strategic phases, progno- 3.1 Introduction
sis and treatment. Both provide evidence of diagnostic

significance; for example, MUM may begin treatment Decision making involves identifying, comparing, and
for angina-if it is strongly supported, rather than incur ultimately selecting from among- a set of alternatives.
the cost of absolute confirmation. If the treatment re- When the alternatives are not known in advance, or
lieves the-symptoms, then it is-additional evidence for when the-set-of alternatives is large, decision making
the diagnosis. If not, it is evidence that detracts from becomes -a constructive, action-oriented process. The
the diagnosis and may support others. Since treatment alternatives and their features, implicit in the descrip-
provides evidence, we represent treatments as clusters, tion of a-decision problem, must be compared and-so
exactly the same way as we represent tests such as an- must be -made explicit as the problem is solved. As

giography. these comparisons are made, preferences among alter-
The emphasis in MUM is on asking the right ques- natives on features are also made explicit. We present a

tions in the right order without-superfluous questions. typology of decision-making situations that tells how to
MUM's control knowledge is not yet-sophisticated enough construct a decision, that is, when to add an alternative,
to satisfy all these criteria. It asks questions in a rea- a feature, or a preference to-a developing decision.
sonable order, but it sometimes focuses on the wrong The emphasis of this work is constructive decision
disease. Since MUM is a nascent system, this does not making for AI programs. We-focus first on problems
yet concern us. We believe the system is successful in where alternatives are supported-by conflicting evidence.
providing-a framework for exploring management of un- The many variants of this type of problem are organized
certainty by sophisticated control, that is, by making into a typology of decision-making situations. Some sit-
control decisions based on the roles, costs and other uations permit an immediate -choice between alterna-

characteristics of evidence, the criticality of diseases, tives. Others require actions to further construct the

and the credibility of diagnoses. decision. The typology associates appropriate actions
with decision-making situations.

2.4 Conclusions The typology shows how to solve "apples and or-

MUM-manages uncertainty by reasoning about evi- anges" problems and generalizes- this result to provide

dence and-its current state of belief in hypotheses. Its a view of-sophisticated control for -decision-making Al

goal is to generate appropriate-workups for chest and programs-as table lookup.

abdominal pain, that is, to ask the right questions in
the right-order without unnecessary questions. To the Comparing the Incomparable. Decision alterna-

extent it succeeds, it demonstrates its ability to man- tives are compared on their salient features. Often, the

age uncertainty, and to select the appropriate action values-of these features cannot be easily combined. We

given uncertainty. We have said this is a control task. call this the apples and oranges problem: When you

Indeed, much of MUM's architecture is devoted to ex- compare apples and oranges in-a-grocery store you may

plicit, evidence-based control, find one fruit preferred on the basis of flavor and the
other on the-basis of quality. If you can combine the fea-
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tures to compare the alternatives on a single, composite O[F, F,]. One feature is often more important than
feature, then the choice is clear. But-if, as in this case, another. This means that one feature is preferred
flavor and quality cannot be combined, then the choice to another (e.g., quality is preferred to flavor), or
between apples and oranges is problematic. Tradition- thattthere is a greater difference between the two
ally, the apples and oranges problem has been solved by alternatives on one feature than the other.
mapping the values of features such as flavor and qual-
ity onto a uniform utility scale. The approach described 0 if importance(F,) = importance(F)
here keeps the features distinct. The inevitable problem O[F, F ? if relative importance unknown
of conflicting features is solved by constructively adding I if importance(F) > inxportance(F!)
features and preferences to a decision. or importance(F) < importance(F)

Closer inspection shows that the apples and oranges
problem is not one, but a family of decision problems 5[F, Fi. Assuming that OIF,j = 1, we need to
with different solutions. In this paper, we derive the know which feature is preferred.
space of decision problems and show how actions asso-
ciated with difficult decision problems can be taken to [FiF] = 0 or importance(F) < importance(F)

reformulate them as easier ones. 1 if importance(F1) > importance(F1 )

We illustrate these dimensions in the context of the
3.2 Decision Typology problem of selecting fruit: F is quality and Fi is fla-

We begin with a basic decision problem in which two vor. If the quality of apples is "good" and the quality
alternatives are compared on two features, then show of oranges-is "poor," then Sd[F1 ] = 1 because good and
how the typology of two-alternative, two-feature prob- poor are- distinct values. Similarly, if one prefers the
lems guides the construction of more complex decisions. flavor of oranges to that of apples then Sd[F] = 1.
Alternatives are-referred to as p and-q, features as F Since apples have better quality but oranges-taste bet-
and F1 , and values of features for specific alternatives as ter, C[F,Fi = 1. Finally, if quality is preferred to taste
Fip]. The symbol $. indicates preference between two O[F, Fi) = 1 and ,, Fi) = 1.
values. Although we will be using some mathematical The space of types characterized by these dimen-
symbols, none of the values need be numbers; for exam- sions can be arranged in a-table. The problem we just
pIe, we can say flavor(apples) 5 flavor(oranges) without described-is case 23 in this table, illustrated in Figure
quantifying quality. 5. In English, case 23 says "the quality of evidence for

Fip] and F[q] is sufficient to claim that the-difference
Characteristics of a Decision Two-alternative, two- supports-a choice between p and q; the quality of evi-
feature decision problems can be characterized along dence for F1ip] and F)qJ is-sufficient to claim that the
five binary and ternary dimensions: difference supports a choice between p and q;-there is a

conflict -between p and q on F and F, and the feature
Sd[FJ]. A significant difference on feature Fi indicates F is more important than-F."

that the values of the two alternatives are distinct.
If a decision between alternatives p and q can be Collapsing the Table Figure 5 does not represent all
based on the values F, Jp) and F, jq], then the values 40 combinations of the possible values of SdIFJI, Sd[Fi],
are distinct. C[FFiJ, 0Fi, Fi, and 5,F1 ,F;J. From the -perspective

. 1 if Fip] and FR[q -are distinct of how-a decision-maker acts, the 40 decision-types con-
Sd[F] = _ 0 otherwise tain some redundancies. Consider these cases:

Case 18a: S[F1i = 1, SfF] = 0, C[F,FJ 1, F>'F
Otherwise indicates no significant difference or that

we lack evidence to tell whether there is a signifi- Case 18: SIFd = 0, SliF) = 1, ClF,, F/] = 1, _ 5F,
cant difference. In English, the dimension- for which your evidence

Sd[FJi Like Sd[F,], but for F. supports a decision is -the-most important dimension.
The cases are identical in the cnsc that a dccision-

C[F, Fi). A conflict exists when F, and F, support, maker would not act differently in response to them.
different alternatives. Consequently, the two cases are represented only by case

18 in the table.
I if ipJ$FdqJ- and Fj~pJFrjqJ or

C[F,F) = if F1[p;F/lq]-and F1[pIJF1Iq
0 otherwise

-30-



Cue# 0 11213 14 15 711910 11
SdF. 0 11 0 1 1 0 0 io 01 1SdlFf 0 0li o 1 o 0 ~l 0 t
Cl,, o 0 0 1 0 0 1 1 1

1 07 0 000 0 0 1

Fiue:Tyo ogy o ecsonoos

: J&, F i * I I 4 ~

I dla I I sI o o o o t

Figure 5: Typology of Decisions

Decision Actions The point of characterizing deci- transforming case 7 to case 8. But if the evidence, when

sions is to select appropriate actions. In our approach obtained, indicates that F, and F actually support dif-

there are three basic actions: decision, transformation, ferent alternatives, then we end up in case 11 instead of

and stuck. Decision means choosing an alternative based case 8.
on available evidence; for example, in case 8 (Fig. 1) In case 11, we-are stuck: all available evidence about

there are significant differences between the alternatives the features has been acquired, but it supports conflict-
on both features-and their evidence does not conflict. ing alternatives, -and neither feature is preferred. From

The decision is straightforward. case 11, no further transformation is possible, no action

Transformations of one decision type into another is apparent. In-fact, there actions appropriate for the

are appropriate-when a decision cannot- be made iien stuck case, but they expand the decision beyond the

the available evidence. In case 0 (Fig. 1), the values-of two-alternative, two-feature case under discussion. If a
the alternatives on features F and F, do not distinguish decision cannot-be-made on the basis of evidence-about

the alternatives, nor do we know whether one-feature the current features, then the appropriate action is to

is preferred. A decision in this case cannot be made further distinguish the alternatives with additional fea-

with confidence, but several transformations of case 0 tures. Because we view decision making as a construc-

are possible: Tf further evidence about F, potentially tive process in which alternatives and features -merge

snows that the -alternatives can be distinguished-on Fi, only as needed, we imagine a decision-mra ad ' . -fea-

then obtaining the evidence transforms case 0 into case tures only when stuck, that is, in case 11.
1 (i.e., the 0 in row Sd[FJ is replaced by a 1). Obtaining Each of the-24-decision types has at' Ppro-

evidence of this kind- for both features transforms- case priate action. Some suggest two (see J , e are

0 into case 2. From-case 2, one may confidently-make a situations in which a decision can be mz, *,u, with-

decision. Similarly, if evidence exists that F, is preferred out complete confidence. For example, in case 9 there is

to Fj, then obtaining the evidence transforms case-0 into significant evidence for F, but not F, they don't con-

case 20. Alternatively, evidence may show that neither tradict given the available evidence, and neither feature

feature is preferred; obtaining this evidence transforms is preferred. A decision could be based on F,, but not

case 0 into case- 6. The idea of transformations- is to without some uncertainty that F1 actually supports a

change one decision type into another, hopefully -more different alternative than F. Multiple actions permit

facilitative, type. Transformation is an appropriate ac- different strategies-for selecting specific actions. For-ex-

tion for any decision type with 0 in either of its first ample, a conservative strategy that tries to minimize

three rows or ? in-its fourth. uncertainty in-decisions encourages transformations.

The most obvious way to effect a transformation is

to seek more evidence. The table in Figure 5 allows-us-to 3.3 Extensions to a Multifeature Model
plan actions to obtain- evidence, thus it guides the pro-

cess -of constructing-. decision. How-'cvcr, the planncd The deision tdbleb debsribed so far allow conpari-

transformation- may not be possible; the actual transfor- son of two alternatives on two of their features. Some-

mation depends-on-the evidence obtained. For-example, times, as noted above, a decision cannot be based solely

we may gather evidence about F, with the intention of on these features. These situations arise in three ways.
First, evidence such as the preference for features may
be missing. Second, complete evidence may not support

a decision; for example, the values of the alternatives on
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the features may be accurately known, but not signifi- Case 6-- 1 21-3 1 4 5

cantly different to support one alternative. Third, these Sdl 0 1 1 0 1 1 0 0
values may be accurately known, and significantly dif- Sd F- 0 0 1 0 0 1 1 0

ferent, but support different alternatives. In the first q F1, F 0 0 0 1 1 0 0olr,, ,] 7 1 7 7 ? ? 0 0
situation, it is fairly obvious that we should .,-(k the 0 1 Fr, F * ; * . . . .
missing evidence. In the last two, it is necessar ) add >F,, F _ I I
another feature. Psychological evidence suggests that L~ ction.[_/T L_/T LDI T ID TJ /T LtILI
humans in these situations add features and alterna- -... id- T18 -9 12 i3 14-15

tives conservatively, what [Svenson 791 calls "choice by SdFIio 1 0 I 0 1 0 - 1 II
feedback processing." Our model emulates this iterative, i SdP I-1 - 1 1 0 -1 1 I

01lrG l o 0 _ I i o I 0 I o I
constructive behavior. 0 I 00- -

Adding Features Features may be added by substi- l A

tuting one for another or by combining a new feature A DI_

with an old one. In either case, the typology of Fig- - --- __ _ _______ 1 -2_ 3

ure 6 suffices to represent two-alternative, multi-feature Sdgi _ ___ 1 00 0 1 0 1

decisions. In substitution, one of the two features cur- Sd- -0 0 1 1 6- f -

rently under consideration is discarded and a new fea- CjI,, fi  1 1 0 0 1 1

ture is substituted. This is appropriate when we know F 0 0 _. 1 1 1 1

that two -alternatives are not differentiated on an fea- sD-T bT-DT/- T_i-i3J'11
ture (SdIFi] = 0). The feature does not provide a basis
for a choice. It should be replaced by another, more

informative, feature. Figure-6: Decision Actions

The second method for adding-features is combina-
tion: the evidence provided by the new feature is com- Revised Set of Decision Actions With the abil-

billed with evidence accrued from previous comparisons. ity to cluster evidence, we can determine what to do

This is appropriate when the previous features favor dif- even in very difficult decision situations. The initial
ferent alternatives. For example, when we add another set of actions, decision, transformation, and stuck can

feature Fn, to case 11, [1110*,, we hope to move to col- be augmented. The new set is decision, transforma-

umn 19, 1111101, or 23, 1111111. Unlike case 11, cases 19 tion by feature, transformation by order, substitution,

and 23-indicate a preference between features. Assum- and combination. In transformation by feature (T), we

ing that the alternatives are distinguished on Fn,,, (oth- acquire additional evidence about whether a feature dis-

erwise adding it would gain nothing), and assuming that tinguishes alternatives. This can change Sd[Fi1 = 0 to

a combination of two significant-features are preferred Sd[Fj = 1. Transformation by order (To) is-the corre-

to one, , introduces a preference order when com- sponding action- for gathering order preference informa-

bined with the old feature it corroborates, resulting in tion. It can transform OIF,,F] =? to O[F,Fj] = 0 or

case 19 or 23. Thus, the typology-of Figure 6 suffices for OIF,, Fil = 1. If complete knowledge of the alternatives

a two-alternative, three-feature decision and, by induc- is available, but a decision still cannot be made, a state

tion, for two-alternative, muli-feature decisions. Since can be transformed-by adding a new feature, either by

case 11 involves a conflict between features, Few must substitution (Su) or combination (Co).corroborate either F or F,. Thus, new evidence can Figure 7 contains the decision states with- their ap-
clustered to support of two alternatives. This addi- propriate actions. The actions are divided into two
tional support contributes to an ordering over clusters rows. The first row shows the actions-for states with
of features, represented by values in the fourth (order) complete evidence. The second describes actions to be
and fifth -(preference) rows. performed when some of the state information is miss-

Clustering is the key to extending the two-alternative, ing. The transformations are listed with-numbers that

two-feature situations to two-alternative, N-feature cases indicate the set- of possible states you might end up in.

and -finally to N-alternative, N-feature problems, be- Note it is not possible to say exactly which of these

cause-it permits complex decision- situations to be con- states will arise.

structed iteratively within the framework of our decision The actions presented in Figure 7 are somewhat sub-

typology. jective. In general, -combination can be done in any

state. It isn't listed because other actions are often mor
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Case 1 0 1 2 F3 4 5 6 7

S 0o 1 i o 1 I o
0 -F2L -1~ _ _______ I __- ___-_O__

51&1 T T FJ 1 - T
All co SU | Su co Co Sti

Actions Ito D D D DI DD
Part TfO, Tf 1,5,8 f Tt3,4, T2,4 Tf 6, Tf7, 1
Into 1,4 To , To9, 9 To 10, To 11, 7,10 ,11

13,14 16,22 [ 17,18 19,23

0~~I~ 1 1 1 ___-l, I 1 -0O I o I- I

I _ _ 1 0 0_ 1 1 ! 1

>F,, Fl . . . 0 0
All co Sit SU Co co j Su Su _

[ActIonsfo D D j

Info To 15,21 _ 14,17,18 J 17,19 18,19 -

16 17 18 19 20 21 22 23
SdF, 0 1 0 1 0 1 0 -1
SdfjJ -I- - 1 0 10_ ..1
.FC, __ 1 I 0 0 1 1ok .[1 -- - .. . .. ". . J"- i-- 1

• All j o S'u j"Sn ICol Co ICo Co ICo
Actions Into ___I I___ IID HIPart jTf 10,17,1 Tf 17i191 Tf 18,19, Tf - '?T .1

_____ Into 13,14,18 15S 15 14,17,18 ~ __ 14,17,18 __

Figure 7: Revised-Multi-Feature Decision Actions

appropriate; for example, substitution is more appropri- 5. to change an ordering (e.g., ,[F,Fj = 1 but
ate when one feature is insignificant. Decision could be IF, (F,, Fk)] = 0
made in cases other than those listed, but they-would 6. to produce a-change in relative significance when
-be precarious decisions. adding radically divergent features.

Figure 8 shows-all the possible actions and their ef-
3.4 Changes to Decision State rects for a single case in the typology, case 4. In this

Adding a new feature potentially affects every cell in example, there is-enough of a-difference to support a
a decision state, that is, each value-Sd[F1, Sd[l$], C[Fi, decision on F, but-not F1 and-the evidence of the two
FJ, O[F1 , FJ, and .[F,, Fj. In combination with a new featuresi is contradictory. Four actions arezappropriate:
feature, a previously insignificant one may becomes sig- transformation by feature (the 0 value for Sd[1 ] may
nificant (e.g., Sd[FJ = 0 but SdIF~andF,,w] = 1). Less indicate insufficient evidence), transformation by order,
obviously, adding a new feature can make a previously substitution (for F4), and combination. Note that it
significant one insignificant. This happens when the al- is possible to return to the same state, case 4, but by
ternatives differ so enormously on the new feature that different paths. Substituting F -or combining features
any differences on the old one(s) cease to be significant. transforms case 4 to case 5. But note that-when case 5
C(_,, F,] may change-if the new feature produces a con- was reached by combining features, one of them, F or
flict, and O[FI, F,] and [,[F,F) change by clustering F,, actually represents the evidence of two features and
features. Within the framework of our typology, tile so supports a decision more strongly. (This difference
effects of adding a new-feature are: will be-represented explicitly in a more complete state

1. to introduce a conflict where-there was none table).

2. to take a side in a-conflict The Mechanics of Combining Features As men-

3. to join the consensus (CtF,, F,, FkJ - 0) but lend tioned above, combining features may produce major
it legitimacy since-SdIFI = 1 changes in the decision state. However, the set of possi-

4. to introduce an ordering where there was none ble new states can-be enumerated, Figure 9 presents tile(e.g. O[,FJ=0 but O[F1(F;,Fk) = 1) set of possible states that can be reached by combining
a new-feature with-all previous states.
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The first five columns of Figure 9 have the same val- I ik 1 1 0 00110-. 1 0 1 0 1

ues as the rows in-previous tables. Sd[FkI is the signifi- 1 jk I1 1J ?. 00110- 01 10/11 1

cant difference value of the new feature; it is always 1, 1 - - - ? 00 I 0 0/1-? 1

indicating that the new feature discriminates the alter- -A . . - - 1 -1 00111 0 1 1 1
indicatin ii 1 071f ? 1010.iioh01

natives. SdIFcI is-the significant difference of the com- i ik I 1 0 10110 -- 0 1 0 2

bined features; the-values in its column are the features 1 jk 1 i 7 10110-. 11i 0/1? 1

that have been combined along with-their possible val- 1 ik I 1 1 7 10111 - 101 0/1 ? 2

ues. Clall] shows-whether there is a conflict between the 1 jk 1 1 1 10111- 11 1 1 1 1

combined values and the single feature. 5FN,Fi] de- 1 ij 1 0/1 ? 11010/1 - 1 10/10/1 ? 2

1 ikl I 1 0 11110- 1 1 10 2
scribes an order between the combined feature and the I jk 1 1 ? illO-. 1110/1 2

single feature. The column labeled 'Transition' shows 1 ik 1 1 7 . 111 - 111 0/-_ . 2

the possible transitions from that state. Finally, # indi- 1 jk 1 1 i- -1 11111 111 2

cates how many significant features had been combined

to produce the FC¢feature. Figure 9: Transitions upon Combining Features
Figure 9 presents the single step transitions when

adding features to states as represented in the two fea-
ture tables. We are currently working-on a state tran-
sition diagram- that will describe all- the possible tran-
sitions in tile construction of a decision between two
alternatives.
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3.5 Conclusions 4.Classification by SemanticMatch-
We have-presented a model of constructive decision ing

making. We envision a decision-maker starting with a
two-alternative, two-feature problem, then acquiring in- 4.1 Introduction
formation, and perhaps adding features, under the guid- Classification problem solving involves matching data
ance of actions associated with decision types. This with pre-established prototypes (Clancey, 1984). Often
model raises the intriguing possibility-of controlling de- the match is not exact: it may be partial because some
cision making in Al programs by table lookup. Each aspects of the prototype lack matches in the data. This
decision situation is first classified, then modified by paper describes another kind of partial matching and
one of the associated actions. The model is not in- the role it can play in classification problem solving. Se-
tended to produce optimal solutions to complex decision mantic matches hold between concepts that are linked
problems given complete information, but rather to ex- in characteristic ways in a semantic network. We have
plore methodologies for structuring decision problems, found that the degree of fit between data and a pro-
performing symbolic comparisons, and reasoning about totype depends oil these semantic matches. Moreover,
uncertain decisions. the likelihood of a prototype given the data (in the con-

Other systems have viewed decision making as a con- ditional sense) depends on these matches. In another
structive process. GODDESS, a domain independent paper we argued that degrees of belief in classification
decision support system, -constructs a hierarchical goal problem solvers should be interpreted in terms of seman-
representation -of decision alternatives by selectively fo- tic matches (Cohen et al. 1985). We have developed a
cusing the users attention on the most crucial issues program called GRANT that exploits semantic match-
[Pearl 821. Users assign numeric values to probabili- ing to find sources of research funding that are-likely to
ties and importance, and-the program propagates-them support particular research proposals.
through the structure. ARIADNE does not address
-the decision--formulation problem, but rather empha- 42 GRANT

sizes evaluation by using linear programming algorithms
to produce-a dominance -structure for the alternatives' GRANT is a knowledge system that finds sources of
probabilities and utilities and by allowing the iterative funding for research proposals. The user builds a repre-
addition of alternatives ISage 841. sentation-of a research proposal and instructs GRANT

Three facets of the decision typology model are par- to search for funding agencies that are likely to pro-
ticularly appealing. First, two-alternative, two-feature vide support. GRANT first constructs, then ranks, a
decisions can be characterized according to the dimen- candidate list of agencies. An agency is added to the
sions of the decision without requiring an underlying candidate-list if a single topic in its statement-of inter-
scale of comparison. Second, the typology relates ac- ests is a good semantic match to a-topic in the-research
tions to decision types. Finally, the model shows how proposal. Semantic matches exist between topics that
to change difficult decisions into more-tractable ones us- are the endpoints of particular paths through a seman-
ing well defined transformations that-explicitly identify tic network. Agencies on the candidate list are ranked
the possible results of actions. by the number of semantic matches between all the top-

Before the-model is fully realized, we must resolve ics in the proposal and all the topics in each-agency's
two issues. First, the conditions and mechanisms for statement of interests. The best-ranked agencies are
adding new- alternatives must be specified as they were thus those that support the largest number of topics
for new features. We believe that alternatives can be that are semantically- related to-the proposal.
clustered like features, so the two-alternative, two-featurt
typology might serve for multiple alternatives and- fea- 4.2.1 Knowledge Representation
tures. The second issue-is to add continuous values to
the model. The binary/ternary formalism is abstract. rAN epnds o anled ase ( t. ore
-For most situations, this abstraction-is not only accept- search topics and a set of rules for searching it. The
able, but fully indicative of the appropriate actions. latis descr in-thernxt sectio e Kit ae--Hoeve, i -des ot.~exlictlycapuretheeffctsof mantic network of approximately 4500 node with over

extre valudes o .oexpt. y d dcates ahe difetsa800 research topics. Figure 10 shows a fragment ofextrem e values or contex t. S df1 ij in d icates a d isp arityG R N ' k n w e g ab u th h ar , c di v s l r
between alternatives on F, but not its magnitude. The GRn's noled out the a t, ar
difference in degree of differentiation between -alterna- illness, and related topics. Nodes in the network are
tives on features is captured in the O[Fi,Fj dimension, defined in terms of their relationships with others; for
which may favor the feature that produces a great dis- example, the heart is something with th e purpose of
parity. This, in turn, implies that O[Fi,FJ is not inde- circulation, the settingof cardiovascular illness, and an
pendent of alternatives.
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(vphl yst~mm gfca c"W A.~ o~ct ,

Study 1609Figure 10:

example-of an organ 3. Appendix 1 lists the most corn- agencies and proposals have the same-slOts, illustrated
mon relations between topics in-thle GRANT KB. in Figure 11.

Cardiovscular S archtrlgoihThe GR NT KB ac S etudy inde tof fund- ti

as necessary to define the research interests of agen-
cies. An agency is represented- as a frame with slots GRANT finds agencies to fund a~research proposal
for stated research interests, average award size, citi- by finding paths between the nodes-that represent the
zenship~restrictions, geographic preferences, and so-on, proposal's research interests and nodes associated with
The research-interest slot holds pointers to instances agencies. A--blind search of the network in Figure 10
of one-or more activities that are lin~ked with topics in would begin, say, at the node stud y-527-and extend to
the-KB. GRANT recognizes 10 activities: its associated node cardiovascular system, then to the

associations of this node physiological-system, vascular-Design Educate Improve Intervene Manag. system, heart, study-609 and so on, like ripples in aPlan Promote Protect Study Train pond. If a node is found that represents a research in-

terest of an agency, then a path has been established be-For~example, the agency associated with study.689 tween the proposal and that agency. The GRANT KB
in Figure 10 is interested in funding studies of ardio, includes so many agencies and is so -highly connected
vascular- illness and the heart. GRANT's KB currently that, on average, blind search flnds-245 agencies within
includes the 690 agencies that together provide most of 4 links of any-proposal. But according-to our expert, on
the research monies at the University of Massachusetts. average 93.1% of these agencies are unlikely to fund the

When GRANT's user creates a research proposal, proposal. For GRANT to be useful, this false-positive
it is linked into the KB through its research interests rate must be reduced. One method is-to avoid finding
just as funding agencies are. The frames that represent unlikely agencies, and the other is-toediscard them once

they are found. These methods are discussed in turn.

zAnd thus, by a plausible inference, a componen.of the body.
See Section- 5.
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The nature of the relationship, represented by a path

The ABC Foundation i- interested in provid- endorsement, determines the likelihood that the agency

ing both grants and direct loans in order to will fund the proposal. For example, when an agency

help promote sexual education and to help says it-funds research on vascular disease, it means that

control sexually transmitted diseases. Funds it funds research on many or all kinds of vascular dis-

are available for the management and main- ease, including hypertension. This argument holds for

tenance of clinics ... agencies and topics in general: if agencies say they fund
X, they are likely to fund instances of X. By this rea-

Funding-source*4: soning, if we begin a search at a proposal and follow a
is-a : funding-source (object, isa, object-inverse) path to an agency, then the
title : "ABC Foundation" agency is likely to fund the proposal. Any path that
descr : "... promote sexual is an instance of the (object, isa, object-inverse) path

education and to help ..." endorsement is apt to find a likely agency.
topic : manage*4 Just as path endorsements mark likely paths to agen-

cies, so they mark paths to be avoided. The third path
Manage*4: in Figure 12 is an example. The research topic of the

is-a : manage proposal is anorezia and that of the agency is bulimia.
topic-of : funding-source*4 Now bulimia is an instance of an eating-disorder and
object : clinic when an agency says it will fund the study of an instance
subject : sexually-transmitted-disease of X it usually means that it will not fund the study of
focus gonorrhea hrpes other instances of X. This agency is unlikely to fund

venereal-disease contraceptive the study of other eating disorders such as anorexia. In
purpose: control educate general, if a path between a proposal and an agency is

an instance of the path endorsement (object, isa, isa-

Figure 11: The ABC Foundation- is -represented by the inverze, object-inversc), then the agency is unlikely to
fre FNTeA SOURCE*4 and MANAGE *4 fund the proposal and the path should be avoided.
frames FUNDING-SPath endorsements thus constrain the search for agen-

cies in GRANT. Appendix 2 lists some of GRANT's
path endorsements. The complete set of path endorse-
ments is still only a fraction of the combinatorially pos-

Best-first Search. One can avoid finding unlikely sible path endorsements. Any path that has not been
agencies by pruning the paths that lead to them during classified as likely or unlikely is denoted unknown. Best-
search. Figure 12 shows three kinds of paths. The first is first search in GRANT proceeds as follows:
an atomic match between the proposal and the agency: Assume the program starts at a proposal
the object of the proposed study-418 is vascular-disease, ass lhe pg t t a proposal

which is also the objectof study-297, a research interest and follows link I to node n: nlin). If
of the agency. With few exceptions an atomic match a continuation of this path along link rm to
indicates that the agency is likely to fund the proposal. node nA results in a path endorsement (i,l )

Since the links in GRANT are directional, and searche. that GRANT recognizes as poor, then n is
proceed from proposals to agencies, the path between pruned from the list of nodes that GRANT
the proposal and NHLBI is tries to expand. If (l,l) is a good path en-

418obevda i s obea-,nver dorsement, then GRANT will give n1 prior-
stud-418 vascular-disease study- ity to be expanded before any node nk found297 b nukonpt llln) erhfo

A path endorsement is a generalization of a set of by an unknown path (linilknk). Search from

paths, obtained by dropping intermediate nodes and any path longer than 4 links is terminated.

preserving only the relations. The path above is thus Ranking Agencies by Partial Matching. The re-
an instance of a general- (object, object-inverse)path en- suit of best-first search is a candidate list of agencies.
dorsement.Each is known to have a single research interest that

The second path in Figure 12 is a semantic match ac is know ntae atngl e research inter
between a proposal and an agency. The proposal wants atoic all or tl matene rach ir-to sudyhyprtesio. Weres a atmicmath, ep- est of thle proposal. To the extent that the proposalto study hypertension. Whereas an atomic match, rep- and an agency share several common research interests,

resented by a path endorsement like-(object, object-inverse), the agency is more likely tomfund the proposal. Thus,
guarantees that proposal and agency have a common GRANT ranks the candidatelist of agencies by the de-
interest, a semantic match ensures only that the inter- grAN raks the d e list of the
ests of the proposal and agency are somehow related. gree of overlap between the research interests of the

proposal and each agency. This is done by a partial
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matching function based on both atomic and semantic Figure 12:
matching. Itayes-Roth (1978), Tversky (1977), and oth-
ers measure the degree of overlap between sets in terms Paths Between Proposals and Agencies

of set intersection and symmetric difference; for exam-
ple, Tversky's contrast model (1977) calculates overlap .

this way:

S(a,b) = Of(it n B) - of(A - B) - Of(B - A).

The function f returns the cardinality of the set to °Proosal _ ,
which it is applied. If A and B are frames, then f(A
n B) is the number of slot-value pairs shared by A and
B, and f(A - B) is the number of slot-value pairs in

A not shared by B. The parameters 0, a, and P3 are

set empiritally; in GRANT each is 1.0. If A and B are (Propos Ag
frames representing the research interests of a proposal s
and an agency, respectively, then S(a,b) measures the
number of research topics they have in common relative
to those they do not share. Agencies for which S(a,b)
is higher are more likely to fund the proposal.

In GRANT, (A n B) -includes both atomic and se-
mantic matches. If a path between A and-B contains
a single node (e.g., the first case in Fig. 12), or if the We average these statistics over the searches from
path is an instance of a likely path endorsement (e.g., the individual proposals in a sample.
the second case in Fig. 3), then f(A n -B) is incre- When we first tested GRANT (Cohen et al., 1985)

meited. Unlikely path endorsements, such as the third its knowledge base contained approximately 700 nodes
case in Figure 12, and unknown paths do not contribute and 50 agencies. We contrasted blind and best-first
to f(A n B). The quantities f(A - B) and f(B - A) search as follows: for each of 23 proposals the system
are increased when research topics in the -proposal lack searched blindly for agencies until it reached a prede-
an -atomic or semantic -match to the agency, and vice termined stopping -criterion. On average, blind search
versa, found 15.1 agencies per proposal. We gave our expert

In summary, GRANT searches for agencies in two the list of agencies found for each proposal by blind
stages. First it constructs a candidate list of agencies search and asked-him to rank each-agency as likely or
by best-first search in a semantic network of research unlikely to fund-the proposal. On average, only 2 agen-
topics, then it ranks the agencies on the list by their cies per proposal were considered likely; that is, the

degree of overlap with the research proposal. false-positive rate- for blind search was (15.1 - 2)/15.1 =
86%. In contrast, best-first or path endorsement con-

4.3 Analysis of GRANT Performance strained search found on average just 2.78 agencies per
proposal, of which 1.48 were judged likely to fund the

GRANT's performance has been tested at all stages proposal. The false-positive rate was 32%, a big im-
of -its development. The basic method -s to run sam- provement over blind search. The downside was a hit

pies-of proposals and compare the ager cies selected by rate of 80%, indicating that GRANT had pruned away
GRANT with the choices-of our expert. Sample sizes one likely agency-in five. We have tested all subsequent
have ranged between 20 and 30 proposals. We compute versions of GRANT this same way, using blind search
many statistics for each search from a proposal, but two to find candidate agencies and an expert to rank them,
are -broad indicators of GRANT's performance:

hit-rate
agencies judged good by GRANT and by the expert
agencies judged good- by the expert

false-positive rate =
agencies judged good by GRANT and bad by the expert
number of agencies judged good by GRANT
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then comparing best-first search with the expert's-rank- -Why did the increase from Spring, 1985 to Fall, 1985
ings. Table 1 shows best-first search statistics for sev- not decrease GRANT's performance, while the latter

eral versions of GRANT. Blind search statistics are not one did? Many factors are involved. First, the density
represented; in all tests blind search had a false posi- ot agencies is increasing. In the early version, 700 nodes

tive rate greater than 80%, and as the knowledge base supported 50 agencies - a ratio of 14:1. In Fall, 1985,
'ncrcased in size this figure increased dramatically. the ratio was 10:1. The most recent knowledge base has

a ratio of 6.4:1. It is much easier to find many agencies
Grant, Spring 85 (700 nodes, 50 agencies) close to a proposal in GRANT's semantic net than it was

Itit Rate 80% in the past. Indeed, we have evidence to suggest that
False Positive Rate 32% as the density of the knowledge base increases, the hit

rate goes up and'the false positive rate down: An inter-
mediate version of the Winter, 1986 knowledge base in-

Grant, Fall 85 (2,000 nodes, 200 agencies) eluded approximately 600 orphans, nodes used to define
Hit Rate 80% another node but. disconnected from all other nodes. In
False Positive Rate 2C% this version, the density of nodes per agency was 5.8:1.
Contrast Model There were too many agencies and too few associative

Hit Rate 76% paths to differentiate good agencies from bad ones.
I5alse Positive Ktate =10 A second contributor to the high false positive rate

in the Winter, 1986 version is the kinds of agencies being
represented. Roughly 200 of the new agencies were for

Grant, Winter 86 (4,500 nodes, 700 agencies) the arts and humanities. Their descriptions of research
Hit Rate 98% interests were fairly broad and -gave little basis for dif-
False Positive Rate 61% ferentiation. Consequently, when- GRANT searches in
Contrast Model that part of the-knowledge base, its false positive rate

111: IHit Rate 96.1% increases dramatically. A related problem is that in
111: False Positive Rate 57% the most recent version of GRANT, new agencies were

not represented- in as much detail as old ones. Neces-
Grant, Winter 86-(4,500 nodes, 700 agencies) sarily, this meant viable distinctions between -agencies

Modified -Path Endorsements were lost.
Hit Rate 96.3% The relations we use to represent agencies have not
False Positive Rate 55.8% changed appreciably since the early version of GRANT,
Contrast but the number of things they are required to repre-

111: Hit Rate 96.4% sent is greatly increased. Combined with the fact that
111: False Positive Rate 53..4% GRANT was developed to represent "hard science" top-

'Table I. ics and now includes arts, humanities, and social sci-
ences, this suggests that the relations must be aug-

The differences between GRANT today and the ver- mented and perhaps reworked. This also requires re-
sion we tested in Spring, 1985 are its size and the in- working the set of path endorsements. In fact, an-exper-
corporation of Tversky's contrast model for summing imental set of-path endorsements-gave somewhat-better
the total degree of overlap between proposals and-agen- performance for the Winter, 1986 version. The-hit rate
cies. The false positive rate of the early version, 32%, remained very high but the false positive rate dropped
decreased during the subsequent months as the knowl- to-55.8%.
edge base increased to 2000 nodes with 200 agencies. At The partial matching algorithm, based on Tversky's
that -time we introduced the contrast model, described contrast model,-was not as effective as we had hoped in
above, and realized a further small decrease in the false pruning agencies based on the total degree of overlap be-
positive rate, which was offset by a decrease in the hit tween proposals and agencies. In general, the-false pos-
rate. In the last two months we have again more than itive rate can be reduced but not without a correspond-
doubled the size of the knowledge-base and more than ing reduction in the hit rate. The algorithm contributes
tripled the number of agencies from the Fall, 1985-level, little because in- most cases, a proposal shares only one
Z Ib Ieuit, performance has decreased substantially, research topic with an agency. Since this overlap-is usu-
The hit rate of best-first search is 98%, but the false ally found by semantic matching, best-first search will
positive rate is 61%: the system finds virtually all the continue to be the heart of GRANT's problem-solving
agencies it should, but nearly two-thirds of the agencies method, and path endorsements will receive more atten-
it-finds-are not likely-to fund the-proposal. tion than tuning the partial matching algorithm. The

next section describes an algorithm for learning path
endorsements.
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4.4 In Prospect: Learning Path En- 4 Appendix 1

dorsements Relations for funding agencies:

The likelihood that an agency will fund a proposal 1. The TITLE slot should contain a text string with full

depends on the path endorsement that characterizes title that will include the Parent Agency, Department,

the semantic match between them. Path endorsements and Program Name.

as discussed above either support the proposition that 2. The UNIQUE-ID slot should contain a text string that

the agency will fund the proposal, or detract from it, is the unique number assigned by the Catalogue of Fed-

or their support for the proposition is unknown. In eral Domestic Assistance (CFDA).

practice, GRANT's path endorsements are empirically 3. The FUNDING-TYPE slot should contain the type of

ranked into six classes: very likely, likely, maybe, un- funding that is available, e.g., project.grant, large-grant,
known, and trash. Detracting path endorsements be- small-grant, direct-lon, fellowship, or scholarship.

long to the class trash. The class very likely is reserved

for atomic matches. Thus, semantic matches that sup- I. The CONTACT slot should contain the name, address,

port the proposition that an agency will fund the pro- and phone number of the person to contact for more

posal are differentiated only by the classes likely and information and applications.

maybe. 5. The DEADLINES slot should contain the application

We have developed an algorithm to assign a contin- and renewal deadlines for the program.
uous weight to path endorsements, based on whether

they find likely agencies or false positives. The algo- 6. The DESCRIPTION slot should contain the abstract

rithm-learns from examples presented by a human tu- that is provided by-the agency and describes their in-
tor. Each example is a pair-of nodes for which the tutor
expects GRANT to find a-semantic match. The algo- 7. The TOPIC slot should contain one or more instances

rithm generates a set of paths between these nodes from of the STUDY, MANAGE, EDUCATE, or ENGINEER

GRANT's knowledge base, and adjusts the weight of frames.

each path to favor short -paths over long ones. After 8. The PURPOSE slot-is optional for the top-level of a

many- iterations, short paths that are commonly found funding-source frame since it might be present in one

between training examples have high weights,- relative of the values for-the TOPIC slot.

to other paths. Relations for defining research interests:

The algorithm has been tested on small samples

of examples and it has not yet been integrated with 1. The OBJECT slot contain the person, place, process,

GRANT. In prospect, however, its principle advantage or thing that is being studied.
is that it learns the empirical worth of path endorse-ments, in contrast to our-a priori efforts ocaerze2. The SUBJECT slot contain the particular-filed of study

tto-categorize that is to be applied to the object.
path- endorsements as-likely or maybe. Kjeldsen (1986)
describes the algorithm in-detail. 3. The Focus slot should contain the particular aspect

Two other extensions -to GRANT should be men- of the subject that-is being considered.

tioned. First, we have developed an "empty" version 4. The Dv slot should contain the object that is being

and will be experimenting- with semantic matching in studied.
other domains. Second, we are generalizing the infer-

ence rule that underlies GRANT - "if an agency is in- 5. The Iv slot should-contain the variables that whose

terested-in X then they will-be interested in Y = R(X)" effect upon the dependent variable are being studied.

to a logic for plausible inference in associative-knowl- 6. The RV slot should contain one or more variables that

edge-bases. This project is discussed in the next section. are being studied.

7. The PURPOSE slot should zontain the overall goal of

the funding source.

8. The W!!O-FOP.=slotshould contain-an inotanee of a

social-group that will benefit from the -proposed re-

search and funding.

9. The SETTING slot-should contain the place in which

the object will be-studied.
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10. The LOCATION slot should contain a geographical place * The class MAYBE has 18 path endorsements. These
to which fundingis restricted, represent semantic matches between a proposal and

funding agencies that are somewhat less-likely to fundRelations for organizing knowledge in GRANT's-knowledge the research, for example:
base:

1. The CAUSES slot should contain a concept that has a - X-. focus- Y-. subject-of-. Z--. subject-of-
causal association with the node. SUCCESS-NODE

- X- object- Y- focus-of--+ Z-# subject-of-. SUCCESS-2. The EFFECTS slot is used to represent relationships NODE
that are not necessarily causal but nonetheless present. - X- object-+ Y--o object-of- Z- focus-of-+ SUCCESS-

3. The HAS-COMPONENTslotshould contain those things NODE
that make up the node. For example, one could say
that a earthquake has-component shock-wave. * The class UNKNOWN accepts any path less than 6 links

long
4. The H S-MECHANISM slot is used to represent those

processes that a concept might have. For example a * The class of UNUSABLE paths prunes GRANT's search.
seismology has-mechanism seismometer. Among these paths are any that contain a node with

an extremely high branching factor (e.g., science, ed-
5. The HAS-PURPOSE slot is used to hold an instance of ucation). Specific pathways of the kind listed above

an action. For example, a seismometer has-purpose include
measure, with the object of the measure being shock-
wave. - STEP*- isa-, example-. Y

- STEP*-. subfield-of-. has-subfield-. Y
4.6 Appendix 2 - NOT(new-investigator)-. STEP*- new-investigator

Path Endorsements for the Knowledge Base in - NOT(minority-student)--. STEP*- minority-student
the rule set that is used in -abottom-up data driven search - X--. object-. Y--+ subject-of- Z- focus-of-. SUCCESS-
from proposal to funding source. Many of these- traversal NODE
rules are effectively used to prune the number of potential - X- rv-+ Y-. dy-of- SUCCESS-NODE
nodes to-expand. A SUCCESS-NODE is any node that can
be found-as a value for wither the TOPIC or PURPOSE slot - X--* subject--. Y-. isa- Z-* do-of- SUCCESS-
of a funding-source. NODE

" The class SELF has 1 traversal rule

- Self- basically an identity rule for paths of length
0 5. Plausible Inference

" The class VERY-LIKELY includes 7 path endorsements,
all atomic matches. For example, This research is concerned with the formal underpin-

nings of common sense plausible inference, the ability
- subject-. Y-. subject-of-.* SUCCESS-NODE to give plausible answers to arbitrary questions from

X- focus-- Y- focus-of-. SUCCESS-NODE a very large knowledge base of associated statements.
" The class LIKELY has over 50 path endorsements rep- The goal is to find one or more answers to a question

resenting semantic matches between a proposal and all by consulting -the knowledge base, and to say which of
agency that is likely to-fund it. For example, the answers are most credible. This has been a goal of

Al since its earliest days (McCarthy, 1958, 1968), and- X-. subject- Y--isa- Z- subject-of-, SUCCESS- is now seeing a resurgence (Collins, 1978a,b; Lenat et
NODE al, 1986). The motivation for such-work comes from the

- X--+ subject-. Y--* component-of-. -Z-, focus- increasing realization that powerful Al programs will
of-. SUCCESS-NODE depend on very large knowledge bases. It will be neces-

- X- done-by-. Y- does-. object-of--SUCCESS- sary for the system to use the knowledge base to answer
NODE questions that were not anticipated at the time of its

construction. To handle both the broad ranging nature
of possible queries, and to make use of large amounts
of knowledge in an efficient manner,-it is expected that
the use of heuristics, or plausible inference rules, as well
as traditional truth-preserving ones, will be necessary.
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Our research is directed by these concerns, as well as by fuzzy logics introduce numeric arguments. Nonnono-
a desire to bring-a formalism to plausible reasoning sim- tonic logics go further and reploce the notion of truth
ilar to that enjoyed by deductive logic, so that systems with one of support. Nonmonotonic formulations differ;
using plausible reasoning need not have their semantics in McDermott and Doyle's version, the notion of truth
established on a case-by-case, ad hoc basis. is generalized to support and falsity to lack of support

The most important question to be answercd about (McDermott and Doyle, 1980).
plausible inference is how to judge its credibility. Since Although uncertain statements are neither true nor
plausible inference need not be truth-preserving, some false one can say a great deal more about them. Exten-
other semantic property besides truth must be the basis sions to logic, however, say little. With the possible ex-
of judgments of credibility. We propose to develop a ception of nonmonotonic logic and dependency-directed
semantics for common sense plausible inference based backtracking, none of the extensions to logic enable-us
on the associations that hold between the antecedents to say why we are uncertain and what we might do
and consequents of inferences. Our approach is strongly about it (de Kleer, et al, 1977). Sh' -., we will dis-
motivated by evidence-based control: the credibility of cuss an alternative approach, but fi' it w. must address
a statement is represented by reasons why it may be another common paradigm in Al for plausible inference
false, reasons that can be used to control backtracking and explain why we are avoiding it.
and retraction of plausible but false inferences. Much of the Al community favors probabilistic rep-

Plausible inferences, unlike deductive inferences, need resentations of uncertainty. We believe that, with one
not be truth-preserving. The distinction is clear in a exception, the semantics of these representations are
contrast between two rules of inference, modus ponens opaque. The exception is when the probabilities -are
and abduction: relative frequencies, combined by Bayes' theorem. This

Modus ponens is truth-preserving: if A -- B and A case is akin to deductive inference in that a semantic
are true, B cannot be false. Abduction is a rule of plau- property (relative -frequency) is guaranteed to be pre-
sible inference because A is a plausible conclusion given served by a rule of inference (Bayes' theorem). Just
A -+ B and B, but this conclusion is not guaranteed to as we associated credibility with truth in deductive in-
be true, as the conclusion B is in modus ponens. ference, we can associate it with relative frequercy in

Since rules of plausible inference do not make-guar- probabilistic inference. In both cases, we can guarantee
antees about the truth values of their conclusions, how that the credibility-of a conclusion can be unambigu-
are we to assess the credibility of conclusions of plausible ously determined. Unfortunately, the numbers used in
inference? In the deductive case we associate credibil- knowledge systems are not relative -frequencies. Until
ity with the semantic property truth: true statements we know what they represent, we cannot know whether
are credible, false statements are not. What semantic their intent or meaning is preserved by the functions
property of conclusions derived by plausible inference that are used to combine them. The-plethora of com-
will be associated with credibility? We could use truth, bining functions discussed in the Al-literature suggests
since some conclusions of plausible inference have truth that no common interpretation of-degrees of belief is
values. The problem is that rules-of plausible inference available (Duda and Hart, 1976; Pearl, 1982; Shafer,
make no guarantees about these truth values, as rules of 1976).
deductive inference do. So the question remains: What So we are led back to the question, if truth or relative
properties of conclusions are preserved by rules of plau- frequency are not-the basis of credibility when reasoning
Qble inference and are the basis-for judgments of credi- under uncertainty, what is? What properties of state-
bility? ments determine their credibility, and can we guarantee

Truth is not the semantic property we seek to pre- that these properties are preserved by inference rules?
serve in plausible inference. This is because of our abid- In Section 4 we saw that the credibility of inferences
ing interest in uncertainty, the state of not knowing depends on the semantic associations on which they are
whether a proposition is true or- false. Many attempts based. For example, if a researcher is interested in VLSI
have been made to modify deductive logic to repre- layout, and a funding agency is interested in electronics,
sent uncertainty, including modal logics, 3-valued log- the fit between them is good and the agency is apt- to
ics, nonmonotonic logics, fuzzy -logics, and probabilistic fund the proposal. The semantic association between
log-ic (Turner, !984; Zadeh, 1975; Nilsson, 1984) -Some electronics and VLSI is "has-subfield," and it is the ba-
of these approaches "sequester" uncertainty by intro- sis of this plausible inference:
ducing a new argument that represents the uncertainty
but is itself true or false. Modal logics do-this. Other interested-in(agency, electronics)
approaches augment the values true-and false; for exam- has-subfield (electronics, VLSI)
pIe, three-valued logics add the value "unknown," and interested-in(agency, VLSI)
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In brief, degree of fit between two objects, X and Y, where R is any relation. For example, isa(colliedog)
was defined to mean that some rule of plausible infer- and part-of(dog,fur) implies part-of(collie,fur). The ap-
ence could be invoked to conclade interested-in(agency, proach we propose here allows us to infer the answers
Y) given interested-in(agency, X). to questions based on semantic associations other than

Tize GRANT system (Section 4) sets the stage for isa. Thus, the approach unifies several kinds of plau-
the current research. It is the first step toward a com- sible inference, including causal inference (Weiss et al,
mon sense plausible inference system as defined above 19-77).
- a program that answers arbi'rary questions from a. The model of plausible inference is not complete,
large, associative knowledge base. But GRANT does however, since it lacks statements about the-credibility
not. in-fact, answer arbitrary questions. It answers the of inferences drawn by plausible inference rules. Obvi-
single question, "If a funding agency is interested in X, ously, we do not intend- to include rules that draw er-
will it be interested in Y?" It can be generalized to a roneous conclusions, but-credibility is not guaranteed,
common sense plausible inference system as follows: as it is in logic, by plausible inference. We discussed

how our rules implement a notion of credibility based1. Assume that all questions are about properties on degree of fit, but this still does not guarantee credi-
of objects; for example, "Does Fido have fur," bility. We know of two general approaches to this prob-
or "Is coughing caused-by bronchitis." Abbreviate lem. One is to attach to each conclusion a set of condi-
such questions R(i,0 2)?; for example, caused- tions that, if met, would increase its credibility. Collins,
by(coughingbronchitis)?. who developed this idea, calls these certainty conditions

2. The answer to R(O1,O2)? is yes if the knowledge (Collins, 1978b). The other is to attach a-set of con-
base contains O and 02 connected by R. The an- ditions that, if met, would decrease credibility. We
swer is plausible if there is a rule of plausible in- have called these negative endorsements (Cohen, 1984).
ference of the form From the standpoint of control, certainty conditions can

Q(03,02)? guide a system to increase its belief and negative en-
R(O3,0) dorsements can help a system recover from errorful con-
R(Os,0) clusions by pointing to reasons a conclusion might be

wrong. Obviously, both-are required for evidence-based

and Q(O3, 02)? is plausible. For example, imagine-ask- control.
ing a system, "Are gin-and-tonics intoxicating?" or, has- Given a set of rules of plausible inference, with rea-
effect(gin-and-tonic, intoxication)? Assume that the ob- sons-to believe and disbelieve their conclusions, we can
jects gin-and-tonic and intoxication are not linked by engage in a range of common sense plausible inference
has-effect-in the knowledge-base. The question can be tasks. Our proposed work thus involves several-stages:
answered, however, by plausible inference using the rule

9 Develop common sense -plausible inference rules.
has-component(x,y)? These are based on-semantic associations, so clearly

has-effect(y,z) we need a set of associations at the outset. We be-
has-effect(x,z) gan with the associations in GRANT's -knowledge

base. Next, we generated all combinations of as-
and the-knowledge that gin-and-tonics contain alcohol sociations of the form
and alcohol is intoxicating:

has-component(gin-and-tonic,alcohol)? AI (x,y)

has-effect(alcohol,intoxication) A2(yz)

has-effect(gin-and-tonic,intoxication) A (x,z)

Property inheritance in frame systems is a-special These can be filtered by case-semantic -consider-
case of this kind of inference. The rule for property ations: y must be a particular kind of object to
inheritance is fill the A, case of x, and z is also restricted by its

isa(X,Y) relation to y. In-many cases, though, z- will not

R(YZ) fill the A, case of x, and so a potential rule can
R(X,Z) be filtered out. Even with this filtering,-GRANT'sassociations generated about 600 rules of plausible

inference.
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ABSTRACT

This paper summarizes our research efforts in the area of
Reasoning with Incomplete and Uncertain Information, and
is organized into three parts covering reasoning with uncer-
tainty, reasoning by analogy, and reasoning with incom- which is based on a multi-staged decomposition; the
pleteness. Part I, entitled Uncertainty Calculi: How Many, knowledge representation scheme which uses a hierarchy of
When, and-Why?, is a collection of two-papers describing the models that are ordered by complexity; the search strategy
evolution of an architecture lor reasoning with uncertainty, for dynamically creating a domain model for the current
The first paper of this collection, entitled Selecting Uncer- goal, and the global control method for forming an analogy.
tainty Calculi and Granularity; An ExpIermnt in Trading-off The supporting model paradigm is then described in detail
Precision and Complexity, describes the experiments that led and a few preliminary results are noted.
to the derivation of equivalence classes among the Part III, entitled Theories of Non-Monotonic Reasoning and
(apparently) different uncertainty calculi as a function of the Reason Maintenance, is a-collection of two papers describing
input granularity. The second paper, entitled Summarizing the evolution of the theory-and the algorithm for reasoning
and Propagating Uncertain Information with Triangular Norms, with incomplete information. The first paper of this-collec-
describes an architecture for reasoning with uncertainty, tion, entitled Modal Propositional Semantics for ReasoniMainte-
which is organized in three layers: representation, inference, nance Systems, defines a propositional dynamic logic of
and control. The representation layer describes the struc- derivation (PDLD). PDLD-is a specification logic in-which
ture required to capture information- used in the inference to express declarative control. This is achieved by-character-
layer and meta-information used in the control layer. The izing the mental states of a reasoning agent attempting to
inference layer defines uncertainty calculi based on Triangu- reason with respect to some logic theory. The second
lar norms (T-norms), intersection operators whose truth paper, entitled Reason Maintenance from a bitice-Theoretic
functionality entails low computational complexity. The con- Point of View, provides a mathematical framework (lattice) in
trol layer specifies the policy selection~for the different cal- which assumption-based justifications (ATMS) and non-
culi used in the inference layer, based on their meanings, monotonic justifications can be directly and transparently
properties, and contextual information. Conflicts and described. From this formulation it is possible to derive
ignorance measurements are also proposed. algorithms that support efficient revision of beliefs, as a rea-

soning agent changes-its assumptions andlor its constraints
on beliefs.

This work was partially supported by the Defense Advanced
Research Projects Agency (DARPA) contract F30602-85-C-0033.
Views and conclusions contained in this paper are those of the
authors and should not be interpreted as reprewenting the
official opinion or policy of DARPA or-the-U.S. Government.
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SELECTING UNCERTAINTY CALCULI AND GRANULARITY:

AN EXPERIMENT IN TRADING-OFF PRECISION AND COMPLEXITY

Piero P. Bonissone and K.S. Decker

ABSTRACT output produced by these systems is the result of laborious

The management of uncertainty in expert systems has computations, guided by well-defined calculi, and appears to
usually been left to ad hoc representations and rules of corn- be equally precise. However, given the difficulty in con-

binations lacking either a sound theory or clear semantics. sistently eliciting such numerical values from the user, it is
The objective of this paper is to establish a theoretical basis clear that these models of uncertainty require- an unrealistic

for defining the syntax and semantics-of a small subset of level of precision that does not actually represent a real

calculi of uncertainty operating on a given term set of assessment of the uncertainty.

linguistic statements of likelihood. Each calculus is defined Models based on symbolic representations, on the other
by specifying a negation, a conjunction and a disjunction hand, are mostly designed to handle the aspect of uncer-
operator. Families ot Triangular norms and conorms consti- tainty derived trom the inmompltecne.s of the information.
tute the most general representations of conjunction and However, they are generally inadequate to handle the case
disjunction operators. These families provide us with a for- e1 mipreczse intormation, since they lack any measure to
malism for defining an-infinite number of different calculi of quantify confidence levels.
uncertainty. The term-set will define the uncertainty granu- The objective of this paper is to examine the various cal-
larity, i.e. the finest level of distinction among different culi of uncertainty and to define a rationae for their selec-
quantifications of uncertainty. This granularity will limit thle tion. The number of calculi to be considered will be a func-
ability to differentiate between two similar operators.
Therefore, only a small finite subset of the infinite number tion of the uncertainty granularity, i.e., the finest level of
of calculi will produce- notably different results. This result distinction among different quantifications of uncertainty

is illustrated by two experiments where nine and eleven dif- that adequately represent the user's discriminating percep-

ferent- calculi of uncertainty are used with three term sets tion. To accomplish this objective we will establish the

containing five, nine, and thirteen elements, respectively, theoretical framework for defining the syntax of a small sub-

Finally, the use of context dependent rule set is proposed-to set of calculi of uncertainty operating on a-given term set of

select the most appropriate calculus for-any given situation. linguistic statements of likelihood.

Such a rule set will be relatively small since it must only In Section 2 of this paper, the negation, conjunction, and
describe the selection policies for a small- number of calculi disjunction operators that-form the various calculi of uncer-
(resulting from the analyzed trade-off between complexity tainty are-described in terms of their most generic represen-
and precision). tation: families of functions (Triangular norms and conorms)

INTRODUCI ION satisfying the basic axioms expected of set- operations such

The aggregation of uncertain information (facts) is a as intersection and union.

recurrent need in the reasoning process of an expert system. In Section 3, linguistic variables defined on the [0,11
Facts must be aggregated to determine the degree to which inter\,al are interpreted 1,- verbal probabilities and their
the premise of a given-rule has been satisfied, to verify the semantics are represented-by fuzzy numbers. The term set
extent to which external constraints have -been met, to pro- of linguistic variables defines the granularity of the confi-
pagate the amount of uncertainty through the triggering of a dence assessment values that can be consistently expressed
given rule, to summarize the findings provided by various by users or experts. A nine element term-set is given as an
rules or knowledge sources or experts, to detect possible example.
inconsistencies among the various sources, and to rank dif- Section 4 describes two experiments, consisting of
ferent alternatives or different goals. evaluating nine and eleven different T-norms with the ele-

In a recent survey of reasoning with uncertainty 11-31, it ments of three different term sets containing five, nine, and

is noted that the presence of uncertainty in reasoning sys- thirteen elements, respectively. A review of the techniques

tems is due to a variety of sources: the reliabhty of the infor- required -to implement the experiment is also provided. The

mation, the inherent unprecision of- the representation review covers the implementation of the extension principle

language in which the inlormation is conveyed, the (a formalism that enables crisply defined functions to be

incoinpleteness of the information, and the aggregation or evaluated with fuzzy-valued arguments) and describes

summarization of information from multiple sources linguistic approximation (a process required to map the
result of the aggregation of two elements of the term set

The existing approaches surveyed in that study are back into-the term set).
divided into two classes: numerical and symbolic represen- Section 5 shows the results of computing the closures of
tations. The numerical -approaches generally tend to impose Sectn op s on commo tempt. a lss of

someresricionsupo th tye an stuctre o th iner- selected operators on common term sets. An analysis of the
some restrictions upon the type and structure of the -infor- results of these experiments shows the equivalence of some
mation, e.g. mutual exclusiveness of hypotheses, condi- calculi of-uncertainty that produce indistinguishable results
tional independence of evidence, etc. These approaches within the granularity of a-given term set. Possible interpre-
represent uncertainty as a precise quantity (scalar or inter- rations for the calculi that produce notably different results
val) on a given scale. They require the user or expert to ations o the lat prod tab dif n s
provide a precise yet consistent numerical assessment of- the are suggested in the last part of this section-
uncertainty of the atomic data and of their relations. The Section 6 illustrates the-conclusions of this paper.

-48-



AGGREGATION OPERATORS Although defined as two-place functions, the T-norms
can be used to represent the intersection of a larger number

According to their characteristics, there are three basic of clauses in a premise. Because of the associativity of the
classes of aggregation: conjunctions, trade.offs, and dijuin- T-norms, it is possible to define recursivelylions. Dubois and Prade [4] have shown that Triangular T~ t ... x, x,+) for x1 ,.... x, [0,11, as:
norms (T-norms), averaging operators, and Triangular

conorms (T-conorms) are the most general families of binary T(x I ..... x,,x,,+1) = T(T(x1 ,...,x,),x,+.1 )
functions that respectively satisfy the requirements of the
conjunction, trade-ott, and disjunction operators. T-norms A special case of the conjunction is the detacoment function
and T-conorms are two-place functions from [0,1Jx[0,l] to G(xo,sf), which attaches a certainty measure to the conclu-
(0,11 that are monotonic, commutative and associative. sion of a rule. This measure represents the aggregation of
Their corresponding boundary conditions satisfy the truth the certainty value of the premise of the rule x1, (indicating
tables of the logical AND and OR operators. Averaging the degree of fulfillment of the premise) with the strength of
operators are symmetric and idempotent but are not associa- the rule sr (indicating the degree of causal implication or
tive. They do not have a corresponding logical operator empirical association of the rule). This function satisfies the
since, on the 10,1] interval, they are located between the con- same conditions of the T-norm (although it does not need to
junctions and the disjunctions. be commutative.)

The generalizations of conjunctions and disjunctions play Disjunction Using Triangular Conorms
a vital role in the management of uncertainty in expert sys-
tems: they are used in evaluating the satisfaction of prem- The function S(a,t,) aggregates the degree of certainty of
ises, in propagating uncertainty through rule chaining, and the (same) conclusions derived from two rules. This
in consolidating the bame conclusion derived from different function performs a union operation and satisfies the condi-
rules. More specifically, they provide the answers to the fol- tions of a Triangular conorm (T-conorm):
lowing questions:

- When the premise is composed of multiple clauses, how S(1,1) = 1 [boundaryl
can we aggregate the degree of certainty x, of the facts S(0,a) = S(a,0) = a Iboundary]
matching the clauses of the premise? i.e., what is the S(a,b) :s S(c,d) if a : c and b -S d [monotonicitv
function T(x 1, ,x) that determines xv,, the degree of S(a,b) = S(b,a) [commutativity]
certaintv of the premise? S (a ,S (b,c)) =S (S (a ,b),c) [associativity]

- When a rule does not represent a logical implication, but A T-conorm can be extended to operate on more than
rather an empirical association between premise and con- A Trom n be xtende to-opetenon mor th
clusion, how can we aggregate the degree of satisfaction two arguments in a manner similar to the extension for theT-norms. By using a-recursive definition, based on the asso-ot the premise Y,, with the strength of the association s?
i.e., what is the function G(x,,,s,) that propagates the
uncertainty through the rule? S('I...'..YnYmI) = S(S(yt-...,,y),Y,+I)

When the same conclusion is established by multiple
rules with various degrees of certainty Yi ..... Ym, how can Relationships Between T-norms and T-conorms
we aggregate these contributions into a final degree of For suitable negation operations Nx), such as N(x)=-x,
certainty?-i.e., what is the function S(y1...,Ym) that con- T-norms T and T-conorms S are duals in the sense of the
solidates the certainty of that conclusion? following generalization of DeMorgan's Law:

The following three subsections describe the axiomatic S(a,b) = N(T(N(a),N(b)))
definitions of the conjunction, disjunction, and negation
operators. T(a,b) =N(S(N(a),N(b)))

This duality implies that the extensions of the intersection
Conjunction and Propagation Using Triangular Norms and union operators cannot be independently defined and

The function Ta,b) aggregates the degree of certainty of they should, therefore, be analyzed as Deblorgan triples
two clauses in the same premise. This function performs an (T(.,.), S(.,.), N(.)) or, for a common negation operator like
tnter ectton operation and satisfies the conditions of a Tri- N(a) = 1-a, as DeMorgan pairs (T(.,.), S(.,.)). I Some typical
angular norm (T-norm): pairs of T-norms T(a,b) and their dual T-conorms S(a,b) are

the following:

T(0,0) = 0 (boundary)
T(a,1) = T(1,a) = a [boundary] l. Quinlan 132) raised a-criticism regarding the use o the inn operator,
I (a,l,) t. I (c,d) it a t c and b - d imonotonicityl onodered an optimiti, intmcr1uon operator, and the mina operator,
T(a,b) :T(b,a) [commutativity] considered a pessimistic union operator. The use of this pair of

operators is actually not a contradiction, since they are their
T(a,T(b,c)) = T(Ta,b),c) [associativity] respective DeMorgan duals.
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To(a,b) = min (a,b) if max (a,l,) 1 So(a,b) max (a,b) if min (a,b) -0
= 0 otherwise I otherwise

T(a,b) = max (0, a+-b-I) Slab) = min (1,a +b)

T, 3(a,b) = a ,b)l[2-(a +1) -ab) S, !(a ,b) = a +6)/(l4ab)

T,(a,b) = ab S,(a,b) a + 1 - ab

T, 5(a,,) = (a ,b)(a +b - alp) S2 5(a,b) (a +b - /2a,)1(i - al)

T3(a,6,) = min (a,b) S3(ab) = max (a,b)

These operators are-ordered as follows: It is important to notice that, like intuitionistic logic,

T s T, s T, 3 -5 7'2 : T,_; :s T3  most2 multiple-valued logics defined by selecting the three
operators (T (.,), S (.,.), N(.)) disregard the excluded middle

S3 s- S - S2 <- St sS1 -So law and its DeMorgan's dual law of non-contradiction. The

An analysis of their properties can be found elsevhere 151, historic reason for this departure from classical logic goes
ThA penalysix rovides aheiraryofsuch propertiesr. back to Godel's proof of incompleteness: if it might not be
The Appendix provides a summary of such properties, possible to derive a true theorem from a given set of

Notice that any T-norm Ta,6) and any T-conorm S(a,b) axioms, i.e., if it is possible for a theorem to be logically
are bounded by: uncertain, it would then be necessary to consider at least

To(a,b ) < T(a,b) 5 T 3(a,b) three logic values: trie, false, unknown. Therefore a state-
T , -ment could- be something other than trite or false and the

S3(a,b) _- S(a,b) -! S0 fa,b) excluded middle law does not apply.

This set of boundaries implies that the averaging operators, The requirements of distributivity (or idempotency)
used to represent trade-offs are located between the MIN tiiqueli determine the conjunction and disjunction opera-
operator 7T3 (upper bound of T-norms) and the MAX opera- tors to be-the -rin (T3) and wax (S3) operators [6,111. This
tor S3 (lower bound of T-conorms). These limits have a DeMorgan -triple, (T3,S31-0), was lirst used in=-Lukasiewicz
very in!uitive explanation since, if compensations are Alepni- multiple-valued logics and has been widely adopted
allowed in the presence of conflicting goals, the resulting in fuzzy logic [12-13]. Dubois-and Prade [14] have shown
trade-off should lie between the most optimistic lower that the DeMorgan triple (T 1,S 1,1-0) satisfi.s 3 -the excluded
bound and the most pessimistic upper bound, i.e., the middle but-is not distributive. They have also demonstrated
worst and best local estimates. Averaging operators are that the distributivity property is mutually exclusive with
symmetric and idempotent, but, unlike T-norms and T- the axiom-of-the excluded middle.
conorms, are not associative. A detailed descriplion of
averaging operators can be found elsewhere [41.

Negation Operators and Calculi of Uncertainty 2. The only multiple-valued logics that satisfy the excluded middle are
those defined by (T(.,.), S(.,.), N(.)), where the three operators were

The selection ot a T-norm, Negation operator and T- derived from the same generator. The addtive generator of a T-norm
conorm defines a particular calcuhs of uncertainty. The is a function f that is continuous, strictly decreasing-on (0,11, and• satisfies the boundary conditions- f (0)=1;0:s % and fll) = 0. Then
axioms for a Negation operator have been discussed by anycontheuoun da no [1 T andbe defin0d by;
several researchers 16-81. The axioms are: any continuous Archimedean T-norm 1101 T(aly) can be defined by:

T(a,b) = f* (f(a)+ f(b))
N(0) 1 [boundary]

N(1) 0 (oundr~lwhere f' is a function defined-on 10,x1 byN\(I) 0 [boundaryl

N(x) > N(y) if x < y [strictly monotonic decreasingi '(x) f i(x) for x E(0,l1ol
N(a)=lim N(x) [continuity] 0 forr -a frz [o

N(N(x)) = x [involution] and f ' is the inverse function of f. The generator of a negation
operator is a function I that is continuous, increasing and satisfies the

Bellman and Giertz 161 have shown that the above boundaries conditions, t(0)=0 and t(l)<%. Then any negation
axioms do not uniquely determine a negation operator. In operator Vr can be defined by.

addition to the above axioms they imposed a highly con- (X) =t+11 (l)-t(V))
straining symmetry condition, i.e. ...A certain change in [ie T-norm will have the same generator if. 1() = (I).t The
tho, truth value of a.(S) of S [i.e., x] should have the same T-cnn,orm-w1l hav,. the same g,,nertor if deried Itrom the T-norm

effect on the acceptance of "not S" [i.e., N(x)] regardless of using the-DeMorgan duality condition 15,81.
the value of iL(S) [i.e., x]". Only with this (sometimes 3. For this triple, the common generator is l(,= %.
questionable) axiom is it possible to determine uniquely 4. The nan and max operators, which form the onl) pair satisfying

~ = 1 - x. Klement [9] provides an-excellent summary distributivity tatnot be defined by any additive generator Thus thereN(x = - l 1 vv; no a DeMorgan triple, based on the these two operators and a
of equivalences among the various sets of axiomatic defini- negation operator, in whlic al three opcrators have a commontions of conjunction, disjunction and negation operators. gncnrator
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In most expert systems, a common selection of functions Table I

is: RANGES OF THE SIX PARAMETRIZED FAMILIES OF T-NORMS

CONJUNCTION = T~a ,b) =T3Qi ,b) = min (a,b) T)(a~b~j) Td,b,a) Tj,/.-y') T~z,(a.b,p) Tj(a,s) TSU,~b.X) T-norm

WEIGHTING = G(a,b) =Th(a,b) =ab 9 o

DISJUNCTION = S~a,b) =S 3(ab) = nax~a,b) _o+ -0 -0T

NEGATION = N(a) = 1a I1 00 0I T1

Families of T-norms and T-conorms I 1 -0 T2 -
*0 . o .

Sometimes it is desirable to blend some of the previously -0 10 . -0 _6+ T3described T-norm operators in order to smooth some of
their effects. While it is always possible to generate a linear
combination of two operators, in most cases this would
imply giving up the associativity property. However, asso- The vertical bars I used in Table I indicate the legal
ciativity is the most crucial property of the T-norms (10,151 ranges of each parameter. The table for the T-coiiorms is
since it allows the decomposition of multiple-place functions identical to the above except for-the header, where the fami-
in terza!: of two-place functions. The correct solution is to lies of T-norms are replaced by-the corresponding families of
find a family uofT-norms that-ranges over the desired opera- T-conorms, and the last column, where the T-norms are
tors. The proper selection of a parameter will then define replaced-by their respective dual T-conorms, i.e., To-by So,
the intermediate operator with- the 'lesired effect while still etc.
preserving associativity.

There are at least six families-of T-norms T,(a ,b,p)-with LNUSI AIBE
their dual3 T-conorms SQi,b,p). The value of the subs~cript DEFINED ON THE-INTERVAL (0,11
x will denote the family of norms, p, the third argument of These families of norms can specify an infinite -number
each norm, will den~ote the parameter used by the of calculi that operate on arguments taking real nunber
corresponding-family. values on- the (0,1] interval. This fine-tuning capability

YAGER: Ty(a,b~q) = 1 - MIN {1, [(l-a)'l 4+ (1.byqj"'l} for q > 0
YAGER:-Sy (a,b,q) =MIN (1, (aIl + b0)"'11 for q > 0

DUBOIS: T0)(a,b,ct) = (ab)/MAX {a,b,(xl force E [0,1]

DUBOIS: Si)(a,b,ce) = [a+b-aib - MIN -a,b,(1-o)IIMAX-{(1-a), (1-b),cd) force( E [0,1]

HAMACHER: TH(a,b,y) =(ab)I[y-t-(-y)(a+b-ab)] for -y 0

H-AMACHER: S,1 (a,b,y) = [a+b+(y-2)ab/[1+(y-l)ab] for y 0

SCHWEIZER- Tsc(a,b,p) =MAX {0, (a-' +b-PI"-1'P for-p-E [-xc]

SCH-WEIZER: Ss,(a,bpl) =I - MAX (0, [(-)"+1b"1}"for-p-E (~

FRANK: TF(a,b,s) = Log, (1+(sa-1)(s1-1)f(s -1) 1for s > 0

FRANK: SF:(a,b,s) = 1 - Log, [+5Ia1)I-))( I-jfor s >0O

SUGENO: Ts,,(a,bAh) =MAX (0, (X\+1)(a+b-1) -Xab} for X ; -1

SUGENO: SS,,(a,b,X) =MIN fl, a+b-X.a.b} for X a: -1

The above families of T-norms-and T-conorms are indivi- would be useful if we needed to compute, with a high
dually described in the literature [5,15-20]. degree of precision, the results of aggregating information

tabl inicaes he alueof he awmter characterized by very precise measures of its uncertainty.
The following tal niae h au fteprmtr However, when users or experts must provide these -mea Is-

for svhih the above fainilieb of norms reproduce the most ursansumto 1tkprcwn utuulybe ad
commn T-orms{T0 . 3}.to satisfy the requirements of the selected calculus.

Szolovits, and Pauker (21] noted that "...while people
seem quite prepared to give qualitative estimates of likeli-

Thq. dual T u.nvrni airv ubitiiiid trom the T-norm bv using the hood, they are often notoriously unwilling to give precise
gencrailiid Declorgain's, La%% %%iih negition defined by \(0=1-1 numerical estimates to outcomes." This seems to indicate
kme-n 171 ;eaohwce.i o riti silsrtdb that any scheme that relies on- the user providing consish'ni



and preise nmercal quantifications of the contidence level define the slopes. Therelore, the membership function
of his/her conditional or unconditional statements is bound It, (x), of the fuzzy number N, = (a,, b,, a,, 0i,) is defined
to fail. as follows:

It is instead reasonable to expect the user to provide
linguistic estimates of the likelihood of given statements.
The experts and users would be presented with a verbal i.LV(x) = 0 for x < (a, -x,)
scale of certainty expressions that they could then use to = (+/a,)(x-a,+a) for x ( [(a,-a),a,]
describe their degree of certainty in a given rule or piece of = 1 for x ( [a,,bl]
evidence. Recent psychological studies have shown the = (1/Ip)(b, + Pi-x) for x [b(,,(b, +
feasibility of such-an approach: "...A verbal scale of proba- = 0 for x > (b,-13 )
bility expressions is a compromise between people's resis-
tance to the use of numbers and the necessity to have a Figure 1 shows the membership distribution of the fuzzy
common numerical scale" [221. number N, (a,,b,,a,,, 3i ).

