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ABSTRACT

The synthesis and living cationic polymerization of 5 -[(4 -cyano-4'-
biphenyl)oxy]pentyl vinyl ether (L-.) and 7-[(4-cyano-4'-biphenyl)oxy]heptyl vinyl

ether (L& are presented. The influence of molecular weight on the mesomorphic

behavior of poly(iL5) and poly(.7.) is discussed and compared to that of 5-[(4-
cyano-4'-biphenyl)oxy]pentyl ethyl ether (L) and 7-[(4-cyano-4'-

biphenyl)oxy]heptyl ethyl ether (L7. which are models of the monomeric structural

units of poly-(.) and poly(i7). Both ( U- and (L7. exhibit a monotropic nematic
mesophase. Poly(.) with degrees of polymerization equal and lower than six

exhibit an enantiotropic nematic mesophase. Poly(6L:5)s with higher degrees of

polymerization display both smectic A and nematic enantiotropic mesophases.

Poly(b6J) exhibits an enantiotropic smectic A mesophase over the entire range of

molecular weights.

INTRODUCTION

There are several reports on the influence of molecular weight on the phase
transitions of side chain liquid crystalline polymers. 1-10 However, to our

knowledge the present series of publications is the first one which attempts to

provide a comprehensive study on th4 influence of molecular weight on the
mesomorphic transitions of a series of polymers with spacer lengths varying from

two to eleven methylenic units, and narrow molecular weight distribution. The
polymers investigated by us are obtained through the living cationic polymerization

of w-[(4-cyano-4'-biphenyl)oxylalkyl vinyl ethers. In all cases, their phase

behavior was compared to that of the model compound of their monomeric
structural unit, i.e., 0o-[(4-cyano-4'-biphenyl)oxyjalkyl ethyl ether. So far, we have

investigated the poly (vinyl ether)s based on the following alkyl spacers: ethyl,

propyl and butyl I I , hexyl and octy112, and undecany11 3 . The trend observed on

studying the influence of the molecular weight on the mesomorphic behavior was

strongly dependent on the spacer length.

These living polymerization experiments also allowed us to investigate the

influence of copolymer composition on the phase behavior, at a constant molecular
weight of the copolymer 14 ,15. The trend which was most frequently encountered

and which is generally accepted consists of the enlargement of the temperature

range of the mesophase with the increase of the polymer molecular weight. 1-13 This
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dependence was recently explained based on thermodynamic principles assuming
that the phase behavior of the polymer is dictated by that of the monomeric
structural unit 16 17 . When the mesophases exhibited by the monomeric structural
unit and by the polymers with various molecular weights are identical, the overall
dependence of phase transitions on molecular weight could be easily
explained. 15,16 However, there are situations when the mesophases of the polymer
are different at different molecular weights and are also different from those of the
monomeric structural unit.4,7,9, 10,12,13 This last trend could not be yet explained.
A collection of experimental data which can provide a complete understanding of
the dependence of the mesomorphic behavior as a function of both spacer length
and polymer molecular weight is thus required.

This paper will describe the synthesis, the living cationic polymerization, and
the phase behavior of the resulting polymers of the penultimate two monomers from
the series of o-[(4-cyano-4'-biphenyl)oxy]alkyl vinyl ethers, i.e, 5-[(4-cyano-4'-

biphenyl)oxy]pentyl vinyl ether &.J) and 7-[(4-cyano-4'-biphenyl)oxy]heptyl vinyl
ether (L-.

EXPERIMENTAL

4-Cyano-4'-hydroxybiphenyl of higher purity than 99.9% and 1,10-
phenanthroline palladium (II) diacetate were synthesized as described
previously. 13,18 Methyl sulfide (anhydrous, 99%, Aldrich) was refluxed over 9-
borabicyclo[3.3.1]nonane (crystalline, 98%, Aldrich) and then distilled under
argon. Dichloromethane (99.6%, Aldrich) used as polymerization solvent was first
washed with concentrated sulfuric acid, then with water, dried over magnesium
sulfate, refluxed over calcium hydride and freshly distilled under argon before each
use. Trifluoromethane sulfonic acid (triflic acid, 98%, Aldrich) was distilled under
vacuum. 7-Bromoheptanol (95%, Aldrich), 5-bromovaleric acid (97%, Aldrich)

and the other reagents were used as received.

Iechnigues
1H-NMR (200 MHz) spectra were recorded on a Varian XL-200 spectrometer.

