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1 Introduction

First-class continuations are a simple and natural way to provide access to the flow of
evaluation in functional languages. The ability to seize the -current continuation- (control
state of the evaluator) provides a simple and natural basis for defining numerous higher-level
constructs such as coroutines [16], exceptions [42], and logic variables 1S. 19]. for supporting
multiple threads of control [41, 18, 29, 6], for providing asynchronous signal handlers [:301.
and for implementing non-blind backtracking [14] and dynamic barriers such as unwind-
protect [17]. Tractable logics for reasoning about program equivalence in the presence of
first-class continuations in an untyped setting have been developed [9. 10. 39]. Recent studies
of continuations have addressed the question of their typing in a restricted setting :13. 12.1.5]
and their impact on full abstraction results [:34].

The subject of this paper is the extension of Standard ML with primitives for first-class
continuations similar to those found in Scheme. The two new primitives are callcc. for call
with current continuation, which takes a function as argument and calls it with the current
continuation, and throw. which takes a continuation and a value and passes the value to
that continuation.

This paper is organized as follows. In Section 2 we give an informal presentation of
the extension of ML with continuation primitives, and illustrate their use in programming
examples. We also discuss the role of continuations in the implementation of Standard NIL
of New Jersey, and some problems that they raised. In Section 3 we present a formal system
of type assignment for a small functional fragment of ML. A denotational semantics for
this fragment is given in Section 3. and the semantics of type assignment is considered. The
main results are a Milner-style soundness theorem ("well-typed programs cannot go wrong")
and an observational soundness theorem ("convergent programs of type int yield integers").
Finally. in Section 4 we give an operational semantics for the language in the -natural
semantics" style of Plotkin and Kahn [27, 3]. The operational presentation illustrates the
extent to which the definition of Standard ML [24] would have to be changed to accommodate
the proposed extension.

We are grateful to Andrew Appel. Stephen Brookes. Matthias Felleisen. Andrzej Filinski.
Timothy Griffin. -John Reppy. Didier R~my. Olin Shivers. and Mads Tofte for their comments
and suggestions.

2 Adding Continuations to ML

First-class continuations are an abstraction that evolved from various nonstandard control
structures such as Landin's J-operator [21], Reynold's operator escape [32]. label variables
in Gedanken [31] and PAL [7], and from the semantic analyses of general control struc-
tures, including jumps [361. Scheme [38] originally introduced a binding construct (catch
k body) that captured its own expression continuation and bound it to the variable k. with
the expression body as the scope of the binding. The continuation represents the "rest of
the computation," and behaves as a function that takes the value of the expression as its
argument and yields the final result of the evaluation of the remainder of the program. In
a typical implementation the final result is passed to the interactive top-level, which prints

1



the result. and continues by evaluating the next expression.
Around 1982 the special-form catch was replaced by call-w ith-current -c ont inuat ion

or call/cc for short [4]. The act of capturing the current continuation did not require
a special variable binding form. but could be performed by a primitive operator whose
argument was a function that would be applied to the captured continuation. Therefore.
(catch x body) becomes (call/cc (lambda (x) body)) in Scheme. This is an example
of the well-known technique of replacing a special variable binding form with an operation
acting on a function, so that variable binding is handled solely by lambda abstraction.

In an untyped language there is not much to choose between the functional and bind-
ing forms of continuation-capturing construct. However, in the context of an ML-like type
system, the two differ substantially. To understand the distinction, it is helpful to consider
the interaction between typing and the invocation of a captured continuation. There are
two main points. First. continuations arise in a program only by capturing the evaluation
context of some expression: there are no expression forms denoting continuations. Therefore
continuations expect values of the type of the expression whose evaluation context the con-
tinuation represents. Second, the invocation of a captured continuation discards the current
evaluation context, passing a value to the captured, instead of the current. continuation.
Although the passed value must be consistent with the argument type of the continuation.
the result type is unconstrained since invocations of continuations do not return to the eval-
uation context. (For similar reasons the exception-raising construct of Standard ML has
arbitrary result type.)

For example, if k is bound to a continuation expecting an integer value, we may invoke
k in several incompatible type contexts, as in the following expression1

1 + callcc(fn k =>
hd(if b

then [ (k 3) + I I
else 5 :: (k 4)))

Here k is invoked in two contexts, one fLxpecting an integer, the other expecting an integer
list. Since continuation invocations never return, it makes sense to regard this as a well-typed
expression (of type int list).