Linguistic probabilities offer another advantage. When
dealing with subjective assessment of probability, it has
been observed [231 that conservatism is consistently present 1
among the suppliers of such assessments. The subjects of
various experiments seem to stick to the original (a priori)
assessments regardless of new amount of evidence that
should cause a revision of their belief. In a recent experi-
ment [24], linguistic probabilities have been compared with
numerical probabilities to determine if the observed conser- X

vatism in the belief revision was a phenomenon intrinsic in
the perception ofthe events or due to the type of represen- Figure 1. Membership Distributions of N i  (ai, bl, ai,
tation (i.e., numerical rather than verbal expressions). The 0i.

results indicate-that people are much closer to-the optimal The folloing table indicates the semantics of the pro-
Bayesian revision when they are allowed to use linguistic poe term t l em
probabilities. posed term set-L,:

Each linguistic likelihood assessment is internally TABLE 2
represented by fuzzy intervals, i.e., fuzzy numbers. A fuzzy THE NINE ELEMENT TERM SET L2
number is a fuzzy set defined on-the real line. In this case,
the membership- function of a fuzzy set defined-on a truth
space, i.e., the interval [0,1], could be interpreted as the impossible (0 0 0 0)
meaning of a label describing the degree of certainty in a extremely-unlikely (.01 .02 .01 .05)
linguistic manner [25-26]. During the aggregation process, veryjlow-chance (.1 .18 .06 .05)
these fuzzy numbers will be modified according to given smiallchance (.22 .36 .05 .06)
combination rules and will generate another membership it_may (.41 .58.09.07)
distribution that could be mapped-back into a linguistic term meaningfulchance (.63 .80.05.06)
for the user's convenience or to-maintain closure. This pro- mostlikely (.78 .92 .06 .05)
cess, referred to as linguistic approximation, has-been exten- extremely-likely (.98 .99 .05 .01)
sively studied [27-281 and will be briefly reviewed in Section certain (11 0 0)
4.2.

The membership distributions of the term set elements
Example of a Term Set of Linguistic Probabilities are illustrated- in, Figure 2. The values of the- fuzzy interval

Let us consider the following-term set L,: associatec. with each element-in the proposed- term set were
derived from an adaptation of the results of psychological

(impossible cxtrcielyi.l.ikelhl verylow.aaJianc sitallJIan.c experiments on the use of linguistic probabilities [231. For
itjmay IncaningfuLdnale mostnolikely cxtrcmhl/_likchli Lertain} most ot the elements in the term set, the two measures of

Each element E, in the above term set represents a state- dispersions used by Beyth-Marom, e.g., the interquartile

ment of linguistic probability or likelihood. The semantics range (C,3 -C75 ) and the 80 per cent range (Ci 0-CM), were

of each element E, are provided by a fuzzy number N, used to define respectively the-intervals [a,, b,] and
defined on the [0,11 interval. A fuzzy number N, can be 1(a,-a,),(b,-3,)] of each fuzzy number N,.
described by its continuous membership function= tpqx(x), for
x ( [0, 1]. ........ %,....

A computationally more efficient way to characterize a / .
fuzzy number is to use a parametric representation of its . A"
membership function. This parametric representation 1261 is , '14
achieved by the 4-tuple (a, b,, a,, i). The firsttwo param-
eters indicate the-interal in which the membership value is
1,0; the third and fourth parameters indicate the left and
right width of the-distribution. Linear functions-are used to Figure 2. Membership Distributions of Elements in L.
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DESCRIP'rION OF THE EXPERIMENTS Selecting the T-Norms
AND REQUIRED TECHNIQUES To select the T-norms for the experiment, we first took the

three most important T-norms, i.e., TI, 6 T,' T3, which pro-
The First Experiment vide the lower bound of the copulas,7 an intermediate

The first experiment consists in selecting nine different value, and the upper bound of the T-norms. We then used
T-norms that, in combination with their DeMorgan dual T- a parameterized family of T-norms capable of covering the
conorms and a negation operator, define nine different cal- entire spectrum between T, and T3. Our choice fell on the
culi of uncertainty. Three different term sets--containing family of T-norms proposed by Schweizer and Sklar, i.e.,
five, nine, and thirteen elements--provide three different TS,(a,b,p), described in Section 2.4. The selection of this
levels of granularity for quantifying the uncertainty. For particular family of T-norms was due to its full coverage of
each of the three term sets, the T-norms will be evaluated the spectrum and its numerical stability in the neighborhood
on the crossproduct of the term set elements, thus generat- of the origin. We then selected six values of the parameter
ing the closure of each T-norm. Each closure will be com- p to probe the space between Tt and T, (p ( [-1,01), and
pared with the closure of the adjacent T-norm and the between T 2 and T3 (p E [0,oc1). The six T-norms instantiated
number of differences will be computed. If there are no sig- from this family were: T(a,b,.O.8), Ts,(a,b,-O.5), Ts&(a,b,-
nificant differences, the T-norms wiii be considered similar 0.3), T,.(a,b,O.5), Tsca,b,1), Ts(a,b,2).
enough to be equivalent for any practical purpose. A thres- The selection of the parameter values was guided by the
hold value will determine the maximum percentage of relative location of the six T-norms within the T-norm space
differences allowed among members of the same boune loc a n 3 i g - s ii the spacem ofpac
equivalence class. This concept is analogous to the hierarch- bounded by T1 and T3. Figure 3-describes the space of T-
ical clustering technique typic-.1 of Pattern Recognition prob- norms Ta,) = K in the [0,[0,10,1] universe of axb for
lems. K=0.25, 0.50, and 0.75. From this figure we can observe

that, for small and medium values of -K, the six T-norms
Selecting the Term Sets instantiated from the parametric family proposed by
The term sets used to provide the different levels of granu- Schweizer and Sklar, i.e., T&ja,blp), provide a well distri-
larity in both experiments are: LI, L,, and L3. L, contains buted coverage 8 of the space between TI, T2, and T3.
seven elements, and was defined in Table 2. L, and L3 con-
tain five and thirteen elements, respectively. Their labels The Second Experiment
and semantics are defined in the following tables: The second experiment was motivated by the behavior of

the triangular conorms for high values of K, as illustrated in
Figure 3. It was noted that the area of the triangular spaces

TABLE 3 corresponding to the various Ks-decreases as K increases in

THE FIVE ELEMENT TERM SET L, value, i.e., Area = (1-K)2/2. This can be explained by the
saturation effect that most T-norms-have for low values of K
(and T-conorms for high values of K). However, it was also

impossible (0 0 0 0)
unlikely (.01 .25 .01 .1) 6. To, the lower bound of the T-norms, is rather uninteresting since its
maybe (.4.6 .1 .1) discontinuous and extreme behavior limits- its applicability.
likely (.75 .99 .1 .01) 7. A copula is a continuous 2 place function T. [0,1]x[0,11 - 10,11 that
certain (1 1-0 0) satisfies the boundary and monotonicity conditions of the T-norms

plus the following condition:

T(a,d) + T(c,b) ; T(a,b) + T(c,d)
when a S e, b15 it

Table 4 Schweizer and Sklar 1151 have shown that if a T-norm has an
additive generator, the T-norm is a copula if and only if the additive

THE THIRTEEN ELEMENT TERM SET L3  generator is a con'ex function. With this more restrictive condition,
we have that any copula T(a,b) is boanded by;

TI(a,b) s T(a,,) . Tj(a,b)
impossible (0 0 0 0) This is the more familiar set of boundaries used for the probability
extremelyunlikely (.01 .02 .01 .05) (and for the belief function) of the intersection of events.
not-likely (.05 .15 .03 .03) 8. The nine T-norms considered in this-experiment (six instances of the
verylow._chance (.1 .18 .06 .05) Schweizer and Sklar family in addition to TI, T,, and T3 are
snall-chance (.22.36.05 .06) maximally separated at the point a=b. The coordinates of the points
il.ntay (.41 .58.09 .07) in which the line a=b intersects the six T-norms TSc(a,b,p) = 0.25
likely (.53.69.09 .12) can be obtained from the expression-
ineanmiguLchance (.63.80.05 .06) a = 10.5(1 - (K)'S')l '

high-chance (.75 .87 .04 .04) The values of the coordinate a for the intersection points of the
inost-likely (.78 .92 .06 .05) nine T-norms (Ti(a,b),T,.(a,b,-.8), T ,(a,b,-.5), T,(a,b,- 3),
veriiJighchance (.87.96.04 .03) T2(a,l), T,. (a,b',.5), T T (a,b, l), T (a,b,2), T3(ajb)) with the line a=b

extremely-likely (.98.99 .05 .01) are

certain (1 1 0 0) 0,250 03,12 0.400 0.44.1 0.340 573 0.562 0.600 0,625
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eleven T-nornis. The same three term sets used in the first
experiment were also used in this second experiment to
define the input granularity. The objective of the second
experiment was to verifv if the first experiment hid over-

* looked any relevant calculus requiring its own equivalence
class.
Computational-Techniques

The above experiments can be performed only if some

.6 *•,. particular computational techniques are-used. It is necessary
to evaluate the selected T-norms (crisply defined functions)

. " with the elements of the term sets (linguistic variables with
fuzzy-valued semantics). -,urthermore, the result of this
evaluation must be another element of the term set. This
implies that closure must be maintained under the applica-

tion of each T-norrn. The following two subsections
describe the techniques necessary to satisfy these require-

O. .: : : : : :merits.

SThe Extension Principle

LIMo. ilThe extension principle 1261 allows any non-fuzzy function
to be fuzzified in the sense that if the function arguments

Figure 3. Space of T-norms T(a,b) K, for K 0.25, are made fuzzy sets, then the function-value is also a fuzzy
0.50, and 0.75. set whose membership function is uniquely specified. The

extension principle states that if the scalar function, f, takes
noted that for large values of K, most T-norms (all but T3) it arguments (x , x,, .... , x,), denoted by X and if the
seemed to converge toward T1, therefore the-space between membership functions of these arguments are denoted by
T;(a,b,2) and T3 was much larger than- the-space between pt(x1), pettc,) . . .(x,), then
any other T-norm. Figure 4 shows a plot of the nine T- ,
norms Tal,, evaluated on the plane a=b. This figure [Itux)(y) =SUP [INF ti±(x,)I
illustrates both the saturation effect for small values of K X
and the cotivergency effect for high values of-K. s.1. f(X) y

For the sake of completeness, a second experiment was
designed to provide a better sample of the space between where SUP and INF denote the Suprenunm and Infimuni
Ts,(a,b,2) and T3. Two more T-norms were instantiated operators.
from the same family of T-norms, namely T (a,b,5) and The use o this formal definition entails various types of
T5c(a,b,8), and added to the original nine, for a total of computational difficulties 1261. The solution to these difficul-

ties is based onl the parametric representation of the
membership distribution of a fuzzy number, ' i.e N, =
(a1, b,,a,), described in Section 3.1. Sucha- representation

_.._ _ _allows one to describe uniformly a crisp numb'er, e.g.,
(a,,ai,0,0); a crispi interval, e.g., (a,,l,,O,O); a fuzzy nutwiber,
e.g., (a,,a;,a,,i); and a fuzzy interval (a,,b,,,3,).

The adopted solution consists of deriving the closed-form
T N, y)- parametric representation of the result. This solution is a

very good approximation of the result obtained from using
the extension principle to evaluate arithmetic functions with
fuzzy-numbers, and has a much more limited computational
overhead. Table 5 shows the formulae -providing the closed
form solution for inverse, logarithm, addition, subtraction,
multiplication, division, and power. The scope of each for-

9). Two restrictions -ire imposed on the shape of the membership

il,11n fthC ~ifuzzy 1UiHibC[ 1CJiebV1tLdt',H1 tid111011stzI.representation: normality and con'exzty, All the fuzzy numbers usedto define the semantics of the proposed term sets satisfy thik
condi tion. urthermore--except for im doossble, the first elmcntt te9.9 0l.53 1,g .I. each term set L I, L-2, L3, corresponding to a cwcp zeto..all the other

Xtyelements are plilve nrrntal convex fu/zzy numbers. They are the onilt
type of fuzzy, numbers that form a commutative senn-grohp 1331. Th6e

WMnO. j o not form'a group since the), lack the inverse elemeints tor additioin
and multiplication|. All other fuzzy number-, either do not satisfy the
closure conditin under some operation or do riot ; ati,,t% the

Figure 4. Space of T-norms Ti(x,y) plotted for x=y. distributivitv las\
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Table 5 Table 6
FORMULAE FOR ARITHMETIC OPERATIONS FORMULAE FOR MINIMUM AND MAXIMUM OPERATORS

WITH FUZZY-NUMBERS WITH FUZZY NUMBERS

Operation Result conditions Formula No. P Q
-h (-d, -C., ,y) all i I

Id18 c* 8(d+b) clc-y)l

Ch (Ce, el 0 -e(1 -.0 ) e (el)) h> 0 (3) (a-0) a b (b+0) (C -I ) c d ( 6

log h lot c, log 8. log c ~-. log WIS 1 > 0 (4) MAX (P.0) *(max (a.C), inaxtb~d),. f)
(Y) dit (b 0) >(d.6) r.. (b 6)ma(b.d)

8I + A (a+c. b+d. a +y, P+8) all III. A (5) [1:tb,> d
6b- (&-d. b-c. a +6. f3+y) all th. h (6) If( +. -( s+8 ib~

III x ft (ac. bd. ay+ea-oy. b84dp+ph) lb > 0, a> 0 (7) 1 a-0 C-7 c+a i~x
(ad, be, di-a8+ob. -by +cft-fly) fit <0.8ft> 0 (8) it (a - ) < (C-j) I (a + y)min(a.c)
(be, ad. by-c13+/y. -da+aS-o6) an > 0. h < 0 (9) if (a)lC->c
(bd, ac, -b8-d13-136. -ay-ca+ay) ih < 0.8A < 0 (10)1. Iac

d , ca b~ W68 bk-) di > 0.8A > 0 0 1) %MIN (P.0) - (min(a.c). minlb.d). 1. r)

'i(b + ) > (d +8 r .(d + 6) - mn(b.d)iitydt- 1< 0. a> 0 (12) :11(b *0) < (d +6) c.(b + ) -min (b.d)cdc-y)' 8(8+b) Is If ib>d

lb a bg-d# ay- it(b + ) -(d. + . 0f b ibd
jd, c' (d+6) *cke-y) h i> 0 < 0 (13) 1.0 if tb -d

lba-by-cff -aS-d. 1i(a-u ) >(C-) t (a *)max(ac)
c8d Cc-.y d(d+S)1 lh < 0. h< 0 (14) ii(a -c)<4cy (C + 0) - MaX(a.C)

________ ,y lta>e
r 1 I~a-o)(c-y) I. a he

rhi' k- lid. aC.-(a-.o)i'. (b+pS)d* -bdj ll- o I . ifa~

(b". ad, bt- (b+fl)'-V. (aod-.1 lt~oo (16 the result- of some arithmetic operation, two features were
, h<0 (1) extracted: the first moment of the distribution and- the-area

(ad, III. ad.-U(a04'aA (b+i3W~l--ij iido.1l under the curve. A weighted Euclidean distance, where the
A8> 0 (17) weights reflected the relevance of the two parameters in

(bo-a', bd- (b+fl)d&. (5 .o)f.idmc1.11 determining semantic similarity, provided the metric
h < 0 (18) required to select the element of the term set that more

closely represented the result,
where fii 4 (a,. b. o, ) and h A (c, d, y. 6) This process was used in the experiments described in

mula is defined by its attached condition'0 on the third Sections 4.1 and 4.2 to provide closure uinder the -applicatlion
couno Tbe5 Tbe6sow h orua oreaut of the various T-norms. The closure requirement- is-required

iong the minimu 5 nd a ximu ofsow toua noral onve by any calculus of uncertainty to maintain the form anding he inimm ad maimu of wo orma covex meaning of the linguistic confidence measures throughoutfuzzy numbers. All these formulae were uised in the imple- the-rule-chaining and aggregation process.
mentation of the experiments described in Sections 4.1
and 4.2. EXPERIMENT RESULTS AND ANALYSIS

Linguistic Approximation Tabulated Results
The process of linguistic approxiinaion consists of finding a
label whose meaning is the samne or the closest (according to Selected results of the experiments are shown -in-ibular
somec metric) to the meaning-of an-unlabelled membership form in Tables 7, 8, and 9. Each table illustrates the effects
function generated by some computational model. Bonis- of applying TI, T2, and T3 to the elements -of' a -particular
sone (27-281 has discussed the-general solution to this prob- term set. Because of the commutativity property of- the T-
lem. norms, the tables are symmetric.

For our experiments, this process -was simplified by the AnlssothReusofheEprm t
small rirditnlity of the term sets. Therefore, a simplified AnlssothReusofheEprm t
solution was adopted. From each element of the term set The three previous tables graphically illustrate the dif-
and trom the unlabelled membership function representing ferent behaviors of T1, T, and T3 when applied-to a common

term set. As expected, T, was the strictest operator and 3
was the most liberal operator. However, the interesting

10d. The tondikions dcvrtbcd in thc-third tolumn ol Table 5 rcr to the aspect of -the experiment was not rediscovering -the-behavior
sign o1 a tuzz number A fuz/y number N, (11, '~ 1,) Is ftetoetee u etriighwmn ifrn
positive. ixe %, 0, iff-its support is positive (ix, a-ca e 0 if I o o h w xrmsbtdtriighwmn ifrn
or a-ia -fit u =0) Analogously. N, <. 0 implies that its support I!, variations of behavior we had to consider from the-operators
ncgative (ix., b-fl !L. 0 if0!0orb+0) < f 0-~0), located between T, and T3 .
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Table 7 Table 9

CLOSURE OF T1, T2, T3, ON L, CLOSURE OF TI, T21 T~, ON L3

Impossible -Impossible
Extremely Unlikely

Unlikely Not Likely
Very Low Chance

------ Small Chance
Maybe It y

Certain Mostelik

~ eHigh Chance

Extremely Likely
T__ T2__ Certa inr

Table 8

CLOSURE OF TI, T2,, T3, ON L,

Table 10

NUMBER Or DIFFERENCES AMONG THE NINE T-NORMS
-Impossible APPLIED TO LI, L,, AND L3.

Extremely Unlikely
- - ,'4%~%'~% ~ ,/'Very Low Chance

Small Chance
It MaypE[I
Meaningrul Chance 0 0 oN

~ Most Likely-
-Extremely Likely . T- t...
Certain PI

6 4

14 1 1

In the first experiment, the closures of seven T-norms, ratio of the-number oi changes divided by the cardinality of
bounded by T, from below and by T3 from above, were the ciosuie for each term set. Since the closures were sym-
computed and compared with the closureb ol the two metric due to the comimulativity property of ie 1-norms,
extremes. For each of the three term sets, each element in the cardinalit% of the closure for a ternm set with n elements
the closure o1 a given T-norm, i.e., T,(E,, E,), was com- was considered to be it+i 1)12. The percentage differences
pared with the same element in the closure of a different T- are shown-in Table 11.
norm, i.e., T,(E,, E,). The number of differences found by
moving from one T-norin to the next was tabulated for eachi By analyzing rable 10, it is evident that for L1, no diffe~r-
term bet and the results shown in Table 10. The percentages encets were found among the intermediate T-norms. There
o1 the differences shown in Table 10 were computed as the are indeed three uquivalence clabses ol r-norms producing
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Table 11 In the second experiment, the closures of nine T-norms, also

PERCENTAGE DIFFERENCES AMONG THE NINE T-NORMS bounded by T, irom below and by T3 from above, were
APPLIED TO LI, L2, AND L3  computed and compared with the closures of the two

extremes. For each of the same three term sets, each
. element in the closure of a given T-norm was compared

with the same element in the closure of another, different
0 0 P0 0 T-norm. The number of differences found by moving from

6 1 one T-norm to the next was tabulated for each term set and
the results shown in Table 12 The percentages of the differ-

4 2 ences shown in Table 12 were computed as before. The per-
centage dilferences are shown in Table 13.

Table 12

NUMBER OF DIFFERENCES AMONG THE ELEVEN T-NORMS
APPLIED TO L, L, AND L3

different results when applied to elements of Lt . These
classes of equivalence are:4

Ts.(a ,b ,--O.3),T2(a ,b),Tsc (a ,b ,O;5), w
T,,(a ,b,1),Ts,(a,b,2),T3(a11b )  t:: T. ,.

From. the same Table 10, we can observe that few significant E3- T, ,0,, , t- ... .',

EE3

diffieences were found among the intermediate T-norms I,,- "'" " ""
when relt when appL . To L ocreate equivalence These
classes among the T-norms, we need to establish a thres-

hold value indicating the maximum percentage of differ- Table 13
ences that we are willing to tolerate among T-norms of the PERCENTAGE DIFFERENCES AMONG THEELEVEN T-NORMS
same class of equivalence. With a threshold of 7%, usingAPLETOLLAD 3
Table 11 we find five classes- PLE OLLADL

Tsc(ab,-0.),6 13Ts(a,b,-.3),T,(a,b),

Ts, (a ,b,2),r3(a ,b)

With a threshold of 15% we find three classes:

Ts (a ,,, -0.3),T2(a,b), 6N

Ts, ab,.)T ( ,,,1,E3 ,,,I". ... . a..
Trs,(a ,b,2),T3(a ,b ) E ,. ,o-It " ...... .X ..

Finally, we can observe that for L3 a larger mber of differ-
deces were found among the intermediate T-norms. Using a
threshold of 12% we find fiveclasses of equivalence. By analyzing Table 12, it-is again evident that for LI, no

asdifferences were found among the intermediate T-norms.sameTcassoequia c a tThe three equivalence classes of T-norms producing dif-

Ts (a,b,-0.5), ferent results when applied to elements of L, re:

Ts, (a ,t, -0.3),T,(a ,l, T(a,b),TS (a , -O.S),Ts, (a,b,-0.5)

T 1(a,b ,5& A,) E(,) (a ,b,8,TJ(aT)
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From the same Table 12, we can still observe that few signifi- reversing the order of the elements in each term set. Flhe
cant differences were found amotig the intermediate T-norms closures for the T-conorms can then be computed from the
when applied to elements of L2. After establishing a thres- closures of the T-norms and the closure of the negation
hold of 7% and using Table 13 we find six classes (rather operator, using DeMorgan's identity. The classes of
than the five obtained in the first experiment); equivalence obtained for the T-norms are the same as those

obtained for their dual T-conorms.
The appropriate selection of uncertainty granularity (i.e.,

the term set cardinality) is still a matter of subjective judge-

Ts&(ab,-0.3),T,(a,b), ment. However, if we use the very well-known results on
the span of absolute judgement 1291, it seems unlikely that any

T5c(a,b,O.5),T (a,b,1),T, (a,b,2), expert or user could consistently quantify uncertainty using

Ta ,b ,5), more than nine different values.

Tsc(a,b,8),T 3(ab) Meaning ofT1 , T, T 3

However, with a threshold of 8%, the last two classes of T,, T2 , and T3 were the three operators that produced
equivalence collapse into one, represented by T3. This indi- notably different results for Lt and L,. A challenging task is
cate that, for a slightly larger threshold (8% instead of 7%) to establish the meaning of each T-norm, i.e., the rationale
the additional two T-norms added in the second experiment for selecting one T-norm over the other two.
are not significantly different from T3. A first interpretation indicates that T, seems appropriate

With a threshold of 15% we find three classes (the same to perform the intersection of lower probability bounds 301.
as in the first experiment): Similarly, T3 is appropriate to represent the intersection of

T,(a,b),Ts(,,b,-O.8),Ts,(a,b,-0.5), upper probability bounds. T2 is the classical probabilistic
operator that assumes independence of the arguments; its

Tc(a,b ,-O3),Th(a ,b )" dual T-conorm, S,, is the usual additive measure for the

Ts,.(a , ,,O.5),T,(a , ,,l),T(a ,b ,2),T (a ,b ,5),T5 (a ,,,8),T 3 (a,) union.

Finally, we can observe that for L3 a larger number of differ- To provide a better understanding of these T-norms, we
ences were still found among the intermediate T-norms. will paraphrase an example introduced by Zadeh [311:
Using a threshold of 12% we again lind five classes of
equivalence- If 30% of the students in a college are engineers, and 80% of the

students are male, how many students are both male and
T1 (a,b),Ts,(a,b,-0.8), engineers?

T, (a,b, 0.5), Although we started with numneical quantifiers, the answer is no

T&.(a ,b,-0.3),T2(a ,b ), longer a numnber, but is given by the interval [10%, 30%1

TS (a,b,O.5),T5 ~a,b,1),Tsca,b,2), The lower bound of the answer is provided by T11(0.3,
(a0,b,8),T3(a,b) 08); T3(0.3, 0.8) generates its upper bound. T2(0.3, 0.8) gives

T-)a-somewhat arbitrary estimate of the answer, based on the

In summary, we can see that three T-norms are sufficient to independence of the two pieces of evidence.
define the relevant calculi using the five element term set In Figure 5, we try to-describe geometrically the meaning
L£; five T-norms are required to represent (88% of the time) of the three T-norms. The figure illustrates the result of
the variations in relevant calculi for the thirteen element T1(0.3, 0.8), T2(0.3, 0.8), and T3(0.3, 0.8). Tt captures the
term set L3. For the case of L,, the same three T-norms notion of worst case, where the two arguments are con-
used for Ll will suffice if we are willing to accept results sidered as mutually exclusive as possible (the dimensions on
that might be slightly" different 15% of the time. Other- which they are measured are 180' apart). T, captures the
wise, we-will have to-use five T-norms, as for L3, to reduce notion of independence of the arguments (their dimensions
the number of slight differences to 8%. These results hold are 900 apart). T3 captures the notion of best case, where one
for both experiments. of the arguments attempts to subsume the other one (their

For any practical purpose, the three classes of dimensions are collinear, i.e., 0' apart).
equivalence represented by T, T2, and T3 more than ade-
quately represent the variations of calculi that can produce
different results when applied-to elements of term sets with A

at most nine elements. .3 I ' " '

rhe results ot both experiments hold for the T-conorms I
as well. The elements of each term set are almost sym-j
metric with respect to the middle point of the scale, 0.5. \ E
Therefore, by using the Linguistic Approximation, the clo- I

sure of the negation operator can be simply computed by .3

Figure 5. Geometrical Interpretation of T1(0.3, 0.8), T2(0.3,
I. The .htli difference in the result implics that sometimes the result 0.8), and T3(0.3, 0.8).

vill be an element of the term set that is adjacent to the correct one.
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Meaning of Tsc(a,b,.0.5) and Tsc(a,b,1) each of these layers. The characterization of uncertainty

There are two cases in which we will need to deal with measures as linguistic variables with fuzzy-valued semantics
five calculi instead of three. In the first case, we want to and the use of a given uncertainty calculus address the

decrease the input granularity by using a term set with a representation and inference layers, respectively. The selec-
finer resolution than L, (e.g., L3 ). In the second case, tion of the most appropriate calculus to be used must be

addressed by the control layer.
within the granularity provided by L,, we want to decrease
the percentage of differences within an equivalence class ' However, in most expert systems, the control layer has
lowering the tolerance threshold from 15% to 8%. In eii been procedurally embedded in the inference engine, thus
case, we must provide an interpretation for the meaning preventing any opportunistic and dynamic change in order-
the two additional T-norms, i.e., T, (a,!,,-0.5) and T$, (a,10). ing inferences and in aggregating uncertainty. Usually, the

same type of aggregation operators, i.e., the same uncer-
A rather straightforward interpretation of Ts,(a,b ,-0.5) tainty calculus, is selected a priori and is used uniformly for

and Ts,(a,b,1) is to consider them the intersection operators any inference made by the expert system. The most recent
for pieces of evidence that exhibit mild negative or positive trend in building expert systems is moving toward having a
correlation, respectively. This is in contrast with Ti and T3  declarative representation for the control layer.
that represent the extreme cases of negative and positivecorrelation, respectively. As an integral part of this layer, we suggest to define a

set of context dependent rules that will select the most

CONCLUSIONS appropriate calculus for any given situation. Such a rule set
will be relatively small since it must describe only the selec-

Summary of the Results tion policies for a small number of calculi. The reduced
number of calculi is the result of the analyzed trade-off

In this paper we have presented a formalism to between complexity and precision. These rules will rely on
represent any truth functional calculus of ur~ertainty in contextual information -- such as the nature, reliability, and
terms of a selection of a negation operator-and two elements characteristics of the evidence sources -- as well as on the
from families of T-norms and T-conorms. Because of our meanings of the three or five analyzed calculi that will be
skepticism regarding the realism of the fake precision used in the inference layer.
assumption required by most existing numerical
approaches, we proposed the use of a term set that deter-
mines the finest level- of specificity, i.e., the granularity, of REFERENCES
the measure of certainty that the user/expert can consistently I1] Bonissone, P.P. & Tong, R.M., (1985). Editorial: Rea-
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APPENDIX: PROPERTIES OF T-NORM OPERATORS The T-norm operators used in the last column of Table 1

The subset of properties satisfied by a given T-norm satisfy the folowing properties:
operator succinctly defines its behavior. The properties that To T, T1.3  T2  T2, T3
capture the most salient features of such an operator are:

Continuous NO YES YES YES YES YES
Continuous: an infinitesimal change in one of the

arguments cannot cause a noticeable Archimedean NO YES YES YES YES NO
change in the result

Archimedean: continuous and satisfying the follow- Idempotent NO NO NO NO NO YES
ing conditions:
T(x,x) < x S(x,x) > x for all x E (0,1) Strict NO NO YES YES YES NO

Idempotent: T(x,x) = x S(x,x) = x for all x E [0,1] 12 Y2

Strict: continuous and strictly increasing in Nilpotent 12 YES NO NO NO m
both places, i.e, satisfying the the fol- Any continuous Archimedean T-norms is either strict or
lowing conditions: nilpotent. Its classification can be obtained by analyzing the

T(x,y) < T(x,y') and T-norm's additive generator:

T(y,x) < T(y',x) Continuous Archimedean Strict T-rorms have an addi-

for x>0, y<y', and tive generator f(x) such that:

T(a,b)= limT(c,b)= limT(a,d) f(0)= oandf(1)0
ca d-b

Nilpotent: Given a sequence fxl,...,x,} of Continuous Archimedean Nilpotent T-norms have an addi-
numbers in (0,1), there is a finite tive generator f(x) such that:
number n for which:
T(xt ..... x,,) = 0 and E f(x,) > f(0), f(0) < oo and/ (1) = 0

where ftx) i=1 It is worth noting that the three T-norms analyzed in the

is the additive generator of the T-norm conclusions, i.e., T1, T2, and T3, are nilpotent, strict, and
[10,15]. idempotent, respectively.

12 The nilpotent property is defined in terms of the T-norm's additive
generator Both To and T3 do not have any additive generator (TO is
not continuous, '3 is nor Archiircdean).
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SUMMARIZING AND PROPAGATING UNCERTAIN INFORMATION

WITH TRIANGULAR NORMS

Piero P. Bonissone

ABSTRACT Three Layers Organization

A large variety of numerical or symbolic approaches to In building expert systems architectures three distinct
reasoning with uncertainty have been proposed in the Al layers must be defined: representation, uifeience, and control
literature. In this paper we postulate a desiderata that any layers. It is our claim that the treatment of uncertainty in
such formalism should attempt to satisfy. We then propose expert systems must address each of these layers.
a new formalism for reasoning with uncertainty, which is The majority of the approaches to reasoning with uncer-
organized in three layers: the representation, inference, and tainty do not properly cover these issues. Some approaches
control layer. In the representation layer we describe the lack expressiveness in their representation paradigm. Other
structure required to capture information used in the infer- lakepesvns nterrpeetto aaim te
ence layer and me ta-in formation used in the control layer. approaches require unrealistic assumptions to provide uni-ence~~~~~~~~~~~~~ lae n eaifrainue ntecnrllyr orm combining rules defining the plausible inferences.

In this structure, numerical slots take values on linguistic
term sets with fuzzy-valued semantics. These term sets cap- Specifically, the non-numerical approaches [8-101, are
ture the input granularity usually provided by human experts inadequate to represent and summarize measures of uncer-
or users. In the inference layer we describe a large number tainty. The numerical approaches generally tend to impose
ot uncertainty calculi based on Triangular norms ('r-norms), some restrictions upon the type and structure of the infor-
intersection operators whose truth functionality entails low mation (e.g., mutual exclusiveness of hypotheses, condi-
computational complexity. We show that, for a common tional independence of evidence). Most numerical
negation operator, the selection of a T-norm uniquely and approaches represent uncertainty as a precise quantity
completely describes an uncertainty calculus. From previ- (scalar or interval) on a given scale. They require the user
ous experiments we have determined the existence of a or expert to provide a precise yet consistent numerical assess-
small number of equivalence classes among the uncertainty ment of the uncertainty of the atomic data and of their re'i-
calculi (as a function of the input granularity). This pro- tions. The output produced by these systems is the result
perty drastically reduces the number ot different combining o1 laborious computations, guided by well-defined calculi,
rules to be considered. In the control layer we specify the and appears to be equally precise. However, given the diffi-
policy selection for the different calculi used in the inference culty in consistently eliciting such numerical values from the
layer, based on their meanings, properties, and contextual user, it is clear that these models of uncertainty require an
information. Conflicts and ignorance measurements are unrealistic level ot precision that does not actually represent
also proposed. a real assessment of the uncertainty.

GWITH UNCERTAINTY With few exceptions, such as MRS [14], the control of the
inference process in most expert systems has been procedur-

In most realistic situations, the information available to ally embedded in the inference engine, thus preventing any
the decision maker is incomplete and uncertain. In opportunistic and dynamic change in ordering inferences
automated reasoning systems, these two -facets of the intor- and in aggregating uncertainty. Usually, the same type of
mation have usually been treated independently. rheories aggregation operators (i.e.. the same uncertainty calculus) is
and techniques for dealing with incomplete (but precise) selected a priori and is used uniformly for any inference
information have evolved into the development of non- made by the expert system. In the few numerical
monotonic logics [17-18], Truth Maintenance Systems (TMS) approaches where conflictive information is detected [221 its
[161, and Reason Maintenance Systems (RMS) [4,71. handling is done in the inference layer, where the conflict
Theories and techniques for dealing with uncertain (but resolution procedure is embedded in the same combining
complete) information have been either adapted trom other rules. This procedure consists of removing the conflictive
fields, such as probability theory, by accepting unrealistic part of the information. The non-conflictive portion is then
global assumptions, or proposed as an ad hoc solution normalized and propagated as if the conflict never existed.
without formal justifications 161. In this paper we describe an alternative paradigm, where

In this paper we want to analyze the problem ot reason- some of the above shortcomings will be avoided. In Section
ing with uncertainty within the conteat of automated reason- 1, we postulate a desiderata that specifies the most impor-
ing. This implies that the formalism for reasoning with tant requirements for each of the three layers of representa-
uncertainty must exhibit the same structural (layered) tion, inference, and control. We then propose an approach
decomposition typical of other automated reasoning metho- to reasoning with uncertainty, organizing its description
dologies. fihe tormahsm must be based on sound theoreti- around the three layers structure. In Section 2, we discuss
cal foundation. to guarantee its general applicability to a the reprebentation layer that determines issues such as the
variety o1 reasoning tasks. The proposed layered approach appropriate data structure tor the uncertainty information
will be suitable to integration with Reason Maintenance Sys- (used in the inference layer) and meta-intormation (used by
tems that provide a distinction between the object logic the control layer), the input granularity selection, and the
theory (inference layer) and the meta logic theory (control term set calibration. In Section 3, we illustrate the inference
layer). layer that determines the uncertainty calculi to perform the
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intersection, detachment, union, and pooling of the infor- Control Layer
mation. In Section 4, we analyze the control layer that deter- 11. There should be a clear distinction between a conflit in
mines the calculi selection, the conflict measurement and the information (i.e., violation of consistency), and
resolution, the ignorance measurement, and the resource ignorance about the information.
allocation.

12. The traceability of the aggregation and propagation of
Desiderata for Reasoning with Uncertainty uncertainty through the reasoning process must be

The following desiderata represents a list of requirements available to resolve conflicts or contradictions, to explain

to be satisfied by the ideal formalism for representing uncer- the support of conclusions, and to perform meta-

tainty and making inference with uncertainty. A compara- reasoning for control.

tive evaluation of existing approaches to reasoning with 13. It should be possible to make pairwise comparisons of
uncertainty against a subset of this requirements list can be uncertainty since the induced ordinal or cardinal ranking
found in [61. To be consistent with the organizing principle is needed for performing any kind of decision-making
described in the Section 2, the desiderala is subdivided into activities.
the same three layers of Representation, Inference, and 14. There should be a second order measure of uncertainty.
Control. It is important to measure the uncertainty of the infor-

Representation Layer mation as well as the uncertainty of the measure itself.

1. There should be an explicit representation ot the ainowt 15. It should be possible to select the most appropriate com-
f Teidne s o be an d explicit re resentating o y thea n bination rule by using a declarative form of control (i.e.,

of evidence for supporting and for refiting any given by using a set of context dependent rules that specify
hypothesis. the selection policies).

2. There should be an explicit representation of the reasons
for supporting and for refuiting any given hypothesis, to be REPRESENTATION LAYER
used for conflict-resolution by the control layer.

3. The representation should allow the user to describe the Representing Uncertainty Information and Meta-

uncertainty of information at the available level of detail Information

(i.e., allowing heterogeneous information granularity). In a previous paper [3], we noticed that ",..the uncer-
4. tainty of some type of evidence or facts-is a complex object,

There should be an explicit representation of consistency, and it is unlikely that a single, uniform representation will
Some measure of consistency or compatibility should be ever be sufficient to model it. An intriguing approach is
available to detect trends of potential conflicts and to that of attempting to combine, whenever possible, the sym-
identify essential contributing factors in the conflict. bolic information provided by a complex data structure

5. There should be an explicit representation of ignorance to (frame-like), as in the theory of endorsements, with some of
allow the user to make non-committing statements, i.e., to the quantitative representations previously described, such
express the user's lack of conviction about the certainty as the theory of necessity and possibility."
of any of the available choices or events. Some measure This suggestion has evolved into the-development of a
of ignorance, similar to the concept of entropy, should be representation that captures uncertainty information, used
available to guide the gathering of discriminant informa- in the inference laver, and meta-information, used in the
tion.

control layer. This representation is a certainty-frame (or
6. The representation must be, or at least must appear to be unit) with a -set of associated slots. Some of these slots con-

natural to the user to enable him/her to describe uncertain tain numerical values, such as the amount ot confirmation
input and to interpret uncertain output. The representation and the amount of refutation of evidence A, denoted by
must also be-natural to the expert to enable him/her to N(A) and N(-A), respectively, that will be used and com-
elicit consistent weights representing the strength of the bined by the uncertainty calculi. N(A) represents the lower
implication of each rule. bound of the degree of confirmation of evidence A. As in

the case of Dempster's (or Shafer's) lower and upper proba-
Inference Layer bility bounds, the following identity holds: N(,4)=l-PI(A),

7. The combining rules should not be based on global whre PI(A) denotes the upper boun d of the certointy in A,

assumptions of evidence independence, and is interpreted as the amount of failure to refute A.

8. The combining rules should not be based on global Other numerical slots contain the evaluation of theassumptions of hlpotheses shu tess and exclusaeness. measure's uncertainty (a second order measure analogous to
the concept of variance), the evaluation of an entropy func-

9. The combining rules should maintain the closure of the tion defining the quality of the given information, and a
svntax and semantics of the representation of uncer- measure of the- (potential)-conflict. These slots will quickl
tainty. provide the control layer with a numerical summary to

10. Any function used to propagate and summarize uncer- assess the presence and amount of ignorance and conflict.

taintv should-have clear semantics. This is needed both A description of these slots is given in Section 4.

to maintain the semantic closure of the representation The non-numerical slots provide further information to
and to allow the control layer to select the most the control layer allowing it to reason about the evidence's
appropriate combining rules. uncertainty, rather than with the evidence's uncertainty.
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The selection of the appropriate uncertainty calculus must experiment aimed at the consistent use of linguistic proba-
be determined in the control layer on the basis of the bilities [11.
calculi's characteristics and the contextual information cap-
tured by these slots. Such contextual information is The triangular norms, which form the basis for the various
described by slots such as the evidence's source, the uncertainty calculi discussed in Sectior 3, take as arguments
source's prior credibility in providing that type o1 evidence, real lztnL'cr values on the [0,1 interval, which must be ii-
the (environmental or operational) conditions under which tially provided by the user or the expert. Their applicability
the source obtained such information, is extended to fuzzy numbers by using a parametric

representation for fuzzy numbers that allows closed form

Defining Input Granularity for Numerically Valued Slots solutons for arithmetical operation.

Szolovits and Pauker 1241 noted that "...while people INFERENCE LAYER
seem quite prepared to give qualitative estimates of likeli- This section summarizes the functionalities and axiomatic
hood, they are often notoriously unwilling to give precise definitions of the operators that form an uncertainty cal-
numerical estimates to outcomes." This seems to indicate culus. A detailed discussions of these operators can be
that any scheme that relies on the user providing consistent found in a previous paper [5], except for the detachment
and precise nunmercal quantifications of the conlidence level
of his/her conditional or unconditional statements is bound operators. These operators, not discussed in reference 5,
to fail. are examined in Section 3.1.4.

It is instead reasonable to expect the user to provide Defining the Uncertainty Calculi
linguistic estimates of the likelihood of given statements.
The experts and users would be presented with a verbal The generaliiations of conjunctions and disjunctions play
scale of certainty expressions that they could then use to a vital role in the management of uncertainty in expert sys-

describe their degree of certainty in a given rule or piece of tems: they are used in evaluating the satisfaction of prem-
evidence. Recent psychological studies have shown the ises, in propagating uncertainty through rule chaining, and

feasibility of such an approach: "...A verbal scale o1 proba- in consolidating the same conclusion derived from different
bility epressions is a compromise between people's resis- rules. More specilically, they provide the answers to the

tance to the use of numbers and the necessity to have a following questions:
common numerical scale" [1]. - When the premise is composed of multiple clauses, how

Linguistic probabilities offer another advantage. When can we aggregate the degree of certainty x, of the factsdealing with subjective assessment at probability, it has matching the clauses of the premise? (i.e., what is thedeaingwih sbjetie asesmet o pobailiyit as function T(xi ... x,,) that- determines xP,, the degree of
been observed [191 that conservatism is consistently present
among the suppliers of such assessments. The subjects of certainty of the premise?).
various experiments seem to stick to the original (a priori) When a rule does not represent a logical implication, but
assessment, regardless of new amount of evidence that ratheran empirical association between premise and conl-
should cause a revision of their belief. In a recent experi- clusion, how can we aggregate the degree of satisfaction
ment (j271, linguistic probabilities have been compared with of the premise xp with the strength of the associations,?
numerical probabilities to determine if the observed -conser- (i.e., what is the function G(xp, s) that propagates the

vatism in the belief revision was a phenomenon intrinsic in uncertainty through the rule?).
the perception of the events-or due to the type of represen-
tation (i.e., numerical rather than verbal expressions). The When the same conclusion is established by multiple
results indicate that people are much closer to the optimal rules with various degrees of certainty yi, . . ., y,, how
Bayesian revision when they are allowed to use linguistic can we aggregate these contributions into a final degree
probabilities, of certainty? (i.e., what is the function S(y, . . o y,) that

consolidates the certainty of that conclusion?).
The use of-three different term sets, with five, nine and thir- Triangular norms (T-norms) and Triangular conorms (T-
teen elements, respectively, has been proposed in a previ- Triaguar n os neral ad Tr inar c ons
ous paper 151. Each term set defines a different verbal scale conorms)-are the most general families of binary tunctions
of certainty, by providing a different set of linguistic esti- that satisfy the requirements of the conjunction and-disjunc-

mates ot the likelihood of any given statement. Thus, the tion operators, respectively. T-norms and T-conorms are

selection of a term set determines the uncertainty granular- two-place functions from [0,11x[0,11 to [0,11 that are mono-

ity (i.e., the tinest level of distinction among different quan- tonic, commutative and associative. Their corresponding

tifications o1 uncertainty). The semantics for the elements of boundary conditions satisfy the truth tables of the logical

each term set are given by fuzzy numbers on the [0,1] inter- AND and OR-operators.

val. A fuzzy number is a fuzzy set defined on the real line. Conjunction Operators
In this case, the membership function of a fuzzy set defined

&ll a ifuth zyaLL, i.c. tb. iidc 4.a-[0,i], .vuld-bt intcrpretud The funetiun TiU,b) aggregates the degree of certainty ot
as the inianing o1 a label describing the degree of certainty in ti'o clauses in the same premise. This function is a conjunc-
a linguistic manner [2,261. The values of the fuzzy numbers lwn operator and satisfies the conditions of a Triangular
have been determined from the results of a psychological norm (T-norm):
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T(0,0) = 0 [boundary] A T-conorm can be extended to operate on more than
T(a, I) =T(I,a) =~ a [boundary] two arguments in a manner similar to the extension for the
T(a,b) :s T(cd) if a s c and b :s d [monotonicity] T-norms. By using a recursive definition, based on the asso-
T(a,b) = T(b,a) [conimutativity) ciativity of the T-conorms, it is possible to define:
T(a, T(b,c)) =T(T(a,b),c, [associativity]

Although defined as a two-place function, a T-norrn can M--.'.,Y")=SS1 ,Y) "+)

be used to represent the intersection of a larger number of DeMorgan's Duality
clauses in a premise. Because of the associativity of the T- For suitable negation operations N(a), such as N(a)= 1-ax,
norm, it is2 possibl tor dxfin recursiEly,1,s T-norms T(.,.) and T-conorms S(.,.) are duals in the sense of

., x,, ~+1) fo x1 . ~+~E [011,as:the following generalization of DeMorgan's Law:

Disjunction Operators TRak) = N( S (N(a), W11) )
The function S~a,b) aggregates the degree of certainty of

the (same) conclusions derived from two rules. This func- This duality implies that the extensions of the intersection
tion is a disjunction operator and satisfies the conditions of a and union operators cannot be independently defined and
Triangular conorm (I'-conorm): they should, therefore, be analyzed as De, organ triples

(T(.. S(.,.), NOJ). Given a common negation operator like
S(1, 1) =I [boundary] N(a) = I-a, the selection of a T-norm T(.,.)- uniquely con-
S(0,a) =S(a,0) = a [boundary] strains the selection of the'T-conorm S(.,.).
S(a,b) sS(c,d) if a :5 c and b :f d [monotonicityl
S(a,b) S(b,a) [commutativityl Some typical T-norms T(a,b) and their dual T-conorms
S(a,S(b,c)) =S(S(a,b),c) [associativity]l ~ ,1 are the following:

T0(,b) min(a,b) if max(a,b)= 1 S0(a,b) max(a,b) if min(a,b)=0

0-otherwise I otherwise

T1(a,b) max(0, a+b-1) S1(a,b) =min(l,a*b)

T,,3(a,b) =(ab)I[2-(a+b-ab)] S135(a,b) =(a+b)l(H-ab)

T,(a,b) =ab S,(a,b) =a+b - ab

T,.5(a,b) = (ab)I(a+b-ab) S2.3(a,b) =(a+ b-2ab)/(1-ab)

T3(a,b) =min(a,b) S3(a,b) = max(a,b)
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These operators are ordered as following: Again, using the identity N(,P) =I - PI(P):

ro T, -: T1 3 T, - T. ,BT Pl(Q) =1 - T(1-11I(P), N(_P - _Q))

S3 !5 S2. 5 S2 S 13 S - 1 5 SO Using DeMorgan's identity S(x,y) - I- T((1-)(Iv)

Detachment Operators P1(Q) -SWPIMP, 1 - N(-P - -Q))
Pl(Q) S(B, (1-n))

Sja,b) =max(a,b) Given a statement P, whose certainty
value is located in the interval 11,B], and an inference rule P
- Q, whose lower bounds for sufficiency and necessity arc s The uipper bound Pl(Q)- S((-n),B) corresponid to the iinpli-
and n, respectively, one can derive the boundaries for the cation operator used in multiple-valued logics [201.
certainty value of the conctusion Q by using-thc detachment For S(x,v) -- S3(x,y) =Maxx,y), the upper bound P1(Q)
operator. Such boundaries, denote'd by [N(Q), PI(Q)j, are becomes Max (1-u, 13), the Kleene-Dienes implication opera-
represented by the interval 1Tskb), S(U2-n,B)], where T(.,.) tor.
and S(.,.) stand for any T-norm and its dual T-conorm. By For S(x,y) =S 2(x,y) =x+y-xy, the upper bnund P!(Q)
using DeMorgan's identity, this interval can be rewritten as becomes 1-a,+0, which has been called the Kleene-
[NQ), P(Q)I L[T(s,b), I-T(nA(-B))I. Therefore, the detach- Dienes.'Vukasiewicz implication operator.
ment operator can be uniquely detined by specifvin~g a T'- For S(x,y) =SI(x,y) =Min(l, x+y), the upper bound P1(Q)
norm TR.... becomes Mi(l, l-n±B), the Vukasiewicz implication opera-

P 1 (- Q) (Q -P)~ (_P - Q) r
Ib,BI is, I In, I Clearly, the interval [T,(s,b), l-T1(n,(l-B))] subsumes

[T2(s,b), I-T,(n,(1-B))j, which, in turn, contains the interval
Q [TI(s,b), I-T3(n,(l-B))j. The selection of the T-norm (and
IT(s,b), S(B,I-n)] therefore the selection of the detachment operator) wilt

determine the amount of ignorance (width of the interval)
Proof- associated with the conclusion by the detachment operator.

The previous analysis of the detachment operator
Let: b = (P)B = l(P I N-P) assumed that the conclusion is inferred from the minor and

s = (P Q) n N~P Q)major premise by applying modus ponens. The symbol "-s = (P -Q) = N-P -- Q)that is present in the major premise P-Q (.sufficiency) and
Q-P (necessity) represents the material implication.

An alternative interpretation of "-- is that of condition-
ing. Under this assumption, if the certainties of statementswhere N(A) and Pl(A) indicate the lower and upper bounds P and Q are given a probabilistic interpretation, then the

of the A's certainty, respectively, boundaries for the certainty of Q is derived from a perturba-
The lower bound N(Q) can be obtained by applying tion analysis of the probability formula:

Modus Pone--is to the minor premise and the sufficiet part
of the inference rule: P(Q) =p(Q I P) + p(Q I -P) p(-P)

P AND (P -Q) -m Q Let. b =N(P)
B = P1(P) =1 - N(-P)

By using any T-norm RC,.) to represent the AND operator, s =N(Q I P)
we have: S = PipQIP)

r =N(Q -.P)
T(N(P), N(P - Q)) =N(Q) R = PI(Q -P)
N(Q) = T(b,s)

where N(A) and Pl(A) indicate the lower and upper bounds
The upper Bound P1(Q) can be obtained by applying Modus o1 p(A), the probability of A. Then:
Tollens to the minor premise and the nccssarit part of the P-(ieQIP _- LQI_)inference rule: PbB PQS (ire,RQP] .- Q ie P

-P AND (-P - -Q) -~ -Q

By using any T-norm R(,.) to represent the AND operator, [mn(b-(-))sBr1),maS-R(b)(B-(I)J
wye have.

T(N(-P), N(-P - -.Q)) = N(-Q) When p(Q I -.P) is unknown (i.e., [rRI (0,11), then:

U-ing the identity N(-Q) = I PI(Q: Q
lmin(sb, sB), max((1- b Sb),(1- B '-SB))I

PI(Q) = T(N(-P), N(-l' - -Q)) [s(min(b,B)), max(l- b(1-S)),(I- B(I-S))J
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since: bSB and max(1-a,l-b)= I-min(a,b) The table for the T-conorms is identical to the above except
for the header, where the families of T-norms are replaced

[sb, l-min(b(1-S)),(B(1-S)) by the corresponding families of T-conorms, and the last
[sb, 1-(1-S)(min(b,B))] column, where the T-norms are replaced by their respective
[sb, 1- b(l-S) dual T-conorms, i.e., To by S0, etc.
Isb, (1 - b + Sb)]

These families of norms can specify an infinite number of
This result was reported by Ginsberg (29-311 and by Dubois calculi that operate on arguments taking real niumlbr values
and Prade [281. on the 10,11 interval. This fine-tuning capability would be

useful if we needed to compute, with a high degree of pre-
Notice that under the assumption of ignorance about p(Q I cision, the results of aggrega:ng information characterized
-P) (i.e., [r,Rj[0,11), the boundaries for the probability of by very precise measures of its uncertainty. However, when
Q are defined by (TZ(s,b), S,((1-b),S)] or equivalently by users or experts must provide these measures, an assump-
[T2(s,b), 1-T2(b,(1-S)]. tion of fake precision must usually be made to satisly the

requirements of the selected calculus.
Parametrized Families of T-norms

The T-norms described in previous sections have dif- Equivalence Classes Among T-norms

ferent properties and characteristics. It is sometimes desir- Because of the difficulties in eliciting precise and yet con-
able to blend some of these operators, in order to smooth sistent numerical values from the user or expert, the use ol
some of their effects. While it is always possible to generate term sets has been proposed. Each term set determines the
a linear combination of two operators, this would imply giv- finest level of specificity (i.e., the granularity) of the measure
ing up the associativity property. However, associativity is of certainty that the user/expert can consistently provide.
the most crucial property of the T-norms (21] since it allows This granularity limits the ability to differentiate between
the decomposition of multiple-place functions in terms of two similar calculi. Therelore, only a small finite subset of
two-place functions. The correct solution is to find a family the infinite number of calculi produces notably different
of T-norms that ranges over the desired operators. The results. The number of calculi to be considered is a function
proper selection of a parameter will then define the inter- of the uncertainty granularity.
mediate operator with the desired effect while still preserv- This result has been confirmed by an experiment [5]
ing associativity. where eleven different calculi of uncertainty, represented by

In a previous paper (51, six parametrized families of T- their corresponding T-norms, were analyzed. Figure 1 illus-
trates a plot of the eleven T-norms, where the parameter p

norms and dual r-conorms, originally proposed by Yager in Schweizer's family has been given the following values:
[251, Dubois and Prade fill, Hamacher 1151, Schweizer and -1, -0.8, -0.5, -0.3, 0 (in the limit), 0.5, 1, 2, 5, 8, o (in the
Sklar (211, Frank 1121, and-Sugeno [231, were discussed and limit). This plot shows the space of T-norms that produce
anlvzed. Of the six parametrized families, one family has the same result-K, for K0.25, 0.5, 0.75.
been selected due to its broad coverage and numerical
stability. This family, proposed by Schweizer & Sklar, is
denoted by Ts,(a,b,p), where p is the parameter that spans
the space of T-norms From To to T3. Mvore specifically:

TS (a,b,p) MAX (0, (a-b-)"P for p E -
U%

SS,(a=b,p) I - MAX (0, [(1-a- +(-b)-l - " forp 

The following table indicates the value of the parameter for
which this family reproduce the most common T-norms {T0, .

... T3}- '

TABLE 1: "
Ranges of values of parameter p

for Ts,((a,b,p)

Ts, (a,b,p) T-norm
g°8 8.5 1.I

p x

--- T 0
Ifr do. 4

-1 T,
T, 3  FIGURE 1: Space of T-norms

-0 T2 Ti(a,b) = K, for K=0.25, 0.50, and 0.75

-S T3
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The eleven calculi were used with three term sets con- TABLE 2:
aining rive, nine, and thirteen elements, respectively. For Percentage Differences Among the Eleven T-norms
each of he three term sets, the T-norms were evaluated on
the crossproduct of the term set elements, generating e Applied to the Three Term Sets
clobure of each T-norm. Each closure was compared with
the closure of the adjacent T-norm and the number of differ- T

ences were computed. The T-norms that did not exhibit sig- 0PA .
nificant differences were considered similar enough to be 6 13
equivalent for any practical purpose. A threshold value
determined the maximum percentage of differences allowedT. .W M
among members of the same equivalence class. Only three
calculi generated sufficiently distinct results for those term

sets that contained no more than nine elements. Five calculi
were required when a larger term set (containing thirteen
elements) was used.

The three calculi required in the first case were defined
by the following operators:

(T1(ab), S1(ab), N(a)) T. T ." ' ....

(T2(a,b), S,(a,b), N(a)) TIr- js,

I(ab), Sj(ab), NOa)). Pcrcentiage Differences across I I T-Norms

where Na) is the negation operator Nfa)m 1-a, and T,(a,b) interpretation suggests-that T, is appropriate to perform the
(S,(a,b)) are the T-norms (DeMorgan duals T-conorms) -intersection ot lower probability bounds. T3 is appropriate
detined by the Schweizer family T,(a,b,p;) (S (a,b4)) for to represent the intersection of upper probability bounds.
the following three values of p: T is the classical probabilistic operator that assumes indepen-

I -1 T, (a,b) = max(0,a~b -1) dence ot the arguments; its dual T-conorm, S, is the usual
S, (,o,b) = Inin(l,a +b) additive measure for the union.

p-O T, (a,b) = ab Figure 2 provides a geometric description of the meaning
S2 (a,1) = a+b-ab of the three T-norms. The figure illustrates the result-of 1T

(0.3, 0.8), T, (0.3, 0.8), and T1 (0.3, 0.8). T, captures the
p-X T 3 (a,b) = min(a,b) notion of worst case, where the two arguments are con-

S3 (a,b) = max(a,b) sidered as mutually exclusive as possible (the dimensions on
which they are measured are 180 ° apart). T2 captures the
notion of independence of the arguments (their dimensions

In addition to the three operators defined above, the five are 90' apart). T3 captures the notion of best case, where
calculi (required in the second case) need the following T- one argument attempts to subsume the other one (their
norms: dimensions are collinear, i.e., 0° apart).

-~ -0.5 TS, (a,b,-0.5) =max(0, ao.5+bo 5-1) 2

S. (a,b,-0.5) = 1-max {0, [(1-a) 0 +(l-b)P'-1I} 2  .1

p 1 Ts, (a,b,1) = max(0, a't+b--1) -' .
Ssc (a,b,1) = 1-max {0, [(1-a) i+(l-b)--1I-I

Table 2 illustrates the equivalence classes.
FIGURE 2: Geometrical Interpretation

CONTROL LAYER of T1(0.3, 0.8), T(0.3,-0.8), and T3(0.3, 0.8)

Selecting Uncertainty Calculi The other two T-norms, Ts,(a,b,-0.5) and Ts,(a,b,1), can be
used when the information- is known to be mildly negative

The selection of the most appropriate uncertainty cal- or positive correlated, without requiring the drastic extremes
culus depends on how well the calculis characterktics fit of mutually exclusiveness or -iihtiimption. The two addi-
the local assumptions described bl, the context information. tional calculi provide intermediate degrees of pessimism and
To accomplish this, it is essential to analyze the properties optimism in the range of worst caselbest case analysis.
of the calculi-used in the inference layer.

Since T-conorms and detachment operators can be Measuring Ignorance and Consistency

expressed as tunctions of the negation operator and the T- The numerical slots that provide control information are:
norms, to understand the meaning of each calculus it is the neasure's uncertainty, the entropy functton, and the incon-
enough to analyze its underlying T-norm operator. A first sislency measure.
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The measure's uncertainty is defined as the area under In the representation layer we have advocated the use of
the curve delimited by the (fuzzy) interval [N(A),PI(A)I. frame-like structures, capturing uncertainty information,
When N(A) and Pi(A) are crisp numbers such measure is such as the degrees of confirmation and refutation, as well
simply the difference PI(A)-N(A) 1131. as uncertainty meta-information such as the information+ quality and measure's precision. The uncertainty informa-The entropy function is used and combined in the inference layer by an
(i-x) log(1(x)) where K is a normalizing constant (e.g., appropriate uncertainty calculus. The uncertainty meta-
K=1/Iog(2) normalizes the range of fix) to the interval (0,1]). information is used in the control laver to select the
The evaluation of the quality of the information is given by appropriate uncertainty calculus, based on local (i.e., contex-the interval [f(N(A)), f(PI(A))]. When N(A) and P1(A) are aprpituneanycauusbsdonlal(e.cnex
tuv inuberal set ot closed-Wormhforulen [,5 asd on) a tual), rather than glohl assumptions. We have proposed thetuzzx numbers, a set o closed-orm formulae [2,51, based on use of linguistic term sets of likelihood statements to anchorthe extension principle 26], can be used to evaluate such a the input granularity for the numerically valued slots.function.

In the inference layer, we have shown that any truthThe detection of inconsistency occurs when functional uncertainty calculus can be represented (and
NA) > PL(A). A measure of such inconsistency is given by analyzed) in terms of its underlying T-norm, an associative,

commutative operator that extends the concept of set inter-

CONCLUSIONS section to multiple-valued logics.
The truth functionality of the calculi used in this layerWe have proposed a layered architecture to define the entails low computational complexity: the aggregated cer-

representation, inference, and control of uncertain informa- tainty of any logic expression can be computed ,hrectly from
tion. This architecture is summarized in Figure 3. the certainty of the individual components. The associa-

tivity of the calculi guarantees the recursive decomposition
of multiple-arguments aggregation into two-argument aggre-
gations. This property is extremely useful when, by decom-REPRESENTATION LAYER posing large problems into smaller sub-problems, we can

Numerical Information: then make use of special hardware (custom VLSI chips) to
Confirmation concurrently evaluate the sub-expressions ad aggregate the
Refutation partial results.

Numerical Meta-Information: We have shown that, for a fixed input granularity, the
2nd Order Uncertainty Measure .
Quality of Information (Entropy) infinite number of uncertainty calculi (T-norms) can beConsistency Measure reduced to at most five distinct equivalence classes. This

Non-numerical Meta-I'nformatlon: fact allows us to individually study the calculi characteristics
Source of Information and to understand the assumptions that the use of each cal-Source's Prior Credibility culus would entail (mutually exclusiveness, uncorrelation,Information Gathering Task's Conditions subsumption).

In the control layer, we have proposed to select the
appropriate calculus based on each calculus' properties (con-

INFERENCE LAYER text independent information) and on the available meta-
information describing the situation (context dependent

Uncertainty Calculus UCI: information). Unlike the theory of endorsements, where a
Negation NI
T-norm TI combinatorial problem occurs when the semantic rulesT-conorm SI = f(NI, TI) (determining how endorsements are aggregated) must beDetachment DI = g(Nl, TI) defined for everzy value conilinatton, the selection policies set

Uncertainty Calculus UC2 (meta-rules) to be defined in this layer is relatively small.
The selection policies set must only determine which of the

Uncertainty Calculus UC3 three (or five) calculi, defined in the inference layer, is the
uncertainty Calculus UC4 appropriate one for any given case. Usually these cases areUgrouped in hierarchical contexts (subclasses) so that the
Uncertainty Calculus UCS -election policies can be assigned to the context nodes and

inheritance methods can be used to pass the assignment to
the rule instances. Once a calculus has been selected, the

Icombining rules for every value combination are uniquely
CONTROL LAYER determined.

Cuicuiub Sclectiunl Rather than embedding conflict resolution in the infer-I -u kence layer, as it is the case for other approaches, we have
Ignorance Resolution proposed to perform conflict detc,.tion and resolution in the

', 'Conflict__control layer. This is motivated by the fact that resolvingConflict Resolution conflicts or ignorance is part of the resource allocation prob-
lem which is best done at this layer: deciding if, when, and

FIGURE 3Thow to eliminate conflicting information depends on various
factors, such as the magnitude of the conflict, on the goal's
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INTRODUCTION manner: the knowledge representation scheme, the search

Reasoning by Analogy is a two edged sword: on one strategy used by the model building scheme, and the ana-
hand it attempts to solve problems that are beyond the logical method. In this section on philosophy, we infor-

mally describe the approach and requirements for analogical
scope of the knowledge contained in the Knowledge Base; reasoning, an overview of the problem solving approach,while on the other, it provokes the insidious problem of followed by a discussion of the goals and requirements of

searching a universe of potential candidate matches con- o

structed under the guise of similarity. This interim report the knowledge representation and search strategies.

summarizes some of the work in progress to strike a balance Although work is well along in producing an implementa-

between these two opposing forces. First, we will describe tion of the system we will describe, the supporting ideas

the philosophy behind the decisions relating to the overall are, by no means, immutable: it is quite likely that difficul-

architecture o' the system: its knowledge representation ties will inspire alterations.

scheme, its .,arch strategy, and its analogical method.
Then we will offer a few preliminary results and a status
report. In our work, the term analogy will be used in a fairly

broad sense: the comparison of problem- solutions based on
PHILOSOPHY a notion of similarity for the purpose of recognition of solu-

The class of problems which are addressed by the tions or synthesis of new solutions. As we have said, our
heod cflasoingobemsy wh andes ed y trer work on reasoning by analogy will concentrate on finding

method of reasoning by analogy described in this report solutions to problems which are not directly contained in
have the characteristic that their solutions are not directly the knowledge base. The motivation for this type of reason-
contained in the Knowledge Base either in the form of a
fact, or as a belief which is directly deducible-from a set of ing is fairly simple: as expert system technology is applied
rules applied to the facts. We refer to these problems as develop complete and consistent knowledge bases for these
novel with respect to the knowledge base meaning that the p om pltea ist knold bae fortes
solution must be derived from available solutions by one or problems. One alternative is to build multiple cooperating
more applications of what we may loosely refer to as a sub-multi-
stituion. Inap eformingcasubution, the reasoning sys- disciplined problem. Each expert could be quite complex
stitution. In performing a substitution, th in but restricted io its specialty. We believe that this approach
tem must h rothesize from uncertain evidence that, in requires careful consideration of the communication
deriving the required goal, a known reasoning step can be between the systems to make them lunctional and implies a
modified to produce a new step which is only weakly justi- design coupling between the systems that would have hope-
fied by the hypothesis and the knowledge base. fully been-avoided by the choice of a multi-expert architec-

To perform reasoning in which modifications may be lure. The alternative we have chosen is to build an abstract
made during the deductive process, the reasoning system problem solver which produces solutions from approximate
must very carefully address the problem of search. The information.
main objective of this work is to devise a reasoning method Much of the previous work on analogical reasoning-has
which can derive solutions to these novel problems by con- been based on the method of matching the structures
structing near miss solutions contained in the knowledge
base in order to confine the search. We will address three representing the problem to a representation of a candidate

issues regarding the machinery required to reason in this solution. Associated with the matching procedure is some
sort of measure of similarity which is used rank the good-
nes" of a solution and, perhaps, to order the solution

This work was partially supported by the Defense d.danccd search. One serious-oroblem which has -been encountered.,,.,amh Pivj.- - ,A t;,.y (DARP'A) -.o.,ti,,. FX3L'-,-C-G033 atepighssotoraongishttereeettons
Views and conclusions contained in this paper are thoise o tc attempting this sort of reasoning is that the representation is
authors and should not be interpreted as representing the official very important in evaluating the similarity. It is hard to
opinion or policy of DAR'A or the U.S. Government. devise a general representation scheme in which an often

t This report summarizcs a forthcoming paper describing the d.tails of poorly understood problem/solution can be uniformly
this %%ork
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expressed. Additionally, as the problems become complex, than a collection of new insights, then the multi-staged
there can be an excess of unimportant information in the approach appears to be a more facile method for combining
representation which can cause the search for a solution to ill-mated techniques than a more tightly coupled integration
be unduly complicated, method.

By building a system which uses approximate informa- Secondly, we observe that complex recognition problems
tion, it is possible to span a larger class of solvable problems are often solved by starting with a set of observables, which
with less overall information. A major drawback to this we shall call features. Features are of two kinds: natural
type of system is that it is nearly impossible to know how to features, which are usually associated with the physical
debug or expand a very large system due to the tenuous characteristics of the involved objects, and process derived
coupling between tacts and solutions. To address this issue, features, which have no observable correspondence but are
we propose a representation which intends to capture the essential to the implementation of the associated recognition
conceptual underpinnings of the facts in the knowledge process. The primitive features are combined and recom-
base. We have focused on the problem of making the bined into more complex process derived features in a
representation scheme flexible and highly tuned to each staged sequence which reduces irrelevant information. The
specific pr. ,em. development of these features is usually ordered due to the

Constructing a problem specific model is done dynami- nested feature composition. Additionally, due to the explo-

cally as reasoning proceeds. The basis for the specific prob- sion of feature combinations, it is necessary to restrict the

lem model is a hierarchical model definition which captures number of features which may be composed within a given

ra' - levels of detail from various points of vi' w. The stage. From the number of typically computed features the

intent of dynamic model construction is to provide a simple staged approach is again suggested.

model of the problem from which analogies may be drawn. And finally, we observe that even it we were to try to
Creating a very simple, uncluttered model reduces use an unstaged solution, the potential connectivity of the
irrelevant details that can hopelessly confuse the search. In various modules required to express the solution would be
a corresponding manner, the matching procedure avoids very large without some restriction which we propose as a
using detailed differences to measure similarity. Instead, it function-of the staging.
tries to move to the maximum level of abstraction before
making a comparison. This has the benefit of making con- As a -result of this philosophy, we have chosen to use a
cepts- important while prohioiting "un-semantic" comparis- relatively simple reasoning strategy which relies on com-
ons. An un-semantic comparison is one for which there is plexity of the model structure for richness. The strategy

no conceptual founding in the knowledge base. The most may easily be repeatedly applied at each stage to create new

blatant human example is the pun, but there are also many sets of features. Preliminary results have indicated that a

more subtle and purposeful kinds of associations such as useful class of problems is solvable by this specialized

rhyming for poetry, thesaural inference, and seemingly method (this is a good sign since- we are trying to devise a

unconnected insight, all of which may occur, initially, by programming paradigm for analogical reasoning). It is

chance but may be -learned and -practiced. When it is desir- encouraging that thesame method appears to have applica-
able to make such undirected comparisons, a mechanism is tion to a variety of problem categories such as planning,
provided for creating arbitrary associations but at a much design, and diagnosis. Differences in the approach to these

higher cost (as we believe it should be). problems is controlled using the notion of point of view
which orders the way in which information is portrayed by

In the next sections, we will-describe the overall strategy the knowledge base rather than a difference of method.
embodied in the reasoning system. Much of the discussion The related, but orthogonal notion of context, meaning the
pertains to the modeling scheme which is the backbone of semantics of a particular problem specification, will not be
the system and deserves the majority of the attention. addressed here as it would have little bearing on the details

of our method.
The Problem Solving Strategy And so, due to this choice of architecture, the notion of

The analogical- method described here is embedded in a building a general problem solver need not be addressed,
problem solving system. In order to restrict the scope of rather, we will concentrate on techniques of using a special-
this work, we have chosen to bypass some issues and give ized method to solve a variety of problems. If the method is
only cursory mention to others. The important supporting to be simplistic, then to gain the necessary variety in solu-
philosophies are those regarding the overall architecture, tion capability, it must be applied successively under very
the construction of the working representation for perform- select conditions imposed by the goals. An example will
ing analogy, and the search strategy. As a side issue, the illustrate our point thus far.
philosophy regarding model content has raised some Consider the problem of analyzing a visual scene: the
interesting questions which we will report. image understanding problem. This is a hard class of prob-

[he approach embodied in the problem solver is a lems and-has achieved the most success for very constrained
multi-stagcd decomposition proccdurc using a hicrarchical or rcstrictcd problems. Traditionally ima,, pruccssing has
model paradigm as the representation scheme. The reason been based on the notion of extracting features from the
for choosing a multi-staged decomposition is based on image data, combining these, and repeating the process
several observations. First, we observe that-the known solu- with higher level features until a high level representation
tions to this class of problem are few and, usually, quite of the scene is obtained. The high-level representation may
complex. If we consider the notion that a solution might be be matched against some models to derive the scene con-
composed from a common, flexible set of techniques rather tent. This-is an admittedly terse, but not terribly inaccurate
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summary of one kind of image processing process. As we incorrectly constructed. At any particular level, these two
would expect, many possible feature representations may be faults are indistinguishable and the reasoning system goes
derived. For example, the natural fcatures could be objects, about trying to construct a more detailed model which
subparts, collections, and other geometrically related predicts the correct behavior. In answering a query about
features, while the process related features would be edges, what is known by the knowledge base, the reasoning sys-
corners, edge direction, intensity, intensity derivatives, tem never alters the model. It is always assumed to be
regions, boundaries, and the like. To avoid the combinator- correct at its own level of detail. This is an important issue
ics, a decoupling of the separable processes and the associ- in that it is the foundation of the constructive procedure for
ated data is necessary. By this we mean that the interfaces a known solution. The precise relation between models is
between the various processes must be organized around being formalized and will appear as a -future result.
the features as the communications symbology, and the So, for our example of the lead-acid battery, at the top
chosen features must adequately represent the content otthe data. Further, the mechanisms which drive the level, we simply expect the voltage to be present at the out-
tetraction fdfatFures, s chanios, g rse ad put terminals. If we are designing a circuit in which noextraction of features such as convolutions, grammars, and further- information is required, then the query would onlythe like, must be very efficient and closely tuned to the access the top level. Similarly, if we are diagnosing aexpected image behavior to be effective in any real imple- failure, then if the voltage is not present, there is no expla-
mentation. We would like to dynamically construct a model nation for the fault at this level, and the model is invalid
which is carefully matched to the required- observables andintenalstaes s w prcee. Thn w mut ak fom hat (we will explain later what is to be done). In a planning
internal states as we proceed. Then we must ask from what situation, if we wish to install a new battery in the tank,basis the model is constructed and how it is possible to then observing the output voltage may obviate any further
derive the model for a problem which is initially unknownto te sste? T unersandthi prces, w mut frst steps to validate performance. Specifications involvingto the system? To understand this process, we must first other observables which are not included in the top level
describe the knowledge representation scheme in some oteobrvbswhcaenticlddntetplvldetail, model, simply invalidate the utility of the top level model:we re-iterate, the current level model is considered to per-

Knowledge Representation fectly explain the expected behavior-until a model failure is
determined. The search strategy decides how to correct the

As we have said, knowledge is represented using a failed model.
hierarchical model paradigm. Models are constructed and In describing the search strategy, we will address two
used from a specific point of view which may differ from issues: the local creation of a model during a stage, and the
construction to use. For example, a set of models for anobjet my b costrutedfro th poit o viw wich global process of forming an analogical solution to-a prob-object may be constructed from the point of view which lem.
represents the conceptual notion of how the object might be
designed or constructed. In actual use, the models may be Search-Strategy - Forming a Local Problem Model
more effective if viewed from a different point of view. We
wish to recognize and understand this issue before propos- The process of forming a local problem model is
ing a solution. Thus, the current philosophy is to directly intended to construct a very tightly tuned representation of
encode the point of view information in order to make it only the information -required to solve the immediate prob-
explicit both to the reasoning-program, and to ourselves for em - at least from the standpoint of-search. The algorithm
further examination. is intent on being very frugal about adding new information

From a specific point of view, then, the set of models and, thus, the overly complex model paradigm.
representing an object may be viewed as a succession of Continuing with our example, let us examine what
vertical layers that are ordered such that, in some sense, occurs when a model-failure is discovered. Suppose we are
each layer is a-more complete or complex description of the diagnosing the tank electrical system and find that the vol-
expected behavior of the object from the stated point of tage on the output terminals is out of specification. Our top
view. The top layer depicts the normative state and the level model does not predict this behavior and, to proceed,
confirming observables. For example, if the behavior of a we must construct a more detailed model to account for this
lead-acid storage battery (whose function is to supply power performance. Assume that the next level model contains
to a specific electrical system in a tank) is to produce a cer- information on the voltage-current behavior of the battery.
tain voltage at the output terminals, then the corresponding Simplistically, we might just add this knowledge to our
top level model of the battery is one in which the required current understanding of the battery to conclude-that some
voltage is present - perhaps completely independent of the check of the loading -conditions is relevant. There are two
load, the charge condition, the electrolyte condition, the difficulties with this approach. First, this may not be the
ambient temperature, and many other important, but secon- most likely fault, perhaps checking the charge condition is a
dary parameters. The observable is the voltage and is better diagnostic method. Secondly, -a more serious flaw is
represented either by a procedure for obtaining its measure, that the new information may be in-conflict with the previ-
or a pointer to another model-for devising such a procedure. ously expected behavior portrayed by the top level model.