TMS was used as internal standard. A Perkin Elmer DSC-4 differential scanning
calorimeter, equipped with a TADS data station was used to determine the thermal
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transitions which were reported as the maxima and minima of their endothermic or

exothermic peaks respectively. In all cases, heating and cooling rates were

20 0C/min unless otherwise specified. Glass transition temperatures (Tg) were read

at the middle of the change in the heat capacity. First heating scans sometimes differ

from second and subsequent heating scans. However, second and subsequent

heating scans are identical. Although in the present case both sets of data are

identical, they will be reported. A Carl-Zeiss optical polarized microscope

(magnification: 100x) equipped with a Mettler FP 82 hot stage and a Metter FP 800

central processor was used to observe the thermal transitions and to analyze the

anisotropic textures 19,20. Molecular weights were determined by gel permeation

chromatography (GPC) with a Perkin Elmer series 10 LC instrument equipped with

LC- 100 column oven, LC-600 autosampler and a Nelson analytical 900 series

integrator data station. The measurements were made at 400 C using the UV

detector. A set of Perkin Elmer PL gel columns of 104 and 500 A with CHC13 as

solvent (I ml/min) and a calibration plot constructed with polystyrene standards was

used to determine the molecular weights. High pressure liquid chromatography

(HPLC) experiments were performed with the same instrument.

Synthesis of monomers

Scheme I outlines the general methods used in the synthesis of monomers and

model compounds.

Synthesis of 4-cyano-4'-(7-hydroxyheptan- I -yloxy)biphenyl (L.7)

4-Cyano-4'-hydroxybiphenyl (5.0 g, 0.0256 mol) and potassium carbonate

(10.61 g, 0.0768 mol) were added to a mixture of acetone-DMSO (10:1) (110 ml).

7-Bromoheptan- 1 -ol (5 g, 0.0256 mol) was added to the resulting solution which

was heated to reflux for 24 hr. After cooling, the mixture was poured into water

and then filtered. The obtained solid was recrystallized from methanol and then

benzene, to yield 5.5 g (69.4%) of white crystals. mp, 76.90 C, Tn.i, 103.20C

(DSC). IH-NMR (CDCl 3, TMS, 8, ppm): 1.10-1.95 (10 protons, -(Clj2 )5 -, m),

3.67 (2 protons, -C]2OH, t), 4.00 (2 protons, PhOCH2 -, t), 7.02 (2 aromatic

protons, o to alkoxy, d), 7.52 (2 aromatic protons, m to alkoxy, d), 7.67 (4

aromatic protons, o and m to-CN, d of d).

Synthesis of 7-[(4-cyano-4'-biphenyloxylheptyl vinyl ether (&2.)
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4-Cyano-4'-(7-hydroxyheptan-l-yloxy)biphenyl (3.0 g, 9.7 mmol) was added

to a mixture of 1,10-phenanthroline palladium (II) diacetate (0.39 g, 0.97 mmol),

n-butyl vinyl ether (52.9 ml) and dry chloroform (14 ml). The mixture was heated

to 600 C for 6 hr. After cooling and filtration (to remove the catalyst) the solvent

was distilled in a rotavapor and the product was purified by column

chromatography (silica gel, CH2C12 eluent) and then recrystallized from n-hexane

to yield 2.8 g (86.2%) of white crystals. Purity: 99.5% (HPLC). mp, 58.70C

(DSC). IH-NMR (CDCl 3, TMS, 8, ppm): 1.10-1.95 (10 protons, -(CH2)5-, m),

3.69 (2 protons, -CH20-, t), 4.01 (3 protons, -OCH=CH2 trans and PhOCIH-,

m), 4.14 and 4.21 (1 proton, -OCH--CH2 cis, d), 6.53 (1 proton, OCU=CH 2, q),

7.01 (2 aromatic protons, o to alkoxy, d), 7.51 (2 aromatic protons, m to alkoxy,

d), 7.66 (4 aromatic protons, o and m to-CN, d of d).

Synthesis of 7-(4-cyano-4'-biphenyl)oxylheptyl ethyl ether (27

4-Cyano-4'-(7-hydroxyheptan-1-yloxy)biphenyl (1.0 g, 3.23mmol) was added

to a solution containing potassium t-butoxide (0.36 g, 3.23 mmol), a catalytic

amount of 18-crown-6 and dry tetrahydrofuran (20 ml). Diethyl sulfate (0.44 ml,

3.35 mmol) was added and the reaction mixture was refluxed for 4 hr under argon.