The incorporation of continuation primitives in ML involves making two related decisions.
namely the continuation-capturing construct and the continuation-invoking construct. Since
ML is a typed language, continuations should be values of some type. say r cont, the type
of continuations expecting values of type -r. The continuation-capturing constructs may then
be given typing rules as follows. The functional form, written callcc in keeping with the
ML lexical conventions, may be assigned any type of the form

.(,r cont --+ r) -4 T

since the body may either invoke the passed continuation, or else return normally. Written
polymorphically, the type of callcc is then

Va.(a cont --, ) -- cf.

'We (temporarily) use ordinary function application notation to indicate invocation of a continuation.
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The variable-binding form, written letcc k in e. has the following typing rule:

A. k:r cont - e : r

4 - letcc k in e : 7

where A is a type assignment giving types to the set of free variables of e.
The choice of functional or binding form of continuation-capturing construct depends on

the definition of the type r cont. We consider two possibilities: regard a continuation as
a function that is invoked by application, or regard a continuation as a new form of value
that is invoked by a special primitive. In the first case the type r cont is rendered as a
functional type, whereas in the second it is introduced as a new primitive type. We consider
each in turn.

If continuations are to be regarded as functions. some provision must be made for ensuring
that the result type is allowed to vary according to context. This suggests the following
polymorphic typing:

callcc: Va.V.((a - 3) -- a) -- a

But since k is lambda-bound in the expression callcc(fn k -> ... ) this does not give us
the freedom to instantiate the polymorphic type variable 3 independently at each applied
occurrence of k within the body of the abstraction. Instead we are forced to choose a single
type for / suitable for all applications of k. ruling out examples such as the one considered
above.

There are two ways to proceed. One involves moving the quantifier over 3 inward (which
could be formally justified by the observation that / occurs in a positive position in the type
expression), yielding the typing

callcc: Va.((a --+ V3.3) --+ a) -- a.,

then replacing the type V3.3. which is not the type of any defined value, by a new primitive
type void, resulting in the typing

cal.cc : Va.((a --+ void) - a) - a.
A

The type r cont is then defined to be the type r void. To match the type of a continu-

ation invocation (i.e., void) with its context we could either view void as a subtype of all

types and use a subsumption rule (which introduces many of the complexities of subtyping
into the type system). or we can simply introduce a polymorphic coercion function ...............

ignore : Va.void --* a

and surround applications of continuations with a call to ignore. as in

if b then C ignore(k 3) + 1J
else 5 :: ignore(k 4) w

(where k is an int cont). Statement "A" per telecon Dr. Andre van
Tilborg. Office of Naval Research/code ,
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As an alternative to ignore we can exploit the polymorphic type system of ML. using
letcc instead of callcc. The idea is to take type r cont to stand for the polymorphic type
VQ.r --+ a. leading to the following typing rule for letcc:

A.k : Va.r -- a - e : r

A H" letcc k in e : r

Since k is assigned a polymorphic type, the result type, a. may be chosen freely on a case-by-
case basis for each applied occurrence of k. This rule is consistent with the ML type system
in that let-like constructs admit assignment of polymorphic types to the bound identifier.
This method cannot be adapted to callcc. The required type has the form (Va.- a) -- ,

which ties outside of the scope of the ML type system. It is here that the two constructs
differ in an ML-like setting.

Another way of typing continuations, and the one currently adopted in Standard IL
of New Jersey [2], is to abandon the view that continuations are functions in the ordinary
sense and to consider r cont as a primitive type with an operation throw for invoking a
continuation. The type of throw is given by

throw: Va.V13.(a cont) --+ (a --+ 3),

and hence throw is essentially a coercion that turns a continuation into a function. reintro-
ducing a separate instance of the type parameter 3 at each invocation of the continuation.
Our example becomes

if b then C (throw k 3) + I ]
else S :: (throw k 4)

where the first and second occurrences of throw receive the types int cont --+ int -- int

and int cont -+ int - int list, respectively.
It is easy to define the cont and throw primitives in terms of void and ignore:

type a cont a a -> void
fun throw k x a ignore(k x).

Defining void and ignore in terms of cont and throw is a bit trickier, but can be done:

abstype void = VOID
with

fun ignore (x:void) 'a a

let fun loop() a loop()
in loop()
end

val callcc a

fn f => callcc(fn k a>

f((throw k) : 'a -> void))

end
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So, in principle, there is not much to distinguish the two approaches. In practice. it is useful
to be able to easily distinguish the invocation of a continuation from the application of a
function. This is why cont and throw are the chosen primitives in Standard ML of New
Jersey.

