
LABORATORY FOR MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-435 TgFILL C)PY

CD

o, BOUNDS ON THE TIME
N TO REACH AGREEMENT

IN THE PRESENCE OF
I TIMING UNCERTAINTY

DTIC
DEC 1819901

Hagit Attiya
Cynthia Dwork
Nancy Lynch

Larry Stockmeyer

November 1990

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Bounds on the Time to Reach Agreement in the
Presence of Timing Uncertainty*

Hagit Attiyat Cynthia Dworkl Nancy Lynch§

Larry Stockmeyerl

(DRAFT OF NOVEMBER 21, 1990)

*This work was supported by ONR contract N0O014-85-K-0168, by NSF grants COR-
8611442 and CCR-8915206, and by DARPA contracts N00014-89-J-1988 and N00014-87-
K-0825.

tDepartment of Computer Science, Technion. Work performed while the author was
at the Laboratory for Computer Science, MIT.

$IBM Almaden Research Center. Work performed while on sabbatical at the Labora-
tory for Computer Science, MIT.

5Laboratory for Computer Science, MIT.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

. Approved for public release; distribution
2b. DECLASSIFICATIONI DOWNGRADING SCHEDULE is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM 435 NOO 14-89-J-1988/NO0014-87-K-0825

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science (if applicable) Office of Naval Research/Dept. of Navy

6c. ADDRESS (Oty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZiP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA/DOD

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

1400 Wilson Blvd. ELEMENT NO. NO. NO. ACCESSION NO.
Arlington, VA 22217

11. TITLE (Include Security Classification)

Bounds on the Time to Reach Agreement in the Presence of Timing Uncertainty

12. PERSONAL AUTHOR(S) .

Hagit Attiya Cynthia Dwork, Nancy Lynch, TLarry Stockmever

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. -PAGE COUNT
Technical I FROM TO., mnjPhPv l qq

1. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Distributed agreement, distributed consensus, agreement,

consensus, timing uncertainty, fault-tolerance, timeout.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Upper and lower bounds are proved for the time complexity of the problem
of reaching agreement in a distributed- network, in -the presence of process
failures and inexact information about time. It is assumed that the amount
of (real) time between any two consecutive steps of any nonfaulty process

is at least cl and at most c2 ; thus, C = c2/cl is a measure of the timing
uncertainty. It is also assumed that the -time for message delivery is at most
d. Processes are assumed to fail by stopping, so that process failures can be
detected by timeouts.

(continued)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION -

Q UNCLASSIFIED/UNLIMITED 0- SAME AS RPT. - DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b.TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Carol Nicolora (617) 253-5894 77 7
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete
*U±S. Gowwannt-Prkfdn Office: 1986-07447

Unclassified

19. A straig-trward adaptaijon of an 4-7)-ioundrouInd-based agreement k

algorithm takes time (f+ 1)Cd if there are f faults, while a straightforward
reduction from a timing-based algorithm to a round-based algorithm yields a
lower bound of (f + 1)d. The first major result of this paper is an agreement
algorithm in which the uncertainty factor C is only incurred for one round,
yielding a running time of approximately 2fd + Cd in the worst case. The
second major result shows that any agreement algorithm must take time at
least (f - 1)d + Cd in the worst case.

The new agreement algorithm can also be applied in a model where
processors are synchronous (C = 1), and where message delay during a
particular execution of the algorithm is bounded above by a quantity 6
which could be smaller than the worst-case upper bound d. The running
time in this case is approximately (2f - 1)6 + d.

I

Abstract } m

Upper and lo er bounds e proved for the'ti co e blem
of reaching . reement in a distributed, t k in e pr ency of p ocess
failures and exact informa ion about time. It is sume tha/he amount
of (real) tine between any wo~cnsufive ste s of a nonfaulty process
is at least and at most thus c2/ i timing

uncertainty. It is also assumed thl the tim7 or m e age delivery)4 at most
d. Processes are assumed to i1 by stoppi g, so t ct p cess faires can be
detected, by timeouts'. (7

A straightforward aptation of an (+ 1) oun round-based agreement
algorithm t sed tim (f + 1)Cd if there are fau s, whilea straightforward
reduction frpm a tj ing-based algorithm to a roi n -based algorithm yields a
lower bound of (f+ 1)d The first major result ofthi'spaper is an-agreement

algorithn/in which the uncertainty factor C * nly incurred for one round,
yieldinga running time of approximately d + Cd in the worst case. The
second Iajor result shows that any agree 4ent algorithm must take time at
least (f- 1)d + Cd in the worst case.

The new agreement algorithm can also be applied in a model where
processors are synchronous (C = 1), nd where message delay during a
particular execution of the algorith is bounded above by a -quantity .-- {t tL/.-6 L
which could be smaller than the wo t-case upper bound d. The running
time in this case is approximately (2f -1f+ d.

Keywords: distributed agreement, distributed- consensus, agreement, con-
sensus, timing uncertainty, fault-tolerance, timeout.

Accesion For

NTIS CRA&IDTIC TAB 5
Unannou;ced 0

Justification

By........
Distributio:n I

Avaiiabiiiy Coa0es

Dist I Aai a.or
Special

1 Introduction

Distributed computing theory has studied the complexity requirements of
many problems in synchronous and asynchronous models of computation.
There is an important middle ground, however, between the synchronous
and asynchronous extremes: models that include inexact information about
timing of events. This middle ground is reasonable for modeling real dis-
tributed systems, in which the amount of time required for processes to take
steps, for clocks to advance, and for messages to be delivered are generally
only approximately known.

We are interested in determining the complexity of problems of the sort
arising in distributed computing theory in models with inexact timing in-
formation. In particular, in this paper, we consider the time complexity of
the problem of fault-tolerant distributed agreement. In the version of the
agreement problem we consider, there is a system of n processes, Pi,... ,Pn,
where each pi is given an input value vi. Each process that does not fail must
choose a decision value such that (i) no two processes decide differently, and
(ii) if any process decides v then v was the input value of some process. We
assume that processes fail only by stopping. This abstract problem can be
used to model a variety of problems in distributed computing, e.g., agree-
ment on the value of a sensor in a real-time computing system, or agreement
on whether to commit or abort a transaction in a database system.

The time co,)lexity of the distributed agreement problem has been well
studied in the synchronous "rounds" model. In this model, the computation
proceeds in a sequence of rounds of communication. In each round, each
non-failed process sends out messages to all processes, receives all messages
sent to it at that round, and carries out some local computation. (See,
for example, [PSL80, LSP82, D82, FL82, DLM82, LF82, DS83, H84, M85,
DM86, MT88, C86, MW88, BGP89] for results involving time complexity in
this model.) The most basic time bound results in these papers are matching
upper and lower bounds of f + 1 on the number of synchronous rounds of
communication required for reaching agreement in the presence of at most
f faults.

We consider how these bounds are affected by using, instead of the
rounds model, one in which there is inexact timing information. In par-
ticular, we assume that the amount of time between any two consecutive
steps of any nonfaulty process is at least cl and at most c2, where c, and
C2 are known constants; thus, C = c2/ci is a measure of the timing uncer-

tainty. We also assume that the time for message delivery is at most d.
Since processes are assumed to fail only by stopping, process failures can be
detected by "timeouts"; that is, if an expected message from some process
is not received within a sufficiently long time, then that process is known to
have failed. The time required to implement a timeout is roughly Cd.

Initially, we hoped to be able to adapt known results about the rounds
model to obtain good bounds for the version with inexact timing. Indeed,
an (f + 1)-round algorithm can be adapted in a straightforward way to
yield an algorithm for the timing-based model that requires time at most
(f + 1)Cd if there are f faults. On the other hand, a simple transformation
to a rounds algorithm yields a lower bound of (f+ 1)d. There is a significant
gap between these two bounds, namely, a multiplicative factor equal to the
Liming uncertainty, C. The motivation for our work is to obtain closer
bounds on the time complexity of this problem, in particular. to understand
how this complexity -depends on C.

The first major result of this paper is an agreement algorithm in which
the uncertainty factor C is only incurred for one round, yielding a run-
ning time of approximately 2fd +-Cd in the worst case. This algorithm
uses timing information in a novel way in order to-achieve fast time perfor-
mance. An interesting feature of the algorithm is that it can be viewed as an
asynchronous algorithm that uses a fault detection (specifically, a timeout)
mechanism. That is, the timing bounds cl, c2 and d are used only in the
fault detection mechanism.

