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ABSTRACT

The synthesis and living cationic polymerization of 5-[(4-cyano-4'-
biphenyl)oxy]pentyl vinyl ether (§-3) and 7-[(4-cyano-4'-biphenyl)oxy]heptyl vinyl
ether (§-7) are presented. The influence of molecular weight on the mesomorphic
behavior of poly(6-5) and poly(6-7) is discussed and compared to that of 5-[(4-
cyano-4'-biphenyl)oxy]pentyl ethyl ether (8-5) and 7-[(4-cyano-4'-
biphenyl)oxy]heptyl ethyl ether (8-7) which are models of the monomeric structural
units of poly(§-3) and poly(&7). Both (8-5) and (8-7) exhibit a monotropic nematic
mesophase. Poly(6-3) with degrees of polymerization equal and lower than six
exhibit an enantiotropic nematic mesophase. Poly(6-5)s with higher degrees of
polymerization display both smectic A and nematic enantiotropic mesophases.
Poly(6-7) exhibits an enantiotropic smectic A mesophase over the entire range of
molecular weights.

INTRODUCTION

There are several reports on the influence of molecular weight on the phase
transitions of side chain liquid crystalline polymers.!-10 However, to our
knowledge the present series of publications is the first one which attempts to
provide a comprehensive study on ths influence of molecular weight on the
mesomorphic transitions of a series of polymers with spacer lengths varying from
two to eleven methylenic units, and narrow molecular weight distribution. The
polymers investigated by us are obtained through the living cationic polymerization
of w-[{(4-cyano-4'-biphenyl)oxyJalkyl vinyl ethers. In all cases, their phase
behavior was compared to that of the model compound of their monomeric
structural unit, i.e., @-[(4-cyano-4'-biphenyl)oxy]alky! ethyl ether. So far, we have
investigated the poly (vinyl ether)s based on the following alkyl spacers: ethyl,
propyl and butyl!l, hexyl and octyl12, and undecanyl!3. The trend observed on
studying the influence of the molecular weight on the mesomorphic behavior was
strongly dependent on the spacer length,

These living polymerization experiments also allowed us to investigate the
influence of copolymer composition on the phase behavior, at a constant molecular
weight of the copolymer!4:15, The trend which was most frequently encountered
and which is generally accepted consists of the enlargement of the temperature
range of the mesophase with the increase of the polymer molecular weight 113 This




dependence was recently explained based on thermodynamic principles assuming
that the phase behavior of the polymer is dictated by that of the monomeric
structural unit!6.17. When the mesophases exhibited by the monomeric structural
unit and by the polymers with various molecular weights are identical, the overall
dependence of phase transitions on molecular weight could be easily
explained.15.16 However, there are situations when the mesophases of the polymer
are different at different molecular weights and are also different from those of the
monomeric structural unit.4.7:9:10.12.13 Thjs last trend could not be yet explained.
A collection of experimental data which can provide a complete understanding of
the dependence of the mesomorphic behavior as a function of both spacer length
and polymer molecular weight is thus required.

This paper will describe the synthesis, the living cationic polymerization, and
the phase behavior of the resulting polymers of the penultimate two monomers from
the series of w-[(4-cyano-4'-biphenyl)oxy]alkyl vinyl ethers, i.e, 5-[(4-cyano-4'-
biphenyl)oxy]pentyl vinyl ether (§-3) and 7-[(4-cyano-4'-biphenyl)oxy]heptyl vinyl
ether (6-D).

EXPERIMENTAL
Materials

4-Cyano-4'-hydroxybiphenyl of higher purity than 99.9% and 1,10-
phenanthroline palladium (II) diacetate were synthesized as described
previously.13:18 Methyl sulfide (anhydrous, 99%, Aldrich) was refluxed over 9-
borabicyclo[3.3.1]nonane (crystalline, 98%, Aldrich) and then distilled under
argon. Dichloromethane (99.6%, Aldrich) used as polymerization solvent was first
washed with concentrated sulfuric acid, then with water, dried over magnesium
sulfate, refluxed over calcium hydride and freshly distilled under argon before each
use. Trifluoromethane sulfonic acid (triflic acid, 98%, Aldrich) was distilled under
vacuum. 7-Bromoheptanol (95%, Aldrich), 5-bromovaleric acid (97%, Aldrich)
and the other reagents were used as received.