It is our philosophy that- the model scheme should por- To deal with the first problem, we cast each problem
tray the expected behavior and perhaps some embedded class in the framework of a specific point of view. As a
functionality at a particular level of the model and from a matter of choice, we could attempt to deduce the point of
specific point of view. If the observed or desired behauior is view-from some sort of specification, but, for our work, this
different than that predicted by the model, then, either the appears to be off the track. Hence, as we have said, we
model is insufficient in detail, or the model has been have specifically coded the point of view for each class. In
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addition, we have attempted to code the point of view associated ideas. Function is predominantly represented in
implicit in the model structure as it is presented. We will a hierarchy for genetically related classes, along with cross
evaluate this method for its facility in guiding the interpreta- links which depict associations. Associations may be at dif-
tion of a design oriented model to be used for a planning ferent levels since the functional information propagated
and a diagnosis task. The utility of this approach remains across any of the links must undergo a transformation
to be shown as the implementation proceeds. As a matter before it can be used to form an analogy. For example, the
of philosophy, we feel it is an important area which should top level model of the battery model would depict it as a
not fail to be addressed. device for the storage of electrical energy and as a device for

The second difficulty appears to have deep implications, supplying electrical energy. In the same hierarchy, other
that model conflicts might creep kinds of energy storage devices would also be linked. CrossIt is certainly predictable thtmdlcnlcsmgtcep links would account for less conceptual associations such as

into-the model code as a matter of course. The issue we are

addressing here is that we may choose to create conflicting other things that use lead or whatever. Not all intents and

models at different levels simply to hide irrelevant details at purposes can be accounted and thus the need for analogical
the higher levels. Thus far, we have found this to be a methods. It may be necessary to perform fairly wide rang-

valuable asset. For example, the voltage/current relation ing search to form (previously) unlinked associations. We
above could have been modeled at the top level as allowing intend that these should be strictly confined by the search

infinite current with no drop in voltage - no internal battery procedure. As an example, clearly the battery could be

impedance. These simplifying assumptions such as ignor- used as a door stop, a boat anchor, or as a flower planter

ing complex impedance, ignoring friction, ignoring inertia, with a little ingenuity. These are not expected uses and
an a wh~ole host of others, have been used effectively in would not be accounted. On the other hand, the model forproblem solving by humans. Since it is unreasonable for an (electrical) resistor would usefully include the electrical

the system to constantly check for model consistency, we definition as well as the side effect of producing heat.
have chosen to sidestep the problem by annotating the
differences in the models to avoid complex inheritance The model interface defines the inputs, outputs, states,
methods. For our first implementation, any information and properties exhibited by its instances. This is a, more or

replicated at a lower level subsumes the inherited informa- less, conventional black box representation which also

tion. Complex subsumptions will-be directly noted and not serves the purpose of identifying the-observables. By this

deduced. At first glance, this does not seem to be the right we mean those quantities which are somehow measurable

approach, but it will serve to create instances of the problem by the enquirer. The plan for measuring these is contained
until a more correct approach is understood. in the behavior description, described shortly, and may be

either a procedure or a complex plan which invokes other
Global Control - Finding Known-Solutions models. We see the need to supply an ordering mechanism

for acquiring this information but it is not clear how it will
Let us, for a moment, step back from our example and be represented. Currently the notion of an additional

look at the overall search process. Each stage of the solu- model for each process is favored. For the battery, the vol-
tion is a reversible process which builds a local model of the tage characteristics would be described along with a pro-
prublem domain using two strategies for search which are cedure or pointer to another model which describes how to
oriented toward a specific point of view. The search stra- measure it. Incidently, other properties, such as physical
tegies are the equivalent of forward and backward chaining characteristics, fall under another point of view and so it is
and-represent recognition and synthesis. The point of view possible to deduce the idea of using the battery as a boat
allows the application of these two strateies to be ordered anchor within the same model. Similarly, for the -resistor,
in such a way that particular goal methods are observed. the notion of using it as-a heater can-be gotten from a side

Now suppose that, in the process of searching for a effect directly included in the functional- specification. More

problem solution in- the knowledge base, the available infor- complex associations use-the functional association links.

mation fails to satisfy the given goal. The results of the The model composition defines the internal structure of
search leave us, if the notion of point of view is successful, the model in terms of other models or components and- their
with a near miss solution embedded somewhere in the his- interconnections. This is the block diagram of the model
tory of the search. Two questions arise at this point: 1) how internal structure. It is the vehicle which allows the search
do we identify the closest or set of closest misses, and 2) process to find more detail when the model fails to-explain
how can we modify one of the members of this set to pro- the current information. Here, we will highlight the-distinc-
duce an acceptable solution? In order to consider these tion between our definition of a model and a component. A
notions, we will first describe some details of the model component has exactly the same composition as a model butscheme. opnn a xcl h aecmoiina oe u

it is designated to be able to act as a primitive concept in

A STRUCTURED MODEL that it is self-sufficient without reference to its composition.

REPRESENTATION-PARADIGM In a crude way, components delineate the natural modular-
itv Present -in the structure of the physical world- (i.e. large

A model is an abstraction for representing the class of its separation- of physical effects) which we mentioned earlier.
instances. It is internally consistent but may portray con- This type of definition provides the means to avoid using
flicting beliefs that-are differentiated by their context. For a "quantum mechanics" when analyzing a macroscopic physi-
given point of view, a model contains four specification cal situation; or to avoid using Maxwell's equations when
components. As we have said, the finction defines the evaluating a simple electrical circuit. It alerts the reasoning
intentional purpose of the model including side effects. system to-the natural separation of treatment which occurs
This component of a model is the primary link between in most scientific disciplines.
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Finally, the behavior defines the relationships between the TEMPORAL DEDUCTIVE MAINTENANCE
states, inputs, outputs, and properties which define the Since we allow modifications to be made (locally) to the
external appearance of the model in the interface specifica- tacts during the reasoning process, the (local) appearance ot
tion above. It defines any necessary action procedurcs t knede bason-n toc Ts, the easing

either within the model or within another model to deter-reasoningmine how the terminal action processes get actual work steps are not reflexive and the implication is that justifica-
done. tions for facts can vanish. Since we wish to allow this type

of reasoning in order to perform analogy, then to deal with
this problem, we define the notion of a weak justification as

SIMILARITY - FORMING AN ANALOGY one which is grounded in a time (i.e. event frame) prior to

Let us return, now, to the two questions which arise the current one and not grounded in the current one.
alter we have tailed to find an acceptable solution in the A utility called the temporal deductive maintenance sys-
knowledge base. We must be able to determine how to tem, (TDMS), manages the state of the knowledge -base to
identify the closest or set of closest misses, and how to track these changes over time and maintain (relatively) effi-
modify one o1 the members of this set to produce an accept- cient updates. It is a poor man's reason (or truth) mainte-
able solution. nance system along with the appropriate machinery to

We have chosen the strategy that each failure will be automatically provide the reasoning system with this ser-
traced along the chain of supporting models to the point vice. No interest in efficiency is pretended: the intent ofthat is most abstract, but still embodies the failure. We will this mechanism is strictly for its facility since it allows the

tha ismos abtrat, ut til emodis te filue. e wll automatic return to a specific -reasoni mg system state without
refer to the chain of models from this most abstract point to
the leaf model as the failure chain. Notice that the failure programming overhead. In addition, it maintains temporal

may not stem from the top level since new details may be event frames which will be useful for future projects.
introduced at any point. Contained in the function defini-
tion of the top model in th, failure chain is the abstract STATUS
description of the conceptual functionality of the object of The system described here is currently in the preliminary
the model. From this model down the failure chain to the stages of design and implementation. The deductive
leaf model, is an ordered set of disrupting concepts: the top retrieval mechanism is in place along with the model build-
model being the most desirabl2 since it has the strongest ing search mechanism. Experiments have been performed
conceptual theory for the failure and also the fewest poten- on a simple planning problem which does not-require anal-
tial search nodes. Each of the function definitions in the ogy, in order to evaluate the model building strategy. Next,
models along the chain points to the ISA hierarchy of a simple diagnosis problem will be used to develop the
related models. This ranking is the first factor in- the meas- point of view mechanism. Finally, a simple analogical prob-
ure of similarity. The second factor relates to the use o1 lem will be constructed to provide a well understood test
cross association links from each model along the failure case. Each of these examples will use the same knowledge
chain. It is not yet clear how to choose between -proceeding base which will be augmented as the implementation
down the failure chain and/or across the association links to proceeds.
propose new avenues for search.

Once we have decided to evaluate a new model to RESULTS
replace part or all of the failure chain, we must decide how Although it is far too early to draw any conclusions, the
to modify it to effect i solution. We hive approached this chosen hierarchical model structure has uncovered some
issue by assuming that the symbolic terms in the proposed interesting issues regarding the distribution of functional
issuel baing bedircthatcompatiblewith the symboes in the information within the models. The philosophy described
model will not be directly compatible with the models in the eale deat rmsmpeiu ok Incuaresig
failure chain. An equivalent of strong typing of these terms earlier departs from some-previous work in causal reasoning

are described in auxiliary models which provide methods to in that there seems to be little penalty for mixing general
perform -traoislations. So, for example, if we were trying to laws about object behavior along with specific functionality
find a mechanical component to perform a desired function since the two are separated within the model. It seems
by analogy of mechanical to electrical systems, then the acceptable to even describe specific instance data as the

required translation of terms would be based on-the models expected behavior at one level with the assurance that it can
for these term equivalences- for a given point of-view. Lati- be rescinded at another.
tude for proposed modifications is net arbitrary and must be
deduced from the term models.
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MODAL PROPOSITIONAL SEMANTICS FOR REASON
MAINTENANCE SYSTEMS

Allen L. Brown, Jr.

ABSTRACT

Non-monotonic logics are examined and found to be The sense in which many of the non-monotonic logics
inadequate as descriptions of reason maintenance systems that have been studied might be descriptions of RMS's, or
(sometimes called truth maintenance systems). A logic is reasoning agents more generally, is roughly the sense in
proposed that directly addresses the problem of characteriz- which a formalization of recursive function theory might be
ing the mental states of a reasoning agent attempting to rea- the description of a programming language, say PASCAL.
son with respect to some object theory. The proposed logic, Recursive function theory can be taken as an ideal object
propositional dynamic logic of derivation (PDLD), is given a that a PASCAL implementation attempts to mechanize.
semantics, and a sound and complete axiomatization. The However, recursive function theory has little to say about
descriptive power of PDLD is demonstrated by expressing the actual semantics of PASCAL programs. Inevitably, a
various inferential control policies as PDLD formulae. formal semantics of PASCAL would include recursive func-

tion theory, but most of the meat in axiomatizing PASCAL
INTRODUCTION is the formalization of the states-of the abstract machine that

In this note we will elaborate the propositional fragment is interpreting PASCAL.

of an axiomatic semantics of reason maintenance systems There are some researchers who have attempted to
(RMS's) [3]. The development of such a semantics stems address the issue of describing the reasoning agent and its
from the desire to provide a declarative specification mental states. Weyhrauch's FOL system [181 has an explicit
language for RMS's with particular emphasis on the descrip- notion of object theory and meta-theory. (Indeed, FOL per-
tion of the control of their reasoning processes, and to serve mits the construction of arbitrary hierarchies of such
as a formal setting within which to compare and contrast object/meta pairs.) FOL is an axiomatic system, specifically,
the properties of different RMS's. a first-order system with types. From my perspective, FOL's

There is considerable ongoing research activity in the main defect is that a FOL meta-theory, if taken as an

realm of non-monotonic reasoning 11 The avowed aim of attempt to formalize the properties of reasoning agents, has

this research is to capture-in a logical formalism some of the no explicit notion of the agent's mental state. We believe

non-monotonic processes (e.g., default reasoning and that an explicit notion of mental state is key to many

defeasible reasoning) that are clearly part of the common representations and control issues.

sense reasoning repertoire enjoyed by humans. Implicit or Doyle [3] develops a very powerful functional- semantics
explicit in many of these formalisms is the notion that the for theories of reasoned assumptions. His semantics, in the
formalism in some sense describes the process carried out guise of an admissible set, has a definite notion of the men-
by the reasoning agenL In [11] McDermott and Doyle tal state of a reasoning agent. He elaborates his functional
analyze -Doyle's TMS [4] in terms of the non-monotonic logic semantics so as to be able give taxonomic structure to a
that they elaborate in [111. Their analysis suggests that the wide range of reasoning formalisms. He focuses primirily
logic of TMS is a fragment of their non-monotonic logic. I on giving an- account of what ;nferential theories are sanc-
believe that their analysis-contuses the logic practiced by the tioned by different formal notions of reasoned assumptions.
reasoning agent (the TMS) with the particular --t theory Our interest, in contrast, is in describing the behavior of a
that the agent reasons about. A reasoning ag, tould be reasoning agent when constrained to adhere to particular
viewed as a finitary computing entity. The a ,aputations object theories. We sh.ild also mention that we prefer
that it carries out have the-express aim of mechanizing some axiomatic to functional specifications as we thi;ik there is
object theory. Depending on the nature of the object theory much more available technology for compiling operational
or the-reasoning agent's grasp of the theory, the mechaniza- RMAS's from axiomatic descriptions.
tion may turn out to be imperfect. With respect to logics Goodwin recently introduced [5] a new inferential for-
like that of [10] and [16], because there cannot be, in gen- malism, logics of current proof (LCP's). His intent-is to cap-
eral, a recursive enumeration of the theorems of the object ture the dynamic reasoning processes of finite reasoning
theory, a reasoning agent's mechanization of such theotpes,,c, ,a rasoingaget'smecaniatin o suh teores agents. L.CP's are not logics in the usual sense as they have
is bound to be imperfect. In summary, the relation that
obtains between an object theory and a reasoning agent is no proof theory or model theory. Goodwin's formal account

that the theory is an ideal object that the agent might hope of LCP's is functional in nature. The principal appeal of

to compute. LCP's is that they explicitly encode te development of the
deductive process. It was in attempting to give a first-order
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logic account of LCP's, having models that suitably inter- 1. an atomic formula is a PDLD-wff,
preted the sequence of databases in an LCP that we hap- 2. an atomic derivation is a PDLD-derivation,
pened upon the idea of a dynamic logic of derivation.

The proximal technical inspiration of the dynamic logic and ot- are PDD-derivations,

of derivation (DLD) is the dynamic logic (DL) formalism
introduced by Pratt and elaborated by Fischer, Harei, 4. for any PDLD-wffsp and q and PDLD-derivation x,
Ladner, Meyer, and others [6,7]. DL gives axiomatic mean- -p, pVq, and <ot>p are PDLD-wffs.
ing to programs by means of a first-order language aug- We will abbreviate -(IpVq) to pA q; -pVq to p- q; (p-.q)A
mented with a collection of modal operators corresponding t- 1
to those programs. Formulae in the language are used to fq-p; to <aq; to to
characterize the states of computational processes before [cx11; and <ct 0>p top.

and after the execution of some computational step(s). DL's SEMANTICS
model theory is a collection of Kripke-style worlds [81 con-
nected by binary relations corresponding to various possible Let W be a non-empty universe of states, elements of
programs. Just as the worlds of DL's semantics capture the which are denoted by s and I (possibly with subscripts). A
states of a computational machine, the states of a DLD PDLD interpretation determines whether or not an PDLD-
model will capture the mental states of a rational agent. The wff P is true in a state s (or s satisfies P). Atomic deriva-
approach that we shall be taking is presaged by Pratt in 1151 tions can be viewed as binary relations on IV. Accordingly
where he uses variants of DL to formalize individual an interpretation is defined to be a triple <WIvn >, 3

actions, sequences of actions (processes), and their effects. where W is a non-empty set, -r: 1o-21v and am: 10-2 v' l%. Tr
The remainder of this paper is devoted to elucidating propo- and In provide meaning for atomic formulae and deriva-
sitional dynamic logic of derivation (PDLD). tions, and are extended inductively to the rest of 'L:

SYNTAX

Let L be a first-order language equipped with functions,
predicates, connectives, quantifiers, and perhaps even 11:(aU) In(Ci)Um(l?,),
modalities. L has the usual formation rules for first-order
languages. The details of L will not concern me very much 11(a') = (I(a)),
here. Let T be a theory over the language L. T is assumed
to be axiomatizable with a set of axioms and rules of infer- In (a-') = {<s,t ><t,s> Em(co)},
ence. 'L, the language of PDLD, can to some extent be con-
sidered a meta-language for for theories over L. Formulae
over 'L will typically be used to specify how the formulae of
T are actually derived from T's axioms and rules of infer- (PVQ) = r(P)-r(Q),
ence. This specification will be in the form of an axioma-
tized theory 'T. We will call 'T the mechanization of T. In rr(P) = W-Tr(P),
effect 'T, when so elaborated, will (partially) specify a rea-
son maintenance system for the theory T. Tr(<a >P) = (slIE <s,t>E ,n(a)At E-r(P)

'L. has two sets of symbols: the atomic formulae and the
atomic derivations, collectively denoted as 1o and 1o, respec- 7.(<o ;I3>P) = {s1jElI <s,t > m (cx;P)At Er(P)}
tively. The atomic formulae are further subdivided into two
classes, the proper atomic formulae and the reified atomic -(<aOU3>P) = {sjEt<s,t> n(otUO ) A rr(P)}
formulae. '1 is a- reified atomic formula of 'L if, and only if,
(1) is a formula of L. We will use (possibly subscripted) 4), 0, irr(<&'>) = {s12,<s,t>Ein(&),A! EIT(P)}
and X to denote formula variables of L; (1), IV, and X to
denote instances-of formulae of L; ji, q and r to denote for- Tr(<a t >) = {slt<s,t>En(a - t )AtEir(P)}.
mula variables of 'L; P, Q, and R to denote instances of
atomic formulae of 'L; ax and 13 to denote derivation vari-
ables; and a and b to denote instances of named atomic Denoting s (,ir(I,) by st(1) and <s,t>Ein(a) by sat and
derivations. There is also the anonymous atomic derivation, adopting free usage of conventional logical symbols, one
H.The proper atomic formulae are meant to behave like the may write for a fixed interpretation <W,Tr,nt> that sl
truth value bearing constants of ordinary propositional logic. <a >(I) if and only if there is a t such that sat and t t=F.
Intuitively reitlied atomic formulae are formulae that are Given an interpretation I=<W,7r,in>, a PDLD-wff P is I-
asserted as deduced after some instance of a rile of infer- valid (written IP) if for every s E Ws P. A PDLD-wff P
ence in T has been applied. 2 Similarly atomic derivations will be said to be PDLD-valid (written =P) if for every I, it
are specific instances of inference rules. The PDLD-wffs is I-valid. P will-be said to-be I-satisfiable if there is an s
and P'DLD-derivations are defined by simultaneous induc- such that s oP and satisfiable if there is an I such that tP.
tion:

I %%e ,ish to dstinguilh VDLD (and the first-order dynamic logic ot 2 The di,tmction bet,,ecn proper and rcificd atomic formulae vill play
deration) from the dy nami. logics ot programs investigated b, Pratt no rolc in the development of I'DLD prob er. The distinction becomes
ct al Mhe di,tindon is not grounded so much in their respective important %%hen the axioms that de,cribe particular RMS's are
model theorie, or proof theories, but rather in the fact that the adjoined to the axiomatization of 'DLo.
model thcvviti, worlds of the former arc related by program 3. We %:il identOtN the three constituents of an interpretation ,,ith a
stateneint whidc in the latter the are related by inferential step, particular interpretation I by suing the notation W l, r1, ti',

-78-



A COMPLETE AXIOMATIZATION OF PDLD The second observation to be made about modus ponens is

The system P will constitute an axiomatization of PDLP. that it is "belief conserving." That is, anything that is
The axioms for P are the tautologies of propositional cal- believed before the application ot modus ponens shouldcheusxtogether w eth e tcontinue to be believed afterward. Conservation of beliefculus together with- (and non-belief) is a property inherent in monotonic rules of

(l(p-l) -([slp-[alq) (1) inference. To generalize then from the case of modus

[uUl3Ip (1-I;'il 31p) (2) ponens, for each inference instance (of T) represented by
the atomic derivation a, with antecedents rl I .... ! and con-

[cx$I1' _10(Il13I1 (3) sequent I' there is an axiom of'T of the form
11) ] -1-11, (4) 'h.••A@,< >"'()

[]xlp -p (5)

[a 1' -[" ][cI" ]P (6) Given that T is monotonic, it seems natural to require the
following frame axiom schema to enforce belief conservationt -[c<u-I>p (7) relative to each atomic derivation: a

p la1C<c->[ (8) 'bI-a'( where +1 is any L-wff (16)

(tpA[c (1' -[alp)) -[c, 1; (9) _'xb-la I-' b whered is any L -wff 1' (17)

1 -J It -{cxlp (10)

where z is an integer or"' and ot 10  It can be shown that < -" >'A) can be proved from 'T

The rules of inference for P are: (keeping in mind that 'T mechanizes the first-order predi-
cate calculus), an augmentation of P, whenever d) is a

if kt , p- qand pthen q (11) theorem of T. Indeed, P augmented with axioms
corresponding to an object theory T together with deriva-

if l-P p then I[-jalp (12) tion and frame axioms as above will be termed the natural
mechanization of T. This leads to asserting that a PDLD

rhe following two theorems are straightforward conse- theory 'T completely, mechanizes T just in case
quences of the syntax, semantics, and axiomatization above:

1-- if and only if i"r <'-'>(,[ lJ'pl.6  (18)
Theorem 4.1 The axiotnts (1) through (10) are PDLD-valhl. T'

Needless to-say, if the object theoiy T to be mechanized

Theorem 4.2 The rues of inference (11) and (12)-are sound with happened to be the ,pure first-order predicate calculus, for-
respect to PDLD-interpretations. mulae such-as - <1- >'A cannot generally be proven in the

natural mechanizing theory 'T [1]. This observation has
Parikh's completeness proof for propositional dynamic important consequences vis a' vis the proof theory of non-

logic of programs 1131 can be adapted to PDLD to obtain: monotonic theories [101 and their mechanizations (see

Theorem 4.3 Every PDLD-valid fornula is in the deductive clo- below).

sure of the system-P. 4 Notice that for an object theory T and mechanizing
theory T, We have been implicitly taking-<1- >'( to mean

DESCRIPTIVE POWER that 'T "believes" 'A to be a consequence of believing the
object theory T. Suppose P were taken as-the object theory

General Considerations on Monotonic Theories of 'T.7 'T can be constructed in such a way that (fI is a
theorem of 'T if, and only if, <a; ... ;a,, >'F is a theorem of

Thus far we have-done nothing that connects any partic- 'T for some sequence a. . at of (reified) atomic derivations.
ular object theory T with a mechanization 'T. In order to On the other hand, it can also be demonstrated for 'T that
make that connection and to exhibit the descriptive power (1) is not a theorem of 'T if, and only if, <aI;...;ai,>'(1) is not
of 'L, ,we will augment P with proper axioms that character- a theorem- of 'T for any sequence a1 .... a, of atomic deriva-
ize a monotonic theory T. Assume that T includes the first- tions. In fact, ,) is not a theorem of 'T if, and only if,
order predicate calculus. For each axiom (1) of T, there is anaxiom 'cI1 of 'T. Consider an instance of modus ponens in Jcl<a;.;a,>-l is a theorem of 'T" for every sequence
a ) C a t mi a,....a,, of reified atomic derivations. The situation that

appears to obtain in 'T then is the PDLD analogue of what
if - qI'and - xlt-'lthen 1- 'I (13) ____

T T T
This suggests an axiom for 'T of the form: 6. The assertion <t- > '1) does not suffice on the right hand side of the

"if, and only if" as T might be a non-monotonic theor,. The second
clause is necessary in order to assure that once 'T derives "'1) it

'P A'(dl-'l)-<Nl'>' ~(14) "'ti.kt, and-that I does not o.cillate, believing and disbelieving "A),
owing to some belief rcvi on policy.

7. To see how such a thing is possible, let 'L be the language L together
with the formula '() whenever (1) is a formula of 'L. Considcr 'P, the

I. The principal technical hurdles in adapting l'ankh's complex proof to system P taken over 'L to~ether with ar. axiom ') whenever (1) is an
P are in validating certain claims that Plankh makes for axiom of P the natural axiomatic encodings of the rules of inference
"pseudo-models" and "closed sets" when applied to-P (modu , ponens and necessitation) of i', and the frame axioms for

5. For a complete characterization ol a monotonic inference rule such as those rules ot inference In the same spirit at, reified atomic
nodts Inens. one should also add the axiom '(1 '(-1PIHMPJIlJ formulae, atomic derixations that are instances o modus ponens and
since the rule is entirely deterministic in its consequent necessitation of the s%stem P will be called reified.
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Moore [121 calls autoepistemic stability of an ideally rational 1. for each theorem (D of T there is an explicit deriva-
agent. Loosely speaking, 1) is a theorem of 'T if, and only lion of (1 that is a theorem of 'T,
if, from every mental state (wherein 4F may or may not
believed) there is a derivation leading to a mental state in 2. the sequence of named atomic derivations that
which (1F is believed. Conversely, (1 is not a theorem of 'T appears in the prefix of '(F corresponds to the
if, and only if, (dis-)belief in (b is invariant under derivation, sequence of inference rules applied in the proofs of

the theorems of T when enumerating them in
Specifying Breadth-first Search depth-first order,

An explicit derivation of (1 is a formula of the form 3. if 'I's precedes %P, in the depth-first ordering, then
<a1 ..... a,>'F. 'T enumerates the theorems of T in a the derivation of 'l, cannot be proved as a theorem
breadth-first fashion if and only if of 'T until IP has been proved.

1. for each theorem (1) o. T. there is an explicit deriva- The interaction between the axioms (19,20) and boundary
tion of (F that is a theorem of 'T, conditions suggests a general "programming" methodology

2. the sequence of named atomic derivations that for controlling the application )f derivations. The proposi-
appears in the prefix of '(F corresponds to the tional constants D,,m and C,,,, should be viewed as "ena-
sequence of inference rules applied in the proofs of bling" and "completion" flags for the firing of the atomic
the theorems of T when enumerating them in derivation a,,,. These constants indicate respectively that a
breadth-first order, derivation can be used and that a derivation has been used.

3. if 'I', precedes P,., in the breadth-first ordering, Programming then consists of designing systems of boun-te thIVecdetin of brano t reiasa dary conditions to achieve the desired sequencing of infer-
then the derivation of I'2 cannot be proved as a ences by suitably controlling the truth values of enablingtheorem of 'T until IV1 has been proved, flags in various mental states.

A formula T is said to be of rank n if the shortest proof Goodwin [5] (and McDermott before him in [101) cites a
of that formula is of length z. Then axioms of T are of rank number of problems in using deduction to control deduc-
0. Let A be an ordered list of the last atomic derivations tion. He remarks that attempts at controlling inferences by
applied in the proofs -of each of the formulae of rank i.$ deductive methods have typically resulted in invalidating
Breadth-first enumeration is achieved by replacing axiom particular inferences altogether, or alternatively resulted in
(15) above with (19,20) below: RMS states that assert that some proposition has been pro-

ven if and only if it has not been proven. It should be clear
CIA (19) from the discussion of programming above that atomic

C,. ,A'(l)n,jMAA - - , A',bn,,t,,.. - <an,,,>'P1,,,tAD,,m (20) derivations are enabled with respect to particular states. As
a consequence, an inference can be temporarily en-(dis)-

and adding boundary conditions abled, and there is no problem whatsoever in having some
proposition 'V be derived by some derivation that has since

D,irn'4in,, Cna+t if there exists a,.,,,t (21) become disabled. The axiom schemata (21,22) could just as
well have been written

D1,,,-[an,,n IC +,1 otherwise (22)

where the a,,, is the m'th atomic derivation on- the list A,,, DCnn,,AD,,, if there exists a,,,,,+1 (23)

and the (1),,,'s and V,,.m are, respectively, the antecedents D,,,m-[an,m ]C 1+tI A -D,,n otherwise (24)

and consequent of the atomic derivation a,,,,. The interac- which have the effect of disabling each-of the (19,20) after
tion of the C's and D's prevents ',, I4 from being derived
before ",,,,, is derived. Indeed, no formula of rank it is use.
derived before every formula of lesser rank is derived. The Finite Reasoning Agents
Pl's are thereby forced to-be produced in breadth-first order.
Of course it must be verified that a theory 'T that mechan- At the outset of this note we proclaimed PDLD as a
izes T completely, when modified with the breadth-first mechanism for describing the behavior of finite reasoning
axioms, continues to mechanize T completely. To that end agents. Careful scrutiny of PDLD interpretations will reveal
the following holds: that PDLD theories admit interpretations which are at odds

with any reasonable notion of a finite agent. Consider the
Theorem 5.1 If 'T is lte natural mechanization of T with axiom following observations. If one thinks ot a sequence of mental
(15), and if 'T' is the breadth-first mechanization of T with states related by various atomic derivations as correspond-
axioms (19,20,21,22) replacing (15), and if t- < -'> 'A), then ing to the flow ot some sort of mental time, then time can
- '< T >'(F extend infinitely into the past and future. Moreover, a men-T tal state can be immediately preceded by multiple states.

With a different set of boundary conditions, a depth-first Finally, states can be "dense." That is, PDLD interpretationsWnumertith a f diffrete of bou y cod av ep t can be such that for an atomic derivation a wheneverenumeration of the theorems of T could have been stEi)thrisauuc tat<i>niaad
achieved. That is, there is a set of boundary conditions such <i,t >Et(a).

that

8. It could be that the formulae of rank n are infinite in number. In that
case the enumeration will never get beyond the formulae of rank Pi.

-80-



As it turns out, all of these anoma'es can be legislated tioned inconsistent beliefs. Now for 'T to have inconsistent
away with appropriate axioms. Tense logics 1171 that impose beliefs is not the same as 'T's being inconsistent. On the
various topologies on the ordering of time provide much of other hand, states that have '( A'_+ true are irrational, and
what is needed. To focus on one of the anomalies, consider to have <t-" >'(b-4t as a theorem of 'T makes 'T irra-
the infinite extension into the past. This can be eliminated tional. RMS's generally have backtracking mechanisms to
with: revise the set of current beliefs so that consistency of beliefs

is restored. Although PDLD as presented here is not expres-
<I'>< -- t>pV.p. (25) sive enough to describe all the details of those mechanisms,

This last formula says that every state either is, or is pre- it can describe the general policies that are typically

ceded by, a state which is not immediately preceded by a enforced by those mechanisms. A weak policy might be:
state that satisfies pV-p. But since every state satisfies pvwp,
this formula can be satisfied if, and only if, every state is ( (28)
either immediately preceded by no state at all, or is pre- which says that if the reasoning agent is in a state that isceded by som e state w hich is in tu rn p reced ed by no state. i r t o a i h r s e t t a t c l r f r u a t , al s a eThi axom revntsinfinitely long (receding) chains of irrational with respect to a particular formula kb, all states
This axiom prevents infinit on (reent insef- immediately reachable from that state should be rational-
states. On the other hand, it does not prevent interpreta- ized. A much stronger (and typically unenforceable by effec-
tions having a particular state from which there is a reced- ie comutation p and y :
ing chain of any given finite length. More axiomatic tive computation)policy is stated by:
machinery still is required to prevent that. (' A)-[t]J<l-> ('c^'-d) (29)

Non-monotonic Theories This schema says that if the reasoning agent is in a state

In considering the descriptive power of PDLD with that is irrational with respect to a particular formula eb, the

respect to non-monotonic theories it should first be noted agent should do something (e.t , withdraw sufficient prem-

that the intuitive statement of the rule of possibilitation ises or hypotheses in which the irrational state is grounded)

introduced in 1111 is directly expressible in PDLD. Recall such that at no future time can the agent be in a state irra-

that McDermott and Doyle first gave an informal definition tional with respect to ( . These examples of deduction and

of their non-monotonic rule of inference which stated that if premise control policies seem to respond directly to

a proposition were not provable in a theory T, then the McAllester's 191 objections to non-standard logics:

negation of the proposition is provably possible. Though the The problem with non-monotonic logics is that
intent of this rule is clear, it is unfortunately circulat. they, bring in non-traditional formalisms too early,
McDermott and Doyle had to appeal to an indirect technical muddying deduction, justifications, and backtrack-
device to capture possibilitation. In the PDLD mechaniza- ing. The aspect of truth maintenance which cannot
tion of T, however, their original notion of possibilitation be formalized in a traditional framework is premise
can be expressed as: control...

-<'>-'b- <t->' <> (b (26) Dynamic-logics of derivation offer an opportunity to make
the various issues explicit.

where "<>" is the consistency modality of [10,111. Pssi-
bilitation is well defined but, unfortunately, not effectively CONCLUSIONS
computable in general. Since there is no magic, a non- In the foregoing we have developed the syntax and
monotonic theory T that-is not recursively enumerable, can- semantics of the propositional dynamic logic of derivation,
not have a complete mechanization that is recursively enu- and presented a complete axiomatization for the logic. By
merable. It a (partial) mechanization 'T is to remain r.e., way of examples we have illustrated some-of the expressive
such mechanizations cannot in general have the formulae power available in PDLD for specifying and analyzing the
-<"->'4 (on the antecedent side of 26) as theorems. behavior of reason maintenance systems. Finally we have

The whole point of a-non-monotonic logic is to formalize offered dynamic logic as an alternative to-the sorts of non-
the default and deteasible inferences that are evident in monotonic logics investigated heretofore as a means for giv-
common sense reasoning and practiced by various RMS's. -It ing a formal account of some aspects of common sense rea-
should be evident that PDLD provides a mechanism for soning.
directly formalizing such reasoning without necessarily IDLD obviously cannot be completely expressive of all
resorting to the sorts of infinitary processes implicit in properties that might be ascribed to an RMS. For that, one
McDermott and Doyle's -rule of possibilitation. In order to requires the first-order dynamic logic of derivation 121. In
realize defeasible inferences, a PDLD theory cannot have the .atter formalism one can not only give a complete first-
the general frame axioms (16,17); not all atomic derivations order account of control protocols, but also of the collateral
will be belief conserving. A default introducing axiom data structures (vi7 "no-good" list, hypothesis contexts,
scheme might be: dependency relations, etc.) that RMS's utilize in the belief

revision process. Between PDLD without the --' derivation
(27) and full first-order dynamic logic of derivation there are

many alternative logics having different powers of expres-
which says that if -4 is not currently believed then 4 can be siveness. The analogous dynamic logics of programs have
believed. Of course, it might be the case-that -r<' >'-d). been extensively investigated. We believe-that those investi-
Thus, the simple notion of default reasoning supported by gations will offer a good starting point for developing an
(27) would admit states to interpretations of 'T that sanc- RMS specification logic which is suitably expressive, while

being deductively tractable.
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REASON MAINTENANCE
FROM A LATTICE-THEORETIC POINT OF VIEW

Dan Benanav, Allen L. Brown, Jr., and Dale E. Gaucas

ABSTRACT

Goodwin and de Kleer have each investigated certain system to export interfaces for detecting database incon-
fundamental aspects of reason (or truth) maintenance sys- sistency and other "interrupts" triggered by the occurrence
tems (RMS's), non-monotonic justifications in the case of the of various patterns in the database. Indeed, we see facts or
former and assumption-based justifications in the case of the propositions as exhibiting a number of salient characteristics
latter. To a certain extent, each of their mechanisms can for a problem solver: true, provable, and proven. The prob-
simulate the other, though not altogether satisfactorily. By lem solving mechanisms for attributing those characteristics
recasting the reason maintenance problem in a lattice- are observation, deduction, and reason maintenance,
theoretic framework we are able to develop a body of Because of our views on how a problem solving system
mathematical theory that elucidates reason maintenance in a should be structured, there are some functions that we
general way so as to include both assumption-based and believe the reason maintenance system should not fulfill. It
non-monotonic justifications in a direct and transparent should not be a mechanism for managing the restoration of
fashion. More generally, if a method of labelling proposi- consistency when a reasoning agent discovers itself to be in
tions so as to justify them according to some reasoning an inconsistent stae. It should-neither determine what con-

agent's constraints-of belief also happens to conform to the anitte tate. It od-nethe ete nin o

postulates of Boolean lattices, the labelling system can be stitutes a valid deduction nor manage the sequencing of
accommodatedinferences. The reason maintenance system may provideaccomodtedundr te sme mbrllaof bstacton.The support for ill of the foregoing, but is not the most
mathematics immediately suggests a collection of algorithms appropriate place to marshall such efforts.
that support efficient revision of beliefs as a-reasoning agent
changes its assumptions andlor its constraints on beliefs. The initial motivation for this work was the desire to

unify in a single mechanism the reason maintenance

INTRODUCTION paradigms of de Kleer and Goodwin. The systems of both
framework which investigators can be viewed as constraint propagation

We propose here a single theoretical rame, ich mechanisms. Given disjunctive sets of sets of premises and
subsumes various notions of reason maintenance, including a set ot (monotonic) deductive constraints, de Kleer's ATMS
the assumption-based justifications reported by de tells a client problem solving system what things it is
Kler [9,8,10,11 1 and the non-monotonic justifications currently obliged to believe assuming one or another of the
reported by oodwin [16,17,18,19 . In this note we will give sets of premises. Goodwin's LPT, on the other hand, tells
an abreviated account of a body of work that is fully the client problem solving system what things it is currently
reported ir [4]. Our aim here is to motivate the work, obliged to believe given a single set of premises under
present some of the mathematical theory, and interpret the deductive constraints, some of which may be non-
theory in relation- to other reason maintenance systems and monotonic in nature.2 Our original intuition was that it
in terms of algorithmic realizations, should be possible to account sinnltaneously for multiple sets

We have a conservative view of the scope of reason of premises and non-monotonic deductive constraints.
maintenance systems. A similar view is implicitly This intuition ar " from the striking similarity that we
denced ;'i de Kleer's work and explicitly articulated by observed in the comp-tations of reason maintenance sys-
Goodwin: A reason maintenance system is a utility that tems and the computations of global flow analysis that
supports deductive problem solving. It maintains a data- underly modern optimizing compilers [2,20,21,231. Global
base of facts, some of which a client reasoning system holds flow analysis can be couchedin the following terms: Given
-h curiintly believed, others not.' It also supports relations the constraints imposed by individual program statements
over the facts that serve to record the arguments that sanc- and=he;- interconnecting topology. what tacts is a-reasoning
tion a reasoning agent's belief therein. Because a reason r

maintenance system must be founded on low-level facilities agent (in this case concerned Yith programs) obliged to

for retaining and matching data structures representing .......
tacts, it may also be convenient for the reason maintenance 2 A monotonic deductive constraint obliges a rational agent

to believe its conse( uent given that ir currently believes
all - of its antecedents. A non-monotonic deductive
constraint obliges a rational agent to believe its

Note that failure to believe a fact is not identical to consequent given that it believes all of its monotonic
believing its negation. antecedents and none of its-non-monotonic antecedents.
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believe about the state of computation at various points in 2 will be sub- or superscripted on those occasions when
the program's control flow? In a sense the information pro- it is useful to distinguish among various equational systems.
pagation problem solved by global flow analysis can be Unless there is some ambiguity in the context, we will freely
viewed as the dual of the reason maintenance problem. The say "system" without modifiers. A lattice equational system
former assigns propositions to contexts established by vari- should be interpreted as encoding the way a reasoning
ous paths through a program. The latter assigns contexts of agent's belief (or disbelief) in a collection of propositions
belief to propositions under various deductive constraints, entail belief in others.
There are two principal methods of solving information pro-
pagation -problems. Both hinge on solving systems of equa- Definition 2.4 If 2 is a lattice equational system such that
tions whose unknowns range over the domain of an alge- the right-hand side of each equality is of the form ,
braic lattice. The work that we will describe presently where each X,, is an element of 13 or an unknown (possibly
retains the idea of equations over a lattice, but for various complemented), then X is said to be in disjunctive normal
technical reasons (principally non-monotonic constraints) the forin.
solution methods used in global flow analysis turn out to be
inappropriate. A rather different solution method has been Disjunctive normal form, a consequence of distributivity
developed, in 13, gives us a useful way of presenting lattice forms in

general, and lattice equational systems in particular. Since
we can transform any form to disjunctive normal form, we
will usually treat forms over 13 and lattice equational sys-
tems as if they were in disjunctive normal form. 3

REASON MAINTENANCE Definition 2.5 A solution to a lattice equational system, 1,
IN A LATTICE-THEORETIC FRAMEWORK is a function, F, from the lattice unknowns appearing in the

system into 13 such that if for each equation in the system,
each unknown s in the equation is replaced by F(s) the

We begin by introducing the idea of a Boolean latti,'e. A equation holds in 13. A lattice equational system having a
complete account of such structures can be found in any of solution will be termed-solable.
[3,5,221. For our purposes here, the elements of such a lat-
tice are meant to capture the idea of alternative situations. We will, in fact, take solutions as assigning values from
With respect to any particular situation a tinite reasoning 13 to every unknown, s, whether it is mentioned explicitly
agent takes certain formulae as premises. on the left-hand side of an equation or not. Put another

way, unknowns, s, not having an associated equation,
Definition 2.1 Let 13 be a Boolean lattice equipped with the implicitly have the equation s = L. We will- interpret lattice
usual meet, join, and complementation operators; a partial equations as constraints. A solution, then, is a labelling of
order, <; and maximum and minimum elements, T and . propositions with situations. In particular, the situations are
respectively. Elements of 13 will be called situations, and will those in which a reasoning agent is obliged to believe the
be denoted by A and B. A and B (possibly subscripted) are correspondingly labelled proposition given acceptance of the
lattice expressions in 13. Moreover, if A and B are expres- constraints imposed by-the system.
sions in 13 then so are A v B, A A B, t and B. Definition 2.6 Let X be a form in 13 and lattice unknowns

Especially important to us will be the existence of the of a system, 2. If F is a solution of 1, then F(X) is the
partial-order, the complement, maximum and minimum ele- expression over 13 that results from substituting for each
ments, and the mutual distributivity of meet and join. occurrence of each unknown, s, the value 17(s).

A- lattice unknown is a super- and/or subscripted s or t.
Each-lattice expression in13 and unknown is a lattice form in Definition 2.7 A justification of a disjunctive normal form
3. Moreover, if X and Y are forms in 13 then so are lattice equational system, 2, is an ordered pair, d = 's,X,
X ' Y, X A Y, X and V. Individual (fixed) lattice forms in where s appears on the left-hand side of some equation in S
13 will be denoted by X and Y, possibly subscripted. Lattice and X is a disjunct on the right-hand side of that same
unknowns correspond to what some investigators have equation. Also, s is called the consequent of the justification
called nodes. Every fact or proposition has an associated d and each conjunct of the disjunct X is called a non-
unknown. Note that a proposition ard its negation have monotonic or monotonic-antecedent of d depending on whether
distinct associated unknowns. or-not it is complemented. The sets of monotonic and non-

monotonic antecedents of d are respectively denoted a(d)
Definition 2.2 A lattice equation over 13 is a relation of the and (&(d).
form X - Y where X is a lattice unknown and Y is a lattice
form. Definition 2.8 A juslification, d, is valid with respect to a

situation, A, and a solution, P, of an equational system Z if
Definition 2.3 A lattice equational system over 13, Y, is any and only it,
collection of lattice equations over 13 such that the total A r(s) A A
number of lattice unknowns occurring on the right-hand X(d) ;
sides of the equations is finite and any lattice unknown
occurs at most once on the left-hand side of an equation. 3 The assumption of disjunctive normal form is a
The equation on whose left-hand side s appears will be convenience for mathematical analysis and not a
called the s equation. If the right-hand side of the s equi- requirement for the algorithms engendered by this

analysis. This is in contrast to the ATMS's requirement of
tion is a lattice expression, s will be termed trivial, a disjunctive normal form representation.
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We will write Valid(A,d,l') to indicate that d is valid with Finding solutions depends on a pair of lattice equational
respect to A and solution r. system transforming operations that yield new systems

whose well-founded solutions are well-founded solutions of
Definition 2.9 A solution, F, is well-founded with respect to a the original system.
lattice equational system, 1', at lattice unknown, s, if and only if
F(s) V, A, and for each A,, there is a partially ordered Definition 2.12 A local substitution transformation under s of
set, (PA/ < A,1 such that P,1 is a set of justifications from 1 a lattice equational system, E, results in a new systein I' such

and that

1. there is a justification, d in P.4, whose consequent is 1. the s equation of I is in 2',

s, 2. if V has no equation having an occurrence of s on its

2. for every justification il, in PA, Vaid(A,,d,F), right-hand side, tr,(S) = 2; otherwise, all the equa-
tions of I except for one having an occurrence of s on

3. every unknown, s', that is a monotonic antecedent of the right-hand side, say the s' equation, are in ',

some d in PA, is also the consequent of some justifica- 3. a new s' equation is included in I' that is identical to

tion d' in PA, and-d' < A, d. the s' equation in I except that one occurrence of-s on
the right-hand side of the s' equation is replaced by

Definition 2.10 A solution to a lattice equational system is the right-hand side of the s equation,

well-founded if and only if it is well-founded with respect to

the system at every lattice unknown mentioned in the sys- 4. there are no other equations in -'.
tem. This transformation is denoted a(E ) = I'

We interpret justifications, validity and well-foundedness
in the following way: Validity describes the circumstances Definition 2.13 A-global substitution transformation under s of
under which the consequents of a justification are to be a lattice equational system, E, denoted '(Y ), is defined by
believed given the-belief status of the antecedents. A justifi- 0s = ra, where n is the least non.negative integer such that
cation therefore constitutes an independeni source of sup- 7n_+1(" =
port justifying belief in a consequent. Chaining justifica-

tions together constitutes a supporting argument. Since we Definition 2.14 A minimization transformation under s of a
wish for our arguments to be non-circular, we impose an lattice equational systcm, I, results in a new system ' such
additional condition, well-foundedness, to guarantee that that
state of affairs. 1. if the s equation of E is of the form 5 s =X 1 V

Using only the concepts we have introduced thus far, it (X s)V (X 3 A), then the equation, s M is v X3 , is

can be demonstrated that finding solutions to systems is in ',

NP-hard in the number of equations. Doyle [12] and

Goodwin (19] have questioned whether or not the well- 2. all the equations-of I except for the s equation are in
foundedness condition might simplify the solution finding El,
process. Unhappily, finding well-founded solutions is also 3. there are no other equations in
NI'-hard in the number of equations.

This transformation is denoted =

-Definition 2.11 A Path from so to s, is a sequence-of triples When applied to an even equational system, 1, a-compo-
of the form X1,Ys,, 'X2,Y2,sZ, ',, XY,,,s, / w here X, is sition of the above transformations in the sequence

an antecedent of the Y, disjunct of the s, equation in S. X,
is a complemented (uncomplemented) unknown if it is a I,$, C Or' R" 0 "" 0 ... o , Ir.. 0 0 s

complemented (uncomplemented) conjunct of Y, with
X, E {s 1,, - } and 1 5 i 5 i. A path is odd if it has an
odd number of complemented unknowns and even other- where (s,I1 : i : M} is the set of non-trivial unknowns in
wise. A system is odd (and even otherwise) if it has an S, yields a -new system -having only lattice expressions (con-
unknown, :, and an-odd path from s to s. stants) on the right-hand sides of its equations. These

Thus far we have established a framework within- which expressions can be demonstrated to constitute a well-

we can formally describe reason maintenance problems. For founded solution for 2. Such a composition-of transforma-

this framework to be truly useful we must provide a way of tions in analogous to Gaussian elimination [6,141. There is a

finding solutions in a structured fashion. There is no obvi- phase of M pairs of minimization and global substitution

ous means of finding solutions of lattice equational systems operations followed by a phase of M global substitution

because-of the nature of-the-meet and-join-operators. Infor- operations. The first phase corresponds to "forward elimi-

mally we may say that meet and join do not have nation;" the second phase corresponds to "backward substi-

"inverses" in the sense that subtraction and division are the tuton" We now know that for even lattice equational sys-
respective inverses of addition and multiplication in an alge- tems, at least, we can always find solutions. We have addi-

braic field. For the sake of brevity in the remainder of this tional mathematical results that essentially guarantee a

section, we will focus on even lattice equational systems.4  unique factorization for a solution, F. Those results

- To the best of our knowledge, the only use to be made of The s equation can always be rearranged to be in this
odd lattice equational systems is to implicitly encode form.
alternatives. We believe, as does de Kleer, that
alternatives are better encoded explicitly in assumptions.
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together with the "Gaussian elimination" just described can On the other hand, de Kleer gives a formal specification for
be used to generate in a structured tashion all the solutions6  the ATMS solutions. We can show that solutions to the lat-
to every system, even or odd. tice equational encoding satisfy the specifications given for

The lattice-based theory of reason maintenance suggests ATMS solutions. In particular, we demonstrate in [4] that
a number of algorithmic performance improvements, some the lattice equational solution is sound, complete and minimal
oriented toward batch processing, some toward incremental in the sense that de Kleer uses those terms,
processing. Certain improvements derive from topological
considerations. A particular notion of connectivity can be Logical Process Theory
attributed to equations, whence derive notions of strong Many of the formal concepts we introduced in §2 are
connectivity [1,13,15] and strongly connected subsystems. either algebraic restatements or generalizations of
Considerations on the structure of strongly connected sub- Goodwin's graph-theoretic notions. Consequently, framing
systems lead to improved computational complexity results logical process theory within our Boolean lattice formalism is
in suitably restricted cases. Similarly, purely algebraic con- completely straightforward. The main task in LPT is to
siderations can lead to pertormance improvements in incre- determine an admissible labelling of a given database, D, of
mental algorithms when certain local conditions are met. inference steps. Briefly, an admissible labelling is a function

from a language L to the set of labels {IN,OUT}, where
EMBEDDING ATMS AND LPT everv formula labelled IN has a well-founded argument.

IN A LATTICE-THEORETIC FRAMEWORK An inference step, d, is a triple, 1,M,N,c) where

Having introduced our own formal machinery, we turn M,N C L, c F L, and I is the set of all inference steps. The
now to applying it to the description of the reason mainte- set I = M-antes(d) contains the non-monotonic
nance formalisms of de Kleer and Goodwin. antecedents of d, the set N = NMl-antes(d) contains the

non-monotonic antecedents of d, and c is a consequent of
Assumption-based Truth Maintenance i. Given a database D, one can construct a lattice equa-

tional system S, such that a well-founded solution of S
De Kleer's basic7 ATMS labelling algorithm can be cast in corresponds to an admissible labelling of D. To do this let

a lattice-theoretic framework as follows. Given de Kleer {s, Il L) be a set of lattice unknowns and let 13 be the
assumptions {A,1I -5 i - n}, let the domain of the lattice, 13, Boolean lattice consisting of the set {T, Ll. For each prem-
be the closure under meet, join and complement of ise, 1, let E contain the equation s, = T, otherwise of I is
{Ai11 s i5 n}. An aloin of 13 is an expression of the form the consequent of some inference step in D let I contain

P1ml where X is either A, or ,. Let A denote an atom the equation,
ofo1 and Bl and B, be arbitrary elements. If A and A' arer1
distinct atoms, ± = A AA' and T = A VA. The partial s, = u Sn sn [ n g, ,
order for 13 is defined as-follows: ,10 1 , ' J NM "

A:SA I  A, appears uncomplemented in Ai'. I, where D' = (did . D Aconseq(d) 1 land M and NM are,

A 5A, A, appears complemented in /T ., respectively, the monotonic and non-monotonic antecedents
of it. If I is not the consequent of any inference step in D

A<BtAB, A:SB1 and A -B2 , we let 2 contain the equation s, ±. Any well-founded
A:SBVB, A:-B 1 or A-sB 2, solution, r, of S determines an admissible labelling if we

associate T with IN, and - with OUT.
BlIsB 2  for every atom A, A---B A<sB,.

Extensions to ATMS and LPT
For a given set, 1, of ATMS justifications, a lattice equa- We have now seen how the model of reason mainte-

tional system, , over 13 can be constructed as follows. For We proposen 2 c emd of rean mit
each justified node, s, in 1, Z contains the s equation, nance proposed in §2 can embed both ATMS and LPT.
SAs the ith antecedent node or Given that one wishes to have justifications that-admit both
asu=ptioo where X k istith antech njusti- non-monotonic and assumption-based support, the formal-
assumption of the kth justification of s. For each unjusti- ism that we have introduced can do this directly without
fied nodes' in J, contains the s' equation, s -- .appeal to-these embeddings. De Kleer has used the nogood

Since de Kleer does not supply a formal proof of correct- and choose mechanisms to simulate non-monotonic justifica-
ness of the ATMS algorithm, we have no direct way of tion. The Goodwin formalism can accommodate assump-
establishing equivalence between the ATMS label propaga- tions by solving multiplc labelling problems. It is instructive
tion and solving the lattice equational system just given, to contemplate natural extensions of each of their formal-

isms to treat (respectively) non-monotonicity and assump-
6 Lattice equational systems with complemented tions as first-class citizens.

unknownb have, in general, more than one solution.
This is in contrast to the reason maintenance problem The natural and immediate extension of the embedding
addressed by the ATMS. Although de Kleer counts each of LPT considers solving n Goodwin systems of equations in
disjunct of an ATMS-label as a "solution," from the point paralle, We require that the t systems differ only in terms
of view of lattice-theoretic reason maintenance the entire .W eur httenssesdfe nyi em
disjunctive expression of an ATMS label is a single of the unknowns that correspond to premises, that is, un-
solution, knowns, s, satisfying equations of the form s = T. This is

7 For the purposes of this discussion we exclude de Kleer's a semantically natural extension in that it corresponds to the
nogqod mechanim from the basic ATMS. Any nogood reasoning agent's entertaining different sets of propositions
environment can be accounted for if we algebraicallv
identify the corresponding lattice expression with as hypotheses. We augment the definitions of LPT as fol-

lows:
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Definition 3.1 A premise set p is any subset of the language by the set of justifications (A, = .xii 1 i S n} where
L. A labelling G is a function from L -P'L)) where P(L) {A, l :5 i :- n} is the set of assumptions. For any set of
denotes the power set of L. A database is a pair (D,P where de Kleer justifications and assumptions, let 0,P' be a data-
D is-a set of inference steps and P is a set of premise sets. base, where 0 is the corresponding set of inference steps
The antecedents of an inference step are non-empty. and P is the power set of the assumptions. It can be shown

that for any admissible labelling, G, of D,P , the set
Definition 3.2 Given a premise set, p, and a labelling, G, IN(Gp) corresponds to the context of the environment p.
we can define functions IN and OUT as follows: The non-monotonic extension follows immediately by allow-

IN(G,p) = (1 lp e G(1)} ing the non-monotonic antecedents of an inference step to

OUT(G,p) =-(Ilp f G ()} be non-empty. Observe that LPT allows for the direct
introduction of non-monotonic justifications whereas the

Definition 3.3 An inference step d is valid with respect to a basic ATMS mechanism does not. This is because
labelling G and a premise set p written Valid(p,d,G) if and de-Kleer's native semantics for the ATMS is essentially pro-
only if M-Antes(d) g IN(G,p) and NM-Antes(d) _ positional logic. To accommodate non-monotonicity some
OUT(Gp). other semantics is required, hence our reinterpretation. A

final note: lattice-theoretically framed reason maintenance,
Definition 3.4 G is a relaxation over database ,D,P) if and in its full generality does not appear to be naturally describ-
only if able as an extension to either ATMS or LPT.

p P. IN(Gp) = {l id e D. Valid (p,dJo) and
(conseq(d) = 1)} Up CONCLUSIONS

In the foregoing we have introduced a general model of
Definition 3.5 A labelling G is well-founded for a database the problem of reason maintenance couched in a lattice-
D,P if and only if for all p F 1' there exists a parti ,& oriet- theoretic framework. We believe that any of the reason

ing < of L U I such- that: maintenance systems familiar to us in the literature can be

- IN(G~p). -~ DE (conseq(d) = -) and Valid(p,a, .) construed as solving systems of lattice equations. In partic-and (d<l) ular, we have shown how to encode de Kleer's ATMS and
and Goodwin's LPT in -this framework, as well as natural exten-

sions of each of those systems to accommodate aspects of
*/d E D. Valid(p,d,G) - l F M-antes (d) (l<d) the other. We introduced the fundamental transformations

o substitution and minimization and showed how they
Definition 3.6 An admissible labellng of a database (D,P) is a could be used to produce solutions. We have observed that
well-founded relaxation of (, P, we have other mathematical results that allow us to con-

Now we are in a position to encode a database in terms struct all solutions to all systems. We have also informally
of a lattice equational system. Given a database, 'DPP, let described some mathematical considerations that lead to
{s,1l T L} be a set of lattice unknowns. Let P' be the very efficient algorithms in special cases.
Boolean lattice consisting of the power set of P. For each We continue to investigate a number of issues in our
I e L construct the following equation8  ongoing research in reason maintenance. On the theoretical

1 side, we believe that the assumption of a Boolean lattice that
s= U,. n s, f n U ,pip e P and-I e p} underlies our current results can be considerably -loosened.

,io 'E t t: tIn particular, we think that those results are preserved
assuming only a lattice with complements. This is of both

where D' = (did E DA conseq(d) = 1} and M,NM as theoretical and practical interest as many measures of uncer-
before. Let 2(D,P,L) be the set of all such lattice equations tainty are of a (non-distributive) lattice-theoretic nature [7].
for each l E L Note-that only if the I is the consequent of No longer requiring distributivity, we can treat certainty as
some inference step in D will the I equation contain lattice yet another kind of belief context to be propagated by con-
unknowns. Since D is a finite set there are finitely many straints.
equations with lattice unknowns. In [4] we formally On the practical side, we are engaged in an implementa-
demonstrate the equivalence of the above encoding to the tion of the lattice-theoretic model of reason maintenance.
extension of Goodwin's LPT that we informally described at As we gain experience in using this implementation, we
the beginning of this- subsection. will attempt to answer a number of questions. Do the

We extend de Kleer's ATMS to accommodate non- theoretical improvements to which we have alluded have
monotonic justifications by first reinterpreting the basic any practical effect on the kinds of problems that can be
ATMS in terms of the embedding above of the extended tackled? Are such improvements even necessary given that
LPT. The basic ATMS accepts a set of justifications and the worst case computational complexities are achieved
assumptions, and determines all possible contexts-and their through somewhat contrived pathological examples? Are
contents. We take the language, L, to be the set of nodes the incremental algortthmic variants of practical value? If
and assumptions. Each de Kleer justification, so, should they always be engaged, or should they be
0i, (2, '", ** P p can be viewed as an inference step driven by some algorithmic or heuristic consideration?
{Jpa*,, ..., at,,}, 0,l3,. Each de Kleer premise, x, is replaced

8 It is worth comparing this equational system with the
one constructed for the unadorned Goodwin embedding.
It differs only in the adjoined premise set.
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Abstract

Intelligent systems combine the capabilities of larger context of integrated systems. We refer to such
expert/knowledge systems with conventional computer comprehensive systems, which combine the capabilities of
technologies, significantly extending the capabilities of expert/knowledge systems with those of more conventional
either technology. Current expert/knowledge system -tools systems, as intelligent systems. Intelligent systems differ
do not address the key problems of intelligent systems from conventional systems by a number of attributes, not
engineering: large-scale applications and the reuse and all of which are always present:
integration of existing software components. ABE is a * They pursue goals and objectives.
software architecture that directly addresses these Goals form a larger context for the operation of
problems. the system. That context often makes static

ABE is a multi-level architecture for developing algorithms insufficient, requiring the system to

intelligent systems. ABE defines a virtual machine for exhibit more flexible behavior than

module-oriented programming and a cooperative operating conventional systems.

system that provides access to the capabilities of that * They incorporate, use, and maintain
virtual machine. On top of the virtual machine, ABE knowledge.
provides a number of problem-solving frameworks, such as
blackboards and dataflow. Problem-solving frameworks * They exploit diverse, ad hoc subsystems

support the construction of knowledge engineering tools, embodying a variety of selected methods.
which- span a range from knowledge processing modules to The subsystems may be "intelligent" or
skeletal systems. Finally, applications can be built on conventional.
skeletal systems. In addition, ABE supports the They interact intelligibly with users and other
importation of existing software, including both systems.
conventional and knowledge engineering tools. Intelligibilty is one of the most striking

attributes of knowledge systems.

1. Background and Objectives o They allocate their own resources and
Expert systems have-emerged from about fifteen years attention.

of research and development activities in applied Artificial Intelligent systems often need to be
Intelligence (AI). Numerous prototype applications have introspective and aware of their progress in

been demonstrated in government and industry, several applying their knowledge and subsystems in
commercial systems have been fielded, and the potential pursuit of their goals.
value of expert systems has become widely recognized. Most people now perceive a gap between what the
This value derives from their ability to provide a means intelligent systems technology should be able to do and
for capturing, preserving, applying, and distributing what can be done today. While the technology holds great
human knowledge. promise, it cannot yet supply solutions readily for many of

As experience has accumulated, it has become clear the problems for which it should be applicable. Today,
that most applications of this technology will not be as that technology transfers from research environments to
isolated, "expert" systems. Rather, the application of applications chiefly through knowledge engineering tools.
expertise (or more generally, knowledge) will occur in the Prominent examples of these are the commercial products

ART (from Iference Corp.), KEE (from Intellicorp),
KnowledgeCraft (from Carnegie Group), and S.1 (from

IThis is an early description of in-progress research. The ideas Teknowledge). These tools incorporate the best methods

described here require experimental testing and will likely change. of applied artificial intelligence, and they reflect some of

This does not constitute a commitment by Teknowledge to any the best techniques for building expert systems. However,

product or service. ABE is a trademark of Teknowledge Inc.
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these tools currently have several weaknesses. Generally,
these reflect the small-scale and isolated nature of the open/extensible The various levels in ABE will be
applications that motivated the tools. Specifically, the accessible for modification and
major problems include the following: augmentation.

@ The best current tools are monolithic, single- intuitive to learn
purpose software packages. Hence they are To support modification and
hard to extend or apply beyond their current augmentation, the various facilities, and
range of applications. They are also difficult to their implementations, must be
integrate with conventional data processing and understandable.
computer technologies.

* The tools provide capabilities that are low- high performing
level. Most applications require the user to ABE must be capable cf being used to
build a solution structure on top of those build systems that execute efficiently. It
primitive capabilities. This design and will allow for arbitrary tuning of
implementation work is expensive and time- application systems, in response to
consuming, and requires a skilled and particular requirements.
experienced knowledge engineer, portable ABE will be portable to a variety of

* The tools support a limited variety of data machines with relative ease. This
types and inference schemes. includes both the ABE development

* The inference schemes ia current tools are environment and, especially, applications
built-in and practically hard-wired. built on ABE.

9 Current tools do not support large-scale distributable/parallelizable*
applications. ABE w11 sqoport applications on a wide

* The tools have been designed exclusively for variety of n. :%hine architectures,
uniprocessor implementations. especially tho:-.. that are distributed-and

* The tools have not been-designed in a way that parallel.

makes them easy to port to alternative new *--Features unimplemented at present; scheduled formachines,.hse2
phase 2.

To cover a larger set of potential applications, and to
handle the larger context of intelligent systems, new tools Table 1-1: Key design characteristics of ABE
are needed. In general, this new generation of tools must
provide application developers with facilities to support
reuse of previously-constructed components, incorporating
the best methods of Al and knowledge engineering, 2. a modular and ever-expanding collection of
integration of diverse component technologies, and knowledge-engineering capabilities, including
large-scale application system development, skeletal -systems; and

In particular, these tools need to support alternative 3. a useful initial set of proven, valuable
implementations of the various knowledge engineering knowledge-engineering capabilities.
functionalities, and need to provide ways to configure Certain characteristics of ABE are essential for its
intelligent systems and intelligent system tools out of effective use. Table 1-1 lists these. Although some of
modular functions. To be practical, such a new tool must these characteristics will not be -implemented substantially
consist of many preprogrammed functional modules and until Phase 2, the design is committed to facilitate all of
provide an effective technique for configuring these them.
modules into larger systems. In addition to low-level
capabilities, the tool must provide high-level, generic
solutions to classes of problems (similar to the way that 1.1. Status and Plans
fourth-generation languages provide generic solutions for Direct work on ABE began in spring of 1985, under
classes -of database processing tasks); we call such partial contract to the Defense Advanced Research Projects
solution structures skeletal systems. Finally, the tool Agency (DARPA) and Rome Air Development Center
must also allow the accumulation and incorporation of new (RADC). A preliminary implementation, in Common LISP
and existing functional modules, both "intelligent" and on Symbolics workstations, is operational now (spring
conventional. 1986). Section 4 describes portions of a recent

ABE is a new generation tool that satisfies the demonstration of that version. A few selected projects will

requirements for building intelligent systems. ABE is begin using an early delivery version of ABE in summer
1986. These early versions provide the basic ABE

1. an architecture and methodology for building functionalities as described here, including a few
intelligent systems by integrating heterogeneous frameworks and access to several existing general-purpose
components, including conventional (i.e., non- knowledge engineering tools. The phase 1 prototype
AI) components; version will be released to DARPA in 1987.
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Proposed phase 2 work will emphasize higher
performance, distributed configurations, versions for other Users of capabilities
computing equipment, and refinement and extension of the Level at this level
knowledge engineering capabilities.

5. Intelligent system applications End users

2. Overview of ABE
Central to ABE is a multi-level architecture for 4. Knowledge engineering tools Knowledge engineers

developing intelligent systems. This architecture supports 4b. Skeletal systems and domain experts
aggregations of cooperating, autonomous, problem-solving 4a. Knowledge processing modules
components. At the lowest level is a general model of
computation. Organized around the central notion of 3. Problem-solving frameworks Tool builders
communicating modules, the computational model is called
Module-Oriented Programming (MOP). This model of 2. Virtual machine and cooperative System designers

computation provides the foundation and building blocks operating system
for the higher levels -- for expressing designs of intelligent
systems as networks of cooperative problem-solving agents. 1. Underlying computing ABE implementors and
The computational model also defines a virtual machine; environments system programmers
this can be mapped onto underlying hardware and
operating system environments.

Table 2-1. Intelligent system levels,
The ABE architecture is a general-purrpose software an ssted uses

architecture for building intelligent systems. In particular, and associated users

the ABE architecture supports the construction of
problem-solving frameworks (see Hiow). A framework is
an architecture for building particular intelligent systems, for tasks such as maintaining knowledge bases, running

and MOP is a meta-architecture for building intelligent cases, creating English-like translations of rules and other

system architectures. constructs, and producing explanations of system behavior.
For example, one set of modules in ABE's library is built

The process of building an intelligent system is best around structures for plans, and includes facilities for
accomplished by building up layers of capabilities. Each representing, creating, analyzing, and modifying them.
layer draws on the capabilities made available by the layer
beneath it and presents a new set to the layer above it. A knowledge engineer can create a skeletal system by

New capabilities are often developed by modifying, adding structure to and control over the knowledge

restricting, or reconfiguring the capabilit'es from the next processing modules and their interactions with other

lower level, facilities (such as databases). One skeletal system in
ABE's library, called PMR (which stands for "Plan

The ABE architecture defines several functional levels Monitoring and Replanning"), analyzes an existing plan,

in intelligent systems. These are listed in Table 2-1, in monitors a database for critical assumptions of the plan

descending order. The ABE research effort is that might become invalid, replans around violated

concentrating on providing levels 2, 3, and 4. Associated assumptions, and interacts with various external agents

with each level is a class-of user who uses the facilities at about these activities.
that level to provide the functionality of the next higher The knowledge engineer customizes a skeletal system
level: system designer, tool builder, knowledge engineer, for knowlargeppnineeron uomi a relal smem
and domain expert. Here a brief description is presented, for a particular application domain by replacing some ofwith some examples of the facilities to be included in the generic constructs with more appropriate terms. One
ABE'som exa pelver sstem ctiso 3e provde me example application domain of the PMR is planning for
ABE's early delivery system. Section 3 provides more offensive air strike missions. For this, terms such as
details. "flight", "target", and "ordnance" are appropriate. This

The current underlying computing environment is the customized skeletal system is called AS-PMR.
Symbolics LISP machine and Common LISP, augmented
with Coral, an object-oriented language developed for Finally, a domain expert adds to this skeletal system

ABE. The virtual machine is ABE's MOP (Module knowledge of specific objects and relationships to create a

Oriented Programming system) and the operating system domain-specific application system. For AS-PMR, this

that buppurtb it is called KIOSK. On thi-basc thc system includes such information as characteristics of particular

designer layers problem-solving frameworks of various aircraft models, targets, and ordnances. It also includes
kinds. ABE's early versions include a dataflow framework the particular rules which govern their interactions, e.g.,

and a blackboard framework, that a particular ordnance is available on a particular
aircraft and is able to destroy a particular target.

Given one or more frameworks, the tool builder
supplies knowledge processing modules. These might
include capabilities such as a rule interpreter, and facilities
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2.1. What ABE Addresses nodules
ABE's design addresses the weaknesses described in Local

Section 1. Cnrle

An important aspect of ABE's design is the multi-level
architecture and the particular choice of levels. The
multiple levels provides flexibility, and have been chosen
to support the goals of building intelligent systems by I/0 Tetwor

selecting, customizing, and combining modules from Pa'rts
growing libraries. ;II

As shown in Table 2-1, certain classes of users are
associated with each of the levels. Although in practice a
single individual might encompass more than one of these
functions, the multi-level organization also supports Figure 3-1: A standard KIOSK module organization
specialization of these user roles.

The MOP computational model provides flexibility for
expressiug a wide range of cooperative problem-solving e easier knowledge acquisition, and
architectures, each with its own control and
communication scheme. Diverse schemes, from highly * easier maintenance of the application.
centralized to fully distributed, are needed to implement
the large variety of intelligent system applications. The
virtual machine supplied with the computational model 3. System Description
can be mapped onto a wide range of underlying We now discuss in greater details levels 2 through 4 of

hardware/OS environments. Primary targets are parallel the ABE architecture.

and distributed environments. The model's flexibility can
also be exploited within a single ABE application system; 3.1. Virtual Machine/OS
various subsystems can be implemented in heterogeneous The base level of ABE is the virtual
problem-solving frameworks, and they can be implemented machine/cooperative operating system level. The virtual
on heterogeneous computing facilities, machine designed for ABE embodies a computational

The developer of a framework needs both a general- model called Module-Oriented Programming (MOP). The
purpose, open organization and a strong computational cooperative operating system that supports this model is
model. The open organization of communicating modules called KIOSK.
provides the needed flexibility, and the MOP At the virtual machine level, an ABE system is
computational model gives a strong semantic basis for composed of a set of modules -- see Figure 3-1. Modules
understanding the computational properties of the systems communicate with one another by sending messages over
built. networks. Modules can connect to many networks

Most current efforts at building and improving tools simultaneously and can communicate with each network
are concentrating on improving particular Al techniques independently. Modules are either primitive or recursiv'ily
used in knowledge engineering tools. A major emphasis in composed from another set of modules communicating on
the ABE project is on providing an organizing framework a network. Each composite module has a local controller,
and facilities that allow such tools to be accumulated and which manages both the communication activities on its
re-used. ABE complements these other -efforts, since it is network and the communication between the composite
able to import and integrate their efforts. module as a whole and the networks external to it. The

local controller also control. the allocation of processing
Another thrust of ABE is in skeletal systems. With a resources among the modules on the network.

few notable exceptions (especially see [Clancey 831 and
[Cliandrasekaran 831), the field of intelligent system KIOSK is called a cooperative operating system for the

engineering has largely ignored and skipped over this level, MOP virtual machine because it provides services
in favor of programming shells (at a level below) and analogous to the services provided by a standard operating
applications (above). A typical knowledge-system project system. These services include module and network
starts from a shell (e.g., backward-chaining rules over creation, communication primitives, computational
frames) and creates a new application system. bypassing resource modeling, and primitive resource allocation
the skeletal system level. However, explicit identification schemes. KIOSK provides an abstraction barrier which
and design of generic, skeletal systems has several allows the ABE system to be mapped to arbitrary physical
important advantages, including computing environments. The term "KIOSK" is used to

9 increased modularity of systems, refer to both the MOP virtual machine and the KIOSK
cooperative operating system.