The-second major result shows that any agreement algorithm-must take
time at least (f - 1)d + Cd in the worst case. The-proof of this lower bound
combines ideas used-in the rounds model ([FL82, DLM82, DS83, LF82, H84,
M85, CD86, DM86]), in the asynchronous model ([FLP85, DDS87]) and in
timing-based models ([AL89]). More- specifically, it uses a "chain argument"
such as those used previously to prove that f + 1 rounds are required in the
synchronous model, a "bivalence argument" such as-those used previously to
prove-that fault-tolerant agreement-is-impossible -in -an asynchronous system,
and a "time stretching" argument such as those used to prove lower bounds
for resource allocation problems.

Although these bounds are not completely tight, they do demonstrate
that the time complexity only involves the "timeout bound" Cd-in a single
additive term; Cd is not multiplied by f (the total number of potential

'Results of [FLP85, DDS87] imply that if any of the bounds cl, c2, d does not exist,
then t-ee is no agreement algorithra tolexant to even one faUlt.

2

failures) as it is in the naive algorithm. Note that this new bound represents
a significant improvement over the naive algorithm in case C is large (greater
than 2), as might happen in the presence of inaccurate processor clocks or
variable-time process swapping.

Our algorithm also yields upper bound results for a related model used
by Herzberg and Kutten [ItK°9] to study fault detection in host-to-host
protocols. In their model, process steps are completely synchronous, that
is, C = 1, and there is, as above, an upper bound d on the worst-case
time for any message to be delivered. Even though algorithms must be
designed to be correct in case that any message delay is d, in reality message
delivery could be much faster than d in many executions. Therefore, it makes
sense to express the time complexity of an algorithm in terms of a new
parameter b, the actual message delay during execution of the algorithm,
as well as in terms of the worst-case bound d. Again, a straightforward
adaptation of an (f + 1)-round agreement algorithm gives an agreement
algorithm for this- model which runs in time (f + 1)d, even -i. exeeu;ions
where b5 < d. In contrast, the main agreement algorithm -of this paper
runs in time approximately (2f - 1)6 + d. That is, the number of faults
multiplies the actual message delay 6 rather than the worst-case delay d.
Our lower bound -techniques can be modified to give a lower bound (of time
(2f - n)8 + d, if n < 2f) for this model.

There has, of course, been a considerable amount of previous work on the
agreement problem in various models; a representative selection of references
to this work appears above. However, there has been very little work so far
on this problem with inexact timing information.

Some prior work on distributed agreement in a model with inexact timing
information appears in [DLS88]. The main emphasis in [DLS88] was on
determining the maximum fault tolerance possible for various fault models;
only rough upper bounds on the time complexity of the algorithms were
given, and no lower bounds on time were proved. In contrast, the main
emphasis of the present paper is on time complexity.

Related work on the latency2 of reaching agreement when processes are
not completely Eynchronous appears in [CASD86] and [SDC90]. These pa-
pers assume that process clocks are synchronized to within some fixed ad-
ditive error, and- the case 6 < -d-is not considered. Unlike the results in our
paper, these results are stated in terms of clock time rather than absolute
real time. Although it is possible to translate results from those papcrs into

2Thc worst-caze-clapsed timc. mcaur. d or the clock of any correct process.

3

our model, doing so appears to yield results with a less precise dependency
on the timing uncertainty than we obtain here.

This work is part of an emerging study of-the real-time behavior of dis-
tributed systems. Other work in this area includes the extensive literature
on clock synchronization algorithms. (See [DHS86, HMM85, LM85, LL84,
WL88], for exanaple.) More recently, the mutual exclusion problem has been
studied in a timing-based model with C > 1 [AL89]. Also, the time com-
plexity for a synchronizer algorithm to operate in a timing-based network is
studied in [AM90], and the time complexity-of leader election algorithms in
a timing-based model appears in [CT90].

The rest of the paper is organized as follows. Section 2 contains a de-
scription of the formal -model we use for timing-based distributed systems
and a statement of the distributed agreement problem. In -Section 3, we
describe a useful "subroutine" for timing out failed processes. Section 4
contains =a discussior of -some simple upper -bound results that -arise easily
from the-known results for-the rounds model. In Section 5 we-give our main
upper bound result. Section--6 contains our lower bound result. Section 7
contains-our results for the-model with synchronous processes-and uncertain
message -delivery time. Finally, Section 8 contains our conclusions.

2 Definitions

2.1 Formal Model

In this section, we present -the definitions for -the underlying formal model. 3

An algorithm consists-of n processes Pi, ... ,Pn. Each process pi is mod-
eled as a (possibly infinite) state machine with state set Qi. The state set
Qi contains a distinguished initial state qoi and a distinguished fail state.

A configuration is a vector C = (qj,... ,qn) where qi is the-local state of
pi; denote-statei(C) = qi. The initial configuration is the vector-(qo,1 , ... , qo,n).
Processes communicate by-sending messages (taken from some alphabet M)
to each other. A send action-send(j, m) -represents the sending-of message
m to pj. Let S denote the- set of all send actions send(j, m) for all m E M
and all 1 < j < n. Processes can receive inputs from some set V of values.

We model a computation of the algorithm-as a sequence of configurations
alternated with events. Each event is either a computation event, represent-

3These definitions could be-expressed in terms of the general timed automaton model
described in [MMT881 and [AL89]; however, we choose here to present the definitions
directly, in Uoder to avoid the intervening layer of definitions.

4

ing a computation step of a single process, a failure event, representing the
failure of some process, a delivery event, representing the delivery of a mes-
sage to a process, or an input event, representing the arrival of a value at a
process.

A computation event is specified by comp(i, S) where i is the index of
the process taking the step and S is a finite subset of S. In the computation
step associated with event comp(i, S), the process pi, based on its local
state, performs the send actions in S4 and possibly changes its local state.
A failure event has the form fail(i, S) and causes the send actions in S to
be performed; other properties of failure events are detailed below. Each
delivery event has the form del(i, m) for some m E M, and each input event
has the form ir.put(i,v) for some v E V. In these events, the process pi,
based on m (or v) and its local state, possibly changes its state.

Each process pi follows a deterministic protocol that determines its state
transitions and the messages it sends. In more detail, the protocol consists
of two transition functions, pj for delivery and input events, and 7 for
computation events. For each-q E Qi and a E M U V, Wpi(q, a) gives a state
q' E Qi. For each q E Qi, y(q) gives a state q' and a finite set S of send
actions. We assume in both cases that q = fail if and only if q' = fail, and
we assume that S is empty if q = fail. These conditions mean- intuitively
that (i) the protocol cannot cause the process to leave the fail state, (ii) the
protocol cannot cause a process to enter the fail state from a non-fail state,
and (iii) no messages are sent from the fail state.

An- execution is an infinite sequence of alternating configurations and
events Ce= Co,7l,1,...,rj,cj,... ,

satisfying the following conditions:

1. Co is the initial configuration;

2. If 7rj = del(i, a) or input(i, a), then statei(Cj) is obtained by applying
Vi to statei(Cj-.) and a;

3. If 7rj = comp(i, S), then statei(Cj) and S are obtained by applying 'Yi
to statei(Cj-1);

4. If irj = fail(i, S), then statei(Cj-.) 9 fail, statei(Cj) = fail, and S is a
subset of the send events obtained by applying -yj to statei(Cj-1);

'In all our algorithms this will be broadcast(m), that is, {send(l, m),..., send(n, m)}.
A broadcast includes a message to the sender itself.

5. If rij involves process i, then statek(Cj_1) =-statek(Cj) for every k 0-i;

6. (Each send is matched to a later delivery and each delivery to an earlier

send.) For each m, E M and each process pi, let S(i,m) be the set of j
such that 7rj contains a send(i, rn) and let D(i, m) be the set of j such
that 7rj is a delivery event del(i, m). Then there is a bijective mapping
ai,m from S(i, m) to D(i, m) such that oa, m (j) > j for all j E S(i, m).

A timed event is a pair (7r,t), where 7r is an event and t, the "time",
is a nonnegative real number. A timed sequence is an infinite sequence of
alternating configurations and timed events

a = CO,(irl , tl), C1,. ..

where the times axe nondecreasing and unbounded.
Fix real numbers c1, c2, and d, where 0 < cl C2 < oo and 0 < d- < oo.