Techniques

TH-NMR (200 MHz) spectra were recorded on a Varian XL-200 spectrometer.
TMS was used as internal standard. A Perkin Elmer DSC-4 differential scanning
calorimeter, equipped with a TADS data station was used to determine the thermal
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transitions which were reported as the maxima and minima of their endothermic or
exothermic peaks respectively. In all cases, heating and cooling rates were
20°C/min unless otherwise specified. Glass transition temperatures (Tg) were read
at the middle of the change in the heat capacity. First heating scans sometimes differ
from second and subsequent heating scans. However, second and subsequent
heating scans are identical. Although in the present case both sets of data are
identical, they will be reported. A Carl-Zeiss optical polarized microscope
(magnification: 100x) equipped with a Mettler FP 82 hot stage and a Metter FP 800
central processor was used to observe the thermal transitions and to analyze the
anisotropic textures !9:20, Molecular weights were determined by gel permeation
chromatography (GPC) with a Perkin Elmer series 10 LC instrument equipped with
LC-100 column oven, LC-600 autosampler and a Nelson analytical 900 series
integrator data station. The measurements were made at 40°C using the UV
detector. A set of Perkin Elmer PL gel columns of 10¢ and 500 A with CHCl3 as
solvent (1ml/min) and a calibration plot constructed with polystyrene standards was
used to determine the molecular weights. High pressure liquid chromatography
(HPLC) experiments were performed with the same instrument.

Synthesis of monomers

Scheme I outlines the general methods used in the synthesis of monomers and
model compounds.

4-Cyano-4'-hydroxybiphenyl (5.0 g, 0.0256 mol) and potassium carbonate

(10.61 g, 0.0768 mol) were added to a mixture of acetone-DMSO (10:1) (110 ml).
7-Bromoheptan-1-ol (5 g, 0.0256 mol) was added to the resulting solution which
was heated to reflux for 24 hr. After cooling, the mixture was poured into water
and then filtered. The obtained solid was recrystallized from methanol and then
benzene, to yield 5.5 g (69.4%) of white crystals. mp, 76.9°C, Ty.;, 103.20C
(DSC). IH-NMR (CDCl3, TMS, 8, ppm): 1.10-1.95 (10 protons, -(CH2)s-, m),
3.67 (2 protons, -CH20H, t), 4.00 (2 protons, PhOCH>-, t), 7.02 (2 aromatic
protons, o to alkoxy, d), 7.52 (2 aromatic protons, m to alkoxy, d), 7.67 (4
aromatic protons, o and m to-CN, d of d).

Synthesis of 7-[(4 ¢ biphenyloxylhepryl vinyl ether (6-7)




4-Cyano-4'-(7-hydroxyheptan-1-yloxy)biphenyl (3.0 g, 9.7 mmol) was added
to a mixture of 1,10-phenanthroline palladium (II) diacetate (0.39 g, 0.97 mmol),
n-buty!l vinyl ether (52.9 ml) and dry chloroform (14 ml). The mixture was heated
to 60°C for 6 hr. After cooling and filtration (to remove the catalyst) the solvent
was distilled in a rotavapor and the product was purified by column
chromatography (silica gel, CH2Cl eluent) and then recrystallized from n-hexane
to yield 2.8 g (86.2%) of white crystals. Purity: 99.5% (HPLC). mp, 58.7°C
(DSC). 'H-NMR (CDCl3, TMS, 3, ppm): 1.10-1.95 (10 protons, -(CH»)s-, m),
3.69 (2 protons, -CH2O-, t), 4.01 (3 protons, -OCH=CH> trans and PhOCH>-,
m), 4.14 and 4.21 (1 proton, -OCH=CH3 cis, d), 6.53 (1 proton, OCLi=CH3, q),
7.01 (2 aromatic protons, o to alkoxy, d), 7.51 (2 aromatic protons, m to alkoxy,
d), 7.66 (4 aromatic protons, 0 and m to-CN, d of d).
Synthesis of 7-[(4-cyano-4'-biphenyloxylheptyl ethyl ether (8-7)