* increased reusability of solutions or parts of
solutions,
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3.2. Problem-solving Frameworks The BBD interpreter has a scheduler whose function is
The next level of ABE consists of problem-solving to select a KSI for execution. This scheduler is very

frameworks, also referred to as problem-solving simple, and is refered to as a base scheduler. A special set
architectures or programming languages. We have not of KSs known as "scheduling KSs" can manipulate the set
found a satisfactory distinction between programming of KSIs on the blackboard, thereby producing different
languages and problem-solving architectures, so we group scheduling behavior from the base scheduler.
them together in one level. 3.3. Knowledge Engineering Tools

A framework is a collection of design choices: control The third level of ABE is the knowledge engineering
and resource allocation regimes, communication protocols, tools level. This level spans a range, with knowledge
shared languages (syntax), and computational organizing engineering capabilities at the lower end and skeletal
principles. These design choices manifest themselves in systems at the higher. A primary research goal at this
ABE within the local controller of a module, because the level is to develop a methodology for modularizing,
local controller has responsibility for all of these things. describing, cataloging, reusing, and combining knowledge
An ABE system may contain instances of many different engineering tools.
frameworks, although not all frameworks can coexist on Skeletal systems can be characterized as a way tothe same network.Seetlssesanbchrcezda awyo

organize and control knowledge and other facilities to solve

A framework may present a view of the world quite a class of problems. In an ABE system, a skeletal system

different from the underlying KIOSK "modules-on-a- is a particular set of modules defined within a particular
network" view. For example, a framework may designate framework. Many of these modules will have mechanisms
certain modules as having some special significance to the for customization by the knowledge engineer with
global operation of the system (e.g., the shared blackboard application-specific knowledge. Other modules may serve
module in a blackboard-oriented framework). Also, the as place holders, which the knowledge engineer will replace
framework may provide its own visual representation by totally new, but functionally equivalent, application-
which totally masks the underlying virtual machine, specific modules. 2  Yet other modules may represent a

class of modules or a generator of new modules which the
ABE's library currently includes two primary problem- system will create at runtime. In general, a skeletal

solving frameworks: a dataflow framework (called DF) system is a partially instantiated assembly of modules for
and a blackboard framework (BBD), both of which are solving a class of application problems.
still evolving. Additional frameworks will be added. Also,
the separation between the problem-solving frameworks
and the underlying MOP/KIOSK level is still evolving, The Plan Monitoring and Replanning (PMR)
based on experience developing the frameworks. Skeletal System

The DF framework implements many of the concepts The PMR is the first skeletal system implemented for
found in standard dataflow languages [Davis 821. It also the ABE library. It is a generic structure for adaptive
includes extra data structuring techniques and a semi- eAlibrary.keepis a gnericste for adaptive

deterministic scheduler. A program -for the DF framework replanning -- keeping a plan conistent with a changing

consists of a number of independent processing modules world. More specifically, it provides facilities to

which perform computations and communicate with each e analyze a plan to determine its key
other and the outside world. The data structuring assumptions about the world,
supports the use of abstract datatypes (ADTs) as the * monitor a database describing the unfolding
tokens passed between processing modules. The semi- world situation, looking for key assumptions
deterministic scheduler supports building programs with that no longer hold,
side effects (such as communicating with the external
environment). a incrementally replan around these problems,and

BBD is a framework based on the blackboard
metaphor (Erman 80J A blackboard system consists of a * keep selected agents informed of important
number of individual computation agents, known as changes in the situation and the plan.
knowledge sources (KSs), which communicate with each This skeletal system is independent of any particular
other throttgh a shared global database, known as the application or application domain. For example, we have
blackboard. KSs monitor the blackboard with trigger built one instance of the PMR customized -for planning of
patterns. When the posting of a datum on the blackboard air strike missions. We have built a second application, in
matches a KS's-trigger pattern, the KS triggers itself. The the domain of personal travel planning.
triggering operation informs the BBD scheduler that a
particular KS was triggered by a particular set of
blackboard objects. This KS instantiation (KSI) is itself
posted on the blackboard. 2This can be viewed as an extreme form of "customization."
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Basic Facilities Craft version of the same abstract symbolic database
mentioned above for MRS. Finally, the interface also

At the lowest level of knowledge engineering tools, fairly direct access to any of Knowledge Craft's

ABE allows the user to program modules in Common

LISP. Above that level, the Coral object-oriented The early delivery library will also supply an interface
programming facility, embedded in Common LISP, can be to S.I [Erman 841. A commercial product of Teknowledge,
used. S.I is a higher-level knowledge engineering "shell". S.1

Somewhat higher still, ABE supports the concept of provides a backward-chaining, rule-based system that also

abstract data types (ADT) as a :.ommonly useful allows for expression of procedurally represented

methodology for defining and accessing structured objects. knowledge, usually for control purposes.

For example, most DF programs use ADTs to implement
the data tokens passed among the process modules. 4. Examples
Similarly, the BBD framework uses ADTs to implement This section describes some of the features of ABE
blackbGard objects. In addition to this general ADT through examples of their operation and use.
facility, ABE's initial library contains particular ADTs for
the plan structures used in the PMR skeletal system; these Figure 4-1 shows part of the current ABE catalog. At
(as well as the individual PMR modules) are available for the lowest level are the programming languages, including
reuse, perhaps with some customization or other Common LISP, Coral (an object-oriented system built on
modification. Common LISP), MRS, and three components of

Knowledge Craft: Carnegie Representation Language,
ABE's initial library contains an abstract, symbolic Prolog, and OPS5. S.1 will be available soon.

database facility, known as GDB (generic database), which
can be used to define, store, and retrieve symbolic Above the languages are the frameworks -- the various
structures. GDB is used by various PMR modules, both as ways in which modules can be implemented. Each
internal databases and to represent the external world. framework has its identifying icon. The BBD blackboard
There are two alternative implementations of the GDB -- and DF dataflow framework, are described in Section 3.
one in MRS and one in Prolog. The TX transaction framework is used for implementing a

server module (such as a database) that has one or more
client modules. The set of facilities for abstract data types

Integration of Pre-existing KE Tools (ADTs) is also considered a framework. A module
implemented in the blackbox framework just has arbitrary

One goal of ABE is to allow the use and combination code, not internally analyzable by ABE. An importer
of existing knowledge engineering tools of various kinds, module is a special case of a blackbox module, one which
The early delivery version will contain interfaces for imports some foreign code with a wrapper that makes it
several of these, including MRS, Knowledge Craft, and S.1. ABE-compatible. Finally, the catalog facility is itself a

MRS (Russell 851 is a research system developed at form of framework.

Stanford University, and available under license from Above the frameworks is a collection of modules of
Stanford. MRS provides general-purpose facilities (with an various capabilities. Included are a number of ADTs (e.g.,
underlying first-order predicate calculus basis) for for plans and actions). Finally, there are several skeletal
representation and, especially, control. MRS is highly systems, domain-specific customizations, and applications.
articulated and modular, and therefore allows intimate An application is a skeletal system that has already been
integration with relative ease. A user can access MRS customized.
directly from within Common Lisp code in ABE (e.g., from
within DF or BBD modules). As noted above, ABE's The largest window in Figure 4-2 shows the central

library also contains a version of its GDB symbolic part of the dataflow version of the plan monitoring and

database facility implemented in MRS. replanning (PMR) skeletal system. Using standard
dataflow votation, processing modules are shown as

Knowledge Craft [Knowledge Craft 85] is a rectangles and token places as ovals. The dashed oval
commercial product of Carnegie Group, Inc. It is a indicates the input to the PMR as a whole. The Situation
general purpose knowledge-engineering "shell". The heart Monitor module is itself implemented as a dataflow
of Knowledge Craft is a schema (frame) system, called program, and that is shown in the upper right-hand
CRL ("Carnegie Representation Language"). Knowledge window. This version of the PMR uses the MRS
Craft also has several separate facilities, including implementation of the symbolic database system for the
Implementations of the OPS5 forward-chaining rule system world situation, shown in the lower right-hand window.
and the PROLOG logic programming language. Each of While the Situation Monitor is an example of
these facilities is augmented to allow access to CRL hierarchically composed module, the connections between
schema. ABE's initial Knowledge Craft interface supports the Situation Database and its clients via the TX
the implementation of abstract data types as CRL (transaction) framework is an example of non-hierarchical
schemata and, in general, translating between schemata interactions between frameworks; we call such interactions
and ADTs. The ABE library also contains a Knowledge meshing.
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Figure 4-3 contai-s an example of replacing one planning offensive counter air missions and is similar to
module with another. The relatively simple replanner that used in the KNOBS system. Figure 4-4 shows the
implemented originily for the PIMR is being replaced by structure of an air strike plan and an example of one
the KNOBS Replanning System (KRS), imported from the action of that plan. The Travel Planning application,
Mitre Corporation. (See jEngelman 19i for a description of shown in Figure 4-5, handles trips from one's home to a
the earlier KNOBS work which led to KRS.) The hotel in a distant city. ABE's current catalog contains
replacement is done graphically, by deleting the box customnizations for specializing the PMR to each of these
representing the original replanner and-connecting in a-box applications. Each customnization includes definitions for
representing KRS. qctions and states, plan structures, and example test-case

Two applications of the generic PMR are shown in the plans-and situations.

next two figures. The Air Strike application deals with
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Figure 4-6: The PMR, with the Prolog database system
and the added Failure Explainer module

Figure 4-6 shows a version of the PMR with the knowledge -sources within the BBD blackboard framework.
Situation database implemented by Prolog, in place of the In addition, two scheduling knowledge sources have been
MRS implementation. This figure also shows the central added, to provide explicit scheduling knowledge.
part of the PMR augmented with a module- that generates Figure 4-7 shows the state of execution after the
explanations of the detected plan failures. Near the Failure Explainer and Replanner have both been triggered
bottom of the figure, the two-line output of that module is by the Situation Monitor posting on the-blackboard one or
shown. This module is implemented in OPS5 (and some more violated plan assumptions. The triggering of those
internal tracing of the hPe5-operation is also shown at the two knowledge sources has also triggered the Explain-
bottom of the figure). Failure-Before-Replanning scheduling knowledge source.

The control regime provided with the dataflow Figure 4-8- shows the result of that scheduling knowledge
framework allows the system architect to configure a source -- it has explicitly ordered on the agenda (near the
system without having to be overly concerned about top of the figure) the two other pending sources, to achieve
control. However, if the architect wants to specify more the desired sequencing. This example shows not only the
fine-grained control, a dataflow framework is multiple frameworks and why they are desirable, but also
inappropriate or poor. For example, it is difficult to shows that ABE's module-oriented programming style
specify in a dataflow framework that the Failure Lxplainer allows for the reuse of modules within a variety of
should operate before the Replanner, which is probably frameworks.
desirable for the PMR. Figure 4-7 shows the same five
processing modules of the DF PMR functioning as
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David Herman. Dean Allemang. and Todd Johnson.

Laboratory for Artificial Intelligence Research
The Ohio State University

1. Background of the Research and systems is in order at this stage to motivate the issuesOverview o Acco lishments discussed in this report. li our original proposal we
O ohad argued that there are three top-level components

that can be distinguished-

1.1. Introduction i) How a problem solver represents its own
problem solving activity and retrieves the

This is a progress report on our project on relevant portions appropriately in response
"Explanation in Planning and Problem Solving to user queries. Here the language in
Systems." It is being written approximately at the which the problem solving behavior is ea-
15-month mark. Conceptual frameworks for generation coded is very important for whether the
of explanation of two kinds have been built: one for response is perspicuous.
explaining how decisions are made during problem ii) flow user's goals, state of knowledge,
solving, explaining control strategies as well as other etc, are used to filter and shape the output
aspects of run-time behavior, and the other to give a of the process in i) above so that the ex-
planner the capacity to represent an understanding of planation is responsive to user's needs, is
its own plan fragments, and thus to explain to the not overly and unnecessarily detailed, is
user how a plan is meant to work. A prototype mis- couched in terms which are appropriate to
sion planning system with some explanation the user's level or understanding, etc. Here
capabilities has been built, and a number of high-level user modeling is an important issue.
knowledge-based system co".struction tools have been
built with features that facilitate knowledge acquisi- iii) How an appropriate human-machine in-
tion, system implementation and explanation genera- terrace displays and presents the infor-
tion. Two of these tools (DSPL and HYPER) are mation to a user in an effective way. Here
discussed in this report 3, one (CSRL) predates this the issues include natural language under-
explanation project and has been extensively reported standing, natural language generation, and
on 14, 5, 6, 7, 12) and several others are in various principles of effective graphical displays.
stages of design and implementation. Together they
will constitute a high-level tool box for the construe- We argued in the original propobal that no mat-
tion of knowledge-based systems. They will be useful ter how good the theories are for ii) and iii), if a poor
for building a variety of planning, diagnostic, abduc- representation is adopted for i), then at best in-
tive, and retrieval systems, and systems which are appropriate explanation will be presented packaged in
combinations of these types. These tools have as a good interface. That is, the basic content of the ex-
design features a number of "hooks" for the attach- planation is generated in stage i). Thus we need to
ment of explanation synthesis tools. pay great attention to how a problem solver can com-

prehend its own problem-solving activity. Much of our
In the first stage of the project, we have chosen Phase-I effort is devoted to developing a good theory

"routine planning" as a task for which to build a of this, testing it by implementation of a prototype
prototype. In particular, a planning task for Offensive system, etc.
Counter Air (OCA) missions was chosen for analysis
and implementation.

The explanation of problem solving itself in our
analysis har 3 components:

1.2. A Decomposition of the Explanation 1. Explaining why certain decisions were made
Problem or were not made. This has to do with

how the data in a particular case related to
A brief recapitulation of our decomposition of the the knowledge for making specific (lecisions

problem of explanation generation in knowledge-based or choices.



2. Explaining the problem solving strategy and mission problem as a problem of this type, used one
the control behavior of the problem solver, of our generic task languages (l)SPL) for both
''his would typically be at a higher level of knowledge acquisition an(d system impqlementation, and
abstraction than answers to t. by using the constructs in I)SPL effectively, have been

able to show how explanation at higher and more op-
3. Explaining the elements of the knowledge propriate levels of abstraction can be automatically

base itself. For example, if the knowledge generated from the problem solver. Some of the tools
base contains plan fragments which are to that we have built to lay a proper foundation for
be instantiated and assembled into longer explanation-capable expert system are described in a
plans, the problem solver may be called later section (3).
upon to explain the rationale behind the
plan fragments. Similarly if. during a par- Explanation of Type 3 above, viz., explanation of
ticular diagnosis, a trouble-shooter uses the knowledge fragments in the knowledge base, has been
knowledge that a low voltage between cer- approached by us in the context of the OCA mission
tain terminals is evidence for a particular as explanation of plans (i.e., the plans themselves, not
malfunction, a user might want to know the planning process). We propose that plans can be
the reasoning behind the knowledge frag- viewed as devices, and as such an earlier represen-
ment. tation developed in our laboratory for representing a

device's functioning can be used effectively for explain-
It should be noted that typically I and 2 above ing plans.

involve the run-time behavior of a problem solver (and
thus cannot in general be precompiled without running
into combinatorial problems), while explanation struc-
tures for 3 above can in principle be attached to the 1.4. Organization of the Progress Report
knowledge fragments at the time the knowledge base
is put together. The work that has gone on in our laboratory is

ieported in two separate papers in this Proceedings.
In this paper, we give a description of our work on

1.3. Overview of the Work So Far the design and implementation of the MPA system for
mission-planning, including the generation of explana-

Our work in Phase I of the project has con- tion of various types. It ought to be emphasized that
tributed to each of tire above types of explanation. the IMPA project is not completed, and so what is
Our theoretical position is that in order to generate reported here should be viewed mainly as an interim
explanation of type I and type 2 at the appropriate report. Both the design of the planner and the ex-
level of abstraction, the problem solving process needs planation components are still in the process of further
to be represented at what we have called the generic analysis and expansion. We also include in this paper
task level. The essence of the argument is that most reports on two high-level tools that we have been
of the current approaches to expert system construe- building for the construction of knowledge-based sys-
tion use knowledge representation languages and con- tens: DSPI, for construction of systems that help
trol primitives at too low a level of abstraction (the with routine design (including planning), and IIYPER,
rule-frame-logical formulae level), and this makes both for deciding how data match hypotheses, a component
system design and explanation difficult, since the sys- of a number of distinct kinds of problem solving.
tern designer often has to transform a higher-level These two are part of a tool-kit that includes CSRL,
problem intc. the lower-level implementation language. a language already developed and reported on, and
We have identified a set of higher-level building blocks others that are in various stages of implementation.
in terms of which systems can be conceptualized,
designed an(! implemented. The basic explanation We include an additional paper reporting on the
construct- are then available closer to the conceptual conceptual and theoretical foundations for much of our
level of the user than they would be if they had to be work on explanation. This provides the rationale for
extracted from the implementation language level. using the generic tasks approach, both for system con-
This point of view has led us to propose a new ap- struction and for explanation.
proach to the design of knowledge-based systems,
namely the generic task level. In order to facilitate
etxpett bybtei tunititutiot dt this level, we have 1.5. Near Term Plans
devoted a considerable amount of energy to the design
and implementation of a set of higher level tools for We propose to continue and add functionalities
the construction of expert systems of various types. to the MPA System, and also to increase the range of

explanations offered by the system. We also plan in

Tie theory itself is being put to the test at this the near term to show how our approach to explana-
stage for what can be called routine planning or tion can be incorporated to a diagnostic or siliatolin

routine design tasks. We have identified the OCA aSsessment task.
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2. MPA: A Mission Planning knowledge. Acceptability of slot values is based upon
Assistant in the KNOBS "Domain satisfaction of constraints. Constraints are attached to

the template (rather than the slots) to reflect the view
that "all action is in the interaction of the slots".
Constraints are organized as a list of "lbuckets", or-2.1. Design Aid Construction of the Mission dered to express priority in constraint satifaction.

Planning Assistant Each bucket contains an unordered list of constraints.

D~avid Hlermnan. Anne Keuneke. The testing of slot values is accomiplislhd by travers-
Michael d C.n T nner, RonHtune p n ing and checking constraints in the order specified byMichael C. I anner, Ron lHartung, Johne Josephson the priority buckets.

One major application area relevant to the
Strategic Computing Progrrim is planning and plan In order to determine acceptable choices for
support systems. Our interest :n planning concerns values of slots, KNOBS associates a generator with
the explanation facilities that will be necessary in ex- each slot to enumerate potential values. The gener-
pert systems that assist in planning. This report ator produces a subset of all possible values of the
summarizes our current work in this area in the slot. The generator is derived by "inverting" con-
domain of tactical mission planning. After investigat- straint knowledge pertinent to the slot.
ing KNOBS 1101, an existing mission planning system,
we have developed our own mission planning system Given the slot ordering, constraints, and
(MPA) using our generic task approach to building ex- generators, KNOlS "plans" as follows: The generator
pert systems. The system is implemented in DSPL, a of the first slot is asked for its first candidate, the
language initially developed in support of planning generator for the second slot is asked for its first can-
research in the domain of mechanical design il. didate, and so on. At each slot filling, all applicable

constraints ar, checked. If any are not satisfied, then
The task we are investigating involves one of the the slot generator is asked for another candidate. If

fuctions of Tactical Air Control Centers (TACCs). another candidate exists, it is tried. and so on until

Their concerns are to assign available resources to the either all slot., have accepted values or a generator
various tasks of an "appointment" order. The output runs out of candidates. If this happens, KNOBS
is an Air Tasking Order (ATO), %hich summarizes would back up to the most recently filled slot that
the responsibilities of each unit with respect to the was involved in the constraint that failed. KNOBS is
day's missions. Each mission planned requires atten- successful when all slots are filled and all constraints
tion to such details as the selection of aircraft type are satisfied. The basic planning algorithm for
appropriate to the mission, selection of a base from KNOBS can thus be described as generate and test
which to fly the mission, coordination with other mnis- with dependency-directed backtracking.
sions, etc.

KNOBS was successful in showing the feasibility
Our most recent objectives have been to deter- of Al techniques for certain classes of mission plan-

mine the knowledge a system would require to pla a ning. The constraint technique in particular is useful
particular type of m'3sion, the Offensive Counter-Air where applicable, but as far as we can determine
(OCA) mission. We are interested in the planning KNOBS was not intended as a generic approach to
process, as well as the ability to explain the reasoning planning in general. The methodology for planning
of the planning process. Our selection of the OCA based on template instantiation and constraint satisfac-
mission in particular arose partly from the availability tion will not typically scale up well, since, as the size
of the KNOBS system and its knowledge base for tac- of problem space increases, the exhaustive depth-first
tical planning support in this domain, nature of the search makes the technique computation-

ally infeasible. In addition extensions or adaptations
to such a template would be difficult, since most of

2.1.1. The KNOBS System the planning knowledge is implicit (and thus hidden)
in the ordering of template slots and constraints.

The KNOBS system was built to address plan-
ning tasks which involve the specification of values for These problems arise because the system does
a set of pre-established components known to be not have significant amounts of problem-solving exper-
neccssary for thc planncd activity. Planning offnsivo Uise for planning ny explanation in K4OIl i
counter air missions can be viewed as such a task. limited to answers based on a constraint - either a

value is bad because it fails a constraint, or it is good
KNOBS sees planning as template instantiation - because it satisfies a constraint. There is no

a process of filling in a number of slots with accept- knowledge of why the systemi should satisfy a con-
able values. The order in which the slots are con- straint (its functionality) nor why this constraint (vs
sidered is defined in advance by the plan template, any other) is being considered now (plan strategy).
and is determined by the expert's domain planning Similarly, this knowledge is missing for slots - why is
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this slot necessary, and why is this the best ordering conceptual specialists, with each specialist responsible
of slots - are questions which cannot be answered by for a particular portion or the design. Specialists
a KNOBS-like system. higher up in the hierarchy deal with the more general

aspects of the device being designed. while specialists
Thus the KNOBS mechanism does not allow for lower in the hierarchy design more specific sub-

two major types of explanation- neither the planning portions of the device, or address other design sub.
control strategy, nor functional knowledge of the tasks. Auy specialist may acces-s a design (ata-base
domain can be justified, These kinds of explanation (mediated by an intelligent data-base assistant). The
for a planner are feasible if the planning and func- organization of the specialists and the specific content
tional knowledge is represented with appropriate Ntruc- of each is intended to precisely capture the designer's
tures. expertise of the problem domain.

It should be added that the designers of KNOBS Each specialist in the design hierarchy contains
were also aware of these limitations and are currently locally the design knowledge necessary to accomplish
building a system called K RS which includes some of that portion of the design for which it is responsible.
the additional functionalities (lescriled above. There are several types of knowledge represented in

each specialist, three of which are described here.
First, explicit design plans in each specialist encode se-

2.1.2 Class II! Design quences of possible actions to successfully complete the
specialist's task. Different design plans within a

Our approach to tactical mission planning treats specialist may encode alternative action sequences, but
the Air Tasking Order (ATO) as an abstract device to plans within a particular specialist are always aimed
be designed. The planning of the missions or groups of at achieving the specific design goals of that specialist.
missions that comprise the completed ATO involves a A second type of nowledge encoded within specialists
process similar to the process a designer undergoes is encoded in design plan sponsors. Each design plan
when faced with a complex device to design. An has an associated sponsor to determine the ap-
overview of the design domain will illuminate this propriateness of the plan in the run-time context.
analogy. For a more comprehensive description see The third type of planning knowledge in a specialist is

:1 . encoded in design plan selectors. The function of tne
selector knowledge is to examine the run-time judgc-

The general domain of design is vast. It in- ments of the design plan sponsors and determine
volves creativity, many problem-solving techniques, and which of the design plans within the specialist is most
many kinds of knowllge. Goals are often poorly appropriate to the current problem context.
specified, and may ange during the course of
problem solving. II wever, a spectrum of design Control in a I)SPL system proceeds from the
classes can be identified, varying from completely top-most specialist in the design hierarchy to the
open-ended activity to the most routine, depending on lowest. Beginning with the top-most specialist, each
what sorts of knowledge is available prior to the start specialist selects a design plan appropriate to the re-
of problem solving. quirements of the problem and the current state of

the solution. The selected plan is executed by per-
What we have called "(Class 3 Design" charac- forming the design actions specified by the plan. This

terizes a form of routine design activity. Complete may include computing and assigning specific values to

knowledge of both the components and design plans attributes of the device, running constraints to check
for the device iq assumed to be available prior to the the progress of the design, or invoking sub-specialists
problem solving activity. rhe problem solving to complete another portion of the design. Thus
proceeds by using recognition knowledge to select design plans which refer to a sub-specialist are refined
among the previously known sequences of design ac- by passing control to that sub-specialist.
tions. While the choices at each point may be simple,
this does not imply that the design process itself is The discussion of the control strategies in a
simple, nor that the components so designed must be DSPL system has thus far only included successful
simple. It appears that a significant portion of plan execution. However DSPI, does include facilities
everyday activity of practicing designers falls into this for the handling of various types of plan failures. and
clas, In order to e.yploro this ela,;, of deign for controlling rcdcsign suggcstcd by ,uch failurcs.
problems, the DSPL (Design Structures and Plans The details of these Latures of the language can be
Language) system was developed. II, 2, 3 The routine found in I1:.
design task is viewed as decomposable into a hierar-
chical planning task. where ipically eaclh level makes 2.1-1. is.smon Planning as Class I11 Design
.some design conuitinews, and the design is further
refined by the lower level planners. A design problem Our view of tactical mission planning is that it
solver in DSPL consists of a hierarchy of cooperating, is essentially a class 3 design task. The problem can
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be decomposed into the design of subconponents of 2.1.4. The AIPA System
the mission plan. In the device design domain, the
design of a device is decomposed into the design of The following discussio. gives a general descrip-
sub-assemblies and their t,.ponents, etc., where each tion of the planning strategies particular to the MPA
sub-assembly or component can be designed in a fairly system as currently implemented in l)SPI,.
independent fashion. In the tactical mission planning
domain the ATO is decomposed into various missions Several caveats are in order concerning the
or groups of missions of known types, where each mis- domain of the MPA system. The MPA system cur-
sion or group of missions able to be planned relatively rently only handles the planning of OCA missiens, al-
independently of the others, inodulo resource conten- though we believe other missions could be handled in
lion considerations. In both domains, of course, each a similar fashion. Our prototype ;ystem does not ad-
of the solutions to the subproblems must be ap)- (ress several minor bookkeeping (Ispeck of Iliisioii
propriately combined into the solution for the problem planning, which although of no theoretical ivi'eresl.
which they decompose. l)ue to the well know limita- would be necessary to a fully functional mission plan-wi o thy a decopoben sueoing capacities, iti - ner. Such items as assigning radio frequencies to aLions of hunian problem solving capacities, it is ap-

parent that a human problem solver can be successful flight and designating mission call-signs fall into this
in such a situation only to the extent that he can also category. Finally, although the specific military
decompose the problem into a manageable number of knowledge in the MPA system is adequate for
somewhat independent sub-probles which call be demonstration purposes, it by no means meant to
solved separately and combined into a final solution. reflect complete or even accurate knowledge of aircraft
Using DSPL as a natural mechanism for representing capabilities. We believe that the knowledge
the necessary knowledge, the MPA system closely mir- represented is representative of the knowledge utilized
rors these ideas. by a human mission planner, an(' that the problem

solving exhibited by the system fairly represents the
human problem solver's activities.

Another type of local. declarative knowledge in a
DSPL specialist is expressed in the form of con- 'h prototype MPA s~sten contains sixstraints. Constraints are iused( to decide oi 'lileTh prtyi P sse onas sisutaiity. oincomitrai uirements a data, to i o h specialists. The topmost specialist, O0A, accepts tie
suitability of incoing requirements and data, and mission requirements and ultimately roct's the final
the ultimate success of the specialist itself (i.e., the mission plan. The OCA specialist divides its work be-
constraints capture knowledge about those things that misin two Te Aspecialist deid it. The be
must be true of the specialists' design before it can be tween tsp o subsecialists base and aircraft. Tie baseto b sucessullycompete). Oher on- specialist is resp~oIsilble for selecting an appropriate
considered to be successfully completed). Other con- base. while the aircraft specialist selects an aircraftstraints, embedded in the specialist's design plans, are type. The aircraft specialist has three subspecialists,
used to check the correctness of intermediate design one for each of the three aircraft types known to tihe
decisions. The use of such constraints in the MPA MPA system. As needed, one of these specialists will
system easily captures the kinds of knowledge encoded select an appropriate configuration for its aircraft type.
as constraints in KNOBS, but incorporating the con-
straints into a rich overall control structure further al- Problem solving begins when the OCA specialist
lows the constraint knowledge to be utilized during is requested to plan a mission. Currently the OCA
problem solving in a sharply focused manner, specialist contains only a single design l)lan which first
Analysis of the success or failure ,, constraints during requests the base specialist to determine a base and
runtirne, generated from tie trace of the problem then requests the aircraft specialist to determine (and
solver's execution, yields explanation capabilities configure) an appropriate aircraft for the mission.
similar to that found in KNOBS, but with the ad- The current base specialist simply selects a base from
ditional context provided by the rich DSPL control a list of candidate bases geogiaphically near the tar-
structure, get. The aircraft specialist uses considerations of

threat types and weather conditions at the target to
The additional context of the DSPL control select an appropriate aircraft for the mission. The

structure provides the springboard for a more corn- aircraft specialist and its three configuiration sub-
prehensive explanation facility. In addition to the specialists represent the most elaborate a.pects of
necessary ability to examine particular attributes of a domain knowledge in the MI'A svstem.
mission plan, the control structure provides the ability
to examine the problem solving strategies of the plan- In the current 'ersion of the MPA svstemik the
ning system. This kind of explanation is not easily aircraft specialist is entered with a tentative selection
extracted from a system which uses template instantia- for the base already specified. T1hc target and re-
tion and constraint satisfaction as its primary quired probability of destruction are known from the
mechanisms for problem solving, since problem solving input requirements of the mission. At this point each
strategies are absent or at best implicitly represented. of the plan sponsors in the aircraft specialist are ex-

ecuted by time DSPL interpreter. The three plait
sponsors determine the appropritenes of their respec-
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tLive plans. In this case, each of the three plans deter- be planned in a straightforward fashion. The single
mine which of the three aircraft types should l)e used greatest hindrance to such work is the lack of acces-
for the mission. Thus the three plan sponsors deter- sibility of experienced domain experts.
mine the appropriateness of using, resIctively, F-IHl..
F-Is. or -10s for the mission. Plan sponsors may 2.2. Explanation in the Mission Planning
access a global database as necessary in their execu- Assistant
tion. In the MPA system, such item, as target
characteristics and weather conditions are r,quested in Michael C. Tlanner, Deat Alleinang,
determiniig the appropriatene,, of a particular aircraft iohn Josephson, Datt De.longh
type. After the suitability of all plans in the aircraft
specialist has been determined, the I)SPLI, interpreter
executes the plan selector in the specialist. The plan . ypes of Questions for the Mission Planner

selector, given the suitabilities of each of the aircraft We have generated a broad list of questions that
types, can then (ldetermilne which aircraft is most ap- a user may ask of a Mission Planning Assistant
propriate for the mission. The plan selector returns (MPA). Ilere we will give a categorization of those
this information to the specialist, which then causes questions. In this preliminary analysis we will be able
the selected plan to be executed. to sketch techniques for answering questions in some

categories. But iii others we hav- little to say at thisSuppose thle mission requirements call for a night p~oint.

raid. The plan sponsors for both the A-10 and F-,I

would rule out the possibility of using these aircraft, 2.2.1.1. Overall Objectives
since (in our domain model) neither of these aircraft

have night flying capability. The F-1I1 plan sponsor, There were questions about the objectives of the
since it is an all-weather fighter with night plan. Sone questions of this kind can be answered
capabilities, would not be excluded. The plar, sponsor directly by the mission planner:
for the F-Ill, based on this and other considerations
(range, ability to carry appropriate ordinance, target Quesion. What will this plan achieve?
characteristics, etc) would find the F-Ill suitable for
tile mission. The )lan selector in the aircraft Ainsiver. '[his plan will achieve destruction
specialist, finding that two design plaus have ruled of target X with probability Y.
out, would select the 'suitable' F-II design plan, and
return this informa~tion to the specialist. Theseuialis p roceedston ecte tie F ilisn p , Other questions of this type have answers external tospecialist proceeds to execute tie F-Ill design pla, the program. For example,
which includes marking the aircraft type in the mis-
sion template to 'F-tIl', and invoking the F-tIl con-
figuration specialist which in turn decides an accept- Question. Why are you doing an OCA?
able ordinance load for the F-Ill for this mission.
Once the configuration of the aircraft is known, the The trivial answer:
single aircraft probability of destruction in the mission
context can be computed. Finally. knowing the mis- Because you told me to.
sion capabilities of each aircraft, the required number
of aircraft can be determined in order to achieve the is probably not the desired answer. The reasons for
required probability of destruction, and the required planning an OCA come prion to invocation of an OCA
aircraft can be reserved from the proper unit. planning assistant. On the other hand it is perfectly

reasonable for an MPA program to have setme built-in

The MPA system could be readily extended in definition of the reasons OCAs are done.

several directions. Additional situation knowledge at
the OCA level would allow for more robust ,lanniig 2.2.1.2. Justifying Decisions
with less backtracking. More complete knowledge of Thie most common kind of question asks for jus-
the OCA mission for specifying various aspects of the tification of some decision made during problem-
flight plan, ,tc. could be added. Also, as previously solving. These seem to colne in two kinds:
mentioned, other types of missions coufd be encoded
in hierarchies similar to the OGA hierarchy. The 1. Wh) did .vu u X.
most theoretically interesting addition to the MPA
system would be abstractions above the single mission
level. Clusters of coordinated missions and even a Answering the "Why (lid you ...?" questions requires
conplete ATO abstraction should be possible within finding, or reconstructing, tie point it) problem-solving
tie Class Ill l)esign framework. For example, ex- where the choice was made, then giving the reasons
tended range OCA missions requiring 'oordination which support that decision. For example:
with refueling and escort missions should be able to
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Question. Why was an F-I chosen? 2.2.1.6. Questions About the Impact of l)ata

Answer. The choices were A-t0. F-. and Often it is useful to know how some fact affected

F-Il1. A-10 was rule(] out. In cases where the problem-solving and how the result would be dif-

F-4 aI1 F-I11t are available. I prefer to 1se ferent if that fact changed. This coul be related to

F-t critique. That is, if a small change in data makes a
big difference then that data could be critical to suc-
cess of the plan. It might also be useful for making

Any such answer may point to further dciios 'ahiC small changes in the final plan, such as forcing
might be quetione d in the same way. In the above aircraft type to Le F-I 11. If it makes little difference,
example one may ask why A- 10 ruled out. 4d p'rsue the planner should be able to say so.
the decision process further.

2.2.1.7. Questions About Strategy
Answering "Why didn't you ... " questions is a

little harder. There are at least two distinct cases. Answering sone questions requires understanding
In one case, the alternative might have explicitly been the problela-solving strategy used by the program.

decided against. In the above example a "Why didn't Questions of this sort can be directly answered using
you choose A-10?" would be answered by "A-t0 was the explicit encoding of tie generic aspects of

ruled out." The other case is that the explicit alter- knowledge and control for tae generic task. The

native never came up. Answering the question in this framework for this is discussed in the companion

case requires an understanding of the problem-solving paper in this Proceedings.
strategy and an explanation in those terms.

2.2.1.8. Summary Comments

Question. Why didn't you allocate a The categorization given above is not meant to

KC-135 for this mission? be exhaustive or mutually exclusive. In fact, answers

to questions of one type. say justification, may include

nswedfrefuelig is n er, tankr are- answers of another type, say strategy. For explana-
only isotifrefeligis necessaryfo s aon rtion of the planner itself the most important kind
ing is not necessary for this mission, given above is justification of run-time decisions. For

one thing, such justification would be useful for debug-
2.2.1.3. Critique ging a planner and is likely to be a part of many

A number of questions were related to plan other kinds of explanation. In the remainder of this

criticism. A user might want to know where the report we will describe how we are implementing jus-

weak points in the plan are. Or the user might want tification of a certain kind for the mission planning as-

to know if some alternate plan is any good. We have sistant.

not worked on questions of this kind but it seems as
though critics could operate on the functional 2.2.2. Explanation for the MPA

representation of the plan and that such criticism Our implementation is based on the organizing
would not be closely related to the process of design- principle that the agent which makes a decision is
ing the plan. responsible for justifying it. The MPA is built in

DSPI, so the agents which contribute to the final plan
2.2.1.4. Questions During Problem-Solving are: Specialists, Design Plans, Design Plan Selectors,

Nearly all of the questions that might be asked Design Plan Sponsors, Tasks, Steps, and Constraints.

after the MPA has produced an answer could also be In the present implementation there are some 200 of
asked during problem-solving. In addition there are a these agents, though not all of them contribute to any
host of questions about the probleni-solving process it- particular plan. All of these agents perform
self -- why something is being done now, what is left "knowledge-level" tasks (i.e., epistemically significant)
to do, etc. so explanation of any one agent's problem-solving deci-

sions can be given in terms of the goals of the agent
2.2.1.5. Questions about Function which uses it, and the function of the agents it uses.

Many questions are about the funlion of various The final answer prodiired by thp MPA can h
parts of the plan. If tile plan is viewed as a device. viewed as a list of attribute-value pairs as in Knobs.
it can be represented using tie fumctional represen- 'T'hat is, a list of the form:
tation of Moorthy and Chandra ill . ''his will be
discussed in section 2.3. Using this relpresentatio it Target = Berlin
would be possible to answer questions such as "Why Aircraft Type = F-lll

are airplanes used?" and "Ilow will the mission Number Aircraft = 6

proceed?"

-107-



We have decided to concentrate on question', of the In figure I is a sample of the output for MINPA
form. "low was it decided*?" which can be asked of on a particular prol)lem. It is simply a list of at-
the value of any attrilute. For example, selecting tributes of oc.Ak missions and the vales that the
F-Ill in the above list would initiate a dialog on the MPA determines for them during problem solving.
question of how MPA decided to use F-Ill as the The user begins to get explanations by %electing one
value of Aircraft Type. More particularly, an ex- of the values and askingt how MIPA decided on that
planation window would appear containing the answer value.
to "How was it decided?" produced by the agent
which actually set the value of Aircraft Type to Target BrandenburgSAM

F-Ill. In this window certain other things would be PD .8704
selectable. Selecting any of thern will produce another AircraftType F-4

window with a similar explanation for the proper NumberA/C 4
agent. In this way the user will be able to pose Unit II3TFW

follow-up questions by using the mouse to steer Airbase Wiesbaden

through the decision dependencies. Configuration B2

To support "How was it decided?" explanations Figure 1: Example of a particular OCA mission

we determined three basic questions which all agents 2.2.2.1. Step Explanation
must be able to answer:

1. "Give me the b)ottoml line: what did You The values are actually set by a DSPL Step, so
(d0?" Thi question woul he answered the . st explanatior a user gets comes from a Step.

with a one-sentnce suunmary of the result Suppose the value of NuinberA/C, 4, was chosen. A
of the agent's action. slightly simplified version of the code for the step

whi,:h actually set this value is given in figure 2.
2. "What is your purpose?" This question This step sets some local variables by looking things

would be posed by sub-agents who want to up in the data base. E.g., the local variable
have knowledge of the context they are configuration is set to the result of asking the data
operating in, and should be answered by a base what configuration is being used, (KB-FE7CI[
short description. CONFIGURA TION). The KB-STORE tells the data

bas, -, set the attribute AIRCRAFT-NUMBFR to the
3. "How did you do it?" This question would value returned by the function num-',,c, which

be answered by displaying a window with a depends on the local variables. REPI, Y indicates that
complete explanation of the context of the what follows is the main function of the step and sets
agent's activation followed by a functional DSPL up to handle failures if something should go
description of its action. The agent may wrong.
have to ask its sub-agents QI and its
super-agent Q2.

(STEP set~uMberA/C
(SETO configutation (KB-FETCH CONFIGURATION))

Then, in general, the explanation for "How was (SETO requiredPD (KB-rETCH REQ-PD))
it decided?" is the answer to question 3 above. The (SETO targetType (KB-FETCH TARGETTYPE))

REPLY
answer to q3 is a comnbinatiou of the answer to q2 for (KB-STORE AIRCRAFT-NUMBER (num-a/c configuration

the calling agent and qi for all sub-agents. So an ex- requiredPD

planation window contains. targetType))

In the context of <answer to Q2 for callin
we did the following: Figure 2: DSPL code for a step

<answer to Q1 from subagentl>
<answer to Q1 from subagent2> Figure :3 shows the explanation of the step given
<answer to Q1 from subagent3> in figure 2. The context, shown in italics, is retrieved

S..from the task which invoked the step. The value, set
for the local variables are remembered by the step at

Below we show detailed examples of all the agent run-time as is the value returned by the Lisp function
types audl the explanations they canlproduce, num-a/c. DSPL then fits these pieces into the general

Our work to this point is about generating ex- framework for explaining steps.

planation fragments aid does not address other issues
of explanation such as summarization, user modeling,
or human factors.

IFiguratively. since the .ystem can only a.i-w,r mlfui oie qies

-118 at plesent.
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The context of working out the dctals of con- (TASK squadron
figuration B2 determined that: (STEP squadron)

configuration wa B2 tSTEP base-assign)
confir a stion (STEP get-range))

* requiredi'l) was .65
Figure 5: I)SPI, code for a Task

* targetType was SA-O

So, 4 was an appropriate choice for AIRCRAFT'T- Figure 7 gives a general descrilption of Tasks

NUNI MEl. she 'ing the relationship between the code and the ex-
planation pioduced froni it. The purpose of the con-

Figure 3: Explanation For a step taining Plan is fouind by asking, "What is your
purpose?" of the plan. What a particular step dil,

i figure 1 is a general description of Steps show- or its purpose, is found by asking. "What did you
ing the relationship between the code and the explana- do?" or "What is your purp(.e" as appropriate. of
tion which can be produced from it. The purpose of the step. I)SPi. fits these answers into a general
the calling Task is found by asking, "What is your framework for explaining tasks.
purpose?" of the calling Task (see section 2.2.2). The
values of local variables, and the value given to the In the context of considering the feasibility of an
attribute, are remembered by the step at run-time and F-4 for the mission, I did the following step:
retrievedl for explanation. r selection of II3TFW as squadron for the

2.2.2.2. rask Explanation mission

After looking at the explanation for a step, the I was in the process of:

only further explanation is for the task which invoked 0 selecting a base for the mission
it. This is obtained b. selecting the context given in I had yet to do the following step:
the step explanation. * determine the range for the mission

Figure 5 gives the DSPL code for a Task. A Figure 6: Explanation for a rask, entered front
task is simply a sequence of steps, with constraint x aation Ste r
checks possible. If the user had been looking at the base-assign step
explanation for the base-assign step and pursued its
context, the explanation, which would come from the
task shown in figure 5, would be that shown in figure 2.2.2.3. Plan Explanation
6. As with steps, the context is obtained from the
calling agent, in this case a Plait. The rest of the ex- From a task the user might select either ex-

planation is obtained from the steps which make tip planation of the various steps in the tasks or of the

the task. task's containing Plan. The syntax of plans and their
explanation is very similar to that of tasks. The ex-
ception is that Plans can invoke design specialists, as

shown by the DESIGN statement in figure 8. Figure

Form: 9 shows the explanation given by this plan and figure
10 gives a general description of plans and their ex-

(STEP <stepName> planation.
(SETQ <localVari> <vail>)

(SETQ <localVarN> <vaiN>) 2.2.2.4. Specialist Explanation

Y <attribute> <attributeVa>)) As with rasks, a user can choose to pursue ex-
(K-STORE <trplanation of a Plan's context or of its sub-agents.

Explanation: The sub-agents are Tasks, which have been described.
The context is given by a design specialist. [he logic

The context of purpose of containing task> determined that- of design specialists is implicit, that is, defined by
* <localVari> was <vail> wvhat a dcsign specialist is. 'lThe Specialists' job is to

choose a design plan and execute it. It chooes the
plait by invoking its design plpn seleclor. The ex-

* localVarN was %aEN>, planation for a specialist is given in figure II and the

So, -attributeVal - was an appropriate choice for <attribute-,. general form of specialist explanation i, in figure 12.
The context of a specialist is given In the plan which
invoked it and it knows its own purpose. The pur-

Figure 4: Template for Steps and their pose of the plan it selected is obtained ) y asking that
Explanation plan.
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Form: best perfc t plan, if there are any, or the best suitable
plan if there are no perfect ones. The selector shown
in figure 13, however. encodes the additional

(TASK <tatkName> knowledge that if certain plans are available they
(STEP 1) ought to be chosen.

(STEP i) The explanation of the selector in figure 13 is

''" ngiven in figure 14. Here the context comes from the
(STEP n)) specialist. The rest of the explanation comes from

rememlering the values of the predicates. The value
Explanation, entered from STEP i: returned by the selector, in this case, depends on both

the fact that A- 10 is not a perfect plan and that F-I
In the context of ,purpose of containing is.

plan> we did:

* <what STEP I did> The general form of selectors and their explana-
tion is shown in figure 15. A selector is essentially an

0 ... IF-TIIEN-ELSE statement so it must be able to
remember, or reconstruct, the values of the IF part to

* <what STEP i-1 did> explain which branch was taken.
we were doing:

" <purpose of STEP i> Form:

and were about to do:

" ',purpose of STEP i+ -1 (PLAN <planName>
(TASK 1)

(TASK i)

e <purpose of STEP n> 
...

(TASK n))
Figure 7: Template for Tasks and their Explanatio

Explanation. entered from TASK i:

(PLAN F-4 [i the context of <purpose of containing

(TASK assignF-4) specialist> we did:

(TASK squadron) * <what TASK I did>
(DESIGN F-4Configuration))

0 ...

Figure 8: DSPI, code for a Design Plan 0 <what TASK i-I did>

........................................................................... w e w ere doing:

In the context of selecting an appropriate aircraft * <purpose of TASK i>
for the mission I was in the process of:

* assigning an F-4 for the mission and were about to do:

I had y "o do the following steps:

* find an appropriate squadron for the mis-
sion * <purpose of TASK n>

• choose a configuration for the F-i in this
mission Figure 10: Template for Design Plans and their

Figure 9: Explanation for a Design Plan, Explanation

entered from the assignF-4 task

2.2.2.5. Selector Explanation

From the specialist a user could pursue the con-
text of the specialist, the plan that called it, or the
specialist's selector. Figure 13 shows the DSPL code
for a Selector. The typical selector simply chooses the
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........................................................................... ...........................................................................................

In the context of using the old-reliable plan to Form:
plan the mission I was performing my task of selecting (SELECTOR <selectorName>
an approlriate aircraft for the mission. I had: (IF <there are perfect plans>

9 decided to consider F-4 as aircraft for the THEN <choose the best perfect plan>
muis<ion ELSEIF <PLAN I is suitable>

THEN <choose PLAN 1>
I was in the process of: ELSEIF <there are suitable plans>

THEN <choose the best suitable plan>))
* considering the feasibility of an F-I for the THExplanat<o>

mission

Figure 11: Explanation for a Design Specialist, The context of -.purpose of containing
entered from plat F-4 specialist> determined that:

........................................................................... * incnce therre ww ree noo perfect plans.

Explanation, entered from PLAN 1: * 1 chose PLAN I because PLAN I was
suitable.

In the context of <purpose of containing

plan> I was performing my task of <purpose Figure 15: Template for Design Plan Selectors
of self>. I had: and their Exllanation

0 selected PLAN I
TABLE construct, which is essentially a group of rules

I was in the process of: which all depend on predicates of the same values.
a <purpose of PLAN I For example. the table setting the variable conditions

contains three rules which depend on the values

Figure 12: Template for Explanation of Design returned by the functions night and weather. The

Specialists first rule requires night to return F and ueather to
return FULL. If the predicates are true, then
conditions will be UNSUITABLE. The symbol 'Y' in
the tables represents a predicate which is always true.

(SELECTOR aircraftSelector The table is finished when one rule matches. REPLY
(IF (MEMBER A-10 PERFECT-PLANS) THEN 'ells )SPL that what follows is the main function of

ELSEIF (MEMBER F-4 PERFECT-PLANS the sponsor.
ELSEIF (MEMBER F-ill PERFECT-PLA

The explanation for this sponsor is given in
Figure 13: DSPL, code for a Design Plan Selector figure 17. Values for the local variables are given,

those fetched from the database are not justified while
.................................................... those determined by tables are given justification.

The context of selecting an appropriate aircraft The final REPLY is used to determine the actual
for the mission determined that: decision made by the sponsor.

" Since A-10 is not one of PERFECT-
PLANS,

* I chose plan F-4 because F-,4 is one of (SPONSOR A-10
PERFECT-PLANS. (SETO target (KB-FFTCH TARGET))

(SETQ timeOverTarget (XB-FETCH TIMEOVERTARGET))
(SETO threat

Figure 14: Explanation for a Design Plan Selector (TABLE (airborne)AAA)(SAM)
(IF T ? ? THEN UNSUITABLE)
(IF ? T ? THEN UNSUITABLE)

2.2.2.6. Sponsor Explanation (IF ? ? T THEN UNSUITABLE)
(IF ? ? ? THEN PERFECT)))

From a selector the user could get explanation (SETO conditions
(TABLE (night) (weather)

from any of the plan sponsors which it uses. A spon- (IF F FULL THEN UNSUITABLE)
sor matches characteristics of the plan to information (IF F PARTIAL THEN SUITABLE)

(IF 7 ? THEN PERFECT) )
about the problem -t han(d and produ(es a ineasure of REPLY

how u,,ful thv |,lai will he ol d al of. Ruh'd-Onut, (rADLC o ,
(IF UNSUITABLE ? THEN RULE-OUT)Unsuitable. Suitable, and Perfect. The code for a (IF 7 UNSUITABLE THEN RULE-OUT)

sponsor is given in ligure 16. It first sets some local (IF SUITABLE 7 THEN SUITABLE)
variables by looking them up in the data base (using (IF ? ? THZN PERFECT)))

KB-FETC'I as discussed with steps). It then uses the

Figure 16: DSPIL code for a Design Plan Sponsor
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A general picture of sponsors and their explana- Form
tion is given in figure 18. Generally, the values set (sPossoR <sponsorName>

for local variables, the values of columns and predi- (PLAN 1)
cates from tables, are stored away at run-time to be (SETO <varl> <vail>)

used in explanation. Explanation then involves pars- (SETO <vail>

ing tie sponsor's code and fitting these values into the ITALE <cot > <cot 2>(IF <pred I> <pred 2> THEN <vat. K>)

explanation template as needed. (IF <pred 3> ? THEN <Val y>)))

REPLY

2.3. Understanding an ()CA Mission Plan (TABLE <col 3> <col 4>
(IF <pred 4> ? THEN <rating I>)
(IF <pred 5> <pred 6> THEN <rating 21)))

Anne Keuneke, John Josephson Explanation

Tie context of Purpose of containing *elector - determined that,

# at I is %at I

Knowledge-based systems use knowledge to arrive o _
at solutions. If a system will be ised to provide con- 6 vat t, is vat becaue:

sultation or advise, it ,ill need to explain its prNI I is not true of cot I -

knowledge and problem solving in order to be accept- pred 3 * tite of- cot I

able and useful. In the task of planning, for instance, I determined that the %ahue of PLAN I to be rating I, because:

the planner must have access to its knowledge of •pred 4, i% true of -cot 3

problem solving strategies if it wishes to provide ex-
planation of its design decisions. If the system hopes Figure 18: Template for )esign Plan Sponsors
to provide an understanding of how the designed plan and their Explanation
will work, it must have this knowledge, too,
represented in a meaningful and accessible fashion. For example, suppose a user of the mission plan-

To illustrate the different types of explanation nr asks the question, "Why was an F-15 used?"
capabilities ara from knowledge structures within a Depending on the intentions of the inquirer, the ques-
systie coarisingfrotire owledge strumtsres withing. tion could be answered in different ways. For a
system, consider the task of OCA mission planning. particular mission, the question might be addressed
The planning task accomplished by the MPA (Mission directly by the mission planner. Here, the inquiry is
Planning Assistant) system at OSU, involves specifica-
tion for a set of pre-established components. That is, interpreted as, "Why did you use an F-15 instead of

the planner knows the mission needs a certain type of any other aircraft for this mission?" Explanation

component - its job is to make a concrete commitment would indicate what makes the F-15 appropriate

as to which specific component of that type would be (speed, weather compatible, etc.). Since this is the

best. The planner requires only a limited knowledge specific information the system used itt making its

of these components in order to make such decisions. decision, the planner should be able to explain it.

Its understanding of the resultant mission plan is thus
restricted. lit the above, interpretation of the question was,

"Wity choose an F-15?". An alternate interpretation
........................................................................... co u ld be, " W hy is th e F -15 used in th e m issio n

Tie context of selecting an aircraft to consider plan?". A good response here might be, "The F-15 is

for the mission determined that: an aircraft. Aircraft are used in OCA's because they

have the ability to fly and to deliver the ordinance.
* target is BrandenburgSAM These functions are used to get to the target location

* timeOverTarget is 1300 and to destroy the target - the primary goal of an
OCA mission." This explanation requires a deeper

" threat is UNSUITABLE because: understanding of the domain than the planner has

;AM is "i'R', readily available within its compiled planning
knowledge. Here we need a structure to represent dis-

* conditions are PERFECT because: tinctly how the plan works.

weather is not FULL,

w weather is not PARTIAL

I determined the value of plan A-10 to be
RULE-OUT because: 2

Moorthy, V.S. ant C'handrasekaran, II.. "A leprestentation for

* threat is UNSUITABLE. tie Fmitctioxnint of Device.; that Supports C'omnpilation of Exptmt

Polimm Solving Structres", Proceeding of MEDCOMP'83, IEEE
Figure 17: Explanation for a Designt Plan Spoisor (otmptiier society, Sel)tembel, K;S..
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To represent this understanding, we propose use throughout the behavior.
of a knowledge structure based upon tile Functional
Representation of Devices as designed by Moorthy and The behavioral specification of a device describes
Chandrasekaran. 2  A device is any structure (concrete the manner in which a function is accomplished by
or abstract) which serves a purpose. Thus, a plan using tile functions of components, generic knowledge,
call be viewed as an abstract device in that it has and sub-behaviors. The behavior for an OCA plan is
components which fit together in such a way to ach- described by a chain of events caused by the specified
ieve a desired goal. We hope. in this paper. to il- actions:
luhstrate how a functional representation for a plan can
serve as a knowledge structure from which a more
complete understanding of the specific planning domain (Functionl Target)
can be derived.

The Functional Representation: An Overview

The first concept is that an agent's understand- of Arbae

ing of how a device works is organized as a represen-
tation that shows how an intended function is ac-
complished as a series of behavioral states of the
device. TIhe device. itself, is represented in various (Prepared Flight)
levels. The topmost level describes the functioning of
the device in terms of the roles of its components.
The next level describes the functioning of these con- usk1uctVin Otensivekr

ponents using the roles of their subcomponents, and so o
on. At each level of a device's representation there
may be five significant aspects to an agent's
knowledge of the functioning of the device:

(Destroyed Target)
-SIRCURE: specifies tile components of a

device and the relations between them.

-FUNCTION: specifies \VIIAT is tile result or of Flot

goal of an activity of a device or component.

-BEIIAVIOR: specifies 1HOW, given a stimulus.
the result is accomplished. (Location Flight Homefase)

-GENERIC KNOWLEDGE: pointers to general The structure is meant to represent the temporal
knowledge that shows how key states occur. sequence (from top to bottom) of states which occur

-ASSUMPTIONS: under which a behavior is ac- as a result of actions taken. The diagram thus in-

complished. dicates that the OCAPIan's behavior begins when a
Target is in a Functional state. Ilere an OCA plan
will use the function PrepareFlight of the component

The functional specification of tile "abstract AirBase to make the Flight Prepared. Upon achieving
device" OCA.Mission is illustrated below by describing this state, the plan uses the component Flight since it
the ina'n function of an OCA - to destroy a target. has the functionality (OffensiveAir) to Destroy tile

Target (and so on).
FUNCTION: I)est royTarget:

TOM AKE: (Destroyed Target) The structure of the OCAMission is defined by
IF: (Functional Target) its components and relations:
PROVIDED: (Functional Flight)
BY: OCAplan

The description indicates that the plan, OCAMis- AirSase- GroundCrew

sion, has a function called I)estroy'I'arget. This func- OCAMis$1onF tc ora

tion is used if a ure is operational(functional). -AirCraft - Pilot ECM
When this function is used. the target will be
destroyed 4 a behavior called OCAplan. This bc.
havior should succeed in accomplishing the goal of tar-
(et destruction provided the flight is operational
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Links in the chain indicate suhcomlponeuts in the instead of an aircraft within an OCA plan,
sense that the first component uses the next in order a top-level response involves checking the
to achieve its goals. The OCAMission uses the corn- functionalities of the two devices. lere the
ponent AirBase to prepare the aircraft and the corn- trigger is transferable to the other device
ponent Flight to get to the target and destroy it. (the FlightPlan could just as easily specify

helicopters as airplanes). If the functions of
Some important characteristics which make this the devices are equivalent, the question

representation useful for the design and repair of might be sent to the plan designer of this
devices, plans include: level to determine why helicopters were not
I) A component is specified independent of the chosen as the device. Notice that functions
representation of the device which contains it. More of devices should not change but events
specifically, the specification of a component does not that trigger their use may.
refer to the role of the component in the composite.
If replacements are necessary, this property allows for 2. Explicit distinction of device's "secondary
the determination of allowable substitutions by simply functions".
comparing functional capabilities of current components These are functions which are present in
with alternatives, support of another main function. Specifica-

tion of such functions is needed for proper
2) Not the behavior specifications of components. explanation and for information when con-

but only the names of the functions are carried over sidering replacement of components. Three
to a higher level. This property is imlortant if an types have been determined:
agent needs to replace a malfunctioning component by a. Subfunctions:
a functionally equivalent but behaviorally different one. - functions a device possesses simply
(ie. It is not how the function is achieved that is in- as a means to establish preconditions
perative, but what is achieved.) for a primary function. (e.g. takeoff

for fly in aircraft)
Since much of planning involves adaptations of - functions a device possesses to sup-

already established plans, these traits which allow for port a provided clause (assumptions)
such adaptations for components and behaviors are on behaviors for a primary function.
valuable. (e~g. windshield-wiper/car

ECM/OCA)
Current Research: Enhancements to the
Representation b. Secondary functions:

With respect to the desired use of the
Enhancements to the Functional Representation given device, these are extraneous

are being made both to further the above capabilities functions. Consider a kerosene lamp
for adaptation and for richer understanding and ex- one hundred years ago. It's
planation capabilities. New primitives established for functionality then was to give light.
representations include: Today its use is often decorative (the

t. A means of distinguishing between the rustic look). When purchased for this
definition of a function and events which purpose, the functionality of producing
trigger the use of the function in the light is rarely used. Notice that
specified device. secondary functions could be primary
Example: An aircraft has the function functions depending on the device
"Ply" which is used to change location, designer's and/or the user's purposes.
ie. IF: (Location Aircraft x) the function (OCA missions have none of these.)
Fly is used TOMAKE: (Location Aircraft c. Other design considerations:
y)' For the OCA mission use of this func- - goals because of situation context of
tion is triggered when the current leg of the device (e.g. The component Flight
the Flightplan indicates a change of loca- of device OCAMission has the function
tion from x to y, Follow PlanlIone. The main goal of
The distinction between triggers and the an OCA is to destroy a target. With
"definition if" is useful for replacement con- an OC i to destroy a target. Wit-
siderations, lFunctions must ,match efitti- rerpect o the d vice OCA.M inin. ox-
ilrtions. equvanctn Tiggst v relat ive- planation of why Followplanhome istions to be ('qmivalent. Tlrigge'rs i're relative needed involves "external" considera-

to the device in which the component is ns.d It is peen csi the

being used. if a component is replaced, procss of dest tearetiwe
adatatonstoit hannut b nededloprocess of destroying the large( we

also hope to protect our people and
change a triggering mchanism.
To determine if a helicopter could be used resources)
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3. Specification of rationale for links withbin 1. Devices
behaviors. t. QUESTION: "Why is this device needed?"
The designer of a dlevice specifies a function ANSWER: lDevice is used because
or behavior for a purp~ose. E~xplicit it has the functional capabilities to_____
representation of this rationale assists ex-ad____
planation. This feature is necessary in aXnd,::"h eic lgtisue e

planning where states may be achieved toEXML:-hdeieFgtisud e

establish conditions for future use. Linear causeI iit s te floig- fntoa

sequencing of teents (does not alwayscabites

p~rovide a full undlerstandling of the Ibe- To achieve offensive air missions
havir. e~g anaircraft is loaded with theTorahteagthor. (elg. lo .eoetedeie i To return to the homebase after a mission"

ordinancethi loenig befrettedeicer i

4. Availability of conditions on links in be- ANisWdei: Tequ r cuefte"lvi
haviors. ASE:Tesrcueo h eiei

Funcion ca be chivedthrogh orethe form of a hierarchy of components is

than one behavior. Use of a specific be- gvn(swsilstructur ofrie an thelsio)

havior may be contingent onl specific coin- srcueo nOAiso

ditions. (e.g. an aircraft may refuel while 3 USIN Wa r h eodr uc
flying if it is at a refueling service and it 3. n QUEStiN deWiat are thei rsenay" uc

reuiesful)ANSWER: rhe device ____has the
To sumnniarize. the chamiges to the original functionality _____because it supports the

sp~ecification of thle functional representat ion language primaR fnTon deviceIms thas~~~ASWR Theme deic _______ had theraeantathvas dfind by %Iortby ad (~hamdraekaan tat avefunctionality ______ present because it has
been miade involve the specifications. of functions and adsm osdrto o
behavior links. The primitives of these objects areEXM E:Th deieArafhste
now as follows:EXML:"hdeieAraf ste

%11nctionality TakeOff because it supports

F: 'ctN naine the primary function Fly." OAfsim a

F: NTIN EXAMPLE: -ThedeieOA sio a
the functionality Maintain Resources present

TO MA K E: because it has a dlesign consideration for
13 Y: preservation of the crew and aircraft."
P ROVIDEl):
TrRIGGERED WHEN: 1I. Functions

SubFunctionOf: ? UsIN Wy i ths fnio
ExternalConsideration: ? n.Qe TONWhesdhsucto

Behavior Links: ANSWER: Tlhis function is needed to en-
COND IT ION:sure that '___.Here, secondary functions
A'IOAL:specify that they are needed for

,1N KTIY P) 1,: (one of: ais per, using fuinction, y funlcto nali ties______
behavior) EXAM PLE: -TIhe function Protection of

SPECIFICATIIONS contingent onl linktype choice: EMM is needed for its capabilities to
idenifiatin of(knwlege,'funtio/ beavir),protect the aircraft and crew, to ensure
idetifcaton f (nowedg.' uncion beavir)'that thie Aircraft is not threatened, and( to

Exlntono ln supp~ort condlitions for the function
LrJ)aiulio O~ ~afS lestroy~rarget."'3

Understanding of an OCA plan canl now be il-
lustrated t hrough the explanation capabilities inherent
in its fumnct ional representation. The representation is
capable of answering questions about its devices. func-
tions. an(I behaviors. Example answers to (!Iiest ions
will be gtiven in the context of a top-level device of
OCA~lissiOnl. Explanation responses are bumilt using
access to the proper functional primitives.

' FurthIer iII(LIim shw .I') h Im Desu m ''yTi m Iij, a PRO()VIDED't
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2. QUTESTION: "What does this function do?" 1. the addition of a clause for behaviors which
ANSWER: The function is ac- indicates side effects
complished by behavior to ensure In simulating a mission plan, the system
that ______ The behavior can be used if would need to know that using behavior

It is triggered when__ Cruise (from function Fly of AirCraft) to

EXAMP LE: "The function Offensive Air is change the location of the Aircraft will also
accomplished by behavior OffensiveAirTac- cause a depletion of the fu,,l in the aircraft.
tics to ensure that the target is destroyed.Thebehvir cn b u,,e i th tage i '2 a concept of time usage ust be available
The behavior can he used if te target is The functional representation is illustrated
functional, the flight is loaded, and the con- with discrete state changes. Behaviors
straint FuelSufficientForPlan is satisfied by which cause these state changes may vary
FlightPlan. It is triggered when the time in the length of time required. Some ac-
of departure of the OCAMission is tions appear instantaneous (Ordinance
CurrentTime." delivered to target - target destroyed),

3. QUESTION: "flow is this function while others may have intermediate, un-

achieved?" specified states. This would also require a

ANSWER: The behavior for the function is more specific definition of what constitutes

shown with the use of its "behavior a "state". Another time consideration in-

browser" as previously shown for the volves the representation of behaviors which

OCAPlan. occur in parallel or in synchronous motion.

4I. QUESTION: "Where is this function used?" With the above capabilities of debugging and
ANSWER: Functions/Behaviors of the mis- simulation in mind, obviously a planner has oppor-
sion are inspected to see where the function tunity to use the functional representation in making
is used. its decisions. Further research is needed to determine
EXAMPLE: "'['he function fly is used in how much assistance the representation can donate
the behavior GetThere of function Fol- towards the building of a planner. Much of the
lowPlanToTarget and in the behavior Get- planner's domain knowledge can be derived from this
Back of function FollowPlan Home." representation which specifies how the domain works.

flow does the planner choose what information to use
1Il. Behaviors (and when) for making his decisions regarding the best

choice? What influences does the deeper niodel have
QUESTION: "Why is this action performed?" on the knowledge used by the planner?

ANSWER: Either a specific rationale for the action is
obtained from the link or a default answer of the fol- Other areas of concern include the creation of
lowing state in the behavior is specified. plans and/or adaptations to existing plans. Using a
EXAMPLE: "The function LoadOrdnance is used in functional representation, components of plans are
OffensiveAirTactics because it ensures that the flight is specified independent of the representation of the plan
loaded which is needed for the primary goal to which contains them. This makes it feasible to create
destroy the target." and modify plans given the goals desircd and the func-

tional specifications of available components.
Potentials and Future Research

rThere are many unexplored aspects to the task
Capabilities of the functional representation as a of planning. It is apparent that the functional

structure of understanding are not limited to exlana- representation is a useful structure for approaching the
tion of devices, functions, and behaviors. A diagnosticproblem sov-
compiler which takes as input a functional represen- irge a f anp nerta din g ofte proble oa-

tation of a device, and outputs an expert system for ing, as a representation of knowledge in the domain,

diagnosis of problems of the device is already iiple- and as in abstract knowledge structure to use in con-

mented. If one views debugging of a plan as trouble- struction of plans.

shooting in an abstract device, such a diagnostic sys-
tem is useful for reasoning about why a plan will or . DSPL and HYPER: Two
will not work. High-Level Tools

Similarly, the representation may be useful for
simulation of plans. The planner establishing the use
of specific devices may wish to use this potential to In the companion paper, we describe a number
check the feasibility of his planning decisions. Neces- of generic tasks around which we propose that
sary )rovisions to the functional representation for problem solving, knowledge organization, and explana-
such use would include: tion he organized. Two of those are: class 3 design.
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and hypothesis matching. In our description of the and existing probleni solvers to be loaded from a file
Mission Planning As.sistait, we indicated that a Ian- and browsed. It also allows certain iodes of opera-
guage called DSPI, was used to encode the system as tion of the DSPI, interpreter to be modified as
well as to generate the explanations. i)SPL was desired. The specific commands asailable are briefly
described in some detail as part of explaining tie con- described below.
struction of the MPA system.

Left ButtonCommands
In this section we present a manual for DSPL,

and also a description for another tool that we call <Mlove - This conimnand is identical to the Move coin-
IIYPEIR. These tools along with other tools that are mand for the LOOPS icon class, It allows the i on to
under construction in our laboratory will provide a be placed at an arbitrary location on the screen under
powerful set of high level tools for the construction of mouse control.
a variety of knowledge-based systems.

Middle Button Commands

3.1. The DSPL Manual <Create> Creates a new instance of a 1)SP plroblei

solver. The name of the new problem olver and its
top-most specialist is prompted for in the

DSPi, (Design Structures and Plans Language) is PROMPTwINDOW. A Specialist Browser (described
a language developed for implementing expert systems in section 3) is also created for the new problem sol-
which perform a kind of design problem solving. This ver. This browser organizes all access to and
document covers various details of loading and inter- modification of the problen solver as it is being
acting with DSPI, on a Xerox 1108 Lisp machine developed.
(a.k.a. Dandelion), running at least the Buttress
release of LOOPS with at least the Koto release of <Browse> Brings up a Specialist Browser for an exist-
INTERLISP-l). It is assumed that the reader is ing problem solver. (See section 3.) The name of the
familiar with both LOOPS and INTERLISP-D on a problem solver is prompted for in the PROMPTWIN-
Dandelion, as well as an exposure to the theoretical DOW.
motivations underlying the DSPL language.

<Load> Causes an existing DSPL problem solver to

3.2. Loading DSPL be loaded from disk or floppy. Several variants are
available in a submenu, depending on the type of file

DSPL may be loaded either by installing the to be loaded.

DSPL sysout, or by loading the DSPL system onto an -'Load> This is the standard mechanism for loading
existing sysout. In order to load DSPL on all existing an existing prollem solver which was previously saved
sysout, both Interlisp and LOOPS must be already to disk or floppy. The name of the file must be
loaded. A fresh version or LOOPS is recommended, typed into the IROMIP'rWINDOW when requested.
although not necessary. All I)SPI, source code and function definition are

loaded directly front the file specified. This submenu
NT loa-d DSPL fiserit athe p ith the command is identical to the main menu command.

INTrERISP -l) DSPL, files on it and type in:

I,OAD({ILI,OPPY}iOAI)DSI'L) <,Load Source, This version of Load reads the input
file as a list of DSPI, source code statements. The

Before any files are loaded, you will be asked 2 ques- name of tile file, the problem solver, and the top-most
tions. he first question asks if the I)SPL source specialist must be entered into tile PROMPTWIN-
should be loaded, and the second question asks if the DOW, as requested. Each statement is parsed by the
AIR-CYL expert system should be loaded. The AIR- DSPL system and added to the specified problem sol-
CYL expert system is written in DSPIL and is used to ver. The input file may have been created either by
illustrate the use of DSPI, throughout this paper. If the DSPL system (see the Save source only command,
you are exploring I)SPI, for the first time, you should section 3), or by a text editor on another [lost con-
answer "t" to the first question and "y" to the puter.
setolid. Wh l DSPL liL, Linpitrd io~tdiig, ,
DSPL icon will appear onl the screen. --Set modes,, This command controls certain aspects

of the behavior of tie I)SPI, system. A submnenu of
.12.1. The ISPj, Icon options is available.

The I)SPL icon facilitates access to the top level .,Set parser modes , Controls the amount of detail
DSPL functions through the use of the mouse. rie provided in the messages from the I)SPL system when
icon allows new DSPI, problem solvers to be created parsing pieces of DSPL source code. The default ,el-
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ting prints a brief message each time a DSPI, agent is agent. Two options are available.
successfully parsed, and an error message when a
parse fails. 1 Inspect this agent - Identical to the above conlnmand.

,Set delno fonts-. Changes the display fonts in the <Inspect component, Similar to the Inspect com-
INTERLISP-D environment to fonts which are sized mand, but the selection is made from a submenu of
appropriate for demonstrations. A submenu command agents which are components of the selected agent.
allows the fonts to be returned to the standard sizes.

.=Browse specialist> If the selected agent is a DSPL
<lelp Provides a brief introduction to the use of specialist, this command will bring up a Specialist
the DSPL system ,as implemented in INTERLISP-D. Component Browser showing the internal structure of

the specialist. If the selected agent is not a specialist,
Right Button Commands this command has no effect.

M ove-- Same as the left button command. <Browse plan> If the selected agent is a I)SPI, plan,
this command will bring up a Plan Component Brow-

<Close,, This command is identical to the Close con- ser showing the internal structure of the plan. If the
mand for the LOOPS icon class. Close removes the selected agent is a specialist, this command will bring
DSPL icon from the screen. up d submenu of all the plans contained in the

specialist. Selecting one of the plaits in the submtenu
All of the middle button DSPL icon functions will cause that plan to be browsed. If the selected

calt also be invoked under program control by sending agent is not a plan or specialist this command has no
the appropriate message to the DSPL icon instance, effect.
The pointer to the instance is maintained in the
global variable DSPL.Icon, which is set when the Middle Buttolt Contnads
DSP!, interpreter is initially loaded. If no arguments
are supplied with the message then they will be The middle button commands are displayed in a
prompted for, just as if the DSPI, icon was buttoned pop-up menu when the middle mouse button is
with the mouse. Alternately, the necessary arguments pressed while the cursor is pointing to an agent label
may be supplied with the message. The order of the in any of the agent browsers. Again, the command
arguments mnatcles the order they are prompted for selected will act on the agent which the cursor was
when the DSPL icon is used interactively, pointing at when the mouse button was pressed. The

following commands are available.
3.2.2. The DSPL Browsers

cEdit> Invokes Dedit on the DSPL source for theSeveral types of browsers are used to organize selected agent. The source may then be modified as
and access problem solvers built using DSPL. desired. When Dedit is exited, the DSPL system

There are four different agent browsers in DSPL, parses the edited source and compiles a new agent in-
each of which display a particular grouping of DSPL stance, which is consequently installed into the

agents, as described later in this section. All of the problem solver if any errors are encountered by the
agent browsers, however, share the common ability to system during processing, the source may be re-edited,
create atnd manipulate the various, )SPI, construcls of or optionally saved for later consideration. (See thecrate laitdage.Tilte thelowig v cris cotrctios o Edit Bad Source option below.) If no changes are
tme laitguage. othe followitg describes tte operations made to the source code. the parser is not invoked
commton to all of the agent browsers, and no change is made to the problem solver. Several

Left Button Coinmands submenu options are available.

Tlhe left button commands are displayed in a <Edit this agent> Identical to the above command.
pop-up menu when left mouse button is pressed and
held while the cursor is pointing to an agent label in -Edit object code> Similar to the edit command, but
any of the agent browsers. Again, the command invokes Dedit on the INTERIASP-D code generated by
selected will act on the agent which the cursor was the I)S'L parser for the selected agent.
pointing at when the mouse button was pressed. The
following commands are available: ---Edit componentt> Similar to the edit comnmand, but

the selection is made from a submenu of agents which
<PP>, Pretty prints the I)SPL agent (lefinitiol for the are components of the selected agent.
selected agent in the II(efault window. -Add undefined agent. Allows for thte defiittion of
:Inspect:, (thtis agent) Birings up an IN LISP-D new DSPL agents from a list of agents currently

inspector window on the instance of tite selected referenced but undefined in time problemi solver. The
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command causes a submenu of all OSPL agent types invokes Dedit oil the INiTERLSP-I) code generated b%
to be presented. Selection of an agent type causes a the I)Pl, parser for the selected agent.
menu of the undefined agents of that type to he
presented. Selection of all agent causes l)edit to be - Edit last object code-> Invokes l)edit on the
invoked on a source code template of that type. INTERLISP-D code of the last agent edited from the
From here, the Add command works similar to Edit. browser.

K Delete_- Deletes tie selected agent from the problemi <Edit unreferenced agent> Similar to the edit coni-
solver. nand, but the selection is made from a nenu of

agents which are referenced by no other agent in the
<DeleteFromBrowser Removes the selected agent and problem solver.
its subagents from the browser. This does not affect
the structure of the hierarchy, only what is displayed. .- Edit bad source > Similar to the edit command, but
This command effects are undone by the the selection if tade from a menu of agents known to
RemoveFromBadList command in the Title Menu have syntax errors in their I)SP L source code.
Commands.

<Delete- Deletes the selected agent from the problem
Title Menu Commands solver. Tihe agent is selected via a mechanism identical

to the Where Is Agent? cominad.