It would seem. then, that there are essentially two alternatives for representing continua-
tions in ML: as polymorphic functions, using letcc as the capturing construct. and values of
a new primitive type. using throw to invoke them. Although the two are equivalent for the
purely functional fragment of ML. the approach based on a primitive type of continuations
is better-behaved in the context of the full Standard ML language than is the polymorphic
approach. The problem is that current schemes for introducing references (assignable cells i
in ML preclude the possibility of storing objects of polymorphic type. For instance, if the
identity function is stored into a cell, then a single instance of its polymorphic type must be
chosen for all subsequent retrievals: its polymorphic character is lost. (See roftes thesis !40]
for further discussion of this point.) Thus if a continuation was represented as a function
of polymorphic result type. then the result type, which is irrelevant since no result is ac-
tually returned, would have to be fixed when the continuation is stored, rather than when
it is invoked. This would significantly limit the utility of stored continuations because all
invocations would have to be in the same type context. The approach based on a primitive
type of continuations does not suffer from this limitation, and is therefore to be preferred
for Standard ML.

We are thus led to the following simple signature for supporting first-class continuations
in Standard ML:

type a cont
val callcc : (a cont-a)-a
val tbrow : a cont- ce- -3

(We could just as well have taken letcc as primitive, but since there is no advantage in
doing so, it is simpler to introduce callcc as a new constant of polymorphic type.)

Some examples will suggest how first-class continuations are used in practice. The sim-
plest and earliest use of continuations was to provide an escape. as in the following function
that returns the product of a list of integers. If a zero is found the answer is returned via a
continuation such that no multiplications are performed.

fun prod 1
callcc(fn exit ->

let fun loop 0 = 1
I loop(O::t) - throw exit 0
I loop(h::t) = h * loop t

in loop 1

end)

Another common application is to implement coroutines. Here an interesting typing issue
arises. A common technique is to resume a coroutine by passing the continuation of the
current coroutine as the argument to the continuation represeuting the resumed coroutine.
If state is the type representing the state of a coroutine, this leads naively to the circular
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identification
state = state cont

We cannot solve this identity directly, but we can use a datatype declaration to define the
type state recursively. This is illustrated by the following example of a pair of coroutines.
one producing and the other consuming a sequence of integers.

datatype state = S of state cont
fun resume(S k: state) : state

callcc(fn k': state cont =>
throw k (S k'))

val buf = ref 0
fun produce(n: int, cons: state) =

(buf := n; produce(n+l, resume(cons)))
fun consume(prod: state) =

(print(!buf); consume(resume prod))
fun pinit (n: int) : state =

callcc(fn k : state cont =>
produce(nS k))

fun prnm () = consume(pinit(O))

Coroutines can be generalized to lightweight processes or threads. Continuations have been
used as the basis for several implementations of process facilities for Standard ML of -New
Jersey. some of which use preemptive scheduling [29, 5. 28, 37].

The following example uses stored continuations to implement a simple backtracking
scheme.

let
val stack : unit cont list ref - ref C
fun pushstate(k : unit conz) =

stack := k :: !stack
fun popstate() .-tack := tl(!stack)
fun backtrack() : 'a =

case !stack of
0 => raise Error

I k :: r -> (stack : r; throw k )
fun alt(a:unit -> unit,b:unit -> unit)

callcc(fn exit a>
(callcc(fn k a> (pushstate k;

a();

popstate(;
- • throw exit 0));
b()))

in ... backtracking application ...
end

Calls of alt can be nested (i.e. inside of the actions a and b), and backtrack can be called
in any type context.
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Another use of coatinuations is to provide a clean, typed interface for asynchronous sig-

nal handling [30]. In Standard ML of New Jersey the type of a signal handler is (int
unit cont) -> unit cont. where the argument is a pair consisting of a count of pending
signals of the kind being handled and the continuation representing the interrupted process.
The continuation returned by the signal handler is typically used to resume the interrupted
process after signals have been unmasked, but it can also provide an alternative continua-
tion like aborting the computation and returning to top-level. The signal handling module
provides functions to set handlers for each signal and to mask all signals.