4-Cyano-4'-(7-hydroxyheptan-1-yloxy)bipheny! (1.0 g, 3.23mmol) was added
to a solution containing potassium t-butoxide (0.36 g, 3.23 mmol), a catalytic
amount of 18-crown-6 and dry tetrahydrofuran (20 ml). Diethyl sulfate (0.44 ml,
3.35 mmol) was added and the reaction mixture was refluxed for 4 hr under argon.
After cooling, the reaction mixture was poured into chloroform. The chloroform
solution was extracted with 10% aqueous KOH, washed with water, dried over
magnesium sulfate and the solvent was removed in a rotavapor. The resulting
product was purified by column chromatography (silica gel, CH2Cl? eluent) and
then was recrystallized from methanol to yicld 0.62 g (52.8%) of white crystals.
Purity: 99% (HPLC). mp, 56.0°C (DSC). H-NMR (CDCl3, TMS, §, ppm): 1.20
(3 protons, -OCH2CH3, 1), 1.26-1.90 (10 protons, -(CH2)s-, m), 3.48 (4 protons,
CH,OCH,CH3, m), 4.02 (2 protons, PhOCH3>, t), 7.01 (2 aromatic protons, o to
alkoxy, d), 7.50 (2 aromatic protons, m to alkoxy, d), 7.67 (4 aromatic protons, 0
and m to -CN, d of d).

A soluton of 1-bromovaleric acid (14.5 g, 0.08 mol) in dry tetrahydrofuran
(185 ml) was added dropwise into an ice cooled solution of borane/THF complex
(1M) (150 ml). The reaction mixture was stirred at 0°C for 4 hr and at room
temperature for other 12 hr, and the mixture was again cooled with ice. Water was
added dropwise to the ice cooled reaction mixture. Afterwards, a saturated aqueous




K>CO3 solution was added to the reaction mixture which separates into two layers.
The aqueous layer was extracted two times with tetrahydrofuran, the organic layers
were combined, dried over anhydrous magnesium sulfate and the solvent was
removed on a rotavapor to yield 12.5 g (95%) of liquid. Purity: 100% (IR and
NMR). IH-NMR (CDCl3, TMS, 8, ppm): 1.56 (4 protons, BrCH2CH2CH?2-, m),
1.90 (2 protons, -CH2CH20H, t), 3.43 (2 protons, BrCH2-, t), 3.66 (2 protons, -
CH2OH, 1).

4-Cyano-4-(5-hydroxypentan- 1-yloxy)biphenyl (7-3)

Sodium metal (1.220g, 0.05334 mol) was dissolved in 305 ml of absolute
ethanol, then 4-cyano-4'-hydroxybiphenyl (10.43 g, 0.053 mol) was added, and
the mixture was stirred for 45 minutes at room temperature. The ethanol was
removed in a rotavapor to leave the salt. Dried N-methyl-pyrrolidinone (75 ml) and
5-bromo- 1-pentanol (8.93g, 0.0535 mol) were added, and the mixture was heated
at 110 ©C for 30 hours. After cooling, the reaction mixture was poured into water
and the precipitate was washed with dilute NaOH and water. It was purified by
column chromatography (silica gel, ethyl acetate/hexanes 6/4 eluent), and then it
was recrystallized from chloroform to yield 7.53g (50.1%) of white crystals.
Purity: 99.9% (HPLC). mp, 95.40C (DSC). H-NMR (CDCl3, TMS, 8, ppm):
1.64-1.86 (6 protons, -(CH2)3-. m), 3.71 (2 protons, -CH20H, t), 4.03 (2
protons, PhOCHs-, 1), 6.99 (2 aromatic protons, o to alkoxy, d), 7.54 (2 aromatic
protons, m to alkoxy, d), 7.66 (4 protons, o and m to -CN, d of d).

4-Cyano-4'-(4-hydroxypentan-1-yloxy)biphenyl (2.80g, 9.95 mmol) was
added to a mixture of 1,10-phenanthroline palladium (II) diacetate (0.193g, 4.77
mmol), n-butyi vinyl ether (45 ml, 0.348 mol), and dry chloroform (15 ml). The
mixture was heated to 60°C for 18 hours. After cooling and filration (to remove
the catalyst) the solvent was distilled in a rotavapor and the product was purified by
column chromatography (silica gel, CH2Cl; and then petroleum ether/ethyl
cther=6/4 eluent) to yield 2.80g (91%) of white crystals. Purity: 99% (HPLC).
mp, 52.4°C (DSC). 'H-NMR (CDCl3, TMS, 8, ppm): 1.57-1.93 (6 protons, -
(CH2)3-, m), 3.73 (2 protons, -CH,OCH=CHp, t), 4.03 (3 protons, -OCH=CH>
trans and PhOCH32-, m), 4.15 and 4.22 (1 proton, OCH=CHj cis, d), 6.49 (1
proton, OCH=CH32, q), 6.99 (2 aromatic protons, o to alkoxy, d), 7.53 (2 aromatic
protons, m to alkoxy, d), 7.66 (4 aromatic protons, m and o to -CN, d of d).