After cooling, the reaction mixture was poured into chloroform. The chloroform

solution was extracted with 10% aqueous KOH, washed with water, dried over

magnesium sulfate and the solvent was removed in a rotavapor. The resulting

product was purified by column chromatography (silica gel, CH2Cl2 eluent) and

then was recrystallized from methanol to yield 0.62 g (52.8%) of white crystals.

Purity: 99% (HPLC). mp, 56.00 C (DSC). IH-NMR (CDCI3, TMS, 8, ppm): 1.20

(3 protons, -OCH2CIi3, t), 1.26-1.90 (10 protons, -(CH2)5-, m), 3.48 (4 protons,

C.j 2OCIj 2 CH3, m), 4.02 (2 protons, PhOCjj2 , t), 7.01 (2 aromatic protons, o to

alkoxy, d), 7.50 (2 aromatic protons, m to alkoxy, d), 7.67 (4 aromatic protons, o

and n to -CN, d of d).

Synthesis of 5-bromopentan- 1 -ol

A solution of 1-bromovaleric acid (14.5 g, 0.08 mol) in dry tetrahydrofuran

(185 ml) was added dropwise into an ice cooled solution of borane/THF complex

(IM) (150 ml). The reaction mixture was stirred at 0°C for 4 hr and at room

temperature for other 12 hr, and the mixture was again cooled with ice. Water was

added dropwise to the ice cooled reaction mixture. Afterwards, a saturated aqueous



5

K2CO3 solution was added to the reaction mixture which separates into two layers.

The aqueous layer was extracted two times with tetrahydrofuran, the organic layers

were combined, dried over anhydrous magnesium sulfate and the solvent was

removed on a rotavapor to yield 12.5 g (95%) of liquid. Purity: 100% (IR and

NMR). 1H-NMR (CDCI3, TMS, 8, ppm): 1.56 (4 protons, BrCH2CI-1CI--, m),

1.90 (2 protons, -CI2CH2OH, t), 3.43 (2 protons, BrCIj2-, t), 3.66 (2 protons, -

CH)2OH, t).

4-Cvano-4'-(5-hvdroxvpentan- 1-yloxy)biphenvl (Z-5)

Sodium metal (1.220g, 0.05334 mol) was dissolved in 305 ml of absolute

ethanol, then 4-cyano-4'-hydroxybiphenyl (10.43 g, 0.053 mol) was added, and

the mixture was stirred for 45 minutes at room temperature. The ethanol was

removed in a rotavapor to leave the salt. Dried N-methyl-pyrrolidinone (75 ml) and

5-bromo-1-pentanol (8.93g, 0.0535 mol) were added, and the mixture was heated

at 110 °C for 30 hours. After cooling, the reaction mixture was poured into water

and the precipitate was washed with dilute NaOH and water. It was purified by

Lolumn chromatography (silica gel, ethyl acetate/hexanes 6/4 eluent), and then it

was recrystallized from chloroform to yield 7.53g (50.1%) of white crystals.

Purity: 99.9% (HPLC). mp, 95.40C (DSC). IH-NMR (CDCI3 , TMS, 8, ppm):

1.64-1.86 (6 protons, -(CI2)3-, m), 3.71 (2 protons, -CH-2 OH, t), 4.03 (2

protons, PhOCH2-, t), 6.99 (2 aromatic protons, o to akoxy, d), 7.54 (2 aromatic

protons, m to alkoxy, d), 7.66 (4 protons, o and m to -CN, d of d).

5-I(4-Cyano-4'-biphenyl/oxylpntyl vinyl ether (fij)

4-Cyano-4'-(4-hydroxypentan-1-yloxy)biphenyl (2.80g, 9.95 mrol) was

added to a mixture of 1,10-phenanthroline palladium (11) diacetate (0.193g, 4.77

remol), n-butyi vinyl ether (45 ml, 0.348 mol), and dry chloroform (15 ml). The

mixture was heated to 600C for 18 hours. After cooling and filtration (to remove

the catalyst) the solvent was distilled in a rotavapor and the product was purified by

column chromatography (silica gel, CH2C12 and then petroleum ether/ethyl

ether--4 eluent) to yield 2.80g (91%) of white crystals. Purity: 99% (HPLC).