Letting a be a timed sequence as above, we say that a is a timed execition
provided that the following all hold:

1. CojrlC 1,...,ir5 ,-C,... is an execution;

2. There are computation or failure events for-all processe-s with time-0;

3. There axe infinitely many computation or failure events for each pro-
cess;

4. (Bounds on step time) Suppose j < k, the jth and kth timed events
are both either computation or failure events- of the same process- pi,
and there are no intervening computation- or failure eveAts of pi. Then
c1 <_ t4 - t1 _ c2;

5. (Upper bound on message delivery time) If message m is sent to pi at
the jth timed event then there exists k > j such that the kth timed
event is the matching delivery (del(i,m),tk) (i.e., ui,in(j) = k) and
t - tj < d.

Note that for any timed execution a and vny pi, there is at most one
timed event of the form (fail(i, S), t). If there is such an event, we call t the
failure time of pi.

We define a timed execution prefix to be any finite prefix of a timed

execution (ending with-a configuration). For any timed execution prefix a,
we define tmd(a) to be the time associated with the last event in a (0 if a
contains no timed events).

6

We say that a process pi receives the message m by time t (in a timed
execution a) if, by time t, pi has a computation or failure event that is
preceded in a by a delivery event del(i, m). For the rest of the paper let D
denote d + C2. Note that if m is sent to pi at time t, then pi receives m by
time t + D. Similarly, we say that a process pi receives the input v by time
t if, by time t, pi has a computation or failure event that is preceded in a
by an input event input(i, v).

For any timed execution a, we define delay(a) ;o be the maximum delay
of any message delivery in a. When a is clear from context, we will often
use the notation 8 to denote delay(a), and will let A = b + c2.

To simplify the expression of our time bounds in terms of the parameters
5, d, cl and C2, we sometimes approximate the bounds in the case that
C2 < 6. For example, in this case we have D - d and A ,t 5.

2.2 The Agreement Problem

We now specify the agreement problem. The original definition of the prob-
lem in round-based systems (e.g., [LSP82]) assumes that all processes begin
executing simultaneously with their initial values already in their states.
This degree of initial synchronization is not very realistic in a distributed
network. Since we are interested in capturing timing uncertainty, we have
included input events in-the definitions to permit -asynchronous starts of the
protocol. Let V be a set of values. We assume that-each set Qi of local states
includes a subset of decision states for each v E V, such that fail is not a
decision state, the sets of decision states for different values are disjoint, and
the transition functions Wi and yi map each decision state for v to a decision-
state for v. A process decides on v by changing its state to a decision state
for v (so its state thereafter is always a decision state for v).

A timed execution a (or timed execution prefix) is f-admissible if a
contains at most f failure events and, for each pi, exactly one input event
input(i, vi). For each pi, define starti(a) to be the smallest time t such
that pi receives an input by time t. Define start(a) to be the maximum of
starti(a) over all i.

Let B be a mapping from the positive reals to the positive reals. An
algorithm solves the agreement problem for f faults within time B provided
that each of its f-admissible timed executions a satisfies the following:

1. (Agreement) No two different processes decide on different values;

7

2. (Validity) If some process decides on v, then an event input(i, v) occurs
in a;5

3. (Termination and Time Bound) Every process either has a failure event
or makes a decision by time start(ce) + B(delay(a)).

We finish this definition section with a statement of a slightly weaker
version of the agreement problem. This may be interesting because our
lower bound results still apply for the weaker problem statement. (Our up-
per bound, however, satisfies the stronger problem statement given above.)
Namely, we define the agreement problem with synchronized start to be the
same as the agreement problem, except that the three properties listed above
must hold only for f-admissible timed executions a in which each process
receives its initial value at time 0; formally, for each process pi, there is
a timed event (input(i, vi), 0) in a which precedes every computation and
failure event of pi. Our default convention is that the synchronized start
condition does not -hold.

We will carry out the main development using a Boolean version of the
problem, i.e., V = {0,1}. Later we will discuss extensions to the case of an
arbitrary value set.

3 A Timeout Strategy

In the algorithms we describe below, it will be convenient to describe each
pi as a "parallel composition" of two tasks, a "timeout" task and a "main"
task.

The basic idea of the timeout task is very simple. At each step, each
process broadcasts an alive message. If some process pi has run for suffi-
ciently many steps without receiving an alive message from the process pj,
then pi concludes that p1 halted.

In more detail, the timeout task of pi has the following state components:
blocked, a Boolean, initially true (the purpose of blocked is to allow the main
task to stop the timeout task); a set halted C {1,..., n}, initially 0; for each
j E {1,...,n} a nonnegative integer counter(j), initially -1. In additi n,
the local state of each -process contains a component buff, to which messages
are added at each- message delivery event. Figure 1 describes the steps of

'Note that this condition is slightly stronger than the usual validity condition for
distributed agreement problems.

8

Precondition:
not blocked;

Effect:
broadcast ((alive, i))
for j:= 1 to n do

counter(j) := counter(j) + I;
if (alive,j) E buff then

remove (alive,j) from buff;
counter(j) := 0 ;

elseif counter(j) _ [D/cij + 1 then
add j to halted;

od;

Figure 1. The timeout task.

the timeout task of process Pi that are associated with comp(i, S) events, in
precondition-effect style. Recall that D = d + C2.

Assume that each local protocol includes the transitions indicated in
Figure 1. Say that a process halts at time t if it -either fails at time -t or sets
blocked to true at time t. We assume that if the main task of pi sets- blocked
to true at some step, then the main task of pi sends no-messages at later
steps. Fix a timed execution a; we prove the following properties for a.

T1. If any pi adds j to-halted at -time t, then- pj halts, and every message
sent from pj to pi is delivered strictly before time t.

T2. There is a constant T such that, if pj halts at time t, then every pi
either halts or adds j to halted by time i + T.

To verify T1, let pi add j to halted at time t. We -first show that pj
halts. If not, then pj sends an alive-message to pi at each of its steps. The
maximum difference between the times of two such consecutive send events
is c2; the time-between the two corresponding -delivery events is maximized
by assuming that the first message -takes time 0 and the- second takes time
d. Thus, this difference is at most D. However, since time at least cl elapses
between every two steps of pi, time at least ci([D/clj- 1)> D must elapse

9

between the last delivery of an alive message from pj before time t and time
t (when j is added to halted). This is a contradiction, so pi halts.

By a similar argument, we show that every message from pi to pi gets
delivered strictly before time t. Suppose that pj sends a message m to pi
at some step. Then, at pj1 s previous step, pj sends an alive message m'
to pi. As before, the maximum possible difference between the times of the
deliveries of m' and of m is at most D, but time strictly greater than D must
elapse between the delivery of m' and time t. It follows that m is delivered
strictly before time t.

Now let 6 = delay(a), the maximum delay of any message delivery in
a, and recall that A = 6 + C2. We verify T2, with -a timeout bound T of
approximately Cd + 6. Suppose pj halts at time t, so that the last alive
message from pi to pi is sent no later than time t. Therefore, by time
t' = t + A, pi will set -pi's counter to zero for the final time. So by -time
t' + C2([D/elJ + 1), pi adds j to halted. Therefore, our algorithm has the
timeout bound

T=A+C(2 ([] + .

In case C2 4Z 6, we have T - Cd + b.
In our algorithms that use the timeout task, we use only the fact that

the timeout task has properties TI and- T2, and we express the time bounds
of these algorithms in terms of the parameter T. Therefore, given a way to
detect process failures with a timeout bound T smaller than the one given
above, this detection -method could be used to improve the time bounds.
We do assume, however, that T > A.

A technical point must be made concerning the parallel composition of
the timeout task with the main task. Whenever a process takes a step, we
imagine that a step of the timeout task is performed- first, possibly adding
new processes to halted. Then a step of the main task is performed, using the
(possibly) new set halted. Even though this appears -to be two transitions
taken in sequence, it is easy to see that they can be combined into a single
transition.

4 Simple Bounds

In this section we briefly discusR some simple algorithms for the agreement
problem in the timing-based model, and mention a simple lower bound.

10

We first give a method for transforming a round-based algorithm to an
algorithm that works in the timing-based model.

Let A be a round-based algorithm involving processes pi for 1 < i < n.
For each round r > 1, the local protocol of pi determines the messages that
pi should send at round r, based on the messages received by pi at rounds less
than r. Assume that A runs for exactly R rounds and that every nonfaulty
process sends a message to every process at every round 1 through R. (The
transformation can be easily modified to allow some processes to halt earlier
than the maximum round R.)