5-[(4-Cyano-4'-biphenyhoxylpentyl ethyl ether (8-5)
4-Cyano-4'-(5-hydroxypentan-1-yloxy)biphenyl (0.4974g, 1.77 mmol),
potassium t-butoxide (0.2105g, 1.782 mmol), and a few crystals of 18-crown-6
were refluxed in dry THF (20 ml) for 75 minutes. Diethyl sulfate (0.3017 g, 1.918
mmol) (98%, Aldrich) was added, and the reaction mixture was refluxed for 4
hours. After cooling, the reaction mixture was poured into chloroform. The
chloroform solution was extracted with 10% aquous KOH, washed with water,
dried over magnesium sulfate and the solvent was removed in a rotavapor. The
resulting product was purified by column chromatography (silica gel, CH2Cl2
eluent) and then was recrystallized from methanol to yield 0.26g (48%) white
crystals. Purity: 99.85% (HPLC). mp, 53.5°C (DSC). IH-NMR (CDCI3, TMS,
3. ppm): 1.21 (3 protons, 0CH2CH3, t), 1.60-1.92 (6 protons, -(CH3)3-, m),
3.48 (4 protons, CHoOCH»CH3, m), 4.02 (2 protons, PhOCH,, 1), 6.99 (2
aromatic protons, o to alkoxy, d), 7.53 (2 aromatic protons, m to alkoxy, d), 7.66
(4 aromatic protons, o and m to -CN, d of d).
~ationic Pol .

Polymerizations were carried out in glass flasks equipped with teflon stopcocks
and rubber septa under argon atmosphere at 0°C for 1 hr. All glassware was dried
overnight at 130°C. The monomer was further dried under vacuum ovemight in the
polymerization flask. Then the flask was filled with argon, cooled to 0°C and the
methylene chloride, dimethy! sulfide and triflic acid were added via a syringe. The
monomer concentration was about 10 wi% of the solvent volume and the dimethyl
sulfide concentration was 10 times larger than that of the initiator. The polymer
molecular weight was controlled by the monomer/initiator ([M]o/[1]o) ratio. After
quenching the polymerization with ammoniacal methanol, the reaction mixture was
precipitated into methanol. The filtered polymers were dried and precipitated from
methylene chloride solutions into methanol until GPC traces showed no traces of
monomer. Tables I and II summarize the polymerization results. Although the
polymer yields are lower than expected due to losses during the purification
process, the conversions were almost quantitative in all cases.

RESULTS AND DISCUSSION
Figure 1a and b plots the dependences of Mn and Mw/Mn versus [M]o/[1]o

ratio for poly(8-5) and poly(§-7). Both sets of data demonstrate that within thic




range of molecular weights the polymerizations of §-5 and 6-7 follow a living
mechanism. The mechanism of this polymerization reaction is outlined in scheme
IL.

Figure 2 presents the heating and cooling DSC traces of 7-5, 7-7, &-5, 6-7. 8-5
and 8-7. As we can observe from this figure, only the alcohol derivatives 7-7 and
1-5 display an enantiotropic nematic mesophase. Both the monomers (§-5 and §-7)
and the monomeric model compounds (8-5 and 8-7) exhibit a monotropic nematic
mesophase. The phase transition temperatures and the corresponding
thermodynamic parameters of these monomers and models are summarized in Table
II1.

The DSC traces obtained during the first and subsequent heating scans are
identical both for the case of poly(6-3) and poly(@-7). The experimental data
collected from both scans are reported in Tables I and II. However, only second
heating and first cooling DSC scans will be presented in more detail. Figure 3
presents the DSC traces of poly (6-5). Poly(€-S)s with degrees of polymerization
below 10 exhibit an enantiotropic nematic mesophase while 7-5, which represents
the "polymer” with a degree of polymerization equal to one, displays only a
monotropic nematic mesophase. Poly(§-5) with degrees of polymerization from 10
to 30 exhibit enantiotropic nematic and sa mesophases.

The dependence of glass transition and of mesomorphic transition temperatures
of poly(6-5) are plotted in Figure 4 as a function of the degree of polymerizaton.
We can observe that the slope of the sa-nematic versus molecular weight
dependence is steeper than that of the nematic-isotropic versus molecular weight
dependence. This trend provides a narrowing of the nematic range of poly(6-5) by
increasing the degree of polymerization. Based on this trend, we can speculate that
poly(6-5) with high molecular weights would have to exhibit only the sa
mesophase. So far, we do not have yet a polymer which does this.