mp, 52.4C (DSC). 1H-NMR (CDCI3, TMS, 8, ppm): 1.57-1.93 (6 protons, -

(CHi)3-, m), 3.73 (2 protons, -CI-OCH=CH2, t), 4.03 (3 protons, -OCH=CjIj2

trans and PhOCH2-, m), 4.15 and 4.22 (1 proton, OCkj=CH2 cis, d), 6.49 (1

proton, OC--CH2, q), 6.99 (2 aromatic protons, o to alkoxy, d), 7.53 (2 aromatic

protons, in to alkoxy, d), 7.66 (4 aromatic protons, m and o to -CN, d of d).
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5- (4-Cvano-4'-biohenvloxvlpentyl ethyl ether

4-Cyano-4'-(5-hydroxypentan-1-yloxy)biphenyl (0.4974g, 1.77 mmol),

potassium t-butoxide (0.2105g, 1.782 mmol), and a few crystals of 18-crown-6
were refluxed in dry THF (20 ml) for 75 minutes. Diethyl sulfate (0.3017 g, 1.918

mmol) (98%, Aldrich) was added, and the reaction mixture was refluxed for 4

hours. After cooling, the reaction mixture was poured into chloroform. The

chloroform solution was extracted with 10% aquous KOH, washed with water,

dried over magnesium sulfate and the solvent was removed in a rotavapor. The
resulting product was purified by column chromatography (silica gel, CH2C12

eluent) and then was recrystallized from methanol to yield 0.26g (48%) white

crystals. Purity: 99.85% (HPLC). mp, 53.5oC (DSC). 1H-NMR (CDC13, TMS,

& ppm): 1.21 (3 protons, OCH 2 CH_3 , t), 1.60-1.92 (6 protons, -(CH 2 )3-, m),
3.48 (4 protons, CI- 2 OCH.CH3, m), 4.02 (2 protons, PhOCH2 , t), 6.99 (2

aromatic protons, o to alkoxy, d), 7.53 (2 aromatic protons, m to alkoxy, d), 7.66

(4 aromatic protons, o and m to -CN, d of d).

Catonic Polymerizations

Polymerizations were carried out in glass flasks equipped with teflon stopcocks

and rubber septa under argon atmosphere at OOC for 1 hr. All glassware was dried

overnight at 130 0C. The monomer was further dried under vacuum overnight in the
polymerization flask. Then the flask was filled with argon, cooled to 0°C and the

methylene chloride, dimethyl sulfide and triflic acid were added via a syringe. The

monomer concentration was about 10 wt% of the solvent volume and the dimethyl

sulfide concentration was 10 times larger than that of the initiator. The polymer
molecular weight was controlled by the monomer/initiator ([Mlo/[I]o) ratio. After

quenching the polymerization with ammoniacal methanol, the reaction mixture was

precipitated into methanol. The filtered polymers were dried and precipitated from

methylene chloride solutions into methanol until GPC traces showed no traces of

monomer. Tables I and H summarize the polymerization results. Although the

polymer yields are lower than expected due to losses during the purification

process, the conversions were almost quantitative in all cases.

RESULTS AND DISCUSSION

Figure la and b plots the dependences of Mn and Mw/Mn versus [Mlo/1]o

ratio for poly-(.5 and poly(6.-D. Both sets of data demonstrate that within this
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range of molecular weights the polymerizations of -5 and 6 follow a living

mechanism. The mechanism of this polymerization reaction is outlined in scheme

II.

Figure 2 presents the heating and cooling DSC traces of 7-5 l 6, 6 8-

and 8-1. As we can observe from this figure, only the alcohol derivatives 7-7 and

7- display an enantiotropic nematic mesophase. Both the monomers (6 and fL-_)
and the monomeric model compounds (&U and i-) exhibit a monotropic nematic
mesophase. The phase transition temperatures and the corresponding

thermodynamic parameters of these monomers and models are summarized in Table

III.

The DSC traces obtained during the first and subsequent heating scans are

identical both for the case of poly(6.5.) and poly(6.2). The experimental data

collected from both scans are reported in Tables I and H. However, only second

heating and first cooling DSC scans will be presented in more detail. Figure 3

presents the DSC traces of poly (L-5). Poly( -6.)s with degrees of polymerization

below 10 exhibit an enantiotropic nematic mesophase while 7-5, which represents

the "polymer" with a degree of polymerization equal to one, displays only a

monotropic nematic mesophase. Poly(j5) with degrees of polymerization from 10

to 30 exhibit enantiotropic nematic and SA mesophases.

The dependence of glass transition and of mesomorphic transition temperatures

of poly(L&.) are plotted in Figure 4 as a function of the degree of polymerization.