We describe an algorithm A' for the timing-based model. in this algo-
rithm, each process includes a timeout task, as described in the previous
section. Initially, each process sends its round 1 messages. Each pi then
waits, for each pj, until it either receives the round 1 message of pj or adds
j to its set halted. Then pi uses A to compute its round 2 messages, and
these messages are sent. Subsequent rounds are handled similarly.

By Properties T1 and T2 of the timeout task, it should be clear that
A' simulates A correctly. To bound the time of A', let a be an arbitrary
f-admissible timed execution, and define real numbers tr for 0 < r < R as
follows. (Each tr will be shown to be an upper bound on the time for all
non-halted processes to complete the simulation of round r.) First, to =
start(a). Second, define tl = to + T if some process has a failure event at
some time t < to; otherwise, define tj = to + A. Finally, for 2 < r < R,
define t r = t.- 1 + T if some process has a failure event at a time t with
tr- 2 < t < t r-1; otherwise, define tr = t r-1 + A. Since we assume T > A,
we have tr _ tr-1 + A for all r > 1. It is also easy to see that, for every
r such that a failure occurs at some time t < t,.-,, t, _ ur-1 + T where
Ur-1 is the maximum time t < tr-1 such that a failure occurs at time t. By
Property T2 of the timeout task, it follows easily by induction on r, that
every process either fails or completes round r no later than time tr in the
simulation of A by A'. If there are at most f faults, there are at most f
values of r such that t, = tr_1 + T. Therefore, A' takes time at most

T.min{f,R} + A.max{R - f,0}.

Taking A to be an (f+ 1)-round agreement algorithm (such as the algorithm
of Dolev and Strong [DS83] appropriately modified for fail-stop faults), this
transformation gives an upper bound of fT + A on the time to solve the
agreement problem with f faults. In the case that c2 < 6, this bound is
approximately f Cd + (f + I),.

11

In the case of synchronized start, there is another approach that does not
perform the timeout task at every round, but runs a related timing task to
ensure that the entire algorithm runs long enough. The main agreement task
in this case uses a "flooding" strategy. If a process pi receives a message 1
(at either an input event or a delivery event) and if pi has not yet decided, pi
broadcasts the message I and decides 1. It is easy to see that, in any timed
execution, if any correct process receives a 1, then some correct process
receives a 1 no later than time fD. Since this correct process broadcasts a
1, all correct processes receive a 1 no later than time (f + 1)D. Therefore,
any process that has run for time strictly more than (f + 1)D can decide
0. To ensure that this much time has elapsed, each process counts k =
[(f + 1)D/lcJ + 1 of its own steps. This agreement algorithm takes time at
most c2k. This upper bound is approximately (f + 1)Cd. (This bound is
better than the one for the simple simulation above when Cd < (f + 1)6.)

Note that both upper bounds contain the term fCd. Intuitively, this
means that these algorithms can use f sequential "long" timeouts, where a
long timeout takes time -at least Cd. In the next section, we give a more
subtle algorithm with a time bound that involves only one long timeout.

As for lower bounds, for any positive integer k, it is not difficult to
translate a timing-based protocol that takes time strictly less than kd to a
round-based protocol that works in k - 1 rounds. Thus, the lower bound of
f + 1 rounds for agreement with f faults translates easily to a-lower bound
of (f + 1)d time. (This bound assumes that f _< n - 2, since -the original-
round-based bound assumes this.)

5 The Upper Bound

Now we present our main result, which shows how the upper bound can be
improved so that Cd is not multiplied-by f, but only by 1.

Theorem 5.1 There is an algorithm to solve the agreement problem for f
faults within time (2f - 1)A + max{T, 3A}.

Substituting the value of T obtained in Section 3, the following corollary
is immediate.

Corollary 5.2 There is an algorithm to solve the agreement problem for f
faults within time 2f A + max{ CD + c2, 2A}.

Assuming that c2 < 6 and Cd > 26, this upper bound is approximately
2fb + Cd. If 6 = d, the bound is approximately 2fd + Cd.

12

5.1 The Algorithm

In addition to the local state components of the timeout process, and halted
and blocked (as described in Section 3), we assume that the local state of
pi contains components vi and r, plus a component buff to hold incoming
messages, plus a component to record decisions. The component vi is the
"input value component" - an input event input(i,v) sets vi to v. The com-
ponent r holds a nonnegative integer phase number, initially 0. A decide(v)
operation causes pi to enter a decision state for value v (by recording the
decision in the appropriate state component) and set blocked to true (to stop
all nontrivial transitions, including those of the timeout task).

Now we give an informal description of the algorithm, more specifically,
of the steps of process pi that are associated with comp(i, S) events. The
algorithm is given in more detail in Figure 2. This description and the
associated code omit the timeout task behavior, as well as the handling of
inputs and delivered messages.

The algorithm proceeds in a sequence of phases, numbered consecutively
starting with 0. Each process attempts to reach a decision at each phase;
however, at even-numbered phases, processes are only permitted to decide on
0, whereas at odd-numbered phases they can only decide on 1. Furthermore,
a process is only permitted to decide at a phase r provided it knows that no
process has decided at phase r - 1. Thus, if any process decides at phase
r, the algorithm ensures that no process can decide at phase r + 1. More
strongly, in this case the algorithm ensures that every non-failed, undecided
process learns in phase r + 2 that no process has decided at phase r + 1,
and then decides at phase r + 2. Since r + 2 and r have-the same parity, it
follows that all decisions agree.

Validity is ensured by forcing all non-failed processes to decide at phase
0 in case they all have input 0, and at phase 1 in case they all have input 1.
To ensure termination, if a phase r occurs during which no process fails, and
such that no process has decided up through phase r, then the algorithm
ensures that every nonfaulty process will decide no later than phase r + 1.
(Such a phase must occur among the first f + 1 phases.)

The mechanism used by the algorithm to guarantee all of these properties
is the following. If a process fails to decide at any phase r, it broadcasts
the number r before going on to the following phase r + 1. On the other
hand, if a process decides at phase r, it "skips" broadcasting r and instead
broadcasts r + 1, before deciding and terminating. In order for a process to
decide at phase r > 1, it ensures that it has received the message r - 1 from

13

Precondition: initial next-phase transition
r=0
Vi=

Effect:
broadcast((O, i))
r:1

Precondition: initial decision transition
r=O
vi= 0

Effect:
broadcast((1, i))
decide(O)

Precondition: next-phase transition
r>1
there exists-a j such that (r,j) E buff

Effect:
broadcast((r, i))
r := r + 1

Precondition: decision transition
r>1
for all j g halted, (r - 1,j) E buff
there is no j such that (r,j) E buff

Effect:
broadcast((r + 1,i))
decide(r mod 2)

Figure 2. The main agreement algorithm for process pi.

all non-halted processes, and no message r from any process. This ensures
that if a process decides at phase r then no process has decided at phase
r - 1.

14

Also, if some process p decides at phase r, then every undecided process
receives the message r + 1 from p at phase r + 1, but no message r from p
(since p skips sending r). This ensures that each undecided and non-failed
process broadcasts r + 1 and goes on to phase r + 2. Then every undecided,
non-failed process will receive the message r+1 from all non-failed processes,
and no message r + 2 from any process. It follows that each undecided, non-
failed process decides at phase r + 2.

The algorithm allows any process having input 0 to decide at phase 0.
If all processes have input 1, then no process decides at phase 0. In this
case, every non-failed process broadcasts 0 and no process sends 1, so that
every process has its precondition for decision satisfied at phase 1. Validity
is thus guaranteed.

For termination, suppose that a phase r occurs during which no process
fails, and such that no process decides up to and including phase r. Then no
process sends the message r + 1, all non-failed processes send the message
r, and so the preconditions for every process to decide at phase r + 1 are
satisfied.

The transitions corresponding to comp(i,S) events of pi are shown in
more detail in Figure 2. The code contains preconditions for the various
cases; note that in- every state of pi, at most one of the four cases has its
precondition satisfied. Since comp(i, S) events are required to be-enabled in
all states, we use -the convention that any state in which none of the four
preconditions is satisfied has a "dummy" transition enabled, which causes
no changes to the state and no messages to be sent.