There is a subtle issue concerning the behavior of continuations in an interactive system.
Unless the context of a continuation is carefully defined and controlled one can subvert the
type system. The following sequence of top-level declarations illustrates the problem.

val c = re NONE : int cont option ref;
val n:int = callcc(fn k => (c :- SOME k; 2));
val b:bool

let val SOME k' = !c in throw k' 3 end;

We are dealing with expression continuations that merely deliver a value: the binding of
that value in the top-level environment and the printing of a report for the user are the

responsibility of the interactive top-level.2 So the evaluation context represented by the
continuation k stored in c is limited to the right hand side of the declaration of n. of type
int. When this continuation is fetched and invoked in the right hand side of the declaration
of b, that expression returns the value 3, which the top-level would erroneously interpret as
a boolean value. To prevent this anomaly a strict association between a continuation and
its top-level context (which determines the type of the answer returned) must be enforced.
The continuation should "expire" when this context changes and if it is invoked after it has
expired this should be detected and should generate an error message.

In Standard ML of New Jersey. expiration of continuations is enforced by timestamping

continuations. Each time a top-level evaluation is begun a new stamp v is generated and
pushed onto a stack. The initial continuation used for that evaluation will finish by popping
the stack and comparing the top value with v. and if they differ it will signal an error. A
stack of stamps is used because -top-level" evaluations may be nested when files are loaded
with the use function.

Another interesting issue is the relation between continuations and exception handling.
In the dynamic semantics of Standard ML. an expression can either produce a normal value.
or an exception value indicating that an exception has been raised but not handled during
the evaluation of the expression. Therefore the dynamic context of an expression. i.e. its
continuation, must be able to deal with either sort of result. In effect, one could think of
the dynamic context of an expression in ML as a pair of continuations, one for the "normal-
value return, the other giving the exception handling context. This suggests possible new

primitives that would either invoke a continuation with an exception value rather than a
normal value, or return the "exception handler" part of a continuation. One pragmatic
reason why such primitives are not provided is that in conjunction with asynchronous signal

2The interface between the interactive system and the object level evaluation is similar to a prompt [11].

7



handling they would introduce the possibility of asynchronous exceptions. These would make
it impossible to statically verify that a particular expression could not raise a particular
exception. precluding some compiler optimizations.

3 A Denotational Semantics of Typing

In this section we study the soundness of type assignment for a small. purely functional.
monomorphic fragment of ML extended with primitives for first-class continuations. Ex-
plicit treatment of polymorphism and let is omitted since the main issues do not involve
polymorphism.

3.1 Type Assignment

Consider the following language:

M ::= x I Ax.M MM' I letcc xinM I throwM.1M'

The variables x, y, and z range over a set of variables, and M. N, P. Q., and R ran. over
the set of terms. The expression letccx inM binds x in M. We use letcc in place of
callcc to facilitate comparison between the various approaches to type assignment.

Let b range over some set B of base types. Type expressions are defined by the following
grammar:

7 ::= bl7,rr 2 Ircont

A typing context is a partial function F mapping some finite set of variables dom(F) to type
expressions. A typing assertion is a triple F H M : r, where r is a type expression.

We take as given a map type assigning a type to each constant. (In a polymorphic system
this map would assign a type scheme to each constant.) The type assignment rules for the
above language are as follows:

r -: f(x) (VAR)

F[x: r] - M: r 2  (ABS)

r H" Az.M : r --- r2

F-M:r--r' F N:7

F F- MN: 7' (APP)

F[x : r cont] M (LETCC)
r iH letccx inM : r

rF-M:rcont FrHN: r

r - throwM N : r' (THROW)
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3.2 Denotational Semantics

We give here a denotation semantics for the untyped language. in preparation for estab-
lishing a Milner-type soundness theorem. The value space is given by the following domain
equations:

Val = Bas(Base Val) +
Clsr( Val -- (Cont -- Ans)) +

Cnt(Cont)
Cont = Val - Ans
4ns = Value( Val) + W47rong()

An answer is either a value or a special token wrong representing a -run-time" type error.
Let Env = Var -- Val. Let the variables a. V,, w. n., and n range over Val. the variable

n range over Cont. and the variable p range over Env.
The definition of the meaning function .] • Env ---i Cont - Ans is given by induction

on the structure of expressions as follows:

H ~rpt = ic(px)
IAx.MJ pn' = tc(clsr(AvKc. J[il p~x::=vji'))

MAN] pic = IMJ p(Am. [N] p(An.
let clsr(f)=m
in fnK else wrong))

[letccx inM pic = [MI p[x:= cnt(tc)]K
[thro, M N pic = M] p(Am. IN] p(An.

let cnt(t')=m
in x'n else wrong))

3.3 Soundness

To state the semantic soundness theorem, we require two definitions, one for a value to be
of a given type. written v : r, and one for a continuation to accept values of a given type.
written K :: r. These are defined simultaneously by induction on the structure of 7as follows:

1. v• holds iff v =1 or

(a) r = b and v = bas(w) with w a value of base type b.