We can observe that the slope of the sA-nematic versus molecular weight

dependence is steeper than that of the nematic-isotropic versus molecular weight

dependence. This trend provides a narrowing of the nematic range of poly& 5 by

increasing the degree of polymerization. Based on this trend, we can speculate that

poly(i-5.) with high molecular weights would have to exhibit only the SA

mesophase. So far, we do not have yet a polymer which does this.

The DSC traces collected from the second heating scan and first cooling scans

of poly(L-D are presented in Figure 5. The DSC traces of the first, second and

subsequent heating scans are identical over the entire range of molecular weights.

Poly(672) exhibits only an enantiotropic SA mesophase. The monomeric model

compound 7- exhibits a monotropic nematic mesophase. Therefore, we can

speculate that the change from nematic to SA occurs at a degree of polymerization

between one and 3.3. The dependences of Tg, TSA-i and Ti-SA versus molecular
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weight obtained from the first and second heating, and first cooling scans are

summarized in Table 1I. The corresponding plots for the data obtained from the

second heating and first cooling scans are presented in Figure 6. The plots from

Figures 4 and 6 demonstrate the strong influence of the spacer length on the overal

dependence of polymer phase transitions on molecular weight. This effect is

particularly interesting for the case of poly(.-5) and poly(.L:23 since these two

polymers are based on odd spacers which have very similar lengths.

The conclusion derived from these two experiments is that so far there is no

general trend which is followed when studying the influence of molecular weight

on the phase transitions of side chain liquid crystalline polymers. The observed

trend is most probably determined both by the overal entropic change of the system

as discussed previously 16 .17 and by the anisotropy of the polymer backbone within

its various mesophases 1, 21-27.
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FIGURE AND SCHEME CAPTIONS

Scheme 1: Synthesis of 5-[(4-cyano-4'-biphenyl)oxylpentyl vinyl ether (L5) and

7-[(4-cyano-4'-biphenyl)oxy]heptyl vinyl ether (!_2).

Scheme 2: Cationic polymerization of - and U.

Figure 1: The dependence of the number average molecular weight (Mn) and of the

polydispersity (Mw/Mn) of poly(L5) (a) and poly(&7J (b) on the

[M1o/[Io ratio.

Figuer 2a: Heating and cooling DSC scans of 7-5 (a, b), U (c, d) and - (e, f).

Figuer 2b: Heating and cooling DSC scans of 7- (a, b), - (c, d) and 8-7 (e, f).

Figure 3a: DSC traces displayed during the second heating scan (a) and first cooling

scan (b) by poly(.:6) with different degrees of polymerization (DP). DP is

printed on the top of each DSC scan.

Figure 4: The dependence of phase transition temperatures on the degree of

polymerization of poly(6.5,. a) data from second heating scan: O-Tg;

1-TSA-n; A-Tn-i; b) data from first cooling scan: O-Tg;n-Tn-sA;

A-Ti-n.

Figure 5: DSC traces displayed during the second heating scan (a) and first cooling

scan (b) by poly(!J.7) with different degrees of polymerization (DP). DP is

printed on the top of each DSC scan.

Figure 6: The dependence of phase transition temperatures on the degree of

polymerization of poly(f2). a) data from second heating scan: O-Tg;

O-TsA-i; b) data from first cooling scan: 0 -Tg; U-Ti-SA.
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Table IH. Thermal Characterization of 4-Cyano-4'-(wo-hydroxyalkan- 1-

yloxy)biphenyls (L-.) and (7. , .o-[(4-Cyano-4'-biphenyl)oxy]alkyl Vinyl

Ethers (Lj) and (L7), and of o>-[(4-Cyano-4'-biphenyl)oxy]alkyl Ethyl

Ethers (J5) and (8-.

Compound phase transitions (0oC) and corresponding enthalpy changes (kcal/mo!)
heating cooling

7-5 k 95.5 (7.69) n 108.1 (0.18) i i 104.4 (0.25) n 28.6 (3.68) k

6-5 k 52.4 (7.94) i i 38.6 (0.086) n 9.8 (6.20) k

8-5 k 53.5 (6.96) i i 34.5 (0.062) n 27.6 (5.79) k

7-7 k 95.5 (9.67) n 108.1 (0.18) i i 100.2 (0.27) n 33.0 (3.96) k

6-7 k 58.7 (9.9) i [n 54.5 (0.21) i* i 50.6 (0.17) n 29.4 (7.67) k

8-7 k 56.0 (9.7) i [n 55.4 (0.21)]* i 50.9 (0.15) n 1.6 (5.56) k

*I virtual data
* overlapped peaks
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