A formal proof of correctness appears-in Subsection 5.2.
We indicate why the time required for this algorithm to terminate only

involves a single occurrence of the timeout bound T Cd+ 5, not multiplied
by f. Note that the only transition that occurs because of a timeout is the
(non-initial) decision transition. Suppose this transition is ever begun by a
process pi at a phase r and no (r,j) message ever arrives at pi. Then the
timeout can takce time T, but then all non-failed processes will decide very
quickly and terminate the computation. (In fact, all such processes must
decide by the same phase r, since otherwise they would send (r,j) messages
to Pi.) On the other hand, suppose that, at all phases r prior to some
particular phase h, whenever a process pi begins the decision transition,
some (r,j) message does arrive at pi. Then all (r,j) messages must arrive
at pi after the transition (or the transition would not be enabled). Then we
claim that each such phase r takes only time depending on fS, but not on
T. This is because each (r,j) message originates (either directly or via a

15

chain of rebroadcasts) when some process first begins phase r. The length
of a shortest such chain can be at most f + 1 (because a non-failed process
succeeds in communicating its message to everyone). Therefore, the time
for phase r is bounded by (f + 1)6, the length of the chain multiplied by the
time to deliver each message in the chain.

A careful analysis appears in Subsection 5.3.

5.2 Correctness Proof

When we say that a process begins a transition, we mean that the precondi-
tion for the transition is satisfied and either the associated comp(i, S) step
or an associated fail(i, S) step is performed. Thus, this does not necessarily
mean that the transition described in the code is completed, i.e., that the
associated comp(i, S) step is performed. Note that for each r > 0, pi be-
gins at most one of the next-phase or decision transitions; we call this the
rth phase of pi. Note also that if pi decides at phase r, then pi completes
the decision transition at phase r so it sends the message (r + 1, i) to all
processes.

An r-message is any message of the form (r,i) for some i. It follows from
the code that an r-message is sent either at a decision transition at phase
r - 1, or at a next-phase transition at phase r.

We first prove progress, i.e., that nonfaul.y processes do not get "stuck"
in a phase: they either decide or advance to the next r'ase.

Lemma 5.3 Let r > 0, and let pi be nonfaulty process. Then pi either
decides at a pifase strictly less than r, or begins a transition at phase r.

Proof: Suppose not. Let r be the first phase at which a nonfaulty process
gets stuck, and let pi be a nonfaulty process that does not increase its phase
to r + 1. Since it is not possible for any process to get stuck at phase 0, it
must be that r > 1. Process pi eventually times out every process pj that
fails or decides, by Property T2 of the timeout task.

So consider any process pj that does not fail or decide. By choice of
r, pj eventually reaches phase r. Since pj does not decide at phase r - 1,
it must have set its phase to r using a next-phase transition. This imples
that pj sends an (r - 1)-message to pi. Hence, pi eventually receives an
(r - 1)-message from pj and uses it to satisfy its waiting condition for pj.

Thus, pi eventually satisfies its waiting conditions for all pj and is able
to begin a transition at phase r, a contradiction to the choice of r and pi.

16

We next give some preliminary lemmas. Some of these lemmas will also
be used later in the timing analysis.

Lemma 5.4 If pi begins a decision transition at phase r > 0, then pi sends
no r-messages.

Proof. If r = 0, then by the initial decision transition, pi sends no 0-
messages. Assume r > 1. If pi sends r at phase r - 1, pi begins a decision
transition at phase r - 1 and does not execute phase r. Since pi begins a
decision transition at phase r, it does not begin a next-phase transition at
phase r, and thus does not send an r-message at phase r. u

Lemma 5.5 If pi decides at phase r > 0, then no process begins a decision
transition at phase r + 1.

Proof: Assume, by way of contradiction, that some process pj begins a
decision transition at phase r + 1. Then prior to this decision transition,
either an r-message from pi is delivered to pj, or pj adds i to its set of
halted processes. By Lemma 5.4, pi does not send any r-messages, so the
only possibility is that pj adds i to halted. By the decision transition rule,
pi succeeds in broadcasting r + 1. But, by Property T1 of the timeout task,
all messages sent by pi to pj are delivered to pj before it adds i to halted.
Thus, an (r+ 1)-message must be delivered to pj before it begins the decision
transition. But this contradicts the precondition for the decision transition.

We next give a definition that will be central to both the correctness
proof and the timing analysis. A phase r is quiet if there exists a process pi
such that no process pj -sends an r-message to pi.

Lemma 5.6 Suppose r > 1. If no process begins a decision transition at
phase r - 1, then phase r is quiet.

Proof. This is true because an earliest sending of an r-message must occur
at a decision transition at phase r - 1. U

Lemma 5.7 If phase r is quiet, then all processes either fail or decide by
the end of phase r.

17

Proof: Suppose not; let pi be a process that does not fail or decide by the
end of phase r. By Lemma 5.3, pi must exit phase r, so it must perform
a next-phase transition at phase r. Since pi does not fail, it broadcasts r.
This contradicts the assumption that phase r is quiet. 0

Lemma 5.8 Assume that some process decides at phase r. Then phase r+2
is quiet and all processes either fail or decide no later than phase r + 2.

Proof: By Lemma 5.5, no process begins a decision transition at phase
r+1. By Lemma 5.6, this implies that phase r+2 is quiet. So by Lemma 5.7,
all either fail or decide no later than phase r + 2. U

Now we can prove the agreement property.

Lemma 5.9 No two processes decide on different values.

Proof: Let r be the minimal phase at which any process decides, and let
pi be a process that decides at phase r. By Lemma 5.5 no process begins
a decision transition in phase r + 1. By Lemma 5.8, all processes either
fail or decide no later than phase r + 2. Since r is minimal, it follows
that all nonfaulty processes decide at phase r or at phase r + 2. Since
r mod 2 = (r + 2) mod 2, they decide on the same value. •

We next prove the validity property.

Lemma 5.10 If pi decides v then there exists some pj that starts with vj=
V.

Proof: Assume by way of contradiction that all processes start with V' 0 v.
If v' = 0 then all nonfaulty processes decide on 0 at phase 0. If v' = 1 then
no process begins a decisior, transition at phase 0, so Lemma 5.6 implies
that phase 1 is quiet, and so by Lemma 5.7 all nonfaulty processes decide
on 1 at phase 1. Either case yields a contradiction. U

We next argue termination.

Lemma 5.11 Any f-admissible timed execution contains a quiet phase,
numbered no larger than f + 2.

18

Proof: If some process decides at phase r < f, then Lemma 5.8 implies
that phase r + 2 is quiet. So suppose that no process decides at any phase
'r with r < f. Since there are at most f failures, there must be some phase
r, 0 < r < f, at which no process fails; let h be some such phase. Since
h < f, no process decides at phase h. In fact, no process pi begins a decision
transition at phase h, because otherwise pi would complete this transition
without failing. Therefore, by Lemma 5.6, phase h + 1 : f + 1 is quiet. m

Lemma 5.12 In any f-admissible timed execution of the algorithm all pro-
cesses either fail or decide no later than phase f + 2.

Proof: By Lemma 5.11, any f-admissible timed execution contains a quiet
phase, numbered no larger than f + 2. Then Lemma 5.7 implies that all
processes either fail or decide by phase f + 2. 0

Remark 1 Our algorithm does not require an a priori upper bound on the
number of faults. All nonfaulty processes decide no later than phase f + 2,
where f is the number of faults that actually occur in the execution. In
consequence, the algorithm is an "early stopping" algorithm (cf. [DRS82]).
If an upper bound f is known a priori, the algorithm can be modified so
that, if pi has not yet decided when it makes a next-phase transition from
phase f + 1 to phase f + 2, then pi can immediately decide on (f + 2) mod 2.
Since pi decides no later than the end of phase I + 2, there is no need to
actually execute phase f + 2.

5.3 Timing Analysis

Some notation to describe the number of failures is useful. For each r _> 1,
denote by fr the number of processes whose failure step is a transition
during which an r-message should be broadcast (so this is either a decision
transition at phase-r - 1 or a next-phase transition at phase r). Note that a
process has at most one failure step and thus, in all f-admissible executions,
Er>i fr < f.

The key idea behind the upper bound is that, if a phase r is not quiet,
then the time of the phase can be bounded above by a quantity which
depends on f, but not on C. Moreover, the time for any phase (in particular,
the first quiet phase) is at most T ,z Cd + 6. By Lemma 5.7, all nonfaulty
processes decide no-later than the end of the first quiet phase. Since a quiet
phase must occur before too many-phases have elapsed, the bound follows.

19

In more detail, fix an arbitrary f-admissible timed execution a. We
introduce some notation; all definitions are with respect to a. For r > 0,
define t, to be the minimum time t such that all processes either fail, decide,
or perform a phase r transition no later than time t. Note that tr _ tr+,
fcr all r, and t o _5 s, where a = start(a). Let td., be the minimum time t
such that all processes either fail or decide no-later than time t. Let h be
the smallest r such that phase r is quiet. It follows from Lemma 5.11 that
h exists and h < f +2.