The title menu commands are displayed in a <Add> (agent)Allows for tie definition of new DSPL
pop-up menu when either the left or middle ouse agets (aet ow s ted inn of new ISPL
button is pressed and the cursor is pointing to the agents. This comtane causes a submen of all DSPL
title bar within an agent browse. The following com- agent tyes to be iresented. Selection of an agentmandsare vailbletype causes Dedit to be invoked on at source code
mands are available. template of that type. From here, the Add command

<Recompute> This command is nearly identical to works similar to Edit. The following suboptions are
the Recompute command for LOOPS class browsers, available:

The only difference is that the submenu item Cha-
geFontSize is replaced with SelectFont. This new
item allows a greater selection of fonts for the brow- <Add undefined agent, Identical to the Middle But-
ser. Recompute is called automatically when agents ton Command.
are added, deleted or edited via other browser coin-
mands. <Inspect> (agent) Similar to the Left Button Comn-
<SaveValue> Same as SaveValue in the LOOPS class mnand, except the selection mechanism is again similar
browser. to the Where Is Agent? command. Several suient

options are available:
-RemoveFromuladList , Same as RenovelromlladList K nspect agent> Identical to the above command.
in the LOOPS class browser

-<Where Is Agent?- This command allows selection of <Inspect last agent.- Brings up an INTERLISP-D in-
a DSPL agent type from a submenu, followed by the spector window on the LOOPS instance of the last
presentation of all agents currently defined for the agent edited from this browser.

problem solver of tie selected type. The specialist
containing that agent is then flashed in the Specialist <Inspect roblem solver- Brings tup an INt ERLSP-D
Browser. Additionally, any agent browser containing inspector window on the instance of the problem sol-
the selected agent is also flashed. ver.
<Edit> (agent) Similar to tie Edit command of the Browse., (specialist) Creates a browser on the
Middle Button Coimands, except that the desired selected agent from a list of all agents of a certain

agent is selected via a mechanism identical to the type. The default type is Specialist
Where Is Agent? command. Several subnenu optionsare avilabl. -l rowse Specialist. This coniand will bring up a

subnmenu of all the bpeciaiists currently defined in the
<-Edit agent - Identical to the above commiand. problem solver. Selecting one of the specialists in thesubmenu will cause that specialist to be browsed.

Edit last., Invokes Dedit on the source of the lastagen edied rom he rowsr. Browse Plan> Similar to Browse Specialist. but for
agent edited fromt the browser. plans.

-Edit object code - Similar to the edit conimmand. but
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.ilrowse Fathirellanler'. Creates a browser contain- each agent as it is entered. and removed il)On exii.

ing all failure handlers in the sy'stem. Only agents currently being browsed are affected. A
'.1binenu of this command allows this mode to be

• _2.3. The Speciali.sl Brow.s.rr turned cither on or off, as desired.

The Specialist Browsm display- a lattice which .-Single step- Causes the I)SPL interpreter to halt
shows the hierarchy of cesign specialists of the expert before each agent is entered or exited. A menu pop)s)
system. Bumper, for example, is a snbspecialist of the up at the cursor to which must be buttoned to allow
Rest specialist, while the AirCylinder specialist is a su- execution to continue. A submet u or this command
perspecialist of the Spring, llead and Rest specialists, allows single stepping to be tuned either ont or off, as
Each specialist of the AIIR-CY, problem solver is desired.
responsible for a particular portion of the air cylinder
design. As you might expect, the Spring specialist 3.2.4. The Specialist Component Browser
contains knowledge about designing the spring com-
ponent, while the Bumper specialist contains The Specialist Component Browser displays a lat-
knowledge about designing the bumper. In general, tice which shows the internal structure of a DSP ,
specialists lower in the hierarchy are responsible for specialist down to the plan level. ilte itse of browser
progressively smaller sub-portions of tie design is vety similar to the ,pecialist Browser. Each node
problem, while the specialists higher in the hierarchy in the lattice represent, a I)SPIL agent, which may be
are responsible for larger assemblies in the design directly edited, displayed, or deleted via mouse actions.
problem. In the AIR-CYL example, the top specialist
coordinates the design of the entire air cylinder, while The structure of a design specialist in DSPI, is
the tip specialists only contain knowledge about a very constrained, and hence the lattice displayed in
single component in the device. the Specialist Component Browser is very regular.

The only types of l)SPL agents that will be displayed
The speiali-st browser has the following con- in a Specialist Component Browser are specialists,

mands in addition to tle standard commands. selectors, plan sponsors, plans, and constraints. The
root node of the lattice will always be the specialist

Left _Button- Commands whose components are being displayed. The rest of
the agents in the lattice are organized to suggest

Set trace medes I)etermines which components of relationships among the various components; selectors
the selected specialist will be traced during execution, are displayed above the plan sponsors which the selec-
Note that tracing agents does not alter the computa- tor uses, plan sponsors are displayed above the plans
tions made during execution. rile agents to be traced being sponsored, etc.
are selected from a submenu of agent types in the
system. The Specialist Component Browser has no ad-

ditional commands over the standard commands
Title Menu! Commands described at the beginning of this section.

-Save-, Saves the entire problem solver to a loadable 3.2.5. The Plan Component Browser
file. Since the both DSPL source and any generated
INTERLISP-D code is saved, no repar*ing by the The Plan Component Browser parallels the
I)SPL system is required when the problem solver is Specialist Component Browser in both function and

reloaded, use. The Plait Component Browser displays a lattice
which shows the internal structrre of a DSPL plat

-Run> Initiates execution of the problem solver, and its components. Again, each node in the lattice
Several submenu options related to running tle represents a DSPL agent, which may be manipulated
problem solver are available, via mouse actions.

Ruit- Identical to the above command. Plans are represented in I)SPil, as a sequence of
actions. These actions may be thotight of as ront-

- Set default trace modes> Similar to the Left Button mands to various types or agen, to perform a specific
Command in operation, except that the modes set by job. DSPL plans currently contain only three such
this command affect the tracing of all agents in the agent t) pM, cutsAilt(, tsks., and speciaiists. The

problen solver. This setting is overridden by trace root node of the lattice will always be the plan whose

modes set in an individual specialist. components are being displayed. The agents
referenced by the plai will appear directly beneath the

--Graphic trace -. This command enables a browser plan in the browser, Additionally, the Plan Con-

oriented form of tracing of the execution of the ponent Browser displays the structure of each task it

problem solver. In this mode a box is drawn around contains. Components of each task are displayed
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beneath the task in the browser. Tasks are composed spected.

of agents of t%%o types, constraints and steps. Finally,
any redesign or failure handling knowledge referred to Inspect this message - Same as alove.

by &,n agent in the plan browser will be displayed
beneath that agent. Inspect agent hIspects the agent which originated

this message.

The Plan Component Browser commlands are
identical to the Specialist Component Browser com- -. Browse;- Bring tip a browser on the originator of

mands. this message.

3-2.6. The Failure Handler Browser < Wherels Same as the agent browser comnmand.

'rhe Failure Ilandler Browser displays a lattice Middle Button Command;
showing relationships among ever% failure handler
agent in the problem solver. Beth system and user . Edit-' Same as the agent browser command.
failure handlers are displayed.

3.2.8. Running DSPI,
Note that consistency is nantainel am)" tile

l)SPl, browser. through any editing or other modifica- The execution of it I)S1I, sslem procee(T in a

tions performed via tihe browser commands. )eletion top-down fashion, beginning from tlie top-most node in

of an agent, for example, will result in the removal of the design hierarchy. At each node in the specialist

that agent from every browser that the agent appears hierarchy, the knowledge encoded iii the plan selectors
n and plan sponsors is used to select a plan appropriate

to the current state oF tie planner. On finding such
3.2.7. The Message Trace Browser a plan, if oae exists, the specialist, proceeds to execute

the plan. This overall control strategy of tile DSPL
The message browser does not show a Ia~tice of interpreter is known as plan selection and refinement.

DSPL agents. Instead, as its name implies, this brow-
ser displays a trace of the messages generated during 3.2.9. Building a DSPL Expert Sy.lem
tile execution of a I)SPlI problem solver. rhe
problem solver is initiated Mhen a design message is This section gives a brief, incomllete description
sent to it. rhe problem solver for%%ards this message of how t, build , expert system in I)SPL.
to the topmost specialist in its design hierarchy which
in turn uses the message to activate its own plait Having loaded the DSPL system from floppy, the
selector in order to find an appropriate plait, etc. creation of a new DSPI, problem solver is begun by
Each of the I)SPI, agents are activated by and buttoning tile create command of the l)SPL icon.
respond with messages which call viewed via the Mes- The name of the problen solver as well as the name
sage Trace Browser. of the top-most specialist is prompted for in the

P ROM PT\VINDOWV. Enter these items as requested.
Since the objects in the Message Trace Browser An empty specialist browser i6 displayed, front which

are not DSPi, agents, the comniands available some- the structure of the design problem solver can be en-
what different from the other browsers discussed. tered. Buttoning tie Add undefined agent command

will display a menu with i single item on it; the
Left Button Commands name of the top-most specialist which was entered

when the create command was buttoned. IButtoning
Most of the left button commands are identical this item will cause Dedit to display a I)SP1, specialist

to the left button commands in the agent browsers, template with the name of tile specialist alread. en-
except that the agent that is operated on is typically tered. Simply exiting frot I)edit will cause this
the originator of the message displayed in the lattice. agent, the top-most speciali.st in the design hierarchy

to be added to the specialist browser. '['he first agent
Explain Displays an explanation window for this of the new design system has been created. Ad-

portion of the problem trace. 'l'his is the access ditional agents ae added by using the Add agent
mechanism to the explanation facilities of the [)SPI, comr-mand t(, edit DSPl, templates as needed.
problem trace.

'rite recommended procedure for building a
<-PP- Same as the [P command in the agent brow- design system with l)SPI, is to first (efiie the
sers. specialist hierarchy. then "flesh out" the hierarchy

with design and rough-design plans and associated
Inspect (this message) Brings tip ami INTI'ERI,ISP-D sponsor and selector knowledge in each specialist as

inspector window on the message instance buttoned. appropriate. This gives a fairly complete overview of
A subnlenu allows the originating agent to be ill- the sy'temi's organization. The additioe of task and
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step knowledge is typically Ilhe nioit tine consinling -- oblem.
jot) in building a sysiein due to the proportionatel)
larger amount of knowledge to be entered. The task In a CSRI, system problen solving proceeds top-
of entering this potentially large volume of data is (town using tile Establish-Refine strategy developed in
mlade easier by the organized nature of the s)ecialist MDX i8l. First, tile top node in the hierarchy at-
hierarchy. tempts to establish itself. If it succeeds, then it at-

tempts to refine itself by establishing its subnodes. In
At any point in the development of the problen Figure 1, Auto-Mech establishes if it determines that

solver, the system may be executed to test its opera- something could be wrong with the car. Ovce Auto-
tion. Any missing agents necessary for execution will Mech is established, FuelSysteni will attemlpt to estab-
be noted by the DSPt, interpreter. Missing DSPL lish itself by determining whether the problem is with
constraint anl step knowledge may be "dummied out" the car's fuel system. At run-time each specialist can
taking advantage of facilities such as ASKUSER in ei- be taken to represent a hypothesis concerning the
ther step or constraint bodies. relevance of it; -oncept. For instance, in order to es-

tablish or reject itself BadFuel must dletermine the

3.3. HYPER: Tile Hypothesis Matcher Tool relevance of the hypothesis: "Sonethling is wrong with
the fuel." Thus hypothesis matching for relevance be-

Todd Johnson and John Josephson comes an importai* subtask of classification.

So far nothing has been said about the represen-
IN'T'ROD!C'TION tation of the knowledge used by each conceptual

This paper describes HYPER -- a software tool specialist. This knowledge must lbe used to map a
that is used to build knowledge-based agents whch partial situation description into evidence for or
perform tie generic task of hypothesis agatching for against the specialist's hypo'hesis. That is, the
relevance. We first describe the classification tool knowledge is used to determine the relevance of the
relevc e fhirs gavecrie te clssificatin tol specialist's concept to the current situation. CSRL en-
called CSRI, which gave rise to, and r"atly i codes this information in a mechanism called a
fluences, IIYPE]R. Next, we dlescr;1- hypothesis KnwegGrp. nolde ruswrkbma-
watching as a generic task and proceed to discuss tile Knowledge Group. Knowledge Groups work by map-
particulars of tie tool. ne th ed tohe types of ping situation features into a fixed range of confidence
epaatiaof te etool Werthm ahy thes mtpe. o values. Each specialist contains a Knowledge Group
explanation we expect from a hypothesis matcher. whi is invoked whenever the specialist is asked to
hally we give an example of a system which uses establish itself. If the confidence value of the

hypothesis natchhing as a subtask. specialist's Knowledge Group is above a certain

threshold, the specialist is considered to be established
3.3.. CSRL -- Motivation for HYPER otherwise it is taken to be rejected. Thus Knowledge

Over the last two years much work has been Groups do the work of matching for relevance.

done at OSU-LAIR using the classification system-
building language called CSRI 4, 5, 6, 7, 121. Ui,,g After building several systems we began to real-
CSRI, one can easily build systems which classify a ize the usefulness of this task in non-classification sys-
description of a situation into a set of nodes in a class tenis. In fact, we decided that hypothesis matching

hierarchy. Portions of medical diagnosis can be for relevance should be a separate generic task. Work

thought of as classification where a patient's symptoms then began to separate CSRL into two separate tools:

are classified into disease classes. Mystems built using CSRL for classification and tYPER ror Hypothesis

CSRL are organized as a classificatory hierarchy of Matching.
conceptual specialists as in Figure 1. This figure
represents part of the hierarchy used by an automobile
diagnosis expert system, called Auto-Mech. Auto- Auto-Mech

Mech asks questions about a particular car and at-

temphts to diagnose tile problem by classifying tile cur- IuelSystem

rent state of the car as a specific malfunction class. / I \

Each specialist in the hierarchy represents a inalfunc- /adruel Delivery mixture

tion, with subnodes representing a more specific mal- /

function than their parent nodes. For example, /

LowOctane, WaterlnFuel, and DirtlnFuel are more /oOctane DirtInFuel Waterlnuel
detailed description, of tile BadFuel "malfunction."
Each specialist in the hierarchy contains knowledge
that helps it to establish, that is, to determine Figure 19: Auto-Mech's conceptual specialist
whether tile current situation is relevant to its con- hierarchy
cept. hs BadFuel miit "look" at the car's
symptoms and decide if they "look like" a fuel
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3.3.2. Hypothesis Hatchirg as a Generic Task which maps features to confidence values.
Tfhis language represents the internal struc-

A Generic Task is characterized by a task Turs o a chu ne inpae hyothe i s t c

specification, the specific kinds and organization of hkr achy

domain knowledge, and a family of control regimes ap-

propriate to the task 9!. This information is vital to :3. Explanation Facilities (Discussed in the next
the production of a good knowledge level tool since section.)
without it we cal produce little more than an adhoc
and narrowly useful system. The generic task formula- The hypothesis matchers produced using HYPER
tion for hypothesis natching is as follows: are independent knowledge-based agents. Invocation is

accomplished by sending a Match message to a par-
Task Specification ticular matcher. Wheni a hypothesis matcher receives

Given a concept and a set of situa- a Match message, it evaluates the features and returns
tion features. determite the degree to a confidence value. A confidence value is a symbolic
which the concept matches the situa- measure of relevance. The default range provided by
tion. HYPER is: IlighlyUnlikely, Unlikely. Unknown. Likely.

and llighlyLikely. The range of confidence values can
Organization of Knowledge be supplied by the systemn designer to suit whatever

A hierarchical organization of purpose is needed.
evidence abstractions. The top node
computes tie degree to which the A tabular representation of tie BadFuel
concept matches the situation. Sub- hypothesis matcher is shown in Figure 3. The column
nodes compute evidence components headings represent the features to be matched against
for their parent nodes. For example, each row of the table. The entries in each row are
the BadFuel hypothesis matcher in tests to he performed upon the corresponding features.
Figure 2 has two subnodes: Perfor- Question marks represent "don't care" conditions.
manceRelated and FillupRelated. For BadFuel the features are actually the result of the
These subnodes respectively rate tile evidence components Filluplielated and PerformanceRe-
evidence for Performance problems lated. Each row in the table represents a set of tests
and Fillup problems indicative of bad to apply to tie features followed by the confidence
fuel. A similar task is performed by value to he returned if the row matches. The eon-
Samuel's signature tables. fidence value can either be one of the symbolic values

or a hypothesis matcher which can be used to coin-
Kinds of Knowledge pute a value. For example, if both FillupRelated and

What the evidence components are, PerformanceRelated returned IlighlyLikely, then the
how to determine their strengths, and first row in the table would match. Il this case,
how to combine evidence. BadFuel would return IlighlyLikely. The rows are

evaluated from top to bottom, left to right, until a
Control Control is initiated in a top-down row matches. The confidmnce value of the matching

fashion. The top node can call on row is then returned. A certain amount of optimiza-
any of its subnodes to gather tion is done during the evaluation of the table to
evidence. Evidence abstraction data avoid evaluating unnecessary components.
flows bottom-up.

BadFuel BadrueL:
PerformanceRelated FillupRelated

(EQ HighlyLikely) (GE Unknown) > ighlyLikely
Performance FillupRelated (EQ Likely) (GE Unknown) => Likely
Related? (LT unknown) '> HighlyUnlikel?eaed?> PerformanceRelated

Figure 20: Hierarchical structure of tile BadFuel
hypothesis matcher Figure 21: Top node of the Had l.uel macher

Details of HYPER

As i. tool II{Y[ER provide, tile following facilities 3.3.3. Explanatin II YPII?

to the system builder: Since hypothesis matchers are viewed as inde-

1. A browser for creating, displaying, and edit- pendent agents, it makes sense to directly ask a
ing the evidence abstraction hierarchy for a matcher about its behavior rather than an additionalhypotiheidc ath rao h"module" whose purpose is to construct an explana-
hypothesis matcher. tion. Also, because hypothesis matching is a generic

2. A language for representing the knowledge task. knowledge and control are represented at a level
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which facilitates explanation. For these reasons, Since in this case llighlyLikely is returned, the com-
hypothesis matchers designed using IIYPER come parison succeeds and the matcher tries to determine
complete with the ability to handle the following ex- whether Filluplelated is greater-than or equal to Un-
planatory questions, known (GE Unknown)- continuing with evaluating the

first row of BadlFuel as shown in Figure 3. Thus.
Why Value? Asks for an explanation of why a FillupRelated must be evaluated. Figure 6 shows the

certain value was returned. This re- sequence of events resulting in a confidence value of
quires knowledge of run-tine be- HighlyUnlikely. Since lligllyUnlikely is less than Un-
havior. known, (GE Unknown) fails thus causing the first row

of BadFuel to fail. The matcher then mloves to the
Justify Knowledge second row and immediately fails on (EQ Likely) since

Questions of the form "Why do you PerforianceRelated returned llighlyLikely. Next the
say knocking and pinging indicate it third row is tried. The first test is a "don't care"
high likelihood for bad fuel?" Such condition so evaluation proceeds to the second test in
questions require justification of the the row (u Unknown). Since FillupRelated returned
knowledge being used by the agent. IlighlyUnlikely the test clearly succeeds, meaning the

entire row has matched. The matcher then returns
Why not value? This asks for an explanation of why the associated confidence value, IlighlyUnlikely, to tle

a certain value was not returne(. BadFuel Specialist.
Such questions require knowledge of
the control strategy, as well as. the Now that the BadFuel specialist has a confidence
run-time behavior. Other possible value it must decide whether to reject or establish.
questions of this form include: Why The establish threshold is set at Likely so with a con-
not higher/lower, and Vhat do I fidence value of HighlyUnlikely BadFuel firmly rejects
need to do to make the value X? itself and does not attempt to establish any of its sub-

nodes.

"Why value" questions can easily be answered
by simply stating why rows failed or succeeded. An PerformsaiceRelated:
exanple of tils is given in the next section. Because l: AskYNU? "'is the car slow to respond''Q2: AskYNU? ''Does the car start hard"
Hypothesis Matchers represent compiled knowledge. 03: (And AskYNU? 'Do you hear knocking or pinging sounds''

justification requires the use of pre-canned strings. AskYNU? "'Does the problem occur while acceleLating'')

IYPER provides a facility for attaching appropriate 0l Q2 Q3
explanatory strings to each row of the table. Ex- -...............................................CEO) Ti ? > Highly~nlikely
planations given by IYPER can appear in either a ? (EO T) ? > HighlyUnlikely
machine readable form or a ',uman readable form, 7 ? (EQ T) => HighlyLikely

thus explanations can be used by both other agents ? ? ? unknown

and the human user of the system. FillupRelated:
01: AskYNU? "'Have you tried a higher grade of gas''
02: AskYNU? "'Did the problem start after the last fillup''

3.3.4. Using HYPER from CSR, - An Example 03: AskYNU? "'Has the problem gotten worse since the last
fillup'

The following example shows how a hypothesis Q1 02 03
matcher can be used from a classification system. W e -------------------------------------------------
will use the portion of Auto-Mech shown in Figure 1. (EQ ') T)> HighlyUnlikelle hthsreevda (EQ '1) ? > HighlyLikely
To begin let us assume that BadFuel has received an ? (EQ F) (EQ T) L> Likely
establish-refine message. The top node of BadFuel's ? ? *> ?HighlyUnlikely

hypothesis matcher is shown iii Figure 3. The two
subnodes, PerformanceRelated and FillupRelated, are
shown in rigure I. The function AskYNU? asks the Figure 22: Tabular representation of BadlFuel's
user a question expecting a reply of yes, no, or un- subnodes
known, and returns T, F, or U.

When the BadFuel specialist receives an Estab- mBadr'uel sends a Match message to Performancelelated)
li'h inf-o;age it imrm t afttempt to establish or reject il Is the car s1'.)w t ecpCdA.? n!

Does the car start hard? noself. To (0 this it sends at Match message to its Do you hear knocking or pinging sounds? yes
hypothesis matcher. Referring to Figure 3, the Does the problem occur while accelerating? yes

im atcher first attempts to evaluate (EQ llighlyLikely) (PerformanceRelated returns HighlyLikely)

with respect to PerfornanceRelated. In order to per-
forum this comparison. Performanceltelated must be
evaluated. The matcher then calls PerformanceRelated Figui'e 23: Rum-time snapshot of Performnancellel
causing the sequence of events shown in Figure 5.
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(BadFuel sends a Match message to FillupRelated) REFERENCES
Have you tried a higher grade of gas? yes
(FillupRelated returns HighlyUnlikely) [lj Brown, D.C. / Chandrasekaran, 13.

Expert Systems for a Class of Mechanical
Figure 24: Run-time snapshot of FillupRelated Design Activity.

198,1
Suppose now that the person running Auto-Mech Paper for IFIP WG5.2 Working Conference,

wishes to know why the BadFuel specialist rejected it- Sept. 84.
self. Without appeal to its hypothesis matcher, the
specialist can only answer the question by saying that i2 Brown, D.C.

llighlyUnlikely was less than the establish threshold. Expert Systems for Design Problem-Solving

Hlowever, since IIYPER provides explanation facilities, Using Design Refinement with Plan Selection

BadFuel can send the message "Why IlighlyUnlikely?" and Redesign.
to its matcher and give the user a better explanation, t981
such as that shown in Figure 7. A general explanation Dissertation.

browser may then be used to ask further questions i3 D. C. Brown and B. Chandrasekaran.
about the initial explanation. Knowledge and Control for Design Problem
BadFuel hypothesis matcher resulted in Hig Solving.

.January 10, 1985.

PerformanceRelated returned Highly Technical Report, Laboratory of Artificial Intel-

FillupRelated returned HighlyUnlik ligence Research, Department of Computer
and Information Science, The Ohio State

(GE FillupRelated Unknown) is fals University.

(EQ PerformanceRelated Likely) is
(LT FillupRelated Unknown) is true 1,11 Bylander, t. / Mittal, S. / Chandrasekaran, B.

CSRL: A Language for Expert Systems for
HighlyUnlikely is below the establish thre )iagnosis.
BadFuel rejected. In Proc. of the [nternzational .Joint Conference

on Artificial fntelligence, pages 218-221.

August, 1983.
Figure 25: I;xplanation about wvhy ladFueI rejecte An extended article appears in the Special Issue

CONCLUSION of Intn 7 .Jrnl. of Computers and
.Mathematics on "'practical artificial intel-

Because hypothesis matching appears to be a ligence systems", and another article on
very useful generic task we feel that a robust version CSRI. with emphasis on uncertainty ban

of IIYPER is needed for our set of high-level tools. dling will soon appear in A! Magazine.

Such a version will greatly speed the development of T. Bylander and .. W. Smith, M.D.
other useful tools and systems. The first implemen- Using CSRL for Medical Diagnosis.
tation of HYPER has just been coml)leted and is un- In Proceedings of MEDCOMP'8;9. IEEE Com-
dergoing testing. Part of this testing involves the puter Society, 1983.

rewriting of CSRJ, to allow the use of hypothesis
matchers as independent agents separate from tie 1 r. Iylander.
CSRI, language. This is beginning to bring up issues Syntax an(d Semantics of CSR, in INTERLISP-
about agent integration, and about the designer inter- ).
face needed to switch between several cooperating high April 9, 1985
level tools. Thus, HYPER is forcing us to look at Technical report, Laboratory of Artificial Intel-
issues vital to the production of a useful set of ligence Research, Department of Computer
knowledge level tools. and Information Science, The Ohio State

University.
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GENERIC TASKS IN EXPERT SYSTEM DESIGN AND
THEIR ROLE IN EXPLANATION OF PROBLEM SOLVING'

B. Chandrasekaran
Laboratory for Artificial Intelligence Research

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 13210

ABSTRACT tion hierarchies, rule-out strategies, setting up a dif-
ferential, etc., while for design, the generic terms

We outline the elements of a framework for ex- might be device,/component hierarchies, design plans,
pert system Jesign that wc have been developing in ordering of subtasks, etc. Ideally one would like to
our research group over the last several years. This represent diagnostic knowledge in a domain by using
framework is based on the claim that complex the vocabulary2 that is appropriate for the task. But
knowledge-based reasoning tasks can often be decom- typically the languages in which the expert systems
posed into a number of generic tasks each with as- have been implemented have sought uniformity across
sociated types of knowledge and family of control tasks, and thus have had to lose perspicuity of
regimes. At different stages in reasoning, the system representation at the task level. The computational
will typically engage in one of the tasks, depending universality of representation languages such as
upon the knowledge available and the state of problem Emycin or 01S5 -- i.e.. the fact that any computer
solving. The advantages of this point of view are program can be written in the , languages, more or
manifold: (i) Since typically the generic tasks are at less naturally -- often confuses the issue, since after
a much higher level of abstraction than those as- the system is finally built it is often unclear which
sociated with first generation expert system lang,.ages, portions of the system represent domair expertise and
knowledge can be represented directly at the level ap- which are programming devices. In addition, the con-
propriate to the information processing task. (ii) trol regimes that these langutages come w-th (in rule-
Since each of the generic tasks has an appropriate based systems they are typically variants of
control regime, problem solving behavior may be more hypothesize and match, such as forward or backward
perspicuously encoded. (iii) Because of a richer chaining) do not explicitl. indicate the real control
generic vocabulary in terms of which knowledge and structure of the system at tie task level. " .g., the
control are represented, explanation of problem solving fact that RI 121 performs a linear se,'-ne. --, sub-
behavior is also more peispicuous. We briefly describe tasks -- a very special and atypically s.no rs In of
six generic tasks that we have found very useful in design problem solving -- is not expli" : the
our work on knowledge-based reasoning: classification, sonrol
state abstraction, knowledge-directed retrieval, object iyste deigne on r n01o8
synthesis by plan selection and refinement, hypothesis in the pattern-matching control of UPSb
matching, and assembly of compound hypotheses for
abduction. These comments need not be restricted to the

rule-based framework. One could represent knowledge
as sentences in a logical calculus aid use logical in-

I. Information Processing Tasks in ference mechanisms to solve problems. Or one could
Knowledge-Based Reasoning

Intuitively one thinks that there are types of
knowledge and control regimes that are common to
diagnostic reasoning in different domains, and similarly
there would be common structures and regimes for say
design as an activity. but that the structures and con- 'Reeeardi stppoited by Defense Advanced Reearch project,
trol rogirneo fnr diagntric reazoning awl! do ign Agency. RADC Contract F30602-M S-C-0010. and Air Force

problem solving will be generally speaking different. Office of Scientific Reseatch grant 82-255. This paper
However, when one looks ai the formalisms (or equiv- originally presented at the Office of Naval ReseaichiNational

alently the languages) that are commonly used in ex- Academy of Sciences Sy19po5. on l)isitihned Artificial [m,'.
pert system design. the knowledge representation and ligenee, May t985.
control regimes do not typically capture these distinc-
tions. For example, in diagnostic reasoning. onv 2We also use (lie ietir primttiv' of th, Ih,yy( in m the ret of
might generically wish to speak in terms of malfunc- i'te paper to efer to ilte vocabulimy
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represent it as a frame hierarchy with procedural at- tions are variants), and, typically, successful solutions
tachments in tile slots. (It is a relatively straightfor- cannot be expected ill complex problems without coin-
ward thing. e.g. to rewrite MYCIN [1l1 in this man- binatorial searches. Typically, however, expertise con-
ner, see 16 .) In the former, the control issues would sists of much more organized collections of knowledge.
deal with choice of predicates an( clauses, and in the with control behavior indexed by the kinds of or-
latter, they will be at the level of which links to pur- ganizations and forms of knowledge in them.
sue for inheritance, e.g. None of these t iave any
natural connection with the control issues atural to To summarize the argument so far: There is a
the task. need for understanding the generic information p'ocess-

ing tasks that underlie knowledge-based rea :)ning.
Actually the situation is even worse: because of Knowledge ought to be directly encoded at the ap-

the relatively low level of abstraction relative to the propriate level by using primitives that naturally
information processing task, there are control issues describe the domain knowledge for a given generic
that are artifacts of tie representation, but often in task. Problem solving behavior for the task ought to
our opinion misinterpreted as issues at tile be controlled by regimes that are appropriate for the
"knowledge-level" E.g., rule-based approaches often task. If (lone correctly, this would simultaneously
concern themselves with conflict resolution strategies. facilitate knowledge representation, problem solving,
If the knowledge were viewed at the level of abstrac- and explanation.
tion appropriate to the task, often there will be or-
ganizational elements which would only bring up a
small, highly relevant pieces of knowledge or rules to At this point it will be useful to make further
be considered without any conflict resolution strategies distinctions. Typically many tasks that we intuitively
needed. Of course, these organizational constructs think of as generic tasks are really complex generic
could be "programmed" in the rule language, but be- tasks. I. e., they are further decomposable into coin-
cause of the status assigned to tie rules and and their ponents which are more elementary in the sense that
control as knowledge-level phenomena (as opposed to each of them has a homogeneous control regime and
the implementation level pheaomena, which they often kowled3e structure. For example. what one thinks of
are), kdiowledge acquisition is often directed towards the diagnostic task, while it may be generic in th-
strategies for conflict resolution, whereas the really sen :e that the task may be quite similar acr(, S
operational expert knowledge is at the organizational domains, it is not a unitary task structure. )iagnosis
level. may involve classificatory reasoning at a certain point,

reasoning from one datum to another datum at
This level problem with control structures is inir- another point, and abductive assembly of multiple

rored in the relative poverty of knowledge-level primi- diagnostic hypotheses at another point. Classification
tives for representation. E.g., the epistemology of rule has a different form of knowledge and control behavior
systems is exhausted by data patterns (antecedents or from those for data-to-data reasoning, which in turn is
subgoals) and partial decisions (consequents or goals), dissimilar in these dimensions from assembling
that of logic is similarly by predicates, functions, and hypotheses.
related primitives. If one wishes to talk about types
of goals or predicates in such a way that control be- Thesis: Given a complex real world knowledge-
havior can be indexed over this typology, such a be- based reasoning task, and a set of generic tasks for
havior can often be programmed in these systems, but each of which we have a representation language and
there is no explicit encodimg of them that is possible. a control regime to perform the task, if we can per-
E.g., Clancey [81 found in his work using Mycin to form an epistemic analysis of the domain such that (i)
teach students that for explanation he needed to at- the complex task can be decomposed in terms of the
tach to each rule in the *lycin knowledge base encod- generic tasks, (iH) paths and conditions for information
ings of types of goals so that explanation of its be- transfer from the agents that perform these generic
havior can be couched in terms of this encoding, tasks to the others which need the information can
rather than only in terms of "Because --.. was a also be established, and (iii) knowledge of the domiain
subgoal of .. -."is available to encode into the knowledge structures

for the generic tasks; then that complex task can be
The above is not to argue that rule represen- "knowledge-engineered" succssfully and perspicuously.

tation,; awid backward or forward chaining control. are Notice that an abilit) to dt wnjw.', .oiiplex twks in
not "natural" for some situations. If all that a this way brings with it the ability to characterize
problem solver has in the form of knowledge in a them in a useful way. We can see, e.g., that tie
domain is a large collection of unorganized associative reason that we are not yet able to handle difficult
patterns, then data-directed or goal-directed associa- design problem solving is that w, are often unable to
tions may be the best that the agent can do. But find an architecture of generic tasks in terms of which
that is p~recisely the occasion for weak methods such the complex task can be constructed.
as hypothesize and match (of which tile above associa-
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In the rest of this paper, we will briefly describe We will now proceed to a brief characterization

some of tie elementary generic tasks that we have of these generic tasks.

had occasion to identify and use in the construction of
expert systems. While we have been adding to our L 1. Classification

repertoire of elementary generic tasks over the years, Task specification: Classify a (possibly
the basic elements of the framework have been in complex) description of a situation as an
place for a niml)er of years. Our work on MDX element, as specific as possible, in a

I5', e.g., identified classification, knowledge-directed classification hierarchy. E.g, classify a

information passing, and hypothesis matching as three medical case description as an element of a
generic tasks, and showed how certain classes of diag- disease hierarch.
nostic problems can be implemented as an integration
of these generic tasks. (We have earlier referred to Forms of knowledge: partial situation
them as problen solving types, but in 16 . we began to description-- >. evidence belief about con-
call them generic tasks.) Over the years, we have firmation or disconfirmation of classificatory
identified several others: object synthesis by plan .selec- hypotheses. E.g., in medicine, a piece of
lion and refinement I . state abstraction 17. and classificatory knowledge may be: certain

abductive assembly of hypotheses 111. There is no pattern in X-ray & bilirubin in blood --->
claim that these are exhaastive; in fact. our ongoing high evidence for cholestasis.
research objective is to identify other useful generic
tasks and understand their knowledge representation Organization of knowledge: The above clas-

and control of problem solving, sificatory knowledge distributed among con-
cepts in a classificatory concept hierarchy.
Each conceptual "specialist" ideally contains

2. Somrre Generic Tasks knowledge that helps it determine whether
it (the concept it stands for) can be

2.1. Characterization of Generic Tasks establishcd or rejected. The form of the

Each generic task is characterized by the follow- knowledge as stated above is the form

ing: 
needed for this decision.

1. A task specification in the form of generic Control Regime: (Simplified form) Problem

types of input and output information, solving is top down. Each concept when
called tries to establish itself. If it suc-

2. Specific forms in which the basic pieces of ceeds, it lists tile reasons for its success.
domain knowledge is needed for the task. and calls its successors, which repeat the
and specific organizations of this knowledge process. If a specialist fails in its attempt
particular to the task. to establish itself, it rejects itself, and all

its successors are also automatically
3. A family of control regimes that are ap- rejected. rhis control strategy can be

propriate for the task. called Establish-Refine, and results in a

From tile nature of the control regime, we can deter- specific classification of the case. (Tile ac-

mine tile types of strategic goals the problem solving count is a simplified one. The reader is

for the task has. These goal types will play a role in referred to %5 for details and elaborations.)

providing explanations of its problem solving behavior. Goal types: Exg., Establish <concept.>,

When a complex task ip decomposed into a set Refine (subclassify) -concept>
of generic tasks, it will in general be necessary to Example Use: Medical (iagnosis can often

provide for communication between the different struc- be viewed as a classification problem. In
tures specializing in these different types of problem planning, it is often useful to classify a

solving. Note that a decomposition does not imply situation as of a certain type, which then
that there is a predetermined temporal ordering on might suggest an appropriate plan.
when the generic tasks are performed: typically the
agent for a generic task is invoked when another agent * 11. State ab.,tracthon
needs information that the former can provide. Fur-
ther there is no implication that there is a unique rask Specification: Given a changae in

decomposition. Depending upon the availability of some state of a systel, provide an account

particular pieces of knowledge, different architectures of the changes thai can be expected in the

of generic tasks will typically be possible for a given function, of ihe system. (Useful for reason-

complex task. ing about consequences of actions oii coin-
plex systems.)
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Form of knowledge: -change in state of value is known, then uses inheritance
subsystem ... change in functionality relationships to determine if the value can
of subsvstein change in state of tie ira- be obtained by inference from the values of
niediatelb larger s,,stei appropriate attributes of its parent or

Organization of Knowledge: Knowvledge of children, then uses any demons that may
be attached to the slot to query other con-

the above form distributed in conceptual cepts in othcr parts of the hierarchy for
specialists corresponding to values of their attributes. If none of it
system/subsystems. These conceptual succeeds and if it is appropriate the default
specialists are connected in a way that mir- value is produced as the value.
rors the way the system; subsystem is put
together. This is basically a hierarchical information-

passing control regime, with demons provid-Control regime: Basically bottom up, buitinanoerdo tehrrhclrgi.

follows the architecture of the ing an override of the hierarchical regime.

system/subsystem relationship. The Goal Types: E.g., Inherit value of
changes in states are followed through. in- -attribute ., Ask for <concept, attribute
terpreted as changes in functionalities of value) to infer, attribute, by <relation.-.
subsystems, until tie changes in the
functionalities at the level of abstraction Example Use: Knowledge-based data

desired are obtained, retrieval tasks in wide variety of situations.
Inferring a medical datum from anothur,

Goal Types: E.g., Abstract consequent when the latter is available but the former
state, Deduce change in functionality, is needed for diagnostic reasoning. E.g.,

diagnostic reasoning needs information
Example Use: Answering questions of the abot reatin t hee noeto

form: "What will happen if this valve is t wa ethets baue t has dan osti
closd, hil theturineis rnnig?"to "anesthetics," because it has diagnostic

closed, while the turbine is running?" knowledge that relates a diagnostic conclu-
Generic usefulness is iin consequence finding. sion to this datum, but the patient data do

not include any reference to "anesthetics,"
P Iig Knowledge-Directed hrnafion but mentions "major surgery a few weeks

Passing before." Assuming that the knowledge base

Task specification: Given attributes of for the data retrieval system encodes the

some datum, it is desired to o!)tain at- piece of knowledge that relates "surgery"

tributes of some other datum, conceptually and "possible exposure to anesthetics," per-

related to the original daum. forming the reasoning that connects the two
data items is an example of knowledge-

Forms of Knowledge: i. Default value of based data retrieval.
attribute, of <datum, is .value> ii.
attribute;mtof . datum>Ois inherited from 9 IV. Object Synthesis by Plan Selection
attribute - of parent of fdatum . iii. and Refinement
attribute, of - datum - is related as

-'relation,- to -,attribute,, of children of Task Specification: Design an object satis-

<datum,. iv. .attribute-- of -datum -is fying specifications (object in an abstract

related as -relation-- to - attribute . of sense: they can be plans, programs, etc.).
<concept>. Forms of knowledge: Object structure is

Organization of Knowledge: The concepts known at some level of abstraction, and

are organized as a frame hierarchy. Default pre-compiled plans are available which can

for slots corresponds to form i. above, the make choices of components. and have lists

IS-A or PART-OF links between parents of concepts to call upon for refining the

and children determine the types of in- design at that level of abstraction.

heritance in form ii. and iii. Procedural at- Organization of Knowledge: Concepts cor-
tachments or "demons" are used to encode Orpninto omnen ts e -

form iv. Each frame is a specialist ill hracyring t he or ic ireknowledge-directed data inference for tihe hierarchy mirroring tihe object struclure.
kono edt. dEach concept has plans which can be used
concept, to make commitments for Some

Control regime: A concept, when asked for "'dimensions" of the component.

the value of one of its attributes first
checks the data base to see if the actual
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Control lRcginie: T[op down in general. plained by thle best explanatory accout.

The rollowing is done recursively until at and given a itnumber of' hypotheses. each as-

comrplete design is worked out: A specialist sociated with a degree or belier and each of
c'orresponlding to a component ol the object wvhich offers to explain a portion of tlie

is clled, thle specialist chooses at plan based data (possibly overlappling with dlata to he

Oin Some specification, instantiates and ex- accounted for by other hypotheses), con-
'ckles some part of the p~lan which suggests struct thle best conmposite hypothesis out of

further sp~ecialists to call to set other dletails thie given hypotheses.
Or tile design.l Platn railures are passedl upt Forms of Knowledge: causal or other rela-
until approp~riate changes, are mnade 1wtv 'uch'sycroaiiiv
higher level sp~ecialist.,. so that sp~ecialists los spca ae o) bten tl

who railed may ,succeedl onl a retry. hypotheses, relative significance or dlata

Coal Types: E.g., Choose plan. execute iteliS.

,,plan element, reline -plan -, redesignOraitonfKoweg:Freliv%
(mlodirx) p~artial dIesign- to respond toOraiton rKoweg: orelivy
railure or . subplanl -S, seetatraiesmall number of hypotheses, this is a global

Plan, etc. process. For large numbers, somte formn ohf
recursive assembly will be called ror, imp~ly-

Example: Expert design tasks, synthesis or :ntg knowledge organized at dirrerent levels
everyday plans or action. or abstraction or the assembled hypotheses.

e V'. flypottnesis M~atching Control Regime: (Simplified version. see
111 fr- at ruller (discussion.) Assemb!ilyl and

Task Specification: Given at hypothesis and criticismn alternate. [in assembly, a mneans-
a set of' data that describe the problem endls reginie, driven by the goal or explain-
state, decide ir the hvpot hess;' matches thle ing all the significant findings, is iii control.
situnation. At. each stage, thle most significant datumt

Fori and Orunizaion f Kowlege:to be explained results in thle best
Fom ad raizto o nwlde hypothesis that ofrers to explain it being

(One rormi) A hierarchical representation or added to the composite hypothesis so rar
evidlence abstractions, tol) nodle is the deC- assemb~ledl. Arter each assembly, the critic
gree of' matching or thle hiypot hesis to thereos x)atriy upruus at.

data, and nodes at a given level are corn- This loops until all thec data are explained,
ponents of' evidence f'or the evidence or no hypotheses are lert.
ab~straction at, thle higher level. E g., say
thie hypothesis of' goodniess or a p)ositionI i Goal Types: e.g. account-for (Idaturtfl>,

a gamne is the one to be matched against check-superfluousness-or - hypothesis,,.

the dlata (describing the board configuration. EapeUe nmdcldanss h
Goodness may be defined at the top level Exssiatple gese: i tan meia pragouieast
in terms or two abstraction%: derfensbihm lssfcto gnrctakmypodcy e
and offensim'e opportuitiles. Form of or classificat ioiis. each or which accounts ror

knowedg the fo thi mut besuc it, tosomec or the dlata. The best account needs

knowledg hna n drorths mus bee isuch utof to be put together. '[hle internist systetil

tease evingeasrctst degrees oobliri rec 13 andl the Dendral system .2 perrorm

thesief eintegon abstraction .to Tegeeo this type or task as part or their problem

defensibility abstractioni, e.g., may in turn slilw

be defined either by direct (data or inter-
mnediate abstractions. Sainuel's signature 3. Encodimg Knowledg-e at the Level of thme
tbles canl be thought or ats performing this Task
task.

G oi I v es: valate evidnce forFor each generic task. the forin and organization
Goal typs: Ealute vi~lnce roror thle knowledge (irectl3 suggest the appIrop~riate
hypohesi, ealuae eidene ro cotrihit-representation iii ternis ol which dormain knowledge for
ingabsrac ~OI .that task can be encoded. Since there is at control

regunme associated withI each I & i Olkte p rob lem solver

0 V. tbdmmctic ihr.semblly of Explanatory canl be implicit iii the rep~resenitationi languiage. ILe., as
llypolhe.-es soon as knowledge is represented in the shell cor-

.[ak Sp~ecification: Given a iuiinresponding to a given generic task, at problem solver
item) t beex-which uses thle control regime onl the knowledge

(desribe h~ya se or latarep~resentation created ror domain can be created by
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the interpreter. This is similar to what representation A: Because I was trying to e.labhi ' hepatitis.

systems such as EMYCIN do, but note that we are

deliberately trading generality at a lower level to Q : Why?

specificity, clarity, richness of ontology and control at
a higher level. A: Because I had already established that the

patient had liver disease. Now I am trying to sub-

We have designed and implemented represen- classify the case, and hepatitis is one of the sub-

tation languages for a simpler versions of two of these categories. If I can reject hepatitis. I can reject all

generic tasks: classification [3!, and object synthesis by the following diseases which are its subclasses.

selection and refinement II]. We plan to implement a
family of such representation languages. State Abstraction

Let us assume that the user had asked the sys-

4. Generic Tasks and Explanation of Problemim tem, "What will happen if Valve A is closed?"
Solving Q: Why d (o wish to knowv the engine speed?

We have developed a framework for providing

explanations for the decisions recommended by expert A: Because I am trying to decide the change in

systems, and this is the basis of a four-year research functionality of the cooling system when Valve A is

effort sponsored by the Defense Advanced Research closed, and engine speed is a datum I need for this.
Projects Agency. For the pripose of this discussion,
we can sa. that understanding the problem solving be- Q: Why are you considering the cooling system?

havior of an expert problem solving system requires
inspecting three structures, each corresponding to a A: Because, Valve A is a component of the
type of explanation: Cooling system.

Tl'ype 1: trace of run-time. data-dependent

problem solving behavior, viz., which pieces of Data Retrieval
knowledge were used and how. E.g., Why do you say
that the patient has cholestasis? Ans: Because the Q: Did the patient have exposure to anes-

patient has high bilirubin in blood, and jaundice and thetics?
Xrays suggest an obstruction in the biliary duct. This
is typically done by checking which data items in the A: Did he have any surgery?

current case matched the piece of knowledge that en-
abled the system to make a particular decision. Q: Why do you ask?

Type 2: understanding how a piece of A: I do not have direct record of anesthetic ex-

knowledge relates to the domain. how it can be jus- posure. I failed to inherit a value for this attribute

tifed. E.g.. Why do you say that high bilirubin in from its parent -- no direct record of any drug not

blood suggests cholestasis? lere whatever answer is being given, I also failed to infer No Exposure, by

given, no data about the current case are being used. ruling out its children. Then the Anesthetic concept

The system is really being called upon to justify its suggested that If surgery had been performed, anes-

knowledge. thetic can be reasonably inferred.

Type 3: understanding the control strategy used Hypothesis Assembly

by the program in a particular situation. E.g. Why Q: Why was hypothesis part 11' included in the

didn't you consider portal hypertension in this case? best explanation?

Ans: Because I had ruled out circulatory diseases, por-

tal hypertension is a special case of circulatory (lis- A: In order to account-for (laturni
eases, and my strategy is not to consider special cases
when I have ruled out the general case. Q: Why wasn't If" chosen to explain )?

The explicit encoding of the generic aspects of , d Imi Li~dly xsswnibied

knowledge and( control behavior for each generic task conclusion ,, II' is the best way to explain - cluster of
can be directly used to produce explanations of Type data
3. We will give some examples

lassificalwon Q: Why was hypothesis II accepted?

Q: Wh' do you %vish to know if the patient A: Because it is the only plausible way to

had been exposed to anesthetics? account-for -cluster of data

-132-



Plan Refinement to the domain data on tile other).

Q: Wly did you choose Plan A'? rhe most advanced wyork by Clancey's group on

explanation is that on NEOMYCIN, and thus we will
A: Iecause I am trying to complete th concentrate on that in this section. ilere diagnostic

specification for Plan A, for refining which I need strategy is represented explicitly as a collection of sub-
.ubgoal accomplished. The specialist for tasks, with conditions for moving from sub-ask to sub-
subgoal selected Plan A' due to - reasons -. task also explicitly stated. This representntion enables

an explanation of strategy to be produced at the task
Q: What will you do if you rail in Plan A and sub-task level or generalization.

A: _Subgoal- specialist will ,elect Plan A". This work is in many ways quite close in spirit

to our approach, with the following comments throw-
Q: What if it fails? ing light on tile differences.

A: Parent s)ecialist will redesign Plan A, by tL NEOMYC IN's representation of abstract

weakening constraint'. strategies is implemented as a body of
meta rules in tlie rule-based paradigm. We

In the foregoing examples, the italicized terms would note here that the rule paradigm

represent the type of goal that is being pursued. l)lays no intrinsic role in this and can be

Points to be noted here a-e: this explanatory richness viewed as merely an implementation lan-

(compared to the terminology of goal-subgoals) is guage. In our approach we would advocate

made by possible by encoding the control reginies a representation language with generic

specific to each generic task; and, the explanation is lrimitive terms ror directly encoding control
directly related to the problem solving of the system. along the lines discussed earlier in the

paper.

.4.1. Comparison with Related Work 2. Trhue above comment raises the question of

Witlh respect to providing explanation there are the appropriate language in which couch

two key ideds that we are offering in this Daper: one, the tasks abstractly. in this paper we have

explanation of problem solving strategies, which are proposed a et of generic tasks and sug-

manifested as appropriate control behavior by the gested thal they (and others to be added

problem solver, can be basod on the generic task that as needed on empirical grounds. but at

a problem solver is engaging at a given stage in about the same level of grain size) comprise

problem solving; and two, which is implicit in what the elementary tasks iii terms of which

we have said so far. is that control for each task be complex (generic) tasks such as diagnosis be

represented abstractly so that explanations can be decomposed. While we have been able to
couched in terms of these abstractions. demonstrate this claim to a certain extent

for the diagnostic strategy employed by the

Swartout and Clancey have done significant in- MDX system, it is a matter of further em-

vestigations of issues in explanation generation by pirical research to see whether and how

problem solving systems. The work of both authors NEOMYCIN's diagnostic strategy be so
uses the no, ion of ab.itract representation of control as decomposed.
a basic idea for explanation. It will be useful to re-
late our ideas to those of these investigators. With respect to point 2 above, are there ad-

vantages from an explanation point of view for such a

I... The Work of Clancey's Group: decomposition even if it were possible? At this point
we can only give the following tentative answers. ro

Clancey has contributed several ideas that are tile extent that the subtasks in NEOMYCIN were
relevant in this context: one,. in 9 . lie discussed the developed by a direct study of the diagnostic task, it
advantages of abstract representation of control in is likely that some of these tasks (and consequently
reasoning systens. and sl)ecifically pointed out their the terms which t he) contribute to the explanation)
potential role in explanation; two, in *8 , he proposed are more informative at the diagnostic task level. But
t.t. in order to give explanatory capahliiio',; to if our theory i right. te additional ibbtialions
MYCIN for purposes of teaching (he created a system specific to dliagnosis can be obtained naturally from

called GUIDON based on MYCIN) an explanatory tile abstraction at the generic task level. The generic

skeleton be attached to each rule encoding the role of tasks in our sense will have the further advantage of

the rule in problem solving; and three, in his work on providing the primitives for other "molecular" tasks in

NEOMYCIN fIo, lie and his group represent the diag- addition to diagnosis.

nostic strategy explicitly (in terms of abstract ;ubtasks

and their relations to diagnosis on the one hand and
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4.1.2. Swartout and tie XPLAIN System: Acknowledgment: The paper has benefited
from tie comments of Tom Bylander, Jon Sticklen

Swartout's XPLAIN system 15, Call be sui- and .John Josephson.
marized for our purposes as follows. It has a com-
ponent called Domain Principles, which is best thought REFERENCES
of as a base of control abstractions of the goal-subgoal
type. They are of the form, "If goal is G, and ifK patternl I-, . <patternN> occur in thre domain [I1 lBrown,~ D.C. /Chandrasekaran, B3.

nowledge ba-, .. p subgoals i, .... SoN Expert Systems for a Class of Mechanical
knowledge basc, set up ugasSG,..SI Design Activity.
respectively." As a concrete example, G might be 1984t
"Administer *c-drug .," pattern l might be, *<finding- Paper for IFIP WG5.2 Working Conference,
and -drugs> cau.e .bad side effect>," and SGI Spt. f4e
might be, "Control toxicity of :drug,." One can im- Sept. 8.

agine an instructor teaching a group of students about (21 Buchanan, B. / Sutherland, C. / Feigenbaum,
administration of drugs in general, and telling them E.A.
that if, for a particular drug. there is a possibility of Heuristic DENDRAL: A Progran for Generat-
a bad side effect, then make sure to do whatever will ing Explanatory lypotheses in Organcic
be needed to control the drug toxicity. Note that this Chemistry.
has some degree of generality in that it can be used 1969
to set up systems for a numnber of different drugs: if a in Machine Intelligence ,I, American Elsevier,
certain drug does not cause bad side effects, then this New York.
particular subgoal will not be set up by the system.
In general one can best think of this approach as [31 Bylander, T. / Mittal, S. / Chandrasekaran. B.

specification of an expert system generator, in that the CSRL: A Language for Expert Systems for

same Domain Principles base can be used to generate, Diagnosis.

e.g., systems to recommend the administration of dif- In Proc. of the International Joint Conference

ferent drugs. The Domain Principles then can be on Artificial Intelligence, pages 218-221.

thought of as a collection of control abstractions. August, 1983.
However, these control abstractions are domain-specific. To appear in the Special Issue of Intn'l irnl. of

Terms such as administer and control toxicity in the Computers and Mathematics on "practical ar-

example above are used to index and name goals, but tificial intelligence systems".

do not have general purpose lrol)lem solving relevance 1,I Chandrasekaran, B. / Mittal, S. / Gomez, F. /
across domains. The only elements in the above ex- Smith M.D., J.
ample that are generic in our sense are, If goal, and An Approach to Medical Diagnosis Based on
set up subgoal... Conceptual Structures.

As one would expect, the basis for the explana- Proceedings of the 6th International Joint Con-As oe wuld xpet, te bsis or he eplaa-ference on Artificial Intelligence :13,4-142,

tion capability of XPLAIN arises from the goal-subgoal August, 1979.

control abstract;ons in Domain Principles. The JCAu79.

generation of explanation in XPLAIN is very similar

to that in rule-based systems in that the goal-subgoal 151 Chandrasekaran, B. / Mittal, S.
structure in I)omain Principles is used for the explana- Conceptual Representation of Medical
tion in a way very similar to the rule-tracing in Knowledge for Diagnosis by Computer:
backward-chaining systems such as Mycin. While ex- MDX and Related Systems.
planation in Mycin is done using the trace of the In M. Yovits (editor), Advances in Computers,
rules that fired in a particular problem, XPLAIN uses pages 217-293. Academic Press, 1983.
the goal-subgoal relationships that went into the con-
struction of the expert system, with very similar ef-
fects. XPLAIN can use the names of the goals and E1 phandrasekamran, B.
subgoals and the terms in the l)attern s to provide a Tss :
richer quality to the explanation: "Because goal is to Taks
administer digitalis, and digitalis causes dangerou.s side 1983
effects, there is a need to control tozicito of dzqltahs." Paper preseli tel at NYU symnposiump on Ap-plications of Al in li.miness. Appears in

Where our work differs from this effort is iii the Artificial Intelligence Applications for

power that is available in the control abstractions that Business, edited by W. Reitman, Ablex

are indexed by generic tasks. This enlarges the kinds Corp., publishers.

of explanations that can be provide(] in a domain- J71 Chandrasekaran. 13.
independent way, and that can arise directly from the Towards a Taxonomy of IProblern-Solving Types.
control behavior in the problem solving process. AI Magaziou 1(1):9-17, Winter/Spring. 1983.

-134-



8IClancey', Williat .
'11ie Epistemiolog of a I tule-BIased Expert

Sv~tem-a Franmework for Explanation.
A rtufzcid Intelligence 20(3)-2 15-251, iNlay. 1983.

191 Clancey. William .1.
T1he AdlvahI ages of Ablstr[act ContIIrol Kn~owledge

in Expert S.\stein Designi.
In P'roceedings of A1..4-83, pages 741-78.

Ainerian Association for Artificial Intel-
ligence, 1983.

Io' Unasling, Dianie \Varner/ Clancey, Willianm J.,
Reninels,Glen n.
Strategic Explanations for a Diagnostic Consul-

tation System.
In Coonmbs, I. J. (editor), Developments in P~x-

pert Systeins, pages H17433. London and
New York: Academic p~ress, 1981.

III Josephson, Johnm It. / Chiamdrasekaran, 13.
Smith, .JA..
Assemlihng the Best Explanationi.
In Proceedings of the IEEI, Workshop on P'rin-

ciples of Kno tiledge- Based Systems. IEEE
Computer Society, D~enver, Colorado, Decein-
lber 3-4, 198..

A revised version by the same title is n1ow
available.

1121 M'vcDerinott, ..
I: A Rtule-Based Configurer of Computer Sys-

temns.
Artificial Intelligence 19, 1:39-88, 1982.

1131 Pople, It. NV.
Heuristic iMethods for Imposig 1tructure on Ill-

Structured Problems.
In P. Szolovits (editor), Artificial Intelligence in

Medicine, pages 1194190. 'Aestview Press.
1982.

Cornputer-based Medical Consult at ions: M!YCIN.
Elsevier/ North-Ilolland Inc., 1076.

1.5 Swartont. WV. It.
XPLAIN: A System for Creating and Explaining

Expert Consulting Programs.
Artificial Intelligence 21 (3):285-32-5. September,

19813.

I 6l Szolovits. P1. 1Pauker. S. G.
Categorical and Probabilistic Reasoning in Medi-

cal Diagnosis.
Artificial Intelligence 15-41 1978.

-135-



Representing Actions with
an Assumption-Based

Truth Maintenance System
Paul H. Morris

Robert A. Nado

IntelliCorp
1975 El Camino Real West

Mountain View, California 94040

(may] act, changing the world, and this cannot be modeled in a

pure ATMS in which there is no way to prevent the inheritance

of a fact into a daughter context." In this paper we explore one

approach to using the ATMS to support the modeling of actions.

ABSTRACT The basic idea is to extend a traditional tree-structured context

The Assumption-based Truth Maintenance System, mechanism (as in CONNIVER and QA4 (11) to allow context
introduced by de Kleer, is a powerful new tool for organizing a
search through a space of alternatives. However, the ATMS is merges and to take advantage of an underlying ATMS to detect
oriented towards inferential problem solving, and provides no inconsistent contexts and to maintain derived results. This
special mechanisms for modeling actions or state changes. We
describe an approach to applying the ATMS to the task of approach has been implemented in the KEEworldsTM facility of

representing contexts that model actions. The approach extends the KEEM (Knowledge Engineering EnvironmentTM) system.1

traditional tree-structured context mechanisms to allow context
merges. It also takes advantage of the underlying ATMS to In the following sections, we give a functional overview of
detect inconsistent contexts and to maintain derived results.
Some results are presented concerning possible approaches to the the KEEworlds facility. We then describe the underlying
treatment of merges in questionable circumstances. Finally, the representation in terms of the ATMS. Special attention is given
analysis of actions in terms of a truth maintenance system
suggests the need for a more elaborate treatment of contradiction to the situation where a world has multiple parents. This is
in such systems than exists at present. followed by a discussion of non-monotonic reasoning about

actions in a more general TMS setting, suggested by the worlds

mechanism. We close with some remarks about related systems.

1. Introduction 2. Worlds
The Assumption-Based Truth Maintenance System The basic structure provided for modeling actions is a

(ATMS), introduced by de Kleer 121, is a powerful new tool for directed acyclic graph of worlds. Each world may be regarded as

organizing an efficient search through a space of alternatives, representing an individual, fully specified action or state change.

By explicitly recording the dependence of reasoning steps on A world together with its ancestors in the graph represents a

individual choices, a truth maintenance system is able to share partially ordered nework of actions. Each successor of a world

partial results across different branches of the search space. In in the graph then represents a hypothetical extension of the

effect, knowledge gleaned in one context is automatically world's associated action network to iHclude a new subsequent

transfered to other contexts where it is relevant. The ATMS action. The world graph as a whole rnay thus be regarded as

permits simultaneous reasoning about multiple, possibly representing multiple, possibly conflcting, action networks.

conflicting contexts, avoiding the cost of context switching. Each partially ordered action network resembles a procedural net
of NOAHI 191, or NONLIN (10], where the actions are fully

The ATMS as presently constituted views problem solving of NO e asum that the ac fully

as purely inferential. This is an appropriate stance for a broad
can be represented by additions and deletions of base facts, so

class of constraint satisfaction problems. However, problems each world has a set of additions and deletions associated with it

involving temporal changes or actions require some additional

mechanism, As de Kleer 15] points out, "... problem solvers
IKEEworlds, KEE and IKnowledge Engineering Environment are trademarks of

InttlliCorp.
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which represent the actual primitive changes determined by zhe In keeping with the view that additions and deletions

action. Since an action corresponds to an application of an represent actual changer, they are only recorded where they are

operator, not an operator itself, this assumption is somewhat less effective, that is, an addition only occurs where the fact did not

restrictive than that of STRIPS [8) in that it imposes etwer previously hold, and a deletion where it did hold.

constraints on the representation of the operators. Figure 2-1

shows an example worlds graph, from the blocks world. The The inherited facts follow a principle of inertia (essentially

deletion and addition at W2, for example, represents the the STRIPS assumption (ill): a fact which is added at a world

movement of block a to the table. continues to be true in succeeding worlds, up until (but not

including) a world where it is deleted.

The deduced facts may include the distinguished fact

+ on(ab) FALSE, representing a contradiction. A world where FALSE
+ on(b table) can be deduced is marked as inconsistent. The system generally

W1 + on(c.d)
/ \ + on(d,table) avoids further reasoning in such worlds (however, it is possible

/ \ and sometimes useful to do meta-level reasoning about/ \
/ \ inconsistent worlds).

/\
/\

/ \3. Worlds in ATMS

/ \Before discussing how the worlds graph is implemented in/\
/ \terms of the underlying ATMS, we give a brief sketch of the

W2 -on(a,b) W3 -on(cd) ATMS mechanisms that are used, primarily to establish\ on(a~table) / + on(c,table)+ ] terminology. The reader is urged to consult de Kleer 13, 4, 5) for

/ a full description of the ATMS.\ /
\ /

/ The basic elements of the ATMS are assumptions and
/ nodes. An assumption in the ATMS corresponds to a decision or\ /

\ / choice, and is used as an elementary context descriptor. Nodes
W / correspond to propositional facts or data, which may be justifiedW4

in terms of other nodes, or assumptions. By tracing back

through the justification structure, it is possible to determine the
Figure 2-1: Worlds Graph ultimate support for a derivation of a node as a set of

assumptions. Such a set is called an environment for the node.
To simplify the discussion we will assume for the moment Since a node may have multiple derivations, it may also have

that the graph is a tree, i.e., each world has at most one parent multiple environments. The set of (minimal) environments for a

and a branch of the tree corresponds to a linear sequence of node is called its label. Computing the labels of nodes is one of

actions. Later, we will consider the consequences of multiple the major activities of the ATM The primary transaction that

parents. the ATMS supports is adding a justification. This causes the

Observe that we may associate each world with the state labels of affected nodes to be recomputed. There is a special

that results from applying the changes encoded by the world and element called FALSE, denoting contradiction, which is similar

all of its ancestors. Hence, a world plays a double role, to a node, and may have justifications. The environments that

representing both a state change and a state. The facts in the would-be in its label are called nogoods and constitute minimal

state will in general be augmented with deductions using general inconsistent environments. Environments which are discovered

knowledge of the domain. Thus, the facts which are true at a to be inconsistent, i.e., which are supersets of nogoods, are

world fall into the following three categories: removed from the labels of nodes so that they are not used for

1. facts inherited from ancestor worlds further reasoning.

2. direct additions at this world

3. deductions from facts in I and 2
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Each world has two ArMS entities associated with it, the nondeletion assumptions removed. These nogoods are

reflecting its double role: a world assumption and a world subsets of the original ones, and so, in accordance with the

environment. The world assumption corresponds to the action minimality requirement, the latter are removed. This process

encoded by the world, and may also be thought of as the choice ensures that the deletion nogoods are the only ones containing

or decision that led to the action. The world environment, on nondeletion assumptions.

the other h-'nd, corresponds to the state, and actually consists of To test whether a fact holds in a world, we can compare

the set of world assumptions from the given world and all of its each environment in the node label with the world environment.

ancestors. It is convenient to use the ATMS itself to compute The comparison is done as follows (in principle; the actual

the world environment. This is accomplished by having a special algorithm is equivalent, but more efficient). The world

world node associated with each world. This node may be environment is extended with as many nondeletion assumptions

thought of as representing the statement that the world's action as are consistent with it (the extension is necessarily unique since

occurs. The world node, Nw, is given a single justification each nogood contains at most one nond .eti ' assumption). The

Nij, A AV- Niv extended world environment is then ..Xed to see if it is a

where Nwp is the world node of the parent, and Aw is the world superset of the fact environment. If so, the fact is regarded as

assumption of the given world. It is not difficult to see thst this true in the world.

results in all world nodes having a single environment, of the

form described. 4. Merges
We now consider the more complex situation where a world

Adding a fact F at a world can now be accomplished by has multple parents: we call such a world a merge. The ability

supplying a justification in terms of the world node. However, to perform merges allows a problem to be decomposed into

to allow for the possibility of later deletion, a nondeletion nearly independent components, which can be worked on

assumption is included. Thus, the justification has the form separately and later recombined. As before, the changes

NWAAIF-F represented by the ancestor worlds are combined. In thewhere Aw F is the nondeletion assumption. A distinctwhere isthenondeletion assumption. A requreaditinct example of figure 2-1, the world W4 is a merge. Thus, the staten o n d eletio n a ssu m p tio n :s re q u ired fo r ea ch s ep a ra te a d d itio n o fco r s nd g t o W wi l h v b th l ck m v e t o h e a l .

a fact at a world (to allow independent deletion). If F is deleted corres to willtha ve bot the able.We wish to stress that a merge is not the same as a simple union
at a subsequent world W, the justification of the facts in the parent worlds, but rather combines the

AM A AIVF. FALSE

is supplied to the ATMS, where Awl is the world assumption for changes from all the ancestor worlds.

WI. We will call nogoods resulting from justifications of this In the example of figure 2-1, the changes along the two

form deletion nogoods, branches are independent. More generally, a difficulty arises in

Apart from the justifications supplied by the system t that the effect of changes may depend on the order in which they

represent additions and deletions, and justifications for world are applied, resulting in an ambiguous merge. In figure 4-1, we
show twvo examples of such merges. In both cases, the state at

nodes, there will be justifications installed by the user to

represent deductions from the primitive facts. These deductions W5 depends on the order of the preceding changes.

need be performed only once as the presence of the justifications There are a number of ways of dealing with this difficulty.

in the ATMS allows the efficient determination, via label We have already introduced the requirement that additions and

propagation, of which derived facts hold in which worlds. deletions at world, be effective with respect to the state resulting

Derivations of FALSE are used to determine inconsistent from actions in ancestor worlds. However, from a strict

worlds, representing dead ends in the search. The nogoods standpoint of fully specified actions, the additions and deletions

dtermiied by tile ATMS may, however, contain nondeletion could b rfquiid tv bu uflective even with respect to actions in

assumptions in addition to the world assumptions. However, sibling or cousin worlds. Thus, one might forbid a merge if the

only the latter represent choices in the search, and we wish these ancestor subgraph of the proposed merge possesses any

to take all the "blame" for dead ends (we discuss this further in linearization in which an addition or deletion is ineffective. One

section 5). Thus, the multiple worlds system incorporates a can then prove the following result.

feedback loop which installs in the ATMS reduced nogoods with

-138-



W1 W1 +P such ignorance, not falsity. Notice that when the effect ef the

/ \ / \ actions is order independent, this definition reduces to the
/ \ / \

/ W3 +P / W3 P previous one. With the pessimistic merge, the fact P is absent at

/ I / I W5 in both examples of figure 4-1. A dual to the pessimistic
/ I /

W2 +P W4 -P W2 -P W4 +P merge is the optimistic merge where a fact is true in the merge

/ / ir it is true in some linearization. Again, this reduces to the

\ / \ /original merge in the case of order independence. With the\ / \ /
\ / \ I optimistic merge, P is present at W5 in both examples.
V V
W5 ?? W5 ??

We now discuss the ATMS representation for merges.

When a world has multiple parents, the justification for the

Figure 4-1: Ambiguous Merges world node includes each of the parent world nodes among the

justifiers. The justification scheme for additions and deletions

Theorem 1: A merge that is not forbidden by works as before. The different merges are obtained by different
the above criterion is unambiguous. selections of which additions the deletions affect, i.e., which

It is also possible to prove the following result, which assists in justifications for FALSE are entered. For the pessimistic merge,

the identification of such forbidden merges.
Theorem 2: A graph of worlds admits a the deletions are effective with respect to all except descendant

linearization in which an addition is ineffective if and additions. For the optimistic case, the deletions are effective
only if there are at least two worlds where the with respect to ancestor additions only (the optimistic merge
addition occurs, such that neither is an ancestor of
the other, tends to be easier to implement efficiently, although less

A similar result holds for deletions. With this approach, the defensible on semantic grounds).

merges in figure 4-1 would be disallowed.
One might imagine a wide variety of possible merge

It is of interest that the above restriction resembles that algorithms. There are-two overriding constraints that led to the

required for conflict-free procedural nets (10) where actions that schemes described here. One is the necessity of quickly

violate each others' preconditions must be ordered so that one is determining whether a potential merge would produce a

an ancestor of the other. Indeed, additions and deletions which consistent world, since that is expected to be a high frequency

are mandatory are, in effect, preconditions. From this operation. The schemes described allow the merge to be

perspective, the separate branches of the networks of figure 4-1 computed as a simple union of ATMS environments. The other

are in conflict because each branch deletes a precondition of the constraint is the existence of a large core of unambiguous cases

other, where there is only one reasonable value for the merge.

If one does not require that additions and deletions be A further merge type which has some intuitive appeal, but

effective with respect to non-ancestor actions, a weaker condition does not appear to admit an efficient implementation, arises as

which guarantees unambiguous merges is as follows: follows. It is possible to show that every linearization of the

Theorem 3: A sufficient condition for a merge ancestor subgraph in which all additions and deletions are

to be unambiguous is that the ancestor subgraph may effective gives the same result for the merge. Thus, one might
not contain two worlds, one of which deletes a fact
and the other of which adds it, such that neither is an define the merge to be this common value (if there is any such

ancestor of the other. linearization). In figure 4-1, this would lead to P holding at W5

This criterion also prohibits the examples of figure 4-1. in the left example, but not in the right.

Another approach to removing the ambiguity is to adopt

additional criteria for defining the merge. In the pcsimistic It is instructive to consider how actions might be

merge, an individual fact belongs to the merge if it survives in
representedl in a more general TMS setting, as suggested by the

every linearization of the actions. The rationale is that we may

then be assured the fact holds, irrespective of the order in which worlds system. For definiteness, and for contrast, this will be

the actions were performed. Otherwise, we are ignorant of the cast in terms of a Doyle-style truth maintenance system (6). The

fact, and the absence of the fact from the merge simply denotes general approach we follow is to use a form of nonmonotonic

inference to reason about the effects of actions. However, the
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behavior we require in response to contradiction is somewhat have something like a "sheltered" assumption, which could be

different front the standard approach in truth maintenance refuted directly, but not indirectly in response to a contradiction.

systems.
Incidentally, the need for a more discriminating process of

We will regard a context, or current state of the system, as culprit identification is not confined to the difficulty with

describing the evolution of a situation to a particular point in preservation assumptions. As another example, consider a

time, Besides containing assertions about facts in the "present" situation where a burglar is planning to break into a house late

such as "block a is on block b," the context records past actions at night. To accomplish his purpose, he must choose some

like A3: "block a was placed on block b". Note that there may method of entry. One method is to break in a window.

be several occurrences of individual actions with the same However, this may have the consequence of waking the

description; we distinguish between the occurrences by giving occupants, if they are home, which would defeat his purpose.

them unique identifiers such as A3, The numbering of the Let us suppose the burgler makes the deftult assumption that

identifiers is not intended to imply temporal order. Thus - so far the occupants are home. The difficulty is that a standard truth

- the relative timing of past actions has not been represented. maintenance system, in attempting to resolve the

"contradiction" of waking the occupants, might elect to revise

The positive effects of an action can be represented by the assumption that the occupants are home, even though that is

justifications linking the occurrence of past actions to present not subject to the burglar's control, instead of the real culprit,

facts. For example, breaking the window. The system would in effect regard the
A3 A PS- - block a is on block b. undesired consequence of waking the occupants as evidence for

P5 is a preservation condition of the form "block a was not their absence. Hlowever, it is only when there is independent

moved off block b after A3." In order to allow deletion, we evidence for the occupants being absent that this possibility is

justify P5 as an assumption by giving it a nonmonotonic worth considering. This example of "wishful thinking" suggests

justification of t5e form that truth maintenance systems in general need a more refined

(DS) -, P5treatment of contradiction handling.

Here, "(D5)" indicates that D5 is an OUT-justifier, where D5 is

the statement that "some action after A3 moves block a off Altnough the approach outlined here could be adapted to

block b". If a subsequent action, say A4, moves the block off, we using the ATMS more directly for modeling actions, it would be

supply a justification cumbersome for a user to have to input the justifications

A-1 -* D5

causing the OUT-justifier to come IN, thereby undercutting the representing additions and deletions by hand, The worlds
facility described earlier provides a framework which represents a

derivation of "block a is on block b." Note that the information
more convenient interface to an action modeling system.

about the relative timing of actions is now implicitly represented

by these justifications. 6. Closing Remarks

A difficulty with this representation arises when the The worlds considered here resemble the data pools of

problem solving process generates contradictions that represent McDermott (7J. However, the result of a merge in the data pool

dead ends in the search space. We do not wish the preservation approach is determined by the arbitrary order in which items are

assumptions to be implicated in these; rather, we wish the added and deleted in worlds (beads in McDermott's terminology).

assumptions representing choices of actions to be the ones This means that two graphs with the same apparent external

considered for revision. Choosing a preservation assumption as structure may have different results for a merge. Another

culprit during backtracking would amount to postulating the difference is that data pools apparently have no notion of

existence of an unknown action that deletes one of the facts contradiction. One attractive aspect of McDermott's approach is

leading to the contradictmon. However, if we make the that justifications may have OUT-justifiers.

separation between problem solving and truth maintenance

suggested by de Klcer, then from the point of view of the TMS,

the only actions which exist are those which the problem solver

has informed it about. Some new mechanism is required to

ensure that the TNMS handles this correctly. One possibility is to
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CAGE and POLIGON: Two Frameworks for
Blackboard-based Concurrent Problem Solving

H. Penny Nii

Knowledge Systems Laboratory
Computer Science Department

Stanford University

The two articles following this one, User-Directed Control of with tens to hundreds of processors. The underlying system

Parallelism: The CAGE System and POLIGON: A System for architecture influences the additional constructs at the

Parallel Problem Solving, describe two different skeletal programming language level needed to support parallel

systems representing two models of concurrent problem executions. It also has significant affect on the design of

solving. Both systems are designed for parallel execution of blackboard frameworks.

application programs built with the systems. This paper

describes the context in which these systems are being Control of parallelism: The POLIGON system is designed with

developed and summarizes the differences between the two an assumption that the underlying problem solving framework

systems. on which the application is to be mounted must be

intrinsically parallel. The POLIGON system is designed so

The Context that predefined constructs in the framework always run in

parallel. For example, all rules are evaluated in parallel and

The POLIGON and the CAGE systems are being developed all changes to blackboard nodes are made in parallel. The user

within the context of two different families of experiments has some ability to introduce serialization. CAGE, on the

within the Advanced Architectures Project. Each family of other hand, assumes that the user needs control over what is to

experiments consists of a vertically integrated set of programs run in parallel. Thus, everything in CAGE runs serially unless

from each level of system hierarchy outlined in the project specified otherwise by the user. There are prespecified places

proposal (i.e. application, problem-solving framework, where the user can intioduce parallelism. For example, the

knowledge representation and retrieval, implementation user can specify that the condition parts of rules be evaluated

language, and hardware/system architecture levels). POLIGON in parallel and the action parts be executed in series.

and CAGE are two systems at the problem-solving framework

level. The design of both the POLIGON and the CAGE The family of experiments of which CAGE is a part consists

systems are based on the Blackboard problem solving model of CAGE (problem solving framework) implemented in Qlisp

[4]. [2] (implementation language) running on a shared-memory

architecture (system architecture) simulated on CARE [1]

The Experiments (system simulator). The other family of experiments consists

of POLIGON (problem solving framework) implemented in

Each family of experiments starts with a different set of high- CAOS [5] and Zetalisp (implementation language) running on

level constraints: a distributed-memory architecture (system architecture)

simulated on CARE. Both CAGE and POLIGON run on the

Hardware/system architecture: The POLIGON system is same system simulation program and share its software

designed for distributed-memory, multi-processor systems. It measu,-ement tools. Both skeletal systems will mount the same

assumes that the underlying system has a large number (100's application problems.

to 1000's) of processor memory pairs with very high bandwidth

inter-procesor communication. The CAGE system, on the In keeping with the goals of our Project, the primary objective

other hand, assumes a shared-memory, multi-processor system of the two families of experiments is to discover methods that

would speed up the execution of knowledge-based application

programs. There are, however, additional reasons for the two

experiments that relate to the primary objective:

To compare the performance gains between shared

This research was supported by DARPA/RAOC (F30602-85-C-0012), by versus distributed-memory, multiprocessor systems.