The DSC traces collected from the second heating scan and first cooling scans
of poly(6-7) are presented in Figure 5. The DSC traces of the first, second and
subsequent heating scans are identical over the entire range of molecular weights.
Poly(6-7) exhibits only an enantiotropic so mesophase. The monomeric model
compound 7-7 exhibits a monotropic nematic mesophase. Therefore, we can
speculate that the change from nematic to s occurs at a degree of polymerization
between one and 3.3. The dependences of Tg, Tsa-i and Ti-sa versus molecular




weight obtained from the first and second heating, and first cooling scans are
summarized in Table II. The corresponding plots for the data obtained from the
second heating and first cooling scans are presented in Figure 6. The plots from
Figures 4 and 6 demonstrate the strong influence of the spacer length on the overal
dependence of polymer phase transitions on molecular weight. This effect is
particularly interesting for the case of poly(6-5) and poly(§-7) since these two
polymers are based on odd spacers which have very similar lengths.

The conclusion derived from these two experiments is that so far there is no
general trend which is followed when studying the influence of molecular weight
on the phase transitions of side chain liquid crystalline polymers. The observed
trend is most probably determined both by the overal entropic change of the system
as discussed previously!6.17 and by the anisotropy of the polymer backbone within
its various mesophases 1,21-27,
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AND ME CAPTION

Scheme 1: Synthesis of 5-[(4-cyano-4'-biphenyl)oxy]pentyl vinyl ether (6-5) and
7-[(4-cyano-4'-biphenyl)oxy]heptyl vinyl ether (&-D).

Scheme 2: Cationic polymerization of §-5 and §-7.

Figure 1: The dependence of the number average molecular weight (Mn) and of the
polydispersity (Mw/Mn) of poly(&-5) (a) and poly(&7) (b) on the
[M]o/[1]o ratio.

Figuer 2a: Heating and cooling DSC scans of 7-5 (a, b), -5 (¢, d) and 8-5 (e, f).
Figuer 2b: Heating and cooling DSC scans of 7-7 (a, b), §-7 (¢, d) and 8-7 (e, f).

Figure 3a: DSC traces displayed during the second heating scan (a) and first cooling
scan (b) by poly(6-5) with different degrees of polymerization (DP). DP is
printed on the top of each DSC scan.

Figure 4: The dependence of phase transition temperatures on the degree of
polymerization of poly(6-5). a) data from second heating scan: O-Tg;
O-Tsa-n; A-Tn-i; b) data from first cooling scan: @-Tg; - Tn-sy;
A-Ti-n.

Figure 5: DSC traces displayed during the second heating scan (a) and first cooling
scan (b) by poly(6-7) with different degrees of polymerizaton (DP). DP is
printed on the top of each DSC scan.

Figure 6: The dependence of phase transition temperatures on the degree of
polymerization of poly(6-7). a) data from second heating scan: O-Tg;
O-Tsa-i; b) data from first cooling scan: @ -Tg; l-Ti-sa.
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Table III. Thermal Characterization of 4-Cyano-4'-(w-hydroxyalkan- -
yloxy)biphenyls (7-5) and (7-7), w-[(4-Cyano-4'-biphenyl)oxy]alkyl Vinyl
Ethers (§-3) and (6-7), and of w-[(4-Cyano-4'-biphenyl)oxy]lalkyl Ethyl
Ethers (8-5) and (8-7).

Compound phase transitions (0°C) and corresponding enthalpy changes (kcal/mo!)

___heatng cooling
7-3 k 95.5(7.69) n 108.1 (0.18) 1 1104.4 (0.25) n 28.6 (3.68) k
6-5 k5247941 138.6 (0.086) n 9.8 (6.20) k
835 k 53.5(6.96) i 134.5 (0.062) n 27.6 (5.79) k
1-7 k 95.5(9.67) n 108.1 (0.18) i 1100.2 (0.27) n 33.0 (3.96) k
6-7 k 58.7 (9.9)1[n 54.5 (0.21) i]* 150.6(0.17) n 29.4 (7.67) k
87 k 56.0 (9.7) 1 [n 55.4 (0.21)]* 150.9 (0.15) n 1.6 (5.56) k

*( ] virtual data
* overlapped peaks
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