It is convenient to handle the cases h = 0 and f = 0 separately. If
h = 0, then Lemma 5.7 implies that the algorithm takes time zero. If f = 0,
then since there are no failures it is easy to see-that all processes decide no
later than the end of phase 2, and that phases 1 and 2 take time at mcst A
each. The time bound claimed-in Theorem 5.Lis at least 2A when f = 0.
Henceforth we assume that h > I and f _> 1.

We begin with a simple lemma stating that every phase takes at most
time T.

Lemma 5.13 For any phase r > 1, tr :_ t-.. + T.

Proof: Consider any process pi that does not-fail or decide by time t,-1 +
T. If any process-pi decides at-phase r - 1, then within time A. after pi's-
decision transition, (and so by -time tr-1 + A < t,-1 + T), pi receives an
r-message and performs a phase-r next-phase transition.

Now assume that no process decides at phase r - 1. For any process
pj that fails or decides at or before its phase r - 1 transition, pi puts j
into its halted set and takes a -subsequent computation. or failure step by
time t-1 + T. Also, every processithat does-not- fail or decide at or before
its phase r - 1 transition completes a phase r - 1 next-phase transition, in
which it sends an (r - 1)-message; this message is received by pi by time
tr-1 +-A <_ tr-1 + T. Since no-process decides- at phase r - 1, pi receives
no r-messages. It follows that pi performs a phase r decision transition. by
time tr-1 + T.

Applying the-preceding argument to all pi,,we conclude that4. < t'-1 +
T .

The next lemma is the key to the upper bound. It says that the time
required by a non-quiet phase is short (in particular, independent of C).
The reason is that the length of such a phase is bounded by the time to
deliver a chain of messages of length one more-than the number of failures

20

Lemma 5.14 For any r with 1 < r _ h - 1,. tr <t4- + A(fU + 1).

Proof: Let pi be an arbitrary process. Assume that pi' does not fail, decide,
or perform a phase r transition before time t.-1 + A(fr" + 1). Since phase
r is not quiet, some process sends an r-message to pi. By inspection of the
algorithm, there must be a sequence io, ... , ik of distinct process indices with
ik = i, such that pi(sends an r-message to pi while performing a decision
transition at phase r-1 and, for 1 < j k-i, pi sends an r-message to pi,+,
while performing a next-phase transition at phase r. Choosing the sequence
of process indices so that k is minimized, it follows that, for 0 < j k - 2,
pi, fails during the broadcast of the r-message. For if pi, does not fail, then
it sends an r-message to pi, so i0 ,... ,ij, i would give a path of length less
than k from pi0 to pi.

By definition of f., we have k - 1 : f,. Since pi0 sends the r-message no
later than time tr-I, and pil,... ,Pi, enter phase r no later than time t,- 1,
it follows that pi receives the r-message and satisfies the precondition for a
next-phase transition no later than time t,1 + kA < t,.-1 + (f, + 1)A. U

Now by induction we have:

Corollary 5.15 For every r with 1 < r < h- 1, tr < A. E 1 (fi +1)+

At this point, we can give a simple proof of an upper bound result that
is slightly weaker than the one claimed in Theorem 5.1. We include this
result here in order to give the reader an intuition why the bound takes the
general form it does (with the-timeout bound T appearing only once).

Theorem 5.16 There is an algorithm to solve the agreement problem for f
faults within time (2f + 1)A + T.

Again assuming C2 < 6, this bound is approximately (2f + 2)6 + Cd.

Proof: By Lemma 5.7, we have tdec < th. Lemma 5.13 implies that tr _
tr-1 + T for any phase r. Therefore, tdec < t h-1 + T. Now

tde < th-1 + T

< A h-(fi + 1) + T + s by Corollary 5.15,
< (f+(h-1))A+T+s

(2f+i)A+T+s since h < f+2.

21

Now we carry out -the finer analysis needed to get -the -smaller -bound
given in Theorem 5.1. The smaller -bound -ise'lose (Within O(c2(C + f)
to the -actual worst-case running time -of 'the algorithm; details are given in
Remark 2 below. The better bound--is obtained by considering -the latest
time at which a failure occurs. If this time is not t(,o -large, then a better
bound- can be obtained- since the time T taken'by the timeout task can then
be mneasured starting -from the time of the latest -failure. Let tlaa, be the
maximum time such that tj, 5 th-1 -and .such that .some process has a
failure event at time laet* If.no process- has -aailure eventat-a time < A-.1,
then take tl, = -T. We begin with -an upper -bound 'on td,, that -may -be
,smallerthan'the sbound-th-1 + T used in the -proof of Theorem 5.16.

Lemma 5.17 td, :maxf h-- + A, hlm + T'}.

Proof: By Lemma-5J, -t d,, 5 t, so-it is.sufficient Ao-bound th* 'Let -pi be
alprocess-that does not -fail, decide, -or -perform -a pha-se-rh transition before

tim 't ~=max-t...-+ , t~ + i.Le i~ be-an aibitraryprocess. We
shwthat -by time -t. ,either-j islin ps's ~halted set'or, pureceives-an-(h-_1)-

message- or an h-message from :pj. Therefore, iby -time-Imaxz,pi performs -a
phase A -transition.

If p1 -fails at time ~t mwhere t '< Ah-1, ithen it < tt 8 , so ,pi adds j -to -its
.halted~set Yiio later',than -time tli~+ T3(by Property T2tofithe 'timeout -task).
In ;-the-remaining cases,-assume -that pjde Antfi tatm

Suppose that pi performs a transition -at-.phaseh- -1. Since -p1.-does~~not
fail -at -this transition, pj -sends either-an-(h - i)-message~or-an -h-message to
pi. -Since the-sending-is -done -no later .han -timelh.,-p' -receives the message
no later than -time Ah-1 -+-

The-only other possibility -is that :pi -decides -at -some phase r <:rh-- 2.
.Since pi does not fail or -decide by the -end -of,,phase h-1, it follows-from
Lemma -5.8 that p1 -does -not decide -at -any phase r < -h - -3. Therefore, -pi
decides -at phase h - 2:and -broadcasts -an(h - 1)-message. -As-in-the .previous
case, -this message -is -received-by pi no'later 'than timeAt-.2-1+ A <th-1-+AA.

We now use Lemma 5.17 to bound -td,,.

Lemma 5.18 td,, -max{'(2f + 2)A, (2f - 1)A +2 T +.

Pro:We consider -three cases.

22

Case 1: h < f.
Since tcc _< th-1 + T, Corollary 5.15 gives

tdc < th-i + T
h-1

< A. E(f+l)+T+s

i=1

(f+(h-1))A+T+s

_ (2f-l)A+T+s.

Case 2: f + 1 _ h < f + 2 and ttaa <. tf-l.
First, since f - 1 < h - 1 we have

f-I
tlas, <f -1 A. Z(fi + 1) + s < (2f - 1)A + s.

i=1

Since h - 1 < f + 1 we have

h-i
t h-I < A Z(fi + 1) + s < (2f + 1)A + s.

i=1

Substituting these bounds for tlat and th-1 into Lemma 5.17 gives

tdec < max{(2f+l)A+s+A,(2f-1)A+s+T}

= max{(2f+2)A,(2f-1)A+T}+s.

Case 3: f +1 _ h<f +2andttaat >tf-1.

Claim 5.19 f, >Oforl <r<f -1.

Proof: Suppose that f, = 0 for some r < f- 1. Since phase r is not quiet,
some process sends an r-message, and the earliest sending of an r-message
must be at a decision transition at phase r - 1. Since f, = 0 means that
there are no failures during a broadcast of an r-message, it follows that some
process decides at phase r - 1. By Lemma 5.8, phase r + 1 is quiet. Since
r + 1 < f, this contradicts the assumption that phase h > f + 1 is the first
quiet phase. U

Since phase f is not quiet, a f-message is sent by some process. Let p be
a process that sends an f-message at the earliest time. Therefore, p sends

23

the f-message while performing a decision transition at phase f - 1, and
this occurs no later than time ti 1 .

We first argue that p decides at phase f - 1. If not, then p fails no later
than time tl-1 while broadcasting an f-message. Since fr > 0 for r < f - 1,
the remaining f - 1 failures occur while some process is broadcasting an
r-message for each r with 1 < r _< f - 1. Since these remaining failures
occur at phases numbered at most f - 1, it follows that all failures occur no
later than time tf-1. This contradicts the assumption that tt,,j > ts-1.