NASA (NCC 2-220), and by Boeing Computer Services (W-266875).
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To provide input to the implementation language CAGE POLIGON
level (QLisp, CAOS and other concurrent Lisp
languages);

Incremental additions Redesigned
To gain some understanding of the differences in of parallelism to a parallel system'programmability' between POLIGON and CAGE. serial system
More specifically, address the question of whether it
is easier/better to let the user have complete control
over the parallelism in a program; and as a User controlled User controlled
corollary, to determine the limits of concurrency parallelism serial operations
that can be designed into a framework, and the
kinds of concurrencies that are problem specific and
need to be expressed by the user. Granularity of Granularity of

parallelism parallelism fixed -

To determine the extent of control, or serialization, undeise c r rles n d 
needed in both systems in order to solve a class of under user control rules and actions
problems, and to discover how to apply the needed
control. Shared memory Distributed memory

To determine if multiplicative speed-up can be multi-processor multi-processor
effected between knowledge sources, rules, and lower machines machines
level (for example, rule clause evaluation) Figure 1: Summary of Differences: CAGE and POLIGON
concurrencies.

To determine what level of process granularity is We now describe and discuss some of the issues specific to the
most appropriate for each hardware/systems CAGE and the POLIGON systems. The discussions shouldarchitecture. serve as a background to the detailed description of the

systems in the separate papers.
Comparison of the CAGE and POLIGON Systems

CAGE
CAGE and POLIGON are concurrent blackboard systems with
two different underlying design philosophies. CAGE is an There are several obvious places for concurrency in blackboard
extension of the AGE [3] system with primitives to express systems, the knowledge sources, rules within the knowledge
parallel execution of knowledge sources, rules, and parts of sources, and the components of the rules.
rules. It is a conservative, incremental approach to building
parallel systems. POLIGON is a demon-driven system in Knowledge Source concurrency: Knowledge sources are logically
which all blackboard nodes are viewed as active agents (and independent partitions of domain knowledge. Each knowledge
thus cach blackboard node can potentially be a source is event-driven and becomes active when changes
processor/memory pair). A change made to a node causes relevant to the knowledge source are made to the blackboard.
appropriate rules to be evaluated and executed. POLIGON Theoretically, therefore, all knowledge sources can be active at
represents a shift in the way we view blackboard systems. the same time as long as events relevant to each of the
Both systems have programming languages associated with knowledge sources occur at the 'same time'. However,
them, the POLIGON language and the CAGE language. The knowledge sources are often serially dependent in order to
first objective in providing a language at the problem solving solve a problem. At run time some synchronization (i.e.
level is to facilitate the writing of application programs. This serialization) must be enforced.
is accomplished by abstracting much of the system detail into
language constructs. The second objective is to keep separate In the class of applications we are considering, the solution
the parallelism in the application problem, as expressed by the generation process characteristically occurs in a pipeline
language, and the parallelism built into the framework that fashion up the blackboard hierarchy. That is, the knowledge
remain invisible to the user. This separation allows us to source dependencies form a chain from the knowledge sources
experiment with parallelism in the application program working-on the most detailed level of the blackboard to those
independent of experiments with parallelism within the working on the most abstract level. When the program is
framework. Thus, we can for example, keep the application model-driven, the pipeline works in the reverse direction. The
constant and change the parallel constructs within the task for CAGE in exploring concurrency at this level of
framework, or keep the framework constant and rewrite the granularity is to determine what percentage of the knowledge
application. In order to facilitate the porting of an sources can be active at the same time in the pipe.
application program between POLIGON and CAGE, both
languages are syntactically similar. However, the semantics of Rule concurrency: Each knowledge source is composed of many
the languages arc very different because the underlying systems rules. The condition part of the rules are evaluated for a
are very different. The differences are summarized below, non-NIL condition (a match) and the action part of those
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rules that match are executed. The condition-part of all the priority basis (exemplified by the need for the Agenda

rules in a knowledge source can be evaluated in parallel. In mechanism in AGE), some control mechanism is needed. The

those cases where the action part of all the rules that match task here is to determine the best (least overhead) control

are to be executed, the action part can be executed as soon as mechanism appropriate to the application.

the match is completed. However, if only one of the rules is

to be fired (single-hit), then the system must wait until all the POLIGON

condition parts are evaluated, and one rule must be chosen

whose action part will be executed. (Note that this is very As mentioned earlier, the application programs are event-

similar to the OPS conflict-resolution phase.) In addition, one driven in blackboard systems. Events are normally defined by

can imagine evaluating all of the condition parts in parallel the user and expressed as changes to the blackboard nodes.

and executing the appropriate action parts in series. Because a knowledge source is activated by the occurrences of
events, and because knowledge sources are collections of rules,

The situation in which all rules are evaluated and fired one can view the rules as being activated (indirectly) by

concurrently will result in the most speed-up, since many rules changes to some blackboard nodes. We can take this line of

will be in the state of being evaluated and being executed at reasoning one step further and say that a rule is activated by

the same time. However, if the rules need access to the same changes to particular slots of blackboard nodes. If we

blackboard item, memory contentions become a hidden point associate a set of rules directly with a slot on a node and

of serialization. At the same time, the integrity of evaluate and execute the rules whenever the slot is changed, we

information on the blackboard cannot be guaranteed. The have a system with active blackboard nodes.

condition which triggered the action part of the rule may not
be the same by the time it is executed. CAGE needs to Conceptually, at least, every blackboard node can be thought of

address these problems, determine the effect on solution as a processor-memory pair. Each node contains a data

quality and overall performance gain of the application structure to store the partial solutions, and the rules are

program. activated whenever a particular slot is changed. Slots with a
property that enable rule triggering are called "trigger slots".

Condition-part concurrency: Each condition part of a rule When the action part of a rule is executed, the changes to the

consists of many clauses to be evaluated. These clauses can be blackboard are made via messages to the nodes to be changed.

computed in parallel. Often these clauses involve relatively If the change to is to a trigger slot, then the condition part of

large numeric computation (e.g. calculating a track), making the "triggered rules" are- evaluated; changes to non-trigger slots

parallel clause evaluation worthwhile. On the other hand, do not cause processing.

often the clauses refer to the same data item, making the

clause evaluation appear to be parallel, but in fact forcing A major difficulty with this approach is the loss of control,

serialization at the data-acc-ss level with no gain (and most specifically, an ability to control the order of rule firing. By

likely a loss) in speed of computation. The task at this level bypassing the interme.late control step where manipulation of

of granularity is to determine if parallelism at this level is the events and selection of knowledge sources occurs, the

worthwhile. It may be that what is needed at this level is a system has no global control. The rules will be firing almost

fast algorithm for matching the condition parts and an indiscriminately all over the blackboard as solution state

appropriate knowledge representation scheme. changes. There is no way to implement problem solving
strategies, for example. In addition, rules will not be evaluated

Action part concurrency: Often, when a condition part matches, in situations when the non-occurrence of a change to the

there are many actions to be executed. This is one place blackboard is significant. Such ability is important in signal

where no difficulty is anticipated in parallel execution. interpretation programs.

Combining the concurrencies The action parts of rules generate In spite of many anticipated difficulties, we have developed a

events, and the knowledge sources are activated by occurrences demon-driven system in hopes of gaining experience with such

of these events. In the AGE system events were posted on an a system and discovering solutions to the problems. Although

event-list and a control monitor invoked the knowledge there is a substantial shift in the problem solving behavior,

sources based on those events. In order to eliminate the POLIGON is being evolved out of the functionalities that were

serialization inherent in this control scheme, a mechanism to present in AGE. At this point POLIGON is characterized by

activate the knowledge source upon the completion of the the following:

action parts of rules is needed. The immediate activation of a Knowledge sources exist only as a conceptual aid in

knowledge source after action part execution (for example, by partitioning the problem space.

broadcasting an 'event message' to all the knowledge sources) Levels of in the blackboard data exist as a class

results in the loss of global control over knowledge source hierarchy. A level is a class and a node is an

activation. In some cases, this i o acceptable. In other cases, instance of a class. There is also a super-class thai
knows about the classes. (For clariiy, the class will

for example when knowledge sources need to be activatedon a be referred to a more familiar term, the level.)
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All nodes are active entities. References

Each rule must specify, in addition to the condition Ell Bruce Delagi.
and action parts, the level and the node with which
it is to be associated, i.e. it must designate a 'trigger'. CARE Users Manual.
A trigger consists of a slot name and a trigger- Technical Report KSL-86-36 (working paper),
condition, which are to be interpreted as follows: Knowledge Systems Laboratory, 1986.
whenever the value of the slot is changed, evaluate
the trigger condition. If the trigger condition is [2) Gabriel, R.P. and J. McCarthy.
non-nil then the rule becomes triggered. A triggered Queue-Based Multi-Processing Lisp.
rule is put on a process queue for later evaluation. In Proceedings of the 1984 Symposium on Lisp and

Functional Programming. August, 1984.

The rules can use data futures, and for the time

being all bindings are made through lazy evaluation. [3] H. Penny Nii and Nelleke Aiello.
This means that all bindings are made only when AGE: A Knowledge-based Program for Building
needed. In addition, processing can continue while Knowledge-based Programs.
values are being fetched from other nodes. Proc. of IJCAI 6 :645 - 655, 1979.

The major control problem to be addressed in [4] H. Penny Nii.
demon-systems is the serialization of demon Blackboard Systems.
activations. Potential for control in POLIGON Technical Report KSL-86-18, Knowledge Systems
exists in three places: (1) On the node, where action Laboratory, Computer Science Department, Stanford
parts of the rules can be serialized, for example. (2) University, April, 1986.
In the level manager, which knows about the all the
nodes on the level. (3) In the super-manger which To appear in Al Magazine, vol. 6-6 and vol. 6-7, 1986.
knows about all the level managers. The level
manager that can create and garbage collect the [5" Eric Schoen.
nodes, and knows which rules to attach to a newly The CAOS System.
created node. The level manager is the only agent Technical Report KSL-86-22, Knowledge Systems
that knows about all the existing nodes on its level. Laboratory, Computer Science Department, Stanford
Thus, to send a message to all the nodes on a University, April, 1986.
particular level, a message is sent to the level Also in this Proceedings.
manager which forwards it to all its nodes.

In addition to the parallel evaluation of the
condition parts of rules, the actions in the action
part of the rules are executed in parallel.

Because of POLIGON's uncontrolled parallelism the solution to
a problem will be indeterminate. That is, every execution of
an application problera car. potentially result in different
answers. The challenge is to organize the knowledge in such a
way that "acceptable" solutions are produced each time.

Most of the same concurrencies made available to the user in
CAGE are built into the system in POLIGON. The major
challenge in POLIGON is the serialization of rule execution.
For example, the ability to synchronize the execution of
actions in CAGE has no counterpart in POLIGON. Since the
system is demon-driven at the rule leve!, there are very few
handles available to control the activation of rule evaluation.

Summary

CAGE and POLIGON thus are two very different approaches
to the expression of parallelism at the problem solving
framework level. As we develop and test applications using
these frameworks, we expect to gain a more concrete
understanding of their relative strength and weaknesses with
respect to usability, application characteristics, and speedup.
Each system is discussed in more detail in the following two
articles.
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User-Directed Control of Parallelism;

The CAGE System
Nelleke Aiello

Knowledge Systems Laboratory, Stanford University

4. Various kinds of control information that
determine (a) which blackboard element is to be

I INTRODUCTION the focus of attention and (b) which knowledge
source is to be used at any given point in the

CAGE*, Concurrent AGE", provides a framework for problem solving process.
building and executing application programs as a concurrent 5. Declarations that specify what components
blackboard system. With CAGE, the user can control which (knowledge sourcps, rules, condition and action
parts of the blackboard system are executed in parallel. A parts of rules) are to be executed in parallel, and
blackboard application can be implemented and debugged t or e toexctin parll e
serially on CAGE. Once the serial version is debugged, when to force synchronization. During the
concurrency can be introduced to different parts of the execution of the user's application CAGE will run
system, allowing the user to experiment with various these specified components in parallel.
configurations. We believe this incremental approach will Using the concurrency control specifications, the user can
facilitate the construction of concurrent problem solving alter the simple, serial control loop of CAGE by introducing
systems and will teach us much about programming in a concurrent actions. CAGE allows parallelism ranging from
parallel environment. This paper describes the design of the concurrently executing knowledge sources all the way down to
CAGE system and gives detailed instructions for concurrent actions on the right- or left-hand-sides of the
implementing an application, using the CAGE language and rules. The serial execution and parallel executions possible in
compiler [Rice 86]. We have included advice, warnings, and CAGE are summarized below.
caveats based on our experience using CAGE. in KS Control

The target parallel system architecture for the CAGE system serial:pick one event and execute associated KSs
is currently the same as that of QLAMBDA, a queue-based
multi-processing Lisp ( [Gabriel 84]and McCarthy) on which parallel:
the parallel simulation is based. We are assuming a shared 1. as each event is generated execute associated
memory and a large number of processors. The user can KSs in parallel***
specify his CAGE application in an extension of the L100 2. wait until several events are generated then
language, called the CAGE language, and use the CAGE select a subset and execute relevant KSs for
compiler to generate CAGE code. CAGE runs on LOQS, a all subset events in parallel
functional simulator for QLAMBDA. CAGE is implemented
in ZETALISP for Symbolics 3600 machines and TI Explorers. in KSserial:1, evaluate bindings

II OVERVIEW OF CAGE DESIGN 2. evaluate LHS then execute RHS of one rule
whose LHS matches (in written order)

CAGE is a blackboard framework system. In addition to evaluate all LHS then execute all RHS

the basic AGE [Nii 79] functionality, CAGE allows user- whose LHSs match
directed control over the concurrent execution of many of its
contructs. The basic components of a system built using parall1. evaluate bindings
CAGE are: 2. evaluate all LHSs in parallel

1. A global data base (the blackboard) in which a. then synchronize (i.e. wait for all
emerging solutions are posted. The elements on LHS evaluations to complete)
the blackboard are organized into levels and and choose one RHS(pick one in order)
represented as a set of attribute-value pairs (a b. then synchronize and execute the
frame). RHSs serially (in written order)

c. execute RHS as LHS matches*
2. Globally accessible lists on which control

information is posted (e.g. lists of events, in Rule
expectations, etc.), serial:evaluate each clause then execute each action

3. An indefinite number of knowledge sources, each
consisting of an indefinite number of production parallel:rules. evaluate clauses in paraliel then execute actions

in parallel*
(first nil clause -- > no match; first all non-NIL
clauses -- > match)

*rhis research is supported by DARPA/RADC under contract number in clause
F30602-85-C-0012. by NASA under contract number NCC 2-220, and by se
Boeing Computer Services under contract number W-266875. serial: Lisp code parallel: Qlambda code

*CAGE is based on the AGE System Pnd we have assumed here that the
reader is familiar with the AGE system. '*The starred options indicate the greatest use of concurrency.
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IllI BUILDING APPLICATIONS IN CAGE values.
attribute: For each level the user must specify

In each of the following sections we will outline the the names of the slots, which will become a
application data that must be supplied by the user and how template for the instance nodes, which in turn will
that information should be structured for use by the CAGE contain the values used by the KSs. These values
System. The CAGE System provides a CAGE language with are initially NIL.
which the user can write his application. The type of user-
supplied information is similar to that required for link: The user may also define links for
applications constructed in the original AGE system, connecting nodes. These links are defined in the
However, the structure of the user information is somewhat knowledge sources which use them and consist of a
different from that of an AGE application, link name and an optional, opposite link. The

value of a link on a node is the name of another
A. Blackboard Data Structure node.

There are two major components in the CAGE blackboard value: The value of an attribute depends on what
structure, the hypothesis classes (frequently called levels in was stored there by the rules and its structure
hierarchical blackboard structures) and the hypothesis nodes, depends on how it was stored. Values can be
The user must specify the classes that make up his modified only by the user's initialization function
application's blackboard structure. For each class, the user and by the application rules. The structure of the
must define the fields to be associated with the nodes created values is arbitrary. How values are added or
in that class. Nodes are created in those classes, either a changed is explained in the knowledge source
priori by the user or dynamically while executing the user's section.
rules. The following example shows the definition of several
classes and their fields in the CAGE language. B. Control Structure

All CAGE control information is referenced through the
Class Definitions for Model "example" : Control-Structure object. The major components of the

Class name-of-levela Control-Structure are:
attributei User-Initialization: This is a user-defined
attribute2 function, handling any initialization needed for the
attribute3 user's program, e.g. setting-up the appropriate

blackboard structure (on top of the predefined
hypothesis framework) from the input data.Class name-of-leveib:

attribute4 Termination-Condition: Another user-defined
attribute5 function, which determines when the application

should be terminated. The Termination-Condition
can access the step-lists for events or expe=tations,

This will compile into two macro calls, DEFHYPOTHESIS- perhaps checking for a significant event; or the
STRUCTURE and DEFLEVEL, which the CAGE System will blackboard, checking a particular node or nodes. It
in turn compile into the appropriate hypothesis structure, should return a non-nil value when the application

is to be terminated.
(defhypothesis-structure User-Post-Processor: When the termination

user-hypothesis-structure condition is true, a user supplied post processing
(application-system-root) function is invoked. This function can be used to
name-of-levela print out the application's results in a readable
name-of-level b form, or to handle any other post processing details.
name-of-1 evel c

Event-Info: This is a pointer to the Event-
Information object which contains both the user-

(deflevel name-of-levela specified information on how events should be
(attribute2 nil) scheduled, and run-time data including the event
attribute3 nil) list and the current focus event.

•...)) Expect-Info: Similar to the Event-Info pointer,
Each of the levels(or classes) will be defined as an object this object keeps track of the expectations generated

with the attributes as instance variables and with the nodes as by the application and information specifying how
instances of those objects as they are created. (The user can those expectation should be scheduled.
define methods for the level objects which are generally used Control-Rules: A list of of control rules defined
for printing information contained in the nodes on those by the user to determine when to execute which
levels.) control step (event or expectation). The control

Definitions: rules are defined using the DEFCONTROL-RULE
user-hypothesis-structure: A name the user gives macro. Each control rule consists of a condition,

the application's blackboard structure. an arbitrary LISP expression and a steptype, either
event or expect. The following example of a

application-system-root: A handle cn the above control rule says that if there are any events
hypothesis structure for tser access, generally a node endi-Ii on the event i;t (stePlist of event-info is
where the input data, or a massaged version of the not null), then do an event next.
input data will reside, or the top level of a
hierarchical hypothesis structure. Example:

name-of-level: Each level or class must have ausersuppied ame.Control Rule : Crule-1
user supplied name. Condition Part:

node: An instance of a level, created either before If : event-infoesteplist
or during the execution of the application, Action part : event
inheriting all the attributes of that level, but no
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LHS-Evaluator: The default function for rules.

evaluating the conditions of a rule if the knowledge
source containing that rule has no left hand side 1. Knowledge Source Declarations
evaluator over-riding this default. For most The definition of a knowledge source consists of more than
applications the CAGE provided function QAND just groups of rules. In order to properly interpret those
will suffice. It is a serial or concurrent boolean rules, CAGE needs to know certain knowledge source control
AND depending on the parallel options selected by information, e.g.,
the user. 1. Under what circumstances should this knowledge

source be invoked?
1. Event-Information
A blackboard system can be executed in several ways, the 2. How should the rule conditions be evaluated,

simplest being event-driven. This means that each time a 3. what levels of the blackboard structure will be
rule action is executed the system records that change to the changed?
blackboard as an event. Each event is added to a list called
the event list. The scheduler selects an event from the event 4. Which one or all of the rules whose conditions are
list to become the next focus event. The type of focus event true should be executed?
is matched against the preconditions of the knowledge sources,
and all the matching knowledge sources are activated. The 5. Are there any local variables or links to be
rules of the activated knowledge sources are evaluated, those defined for this KS?
rules with satisfied conditions are executed and the cycle The following features are available for the user to tailor a
repeats until the termination is true. knowledge source to his own specifications:

To run a blackboard model with an event-driven control
structure, certain control information must be supplied by the Preconditions: A list of tokens, representing the
sr e event types used in rules. If the focus event has an

user. event type that matches one of the knowledge
selection-method: a function that determines source's preconditions, then that knowledge source is

which event to select from the event list. The user activated.
can write his own best-first selection method or
use one of the CAGE provided functions, FIFO, Levels: A list of pairs of blackboard levels or
LIFO, or AGENDA. If the AGENDA selection classes. The user must specify between which levels
method is chosen, the user must also specify the of his hypothesis structure a knowledge source
agenda and an order. makes inferences.

agenda: An ordered list of event types supplied Links: If a knowledge source adds links between
by the user. (See knowledge source specification for nodes on the blackboard, they must be defined here.
definition of event type.) The definition consists of a list of pairs of linknames, a link and its inverse.

order: LIFO or FIFO order in which to check the Hi ag there
agenda. There may be several different events of Hit Strategy: There are two main hit strategies
the same type on the event list. available in CAGE. SINGLE and MULTIPLE.

When a knowledge source with a single hit strategy
collection rules: In some applications many is interpreted the rules of that KS are evaluated, in

events of the same type and the same node are order, until one rule's condition evaluated to true.
generated and added to the event list. If the user Then that rules actions are executed and no other
specifies that type of event as a collection rule, rules are even considered. With a multiple hit
then only one event is pursued and the others are strategy, the conditions of all rules of a knowledge
collected and deleted from the event list. source are evaluated and then all the actions of

rules which successfully evaluated executed. In
conjunction with either single or multiple hit

2. Expect-Information strategies, the user can also specify ONCEONLY.
In an expectation-driven system, a rule may specify an This will cause a rule to be marked when its

expected result or change on the blackboard as one of the conditions are successfully evaluated. Its actions
actions of that rule (called an expectation rule). When an will be executed and it will never be evaluated
expectation rule is executed, the expectation part of the rule is again during that run of the application.
added to the expectation list. Later, when the control rules
specify that an "expect" step should be executed, a focus is Definitions: A list of local definitions, available
selected from the expectation liSt. If a change has occurred to all the rules of a knowledge source. The
on the blackboard that satisfies the expect portion, actions definitions are an efficiency feature to avoid the
associated with the expectation rule are executed, repeated calculation of the same value by all the

Much of the information required to execute an rules. The structure is similar to that of LET, a
expectation-driven system is similar to that of an event- list of pairs, a variable name and an expressions to
driven system. The user must supply a selection-method, be evaluated and assigned to the the variable. If
possibly including an agenda and order, and collection rules. the value is NIL it can be omitted.
Some additional information is required to execute Rule Order: A list of rule names, representing
expectation. the rules of the knowledge source. This is the

matcher: a function which defines how to match order in which the rules will be evaluated serially.
eypectitions to the blackboard. CAGE provides on Because the rules are actually defined as methods of
default, PASSIVEMATCH, which simply evaluates the knowledge source to which they belong, each
the expectation portion of the expectation rule to name should begin with a colon (:).
see if its value is non-nil. LHS Evaluator: The user can optionally specify a

.Knowledge Sources left hand side rule evaluation function for each
C. knowledge source. There is also a default LHS

CAGE knowledge sources are a partitioning of the evaluator specified for the entire application in the
application knowledge into sets of rules. Each knowledge Control data. The evaluator specified here will
source consists of some declarative information and a set of override the default evaluator for this specific
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knowledge source. The LHS evaluator is a function (dosfruli(combine-weights letters)
which determines how the rule conditions are (possible-values
evaluated. CAGE provides several built-in (svalue focus-node :possible-letters

functions which the user can select, including AND, -all))))
for a simple boolean AND of the conditions and ((is-cryptoletter focus-node)
QAND for a concurrent boolean AND. possible-values )

The following is an example of the definition of a ((propose :EVENT-TYPE 'possible-assignment
knowledge source from the CRYPTO system written in the :CHANGE-TYPE 'update
CAGE language.'"" The name of this knowledge source is :HYPOTHESIS-ELEMENT focus-node
"combine-weights", it has two preconditions, makes inferences :LINK-NODE nil:ATTRIBUTES-AND-VALUES
from the Cryptoletter level of the hypothesis structure to the '((possible-letters
alphabet-letter level, defines a pair of bi-directional links, possible-les,possible-values supersede))
and uses the single-hit rule selection strategy. The combine- :SUPPORT 'combine-weights)
weights knowledge source also makes two definitions, possible-
values gets the value NIL and Ihs-evaluator the value QAND.

Knowledge Source : combine-weights After specifying the knowledge source to which a rule
PrKconditions : Confirmation, Contradiction should be added and the name of the rule, preceded by a
Classes : Cryptoletter : alphabet-letter colon, the user must specify the three major parts of the rule.

Links : Possible-Value-of : possible-Letters Definitions: The definition part of a rule is
Rule Selection :Single similar to a LET in structure. The local variables

set here are available only to this rule, both in the
Defnnitlons condition and action parts, as well as other

possible-values- nil definitions of this rule. This is an optional
lhs-evaluator m qand component of a rule, and can be NIL.

Conditions: The second part of a rule contains
the conditions. These can be one or more arbitrary

This compiles to the following CAGE macros. LISP expressions which will be evaluated according
to the left hand side evaluator as specified in the

(defknowledge-source COMBINE-WEIGHTS local knowledge source or at the control level. The
:preconditions (confirmation contradiction) conditions can reference both local variable
levels ((cryptoletter alphabet-letter)) definitions or variables bound at the knowledge
:links((possible-value-of possible-letters)) source level. The CAGE system provides several
:hit-strategy (single) access functions for retrieving values from the
:bindings ((possible-values)) hypothesis structure, which can be used in the
:rule-order (:1etters) conditions of rules. It is important when writing
:lhs-evaluator qand) the conditions of rules for a CAGE application to

keep in mind the feasibility of running those
clauses concurrently, i.e. keeping them independent2. Rules of each other.

CAGE rules consist of three major parts; definitions,
conditions, and actions. Here is an example from CRYPTO Actions: The action clauses make up the final
in CAGE. part of a CAGE rule. These clauses have a very

specific structure as evidenced by the preceding
Rule : letters (3) examples. The actions specify what changes are to

be made to the hypothesis structure by a rule and
Definitions • how those changes should be made. The user must

possible-values specify what node and attributes on the blackboard
possible-values(focus-node9 are to be changed, what the new links or values are,

possible-letters) and how those changes are to be made (possibly
deleting some old values). The user must also

Condition Part specify an event type, a name representing the type
If qand(focus-node.is-cryptoletter, of change this action makes to the blackboard. If

possible-values) and when the event created by this action is
selected as a focus event, this token will be matched

Action Part : against the preconditions of the knowledge sources
Changes Tpto determine which KS to invoke next.Change Type :Update

Updated Node focus-node
Event Type possible-assignment
Updated Slots :

possible-letters '-- possible-values
D. Initialization

;Combine the weights of identical possible There are two types of initialization which can occur at the
;values. beginning of a CAGE run. First CAGE must create the

instances of all the application defined flavors which will
CAGE also provides a macro for defining rules called constitute the executable form of the user's system. In

DEFRULE, to which the above will compile, addition, the user can do any other initialization he feels
appropriate by defining his own initialization function, the
name of which should be stored in the application's control
structure. Since the major components of the application are

*'*The colons in the CAGE language are separators when separated by defined as flavors, initialization can be done by defiiiing
spaces from other words in the language. Colons indicate keywords when :initialize or :after :init methods.
they directly precede a word.
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E. Input Data bindings to set any local variables tested
here, insuring that the Ihs clauses will beThe user must define two functions to handle his input independent. A QAND macro is
provided as the LHS-evaluator to initiate
the concurrency for the conditions,

1. INPUT-PROCEDURE(Record, Time) : Given an requiring recompilation when this option
input record, retrieved automatically at the correct is used.
time by CAGE, do what ever should be done with
that input,e.g. add it to the blackboard. rule-bindings: Evaluate the definitions

2. TIME-OF-INPUT-RECORD(Record) : Given an of a rule in parallel. Again, these
input eord,-reurntReRDime rd ta . idefinitions should be independent of eachinput record, return the time stamp, other if their concurrent evaluation is to

At the beginning of each run the user will be asked to specify result in an actual speed-up.
an input data file by typing in the file name or selecting a Rule level: bindings can be used in combination
file from a menu of pre-specified input data file names. The with any of the other options, but only one of the
data file consists of records that can be read by the above two rule options, single, multiple, sync or nosync can be
function. A time stamp is mandatory on each input record. used at a time.

bindings: Concurrently evaluate the
IV SPECIFYING CONCURRENCY definitions at the beginning of a

CAGE supports the concurrent evaluation of pieces of knowledge source.
knowledge. Once an application has been debugged in serial rules-single: Evaluate all of the
mode, the user can specify one or several knowledge source conditions of the rules of a knowledge
components to be executed in parallel. For example, the user source concurrently, but only executz the
might specify that the rules of the knowledge source be actions of one successfully evaluated rule.
evaluated concurrently, or perhaps just the actions of the rules rules-multiple: Evaluate all of the
or a combination of the available options. With a minimum conditions of the rules of a knowledge
amount of recompilation, the user can change his parallel source concurrently, then serially execute
specifications and experiment with many different the actions of all the successfully
configurations. evaluated rules.

In general more speed-up should occur as more components rules-sync: Evaluate all of the
are run in parallel. But for some applications the overhead
of setting up the new processes and inter-process conditions of the rules of a knowledge
communication costs will be greater than the speed-up gained source concurrently, then concurrently
by executing particular components concurrently. For execute the actions of all applicable rules.
example, if most or all of the knowledge sources of an rules-nosync: Begin evaluating the
application contain only one rule, then it would not be conditions of the rules of a knowledge
efficient to evaluate rules in parallel since for any one KS source in parallel and execute the actions
invocation there would only be one item to evaluate, of each rules as soon as the conditions
A. Concurrent Components are known to be true. With this option

there is no synchronization between the
The use of knowledge sources to partition the knowledge in left and right hand sides of rules.

blackboard systems and, in particular, the structure of the Knowledge source level: Only one of the
knowledge sources in CAGE provide several obvious places knowledge source options can be set at any one
for concurrency. The knowledge sources group the domain time.
knowledge into independent modules, which theoretically,
could be invoked independently and concurrently. Within kss: Invoke all the applicable
each knowledge source the rules provide another source of knowledge sources concurrently at step
parallelism, and within each rule, the clauses of the condition selection, synchronizing by waiting for all
and action parts provide yet another. Of course not all knowledge sources to complete execution
clauses, rules or even knowledge sources are actually and add events to the event list before
implemented totally independently of each other and some concurrently invoking a new set of kss.
serialization may be necessary to correctly solve the kss-nosync: Invoke all applicable
application problem. knowledge sources as soon as a new event

The following are the options for parallelism available in is created. This option provides the least
CAGE, grouped according to their allowed use in control of all the options available and
combination, does no synchronization. Many

applications will have to be changed
Clause level: can be used in combination with slightly to execute reasonably under these

each other or any other parallel option, conditions, particularly removing any

actions: Execute the RHS action clauses possible circular knowledge source
of a rule in parallel. Note: When invocations. To implement the parallel
running RHS actions concurrently a non- execution of knowledge sources without
deterministic system may result if both any synchronization, the control loop of
destructive (Supersede in CAGE) and CAGE was drastically altered from that
constructive (Modify) actions occur to the described at the beginning of this paper.
same object in parallel. (Same object and (See CAGE Overview.) Without any
attribute) A QLOOP macro is used to synchronization, as soon as an event is
initiate the parallelism for loop actions, created it immediately allows all relevant
requiring recompilation of the rules knowledge sources to be invoked. No
containing loop actions. events are added to the eventlist and no

focus event is ever selected. A timed
lhs: Evaluate the LHS condition clauses loop was added to the top level control toof a rule in parallel. Note: Use the rule re-invoke the user's initial knowledge
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source in case the system exhausts all generated by the parallel process will appear in one of these
previous events before the termination associated windows, instead of the main terminal i/o window.
condition is satisfied. There is only room to display 12 of these small i/o windows

at the same time and still have them large enough and leave
kss-minisync: Add an event to the them up long enough to be readable. If more than 12

event list and do minimal computation at processes are active at the same time, the windows will
the point of synchronization before overlap.
invoking the next set of knowledge
sources. The main computation done is VI FUTURE DIRECTIONS
the collection and pruning of similar
events, leaving fewer events to activat The next step for CAGE will be a reimplementation on
subsequent KSs. The mini-sync and no- CARE. The instrumentation in CARE will provide us with
sync options are different from the the needed tools for measuring the speed-up gained from each
parallel kss option in that they don't use of the various concurrent options in the CAGE System.
the serial step-selection pro,.edure. CAGE users will be able to implement and debug their

B. How to specify and change parallel applications in the current CAGE-on-LOQS system with its
components fast simulation time. Once an application is debugged it

could then be run on the CAGE-CARE system for complete
A function, SELECT-PARALLEL-OPTIONS is provided to and accurate measurements.

allow the user to quickly change the selected parallel options.
SELECT-PARALLEL-OPTIONS has no arguments. A menu
of parallel options will pop-up on the screen and the user can
select new options or delete old ones.

V DESIGN DETAILS

CAGE is currently implemented in an object-oriented style,
using the Flavors feature of ZETALISP. The top level object References
in CAGE is called the BLACKBOARD. From the Blackboard
object there are pointers to each of the principle components [Gabriel 84] Gabriel, Richard P. and McCarthy, John.
of the system, as follows Queue-based Multi-processing Lisp.

control-structure: all control information Proceedings of the ACM Symposium on Lisp
specified before compilation is stored here, as well and Functional programming :25 - 44,
as pointers to run-time control structures. August, 1984.

hypothesis-structure: the blackboard solution
space, which must be structured by the user. CNii 79] Nil, H. P. and N. Aiello.AGE: A Knowledge-based Program for

knowledge-source-list: names of the knowledge Building Knowledge-based Programs.

sources containing the production rules of the user's Proc. of owled65- 655,r197 .
application. Prec. of IJCAI 6:645 - 655, 1979.

user-functions: optional, user-defined functions [Rice 86] Rice, J. P.
invoked by the rules The L100 Language and Compiler Manual.

inform at!on-structure: optional, user-defined, Technical Report KSL-86-21, Heuristicstatic data structures Programming Project, C. S. Dept.,
staticrddataerstructures

A separate data structure, Parallel-Specifications, is used to Stanford University, 1986.
store the parallel options selected by the user,

The DEFKNOWLEDGESOURCE macros will create, at
compile time, an object for each knowledge source, and a set
of associated methods. During the in,-ialization process an
instance of each knowledge source object is created. Other
instances may be created during system execution if one of
the concurrent knowledge source options is selected. One of
the associated methods, SETUP-AND-START, evaluates the
knowledge source definitions and initiates the rule
interpretation when a knowledge source is invoked.

Each rule is created as three methods, EVALUATE-
DEFINITIONS, EVALUATE-CONDITION, and EVALUATE-
ACTION, associated with the rule's name using the :case
method-combination feature of Flavors. The keywords of the
action clause listed above are keywords in the method
definitions, and therefore must be preceded by colons in the
macro definition of a rule.

CAGE utilizc, a glubal vatiabl, PARALLEL-
SPECIFICATIONS, whose value is a list of the current
parallel options specified by the user. It is initially NIL and
is updated using SELECT-PARALLEL-OPTIONS.

During execution CAGE prints out messages indicating the
state of the execution and uses some simple graphics to help
the user observe the simulation of concurrency. A set of
small windows will appear on the right side of the screen, one
for each process initiated by CAGE. Any state messages
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Poligon, A System for Parallel Problem Solving

J. P. Rice

Knowledge Systems Laboratory, Stanford University

The overall project's strategy is to solve problems
Summary significantly faster than existing systems through

The Poligon1 system is a new, domain-independent language the exploitation of parallelism. Poligon is targeted
and attendant support environment, which has been designed at a MIMD, distributed-memory, message-passing
specifically for the implementation of applications using a machine with -thousands of processors. This
Blackboard-like problem-solving framework in a parallel hardware gives direct support for futures, remote
computational environment, objects and such efficient message-passing

strategies as Broadcast and Multicast so as to take
This paper describes the Poligon system and the Poligon full advantage of its processor interconnection net-

language, its salient and novel features. Poligon is compared work.
with other approaches to the programming of parallel systems. A consequence of the desire to achieve a sig-

nificant order of parallelism in Poligon programs
is that many of the control mechanisms used in

1. Introduction serial problem solving systems, such as schedulers
The larger project of which Poligon is only a small part will and event queues, have been discarded because they

not be discussed he:-, in any detail. Design decisions made in are highly serial. Most actions in Poligon
other parts of the project will be held to be axiomatic, though programs are, therefore, performed asynchronously.
some mention of these decisions will be made in order to Rules, the primary mechanism in Poligon for
show the motivation for the features of Poligon. The primary describing things and for getting things done, are
objective of the overall project is to achieve significant activated as daemons. Mlmch of the work in
speedup of knowledge based systems, particularly those Poligon is aimed at providing maechanisms to cope
directed at real-time signal understanding. with this chaotic behaviour.

The purpose of the Poligon language is to express the This paper contains the following;
problem solving behaviour of human experts in order to map
them onto a problem solving framework, which will run on . A discussion of related work in parallel languages.
simulated parallel hardware. A discussion of the design approach guiding the

The fields of knowledge representation and problem solving development of Poligon.
are rich and complex. This paper will not go into any great . A description of the abstraction mechanisms
detail in describing the problem solving processes involved. pr,vided by the Poligon system with some small
Poligon tries usefully to express knowledge both in a declara- e% ,mples.
tive and procedural sense, through Tules [Davis 771; and in a
structural sense, through the configuration of the solution . Some concluding remarks.
space. These will be described below. . References for further reading on the subject.

Some crucial design criteria and early design commitments
have affected the development of Poligon, the consequences of
which will be described in this paper. These can be sum- 1.1. Knowledge Representation and Problem Solving in Poligon
mavised as follows. The primary purpose of this paper is to discuss the Poligon

language. It is, however, not possible completely to divorce
Poligon is intended to be a language for both this from the underlying hardware and from its purpose;
problem solving and the general purpose program- knowledge representation and problem solving.
ming necessary to support it. Unlike most
programs, Poligon programs must also address the Poligon can be described loosely as a "Blackboard System".
problems of real-time processing, including What this means in practice is that the problem solving
asynchronous events and input data backup, metaphor of Poligon is one of cooperating experts gathered

Puligun, therefore, must assist in this respect, around a blackboafd, pobting idets about their deductions on
the blackboard. For an exposition on the term "Blackboard
System" the reader is encouraged to read [Nii 86]. Poligon
tries usefully to express knowledge both in a declarative and
procedural sense, through rules and functions; and in a struc-

'The author gratefully acknowledges the support of' the following funding tural sense, through the configuration of the solution space on

agencies for this project; DARPA/RADC, under contract F30602-85-C-0012; the blackboard. In particular, the term "blackboard" will be
NASA. under contract number NCC 2-220; Boeing Computer Services, undet used to describe the set of all of the nodes in the solution
contract number W-266875. space of the system.
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2.2. MultiLisp and QLisp
The suggestion that Poligon is a blackboard system is a little MultiLisp [Halstead 84] and QLisp [Gabriel 84) are lumped

controversial. There are a number of respects in which this is together because, at least in some senses, they have strong
not a satisfactory label. This term will, however, be used generic resemblances. They are both, at the user level, exten-
freely from now on for lack of a better label. The reader is sions to existing Lisp dialects which provide mechanisms for
encouraged to substitute for the term "Blackboard system" any the expression of parallelism, such as parallel Let constructs
term, such as "Frame System" which seems best to fit his and parallel function argument evaluation (QLet and PCall).
mental model of what is being described. It is assumed by both of these systems that the hardware at

which they are targeted is a form of shared-memory mul-
tiprocessor. Although :here is no particular reason why such

1.2. Poligon's Model of Parallelism systems could not be implemented on a distributed-memory
It seems appropriate here to describe Poligon's model of system, they are optimised for shared-memory multiprocessors.

parallelism. In its simplest form this can be thought of as An These are currently the most readily available form of mul-
Element In the Solution Space as a Processor. tiprocessor. They would, however, need significant extensions

in order to be able to exploit a distributed-memory system as
This gives some idea of the granularity that is being sought. is shown in CAREL [Davies 86]. an implementation of QLisp

It is, however, by no means the most efficient way to imple- for distributed-memory machines. The assumption of shared-
ment Poligon. Poligon programs want to be abie to execute memory, MIMD processors in these systems imposes con-
rules and parts of rules associated with a particular Node in straints on the languages. They assume, at least to an extent,
the solution space in parallel. These rule activations need that processes will be expensive and that the user must have
processors, on which to execute. control over their creation. Poligon assumes quite the op-

Thus a modified version of Poligon's model of parallelism posite.

could be A Rule Activation as a Process, with sufficient
processors to cope with the parallelism exhibited by the rule
during its activation. This tends towards a mapping of solu- 3. The Design of Poligon
tion space elements onto a cluster of processors to service the Poligon will be discussed first in terms of the way in which
rule activations. In practice, however, a number of nodes the language relates to the problems being solved and its un-
might be folded over the same set of processors, either be- derlying systems. Next the language will be discussed in terms
cause nodes become quiescent or because the load balancing in of the requirements for languages in general and parallel lan-
the system is sub-optimal. guages in particular.

2. Related Work 3.1. Background and Motivation
Work in this field falls into two distinct categories; work on The philosophy behind the design of Poligon comes from

parallel knowledge based systems and work on languages for intellectual and pragmatic pressures. It attempts to steer aparalelknolede baed ystms nd ork n lngugesfor middle course between the extreme purism of applicativists
parallel symbolic computation. The former is, at present, a and the extreme pragmatism of the proponents of side-effects.
very sparse field and, will not be discussed here, though some
references are given in § 6. The latter is much more highly From the outset, the project was oriented towards real-time
developed. problem solving. Blackboard systems are well known to be of

interest as tools in the knowledge engineer's toolkit. LittleMuch work is already being done on parallel languages for work has been done to investigate the appropriateness of the
general computation. Amongst these languages are Actors, blackboard metaphor to parallel execution or the meaning of
MultiLisp and QLisp on the one hand and concurrent logic parallel blackboard systems, though it is frequently claimed
programming languages and purely functional languages on that they are full of latent parallelism. The excellent formal
the other. Often missing from this work is a thrust toward properties of pure applicative and logic languages may well be
the investigation of large applications in parallel domains, for of little use in a system which, for whatever reasons, needs toinstance the development of parallel knowledge representation express side-effects and which has to cope with real-time
and problem solving systems. This is, of course, what Poligon constraints. Poligon is a system in which some of the formal
attempts to do. This section will discuss briefly Actors, QLisp rigour of truly applicative systems has been put aside in
and Multilisp, since these are the parallel symbolic computa- favour of h pragmatic approach to the exploitation of paral-
tion languages which are most relevant to the development of lelism.
Poligon and the software which lies beneath it.

The BB1 project [Hayes-Roth 85], also a project at the
HPP, is an attempt to investigate the behaviour of highly

2.1. Actors controlled problem solving systems. It attempts to use a great
Actors [Hewitt 73] probably come the closest in their be- deal of meta-knowledge and makes significant use of globality

haviour to Poligon, at least at an implementation level. Ac- of reference in order to support an holistic view of its solu-
tors are independent, asynchronously communicating objects. tion space, thus providing a basis for meta-level reasoning.
As is the way with purely object oriented systems they com- The Poligon project is an attempt to investigate quite the
municate only through message passing and have tightly reverse. Poligon has very little support for meta-knowledge
defined operations. The mutual control of Actors an paral- and allows no global data or global view of the solution space
lelism is achieved by the support of procedure call and whatsoever. The purpose of this experiment is to determine
coroutine model message passing. The modularity afforded by whether a system, unconstrained by a great deal of serialising
this sort of programming metaphor may wc!! be especially control knowledge. mipht still be able to find useful answers
useful for the programming ot distributed-memory, message- faster than an highly controlled system, such as BBI, which
passing hardware, since having a close match between the would be extremely difficult to speed up significantly through
hardware and software metaphors is likely to achieve better parallelism.
performance. It is not in any way surprising that the operat-
ing system level software, which underlies Poligon, is founded The Poligon system pictures the elements in its solution
on many of the same principles as Actors. It has yet to be space as processes resident on processors distributed across a
seen whether this programming methodology is able in prac- grid, with the code necessary for them intimately associated
tice to extract significant amount of parallelism from with them. Because no global control is permitted in Poligon
problems, though clearly this project hopes that it is. the activation of rules is necessarily completely daemon-
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driven. 3.2. Language Requirements
Poligon is a language which is by no means directed at

general computation. It is nevertheless intended to be used
The project hopes to achieve significant speed-up through for the solution of large, complex problems on distributed-

parallelism. This can be done only if much parallelism is ex- memory parallel hardware. The following is a brief list of
tracted from the problem. Ideally, the system would try to the ways in which Poligon attempts to address some of the
achieve its parallelism by exploiting parallelism in the primary requirements of programming languages.
program's implementation at a very fine grain. This can, in
principle, extract the maximum amount of parallelism avail- The language should provide a tangible method of
able. On its own it has drawbacks, however. The costs of expressing the ideas of the programmer.
processes and the problems of synchronisation at a fine grain
size make it difficult to exploit such parallelism without the The Poligon language has been written with con-
use of hardware mechanisms significantly different from those siderable input from those with experience in
available with prevailing technologies. This approach is also problem solving systems in the application
only part of the story. It neglects the fact that a properly domains at which it is targeted. It is therefore in-
parallel decomposition of the source problem is crucial to tended to match the ideas of the "Expert", whose
finding a lot of parallelism. One could summarise te knowledge is to be encoded, but in a domain inde-
problems, therefore, as expressing the problem in a suf- pendent way.
ficiently parallel fashion and the matching of the parallelism The compiler 2 should provide a mapping between
in the program to the grain size of the underlying hardware, the language and the underlying systems, be they
Poligon addresses these issues. hardware or software.

Parallelism is very hard to find in conventional programs, Poligon's compiler compiles Poligon language
Applicative systems have an advantage in this respect because source into code understood by the underlying Lisp
of their relative lack of need to express parallelism explicitly, system and the concurrent object-oriented operat-
Their unchanging semantics when parallelism is introduced ing system running on its target hardware.
eases matters considerably. Poligon has attempted to learn The language should abstract the programmer
from this and has pure applicative semantics in a number of from its underlying systems.
areas but takes a different approach to the finding of paral-
lelism in programs. It attempts to execute everything in The Poligon system shields the user from all
parallel that it can and leaves it to the programmer to find aspects of the underlying hardware such as the
any serial dependencies. tr io3y of the processor network, the message-

passing behaviour of the hardware and the location
When the parallelism in a program is user-defined, of any code or data within the network.

problems can result from an inappropriate match between the
granularity of the parallelism expressed in the program and • The language should provide mechanisms for the

the granularity of the underlying machine. In systems of the exploitation of the underlying systems to good ef-

size and complexity of a typical Poligon application such a fect.
match would be particularly difficult to find because of the The underlying hardware and software systems are
large number of processors involved and because it would be exploited in a number of ways in Poligon. Firstly
difficult for the user to keep track of the location of his data the language encourages the user naturally to
in the processor array. These characteristics are a consequence decompose his problem into a form which will
of the highly variable and data dependent state of the solution map efficiently onto the underlying hardware.
space in such programs. Poligon, because of its structure, Secondly the language offers a number of
should be able largely to obviate such granularity mismatches application-independent, high-level constructs,
because parallelism is defined and controlled by the system which are designed to exploit the hardware to the
and the Poligon system is closely matched to the granularity full. These topics are covered more fully in § 4.
of the underlying system. o The language should allow the development of

It is often thought that problems suitable for solution by software faster than would be the case if it were to
means of the blackboard model tend to partition their solu- be developed in a less abstract form.
tion spaces into what look rather like pipe-lines. Pipe-lines
are, of course a well known form of parallelism. In practice Considerable effort has been spent on making the

pipes in such systems are not pipes in the normal sense, since Poligon language a high level way to describe the
they are more like "leaky" pipes. It is one of the prime ob- solutions to parallel knowledge based system
jectives of these systems to reduce'the amount of data as it problems. A high level language with such fea-
percolates up through the abstraction hierarchy of the solution tures as infix, user-definable operators and user

space. Because of the reduction in the data rate flowing in definable syntax, provides a natural way for the

these pipes the contention problems that one might expect expert to implement his knowledge.
when pipes are connected into trees, as they often are, are al- Much effort has been spent also on integrating the
leviated. Poligon system cleanly into the program support

environment of the Lisp Machines on which it
A significant limitation of the performance of pipelines is runs. For instance, incremental compilation is

that, at best, the parallelism that they can produce is propor- supported from within the editor.
tional to the length of the pipe. This would typically be only
of the order of half a dozen sections. This is clearly not the • The language should assist the development of
"orders of magnitude" of performance improvement that we reliable, maintainable and modular software.
all hopc fui. it practice, though, given a large enough Language features are provided to minimise the
problem, it is often possible to set up a large number of these possibility of inconsistent modifications to the
pipes side-by-side. It is one of the major objectives of the source code and the structure of the language and
Poligon language to encourage, facilitate and reward the its semantics are defined in a manner which min-
decomposition of problems so that this form of independence
can be exploited, so that such pipes will be created by the
system. 2The term Compiler is used in its most general sense here, perhaps an in-

terpreter or a machine which is clever enough to execute the language
specified directly.

-154-



imises the probability of complex bugs being in- 4. Abstractions in Poligon
troduced by asynchronous side-effects. To cope with Poligon's view of parallelism and with the

chaotic execution of rules (see § 1) a number of linguistic
A sophisticated set of debugging facilities is abstractions are provided.
provided. A system that emulates the semantics of
full, parallel Poligon programs as closely as pos- Poligon provides abstractions for knowledge represerzation,
sible in a serial environment has been produced. control, data, parallelising, real-time and side-effect control.
The user is able to debug his program serially to These will be described briefly in this section.
remove all possible serial bugs and bugs due to t.!
non-deterministic execution order of Polig.
programs before it is ported to the full parallL 4.1. Knowledge Representation
environment. Knowledge is traditionally represented in blackboard systems

In addition to these requirements a language targeted at in a number of ways, listed below.
parallel hardware should have a number of attributes which * Declarative Knowledge is encoded in Rules.
reflect the parallel nature of the target hardware. •Procedural Knowledge is encoded in procedures.

" The language should address the granularity of the K nhe of

hardware. - Knowledge concerning the sequencing of activitiesis encoded in the scheduling mechanism.
Poligon is closely matched to the granularity of

the hardware at which it is targeted. It is generally - Knowledge about the structure of the solution
expected that the solution space of the problems space is encoded by the definition of the structure
addressed by Poligon programs will have of the of the blackboard.
order of thousands of nodes. This is of the same - Knowledge about relationships between the objects
order as the granularity of the hardware, in the system is often encoded using a Link

" The language should provide a mechanism for the mechanism.
extraction of parallelism from progranr, and from
the programmer. These all represent knowledge about the application domain.

In addition, there is in any program a large body of implicit
Poligon extracts parallelism from programs and the knowledge concerning the semantics of assignment, sequencing
programmer in two main ways. First the decom- and the system's function as a whole, especially in for systems
position of the problem is encouraged to be as with poor formal properties. This will not be discussed here.
modular as possible. Secondly the semantics of The Poligon language does, however, go to considerable effort
Poligon programs are such that almost all of the to make the semantics of the Poligon system as clear as pos-
program can be executed in parallel without sible.
changing their behaviour from that seen during
serial execution. This allows the system to execute
most operations in parallel if it has the resources 4.1.1. Declarative Knowledge
to do so. The encoding of Declarative Knowledge in blackboard sys-
SThe language should, where appropriate, shield the tems is conventionally done in Rules3, which exist withinscheduling units known as Knowledge Sources. Poligon also

programmer from those details of the hardware has the concept of Rules and Knowledge Sources, though their
which are particular to parallel computing engines, meaning is somewhat different. Unlike serial blackboard sys-
such as topology. tems, the rules in a Poligon system are activated autonomously
The hardware, on which Poligon programs runs, and asynchronously.
causes Poligon programs to have to cope with
communication between solution space elements on Existing blackboard systems usually suffer from a confusion
different processor sites. All such message passing and overloading in the semantics and purpose of knowledge
is hidden from the user. In fact the Poligon lan- sources. It is useful to collect one's knowledge of one subject
guage has no concept of message-passing at all. together into one chunk. These chunks are knowledge sources.

Sadly, the implementors of blackboard system frameworks of-
Futures are used for all remote operations in the ten think of knowledge sources as scheduling units and thus
user's program. The hardware implements these design their scheduling strategies around the idea of the
such that there is no efficiency penalty associated "invocation of knowledge sources", even though it is by no
with creating futures for such remote accesses. means necessarily the case that it is appropriate to schedule
The Poligon language copes with these invisibly to all of knowledge in a chunk at the same time. This has a
the programmer. detrimental effect on the modularity of the system.

As can be seen quite easily from the above one of the fac- In Poligon, knowledge sources are used as linguistic and
tors that must be well understood before a language is software engineering abstractions provided for the program-
designed is the general purpose of the language and the level mer in order to allow him to collect related "tnowledge
of generality that is expected of programs written in it. A together. There are no scheduling semantics associated with
language, whose sole purpose is the expression of solutions to knowledge sources in Poligon. Because of the underlying
huge matrix problems on systolic hardware might well be jus- system's daemon-like rule triggering mechanism the rule
tified in expecting the programmer to express, at quite a low writer is allowed completely to decouple the concept of
level, the maping of the program onto the hardware scheduling from the concept of chunks of knowledge.
provided. This is less likely to be a reasonable expectation of

a language targeted at the solution of large, complex problems Rules are activated as a result of "events" happening to the
of an unpredicatable, dynamically-varying or data-dependent fields of nodes (see § 4.3.1). These events can be caused ei-
nature. Poligon is a fairly general purpose programming lan-
guage with a very definite bias.

3The term Rule is used here in the sense of "Pattern/Action pairs"% it
should be noted that these are quite unlike the structures called rules used, for
instance, in Prolog. Pattern/Action rules move towards a solution to their
problem by performing side-effects on their environment, in this case the
blackboard, not through unification.
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ther by a write operation to a field, by a semaphore beingthedb art eoperatio t a field, by ay s o be cThe following is a trivial example rule, which shows a small set
waved at a field or by the real-time clock, of the features of Poligon. This rule could be interpreted as say-

ing; "If the most recent two phonemes that have been seen are
A powerful Expectation mechanism is provided, which al- "oo" and "ph" then the word Is "foo". Having concluded this the

lows the dynamic placement and specialisation of rules. An rule finds the set of sentence components, which represent poten-
Expectation is a way of expressing model-based knowledge. tial conclusions of the word "foo", and sets them so that they are
Given a particular model of the behaviour of a system, cer- no longer marked as hypothetical. It also makes a Sentence-

Component type node, which represents the word "foo", which has
tain changes might be expected if the model's interpretation been found.
of the world is correct. Expectations allow such changes to be
watched and even allow their associated rules to be triggered Rule : Find-the-word-Foo
if the changes do not happen in a given time. Such expec- Class : Phoneme

athfor events happening, or not Clas:of nodes with which the rule will be associated )tations can be placed to watch Fneod uncorrelated-phonemes
happening, in specific places on the blackboard, at specific ( Try to activate this rule when this field is changed }
times. Expectations provide a focussing mechanism 4 and, Definitions:
coupled with the system's ability to trigger5 rules and "time- all-phonemes-in-order
out" unsatisfied Expectations on the basis of the real-time The-Phoneme(Duncorrelated-phonmes
clock, Poligon allows complex time-critical knowledge to be C The operator "(D" returns all values in a field in }
expressed and applied simply. ( time order. The-Phoneme represents the node. that )

( triggered this rule 
An example rule is shown in figure 4-1. most-recent-phoneme

all-phonemes-in-order.Head
next-most-recent-phoneme =-

4.1.2. Procedural Knowledge a l -phonemes-In-order.TaI.HeadH and Z:Tatl are like CAR and CDR only they operate

Procedural Knowledge is an all encompassing term usually o n and Tazy listA and Bags o
used indiscriminately to describe both knowledge about the
relationships between values (Functions) and the mechanisms Condition Part

When : a11-phonemes-In-order.length-of-liat > 2for performing side-effects and for sequencing events ( The "When" part Is a locally evaluable precondition
(Procedures). This is often a result of such systems being If : most-recent-phoneme.Sound - "oo"
built on top of Lisp systems, which fail to draw distinctions And next-most-recent-phonme.Sound - "ph"
between procedures with side-effects and those without. ( The precondition for the Rule )
Poligon does not allow the encoding of arbitrary knowledge Action Part :
into procedures. Only side-effect free functions are allowed. Definitions
Side-effects are permitted only in the bodies of rules, where new-sentence-component
they can be controlled. New Instance of Sentence-Component

t The creation of the new Sentence-Component node }
hypothetical-foos =

4.1.3. The Seu gof Activities A Bag of words, which are "foo" )
Sequencing Subset of Words which satisfies

In most blackboard systems knowledge of the required se- X(a-word)
quencing of events at a macroscopic level is expressed by the a-wordhypothetsed And a-wordletters

implementation of the system's scheduler. In many cases, such - E f o o J
as AGE [Nii 79] this scheduler has fixed characteristics and EndX
the application has a fixed interface to it. In others, such as
MXA [Rice 84], the user can specify the characteristics of the ( Process all elements In the Bag hypothetical-foos )
scheduling of knowledge sources. Poligon provides no such Changes :

In Parallel for each a-word in hypothetical-foosmechanism. Since all rules are activated as daemons, entirely Change Tue Update
asynchronously, the only analogue of scheduling is the im- Upded ode a-word
plicit sequencing of the activation of rules due to some rules Updated Fields hypothetised -nil
causing changes that trigger other's rules. C Set fields of new sentence component in B

( parallel with updating the elements in the Bag }Changes :

4.1.4. The Structure of the Solution Space hange Type Update
Updated Node new-sentence-componentPoligon is unlike most blackboard systems in this respect. Updated Fields letters ( f o o ]

Most blackboard systems partition the blackboard into Levels, constituents
which represent the hierarchy of abstraction in the solution List(next-most-recent-phoneme.
space. Poligon uses a much more general representation most-recent-phoneme)
which is like that of some Frame-.systems, providing a "Class" All of the actions taken by this rule are performed in parallel.
mechanism with user defined classes and metaclasses, and since they are independent of one another, though there is, of
compile-time and run-time inheritance. The functionality of course, a serial dependency between the condition part and the ac-
the class mechanism in Poligon is a superset of that of the tion part of the rule.
levels provided by most blackboard systems. The programmer Figure 4-1: An example Poligon rule
can, of course, represent his solution simply using classes as
levels in Poligon if he wishes. Classes are discussed more in §
4.3.1.

4.1.5. Knowledge about Relationships
Relationships between entities in blackboard systems are of-

ten expressed by a form of Link mechanism. Sometimes this
link is not so much a part of the system as a reflection of the
fact that fields in nodes can have as their values other nodes
in the system. Other systems have more sophisticated41t should be noted that the term Focussing mechanism is used in a more mechanisms that express links explicitly and allow property

general sense than by many blackboard systems. There can be any number of
such foci all tmt;ng in paiallel in a Poligon program. The expectation inheritance along links, e.g. BB1, or the propagation of
mechanism is another way of applying knowledge in order to take advantage likelihood, e.g. MXA.
of some local circumstances In order to solve a problem more efficiently or
cleanly. Poligon has a number of system defined relationships; "Is an

5
A rule is said to have been Triggered when it is activated so that it tries Instance of", "Is a part of" and "Is a subclass of". The userto evaluate its preconditions and body. can define arbitrary relationships between nodes on the black-
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board. These links allow property inheritance and are, them- Poligon has a much more regular representation for data.
selves. represented as nodes and so can have attributes in the The nodes are represented as instances of Classes. Theselvesa represnte as nodes can s ans hae atth rie ite Classes themselves are represented as Nodes, which "control"same way that any other nodes can. Links are therefore first- their instances. Knowledge concerned with classes as a whole

class citizens in Poligon and they allow Poligon programs to cne associated with oae a ariable
act like semantic nets. can be associated with these nodes. Shared. global variables

are not allowed in Poligon.

Poligon also provides;
4.2. Control Abstractions

The flow of control is a rather evanescent concept in a Superclasses Classes that provide characteristics to the
Poligon program. Any rule can be triggered at any time. It is instances of classes. These can be thought
important not to think of the control flow in a Poligon of as templates for the instances.
program in the same terms as that of a conventional serial
program. There is a well defined flow of control within Metaclasses Classes that provide characteristics to the
rules; the action part of a rule is activated after the condition classes themselves. These can be thought of
part, upon which it is predicated. Apart from this, however, as templates for the classes.
there is no flow of control in any normal sense. It should be
noted also that what little flow of control there is only Thus the classes are themselves instances of metaclasses,
specifies the strict ordering of activities. The execution of a which can be user defined, such that instances of a given class
sequence of actions can be interrupted at any time. The size can have any number of superclasses, i.e. component
of the atoms for Poligon's atomic actions is very small, templates, and any number of metaclasses, i.e. component

templates for their parent class. It is possible to instantiate
The triggering of rules is controlled by the user associating classes any number of times, as well as their instances.

rules with particular fields of nodes or classes of nodes on the
blackboard. The triggering of rules occurs when a field, Automatic property inheritance allows shared data to be lo-
which is being watched in such a manner, is updated or is cated on locally central nodes, which are immediately visible
semaphored. A semaphore mechanism is piovided to allow to the interested parties. This distributes shared data in such
rules to be triggered without a field being updated. This a manner as will, hopefully, minimise hot-spotting.
provides a form of explicit event-based programming, if it is
needed. An example class declaration, the specification of a template

for a class of nodes, is shown below. The declaration defines
Clearly one of the objectives of the design of the Poligon a class of nodes called Words, each instance of which has two

language is to provide a language in which it is simple to ex- fields (slots) called Letters and Sound.
press logically distinct pieces of knowledge, independent of
other such pieces of knowledge. The decomposition of the Class Words
problem in this manner causes the system to appear to iterate Fields :Letters
towards the solution of its problem by small, simple and dis- Sound
crete steps, rather than by complex, giant leaps.

Extensions to this sort of syntax allows the definition of

4.3. Data Abstractions superclasses and metaclasses within class declarations. The
following example defines the class Sheep. Each instance ofPoligon provides a number of distinct data abstractions. the class Sheep will have the characteristics defined for sheep

One is characteristic of other blackboard systems, one of pure and for mammals. The class called Sheep (an instance, in
functional languages and one is rather novel, fact, of the class Meta-Sheep) has the characteristics of types

" The structure of the blackboard is characterised by of animals.
being made of Nodes, elements in the solution Class Types-of-animals
space. These have a user-defined, record-like Fields:
structure. Rate-Of-Breeding

" Lazy evaluation is supported. class .als
Colour-of-fur

" Bags are supported as data structures, which paral- Number-of-leg3 : 4
lelism enhancing. Class Sheep :

N e t a c l s s : y p e s- o r- a n i m a l s
Numerous operations are defined for these data abstractions, Supercasses Namals

particularly a number of generic operations which can be ap- Fields :7h ckness-or-wool
plied to lists, lazy lists and bags, which shield the user from Flock
the underlying data structures used by the system or by other
segments of his program.

4.3.2. Lazy Evaluation
4.3.1. The Structure of the Solution Space Lazy Evaluation is supported in the guise of Lazy Lists,

The most obvious data abstraction provided by Poligon is Lazy Function Arguments and in the form of the lazy associa-
similar to that provided by conventional blackboard systems, tion of expressions with names. The following is an example
that is, the Node on the blackboard as an element in the of the lazy association of a name with a value. The name A-
solution space. Such nodes are record-like internally. They Meaningful-Name is associated with the value of the call to
have named fields, which can often contain multiple vahes to the function ,,n-,.xensivceFunctlou.
be associated with that name. Poligon provides this but also
goes beyond it. DOfifnitions

A-Meaningful-Name

Conventional blackboard systems, such as AGE, tend to An-Expensive-Function(an-arg. another-arg)

provide nodes on a blackboard divided into groups, often
called "Levels". "Levels" themselves are not represented. Ar-
bitrary use of global data, held in global variables, distinct 6Suitable Force operations are provided so that the time of evaluation can
from the blackboard is also allowed, be controlled by the program if necessary. These force operators allow the

program to perform Eager Evaluation if it is needed.
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The value of an item defined in a Definitions construct is timestamped from the time that it enters the system. These
always a future if it is possible to evaluate it as a future. timestamps are propagated automatically by the system so that

it is trivial for the programmer to maipulate time-ordered
collections of values. This mechanisrr .. required because the

4.3.3. Bags conventional implicit time ordering of data in lists cannot
One abstraction suited particularly to the parallel mode of apply here and the non-ordered nature of Bags is sometimes

execution of Poligon programs is the Bag data type. Bags are not sufficient.
implemented in Poligon so that they are formed as the result
of efficient parallel operations and can be processed in paral-
lel efficiently. Even when the elements of Bags are processed
serially they perform efficiently. The lack of a defined or- 4.6. The control of assignment
dering in the Bag means that the system can always return the Assignment is something which is likely to cause significant
first satisfied Future out of a Bag of Futures, causing min- problems in any parallel system. Poligon constrains assign-
imum waiting for values. Similarly, when a program attempts ment in a number of ways. Side-effects are only permitted
to extract an element from a bag and there are no satisfied on the fields of nodes. All side-effects can be monitored by
elements the process in which this happens will go to sleep rules that might be interested in the changes to values. This
until the next available future is satisfied, removes the possibility of the knowledge base getting confused

because of surgical side-effects to data structures at arbitrary
A Bag is generated, for instance, as the value of the follow- times and at arbitrary places in the processor network. As-

ing expression. It is a Bag, which contains all of the Words, signment is also constrained so that all of the updates to the
whose Sound is "phoo"7. fields of a given node are done atomically, before any rules

which might be triggered by these changes are allowed to trig-
Subset of Words For Which Element - Sound - "phoo" ger. Such atomicity helps to preserve the consistency of the

system.

An example of a collection of updates to fields of a given
4.4. Parallelising Abstractions node is given below. In this example the node an-instance-

Poligon supports data representations which are designed to of-words is having two of its fields updated: Sound and Let-
give the user a high level handle on the exploitation of paral- ters. Operators, such as "+-", allow different sorts of
lelism. Most values computed in Poligon are derived as Fu- modifications to be made to fields. Such operations might be
tures. Computation is decoupled from the expressions which "add this value to the values in this field" or "replace all of
reference values. Futures are, however, completely invisible to the values in the field". This avoids complex and potentially
the user in Poligon. It understands which functions are strict expensive expressions in the old value of the field being
in their arguments and so waits for the satisfaction of a Fu- evaluated non-locally.
ture only when it is required. The programmer can, of Ch Type Update
course, declare his own non-strict functions and operators. Updated Node an-instance-of-words
All DeFuturing coercions are performed automatically by the Updated Fields Sound "phoo"
Poligon system. Thus the following expression will deliver a Letters f 0 0 3
list with two elements, one of which is the value of a and one
of which is the sum of b and c. The first will be a future, if
a is. The second will be the DeFutured value b+c. 5. Conclusions

List(a, b+c) This paper has described Poligon, a language and system for
the investigation of problem solving on distributed-memory,

The efficient use of the bandwidth of the procecsor inter- parallel hardware. The language was described in the context
connection network is enhanced by the use of Broadcast and of related work in the field and in terms of the abstraction
Multicast operations. Broadcast messages allow messages to mechanisms provided. No significant description of the un-
be sent to every node in the system in a single operation. derlying run-time support has been given.
Multicast messages allow messages to be sent to a collection of
nodes in a single operation. The Poligon system uses these The Poligon system is still young. Only recently have ap-
extensively in the processing of the Bag data type and in the plications been mounted on it in earnesl Two distinct ap-
execution of groups of actions in parallel. It uses the same pications in the field of real-time signal processing are now
mechanisms to provide an efficient implementation for being implemented and more applications are likely to besahiga collection of nodes on the blackboard for patterns, started in the near future. Poligon has proved to be well
searching suited to these applications as far as they have gone. Nowhich tends to cause significant slowing of serial implemen- results from the simulation process regarding the performance
tations because of the combinatorial nature of such searches, of Poligon programs are yet available. Significant problems
It allows the blackboard to be searched for bags of matching have been found in the simulation of the fine-grained paral-
nodes in a single, fast operation. This provides a significant lelism required by the Poligon metaphor. Such simulations
improvement over the serial construction of such collections, are very time consuming, prone to bugs in the underlying sys-

tem software and simulator, and are difficult to debug. It is
for these reasons that Poligon also has a serial version,

4.5. Real-time processing Oligon, which accurately emulates the behaviour of the paral-
Real-time processing brings its own problems. Poligon lel system but without true parallelism. A simulated processor

provides a simple and regular mechanism for defining the in- array of 256 processors has recently been made available to
terface between the Poligon system and its signal data. This the users of Poligon. This simulation will allow more satis-
data can be from an arbitrary number of different types of factory investigation of the properties of Pogon program . s in
sources and is posted on the blackboard asynchronously. the future.

Poligon also provides a mechanism by which each datum is

6. Further Reading
For a significantly more detailed treatment of the Poligon7

The expression "Element Sound" denotes extracting one of the values as- language and system the reader is encouraged to consult [Rice
sociated with the "Sound" field of the potential element in the bag. "." is an 86].
operator that selects which of the values associated with the field is to be
delivered.
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The following topics were not described or discussed but are [Hayes-Roth 85)Barbara Hayes-Roth.relevant to the work described above. The reader is en- Blackboard Architecture for Control.couraged to consult the following for further information; Journal of Arficial Intelligence 26:251
• [KSL 851 for a description of the Advanced Ar- - 321, 1985.

chitectures Project of which Poligon is a part. [Hewitt 73] Hewitt, C., P. Bishop, and R. Steiger.
" [Delagi 86) for a description of CARE, the A Universal, Modular Actor Formalism forhardware simulator used by Poligon, and of the Artificial Intelligence.particular hardware being simulated. Proceedings of IJCAI-73 :235 - 245, 1973.
" [Schoen 86) for a description of CAOS, the con-

current object oriented system running on the (KSL 85) Knowledge Systems Laboratory.
CARE machine, which Poligon uses as its operat- Knowledge Systems Laboratory 85, incor-ing system. porating the Heuristic Programming
[ [Ensor 85), [Lesser 83), [Aiello 861 and [Fennel Project.

77) for other approaches to parallel problem solv- KSL, Dept of Computer Science, Stanford
ing using blackboard systems. University, 1985.

[Lesser 83) Lesser, Victor R. and Daniel D. Corkill.
References The Distributed Vehicle Monitoring Testbed:

A Tool for Investigation Distributed[Aiello 86] Aiello, Nelleke. Problem Solving Networks.
The Cage User's Manual. The Al Magazine Fall:15 - 33, 1983.
Technical Report KSL-86-23, Heuristic Pro-

gramming Project, C. S. Dept., Stanford [Nii 79) Nii, H. P. and N. Aiello.
University, 1986. AGE: A Knowledge-based Program for

Building Knowledge-based Programs.[Davies 86) Davies, Byron. Proc. of IJCAI 6 :645 - 655, 1979.
Carel: A Visible Distributed Lisp.
Technical Report KSL-86-??, Heuristic Pro- [Nii 86] Nii, H. P.

gramming Project, C. S. Dept., Stanford Blackboard Systems.
University, 1986. Al Magazine 7:2, 1986.

[Davis 77) Davis, R. and J. King. [Rice 84) Rice, J. P.
An Overview of Production Systems. The MXA user's and writer's companionIn E.W. Elcock and D. Michie (editor), Systems Programming Ltd, The Charter,Machine Intelligence 8: Machine Abingdon, Oxon, UK, 1984.

Representation of Knowledge, . John
Wiley, New York, 1977. [Rice 86] Rice, J. P.

The Poligon User's Manual.[Delagi 86) Bruce Delagi. Technical Report KSL-86-10, Heuristic Pro-CARE User's Manual gramming Project, C. S. Dept., StanfordHeuristic Programming Project, Stanford University, 1986.
University, Stanford, Ca. 94305, 1986. [Schoen 86) Schoen, Eric.

[Ensor 85) Ensor, J. Robert and Gabbe, John D. The CAOS System.
Transactional Blackboards. Technical Report KSL-86-22, Heuristic Pro-Proc. of IJCAI 85 :340 - 344, 1985. gramming Project, C. S. Dept., Stanford

[Fennel 77) Fennel, R. D. and Lesser, V. R. University, 1986.
Parallelism in Al problem solving: a case

study of Hearsay-ll.
IEEE Trans on Computers, C-26 :98-111,

1977.

[Gabriel 84) Gabriel, Richard P. and McCarthy, John.
Queue-based Multi-processing Lisp.
Proceedings of the ACM Symposium on Lisp

and Functional programming :25 - 44,
August, 1984.