(b) r = 71 -r2 and v = clsr(f) and for all values v, and continuations t-2. if t' "
and K,2 :: r, then f(vi)(K2 ) # wrong.

(c) 7 = 71 cont and v = cnt(t) and x :: r.

2. X :: r holds iff K(v) : wrong for all v such that v: r.

To check that this in fact is a proper definition, simply "expand" the definition of K, :: r in
the definition of v : 7, and check that the membership relation is used only on subsidiary
types of the given type. The relation v : r is extended to environments pointwise: p : F iff
for all z E dom(r), p(x) : r(x).
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Theorem 3.1 (Soundness) if r I- m and p : F and K :: 7, then JAP pK - wrong.

The proof is by a straightforward induction on th! structure of the typing derivation.
As usual in continuation semantics. we need to provide an initial continuation. In order

to preserve the soundness of typing the initial continuation must be chosen in such a way1that it yields a non-wrong result for an argument of the type of the expression. An obvious

choice is the continuation tc0 defined by Ko(v) = value(r'), which is essentially the identity
function. In an implementation the initial continuation might print the result value of the
computation. and hence must be chosen on a case-by-case basis. according tu the type of

the expression being evaluated.

3.4 Observational Soundness

In contrast to languages with a -direct" semantics. the soundness theorem does not yield
positive results about typing. In particular. we may not conclude that the value of an
arbitrary expression of a base type (e.g., int) yields a result of the expected form (E.g.. a
numeral). A natural attempt to obtain such results from the soundness theorem proceeds by
choosing the continuation argument to be the function which yields wrong except on values
of the desired type. However, this overlooks the fact that in a language with continuat;on-
passing primitives, the result of evaluating an open expression need not be given in terms of
its continuation argument. This suggests that the best we can hope for is a -observational
soundness' theorem that yields positive results about closed expressions of base type.

It seems clear, on the basis of operational intuitions, that evaluation of a complete pro-
gram either goes wrong, or else passes a value to the initial continuation. Unfortunately
these operational intuitions do not seem to transfer readily to the setting of the untyped
denotational semantics given above. We give here a brief sketch of the argument. The main
idea is to prove that complete programs are "non-escaping" in the sense that their denotation
is either wrong, or is determined as a function of the initial continuation. Since the semantics
of certain closed expression involves the semantics of open sub-expressions. we must in fact
prove a stronger result that takes account of environments and intermediate continuations.
This entails extending the -non-escaping" property to arbitrary values, and to do so appears
to require an inclusive predicate argument similar to that considered by Reynolds [33]. Given
that such a predicate exists, we may choose the initial continuation as discussed above, and
conclude, by the non-escaping property, that well-typed closed terms of base type evaluate
to values of that type. Although it seems plausible that the required predicate exists, we
have not proved this. and turn instead to a more straightforward argument.

The need for an inclusive predicate argument can be traced to the rich structure of the
semantic domain needed to interpret untyped programs. By exploiting the type structure of
the language, the complexity of reflexive domains can be avoided (while still admitting ex-
tensions such as fix). The fundamental idea is to adapt the methods of Meyer and Wand [22],
and make use of standard results of the typed A-calculus to obtain the desired result. The
main idea is to define the meaning of a term M in our illustrative language as the meaning
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of its cps transform, Al, defined as follows:

7= Atc.K x
Ax..MI = AK. (,\x..l'

M,V = AK.M"(Am..'(An.mnK))
letccx inM1// = ,\c.(Ax._"1) K te

throw,1 V = A.717f.V

(In fact. the Standard ML of New Jersey compiler is based on a similar transformation -I,.
To relate the type of a term .11 to the type of itz, cps transform. we associate o each

type 7 of the illustrative language. a simple tyl)e 7' given by

= b

(rcont) =r--

where a is a fixed, but arbitrary. base type. The function ( ) is extended to typing contexts
pointwise: if r is a typing context, then F (x) is the typing context that assigns to each

variable x E dom(F) the simple type F(x).
The following lemma relates the type of a term in the illustrative language to the type

of its cps transform:

Lemma 3.2 ffF r-- m : r. then r -- ." (rT--)--+a.