Since p decides at phase f-1, h = f + 1 by Lemma 5.8, and p broadcasts
an f-message no later than time tf. Therefore

ta-i = t] <_ t f-1 +A. (1)

The final ingredient for this case is the observation that

f-

'1"f, 5f - 1 (2)
i=1

,Otherwise, all-failures occur during the broadcast of r-messages for 1 < r <
f - 1; as arguet above, this contradicts the-assumption that tast > tf-1-.

Finally, we -have

tdec < th_ 1 + T
< tf-.+A+T by(1)
_ A-'(f + 1) + s + + T

-((f-1)+(f - 1))A + s +,A + T by (2)
= (2f- 1)A + T +.

Since the upper bound of Lemma 5.18 can be written as (2f - 1)A +-
max{T, 3A} + s, the proof of Theorem 5.1 -is complete.

Remark 2 It is possible to construct an execution of the algorithm that
takes time at least 2fb + Cd, assuming 1 < f : n - 2 and C > 2. Hints:
One process has initial value 0 and the others have initial value 1; f, = 1
for 1 < r < f - 1, fr = 0 for r =f,and fr = 1 for r = f + 1; the message
delivery times are arranged so that phases 1, 2,..., f - 1 take time 26 each,
phase f takes time 6, and phase f + 1 takes time T > Cd + 6.

24

Remark 3 The agreement algorithm has high message complexity. This is
due mainly to the timeout task where every process broadcasts a message
at every step-the main task sends a total of O(n 2f) messages, since each
process broadcasts a message at each phase transition. An obvious approach
for decreasing the message complexity of the timeout task is to broadcast the
alive message once every k steps for some k > 2. Of course, the maximum
value of the counters must then be adjusted upward, and the timeout bound
T increases accordingly.

For the case of synchronized start, another approach is to dispense with
the timeout task completely, and build special timeout mechanisms into the
main algorithm. Specifically, whenever pi makes a next-phase transition
from phase r - 1 to phase r, it initializes a counter counter(j) for each
pj. Each counter counter(j) is incremented at each step until either (i) pi
receives an r-message (causing it to perform a next-phase transition), or
(ii) the message (r-l,j) is found in buff, or (iii) counter(j) reaches [2D/clJ+
1. In case (iii), pi adds j to halted. The modified algorithm is correct since,
whenever pi broadcasts an (r - 1)-message during a next-phase transition at
phase r - 1, it should receive either an (r - 1)-message or an r-message from
,every nonfaulty nondecided process within time 2D. The modified algorithm
sends a total of O(n2f) messages. Each message has length O(logn) bits.
By a timing analysis similar to that of Theorem 5.16, an upper bound of
(2f + I)A + 2CD + c2 ; (2f + 1)6 + 2Cd can be shown.

5.4 Extension to Multiple Values

In this section we discuss how to modify the algorithm to handle an arbi-
trary value set V. This is done by running n single-source algorithms in
parallel. In the single-source agreement problem, a single process pi, the
source, starts with ar, initial value from V. Shortly we describe an algo-
rithm for the single-source problem with the following properties. Let .
be a distinguished default value in V. Suppose that the source has initial
value v. Then all nonfaulty processes decide on either v or .L, and all decide
the same; moreover, if the source is nonfaulty, then all nonfaulty processes
decide on v. To solve the general agreement problem, run n single-source
algorithms, A,,... , An, in parallel wit)i pi being the source in Ai. When
some process pj has reached a decision wi in Ai for all i, it decides on Wk
where k is the least integer such that wk # .. , provided that such a k exists.
If wi = I for all i, then pj decides on I.

To describe a solution to the single-source problem, we refer to the al-

25

gorithm of Figure 2 as the binary algorithm. Let pi be the source, and let
vi E V be the initial value of pi. Initially, pi begins the binary algorithm
as though it has initial value 0, and the other processes begin with value
1. During phase 0, pi broadcasts the message (vi, (1, i)); i.e., it sends the
message (1, i) that the binary algorithm would send, with the value vi pig-
gybacked. After this broadcast, pi decides vi. Any process that receives
this message during phase 1 remembers vi, broadcasts (vi, (1, i)), and oth-
erwise acts in the binary algorithm as though the message (1,i) had been
received. The binary algorithm is then run to completion. If a process
decides 0 (resp., 1) in the binary algorithm, it decides vi (resp., _L) in the
single-source algorithm. (The analysis below shows that if pj decides 0 in
the binary algorithm, then pj receives vi during phase 1.)

To argue correctness, first consider the case that the source pi is non-
faulty. It is easy to see in this case that all nonfaulty processes (except the
source) decide 0 at phase 2 in the binary algorithm, so all decide vi in the
single-source algorithm. If pi is faulty, let R be the set of processes that
receive (vi, (1, i)) during phase 1. Any process not in R either fails or per-
forms a decision transition at phase 1. If any such process decides, then all
nonfaulty processes decide 1. If all processes that are not in R fall before
deciding, then any process pj that does decide is in R, so pj receives vi
during phase 1.

6 The Lower Bound

In this section we prove our lower bound of (f - 1)d + Cd on- the time to
reach agreement in the timing-based model. The proof requires four steps
and employs techniques used elsewhere in proving lower bounds and im-
possibility results in the rounds model, the completely asynchronous model,
and the timing-based model. The first step is an adaptation of the proof
showing that f + 1 rounds are necessary for Byzantine agreement in the
rounds model [FL82, DLM82, DS83, LF82, H84, M85, CD86, DM86]. As
we shall see, this adaptation yields the existence of two "long" (i.e., taking
time at least (f- 1)d) timed execution prefixes, ao and a,, each having only
f - 1 faults, distinguishable only to one process, and each extendible to a
timed execution with a different decision value. The second step mimics- a
key lemma in the proof that agreement is impossible in asynchronous sys-
tems [FLP85, DDS87]. In this step it is shown that at least one of ao and

I is "bLwlaent ," in f it has two possi ble extensions with no ai,:--a

26

failures, each yielding a different decision value, and in each of which pro-
cesses take steps as quickly as possible. In showing bivalence, we also use
an "execution retiming" technique of [AI,89]. The third step extends the
bivalent timed execution prefix to a "maximal" bivalent prefix, having at
most f - 1 faults. The fourth and last step exploits the one remaining fault,
via another retiming argument, to show that after this maximal bivalent
timed execution prefix at least one "long timeout" (taking time at least Cd)
is necessary.

We assume throughout this section that cl _< d, 6 = d, and f > 1.

6.1 Synchronous Timed Executions

Our lower bound arguments for algorithms in the timing-based model will
be based on a subset of the timed executions which we call "synchronous."
We define these in this subsection.

We think of a synchronous timed execution as a sequence of "blocks";
each block is composed of a sequence of message deliveries followed by a
sequence of process steps; all the process steps in one block occur at the same
time, and each block-contains exactly one (computation-or failure) step by
each process. More precisely, we say that a timed execution is synchronous
provided that there is a monotone increasing sequence- of times, to, tl,...,
such that to = 0 and the following conditions are satisfied.

1. Exactly one input event o .urs at each process, and it occurs at time
0.

2. Each computation and failure event occurs at time ti, for some i. At
each time ti, there is exactly one computation or failure event for each
process, and these events occur in order of process indices.

3. All input events precede all computation and failure events that occur
at time 0.

4. All message delivery events that occur at a time ti precede all compu-
tation and failure events that occur at the same time.

A block in a synchronous timed execution can then be identified with
the portion of the execution occurring at times in the interval (ti, ti+l] for
any particular i. A (finite) timed execution prefix is said to be synchronous
provided that it is a prefix of a synchronous timed execution and it ends
with a computation or failure step of process p..

27

Now suppose that a is a synchronous timed execution prefix. If 7 = Cep
is a synchronous timed execution or a synchronous timed execution prefix,
we say that 7 is a failure-free extension (or simply if-extension) of a if no
failures occur in P. We say that 7 is a fast extension of a if the times for
computation and failure steps in y that are greater than tnd(a) are exactly
all the times that are of the form ind(a) plus a positive multiple of cl.
Similarly, -7 is a slow extension of a if the computation and failure step
times are all those of the form tend(a) plus a positive multiple of c2.