[Halstead 84) Halstead, Robert II. Jr.
Implementation of Multilisp: Lisp.on a Mu!-

tiprocessor.
Proceedings of the ACM Symposium on Lisp

and Functional programming :9 - 17,
August, 1984.

-159-
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Abstract CARE environment. Section 3 discusses the ideas behind the CAOS frame-
work. Section 4 summarizes the CAOS programming environment, andThle CAOS system is a framework in which multiprocessor expert systems Section 5 describes its implementation. The final section details thle

may be developed. This report documents tile principal ideas, program- results of our experiments.

ming model, and implementation of CAOS. In addition, we describe a

working CAOS application, and discuss its performance over a class of
(simulated) multiprocessor architectures. 2 An Overview of CARE

CARE is a highly-parameterized and well-instrumented multiprocessor
I Introduction and Overview simulation testbed, designed to aid research in alternative parallel ar-

chitectures. It runs executes within lelios, a hierarchical, event-driven

This report documents the CAOS system, a portion of a recent experi- simulator which has been described elsewhere (3].

ment investigating the potential of highly concurrent computing archi- A typical CARE architecture is a grid of processing sites, intercon-

tectures to enhance the performance of expert systems. The experiment nected by a dedicated communications network. For example, the re-
focuses on the migration of a portion of an existing expert system appli- search discussed in this paper was performed on square arrays of hexago-

cation from a sequential uniprocessor environment to a parallel multi- nally connected processors (e.g., each processor is connected to six of its

processor environment, eight nearest neighbors, excluding processors at the edges of the grid).

The application, called ELINT, is a portion of a multi-sensor infor- Each processing site consists of an evaluator, a general-purpose pro-

mation fusion system, and was written originally in AGE[2], an expert cessor/memory pair, and an operator, a dedicated communications and

system development tool based on the blackboard paradigm. For the process scheduling processor which shares memory with the evaluator.
purposes of this experiment, ELINT was reimplemented in CAOS, an ex- Application-level computations take place in the evaluator, a componentperimental concurrent blackboard framework based on tse sxplicit ex- which is treated as a "black box" Lisp Drocessor. No portion of its inte-
change of messages en b lackboard agents bior is simulated; the host Lisp machine serves as the evaluator in each

CAOS, in turn, relies on services provided by tle underlying machine processing site. The operator performs two duties. As a communica-
environment. In the present set of experiments, the environment is a tions processor, it is responsible for routing messages between processing
simulation of a concurrent architecture, called CARE 5]. CARE simulates sites. As a scheduling processor, it queues application-level processes
a square grid of processing nodes, each containing a Lisp evaluator, for execution in the evaluator (we discuss the scheduling mechanism in

greater detail below). The operator is simulated and instrumented in
private memory, and a communications subsystem; message-passing is great detail.
the only means of interprocessor communication. CARE allows a number of parameters of the processor grid to be ad-

CAOS is principally an operating system, controlling the creation, ini- justed. Among these parameters are: the speed of the evaluator, the
tialization, and execution of independent computing tasks in response to speed of the communications network, and the speed of the process-
messages received from other tasks. Figure 1 illustrates the relationship switching mechanism. By altering these parameters, a single proces-
between the various software components of the experiment. sor grid specification can be made to simulate a wide variety of actual

multiprocessor architectures. For example, we can experiment with the
Foptimal level-of-granularity of problem decomposition by varying the

speed of both process-switching and communications.
CAOS Finally, CARE provides detailed displays of such information as eval-

uator, operator, and communication network utilization, and process
CARE scheduling latencies. This instrumentation package informs developers

of CARE applications of how efficiently their systems make use of the
HELIOS simulated hardware.

2.1 The CARE Programming Model
Figure 1. The relationship between ELINT, CARE, and CAOS CARE programs are made up of processes which communicate by ex-

changing messages. Messages flow across streams, virtual circuits main-

The following section briefly describes the salient features of the tamed by CARE. The following services are used by CAOS:

This research was supported by DARPA Contract F30602.85-C-0012, NASA New Process: Creates a new process on a specified site, running a spec-
Ames Contract NCC 2-220-S1, and Boeing Contract W266875. Eric Se~oen was ified top-level function. A new stream is returned, enabling the
supported by a felowship from NL Industres. "parent" of the process to communicate with its "child." Pointers
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to the stream may be exchanged freely with other known procees 3.1.1 Pipelsneng

on other sites. Pipelining is a common means of parallelizing tasks through a decom-
position into a linear sequence of independent stases. Each stage is

New Streari: Creates a new stream whose target is the creating process assigned to a separate processing unit, which receives the output from

Post Packet: Sends a message acros3 & specified stream to a remote the previous stage and provides input to the next stage. Optimally,
process. when the pipeline reaches a steady-state, each of its processors is busy

performing its assigned stage of the overall task.
Accept Packet. Returns the next message waiting on a specified stream. CAOS promotes the use of pipelines to partition an interpretation

If no message is waiting when this operation is invoked, the invok- task into a sequence of interpretation stages, where each stage of the
ing process is suspended and moved into the operator to await the interpretation is perfoemed by a separate agent. As data enters one
arrival of a message. agent in the pipeline, it is processed, and the results are sent to the

next agent. The data input to each successive stage represents a higherMemory in each processing 8ite is private. Ordinarily, intra-memory level of abstraction.

pointers may not be exchanged with processes in other sites. However,

any pointer may be encapsulated in a remote-address, and may then be
included in the contents of a message between sites. A remote address Advantages of Pipelining Sequential decomposition of a large task
does not permit direct manipulation of remote structures; instead, it is frequently very natural. Structures as disparate as manufacturing
allows a process in one site to peoduce a local copy of u structure in assembly lines and the arithmetic processors of high-speed computing
another site. systems are frequently based on this paradigm.

Scheduling on a CARE node is entirely cooperative, and is based on Pip-lining provides a mechanism whereby concurrency is obtained
message-passing. The message exchange primitives post-packet and without duplication of mechanism (that is, machinery, processing hard-
accept-packet form the basis of process scheduling. A process wishing ware, knowledge, etc). In an optimal pipeline of n processing elements,
to block (yield control of the evaluator) does so by calling accept- element I is performing work on task t+n- 1 when element 2 is working
packet to wait for a packet to arrive on a stream. The application on task t + n - 2, and so on, such that element n is working on task t.
program's scheduler awakens the process by calling post-packet to send As a result, the throughput of the pipeline is n times the throughput of
a packet to the stream. The process is placed on the queue of processes a single processing element in the pipeline,
waiting for the evaluator, and eventually regains control. The CAOS In the case of CAOs applications, the individual agents which com-
scheduler, which we describe in Section 5.3, is implemented in terms of pose an interpretation "pipeline" are themselves simple, but the overall
this paradigm. combination of agents may be quite complex.

Disadvantages of Pipelining Unfortunately, it is often the case that
3 The CAOS Framework a task cannot be decomposed into a simple linear sequence of subtasks.

Some stage of the sequence may depend not only on the results of its im-
CAOS is a framework which supports the execution of multi-processor mediate predecessor, but also on the results of more distant predecessors,
expert systems. Its design is predicated on the belief that future parallel or worse, some distant successor (e.g., in feedback loops). An equally
arcltectures will emphasize limited communication between processors disadvantageous decomposition is one in which some of the processing
rather than uniformly-shared memory. We expected such an architec- stages take substantially more time than others. The effect of either of
ture would favor coarse-grained problem decomposition, with little or these conditions is to cause the pipeline to be used less efficiently. Both
no synchronization between processors. CAOS is intended for use in these conditions may cause some processing stages to be busier than
real-time data interpretation applications, such as continuous speech others; in the worst case, some stages may be so busy that other stages
recognition, passive radar and sonar interpretation, etc [7,11]. receive no work at all. As a result, the n-element pipeline achieves less

A CAos application consists of a collection of communicating agents, than an n-times increase in throughput. We discuss a possible remedy
each responding to a number of application-dependent, predeclared mes- for this situation in the following subsection.
sages. An agent retains long-term local state. Furthermore, an arbitrary
number of processes may be acO: -. any one time in a single agent. 3.1.2 Replication

Whereas the uniprocessor u _kboard paradigm usually implies
pattern-directed, demon-triggered knowledge source activation, CAOS Concurrency gained through replication is ideally orthogonal to concur-
requires explicit messaging between agents; the costs of automatically rency gained through pipelining. Any size processing structure, from
communicating changes in the blackboard state, as required by the tra- individual processing elements to entire pipelines, is a candidate for
ditional blackboard mechamsm, could be prohibitively expensive in the replication. Consider a task which must be performed on average in
distributed-memory multiprocessor environment. Thus, CAOS is de- time t, and a processing structure which is able to perform the task in
signed to express parallelism at a very coarse grain-size, at the level time T, where T > t. If this task were actually a single stage in a larger
of knowledge source invocation in a traditional uniprocessor blackboard pipeline, this stage would then be a bottleneck in the throughput of the
system. It supports no mechanism for finer-grained concurrency, such as pipeline. However, if the single processing structure which performed
within the execution of agent processes, but neither does it rule it out. the task were replaced by TIt copies of the same processing structure,
For example, we could easily imagine the methods which implement the the effective time to perform the task would approach t, as required.
messages being written in QLisp (8], a concurrent dialect of Common
Lisp. Advantages of Replication The advantages of replicating process-

ing structure to improve throughput should be clear; n times the
3.1 The Structure of CAOS Applications throughput of a single processing structure is achieved with n times the

mechanism. Replication is more costly than pipelining, but it apparently
A CAos application is structured to achieve high degrees of concurrency avoids problems associated with developing a pipelined decomposition
in two principal imauncrs. piptliing and tplicaliiu. Pipuhinimzg i mubt of a task.
appropriate for representing the flow of information between levels of
abstraction in an interpretation system; replication provides means by Disadvantages of Replication Our works leads us to believe that
which the interpretation system can cope with arbitrarily high data such replicated computing structures are feasible, but not without draw-

backs. Just as performance gains in pipelines are impacted by inter-
stage dependencies, performance gains in replicated structures are im-
pacted by inter-structure dependencies.
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Consider a system composed of a number of copies of a single emitters. When ELINT creates an emitter, it is similar to a typical ex-
pipeline. Further, assume the actions of a particular stage in the pipeline pert system's drawing a conclusion about some evidence, as discussed
affects each copy of itself in the other pipelines. In an expert system, above, FLINT must create its emitters in such a way that the individ-
for example, a number of independent pieces of evidence may cause the ual observation handlers do not end up each creating copies of the same
system to draw the same conclusion, the system designer may require emitter. Consider the followingstrategies the observation handlers could
that when a conclusion is arrived at independently by different means, use to create new emitters:
some measure of confidence in the conclusion is increased accordingly.
If the inference mechanism which produces these conclusions is realized I The handlers could create the emitters themselves immediately.
as concurrently-operating copies of a single inference engine, the indi. Since the collection site may pass observations with the same id
vidual inference engines will have to communicate between themselves to each observation handler, it is possible for each observation
to avoid producing multiple copies of the same conclusions. A strin- handler to create its own copy of the same emitter. We reject this
gent consistency requirement between copies of a processing structure method.

decreases the throughput of the entire system, since a portion of the 2. The handlers could create the emitters themselves, but inform the
system's work is dedicated to inter-system communication. other handlers that they've done this. This scheme breaks down

when two handlers try simultaneously to create the same emitter.

3.2 Ani Example 3. The handlers could rely on a single emitter manager agent to cre-
We close this section by describing the organization of ELINT, illustrat- ate all emitters. While this approach is safe from a consistency
ing the benefits and drawbacks of the CAOS framework applied to this standpoint, it is likely to be impractical, as the single emitter
problem. FLINT is an expert system whose domain is the interpretation manager could become a bottleneck in the interpretation.
of passively-observed radar emissions. Its goal is to correlate a large
number of radar observations into a smaller number of individual signal 4. The handlers could send requests to one of many emitter man-
emitters, and then to correlate those emitters into a yet smaller number agers, chosen by some arbitrary method. This idea is nearly cor-
of clusters of emitters. ELINT is meant to operate in real time; emit- rect, but does not rule out the possibility of two emitter managers
ters and clusters appear and disappear during the lifetime of an FLINT each receiving creation requests for the same emitter.
run. The basic flow u." formation in FLINT is through a pipeline of the 5. The handlers could send requests to one of many emitter man-various agent types, whic, we now describe in detail.5.Tehnercodsndeqsttonef aymiera.

agers, chosen through some algorithm which is invariant with re-
spect to the observation id. This is in fact the algorithm in use in

Observation Reader Tvle observation reader is an artificat of the FLINT. The algorithm for choosing which emitter manager to use
simulation environment in whih FLINT runs. Its purpose is to feed radar is based on a many-to-one mapping of observation id's to emitter
observations into the system. The reader is driven off a clock; at each managers. 1
tick (1 FLINT "time unit"), it mupplies all observations for the associated
time interval to the proper obs&.rvation handlers. This behavior is similarto that of a radar collection site in an actual FLINT setting. Emitters Emitters hold some state and history regarding observations

of the sources they represent. As each new observation is received, it is
added to a list of new observations. On a regular basis, the list of new

Observation Handler Th e observation handlers accept radar obser- observations is scanned for interesting information. In particular, after
vatmons from associated radar collection sites (in the simulated system, enough observations are received, the emitter may be able to determine

the observations come from the observation reader agent). There may its heading, speed, and location. The first time it is able to determine

be a large number of observation handlers associated with each collec- ts inratondi ask atlusTe ar to it e tc teemie

tion site. The collection ite chooses to which of its many observation this information, it asks a cluster manager to either match the emitter

handlers to pass an observation, based on some scheduling criteria such to an old cluster or create a new cluster to hold the single emitter.

as random choice or round-robin. Subsequently, it sends an update message to the cluster to which it

Each observation contains an externally-assigned number to distin- belongs, indicating its current course, speed, and location.

guish the source of the observation from other known sources (the ob. Emitters maintain a qualitative confidence level of their own exis-

servation id is usually, but not always, correct). In addition, each obser- tence (possible, probable, and positive). If new observations are received
oation contains information about the observed radar signal, such as its often enough, the emitter will increase its confidence level until it reachesvaitn cornts infain aoratig the observedradarsignalhastit positive. If an observation is not received in the expected time interval,

quality, streiigth, line-of-bearing, and operating mode. The observation the emitter lowers its confidence by one step. If the confidence falls

does not contain information regarding the source's speed, flight path, below possible, the emitter "deletes" itself, informing its manager, and

and distance; FLINT will attempt to determine this information as it

monitors the behavior of each source over time. any cluster to which it is attached.

When an observation handler receives an observation, it checks the Cluster Managers The cluster managers play much the same role
observation's id to see if it already knows about the emitter. If it does, it in the creation of cluster agents as the emitter managers play in the
passes the observation to the appropriate emitter agent which represents creation of emitters. lowever, it is not possible to compute an invariant
the observation's source. If the observation handler does not know about to be used as a many-to-one mapping between emitters. If FLINT were
the emitter, it asks an emitter manager to create a new emitter agent, to employ multiple cluster managers, the best strategy for choosing
and then passes the observation to that new agent. which of the many managers would still result in the possible creation

of multiple instances of the "same" cluster. Thus, we have chosen to run
Emitter Manager There may be many emitter managers in the sys- FLINT with a single cluster manager. Fortunately, cluster creation is a
tern. An emitter manager's task is to accept requests to create em.tters rare event, and the single cluster manager has never been a processing
with specified id numbers. If there is no such emitter in existence when bottleneck.
the request is received, the manager will create one and return its "ad- As indicated above, requests from emitters to create clusters aredres, to th e "n observation hade If !fhere is i. h P. eMifter
dres" to the requesio eber. t..'n.andler specified as match requests over the extant clusters. Eimitters are
in existence when the request is received, the manager will simply return matched to clusters on the basis of their location, speed, and heading.
its address to the requestor. This situation arises when one observation However, the cluster manager does not itself perform this matchig op-
handler requests an emitter than another observation handler had pre- eration. Although it knows about the existence of each cluster it has
viously requested. created, it does not know if the cluster has changed course, speed, and/or

The reason for the emitter manager's existence is to reduce the
amount of inter-pipeline dependency with respect to the creation of The algorithn computes the observation id modulo the number of emitter man

agers, and maps that number to a particular manager.
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direction since it was originally created. Thus, the cluster manager asks
each of its clusters to perform a match. (defagent agent-name (parent, ... parent,)

If cither none of the clusters responds with a positive match, a new (localvars variable1 ... variable,)
cluster is created for the emitter; if one cluster responds positively, the (messges messagel ... message,,)
emitter is added to the cluster, and is so informed of this fact; if more (symbolically-referenced-agents agent, ... agent,))
than one cluster responds positively, an error (or a mid-air collision)
must have occured. Figure 2: The basic form of def agent

Clusters The radar emissions of clusters of emitters often indicates
the actual behavior of the cluster. Cluster agents, therefore, apply
heuristics about radar signals to determine whether the behaviors of
the clusters they represent are threatening or not. This information,
along with tie course parameters of each radar source, is the "output"
of the ELINT system. A cluster will delete itself if all constituent emitters
have been deleted.

4 Programming in the CAOS Framework
CAOS is package of functions on top of Lisp. These functions are parti-
tioned into three major classes: (defagent el-emitter (process-agenda-agent)

" Those which declare agents. (localvars
(process-agenda '(el-undo-collection-id-error

" Those which initialize agents. el-change-cluster-association
el-emitter-update-on-time-tick

Those which support communication between agents, el-initialize-mitter

We now describe the CAOS operators for each of these classes. el-update-emitter-fro-observation))
(last-observed -1000000)
(cluster-manager 'cluster-manager-0)

4.1 Declaration of agents manager

Agents are declared within an inheritance network. Each agent inher- id
its the characteristics of its (multiple) parents. The simplest agent, type
vanilla-agent, contains the minimal characteristics required of a func- observed
tional CAOS agent. All other CAOS agents reference vanilla-agent fixes
either directly or indirectly. Another predeclared agent, process- last-heading
agenda-agent, is built on top of vanilla-agent, and contains a priority last-mode
mechanism for scheduling the execution of messages. confidence

Application agents are declared by augmenting the following char- cluster
acteristics of the base or other ancestral agents: new-obssrvations-since-time-tick-flag

id-errors
Local Variables: An agent may refer freely to any variable declared lo- gc-flag)

cal. In addition, each local variable may be declared with an initial (messages
value. el-update-emitter-from-observation

el-init ialize-esmitter
Messages: The only messages to which an agent may respond are those el-change-uster

declared in this table. This simplifies the task of a resource allo- el-change-cluster-association

cator, which must load application code onto each CARE site. el-undo-collection-id-error)
(aymbo1ically-ret arsnced-agents

Symbolically Referenced Agents: Some agents exist throughout a CAOS el-collection-reporter-0
run. We call such agents static, and we allow code in agent message el-correlation-reporter-O
handlers to reference such agents by name. Before an agent begins el-threat-reportsr-0
running, each symbolic reference is resolved by the CAOS runtimes. el-cluster-manager-0

el-cluster-manager-1
There are a number of additional characteristics; nost of these are sl-cluster-manager-2

used by CAOS internally, and we will document these in the next section. el-big-ear-handler
The basic form for declaring a CAOs agent is defagent. It has the el-gotcha-handler

form illustrated by Figure 2. The first element in each sublist is a el-emitter-trace-reporter-0))
keyword; there are a number of defined keywords, and their use in an
agent declaration is strictly optional. An agent inherits the union of
the keyword values of its parents for any unspecified keyword. Of those Figure 3: The emitter agent
keywords which are specified, some are combined with the union of the
keyword values of the agent's parents, and others supersede the values

the -r--eee. Figure 3 conta"'- the declaration of the enif .-I agent,
one of the most complex examples in ELINT.

As we discuss in the next section, defagent forms are translated by
CAOS into Flavors defflavor forms [4]. CAOS messages are then defined
using the defmothod function of ZETALISP. These methods are free to
reference the local variables declared in the def agent expression.
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(caos-initialize 4.3 Communications Between Agents
((agent - name5 agent - class site - address) Agents communicate with each other by exchanging messages. CAOS

does not guarantee that messages reach their destinations: due to ex-
((iihal - messagel) cessive message traffic or processing element failure, messages may be

delayed or lost during routing. It is the responsibility of the application
Figure 4: The basic CAOS initialization form program to detect and recover from lost messages. Commensurate with

the facilities provided by CARE, messages may be tagged with routing
priorities; however, higher priority messages are not guaranteed to arrive

(caos-initialize before lower-priority messages sent concurrently.
((el-observation-reader-O el-observation-reader (2 2)) Two classes of messages are defined: those which return values
(el-big-ear-handler-i el-observation-handler (1 1)) (called value-desired messages), and those which do not (called side.
(el-big-ear-handler-2 el-observation-handler (1 i)) effect messages). The value-desired-messages are made to return their
(el-gotcha-handler-1 el-observation-hsndler (1 2)) values to a special cell called a future. Processes attempting to access
(el-gotcha-handler-2 el-observation-handler (1 2)) the value of a future are blocked until that future has had its value set.
(el-emitter-anager-O el-emitter-manager (2 1)) It is possible for the value of a future to be set more than once, and it
(el-emitter-manager-i el-emitter-manager (2 2)) is possible for there to be multiple processes awaiting a future's value
(el-collection-reporter-O el-collection-reporter (1 2)) to be set.3
(el-correlation-reporter-O el-correlation-reporter

(1 3)) 4.3.1 Sending messages
(el-threat-reporter-O el-threat-reporter (1 3))
(el-emitter-trace-reporter-O el-emitter-trace-reporter The CARE primitive post-packet, which sends a packet from one pro.

(3 2)) cess to another, is employed in CAOS to produce three basic kinds of
(el-cluster-trace-reporter-O el-cluster-trace-reporter message sending operations:

(3 i))
(el-cluster-manager-0 el-cluster-manager (2 1))) post: The post operator sends a side-effect message to an agent. The

((post el-observation-reader-0 nil sending process supplies the name or pointer to the target agent,
'el-open-observation-file the message routing priority, the message name and arguments.
*elint-data-file*) The sender continues executing while the message is delivered to

(post el-collection-reporter-O nil the target agent.
'el-initialize-reporter t post-future: The post-future operator sends a value-desired mes-
"elint:reports;collections.output") sage to the target agent. The sending process supplies the same

(post el-correlation-raporter-O nil parameters as for post, and is returned a pointer to the future
'el-initialize-reporter t which will eventually by set by the target agent. As for post, the
"elint:reports;correlatione.output") sender continues executing while the message is being delivered

(post el-threat-reporter-O nil and executed remotely.
'el-initialize-reporter t
"elint : reports; threats. output") A process may later check the state of the future with the futurs-

(post el-emitter-trace-reporter- nil satisfied? operator, or access the future's value with the value-
'initialize-trace-reporter t future operator, which will block the process until the future has
"elint:reports;emitter.traces") a value.

(post el-cluster-trace-reporter-C nil post-value: The post-value operator is similar to the post-future
'initialize-trace-reporter t operator; however, the sending process is delayed until the target
"elint:reports;cluater.traces"))) agent has returned a value, post-value is defined in terms of

post-future and value-future.

.Figure 5: The initialization declaration for ELINT. 4.3.2 Detecting Lost Messages

4.2 Initialization of agents It is possible to detect the loss of value-desired messages by attaching a
timeout to the associated future. The functions post-clocked-future

The initial CAOS configuration is specified by the caos-initialize op- and post-clocked-value are similar to their untimed counterparts, but
erator, which takes the form illustrated by figure 4, for example, figure 5 allow the caller to specify a timeout and timeout action to be performed
is ELINT'S initialization form. if the future is not set within the timeout period. Typical actions include

The first portion of the form creates the static agents. In figure 5, setting the future's value with a default value, or resending the original
a static agent named el-gotcha-handler-I, an instance of the class message using the repost operator.
el-observation-handler, is created on the CARE site at coordinates
(1,2) in the processor grid. 4.3.3 Sending to Multiple Agents

The second portion of the form is a list of LISP expressions to be eval-
uated sequentially when CAOS'S initialization phase is complete. Each There exist versions of the basic posting operators which allow the same
expression is intended to send a message to one of the static agents de- message to be sent to multiple agents.4 multipost sends a side effect

lared in the first part of the form. These messages 3erve to initialize message to a list of agents; multipost-future and multipost-valut,
the application; in figure 5, the initialization messages open log files and send a value-desired message to a list of agents. In the latter case, the
rtart the proceting of ELINT obecrv:,tions aqoriRated f,,lrP ig artiially a lih fuimt,,r.'s fli fNhif,re is vnt cnPqid~rad

Agents may also be created dynamically. The create-agent- set until all target agents hav responded. The value of such a message
instance function accepts an agent class name and a location is an association-list; each entry in the list is composed of an agent

specification; 2 the remote-address of the newly-created agent is re- name or remote-address and the returned message value from that

turned. While dynamically created agents may not be referenced sym- 
3

Futures were also used in QLisp and Multihsp [9]. The IIEP Supercomputer (6)
bolically, their remote-address's may be exchanged freely. implemented a simple version of futures as a process synchronizaton mecanism.

4NeitherCAOS nor CARE currently suppert a predicated multicast mode, wherein2
Currently, agents may be created at or near specified CARE sites CAOS makes messages would sent to all agents satisfying a particular predicate, messages can only

no attempt at dynamic load balancing. be sent to a fully-specified list of agents,
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agent. There exist clocked versions of these functions (called, naturally, their class, and contain static local storage in the form of instance van-
multipost-clocked-future and multipost-clocked-value) to aid in ables. Classes are defined within an inheritance network; each instance
detecting lost multicast messages. contains the instance variables and responds to the messages defined in

its class, as well as those of the classes from which its class inherits.

4.4 Communications Between Processes An appropriate usage for Flavors is the modelling of the behavior of
objects in some (not necessarily real) world. For example, CAOS site and

Processes in each agent communicate using the shared local variables agents structures are realized as Flavors instances. The characteristics
declared in the agent. Besides sharing previously computed results this to be modelled are codified in instance variables and message names.
way, processes may also share the results of ongoing computations. In a well-designed application, messages and variables are consistently

Consider the following scenario: within aii agent, some process is named; thus, the implementation of a particular behavior is totally en-
currently computing some answer. At the same time, another process capsulated in the anonymous function which responds to a message.
begins executing, and realizes somehow that the answer it needs to
compute is the same answer the other process is already computing. 5.1.1 Extending the Notion
The second process could take one of two actions: it could continue
computing the answer, even though this would mean redundant work, l i some sense, a Flavors instance is an abstract data type. The instance
or it could wait for the first process to complete, and return its answer, holds state, and provides advertised, public interfaces (mesages) to
The second approach is feasible, but it does tie up resources in the form functions which change or access its state. The internal data represen-
of an idle process. tation and implementations of the access functions are private.

The CAOS operators attach and my-handle offer a third alternative In Flavors, the abstract data type notion is unavailable within an
solution. If a process knows it may ultimately produce an answer needed individual instance. Frequently, the individual instance variables hold
by more than one requesting agent, it obtains its "handle" (Section 5.4) complex structures (such as dictionaries and priority queues) which
by calling my-handle, and places it in a table for other processes to ought to be treated as abstract data types, but there exist no common
reference. Any other process wishing to return the same answer as the means within the standard Flavors mechanism for doing so.
first calls attach, with the first process's handle as argument. The first CAOS, however, supports such a mechanism, by providing a means
process returns its answer to all requesting agents waiting for answers of sending messages to instance variables (rather than to the instances
from the other processes, and the other processes return no value at all. themselves). The instance variables are thus able to store anonymous

structures, which are initialized, modified, and accessed through mes-
sages sent to the variable. Similar mechanisms exist in the Unit Package

4.5 What CAOS Offers Over CARE (14] and in the STROBE system (13), both frameworks for representing

CAOS is a large system. It is reasonable to ask what advantages there structured knowledge.
are to programming in CAOS as opposed to programming in CARE. We The CAOS environment includes a number of abstract data types
believe there are three major advantages: which were found to be useful in supporting its own implementation.

The most commonly used are:
Clarity: The framework in which an agent is declared makes explicit

its storage requirements and functional behavior. In addition, the Dictionary: The dictionary is an association list. It responds to put,
agent concept is a helpful abstraction at which to view activity get, add, forget, and initialize messages.
in a multiprocessing software architecture. The concept lets us
partition a flat collection of processes on a site into groups of Sorted Dictionary: The sorted-dictionary is also implemented as an as-
processes attached to agents on a site. CAOS guarantees the only sociation list, and responds to the same messages as does the stan-
interaction between processes attached to different agents is by dard dictionary. lowever, the sorted-dictionary invokes a user-
message-passing. supplied priority function to merge new items into the dictionary

(higher-priority items appear nearer the front of the dictionary).
Convenience: The programmer is freed from interfacing to CARE'S low- This dictionary is able to respond to the greatest message, which

level communications primitives. As we said earlier, CAOS is baQi- returns the entry with the highest priority, and to the next mes-
cally an operating system, and as such, it shields the programmer sage, which returns the entry with the next-highest priority as
from the same class of details a conventional operating system compared to a given entry.
does in a conventional hardware environment. The sorted-dictionary is used primarily to hold time-indexed data

Flexibility: Currently, CARE schedules processes in a strict first-in, first- which may be collected out-of-order (e.g. when data for time n+ 1
out manner. CAOS, on the other hand, can implement arbitrary may arrive before data for time n).
scheduling policies (though at a substantial performance cost; we
discuss this in Section 6). Hash Dictionary: The hash-dictionary is implemented with a hash ta-

ble, and responds to the same messages as the unsorted association

5 The Runtime Structure of CAOS list dictionary.
Queue: The queue data type is a conventional first-in, first-out storage

CAOS is structured around three principal levels, site, agent, and pro- structure. The put message enqueues an item on the tail of the
cess. Two of these levels-site and process-reflect the organization of queue, while the get message dequeues an item from the head of
CARE; the remaining (agent) level is ami artifact of CAOS. We discuss the queue.
first the general design principles underlying CAos, and then describe Priority Queue: The priority-queue data type supports a dynamic heap-
in greater detail the functions and structure of each of CAOS'S levels. sort, and is implemented as a partially-ordered binary tree. It re-

sponds to put, get, and initialize messages. Associated with
5.1 General Design Principles the queue is a function which computes and compares the priority

The implementation of CAOs described in this paper is written in ZETAL- of two arbitrary queue elements; this function drives the rebalauc-

ISp, a dialect of Lisp which runs on a number of commercially available ing of the binary tree when ekments are added or deleted.

single-user Lisp workstations. ZETALISP includes an object-oriented pro- Monitor. A monitor provides mutual exclusion within a dynamically-
gramming tool, called Flavors, which has proved to be a very powerful scoped block of Lisp code. It is similar in implementation to the
facility for structuring large Lisp applications. monitors of Interlisp-D and Mesa [10].

In Flavors, the behavior of an object is described by templates known If the monitor is unlocked, the obtain-lock message stores the
as classes. An instance, a representation of an individual object, is cre-
ated by instantiating a class. Instances respond to messages defined by caller's process id as the monitor's owier, and marks the monitor
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as locked; otherwise, if the monitor is locked, the obtain-lock request-symbolic-reference: Whenever a static agent is c -ated, it
message places the caller'a process id on the tail of the monitor's runs an initialization function, which among other tasks, caches
waiting queue, and suspends the calling process, needed agent name-to-address translations. For each translation,
The release-lock message removes the process id from the head the agent sends this message to its site manager. If the site man-
of the monitor's waiting queue, maiks the monitor's owner to be am- can resolve the name upon receipt of the message, it responds
that id, and reschedules th' - ociated process. 'ediately; otherwise, it queues the request in the unresolved-
Monitors are normally a, using the with-monitor form, .gent-stream-table, and defers answering until it is able to sat-
which accepts the name of an asiance variable containing a mon- isfy the request. Tlte requesting agents waits until it has received
itor, and which cannot be entered until the calling process obtains the answer before requesting another translation.
ownership of the monitor. The with-monitor form guarantees make-new-agent: This message is sent to a site to cause a new agent
ownership of the monitor will be relinquished when the calling to be created during the course of a CAos run. The site manager
process leaves the scope of the form, even if an error occurs, creates the new (dynamic) agent and returns the agent's input

stream to the sender of this message. The newly-created agent
5.2 The CAOS Site Manager is not placed in the static-agent-stream-table; thus, the only

way to advertise the existence of such a dynamically-created agentThe site manager consists of a Flavors instance containing information way to aortise the returend op tream t
global to the site-information needed by all agents located on the site. In is by the creator of an agent pa.sing the returned input stream to
addition, the site manager includes a CARE-level process which performs other agents.
the functions of creating new agents and translating agent names into
agent addresses, as described below. 5.3 The CAOS Agent

The following instance variables are part of the site ma-age,: As discus' -d above, CAOS agents are implemented as Flavors instances.

inconing-stream: This instance variable contains the CARE input Their class definitions are defined by translating defagent expres-
stream address on which the site manager process listens for re- sions into defflavor expressions. CAOS itself defines two basic agent
quests. Agents needing to send messages to their -ie! manager may classes: vanilla-agent and process-agenda-agent. vanil.Aa-agent
reference this instance variable in order to discover the address to define, the minimal agent; process-agenda-agent is defined in terms
which to direct site requests. of vanilla-agent, but adds the ability to assign priorities to messages.5

These basic agents are fully-functional, but lack domain-specific "knowl-static-agent-stream-table: This instance variable is a dictionary edge," and cannot be used directly in problem solving applications.
which maps agent name3 into the CARE streams which may be used As stated in the previous section, a CAos agent is a multiple-process
to communicate with the asents. The entries in this dictionary entity. Most of these processes are in created in the course of problem-
reflect statically-created agents; new entries are adde;d as the result solving activity; we refer to these as user processes. At runtime, however,of ne-initial-agent-online messages directed to the site (see there are always two special processes associated with each CAOS agent.
below). The dictionary is used to resolve agent name ) address One of these processes monitors the CARE stream by which the agent
requests from agents created locally, is known to other agents. The other participates in the scheduling of

unresolved-agent-stream-table: The site manager keeps track of user processes. We shall refer to the first of these processes as the
agent names it is not able to translate to addresses by placing agent inp montoer, and to the second of these processes as the agent
unsatisfiable request-symbolic-reference requests in this dic- scheduler. We explain in detail the functioning of these two processes
tionary. The keys of the dictionary are unresolvable agent names. in the next subsection.
As the agent names become resolvable, the unsatisfied requests We describe here th role of important instance variables in a basic
are satisfied, and the corresponding entries are removed from the CAOS agent:
dictionary. sell-address: This instance variable is an analogue of Flavors' sell
After the in''Galizatton phase of a CAOS application has completed, variable. Whereas self is bound to the Flavors instance un-
there will be no entries in this dictionary in any of the sites. der which a message is executing, self-address is bound to the

oLal-agents: This instr.nce variable is a dictionary whose keys are the stream of the agent under which a CAOS message is executing.

names of agents located on the site, and whose values are point- Thus, an agent can post a message to itself by posting the mes

ers to the Flavors instances which represent each agent. local- sage to self-address.

agents is used onty for debugging and suatns-reporting purposes. runnable-process-stream: This instance variable points to the

free-process-queue: When a CARE proce; which was created to ser- stream on which the scheduler process listens. Processes which
vice a request finishes its wor', it tries to perform another task need to inform the scheduler of various conditions do so by send-
for the agent in which it was created. If the agent has no work ing CARElevel messages to this stream.
to do, the process suspends itzelf, after enqueuing identifving in- running-processes: This variable holds the list of user processes
furmation in this instance variable, which holds a queue abstract which are currently executing within the agent. The current ARE
data type. When any agent on the same site needs a new process architecture supports only a single evaluator on each site. CAOS
to servi-e some request, it checks this queue first; if there are any tries to keep a number of user processes ready to execute at all
suspended (free) processes waiting in this queue, it dequeues one times; thus, the single CPU is kept as busy as possible.
and gives it a task to perform. If this queue is empty, the agent
asks CARE to create a new process. runnablo-process-list: A priority queue containing the runnable

The site manager responds to the following messages: user proc-ses. As a process is entered on the queue, its priority i6
calculate4 to determine its ranking in tho partial ordering. There

new-initial-agent-online: As each static agent starts running dur- are two available priority evaluation functions: the first computes
ing initiali7ation el a CAOS , n, it broadcasts its n ae and CARE the priority based solely on the time the process entered the sys-
input stream to every site in the system, using this message. The tem; the second considers the assigned priority of the executing
correspondence between the sending agent's name and address is message before considering the entry tine of the process. These
placed in the static-agent-stream-table dictionary for future two functions are used to implement the scheduling algorithms of
reference by agents located on the receiving sites, If any agents the vanilla-agent and the process-agenda-agen., respectively.
have placed requests for this new agent in the,,, / .- olve ,gent-
stream-table, messages containimig the in' i' F, i, 'us. or' SThis is important for applications in which one agent must rtspond rapidly to

a posting from another agent. Assigning a message a high priority will cause that
address are sent to the waiting agents. message to be processed ahead 4 f any other messages with lower priorities.
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scheduler-lock: The scheduler data structures are subject to modifi- hence, will be awakened by the message sent from the input monitor.
cation by any number of processes concurrently, The scheduler- The scheduler then computes the priority of the message, and places the
lock is a monitor which provides mutual exclusion against simul- runnable-iten in its runnable-process-list.
tancous access to the scheduler database. If the agent's runnable-process-list is not empty, the input mon-

itor computes the message's priority and places the .'unnable-item on

5.4 The CAOS Process the runnable-procss-list itself. When the qu.-ue is not empty, it is
guaranteed that the scheduler will examine the queue sometime in the

In this subsection, we describe the mechanism by which CAOS user pro- future to make scheduling decisions; thus, it is not necessary to send any
cesoes are scheduled for execution on CARE sites. User processes are messages to the scheduler to inform it of the existence of new processes.
created in response to messages from other agents. Associated with
each user process is a data structure called a runnable-item. The 5.5.2 Creating Processes
runnable-itm contains the following fields: Eventually, the newly-created runnable-item will reach the head of
Tesage-name, -args, -xd, -answer-targets: These fields store the agent-2's runnable-process-list. At this time, there is still no pro-

information necessary to handle a message request and send the cess associated with the item, so the scheduler creates a process using
resulting answer back to the proper agents. the facilities of CARE, adds the process to the running-processes list,

and passes it its runnable-item. The process will eventually gain con-
for-effect: This field is a boolean, and indicates whether the message trol of the evaluator, and will set the state of its runnable-item to

is being executed for effect or value. This corresponds directly to running. It 'ben begins executing the requested posting.
the source of the message coming from a post operation or a
post-future operation. 5.5.3 Requesting Remote Values

state: This field indicates the state of the process. The possible states At some point, the process executing on agent-2 requires a value from
that a process may enter, and the finite state machine which de- At om point, t pos-ex e oneatento require a vle fromfines tihe state transition are discussed in tihe next subsection. agent-3, and perf'oims a post-value operation to acquire it. The pro

cess looks up the address of agent-3, and posts a message which con-
context: This field contains a pointer to the CAR! stream upon which tains the appropriate message name, arguments, id, and answer target.

the proo'ss waits when it not runnable. A process (such as the The message-id unambiguously identifies the future upon which the
scheduler) wishing to wake another process simply sends a message process will be waiting for the value to be returned. The answer target
to this stream. The suspended process will thus be awakened (by is the agent's own self-address; when the answer is received by the
CARE). input monitor process, it will be forwarded to the appropriate future,

and the process will be reawakened.
time-stamp: This field contains he time at which the process entered In the meantime, the process sets its state to suspended, removes

the system. It is used by the functions which calculate the execu- its runnable-item from the runnlng-processes list, and appends it to
tion priority of processes. the list of processes already waiting for the future to be satisfied. If the

The CAOS scheduler's only handle on a process is the process's runnable-process-list is not empty, the suspending process wakes

runnable-item. In fact, the only communication between a user process the process at the head of the queue.6 The suspending process then

and the CAOS scheduler consists of the exchange of runnable-item's. waits for a message on its wakeup stream, the stream whose address is
in the context field of its runnable-item.

Z.5 Flow of Control 5.5.4 Answer Processing

In the following, we detail how a user process, the CAOS input moni- Some time later, agent-3 will have completed its computations, and
tor, and tile CAOS scheduler intract to process a message request from will have returned the desired answer to agent-2. The answer will be

a remote agent. For purposes of exposition, we assume the fohlowiig received by agent-2's input monitor process, which will recognize the
sequence of events: input as a value to be placed in a future. The input monitor sets the

1. An agent, agent-i, executes a post operation, with agent-2 as value field of the appropriate future, and moves the runnable-items of

the target. The posting is for the message named message-a. the processes waiting on the future to the runnable-process-list.
It the queue was previously empty, the agent must have been (or

2. agent-2 receives and executes the posting. In order to complete will soon be) entirely idle; thus, the runnable-iteas are sent to the
the execution of message-a, it must perform a post-value oper- scheduler in a message, causing the scheduler to be reawakened. If the
ation to a third agent, agent-3. queue was not previously empty, the agent must be busy, so the items

are simply added to the queue acc-rding to their priorities. In both
We begin at the point where agent-i has perfcrmed its post oper- cases, the runnable-:items are placed in the runnable state.

ation.

5.5.5 Reawakening Suspended Processes
5.5.1 Input Processing When the runnable runnable-item reaches the head of agent-2's
The input momtor process handles requests and responses from remote runnable-process-lxst, a message (which contains no useful infor-
agents. When the mesrage from agent-1 enters agent-2, its input mation) is sent to its associated process's wakeup stream. As a result,
monitor creates a new runnable-tem to hold the state of the request. process eventually wakes up, gains control of the evaluator, and sets its
The message name, arguments, id, and answer targets are copied from state to running.
the incoming message into the runnable-item The runnable-item's
state is set to never-run, and its time stamp is set. to the current timp 5.5.6 Complcting Computation
In order to queue the message for execution, the input monitor takes
one of tgo actions. A process may perform any number of post, post-future, or post-

If the agent's runnable-process-list is empty, the runnable- value operations during its lifetime. Eventually, however, the process

item is sent in a message to the agent scheduler process (by send- Oln effect, the process takes on the role of the scheduler. Although the system
ing the item in . message to the stream whose address is found in would comutinue to work with only a designated scheduler process performing sched-
the agent's runnable-process-stream instance variable). When the uler duties, this arrangement permits scheduling to take place with minimal latency

agent's runnable-process-list is empty, the scheduler process is guar- As a result, fewer evaluator cycles are wasted waiting for the schedulcr process to

anteed to be waiting for messages sent to the scheduler stream, and ru the next user process.
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will complete, having computed a value which may or may not be sent (t'IFO). In such agents, we could reduce the CAoS runtimes to simple
back to the requesting agent. If the process was suspended for any functional interfaces to CARE. We anticipate such an approach would
portion of its lifetime, another process may have attached to it; in this be much more efficient.
case, the process may have more than one requesting agent to which to
return an answer. 6.1.3 Scalability

Before the process terminates, it exam.nes the head of the runnable-
process-1ist. If the queue is empty, the process simply goes away. A system which scales well is one whose performance increases com-
If the runnable-item at the head of the queue is runable, it sends mensurately with its size. Scalability is a common metric by which
the appropriate message to awaken the associated process. Finally, if multiprocessor hardware architectures are judged. does a 100-processor
the item is never-run, the process makes itself the process associated realization of a particular architecture perform 10 times better than a
with this new runnable-±tem, and executes the new message in its own 10-processor realization of the same architecture? Does it perform 5
context.' Barring this possibility, the process "queues" itself on a free times better? Only just as well? Or Worse? In hardware systems, scal-
process queue associated with the site manager; when a new process ability is typically limited by various forms of coniention in memories,
is needed by an agent on the site, one is preferentially removed from busses, etc. The 100-processor system might be slower than the 10-
this queue and recycled before a entirely new process is created. This processor system because all interprocessor communications are routed
way, processes, which are expensive to create, are reused as often as through an element which is only fast enough to support 10 processors.
possible. We ask the same question of a CAOS application: does the through-

put of ELINT, for example, increase as we make more processors available
to it? This question is critical for CAoS-based real-time interpretation

6 Results and Conclusions systems; our only means of coping with arbitrarily large data rates is
by increasing the number of processors. Section 6.2 discusses this issue

The CAOS system we have described has been fully implemented and in detail.
is in use by two groups within the Advanced Architectures Project. We believe CAOS scales well with respect to the number of available
CAOS runs on the Symbolics 3600 family of machines, as well as on processors. The potential limiting factors to its scaling are (1), increased
the Texas Instruments Explorer Lisp machine. ELINT, as described in software contention, such as inter-pipeline bottlenecks described in See-
Section 3.2, has also been fully implemented. We are currently analyzing tion 3.1.2, and (2), increased hardware contention, such as overloaded
its performance on various size processor grids and at various data rates. processors and/or communication channels. Software contention can be

minimized by the design of the application. Communications contention

6.1 E- luating CAOS can be minimized by executing CAOS on top of an appropriate hardware
architecture (such as that afforded by CARE); CAOS applications tend

CAOS is a rather special-purpose environment, and should be evaluated to be coarsely decomposed-they are bounded by computation, rather
with respect to the programming of concurrent real-time signal inter- than communication-and thus, communications loading has never been
pretation systems. In this section, we explore CAOS's suitability along a problem.
the following dimensions: Unfortunately, processor loading remains an issue. A configuration

" Expressiveness with poor load balancing, in which some processors are busy, while oth-
ers are idle, does not scale well. Increased throughput is limited by

" Efficiency contention for processing resources on overloaded sites, while resources
on unloaded sites go unused. The problem of automatic load balancing

* Scalability is not addressed by CAOs; agents are assigned to processing sites on
a round-robin basis, with no attempt to keep potentially busy agents

6.1.1 Expressiveness apart.

When we ask that a language be suitably expressive, we ask that its
primitives be a good match to the concepts the programmer is trying to 6.2 Evaluating ELINT Under CAOS
encod. The programmer shouldn't need to resort to low-level "hack- Our experience with FLINT indicates the primary determiner of through-
cry" to implement operations which ought to be part of the language. put and answer-quality is the strategy used i making individual agentr
We believe we have succeeding in meeting this goal for CAOS (although cooperate r producing the desired interpretation. Of secondary impor-
to date, only CAOS i in CAOS applications). Pro- tance is the degree to which processing load is evenly balanced over the
gramming in CAOS is programming in Lisp, but with added features processor grid. We now discuss the impact of these fctors oi FLINT'S
for declaring, initializing, and controlling concurrent, real-time signal proce .interpretation applications, performance.

The following three strategies were used in our experiments:

6.1.2 Efficiency Nc: This strategy represents limited inter-agent control. No attempt
is made to prevent concurrent creation of multiple copies of the

CAOS has a very complicated architecture. The lifetime of a message, isae agent ossibilit ai n multiple reqests to

as described in Section 5.5, involves numerous processing states and "same" agent (this possibility arises when multiple requests to

scheduler interventions. Much of this complexity derives from the de- create the agent arrive simultaneously at a single manager). As

sire to support alternate scheduling policies within an agent. The cost a result, multiple, non-communicating copies of an abstraction

of this complexity is approximately one order of magnitude in process- pipeline are created; each receives a only portion of the input data

ing latency. For the common settings of simulation parameters, CARE it requires. The Nc strategy was expected to produce poor results,ing atecy.Forthe ommn sttigs o siulaionparaetes, AREand was intended only as a baseline against which to compare more
messages are exchanged in about 2-3 milliseconds, while CAOS messages reasintrol s a e

require about 30 milliseconds. It is this cost which forces us to decom- realistic control strategies.

pose applications coarsely, since more fine-grained decompositions would .c., In this strategy, the manager agents assure that only one copy of
inevitably require more message traffic, a agent is created, irrespective of the number of simultaneous cre-

We conclude that CAOS does not make efficient use of the under- ation requests; all requestors are returned pointers to the single
lying CARE architecture. A compromise, which we are just beginning new agent. Originally, we believed the cc (for "creation control")
to explore, would be to avoid the complex flow of contr , described in strategy would be sufficient for ELINT to produce correct high-level
Section 5.5 in agents whose scheduling policies are the same as CARE'S interpretations.

7
Tlus is another situation in which an application process performs sdleduling CT. The CT ("creation and time control") strategy was designed to

duties, manage skewed views of real-world time which develop in agent
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FLINT Control Type/Grid Size Control Message Count
Performance INC I CC CC CT JCT I CT Type11 2X21 4X4 I~x1
Dimension 1 4x4 4x4 4 6x6 2x2 4x4 Ix6 TeNC >[ 16118

FALSE ALARMS 1 0 0 0 0 0 CC 7376
REINCARNATION 49 42 2 0 0 0 C T1 1
CONFIDENCE LEVEL 19 20 90 89 93 951C616

FIXES 48 42 99 100 100 100
FUSION 0 0 77 85 88 89 Table 3: Number of messages exchanged during an FLINT run (1 FLINT

time unit = 0.1 seconds).

'Table 1: Quality of FLINT performance of various grid sizes and control
strategies (1 ELIN'r time unit = 0.1 seconds). GRID

SIZE xlI 2x2 3x3 4x4 5x5 6x6
SIMULATED

Control I Simulated Time (see TIME (sec) 9.42 3.20 1.49 0.74 0.52 0.56
Type 12x21 4x4 6x6

NC > 1 1. 19w
CC 10.87 5.12 Table 4: Overall Simulation Times for CT Control Strategy (1 FLINT
CT 11.80 8.10 4.17 time unit = 0.01 seconds, debugging agents turned off).

Table 2. Simulated time required to complete an FLINT run (1 FLINT Fusion. This attribut k is the percentage of correct clustering of emitter
time unit = 0.1 seconds). agents to cluster agents.

The correct computation of fusion appeared to be related, in part,

pipelines. In particular, this strategy prevents an emitter agent to the correct computation of confidence levels. The fusion pro-

from deleting itself when it has not received a new observation and our imperfect results indicate the extent to which nFLINT's
in a while, yet some observation-handler agent has sent the knd s imp ete

emitter an observation which it has yet to receive. knowledge is incomplete.

We interpret from Table 1 that control strategy has the greatestTable 1 illustrates the effects of various control strategies and grid impact on the quality of results. The CT strategy produced high-quality
sizes. The table presents six performance attributes by which the quality results irrespective of the number of processors used. The cc strategy,
of an FLINT run is measured. which is much more sensitive to processing delays, performed nearly as
False Alarms: This attribute is the percentage of emitter agents that well only on the 6 x 6 processor grid. We believe the added complexity

FLINT should not have hypothesized as existing. of the CT strategy, while never detrimental, is only beneficial when the
interpretation system would otherwise be overloaded by high data rates

FLINT was not severely impacted by false alarms in any of the or poor load balancing.
configurations in which it, was run. Tables 2 and 3 indicate that cost of the added control in the CT

Reincarnation: This attribute is the percentage of recreated emitter strategy is far outweighed by the benefits in its use. Far less message
agents (e.g., emitters which had previously existed but had traffic is generated, and the overall simulation time is reduced (In Ta-
deleted themselves due to lack of observations). Large numbers of ble 2, the last observation is fed into the system at 3.6 seconds; hence,
reincarnated emitters indicate some portion ELINT is unable to this is the minimum possible simulated run time for the interpretation

keep up with the data rate (i.e., the data rate may be too high problem).
Finally, Table 4 illustrates the effect of processor grid size when theglobally, so that all euiiters are overloaded, or the data rate may CT control strategy is employed. This table was produced with the data

be too high locally, due to poor load balancing, so that some subset raestenimshgrtanhtuedopouctbls13te
of the emitters are overloaded). rate set ten times higher than that used to produce tables 1-3; the

minimum possible simulated run time for the interpretation problem is

The CT control strategy was designed to prevent reincarnations; 0.36 seconds. The speedup achieved by increasing the processor grid
hence, none occurred when CT was employed on any size grid. size is nearly linear with the square root of the size; however, the 6 x 6
When cc was used, only the 6 x 6 grid was large enough for FIINT grid was slightly slower than the 5 x 5 grid. In this last case, we believe
to keep up with the input data rate. tile data rate was not high enough to warrant the additional processors.

Confidence Level: This attribute is the percentage of correctly-deduced
confidence levels of the existence of an emitter. 6.3 Unanswered Questions
The correct calculation of confidence levels depends heavily on the CAos has been a suitable framework in which to construct concurrent
system being able to cope with the incoming data rate. One way signal interpretation systems, and we expect many of its concepts to
to improve confidence levels was to use a large processor grid. The be useful in our future computing architectures. Of principal concern
other was to employ the CT control strategy, since fewer reincar- to us now is increasing the efficiency with which the underlying CARE
nations result in fewer incorrect (e.g., too low) confidence levels, architecture is used. In addition, our experience suggests a number of

Fixes: This a'-bute is the percentage of correctly-calculated fixes of questions to be explored in future research:

an emitter. * What is the appropriate level of granularity at which to decompose
Fixes can be computed when an emitter has seen at least two problems for CARE-like architectures?
observations in the same time interval. If an emitter is undergo-
ing reincarnation, it will not accumulate enough data to regularly 9 What is the most efficient means to control the actions of concur-
compute fixes. Thus, the approaches which minimized reincarna- rent problem solvers when necessary?
tion maximized the correct calculation of fix information. * How can flexible scheduhing policies be implemented without sig-

8This run was far from completion when it was halted due to excessive accumu- nificant loss of efficiency? What is the impact on problem solving
Islted wII.clock timc. if alternate scheduling policies are not provided?
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We have started to investigate these questions in the context of a [12] E. Y. Shapiro. Lecture Notes on the Bagel: A Systolic Concurrent
new CARE environment. The primary difference between the original Prolog Machine. Technical Memorandum TM-0031, Institute for
environment and the new environment is that the process is no longer New Generation Computer Technology, November 1983.
the basic unit of computation. While the new CARE system still supports
the use of processes, it emphasizes the use of contexts: computations [13] R. G. Smith. Structured Object Programming in Strobe. Technical
with less state than those of processes. Report SYS-84-08, Schlumberger-Doll Research, March 1984.

When a context is forced to suspend to await a value from a stream, (14] R. G. Smith and P. Friedland. Unit Package User's Guide. Tech-
it is aborted, and restarted from scratch later when a value is available. nical Report HPP-80-28, Heuristic Programming Project, Stanford
This behavior encourages fine-grained decomposition of problems, writ- University, December 1980.
ten in a functional style (individual methods are small, and consist of a
binding phase, followed by an evaluation phase).

In addition, CARE now supports arbitrary prioritization of messages
delivered to streams. As a result, it is no longer necessary to include in
CAOS its complex and expensive scheduling strategy. Early indications
are that the new CARE environment with a slightly modified CAOS en-
vironment performs between two and three orders of magnitude faster
than the configuration described in this paper.
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CAREL: A Visible Distributed Lisp

Byron Davies

Knowledge Systems Laboratory Corporate Computer Science Center
Stanford University, Palo Alto, California Texas Instruments, Dallas, Texas

Abstract Layer Research Question
CAREL is a Lisp designed for interactive programming of a

distributed-memory multiprocessor. CAREL insulates the user Applications Where is the potential concurrency
from the machine language of the multiprocessor architecture, in signal understanding tasks?
but still makes it possible for the user to specify explicitly the Problem-solving How do we maximize useful
assignment of tasks to processors in the multiprocessor framewoks concurrency and minimize
network. CAREL has been implemented to run on a TI serialization in problem-solving
Explorer Lisp machine using Stanford's CARE multiprocesso, architectures?
simulator [Delagi 86]. Knowledge How do we develop knowledge

representation representations to maximizeCAREL is more than a language: real-time graphical and inference parallelism in inference and
displays provided by the CARE simulator make CAREL a search?
novel graphical programming environment for distributed systems How can a general-purpose symbolic
computing. CAREL enables the user to create programs programming programming language support
interactively and then watch them run on a network of language concurrency and help map multitask
simulated processors. As a CAREL program executes, the programs onto a distributed-memory
CARE simulator graphically displays the activity of the multiprocessor?
processors and the transmission of data through the network. Hardware What multiprocessor architecture
Using this capability, CAREL has demonstrated its utility as an architecture best supports the concurrency in
educational tool for multiprocessor computing. signal understanding tasks?

1. Context Figure 1-1: Multiple layers in implementing signal
CAREL was developed within the Advanced Architectures understanding expert systems on multiprocessor

Project of the Stanford Knowledge Systems Laboratory. The hardware
goal of the Advanced Architectures Project is to make replication. Like the FAIM-1 project [Davis and Robison 85],
knowledge-based programs run mich faster on multiple we consider each processing node to have significant
processors than on one processor. Knowledge-based programs processing and communication capability as well as a
place different demands on a computing system than do reasonable amount of memory -- about as much as can beprograms for numerical computation. Indeed, multiprocessor included on a single VLSI circuit (currently a fraction of a
implementations of expert systems will undoubtedly require
specialized software and hardware architectures for efficient megabit, but several megabits within a few years). Each
execution. The Advanced Architectures Project is performing processor can support many processes. As both application
experiments to understand the potential concurrency in signal and architecture are better understood, the detailed design ofunderstanding systems, and is developing specialized the hardware architecture will be modified to support the needs
architectures to exploit this concurrency. of the applicaion.

The project is organized according to a number of The hardware architecture level is implemented as a
abstraction layers, as shown in Figure 1-1. Much of the work simulation running on a (uniprocessor) Lisp machine. The
of the project consists of designing and implementing simulator, called CARE for "Concurrent ARray Emulator",
languages to span the semantic gap between the applications carries out the operation of the architecture at a level
layer and the hardware architecture, sufficiently detailed to capture both instruction run times and

communication overhead and latency. The CARE simulator
The design and implementation of CAREL depends mainly has a programmable instrumentation facility which permits the

on the hardware architecture level. At the hardware level, the user to attach "probes" to any object or collection of objects in
project is concentrating on MILD, large grain, locally- the simulation, and to display the data and historical summaries
connected, distributed memory multiprocessors communicating on "instruments" on the Lisp machine screen. Indeed, the
via buffered messages. This class was chosen to match the display of the processor grid itself is one such instrument.
needs of large-scale parallel symbolic computing with the
constraints imposed by the desire for VI.SI implementation and
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2. Introduction 3. CAREL generally implements eager evaluation:

The CAREL (for CARE Lisp) language is a distributed- when a task is created, it is immediately started

memory variant of QLAMBDA (Gabriel and McCarthy running, even if the result is not needed
84] and an extension of a Scheme subset (Abelson and immediately. When the result is needed by a

Sussman 85]. CAREL supports futures (like Multilisp strict operator, the currently running task blocks

[Halstead 84]), truly parallel LET binding (like QLAMBDA), until the result is available.

programmer or automati6 specification of locality of 4. CAREL is designed to automatically manage the
computations (like Par-Alfl [Hudak and Smith 86] or transfer of datz, including structures, between
Concurrent Prolog [Shapiro 84], and both static assignment of processors. CAREL supports general methods to
process to processor and dynamic spread of recursive copy lists and structures from one processor to
computations through the network via remote function call. another, and specialized methods to copy
Despite the length of this list of capabilities, CAREL is perhaps program3 and environments.
best described as a high-level systems programming language
for distributed-memory multiprocessor computing. 5. CAREL is designed to maintain "architecturalfidelity": all communication of both data and

The CAREL environment provides both accessibility and executable code is explicitly handled by the

visibility. CAREL is accessible because, being a Lisp, it is an simulator so that all costs of communication may

interactive and interpreted language. The user may type in be accounted for.
expressions directly and have them evaluated immediately, or 6. CAREL provides certain specialized "soft
load CAREL programs from files. If the multiprocessing architectures", such as pipelines and teams,
features are ignored, using CAREL is just using Scheme. The superimposed on the processor network.
multiprocessing extensions in CAREL are derived from those
of QLAMBDA. For example, PARALLEL-LET is a simple 7. Through CARE, CAREL graphically displays the
extension of LET which computes the values for the LET- runtime behavior of executing programs.
bindings concurrently, at locations specified by the 8. Finally, and unfortunately, CAREL ignores
programmer or determined automatically. resource management, including the problem of

CAREL gains its visibility through the CARE simulator: garbage collecting data and processes on multiple

CAREL programmers can watch their programs execute on a processors. Resource management is a very

graphic display of the multiprocessor architecture. Figure 5-1 important problem, but CAREL doesn't yet have

shows CARE and CAREL with a typical six-by-six grid of a solution for it. CAREL currently depends on

processors. A second window on the Lisp machine screen is the memory management of the Lisp machine on

used as the CAREL listener, where programs are entered. As a which it runs in simulation.
CAREL program runs, the simulator illuminates each active
processor and each active communication link. The user may
quickly gain an understanding of the processor usage and 4. The Language
information flow in distributed CAREL programs. CARE This section presents a language description of CAREL and
instruments may also be used to gather instantaneous and examples -- with graphics -- of its use. The functions and
historical data about the exection of CAREL programs. special forms of CAREL were selected roughly as the union of

the capabilities of QLAMBDA (as extended for distributed
The rest of the paper is divided into a discussion of the memory) and Par-Alfl. There has been no attempt as yet to

philosophy of CAREL, a description of the language CAREL, create a minimal but complete subset of CAREL.
and some illustrated examples of CAREL in action on the
CARE simulator. On top of a Scheme subset, CAREL supports the following

functions and special forms:

3. Philosophy and Design pARALLEL-LET: a special form for parallel evaluation of LET

The CAREL language was developed with the following binding. Optionally, the programmer may specify the

assumptions in mind: locations at which the values for binding are to be

1. CAREL (like Multilisp) was designed to augment evaluated.

a serial Lisp with "discretionary" concurrency:
the programmer, rather than the compiler or the PARALLEL-LAMBDA: a special form to create asynchronously

run-time support system, decides what parts of a running closures. Optionally, the programmer may

program will be concurrent. CAREL provides specify the location where the closure is to reside. The

parallelism through both lexical elaboration and closure may also include state variables so that its

explicit processes [Filman and Friedman 84]. behavior may vary over time.

2. Sinilarly, CAREL was dcsigncd to providc PARALLitL: a parallel PROGN, evaluating the component
discretionary locality: the programmer also forms concurrently.
decides where concurrent routines will be run. A
variety of abstract mechanisms are provided to PARALLEL-MAP: a parallel mapping function which applies a
express locality in terms of direction or distance single function to multiple arguments at multiple
or both. locations, returning a list of the results.
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MULTICAST-MAP: a parallel mapping function which evaluates As in QLAMBDA, parallel? is used to control whether the
the same form at multiple locations and gathers up the bindings should indeed be evaluated in parallel. If parallel?
values returned in the order in which they are returned, evaluates to 0 or #!FALSE, then the PARALLEL-LET is

evaluated as an ordinary LET, with the bindings being
FUTURE: a special form specifying a form to be evaluated and evaluated in (an unspecified) sequence, and the body being

the site at which the evaluation should take place. evaluated in an environment including those bindings.
Returns a future encapsulating the value that will
eventually be returned. If parallel? evaluates to T or #!TRUE, then the location-

forms are evaluated concurrently and the concurrent evaluation
TOUCIH/FORCE: a function to force a future to give up its value, of the value-forms is begun. The variables are immediately

bound to the future-objects corresponding to the values to be
ON: evaluates a form at a specified location. Equivalent to returned, and the evaluation of the body is begun. The body

(TOUCH (FUTURE ...)). may block temporarily on unfinished futures.

PIPELINE: a special-form to create a software pipeline of In all these cases, the value returned by the PARALLEL-
processes spread across multiple processors. LET is the (forced) value of the last form in the body.

TEAM: a special form to create a team of processes spread PARALLEL-LAMBDA:
across multiple processors. Each member of the team
executes the same function. The team manager assigns (PARALLEL-LAMBDA parallel? args
a new task to the least loaded team member. location-form state-bindings

body)
DEFINE-STRUCTURE: a simple version of DEFSTRUCT. Evaluating a PARALLEL-LAMBDA sets up a closure at a

remote site specified by location and returns a function of the
DEFINE-SERIALIZED-STRUCTURE: a serialized version of specified arguments. When this function is applied, the list of

DEFINE-STRUCTURE. Each structure created evaluated arguments is sent to the remcte closure, the remote
incorporates a queue to serialize access to the structure. evaluation is initiated, and a future is immediately returned.

The remote closure created by PARALLEL-LAMBDACAREL augments standard Lisp datatypes with the contains some state variables, bound in state-bindings. A state
following: variable is changed by applying the PARALLEL-LAMBDA
FUTURE-OBJECT: a datatype to encapsulate a value to be function to the arguments (:SET variable-name value).

returned eventually after computing at a specified
location parallel? is used, as in PARALLEL-LET, to determine

whether parallelism is actually employed.
REMOTE-ADDRESS: a pointer to an object at a remote site

PARALLEL:
LOCATION: grid coordinates, neighbor/polar coordinates, or a

keyword (:ANY, :ANY-NEIGHBOR, :ANY-OTHER) (PARALLEL. body)

STRUCTURE: a structure with named slots The PARALLEL special form initiates the concurrent
evaluation of the forms in the body. Control returns from

SERIALIZED.STRUCTURE: a serialized structure with named PARALLEL when all of the forms have been evaluated. The
slots value returned by PARALLEL is undefined.

PARALLEL-MAP:
The following describes the syntax of CAREL's functions (PARALLEL.MAPfunction-form arguments-form

and special forms, and gives illustrated examples of their use. l ction-form a
Certain expressions are used repeatedly in the paragraphs that locations-form)
follow, so their definitions appear first: function-form evaluates to a function of one argument

location-form is any form that evaluates to ,omething that arguments-form evaluates to a list, each member of which is
can be interpreted as a location in the CARE network. to be used as an argument to the function

body is an arbitrary list of forms. locations-form evaluates to a list of locations.

PARALLEL-LET: PARALLEL-MAP, like MAP, applies a function repeatedly
(PARALLEL-LET parallel? bindings. body) to arguments drawn from a list and returns a list of results.

Unlike MAP, PARALLEL-MAP performs the function
parallel? is an arbitrary form, used to control the parallelism applications concurrently and remotely, and returns a list of

of the evaluation futures that will eventually evaluate to the results.

bindings is a list of triples (variable value-form
location-form)
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MULTICAST-MAP: DEFINE-STRUCTURE:
(MULTICAST.MAPfiinction-forn locations-form) (DEFINE-STRUCTURE structure-name. slot-names)

MULTICAST-MAP invokes a function of no arguments at DEFINE-STRUCTURE is a simple analog of the Common Lisp
each location in a list of locations. MULTICAST-MAP DEFSTRUCT. Evaluating a DEFINE-STRUCTURE special
immediately returns a list of futures corresponding to the form creates:
values that will eventually be returned. Since the function 1. a MAKE-structure-name function with required
called takes no arguments, the values returned can be different arguments corresponding to the slot-names.
only if they depend on the local state of the processor at the (MAKE-structure-name . args) creates an
location of evaluation, as embodied in the "global" instance of structure-name with slot 'values
environment of that processor. specified by args.

MULTICAST-MAP-NO-REPLY: 2. structure-name-slot-name functions for each slot.
These functions are used to access the slot values(MULTICAST.MAP-NO.REPLY function-form locations-form) of a structure instance.

MULTICAST-MAP-NO-REPLY invokes a function of no 3. SET-structure-name-slot-name functions for each
arguments at each location in a list, but does not cause results slot. These functions are used to set the slot
to be returned. The value returned by MULTICAST-MAP- vlues f ucteinstane.
NO-REPLY is undefined. values of a structure instance.

PIPELINE: DEFINE-SERIALIZED-STRUCTURE:
(PIPELINE stagel ... stagen) (DEFINE-SERIALIZED-STRUCTURE structure-name. slot-names)

where a stage is: DEFINE-SERIALIZED-STRUCT E is the same as
DEFINE-STRUCTURE, except that access to the structure created

(name args location-form state-variables, output-forms) is serialized. Only one process at a time may modify the(nam ars lcatin-frm tatevarabls, otpu~foms)structure.
For each stage expression, PIPELINE establishes a remote-

closure at the specified location, and then links the remote
closures so that the output of one stage becomes the input of
the next stage. The linked closures form the working part of
the pipeline. PIPELINE then returns a function which, when 5. Some Examples
applied, passes its arguments on to the first stage of the
pipeline and immediately returns a future which will eventually
contain the result that comes out of the pipeline. To ensure that
the results that comes out of the pipeline correspond one-for-
one with the sets of arguments that went in, the future-object to
hold the result is created atomically with the entry of the PARALLEL-LET:
arguments into the pipeline and is passed along with the data ;;; This subroutine concurrently performs trivial
through the pipeline. ;;; computations at the four corner neighbors of a

;;; given location and collects the results.

TEAM: (define (cycle-corners-i where)
(parallel-let t

(TEAM args location-forms. body) ((xl (list 1 2) (neighbor 0 where))
(x2 (list 3 4) (neighbor 2

The TEAM special form creates a set of closures, called a (neighbor 1
team, plus a single distinguished closure called the manager of (x3 (list 5 6) (neighbor 3 where)) where)))
the team. Each closure, or member of the team, is identical, (x4 (list 7 8) (neighbor 5
except perhaps for its location within the processor network. (neighbor 4
When the manager of the team is applied to a list of arguments, where))))
the manager selects a member of the team and applies that (append xl x2 x3 x4)))
member to the arguments, immediately returning a future
which will eventually contain the value computed. ;;; CYCLE calls the subroutine starting at the

;;; current processor
The purpose of the team is to spread a workload among a (define (cycle) (cycle-corners-I *here*))

number of identical processes. Like the stages of a pipeline,
the members of a team are created with a fixed functionality
and are statically assigned to processors. Because of this, the
overhead of invoking a team member is less than creating and
invoking a new process.
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PARALLEL.MAP (see Figure 5-1): MULTICAST-MAP-NO-REPLY (see Figure 5-2):
;;: FOUR-CYCLE calls the CYCLE program at ; This activates the processor at each location; four different locations in the ; in SITES, but does no worthwhile computation.
;;; processor grid.

(define (activate-locations sites)
(pralefe -cycle) (multicast-map-no-reply (lambda () *here*)(parallel-map cycle-corners-1 sites) )

'((2 5) (5 2) (2 2) (5 5))
'((2 5) (5 2) (2 2) (5 5)))

ONEENM!

M.U ME M

Figure 5-1:PARALLEL-MAP: Execution of the
FOUR-CYCLE program. Active
processors are displayed in inverse
video. Active communications links are
drawn as lines joining particular ports of
the processor nodes. The processors
annotated with asterisks are the cycle
centers. Each processor is at a different
point in the cycle.

PARALLEL-LAMBDA:
This creates a process at some other node in

; the network, returning an object which, when
,; applied as a function to two arguments, Figure 5-2: MULTICAST-MAP-NO-REPLY:; evaluates a linear expression on those Samples from the execution of thew arguments. ACTIVATE-LOCATIONS program,
(define (linear-evaluator al bl) showing how the multicast message is(parallel-lambda t (x y) ':any-other distributed and how the processors

((a al) (b bl)) receiving the message are activated.(+ (* a x) (* b y)))) Since no reply is required, the
computation just dies out once the
distributed programs are run.
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MULTICAST-MAP (see Figure 5-3):
; This sends a message to each location

;;; in the list SITES, asking it to return
;;; its location.

(define (identify-yourself sites)
(multicast-map (lambda 0 *here*) sites))

E~~U EEuO.

LI J

L Ai

I- WWi

Figure 5-3: MULTICAST-MAP: Samples from the execution of the IDENTIFY-YOURSELF
program. The multicast method is distributed as in Figure 5-2, but in this example the
processors must send a value back to the requesting process. The netwcrk becomes
congested as all the processors respond then gradually' returns to rest as the messages
reach their destination. The notion of a network "hot-spot" is clearly demonstrated.
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Ph LINE:
;; This sets up a pipeline across the bottom and

;;; up the right-hand side of the processor array.
;; This trivial pipeline simply adds 1 to the
;; input value at each stage and passes the result

;; on to the next stage. It also prints out the
; result at each stage, using a printing
;;; mechanism "outside" the simulation.

(define (make-test-pipeline)
(pipeline Part 1I, entitled MONAD: A Hierardzical Model Paradigm
(sl (x) '(1 6) ((a 1)) (print (+ a lor Reasoning b t Analogy, describes a methodology for ana-
(s2 (x) (2 6) ((a 1)) (print (+ a
(3 (x) (3 6) ((a 1)) (print (+ a logical reasoning. The philosophy for the implementation
(s4 (x) (4 6) ((a 1)) (print (+ a in progress is described lor the problem solving strategy
(s5 (x) (5 6) ((a 1)) (print (+ a xl))
(s6 (x) '(6 6) ((a 1)) (print (+ a x)))
(s7 (x) (6 5) ((a 1)) (print (+ a x)))
(W8 (x) (6 4) ((a 1)) (print (+ a x)))
(s9 (x) (6 3) ((a 1)) (print (+ a x)))
(slO (x) '(6 2) ((a 1)) (print (+ a x)))
(sll (x) '(6 1) ((a 1)) (print (+ a x)))))
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6. Implementation
CAREL is implemented by a "semicircular" interpreter, References

implemented in Zetalisp and drawing heavily on the CARE
simulator. Details of the representation will appear in a later [Abelson and Sussman 85]
paper [Davies 86]. These include the representation of CAREL Harold Abelson and Gerald Jay Sussman
datatypes in terms of Lisp and CARE primitives, the use of a with Julie Sussman.
"global" environment (full copies of which exist at each Structure and Interpretation of Computer
processor) and processor-local environments, and the interface Programs.
to the CARE hardware simulator. MIT Press, Cambridge, Massachusetts,

1985.

7. CAREL and Other Languages [Agha 85] Gul A. Agha.
CAREL was strongly influenced by three other languages: Actors: A Model of Concurrent Computation

QLAMBDA [Gabriel and McCarthy 84], Par-Alfl (Hudak and in Distributed Systems.
Smith 86], and Actors [Agha 85]. QLAMBDA provided the Technical Report, MIT Al Laboratory,
idea of having two kinds of parallelism (which Filman and March, 1985.
Friedman called parallelism by lexical elaboration and [Davies 86] Byron Davies.
parallelism by cexplicit processes). CAREL addresses the CAREL: Implementation of a Distributed
question, "What would QLAMBDA look like on a distributed- Scheme.
memory multiprocessor?". Technical Report In preparation, Stanford

Par-Alfl provided the notion of a dynamic variable $SELF Knowledge Systems Laboratory, 1986.
that a process could use, reflectively, to determine where it was [Davis and Robison 85]
executing. The part of CAREL that implements parallelism by A. L. Davis and S. V. Robison.
lexical elaboration is very similar to Par-Alfl. CAREL adds The Architecture of the FAIM- I Symbolic
the ability to deal with processes as first class objects. Multiprocessing System.