(Here - °\ denotes derivability in the simply-typed A-calculus.) The proof is a simple induc-

tion on the structure of Al, taking account of the definition of Tl.

Let A be any model of the simply-typed A-calculus with carrier set .4- for each type r
and application operation .4 - A4 - ,4r. We say that an environment p matchts
a typing context F if p(x) E ArFW) for each x E dom(f). It is a standard result that if
F H-,- M : r and p matches r, then A[1M]p E 4r [2.51. Hence if we define 11f] to be
A j.T], then M1] p is in the set AM' " +never p matches F". Now if 31 is a closed

term of base type b. we may take p to be .rae empty environment, and a = h. to obtain

IM] p -.4 '-b)-+. Now since the identity function on type b is denotable by a \ term. and
since A is a model of the typed A calculus. we may apply this to idb. the initial continuation.

to obtain [+M p idb E .4b. In other words, the vplue of M. when applied to the identity as

initial continuation, is a value of base type b. In the case of cpo-based models (which are

needed to interpret arbitrary recursion) with base types interpreted as flat cpo's. the result
is either .I. or a -true" value of the base type. Note that this argument does not extend to

higher types r since the definition of r' for higher types involves a. and hence we max, not
simply choose a to coincide with r.

3.5 Continuations as Functions

Two alternative type systems given in the introduction rely on the representation of continu-
ations as functions. We consider here the semantics of typing for the system based on empty

types, and for the system based on regarding continuations as functions of polymorphic

result type.
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To express the idea that a continuation is a function that never returns, we introduce
a type, void. with no values, and regard a continuation accepting values of type r as a
function of type i void. This leads to the following typing rule for letcc:

ix r - void] - M: 7(CALLCC-EMPT

r H letccxinM: r

Since the result of application of a continuation is now void, we must introduce, in compen-
sation. a map ignore witnessing the inclusion of void into every type 7:

S - .1 : void
r - ignore M : 7(GIVE-UP

(These two rules have the form of Pierce's Law and false elimination, respectively: see [15]
for further discussion.) The expression throw M_ N is now defined as ignore (0I). For the
polymorphic variant, the typing rule for letcc appears in the introduction.

The denotational semantics must be changed to reflect the representation of continuations
as functions. The domain equation for values is simplified to

Val = Bas(Base Val) + Clsr( Val --* Cont - Ans).

and the semantic equations become:

rIp K = (px)
[Ax.M] pt = K(clsr(Avic'. [MJ p(x:=v]K'))

IIMN] pc = JA! p(Ar. [N] p(An.
let clsr(f)=m

in fnic else wrong))
[letccx in MI pr = [M] p[x:= cisr(Avr.'.xv)].

[ignore MI pic = [AI pic

A continuation is represented by a closure that ignores its continuation argument [321. The
definition of the relation v : r remains essentially the same, ignoring the clause for continua-
tion types. Since void is a base type with no proper elements, if v : void. then v =.L: there
axe no terminating values of type void.

The proof of the soundness theorem for the system with an empty type relies on two
facts. First, we must show that a continuation ,n regarded as a closure has type r void
whenever x :: r. Suppose that v : r and that r.' :: void. Then (Av.,\,W.tc(t,))v K' =K t{).

Now since c :: 7 and v : r. it follows that K(v) - wrong, as required. Second. we must
show that ignore M may be assigned an arbitrary type whenever M is of type void. But
if r :: r, then K :: void since .. : r for any r, and hence the result follows by induction.
For the case of polymorphic continuations, we need only remark that Vt.r(t) is defined by
intersection over all monotypes, and note that the above argument shows that if ,c :: r, then
Av.Ax'.tc(v): r--+,r' for any type r' (not just void).
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4 Extending the Definition of Standard ML

An operational semantics for our language presented in the relational semantics style of the
formal definition of Standard ML [24] may be obtained from the denotational semantics by
a process of -defunctionalization- [32] whereby closures and continuations are represented
by finitary objects that are then "interpreted" on an argument, rather than simply applied
to it. The resulting semantics differs substantially from the dynamic semantics of Standard
ML. This may be taken as evidence that the addition of callcc to Standard ML would be
a substantial change. rather than an incremental modification, to the language.

The -finitary objects- of the operational semantics are defined by the following grammar:

V :: BAS(B) I CLSR(x,MVf. E) ICNT(A)
K ::= TOP FARG(N.E.K) IAPP(V,.:K)

TARG(N, E) I THR(V)

A ::- VALU(V) IWRONG

where B is a basic value (of unspecified structure), and E is a finite function mapping
variables to finitary values.

The dynamic operational semantics is defined in ter,±s of two judgement forms. E: K -
M =o A and V -K .4. The derivation rules for these judgements are as follows:

E(x) K- A (' A4

E- K Hz K A (0-VAR

CLSR(X..M. E) H K =, A

E: K H" Ax.M1 =* A (O-ABS)

E: FARG(N, E. K) H M .4
E;I .MN = A (O-APPLY)

E[x=CNT(K)]: K " .I .4 0 -LETCC)

E:K H letcc x in 11 A

E: TARG(N. E) -AI .4

E, K H throw M N A A (O-THROW)

V H TOP =: . VALU(V) (O-TOP)

E: APP(V. K) - N A

V - FARG(N, E, K) # 4 (O-FARG)

E[x=Vl; K -M = A

V H-APP(CLSR(x, M. E),K) =* A (O-APP)

E: THR(V) -N A
V -TARG(N, E) : A (O-TARG)

13



VH-AA

V -THR(CNT(K)) =. A (O-THR)

Here the initial continuation, designated TOP. is axiomatized as the trivial insertion of
values into answers. Other choices are possible.

There is an intriguing parallel between this operational semantics and a call-by-value
variant of graph reduction. The idea is that the argument K in E: K - I Al .4 mar be
thought of as a "marked" spine stack, with the marks indicating whether or not the argument
position has been evaluated. Rule O-APPLY -pushes" a node onto the spine stack. marking it
as having an unevaluated argument. Rules O-VAR, and O-ABS are -turning points- at which
traversal of the expression reverses direction by sending explicit values back up toward the
root. This traversal is carried out by the rules for interpreting a continuation. Rules o-
FARG and O-TARG cover the case where the argument position is as vet unevaluated, and
proceed to evaluate it, marking the node appropriately. Upon return to such a node. the
actual application or throw is carried out. either by evaluating the body of the closure in
the appropriate environment, or by switching contexts entirely.

The soundness theorem for typing may be proved for the operational semantics by pro-
ceeding along much the same lines as for the denotational case. First, we must augment the
evaluation relation to include error checking rules that make explicit the notion of --going
wrong." These are:

V' CLSR(x. M. E)
V -APP(V'. K) =* WRONG (OAPPX)

V' 0 CNT(K')
( O-THR-X }

V H THR( V', K) =* WRONG

We then define the relations V : r and K :: r more or less as before, except that instead of
relying on the existence of suitable functions in the value space. we appeal directly to the
operational semantics.

1. V: 7 holds iff

(a) r = b and V = VALU(IV) with W a value of type b;
(b) r =71 --- r2 and V = CLSR(z, M, E) and for every V, and K 2, if I • l. : 2 :: r2.

and E[x = V'1]; K 2 H M => A, then A # WRONG:

(c) r = r cont and V = CNT(K) and K:: r.

2. K :: r holds iff for every V such that V : r, if V -K =. .4, then A 4 WRONG.

The soundness theorem for the operational semantics is as follows:

Theorem 4.1 If r P- M : r and E : r and K:: r and E; K -M =* A. then A4 # WRONG.

In contrast to the domain-theoretic semantics, the proof of the soundness theorem is
significantly complicated by the introduction of fixed-point operators for defining recursive
functions; see [231 for a careful discussion of a closely-related problem in the setting of natural
semantics.
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5 Conclusions

First-class continuations are a powerful tool for implementing sophisticated control con-
structs like coroutines. processes, backtracking. and asynchronous signals. Until now they
have been studied and employed in the context of dynamically typed languages like Scheme.
We have been pleasantly surprised to discover that first-class continuations can also be ac-
commodated in a polymorphically typed language like ML simply by adding a new primitive
type with a couple of associated operations. In fact. the added discipline of the ML type sys-
tem seems to simplify programming with first-class continuations. We have made the first
steps toward integrating first-class continuations into the semantics of Standard ML and
verifying the metaproperties of soundness and observational soundness. but it is clear tiat
extensive work is required to integrate continuations fully into the definition of Standard
NIL.
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