In Proceedings "f1JCAI-85. 1985.
CAREL differs from Actors in its emphasis on discretionary [Delagi 86] Bruce D-lag.

parallelism and in its reliance on the programmer to manage CARE User'" Manual
process resource allocation. These are consequences of CEUse anl
CAREL's design as simple extension of an existing serial Lisp. Heuristic Programming Project, Stanford
CAREL's primitives for concurrency and locality are powerful University, Stanford, Ca. 94305, 1986.
enough to implement a wide variety of interesting programs, [Filman and Friedman 84]
but still provide less concurrency, less capability for managing R. E. Filman and D. P. Friedman.
synchroniation, and less theoretical elegance than Actors. For Coordinated Computing: Tools and
example, CAREL enforces synchronization at the inputs and Techniques for Distributed Software.
outputs of a function or closure: when APPLY is invoked, all McGraw-Hill, New York, 1984.
the arguments must have been pre-evaluated, and multiple
outputs are considered to be generated in a single list. In the [Gabriel and McCarthy 84]
Actor language SAL described by Agha, the inputs to an Actor Richard P. Gabriel and John McCar thy.
may arrive at any time and in any order and outputs likewise In Proceedings of the 1984 ACM Symposium
may be generated asynchronously. on Lisp and Functional Programming,

August 1984. 1984.

8. Acknowledgements [Halstead 84] Robert H. Halstead.
Implementation of CAREL was made possible by the Implementation of Multilisp: Lisp on a

existence of the CARE simulator, as implemented by Bruce Multiprocassor.Delagi and augmented by Eric Schoen. The author further In Proceedings of the 1984 ACMSymposium
wishes to acknowledge the intellectual support of the Stanford on Lisp and Functional Programming,
Advanced Architectures Project. Contributors to PARSYM, August 1984. ACM, 1984.
the netwide mailing list for parallel symbolic computing, have [Hudak and Smith 86]
provided fruitful stimulation. P. Hudak and L. Smith.

Para-functional programming: A paradigm
for programming multiprocessor
systems.

In Proceedings ofA CM Symposium on
Principles of Programming Languages,

ISemicircular, not metacircular, because it is implemented in Lisp, but January 1986. ACM, 1986.
not in CAREL itself.

[Shapiro 84] E. Shapiro.
Systolic programming: A paradigm of

parallel processing.
In Proceedings of the International

Conference on Fifth Generation
Computer Systems. 1984.
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MULTI-SYSTEM REPORT INTEGRATION USING BLACKBOARDS

John P. Delaney

Knowledge Systems Laboratory
Stanford University

701 Welch Road, Building C
Palo Alto, CA 94303

ABSTRACT "Blackboards" refers to a particular A problem

Blackboards are an Al problem solving methodology, solving methodology. The best known applications of the
A blackboard system consists of a structured data base (the blackboard methodology are HEARSAY-Il, a Lpeech

blackboard) holding Input and derived Inferences and a understanding system (2), and the HASP/SlAP sonar data
collection of procedures for deriving inferences (knowledge Interpretation system (4,5). These applications effectively
sources). Ench knowledge source Is specialized to operate processed regular streams of data from a single sensor,
on some portion of the blackboard. The knowledge sources treating any other Information as locally static. But the
are Invoked opportunistically as the Information on the blackboard methodology is more generally applicable. In
blackboard Increases. particular, It provides a convenient framework for integrating

maximally reduced Information from multiple sources with
The best known applications of the blackboard different temporal characteristics. Just what Is needed for

methodology have been in speech understanding and multi-system report Integration.
passive sonar data interpretation. The Inputs In these cases
were a single form of raw sensor data. But the In the first section below, the fundamental features of
methodology Is also well suited to Integrating multiple blackboard systems are described abstractly. A consistent
streams of fully reduced and qualitatively different data such set of examples are used in the following section to clarify
as active radar track reports, passive electronic Intelligence those features in context of multi-system report Integration.
reports, and human Intelligence reports about enemny The next section reviews those aspects of the blackboard
Intentions. methodology particularly suited to multi-system report

Integration. The last section briefly describes work In
Tol s paper sketches the nature of the blackboard progress at Stanford's Knowledge System Laboratory on

problem solving methodology with an emphasis on those two more ambitious examples. It also explains how that work
features suiting It to such applications. The sketch Is Is embedded in a larger effort.
Illustrated with examples from a relatively simple multi-
system report Integration problem. Relevant applications
currently under development at Stanford's Knowledge
Systems Laboratory are also described. NATURE OF BLACKBOARDS

The blackboard problem solving methodology
originated approximately 10 years ago and has been
evolving ever since. The hallmarks of a blackboard system

INTRODUCTION are:

"Multi-System Report Integration" is an odd phrase.
An alternative wovld have been "Sensor Data Fusion". But A global data store holding Input data and
that phrase often Implies a less reduced form of information hypotheses about the solution of the problem

to Integrate than is Intended here. The reporting systems In derived from that data. Related information is

this paper are presumed to reduce the data they sense as kept together. This data store Is known as the
fully as Is practical with only that data available. The degree blackboard.
of processing can vary from system to system. For a radar A collection of procedures for deriving
tracking system, the reports would be samples of on-going hypotheses about the solution of the problem
tracks integrating all measurements up to the present. For from the Input data and/or from other
an ELINT system dealing with Intermittent emissions, the hypotheses. Each procedure is specialized to
reports might be just current emitter and bearing operate on a particular portion of the
characteristics. And for a human Intelligence gathering blackboard. These procedures are known as
system the reports might be informed guesses about near- knowledge 'urces.
term enemy Intentions.

"Sensor Data Fusion" also usually implies that the A mechanism for invoking a knowledge source

Information to be Integrated appears at comparable time on relevant parts of the blackboard. A

mItervals or Is static. But the reporting systems in this paper knowledge source is invoked on a particular

are nresumed to provide reduced data over a wide range of piece of the blackboard when the Invocation

time intervals. The radar, ELINT, and "humint" systems would incrementally advance the solution of the

mentioned above could produce reports at very different problem. This mechanism Is known as the

Intervals with very different degrees of regularity. Assuming COntrol tructuro.

that some reports are locally of comparable frequency while Each of these hallmarks Is described abstractly in the
others are locally static information is Procrustean. remainder of this section with simple examples appearing in

-..-----.. the next.
This work was supported by the Defense Advanced The blackboard holds the state of the problem
Research Projects Agency, the NASA-Ames Research solving system as the solution evolves. In conventional
Center, Boeing Computer Services, and thr , National terms, the dimensionality of the state varies with time. The
Institutes of Health. elements may be discretely or continuously valued. And the
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elements change values at discrete times. But such are typically many potential invocations. The control
observations miss the most significant feature of the structure determines the set of potential invocations, picks
blackboard. It structures the information It holds. one, and causes it to be carried out.

Closely related input data or hypotheses are Many blackboard systems do not use the most
collected together In the form of blackboard nodes having general form to describe when a knowledge source is
certain attributes and values for those attributes. Related Invocable. They use events and logical combinations
nodes form blackboard levels. All the nodes in a given thereof. An event is a summary of a blackboard change. Alevel having the same attributes but (potentially) different knowledge source posts the appropriate event or events
attribute values. Levels can in turn form hierarchies of when It completes. A pointer to the affected node Is
analysis or abstraction, usually with input data nodes at the associated with each event. These systems may also use
base of each hierarchy. The most common nodal attributes events for an additional purpose as explained below.
are links between nodes on different levels. Such links The control structure Is Intended to operate In an
connect hypotheses to input data or other hypotheses
which support them. They can be links up and down levels opportunistic manner analogous to the manner In which
within a hierarchy or they can be across hierarchies, people solve jigsaw puzzles. Initially, the puzzle solver

scans for pieces with singular small-scale characteristics. IfKnowledge sources transform the state of the two such pieces have similar characteristics, they areproblem solving system by adding nodes to the blackboard, tested for fit. Gradually, clusters of pieces accrete as the
by removing them, or by modifying their attribute values, puzzle solver continues to scan through the unus ed pieces.Knowledge sources are effectively parametric procedures Once the clusters become sufficiently large, scanning the
for transforming the state. A knowledge source could be pieces is replaced by searches for specific pieces to
Invoked on any node at a given level or a tuple of nodes at extend a cluster. But pieces plausibly belonging another
one or more levels. It operates only on the node(s) upon cluster are tested for fit there If they are chanced uponwhich It is Invoked plus those nodes linked directly or during a search. Eventually, large clusters are recognized
indirectly to them. Knowledge sources are also effectively as connected on the basis of large scale characteristics and
typed procedures; a knowledge source can be invoked only are Jointed. If progress while searching foi specific pieces
on a node of a particular level or on a tuple of nodes, each bogs down, the puzzle solver reverts to scanning for pieces
of a particular level. This feature of knowledge sources with similar characteristics for a time. It choses that activity
provides them with a degree of modularity. In particular, which, at the moment, seems likely to make the best
knowledge sources do not interact directly. contribution to the overall solution of the problem.

The procedure carried out by a knowledge source A variety of techniques are used by the control
expresses knowledge of how to advance the problem structures of different blackboard systems to decide which
solution. It Is expressed in the creation, modification, and/or potential invocation would, If carried out, make the best
elimination of particular sorts of hypotheses in the form of contribution to the overall solution. The topic is being
nodes of particular levels. In this sense, a knowledge actively researched. One system has an additional
source is a specialist In the solution of .ome part of the blackboard for handling hypotheses about the best choice
overall problem. The details of the procedure can be (3) and another allows all potential invocations to be carried
expressed in any form. A typical form is a set of cut in parallel (6).
production rules and a policy for using them. Several blackboard systems use events in their

Each production rule specifies a logical condition on control structures. Aiter a particular event or sequence of
the attribute values of the node(s) upon which the events, particular knowledge sources are preferred to
knowledge source is Invoked and an action to be carried others. And they are prefered for invocation on the affected
out If that condition is true. Both the condition and action node or nodes. These same systems also use events to
can be compound. The value of a compound condition is desciibe when a knowledge source :s invocabie. So theTRUE if the values of all Its component conditions have control structures of these systems need only attend to
TRUE values. A compound action is simply a sequerce of events and not to the'blackboard nodes themselves,
Individual nodal creations, deletions, or modifications. Some of these blackboard systems also use
Evaluating a logical condition or modifying a node may expectations In their control structures. Expectations are
require the application of complex numeric functions to pecttonknthe corol stts eets are
attrioute values. In this way, production rules mix symbolic Generally speaking, they are instructions to invoke a
and numeric computations. particular knowledge source on a particular node or nodes

Different policies for using a set of production rules when, if ever, a certain event or pattern of events occurs
allow at most one action to occur, or multiple actions but involving the node(s). Expectations can also be negative.
never the same one twice, or the same one repeatedly. In Such expectations cause a particular knowledge source to
the first case, the rules are scanned In order of definition be invokea if a certain event or pattern of events does not
with the scan terminating immediately If a rule's action is occur within a specified time interval.
carried out. In the second case, the logical conditions of
the rules are all tested before any actio:s take place. Then
any actions are carried out in parallel. The third case Is
simply the second case repeatod until no logical condition BLACKBOARDS ILLUSTRATED
Is TRUE. While this style of programming many seem Consider the problem of producing a situation map of
bizarre at first, it has proved quite successful in past and aircraft flying over an area of Interest. The situation map is
existing blackboard systems. based on track reports from an air surveillance radar

A knowledge source describes the procedure by tracking system, emitter/bearing reports from an ELINT
which it changes the blackboard when invoked. It also system sensing airborne radar emissions, and warnings from
describes when it Is invocable. The most general form of a human intelligence system, The warnings are that
this description is a kpossioiy compound) iogiudi uuruditivii pa:kluildi dil.dIt U" giuup6 Uf dircrdft may soon enter the
on attribute values of the node(s) upon which it could be area of interest with particular objectives In mind. Theinvoked. In this manner, a knowlidge source resembles a situation map should identify the type of each aircraft as
production rule. The condition is parametric in the same well as Its current position and velocity. The radar track
sense that each knowledge source is parametric. As a reports are regular for aircraft in the area of interest. The
result, the same knowledge source may be invocabie on ELINT reports are intermittent by comparison. There are no
several nodes or tuples of nodes simultaneously. Each such reports unless an emitter is on. And the detection range of
combination of a knowledge source and a node or tuple of an active emitter can depend on its type and, in some
nodes is called a potential invocation. At any time, there cases, on the aircraft's aspect. ELINT reports are also less
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SITUATION MAP
LEVEL

INTELLIGENCE
AIRCRF REPORT

LEVELLEVEL

RADAR TRACKTRACK

LEVELLEVEL

RADAR REPORT ELINT REPORT
LEVEL LEVEL

Figure - A Blackboard with 7 levels of nodes in 4 hierarchies

accurate geometrically than radar reports. Intelligence the links between the aircraft nodes and both kinds of track
reports are generally less frequent than the ELINT reports, nodes represent the hypothesis that the tracks are all of the
but can be updated rapidly on occasion, same aircraft. The credibility of an aircraft hypothesis Is a

Figure 1 illustrates a possible blackboard function of the credibilities of the two kinds of track
configuration during the course of solving this problem. hypotheses suoporting it.
There are seven levels on the blackboard, a typical number. It will prove useful later to have explicit definitions of
The situation map and aircraft levels form one hierarchy of certain attributes of radar report and radar track nodes. We
levels. Nodes on these two levels hierarchically express do so In pseudo-computerese as follows:
alternative hypotheses about the map of aircraft In the area
of Interest. Two situation map hypotheses exist in this Level: radar-report
case, both including the same two hypothetical aircraft and Attributes: report-time
one including a hypothetical third aircraft as shown by links track-Identifier
between the corresponding nodes in the figure. One state-estimate
attribute of a situation map node is thus a set of component North position
aircraft nodes. Hypothesis credibility is also a situation map East position
node attribute. A posteriori probability would be a North velocity
reasonable credibility measure. The value of that attribute East velocity
Is a fu,.:tion of the credibilities of the supporting aircraft state-covarlance
hypotheses.

The intelligence report level is treated as a separate, associated-tracks
degenerate hierarchy in the figure. The figure shows two
Intelligence report nodes. Links indicate that one of these Level: radar-track
reports supports both situation map hypotheses while the Attributes: last-associated-report
second report supports only one of them, Th credibility roport-hitory
attribute value of each situation map node is also a function track-credibility
of the credibility of each intelligence report node linked to The names of the attributes suggest their intended
it. meanings. But attributes are given pragmatic meaning by the

The radar track and radar report levels form another way the attributes are manipulated by knowledge sources.
hierarchy. So do the ELINT track and ELINT report levels. They are analogous to the elements of a state vector in this
A sequence of report nodes is linked to a corresponding sense.
track node to represent the hypothesis that they were all Knowledge sources embody knowledge about how to
caused by the same object, aircraft or emitter. Similarly, solve a problem. Consider the following fragment of
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knowledge about radar tracking: types ,re expected to enter the area during a specified

A sequence of radar reports caused by a time Interval across a specified portion of the area's
particular aircraft usually have the same track boundary. Aircraft nodes are then created with the
Identifier. An exception may occur If two aircraft appropriate types, all linked to a new situation map node.
approach closely at some time, In which case the The credibility of this new situation map node Is the same
track identifiers are swapped at roughly the time as that of the intelligence report. The credibility of the old
of closest approach. situation map node Is appropriately adjusted downward.

It can be converted into the following fragments of The radar track attribute of each new aircraft node Is
knowledge about collecting radar reports into radar tracks: not filled In at this point. There are no radar track nodes

yet. But an expectation Is established that later examines
Given a radar report node that Is not newly created radar track nodes, If one is created in the

associated with any radar track node and given a appropriate time Interval and the appropriate place, a link to
radar track node, If the radar report node's track that radar track becomes the value of the associated track
Identifier Is the same as that of the radar track attribute. If the expectation goes unsatisfied, the aircraft
node's last associated radar report node, then node Is deleted and the credibility of each associated
associate them. situation map is reduced. Whenever the credibility of a

Given two radar track nodes, If their histories situation map node slips below a certain level, that node is
of associated radar report nodes Indicate a close also deleted. Any aircraft nodes linked only to that situation
approach, then create two new radar track nodes map node are also deleted. The credibilities of all
with histories composed by splitting the original remaining situation maps are then re-normalized.
track nodes' histories at the time of closest Receipt of the first few radar track reports causes
approach and rejoining them with the track them to be posted on the blackboard, but no more. Only
identifiers swapped after that time. when three report nodes having the same track Identifier

A knowledge source based on the first of these appear on the blackboard is a radar track node created to
fragments Is expressed In pseudo-computerese as follows: represent the hypothesis that they are from a single aircraft.

Applies-to: In this manner, the creation of false radar track nodes based
A -o:ar-tra ,on radar false alarms Is largely avoided. The resulting node
a-radar-track , a-radar-report may then be linked to an existing aircraft node by the

Invocation-condition: aforementioned expectation.

associated-tracks of a-radar-report Falling that, a iew aircraft node Is created to which

empty-set the new radar track node Is !Inked. Then the cross-product
Is formed of the old situation map hypotheses and the pair

Use-policy: of hypotheses that the radar track was or was not caused

all-true-once by an aircraft. One new situation map node Is created
corresponding to each existing one. The new situation map

Production-rule 1: nodes are copies of the old nodes, each with a link to this
Condition: aircraft node added. Some portion of the credibility of each

track-Identifier of last-associated-report old situation map hypothesis must also be transferred to the
of a-radar-track = corresponding new hypothesis. At this point, the knowledge

track-identifier of a-radar-report source which removes Insufficiently credible situation mad
nodes Is again applied to reduce the number of situation

Action: map hypotheses maintained.
last-associated-report of a-radar-track The accretion of ELINT reports Into ELINT tracks Is

:= link to a-radar-report similar to that of radar reports Into radar tracks. But the
report-history of a-radar-track creation an of ELINT track does not satisfy any expectations

:== link to a-radar-report or trigger the creation of an aircraft node. Rather It triggers
associated-tracks of a-track-report a search for aircraft nodes of a type which could produce

:= link to a-radar-track the sensed emission and which has a history of estimated

Here ":=" symbolizes assignment, ":==" signifies addition to positions (implicit In the raoar tracks' report history)

a set, and ";" sequences simple actions In a compound one. consistent with the ELINT track's history of bearings
(similarly Implicit). The ELINT track node Is linked with any

The knowledge source is quite simple, with just one and all such aircraft nodes. The credibility of any such
production rule. That Is atypical. Knowledge sources using aircraft nodes Is Increased appropriately to reflect evidence
production rules typically employ between ten and thirty that the hypothesis it represents is correct. Such a
production rules. A knowledge source realizing the second credibility Increase must also be propagated up to the
fragment would be more complex. It would include one or situation map nodes. Creation of a new aircraft node
more production rules used tc determine whether a possible triggers a similar search for supporting ELINT tracks.
close approach occurred and when. Prioritization among the knowledge sources carrying

The details of any particular control structure are out the aforementioned actions can be relatively simple. The
complex. And the motivation for that complexity Is not arrival of a new Input datum should trigger a locus of
apparent In an example involving just one or two knowledge activity on the blackboard which propagates up the network
sources and a few nodes. So no attempt Is made to include of levels, with pauses to spread down along different
control structure details in this Illustration. A sketch of the oie es wt pae to se dow along diret
blackboard changes one would prefer under particular hierarchies as appropriate. All of the activity directly
circumstances prov!des a better feel for the control triggered by one datum should be completed before thestructijre's gross hehavinr It alsqo IlihlstrateS how the next input datum is posted. To keep thle amount of inter-
different components of a blackboard system can come Input processing reasonable, the diversity of hypotheses
together to solve a problem. created in the normal course of processing must be limited.

Thus as additional radar reports arrive, the posted nodes
Assume that no reports have been received of any are simply associated with radar tracks on the basis of

sort by the blackboard system. Then one situation map track Identifiers as in the above knowledge source example.
node exists with no links to aircraft nodes. This represents It would be possible to create track nodes expressing all
the hypothesis that no aircraft are in the area of Interest. possible hypothetical combination of track reports without
Then an intelligence report is posted on the blackboard. It regard to track Identifiers. But the processing required to
warns that some number of aircraft of a particular type or create, qualify, and eventually delete most of these nodes
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would be wasteful given the number of possible hypotheses supported by a hierarchy, or a set of linked
combinations, hierarchies, of sub-hypotheses ultimately based on input

But when should the control structure Invo:,o the data. Solution to individual parts of a particular multi-system
knowledge source which tests for a close approach of two report Integration problem can be conceptualized and
aircraft and creates new track nodes to reflect a possible implemented without dwelling on the details of how the
confusion of track identifiers? One answer would be after results of solving one part are used in the solutions of other
the completion of every invocation of the knowledge source parts.
associating a new radar report with an existing radar track. Standard algorithms can be used where appropriate
But that would mean frequent invocations, usually producing to solving part of the problem. But special pre- or post-
no change. An alternative is to invoke that knowledge processing may be required. Such pragmatic features of a
source only when some other, less frequent, occurrence standard algorithm's use In a particular context can be
suggests the possibility of a close approach by two aircraft Isolated from the algorithm itself by encapsulating them In
and consequent track !dentifier confusion be considered. separate knowledge sources. Explicitly separating formal

In the scheme described above, ELINT tracks are and heuristic aspects of a problem's solution can highlight
associated with an aircraft if they are consistent with the the heuristic aspects. It Illuminates the assumptions, explicit
aircraft's hypothesized type and with the radar track. If the or Implicit, upon which they are based. Modifying the
tracks are geometrically consistent but the nature of the heuristic aspects without compromising the formal aspects
tracked emission is inconsistent with the aircraft type, one also becomes easier.
possibility Is that the aircraft hypothesis was wrong with
regard to type and should be discarded or modified. But
another possibility is that the radar tracP- history actually
corresponds to two different aircraft at t, o different times WORK IN PROGRESS
due to a track Identifier confusion during t close approach. The Heuristic Programming Project Group of
If ELINT tracks are already linked with the aircraft node as Stanford's Knowledge System Laboratory Is trying to
support for the hypotheses, the possliillty of a close
approach should be investigated first. . realize a new generation of software

The above sketch does not reflect the only me: 'ar architectures using parallel computation to
In which the example problem might be solved. i, rdfl, cts speed up Al applications and
various options for incrementally advancing the picolem
solution. Choosing which option to use in a part,,ular . specify multiprocessor system architectures for

situation can require subtlety if one wishes to be carrying out those computations efficiently.

computatlonally efficient. Not illustrated are the additional
subtleties of advising the control structure how to achieve Among the Issues being investigated are

that sequencing. Experience is required to make such
choices wisely. Experience Is also important In the . recognition of opportunities for parallelism In

construction of knowledge sources, the choice of the solution to a problem and

blackboard levels, and the selection of nodal attributes. . expression of that potential parallelism in a
Simple examples can only suggest the subtleties involved. problem solving framework that can exploit it.

SUITABILITY OF BLACKBOARDS In particular, this effort is focusing on signal understanding

The above sketch of possible blackboard changes problems and blackboard-like frameworks.

illustrates a major reason why the blackboard problem Blackboard systems appear to be Intrinsically parallel.
solving methodology is suitable for multi-system report At any time, there can be many potential invocations of
Integration. The ordering of changes adapts appropriately to knowledge sources. Those involving different nodes seem
the arrival of very different sorts of input data in different eligible for parallel execution. Within knowledge sources,
orders. production rule conditions could be evaluated In parallel.

If any intelligence report involving a particular aircraft And some production rule actions could be safely executed

arrives after radar track reports corresponding to It, the In parallel. Currently two different blackboard systems are

hypothesis that it exists will still have been formed. The under development, each Investigating a different approach

credibility of the situation map hypotheses supported by to expressing opportunities for parallel computation or

that aircraft hypothesis will be Increased once the requirements for serial computation. Applications of these

intelligence report Is incorporated Into the support for those experimental systems used in evaluating their effectiveness.

situation map hypotheses. ELINT reports are not discarded The focus on signal understanding problems follows
Immediately if they do not confirm an existing aircraft in large part from the focus on blackboard systems. The
hypothesis. They are saved for possible confirmation in the two mate well. But signal understanding problems are
future. And exceptional occurrences need be considered Important in their own right. When signal understanding is
only when evidence suggests they occur. The close defined broadly, it includes sensor data fusion and multi-
approach of two aircraft leading to track identifier confusion system report integration. That class of problems is large
being the case in point, and of considerable interest to the military.

This adaptability in the operation of a blackboard Two signal understanding problems have been

system is a consequence of the control structure's investigated so far as part of the current project. They are
opportunistic invocation of knowledge sources, the referred to as the TRICERO/ELINT and AIRTRAC problems.
knowledge sources' modularity of forming or altering While generally similar, each problem is expected to push
hypotheses, and the blackboard's structured composition of the research into recognizing opportunities for, and
hypotheses. Any knowledge source can be invoked after expressing, parallel computation in different directions.
nny other completes. depending on the state of the In the TRICERO/ELINT problem, stre.ms of ELINT
blackboard, i.e., of the problem's solution, at that point In emitter/bearing measurements must be combined to
time. estimate the flight paths and operating modes of non-

The blackboard methodology also provides a means cooperating aircraft. The problem is named after ESL's
for managing the complexity of large multi-system report TRICERO blackboard system for solving a problem of which
integration problems. Knowledge sources are modular in this one is just a component. The knowledge of how to
their applicability to all nodes of a given level, or tuples of solve the TRICERO/ELINT problem has already been worked
given levels, but only to those nodes. Modularity is also out, albeit without attention to opportunities for parallel
achieved by expressing a partial problem solution as computation. So work on this problem is further along.
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The AIRTRAC problem Is recognizing aircraft flying
across a national border and heading for particular airfields
used oy smugglers. The smugglers' aircraft must be picked
out of the normal air traffic across that border. To solve
the problem, aircraft destinations must be recognized, not
Just flight paths and types. Streams of radar reports from
multiple radar systems are available. But the low altitude
coverage of those radars Is assumed to be limited and the
smugglers are assumed to know the coverage limits. So
smugglers can try to avoid detection. They can also
maneuver their aircraft evasively to disrupt tracking. Such
behavior Is a sure sign of a smuggler's aircraft, but makes
the recognition of a destination difficult.

To complicate the AIRTRAC problem further,
distributed aeroacoustic tracking systems using modest
batteries of acoustic sensor arrays(1,7) are placed across
large holes In radar coverage. These systems provide
tracking reports within their limited coverage. Because such
systems are passive and readily moved, the smugglers are
assumed to be unaware of their coverage and so unable to
avoid detection by these systems. These systems also use
acoustic signature information to provide aircraft class
estimates along with tracking reports.

Initial solutions to both problems should be
completed in both experimental blackboard systems by the
end of the year. Moreover, each solution should have been
applied to several problem scenarios on realistic simulated
multiprocessors. These experiments will determine how
much parallelism was realized and may suggest alternative
ways of realizing more parallelism.
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Abstract
AIDE is an environment that provides facilities for the design and 2.1. Representation
simulation of systems, specifically multiprocessor computer systems. structure and its behavior. A structural view of an entity is any

In addition, AIDE has facilities to do distributed simulation of such a organizational view of the entity that decomposes it into (functionally

system using a network of hosts. We are currently evaluating the organizationalseiewiofethedet t composes T into ft nperformance of the distributed simulation algorithm on a network of or otherwise) semi-independent components. The behavior of an
workstations for a simulated multiprocessor system. entity is a conceptual formalization of the way certain interesting

properties of the entity change over time; different formulations

(possibly emphasizing different concerns) lead to different

1. Introduction specifications of behavior. A design or model in AIDE is exactly the

A design system is expected to provide a framework for a designer to totality of its specified structure and behavior.

adequately implement representations of certain interesting physical The process of design is "partially-structured" [11; designers often

or abstract entities that perform some function. In doing so, it must work both top-down and bottom-up. AIDE provides a structural
provide a suitably precise formalism and an integrated set of tools formalism that supports this notion.
allowing the designer to conveniently specify, modify and evaluate
such representations [1, 9). AIDE 2 is an attempt to provide such a 2.1.1. Hierarchical Partitioning
framework. The well-known technique of hierarchical decomposition is one of the

AIDE evolved in the context of the Advanced Architectures for Expert ways in which a designer makes the process of designing a complex

Systems project of the Heuristic Programming Project. The project system more tractable. For example, PALLADIO [11 viewed the process

requires simulating a large distributed-memory message-passing of circuit design as the incremental refinement of a functional

MIMD architecture (CARE [31) running several additional software description of the circuit into its physical realization. Here the basic

layers (for example, CAOS, POLIGON, and ELINT). This led naturally design refinement step was partitioning the circuit at some abstract

to investigating the utility of distributed simulation both as a means structural level into constituent components specified at either the

of reducing simulation turnaround time and in ensuring that the same level or a less abstract level.

simulated machine was being programmed fairly (without making use AIDE supports hierarchical partitioning directly and simply by
of the real shared memory available on the host machine), allowing the designer to define a component 3 structurally in terms of

Furthermore, implementing the distributed simulation algorithm was arbitrary (perhaps incompletely specified) subcomponents.
in itself a useful exercise in symbolic programming of a multiprocessor

system, addressing some of the same concerns as an application 2.1.2. D, ,ign Libraries
written for CARE. Complementing hierarchical partitioning is the use of prototypes to

This document describes the essential aspects of the AIDE system. The build on previous work (4, 11. This allows the designer to rapidly

first part of the document concerns design representation and capture, create new designs by modifying existing components or by applying

and the second part deals with design validation, specifically new composition rules to extant components. AIDE supports this idea

sequential and distributed simulation. More detailed documentation through the use of libraries, which are collections of prototypical

for the system is contained in the user's manual 17). components that the may be stored between sessions and re-used in
the creation of new components.

2. Design Capture 2.1.3. Behavior
Design capture denotes the process of specifying a representation of an Component behavior specifications must be efficient both in
abstract entity to a design system. Below we discuss the formalism Cxpr ionn b aion ADE useic the ZtLSP ef0fi ianuage ane
and supporting tools provided by AIDE to facilitate this process. programming environment directly in addressing both these concerns,

paying the penalty of expecting the user to be a reasonably competent

ISupport for this work was provided by the following : DARPA/RADC, under LISP programmer.

contract F30600-85-C-0012; NASA, under contract number NCC 2.220; Boeing

Computer Services, under contract number W-266876.

2AmrD Is-a Distributed Entironment. 3A component is the basic unit of design in AIDE.
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2.1.4. Implementation 2.2.2. Structural Relatlonshipe
It mrlt et t - d pThere are two structural relationships that hold between componentsIt is natural to use the object-oriented programming paradigm to

implement the components of a design, directly mapping from entiti,
in some "real" world (of the designer's choosing) to the data objects Composition. Any component may be a subcomponent
manipulated by the design system; AIDE uses the object-oriented of exactly one component and every component may be
programming facilities provided by the FLAVOR system (10. Every composed of any number of subcomponents. When a
component is an instance of some component class, where the class component is composite (made up of subcomponents), it
defines a component type and is implemented as a flavor.4 Structure may share its ports, for behavioral purposes, with those of
is specified in terms of these flavors and behavior in terms of methods its subparts through the "connection" relation.
relevant to them.

Connection. This relation holds between individual
ports of two components and is specified by lines which

2.2. Structure connect the relevant ports. Lines may connect an output
To the design system, a component's structure consists of two parts I port of some component to an input port of another

" the component's own properties, and, component except when connecting ports between a
composite component and one of its subcomponents, in
which case the connected ports are of the same type (port

* the component's relationships with other components. sharing). Usually a lint connects just two ports; contacts

are special entities that provide fan-in and fan-out
2.2.1. Component Properties capabilities for lines.
The designer sees a component as a "black box" of a particular type
that has a collection of local named attributes with associated values. These structural relationships are captured by AIDE through its
The allowable attributes of a component are defined by its type, while graphical structure editor.
the values on these attributes may (and usually do) differ for each 2.2.3. Prototypes
component instance. A subset of these properties6 , the state Traditionally, object, (frame) systems have had difficulty in
properties, are used by the behavior of the component. Special state implementing a gene',.  mechanism for capturing complex
properties known as ports (input and output) constitute a relationships that must hold between sets of instances of various
component's interface to its environment. Other automatically classes. The "connection" structural relation is just such a relation
inherited properties are used by the system to maintain and display - it is difficult to declare this i-formation in the class definition of a
components. composite component. The solution we have adopted in AIDE is to

store connectivity informationi about a composite component type as aAIDE provides the def component form for a designer to define the "canonical" instance of the relevant component class; this canonical
properties of a new component type and it has a graphical editor to instance is called the prototype of its class. The structure of a
capture and alter display properties held by components.6  component class is therefore fully specified by the existence (in the
Figure 2-1 is a simple example of the component class declaration for environment) of both a def component declaration and a prototype.
an abstracted D-type flip-flop. Each instance of d-fl:Lp-f lop has
three input ports (named d, clock, and clear), one output port 2.2.4. The Editor
(named q), and no internal state. A component in AIDE may be accessed through the graphics-based,

menu-driven interface which provides operations for viewing and
selecting components. Top-level components (devices) are maintained

(defcomponent D-Flip-Flop in book-keeping entities known as worlds, each of which may have(:input D Clock Clear)
(:ouput Q) several windows (viewports) viewing the relevant device. The editor
(:documentation 'Claus of positive-edge-triggered D-type uses the graphics-based interface in providing operations to createflip-flop with direct clear. Uses 'high, 'loV and nxlogic signals. Has unit delay between an input transition new devices and edit their structure, allowing the designer to create,and stable output.')) alter and delete components, lines, ports and contacts. There are also

facilities to copy devices into permanent file storage, prototize devices
for inclusion in libraries, and load devices and libraries from file. A

Figure 2-1: Definition of the d-f lip-f lop Component Class complete desciption of the operations provided by the editor may be

For a complete description of the def component form see (7); suffice found in (7].
it to say here that it translates into the appropriate FLAVORS
declarations. 

2.3. Behavior
Behavior is defined by AIDE to be the interaction of a component with
its environment over (simulated) time. A behavioral specification
applies to a class of component; it is implemented by a method on the
class that interacts with the simulator to generate the time-varying
behavior of a component of that class. Since the simulator in AIDE is
eyent-dri.en, thi. interaction take. t, fruuin of the consumption and
production of events, which are encapsulations of the time-stamped

4ln the usual inheritance network, state changes in the simulated system. Behavior for a component is
therefore simply a specification that relates values on input ports with5We use the term "properties" loosely to mean the collection of attributes and their values on output ports over (simulated) time; components whose

Yalues. output values depend on a history of input values make use of their
6A large part of the graphical Interface was modelled after that used by insios and internal state properties.

PALLADIO.
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AIDE provides the defbehavior form to declare the behavior of a behavior of the shift-register, that is, the composite behavior of its
component class. Events relevant to a component are consumed when flip-flops; later, when usi~ig a shift-register in the design of a control-
the simulator propagates the specified state change and then invokes unit, we might use a "top-level" characterization of its functionality.
the relevant component's behavior method; the simulator is informed How doei composite behavior work? During simulation, events on
of new events through the execution of the assert function within a output ports are immediately transformed into events on the furthest
behavior method, which specifies a change that will be true of some participating connected input ports (if any), and then forwarded to
state of the component at some future simulated time. the simulator to be consumed by the relevant component at the

specified simulated time.7 . Hence, the effects of a local change
2.3.1. An Example propagate through the system along connection paths, achieving the
Figure 2-2 is an abstract behavioral specification for the d-flip- required overall system behavior.
flop component class. The signal on the d input is transferred to the
q output when the clock input goes from low to high. If, however,
the clear input goes low, then so does the q output. The q output
is unaffected by the d input whenever the clock is stable. The clock A top-level behavioral specification is usually required to satisfy the

period is two simulated time units, and input setup time is ignored. following properties [2, 51 :

1. Functionality. Events generated on output ports of a
component depend only on events consumed on its input

(deflbehavior D-Flip-Flop (ignore state signal now) ports and internal states.
Clear Clock D I Q
------------- --

low x x I low 2. Realizability. An event generated for simulated time t
high t high I high cannot depend on any events consumed by the component

;;high t" low lowhigh l w I Qo for simulated times greater than t. This simply reflects

(slecq state the notion that no real system can predict the future.(Clock
(when (eq (state-value (port-signal Clear)) 'high)
(When (eq csignal 'high)

(when (- now (state-tigh (port-signal D)) 2)) 3. Finite Delay. An event on an input port or internal
(assert Q (state-value (port-signal )) state with simulated time t cannot generate events oi

(Clear (1+ no))J; output ports with simulated time less than t. This reflects
(when (eq signal 'low) (assert Q 'low (1+ no)))))) the idea that no real system can alter the past.

A quick inspection of Figure 2-2 should verify that the behavior
Figure 2-2: Behavior Declaration for the d-f lip-f lop Class specified for d-f lip-f lop satisfies these properties.

There are a couple of points worth noting in the example of Figure
2-2. 3. Design Validation

" The style illustrates one of the benefits of event-driven Once a design has been specified to a design system, the designer must
simulation : only the state changes are propagated as be able to validate it by ensuring that it meets both its functional and
opposed to recomputing the state of the entire system at performance goals. In the absence of formal verification methods,
every step [8). simulation is a common technique to establish the functionality of a

design (8). Furthermore, since simulation (unlike emulation)
" The declaration has an explicit notion of the passage of automatically carries with it an explicit notion of time8 it can also be

time; simulated time units have user-defined semantics used to compare the performance of a design with other designs or
and it is up to the designer to ensure that the units be real systems that realize the same function; this is often as important
used consistently by different components. to the designer as verifying its functionality [2].

" The state changes specified by the events for a given
simulated time are all made before behavior methods are 3.1. Discrete Event Simulationinvoked on the events. (This, however, excludes zero- While there are various types of simulation (see [6) for a good
delay events generated by thie behavior methods, which characterization of simulation methods), we are concerned here onlymusty bvents derate wih m e car y mths a h nwith discrete-time, event-driven simulation. Before proceeding withm u st b e d ea lt w ith m o re ca refu lly . T h es e a re n o t o r d s u s o ,i s u e u o c n i e o e d f n t o s
considered in this report, but are handled by AIDE.) our discussion, it is useful to consider same definitions.
Hence, there is no need to specify a clause to handle a
change in d occurring at the same simulated time as a 3.1.1. Consistency and Acceptability
clock transition from low to high, where the clock An event is an atomic state change in the simulated system during

event is "processed" earlier in real time than the d event, the execution of a simulation. It is represented as a record consisting
of (1) a component, (2) the state or port of the component that
changes, (3) the value that it gets, and (4) the simulated time of this

2.3.2. Composite Behavior change. Two events are equivalent if they are isomorphic (thus they
The benefits to be gained by hierarchical simulation are well-known; represent the same state change to the simulated system, though for
once the behavior of a multi-component system is verified, the different executions of the simulation).
designer may reduce simulation turnaround time by abstracting this
behavior into a less detailed behavior that realizes the same function.
AIDE directly supports this by allowing a designer to specify whether a
composite component's behavior is its own defined behavior ("top- 7Event transformation is done cooperatively by the components themselves through
level") or the compounded behaviors of its connected subeomponents resage-passing
("internal"). For example, if we designed a shift-register from D-type 8AS construed by the designer,
flip-flops, we might initially verify the design using the "internal"
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Simulated time is the designer's abstraction of real time, so that with the requirement that this set be a superset of the set of actual

the state of the real system (device) at any real time corresponds to event preemptions. The problem of syn-hronization (distributed or

the state of the simulated system (device) at the corresponding otherwise) is thus essentially the problem of dynamically determining

simulated time 161. Simulated time takes on non-negative, discrete, potential event preemptions and processing those events that cannot

and, for convenience, integer values. be preempted.

The simulation of a component (device) refers to the execution of a
simulation of a component (device) under the control of some 3.2. Sequential Simulation

simulation algorithm which regulates the consumption and production We discuss briefly the mechanism by which sequential simulation

of events relevant to that component (device) over real time. For a works in AIDE.
given simulation, there is an associated set of events. We say that
two simulations are equivalent if they produce equivalent event sets 3.2.1. Synchronization Using Simulated Time

(given that the device being simulated is deterministic); two The standard sequential synchronization algorithm makes use of the

simulation algorithms are consistent if any two simulations under simulated time of an event and the requirement that the device is

the control of each algorithm, respectively, are equivalent. The realizable to achieve acceptability. Events with lower simulated times

actions of a simulator to achieve consistency (using a simulation are always "processed before" events with higher simulated times;

algorithm) are collectively called synchronization; hence the therefore, whenever an event is processed, all the events that, could

algorithm is often called a synchronization algorithm, possibly have preempted it have already been processed.

Lastly, we call a synchronization algorithm acceptable if it is The main advantage of this synchronization algorithm is that it is

consistent with itself and if it accurately reflects the behavioral simple and easily implementable in a serial system. However, it is too

specification of the simulated system. Intuitively, this means that a conservative in its computation of possible event preemptions to be

synchronization algorithm is acceptable if it always generates all and viable in a distributed environment.

only those events induced by the initial state (including initial events)
of the simulated system and the behaviors of the components being 3.2.2. Implementation
simulated. AIDE implements a simulator as a flavor-instance that maintains a

3.1.2. Synchronization simulated-time-ordered eventlist and an associated global clock for a

Acceptability is the goal of every synchronization algorithm. Since given device. At every step, the simulator removes the event at the

almost every implementation of a simulator (including AIDE) depends head of the eventlist, moves the clock to the specified simulated time,

directly on side-effects to changeable stateg,  acceptability makes the appropriate state change, and invokes the behavior method

operationally means that the simulation algorithm must control the of the relevant component. Events generated by the behavior of a

consumption of events during execution so that behavior-generating component are passed back to the simulator, which sorts them into

code is invoked in the correct context. (This is not necessarily the the eventlist to be processed when they get to its head.

case; for example, a simulation system that uses a strict logic AIDE uses the graphical interface to allow the designer to access the
programming system to implement structural and behavioral simulator associated with a device. It provides operations to reset,
specifications need not concern itself with this issue since all "state initialize, and run a simulation with or without breakpoints 171.
changes" will persist in such a system; of course, the burden of
storage management has now been thrust upon the logic Current facilities for "observing" a simulation are limited; a general
programming system.) With this implementation model in mind, we instrumentation interface is under design.
provide below an informal relation on events that will be useful in

analyzing the acceptability of synchronization algorithms. 3.3. Distributed Simulation

An event ei preempts another event ej if either of the following is The motivation for distributed simulation is doing event processing in

true parallel using multiple machines to gain a reduction ir the overall
simulation turnaround time as compared to a seqicptial simulation.

1. ei and ei specify a change to the same state entity but the Thus, synchronization algorithms for distributed simulation systems
simulated time of e1 is greater than the simulated time of seek ways of processing non-preemptable events in parallel. These
ej; algorithms must trade off the cost of determining potential event

preemptions against the cost of processing the events themselves in
2. the state change specified by e, overwrites information minimizing the total execution time of the simulation. Such costs,

that is used by ej and the behavior of the relevant naturally, depend on .'arious factors, including the target machine

component to generate an event, environment. Our discussion below assumes a machine environment
Two events are independent if neither preempts the other. that consists of small number of fairly powerful machines (Symbolics

Two vens ar inepenentif nithr premps th oter.3600s) communicating over a shared network (the E'TI-ERNET).

We claim that an acceptable simulation algorithm is one that

generates an event set such that for every ei and ej in the set, if ei  Though there are various classes of synchronization algorithms for a
distributed environment (6], we only consider those which distribute

preempts ej then ej is "processed after" ej. control of the simulation to the participating machines, that is,

In theory a simulator has to run the entire simulation to determine algorithms that, aro rim individivAlly hy ea'h machine.

the set of preemption relationships between every two events; in

practice, however, it computes a set of possible event preemptions,

9There is a direct correspondence between a state variable in the specirication and

one in the implementation of the specification, dictated by storage management

considerations
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3.3.1. Partitioning original component in parallel. Connection information is
Decomposition is not only a powerful tool in design, but also in available in the structural specification of a device;
distributed problem-solving. It is therefore natural to consider minimum delays may be extracted from behavior
various ways of partitioning the problem of simulation into specifications.

subproblems which may be tackled by the participating machines
individually. In doing this partitioning, we must keep in mind that 3. The state being changed within a component is useful
we would like each machine to operate as autonomously as possible when a component has a number of internal states that
and also that there are costs associated with communicating affect its output ports with varying delays. This gives
information between machines which we would like to minimize, better bounds for "lag" on a per-event basis within such a

component, thereby giving a better overall approximation
Usually the structure of a device (system) directly reflects its of possible preemptions. Such information can be
functionality. Given the nature of the design representation, this determined as for the component itself..
implies that the subcomponents of the device themselves behave fairly
autonomously. This in turn points to the obvious utility of Much of the above information can be efficiently "compiled" before

partitioning the simulation problem by assigning to each machine the the actual execution of a partitioned simulation. Ilowevc,, part of it

subproblem of simulating some subset of the components of the device must still be computed dynamically by the machines, communicated
(system) as this will tend to reduce the gross interactions (and shared between them and finally used by them, perhaps undercutting the

state) between the machines, thus reducing the costs associated with increased opportunities for parallelism.

communicating and keeping consistent such information. This
partitioning will also allow each machine to operate reasonably 3.3.3. The First Cut
independently. Furthermore, if the system being modelled itself We describe here the first synchronization approach used in AIDE,
exhibited concurrent activity (a multiprocessor computer system, for which reflects a particular choice of only the first two information
example), then this partitioning scheme may enable the overall sources described above for implementation simplicity.
simulation of the system to directly exploit the natural parallelism Distributed simulation in AIDE starts with the designer selecting the
visible in the events that represented the "actual" concurrency. The partitioning evel for the device in terms of its subomponents. At
above are, in fact, basic assumptions of the AIDE distributed this level, the component and all its subcomponents form a logicalsim ulation approach, as they are of m ost other distributed sim ulation pr c s or p wi h n h ch i m l t d i e wll b c ni t n .schemes (5, 2, 6J. process or lp within which simulated time will be consistent.

Different lps may have different simulated times during a simulation,
even within a machine. Thereafter, the designer partitions the

3.3.2. Using the Device Specification in Synchronization simulation by assigning Ips to machines.
Synchronization based on the simulated times of events alone
unnecessarily (and, in most cases, severely) restricts the amount of At this point, AIDE compiles synchronization information and
exploitable parallelism by assuming that an event with simulated time distributes components to simulation servers on each (previously
t could be preempted by any event for simulated time less than t. obtained) machine; a server is essentially a sequential simulator plus
Very few abstract models (for example, CARE, which mixes detailed support for synchronization.
simulation of inter-processor communication with more abstract The synchronization information compiled here is at two levels.
simulation of processing activities) exhibit such synehronicity at the Between machines, the system first computes a table that represents
event level, thus there will be very few opportunities for parallel gross minimum delays along connections between any Ip on one
processing in their simulation. The device specification and the machine and any ip on another. Within a machine, lps are organized
behavior requirements provide additional information for better in terms of simulated time ,vindows. Window-out(lpi) is the
estimating potential event preemptions. minimum simulated time delay before an event consumed at lpi could

Since the preemption relation applies between events, the more generate an event at for any non-local lp. Similarly, window-in(lpi) is
information within an event used by the synchronization algorithm, the minimum simulated time delay before an event consumed by an
the closer its synchronization activities come to using the results of "edge" lp (one with a direct connection from any remote lp) could
the simulation itself, and the better the estimation of preemption generate an event for lp. These quantities are static for a given
relationships. We may organize these pieces of information in terms partition and are directly computed from the structure and a
of the "fields" of an event. predeclared minimum delay for each component type.

1. Simulated time is already essential, as the definition of During execution, a simulation server runs a cycle with two phases.
preemption and the implementation of a behavior * Synchronize. If the server was active (processed some
specification suggests. We may make use of the property local events) in the last step, it computes the minimum
that two events with the same simulated time are always time that an existing local event could affect any remote
independent to find inherent parallelism. server. This quantity is the next event time (NET) of the

server and is equal to the minimum over all the local
2. The component is also useful within the partitioning events of the simulated time of the event plus the window-

scheme we have chosen. Since each component has a out of the Ip specified in that event. It sends this time to

minimum (non-zero) simulated time delay between

,.wisumitnl ." vvcjit .id s avJiVItUin o ; on an output port, every other server in a synchronization measaqe.

and since it is also directly connected to only some small Each server now waits for all servers active in the last step
subset of the other components, an event for that to send their NErs. Then it uses the compiled inter-
component will have a simulated time "lag" before it may machine delay table to form the next set of active servers
preempt an event on a component more "distant" in as follows:
terms of connections. This enables a machine simulating
the "distant" component to process existing events for it
up to "lag" simulated time units beyond the event for the
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" at compile time, compute better lower-bound delays
Forsrves {between machines by searching connection paths between
active(s1 ). a]. machines (the first implementation only did it for

Each server also computes the local preemption time. neighbors and then used a plane assumption);

compute preemption times on a per-machine basis as
PT(sl,,l1 ) - minimum{VsjjNET(sj) + delay(s,local)]}. opposed to the conservativt rategy of using only the

Simulate. Each server processes all the existing local "most dangerous" machine.

events that cannot be preempted by an event that occurs We anticipate that the above changes will result in increased parallel
at an edge Ip with time not less than PT(slo,1 ) (using the activity for the machines (a necessary condition for speedup);
window-in of Ips). Events from remote machines may be thereafter, we will determine whether the added cost of maintaining
asynchronously received for input ports of local edge and using this information will negate (or worse) this gain.
components, but they will be for simulated times greater
than PT(sleI). Similarly, events on local edge output
ports may be transmitted asynchronously to remote input
ports. References
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an upper bound (somewhere between 1 and 2) on the speedup that [in preparation].

may be gained by the distributed simulation. [8] Narinder Singh.

We can suggest two reasons for the above. The first is that the MARS: A Multiple Abstraction Rule-Based Simulator.

probabilistic CARE model was generated from early applications that HPP Memo IIPP 83-43, Stanford University, Department of
Computer Science, December, 1983.

did not themselves demonstrate much low-level concurrency atop

JARE. The second (more probable) is that the preemptior (9] Narinder Singh.
calculations were too simplistic. Corona: A Language for Describing Designs.

IIPP Report IIPP 84.37, Stanford University, Department of
We are taking steps to alleviate the above difficulties. One step is to Computer Science, September, 1984.
use a probabilistic model extracted from the event history of a
demonstrably concurrent application in CARE. Another is to increase (10] Daniel Weinreb and David Moon.
the complexity of compiled synchronization information in attempting LISPo Machne Manual.

to increase the number of active machines at any step. The latter Symbolics, Inc., 1981.

involves the following specific actions :

* make use of the third facet of information present in an
event in determining preemptions, either through
declarations or by "wiring" such information into the
behavior specification of a component class;
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Abstract 2. Background
KL.ONE was designed by (Brashman 78] to "circumvent

NIKL (a New Implementation of KL.ONE) is one of common expressiveness shortcomings." It was designed to
the members of the KL.ONE family of knowledge embody the principles that concepts are formal representational
representation languages. NIKL has been in use for objects and that eplstemological relationships between formal
several years and our experiences have Ied us to define objects must be %ept distinct from conceptual relations between
and implement various extensions to the language, its the things that the formal objects represent. KL.ONE defined an
support environment and the implementation. This "epistemologically explicit representation language to account for
article reports on the extensions that we have found this distinction."
necessary based on using NIKL in several different
testbeds. The motivations for the extensions and A KL.ONE concept is described by "a set of functional roles tied
future plans are also presented. together by a structurinq gestalt." Concept definitions "capture

1. Introduction information about the functional role, number, criteriality and
nature of potential roles fillers; and 'structural conditions', which

Our work on NIKL is motivated by a desire to build a principled express explicit relationships between the potential role fillers and
knowledge representation system that can be used to provide give functional roles their meaning." A overview of the KL.ONE
terminological competence in a variety of applications. To this system has been published by [Brachman and Schmolze 85].
end, we have solicited use of the system in the following
applications: natural language processing, expert systems, and 2.1. The classifier
knowledge-based software. COr research methodology is to allow An important consequent of the well.defined semantics of KL.

application needs, rather than theoretical interests, to drive the ONE is that it is possible to define a classification procedure to
continued development of the language. This methodology has determine the subsumption relationship for concepts in a KL.ONE
allowed us to perform an empirical evaluation of the strengths and network. A detailed description of the semantics of the KL.ONE
weaknesses of NIKL. Also it has helped us identify some classifier have been published by [Schmolze and Lipkis 83]. The
requirements for any knowledge representation tool that would be classifier for KL.ONE deduces "that the set denoted by some
used in a wide range of intelligent systems. concept necessarily includes the set denoted by a second

concept but where no subsumption relation between the concepts
We classify the improvements that we have made or plan to was explicitly entered." Classifiers for KL.ONE and NIKL have

make into three broad categories: been developed at ISI.

1. Expressiveness - enhancements to the terminological
competence represented in NIKL and the inferences The desirable properties for the classification algorithm are
NIKL can make regarding the subsumption soundness (no incorrect inference is made), completenoss (all
relationship, correct inferences are made), and totality (the algorithm always

halts). Theoretical analysis work done by[Brachman and
2. Environment - enhancements to the tools that Levesque 84] has determined the limits on the expressiveness if

accompany NIKL for both maintaining knowledge completeness of the classification algorithm is to be maintained.
bases (knowledge acquisition) and reasoning about Work on NIKL has concentrated on the issue of soundness,
the terminology defined in the knowledge base, and forgoing completeness in favor of increased expressiveness. An

efficient implementation has also been a goal of the NIKL effort
3. Support - enhancements to user documentation, the and the NIKL classifier is in fact nearly two orders of magnitude

reliability and the availability of the implementation. faster for large networks than the KL.ONE classifier.

This paper will concentrate on enhancements made to the 2.2. Classification-based reasoning
expressiveness of NIKL but will also describe some improvements The NIKL classifier provides a general weak method for
and additions made to the NIKL environment. An introduction to categorizing descriptions of objects. It is insufficient as the sole
NIKL will be included as background material and enhancements inference mechanism for an intelligent system but it can be used
to the support of NIKL will be mentioned for the sake of very effectively (and efficiently) in what we have termed
completeness, classification-based reasoning.
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Most uses of KL.ONE and NIKL rely heavily on this kind of Applications of KL.ONE and NIKL have been in the areas of
reasoning, It consists of a classification.reasoning cycle. The natural language processing (see the publications of [Bobrow and
application first creates a new description of some partial result Webber 80, Sondheimer 84, Sidner 85, Mark 81]), expert systems
and then classifies this in a static network describing knowledge (see the work of [Neches, Swartout, and Moore 85]), and software
of the problem domain. Based on the result of classification, description (see the publications of (Kaczmarek, Mark and
additional inferences are drawn about the partial result Pod a new Wilczynski 83, Wilczynski 84]). Large networks, in excess 1500
description is constructed. These Inferences are the result of concepts, have been developed in these environments.
some rule or procedure that examines the network looking for
inferences that it is capable of making. The new description that This experience with NIKL has led us to consider certain
results may achieve the goal of the reasoning cycle, in which case extensions to the language, its environment, and the
reasoning terminates. More typically, further classification and implementation. The following sections will deszribe the
redescription arc required and there is a continuation of the extensions we consider important and explain the motivation and
reasoning cycle. status of each. The extensions have been divided into roughly

three categories: terminological competence, environment, and

One way of thinking about this reasoning cycle is to think of the implementation.
classifier as selecting applicable rules based on the terminology
that is used to describe the task domain and the problem at hand.
The selection of the rules is within the terminological system, i.e., 3.1. Terminological Competencebased on the definitions of terms. However, the rules are outside By terminological competence we mean the ability of the system
the terminological component and expressed in some other to represent and reason about various distinctions that a modeler
language, might need to capture in defining concepts. For example, the

ability to restrict the range and number of role fillers for a
particular functional role adds to the terminological competence.

2.3. NIKL's evolution from KL-ONE Inferring that if a person has at least one son, then the person has

NIKL's name is evidence of the fact that it is thought of as a Niew at least one child (based on the fact that son is a specialization of

Implementation of KL.ONE. Despite this, there are major child) is another example of terminological competence. The

differences between NIKL and KL.ONE. These are in addition to following sections will describe our efforts in this area.

the emphasis on the efficiency of the classification algorithm
already mentioned. Many of the differences are a direct result of 3.1.1. Disjolntness and covers
the influence of work on KRYPTON by [Brachman, Fikes, and One addition to NIKL that was absent in KL.ONE is support for
Levesque 83]. Close cooperation between the NIKL design team disjoint and covering sets. A collection of concepts can be
and the KRYPTON designers resulted in many system similarities declared as being disjoint, i.e., have no common extensions in the
despite a strong distinction on the issue of completeness. world. A collection can also be declared as a cover of another

concept, i.e., all extensions of the covered concept must be
The major difference between NIKL and KL.ONE involves the described by at least one of the members of the covering, These

representation and use of roles.1 At the time NIKL was designed, two declarations can be combined to form partitions.
use of KL.ONE had uncovered a need for revisions of the ideas
about roles. For example, eyplicit structural conditions were no NIKL supports limited inferences based on these notions.
longer used to define the meaning of roles partially because of the
inadequacy of the original formalization and lack of useful As a result of disjoint classes, NIKL can determine if a
consequences of these conditions. In addition, the notation concept is coherent or not. For example, a person all
required in KL.ONE for relating -oles in concepts (which included of whose children are both males and females, would
relations such as modifies, differentiates, and ndividuates) were be marked as being incoherent if male and female
cumbersome. The idea of thinking of roles as two.place relations were declared as being disjoint. An incoherent
and concepts as one-place relations emerged, and roles took on a description is admissible in NIKL but is assumed to
new significance. Roles were defined as having a domain and a not have any extension in the world.
range, organized in a separate taxonomy, thought of as With respect to covers, a simple inference procedure
representations of relations, and assumed to be used consistently. is available to deduce the existence of other covers.

For example, suppose male arid female cover sex,

3. The status of NI KL spouses have a sex role that is restricted to sex, and

A NIKL implementation was first developed approximately two that husband and wife are specializations of spouse.
years ago. Since then it has been in use principally at ISI and at Further assume the only difference between husband

Bolt, Beranek, and Newman Inc., which contributed to the design and wife is a restriction of th sex role to male and

of the system. Several "browsing" tools, syntactic support, and female respectively, then NIKL can inter that husband

graphing tools have been developed and used to construct and and wife cover spouse. Needs for this kind of

maintain knowledge bases. A natural language paraphraser to reasoning have come about in using NIKL for expert

assist users in understanding networks was also developed but systems where certain methods of problem solving
has not been heavily used. Various inference mechanisms driven are applicable only when some covering exists.
bthclasie heal o eeVar ieene. meNIKL's current inferential capabilities for covers are
by the classifier have also been implemented. limited to simple cases such as the one presented in

this example. Plans call for expanding these
iActually there are significant differences beyond those having to do with roles capabilities as needed by applications.

if one takes KL.ONE to be defincd by the original formalization rather than the then
current implementation, which did not support much of the formalism,
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3.1.2. Reasoning about role restrictions From this specification, NIKL infers the following:
The inclusion of an explicit role hierarchy in NIKL allows the

system to Infer certain properties of concepts. The example of -all of A's rich cousins are rich doctors,

calculating minimum number restrictions for the son and child
roles presented above illustrates one kind of inference. In that -all of B's rich cousins are rich and very famous

example, we have propagated a minimum number restriction up to surgeons,

a more general role. Obviously, we can also propagate a
maximum down to a specializing role. These are two inferences . all of B's famous cousins are famous surgeons, and

that we have recently added to NIKL. •all of B's rich relatives are rich and very famous.

Another inference involves value restrictions for roles. It is
illustrated by the network definition seen in Figure 3.1. The NIKL Figure 3.2 graphically depicts the network after classification
specification for this example can be paraphrased as follows: has been performed.

doctors, famous, and rich are primitive concepts2, The conclusions illustrated in the figure are derived from the
surgeons are a primitive specialization of doctors, following line of reasoning. All of B's rich cousins are rich
very famous is a primitive specialization of famous, relatives and therefore very famous, so they are all also surgeons
all the rich cousins of an "A" must be doctors, (since all the famous cousins of B are surgeons), making them
all the famous cousins of any "B" must be surgeons doctors as well. It follows then that B specializes A since all of its
and all the rich relatives of any "B" must be very rich cousins are rich and very famous surgeons, which is a
famous, specialization of rich doctors. The current classifier for NIKL
relative is a primitive relation, supports this kind of reasoning based on the role hierarchy.
cousin is a primitive specialization of relative
any concept that fills the role of famous cousin must
fill the role of cousin and be famous,
any concept that fills the role of rich relative must fill
the role of relative and be rich and,
any concept that fills the role of rich cousin must fill
the roles of rich relative and cousin.

//
(DEFCONCEPT Doctor primitive) Mt. , .0.

(DEFCONCEPT Famous primitive) ~*I~,
(DEFCONCEPT Rich primitive) / ~ ,,,
(DEFCONCEPT Surgeon primitive ''" ",

(specializes Doctor))
(DEFCONCEPT Very-Famous

(specializes Famous))

(DEFRELATION Relative primitive) "_ _ __,°,_ _ _
(DEFRELATION Cousin primitive -.. ..... U

(specializes Relative)) Figure3-2: Graph of taxonomy defined in Figure3.1
(DEFRELATION Famous-Cousin

(specializes Cousin) (range Famous))
(DEFRELATION Rich-Relative Our plans for enhancing reasoning about role restrictions

(special izes Relative) (range Rich)) include adding logic to account for coverings and disjointness in
(DEFRELATION Rich-Cousin the role hierarchy. For example, if we knew that the roles, son and

(specializes Rich-Relative Cousin)) daughter, are disjoint and that they cover the role, child (i.e., form
a partition) then we can determine the maximum and minimum

(DEFCONCEPT A number restrictions for child based on the number restrictions for
(restrict Rich-Cousin (VR Doctor))) son and daughter. Similar kinds of inferences can be made

(DEFCONCEPT B
(restrict Rich-Ralative (VR Very-Famous)) involving the value restrictions.
(restric. Famous-Cousin (VR Surgeon)))

3.1.3. Roles and relations
One of the criticisms of KL.ONE and NIKL was an incomplete

Figure 3-1: Example of role reasoning treatment of roles. In KL.ONE the semantics for roles was
determined only by other constructs that were described for
concepts. In previous versions of NIKL, all roles were primitive.
Work in natural language text generation has pointed out the need
for a more uniform treatment because sometimes a sentence

2A primitive concept or relation corresponds to the notion of a "natural kind", needs to describe the relationships that exist betweon concepts,
i e. a predication that can only be determined by an oracle. To NIKL this means This requires giving relations the same status as concepts in the
that no concept may be placed beneath this one in the hierarchy unless the network and establishing a correspondence between restrictions
concept specification explicitly says to do so. of roles at a concept and the relations tho. e restrictions refer to.
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We have thus adapted a position where roles are thought of as two A more sophisticated classification control strategy could
place relations that are defined in the concept hierarchy. We have obviously result in a more complete classification. We have
implemented this strategy by allowing the user to define relations designed, and are in the process of implementing and testing,
that may then be used as roles. The example above in Figure 3.1 what we call the incremental classification control strategy. Under
illustrates this capability. Under this new implementation, this regime, the classifier will maintain dependency links for all
relations are represented as concepts in the same hierarchy with concepts and use an iterative approach to classification. When a
all other concepts. All relations have at least two roles, a range cycle is encountered, the classifier will do the best it can with the
and a domain. concept with the fewest dependencies. It will then classify all

those concepts that depend on that one and eventually (because
One implication of this support is that it has allowed the user a of the cycle) try to reclassify the original concept after having

simple way to say things such as "a car, one of whose tires is flat." done its best on the dependent concepts. This approach
In the previous implementation, the user would have to specify obviously cycles and needs a termination condition. The
and name a primitive role that specialized the tire role for a car incremental classifier will stop classification when the network has
and then restrict the value of that role. reached a quiet state, i.e., no new inferences can be drawn, or

some user.settable number of dependency cycles have been
A more significant improvement results from removing an completed. This strategy will allow more inferences to be made by

unfortunate consequence of this old procedure (which resulted the classifier and will also provide the basis for a much improved
from the primitiveness of the role). The result of that procedure knowledge acquisition environment. Details of the implications for
was that nothing would classify as a kind of the concept being acquisition will be presented later in Section 3.2.4.
defined unless the user added the same role (presumably by
referring to it by name) and restricting if to the same range (or 3.1.5. Partial orderings
some specialization of it). In the current implementation, we One glaring shortcoming of KL.ONE and NIKL has been an
"gensym" a relation that specializes tire and restrict its range to inability to define sequences. Requests for this capability have
flat. Any other similar or more specialized relation resulting from a come from nearly all applications3. We have examined the
restriction, for example, the one generated by "a car with a blown, requirements and designed a more general capability that
out tire," will either merge with the gensymed relation or classify supports partial orderings on roles.
as a specialization of it. Thus, classification of a car with a blown.
out tire under a car with a flat tire can happen without having to The partial orderings in NIKL represent relations that exist
refer to a specific (and primitive) flat.tire role in the specification of between role fillers. Support includes knowledge (in the classifier)
the car with a blow.out. about the reflexive, antisymmetric, and transitive nature of partial

orderings. One partial ordering may be a specialization of another
Since relations are now part of the concept hierarchy, we can arid they are defined in the concept hierarchy like all other

define other properties for roles and declare disjointness and relations.
coverings. One consequence of this is that we have simplified the
development of support for reasoning about number and value The NIKL user can make several different kinds of statements
restrictions for roles based on these notions. Another is that we about the partial orderings of the role fillers. One states that all
can specify more completely the meaning of a relation. the fillers of a particular role must be ordered by a particular

relation. For example, the statements of a computer program are
3.1.4. Cycles in the network ordered by the lexically-before relation. A second kind of

The current NIKL classifier cannot reason effectively about statement is that all the fillers of one role are related to all the
cycles in the network. A cycle occurs whenever one classification fillers of another role by a particular ordering. An example is a
depends on another. In general, the classifier stops trying to draw statement that the initialization steps of a while loop come before
inferences about any of the concepts in a cycle when one is the termination tests, which in turn come before the steps in the
encountered. Typically a large collection of static concept body. The final kind of statement declares that the fillers of one
specifications are presented to the classifier. It recursively role are the immediate predecessors (or successors) of the fillers
descends the known hierarchy to find and classify those new of another. An example is the statement that one statement of a
concepts that have no dependencies on any other new concepts. program is immediately lexically.before another.
It then unwinds the recursion and forms the newly classified
hierarchy as a result. If it discovers a cycle, it simply declares the Classification will involve the determination of subsumption
concepts classified and warns the user about the existence of the between partially ordered sets (posets), which is a fairly expensive
cycle. operation. The expense includes the construction of the

representation of posets as graphs and the determination of
The exception to this processing involves cycles that result from whether one graph is a subgraph of another. The design of the

roles being defined as concepts. For example, if the son relation implementation is such that overhead caused by this
is used to define a person, then person cannot be classified until enhancement will be minimal for concepts that d9 not involve use
the relation son has been classified. Mut if the dnmin of son is of this feature.
person, then it cannot be classified until person is classified.
Obviously, a cycle results. The current NIKL classifier detects this
special case of a cycle and marks the relation as being classified
and it continues to attempt to classify the concept that used the 3Various extra.NIKL schemes have been aj..d .a i/ac work to handle this
relation. problem. In past applications it was not necessary for the clnsifier to deal with

sequences so a special purpose sequence reasoner could be us,.d
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3.1.6. Necessary and sufficient conditions NIKL itself and part of the environment. An ad hoc assertional

The NIKL classifier represents a particular kind of classification, mechanism4 was developed for use with the CUE and Consul

one that depends on certain logical properties. There are other applications (see, [Kaczmarek, Mark, and Sondheimer 83]). A

kinds of classification that depend on domain specific knowledge. more systematic approach has led to the development of a major

One such kind of classification involves the definition of sufficient tool for reasoning about assertions by [Vilain 84] of Bolt Beranek

conditions. The idea is that the presence of certain evidence is and Newman. This tool, KL.TWO, combined the RUP package of

sufficient to draw a conclusion if there is no contradictory [McAllester 82] with NIKL. KL.TWO provides a truth maintenance

evidence. For example, one might be willing to say that any package that is very useful in some applications. However, it is

mammal with a human DNA structure must be a kind of human inappropriate for large data bases and for certain kinds of

unless there is evidence to the contrary even though we do not applications where efficient implementations of the assertions are

have evidence for upright posture, opposing thumbs and so forth. required.

Such reasoning has heretofore been unavailable in NIKL and To correct these deficiencies (for certain applications) we have

KL.ONE. In light of this one can characterize the definitions of planned two other hybrid systems. The first involves coordination

current NIKL concepts as stating necessary conditions (since no between the conceptual hierarchy defined in NIKL with the

part of the description could be missing) and sufficient conditions schemata for a commercial relational data base. With this scheme

(since the presence of them is sufficient evidence for the classifier we plan to use NIKL in applications requiring the kinds of semantic

to draw specialization conclusions). The exception to this is for browsing techniques found in the work of [Patel.Schneider,
concepts marked as primitive, which indicates that no set of Brachman, and Levesque 84] and [Tou, Williams, Fikes,

sufficient conditions can be found. Henderson and Malone 82]. The second involves using NIKL in
coordination with the knowledge representation aspects of a

The proposal for adding sufficient conditions would allow the knowledge-based software development paradigm. Here we are

user to state that some collection or collections of roles were actively involved in using NIKL to define a type hierarchy and

sufficient. For example, if you know that an animal has four legs relations for the AP5 language of [Cohen and Goldman 85].

and a trunk or a finger on the end of its nose (and there is no
contradictory evidence, such as it lives in a trae) then it is an 3.2.2. Reformulation
elephant. Still in question is the proper handling and possible As was previously mentioned, classification.based reasoning is a
inclusion of other constructs of the description language, such as common mode of use of NIKL. The terms, reformulation and
structural descriptions and partial orderings. Our plan is to mapping, have been used in KL.ONE applications to refer to this
proceed with defining sufficient conditions in terms of roles and kind of activity. Currently there is a reformulation facility available
role sets and see if applications will require more complex that is used in the expert system research of [Neches, Swartout,
support. An initial investigation indicates that this limited support and Moore 85]. This mechanism is used to satisfy goals by
will suffice. expanding plans. Within the paradigm of their project,

reformulation is used to generate an expert system based on a
knowledge of the domain and expert problem solving knowledge.

3.1.7. Negation In this methodology, goals, methods, and plans are all expressed
Negation is a problem for the classification algorithm as has in NIKL and the expert system shell uses these to generate the

been shown by the work of [Brachman and Levesque 84]. expert system for a particular domain and set of goals and
Nevertheless, it is a notion that nearly all applications find useful. methods. While the facility provided was designed for a part ,ar
Since we cannot admit negation and maintain decidability for the use, the mechanism is generic and can be applied to any nt )er
classifier, we have provided othor mechanisms and conventions of other applications.
that seem to satisfy most users. One convention is the use of zero
as ihe minimum and maximum number restriction for a role 3.2.3. Graphic- based editing
restriction. For example, a verb phrase with no time modifier can The KL.ONE community has a rich tradition of drawing pictures
be modeled this way. with "circles and arrows." A graphical representation of concepts

and networks has always been a part of the language. As the
The ability to define partitions as disjoint covers provides a way expressiveness of NIKL has increased, the cleanliness of the

to talk about complements, which are akin to negation. This is graphs has diminished, but nevartheless, the graphs remain
another addition to NIKL that was the result of expressed desires useful.
for negation. The strategy exemplified in these two capabilities,
namely, providing something different than what the user asked We have developed an integrated set of acquisition tools in a
for but which meets the requirements of the application is very window-based workstation environment. The tools include a
much a part of our methodology for continuing the evolution of graph of the concept hierarchy, an EMACS editing window, and a
NIKL. LISP interaction window. Within the LISP interaction window, the

environment can produce highly formatted ("pretty.printed")
3.2. The Environment desciptions of concepts. The atoms in '-these formattd displays,

The NIKL environment consists of tools that aid in knowledge which refer to concepts and relations, as well as the nodes of the
acquisition and reasoning. Our experience has led to the graph and the text in the edit buffer are all mouse sensitive and
generation of tools in both of these areas. known to be NIKL constructs by the environment. This allows the

3.2.1. Assertions
Recording and reasoning about extensions of the terminological 4This scheme was built around the KL.ONE notion ot a nexus

knowledge represented in NIKL is considered to be outside of
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user to move from one window to another in a coordinated way. It 4. Summary
also allows the user to refer to a NIKL object simply by pointing at NIKL is an evolving knowledge representation tool based on KL.
it in any of the various views of the network. A natural language ONE. The experiences gained in a variety of applications have
paraphraser has also oeen added to this environment to assist in shaped the current implementation. Principal enhancements
the understanding of the network. made to NIKL that were In direct response to applications needs

were: the representation of roles more uniformly with concepts,

We also have a tool to graph the definition of a particular support for negation, a connection to an assertional truth
concept. This tool has proven to be less useful than originally maintenance system, support for domain specific reasoning
thought. While drawing concept specifications on paper with a (triggered by classification), and more complete inferences drawn
pencil is extremely useful, we haven't been able to duplicate the as a result of having a relation hierarchy. Further enhancements
free flowing expressiveness of that mode of design. Work on the have also been suggested and continue to be developed. They
human factors of the tool and the inclusion of higher level include: the representation of sequences and orderings, the
operations (the current level is, for example, add a role) are availability of sufficiency reasoning in the classifier, more
anticipated. However, the tool is useful in terms of providing a complete inferences regarding cycles in the models, and
graphic presentation of a concept. The deficiencies become coordination with an assertional component that supports efficient
obvious in creating or editing a concept definition, data base access.

3.2.4. Incremental classification In addition we have implemented and continue to develop tools

A major problem with the NIKL environment arises from the for the knowledge acquisition environment. This work has also

batch nature of the classifier. The example in Figure 3-1 illustrates been sensitive to the needs that have arisen out of several

some of the many inferences that the classifier makes. For application environments. Principle developments include a

example, deciding that the user really meant rich cousins to be Common LISP implementation, and an integrated tool set that

rich doctors, not just doctors. This kind of inference can be features graphic representations, formatting and paraphrasing

particularly troublesome for the user because NIKL frequently tools, and flexible lexical analysis support. The addition of a more

needs to generate new concepts that the user hasn't explicitly interactive editing style and various analysis tools is forthcoming.

defined. Usually NIKL cannot pick an appropriate name for the
concepts it generates. In many cases the need to generate a new
concept arises from the fact that the user has inadvertently 5. Acknowledgement
omitted the concept or made some modeling error. A better The development of NIKL and our plans have been the result of
acquisition environment can be obtained by having the classifier interactions with a number of Al researchers. Many of these were
interact with the user whenever such a concept must be developers or experienced users of KL.ONE or one of its variants.
generated. The user could then choose an appropriate name, The rest were potential or new users. The contributors represent
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strategy that will be employed in the incremental classifier will be Richard Fikes, Ramesh Patil, Jim Schmolze, Rusty Bobrow, Marc
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