6.2 Existence of Long Prefixes

For the first step, we show the existence of the two long timed execution
prefixes mentioned above. Since we do this by adapting a proof from the
rounds model, it is useful for us to restrict attention to a subclass of the
synchronous timed- executions that look more like executions of the rounds
model. In particular, we will consider timed executions in which messages
are delivered in batches at times that are positive multiples of d. Also,
although step time is irrelevant here, we sa y (to be specific) that processes
take steps at every multiple of c, starting- with 0. Formally, we define the
uniform timed executions to be those synchronous timed executions in which

1. for every integer r > 1, any message-that is sent at time t, with (r -
1)d < t < rd, is delivered at time rd,-and

2. each step time ti is equal to ici.

Also, the uniform timed execution prefixes are defined to be the timed exe-
cution prefixes that are prefixes of uniform timed executions and end with
a computation or failure event of pg.

Uniform timed executions are similar to-executions in the rounds model.
For example, if cl = d, then there is a direct correspondence between the
two. In general uniform executions, however, a process may take several
steps (and send at several different times) within each round of message
exchange.

The basic lower bound result for agreement in the rounds model asserts
that, for f < n - 2, agreement in the presence of stopping failures requires
f + 1 rounds [LF82, H84, M85, CD86, DM86]. The proof of this result
contains a key lemma that shows, loosely speaking, that for any agreement
algorithm all execution prefixes with at most f rounds in which at most one
process fails in each round are similar. Two e:necution prefixes are- directly

28

similar if some nonfaulty process cannot "distinguish between" them. The
similarity relation is the transitive closure of the direct similarity relation.

By redefining "directly similar" so that two execution prefixes are di-
rectly similar if at most one process can distinguish between them, and
redefining "similar" accordingly, it is easy to modify this standard proof
to apply to our uniform timed executions and to yield a slightly stronger
conclusion. In this way, we obtain the following lemma.6

We define two timed execution prefixes, ao and al, with tend = tendm o) =
tend (a,), to be indistinguishable to process pi provided that (a) the sequence
of timed events occurring at pi and the sequence of intervening local states
of pi are identical in ao and a1 , with the exception that corresponding
fail events of pi in the two event sequences can send different sets of mes-
sages, and (b) the messages which are sent to pi strictly before time tend,
together with their senders and sending times, are identical in ao and a1 .
The sequences ao and a, are said to be distinguishable to pi if they are not
indistinguishable to pi.

Lemma 6.1 Let A be an n-process algorithm in the timing-based model that
solves the agreement problem for f <_ n - 1 faults. Let k be a nonnegative
integer, k < f - 1. Then there are two (uniform) timed execution prefixes,
a and a1 , satisfying the following conditions:

1. trd(Oj) = [~] c,, forj =

2. There is a fast if-extension of a1 in which some process decides j, for
j = 0,1.

3. If Fj is the set of processes that are faulty in aj, j = 0,1, then IFo U
FI < k, and

4. There is at most one process to which ao and a1 are distinguishable.

'For those who are familiar with the earlier proofs: The proof involves constructing
a "chain" of timed execution prefixes. Each pair of consecutive prefixes either (a) have
identical sets of failed processes and differ only in the presence or absence of one particular
message m sent by a faulty process pi to a process pi; moreover, pi does not send any
messages (in either prefix) at or after the delivery time of in and strictly prior to t end, or
(b) differ only in that one process that sends all its messages at some time ti but none
thereafter, in both prefixes, does a failure transition at time ti in one case and at tj+j in
the other case, or (c) differ only in that one process that sends all its messages at time
t end does a failure transition at time t end in one prefix and does not fail in the other
prefix, or (d) differ only in the initial value of one process that fails at time 0 and sends
no messages.

'Note that the time] cl is the least multiple of c, greater than or equal to kd.

29

6.3 Existence of a Long Bivalent Prefix

For the second step, we show that, under the assumption that agreement
can be reached in time strictly less than (f - 1)d + Cd, both decisions are
still possible after at least one of ao, a,. In order to do this, we need to
formalize the notion that "both decisions are still possible" after a prefix.
Let a be a synchronous timed execution prefix.

We say that a value v E {0, 1} is fast failure-free-reachable (or just fast
if-reachable) from a if there is a synchronous fast failure-free extension 7Y of
a such that some process decides v in 7. We say that a is O-valent if only 0
is fast if-reachable from a, and 1-valent if only 1 is fast if-reachable. We say
that a is univalent if it is either 0-valent or 1-valent, and that ae is bivalent
if both 0 and 1 are fast if-reachable from a.

The next lemma is the key for completing the proof of the lower bound.
It shows that there cannot be two "long" execution prefixes (i.e., prefixes
that end at a "late" time) that have opposite valence, that do not contain
many faults, and that are distinguishable to at most one process.

Lemma 6.2 Let A be an algorithm in the timing-based model that solves
the agreement problem for f :_ n - 1 faults within time strictly less than
t+ Cd.

Then there cannot be two synchronous timed execution prefixes, ao and
a,, satisfying the following properties:

1. tend(ao) = tend(al) t,

2. aj is j-valent, j = 0, 1,

3. if F is the set of processes that are faulty in aj, j = 0,1, then IFo U
Fl1:<f-1, and

4. there is at most one process to which ao and a, are distinguishable.

Proof: Suppose, by way of contradiction, that such prefixes ao and a,
ex;t. Let F be the union of Fo, F1 , and the set (of size at most 1) of
p.rocesses to which ao and al are distinguishable; note that [I < f. Let
a' be a synchronous timed execution prefix that is identical to a0 except
that each pi E F does a failure step in which it sends no messages at time
tend if it has not failed previously in ao. Let yo be a slow if-extension of ao.

....... t ..i.. is derived froui. thaL o'-rIP85I, although the definitions are not

exactly equivalent.

30

Let yi be constructed in a similar way from a,, subject to the additional
condition that the portion of 71 after time te,,d is identical to the portion of
70 after time tend. This is possible since aO and a' are indistinguishable to
all processes other than those in F, and moreover all messages in transit to
these processes at time tend are the same in a' and ac.

Since IF _ f, it follows that each of 7o and 71 is f-admissible. Since
tend > t and the algorithm decides before time t + Cd, all the nonfaulty
processes, i.e., those processes not in F, decide in each of 7o and 7i strictly
before time t nd + Cd. Since 70 and y1 are indistinguishable to all processes
other than those in F, they have the same decision value v. Fix j = 1 - v.
(This makes sense because v E {0, 1}.)

Let y74 be a retiming of 7j that keeps the times of all events up to and
including tnd the same, and that causes every event that occurs at time
t,,,d + u in 7j, for u > 0, to occur at time te,,d + u/C in 7. Then all
processes not in F decide v in 74, strictly before time tnd + d.

Now let 7' be a fast if-extension of aj in which any messages sent by
processes in F at times greater than or equal to ted take time exactly d to
be delivered, and such that 7" looks exactly like -y4 to all processes except
those in F at times before ted + d. Since the processes not in F cannot tell
the difference between 74' and 7 strictly before time t,,,d + d, all processes
not in F must decide v in 74'.

But since 74' is a fast if-extension of aj and aj is j-valent, the processes
that are nonfaulty in 7' must decide j in 7'. Since the processes not in F
are nonfaulty in 74k, this is a contradiction. U

Corollary 6.3 Let A be an algorithm in the timing-based model that solves
the agreement problem for f < n - 1 faults within time strictly less than
(f - 1)d + Cd. Then there is an (f - 1)-admissible synchronous timed
execution prefix a such that the following conditions hold:

1. tend(a) [(f 2)d] cl, and

2. a is bivalcnt.

Proof: Let a0 and a, be obtained by setting k = f - 1 in Lerama 6.1.
We show that at least one of ao and a, has the required properties. All
properties except the bivalence are immediate, so we must show that at
least one of ao and a, is bivalent. We proceed by contradiction. Assume
that neither of ao and a, is bivalent. Then for j = 0,1, since a decision of
j is possible in a fast if-extension of aj (by Lemma 61), A mut be that

31

ai is J-valent. But then ao and- al satisfy all the conditions described in
the statement of Lemma 6.2, where t = (f - 1)d. Lemma 6.2 then yields a
contradiction.

6.4 Existence of a Long Maximal Bivalent Prefix

For the third step, we construct a "maximal" finite bivalent extension de of
the bivalent timed-execution prefix obtained in the previous lemma. Roughly
speaking, the end- of a' is a branch point, from which both decisions are still
fast if-reachable and such that at the next step time in any fast if-extension
of a' the decision must be determined.

Lemma 6.4 Let A be an algorithm in the timing-based model that solves
the agreement problem for f :_ n - 1 faults within time strictly less than
(f-1)d+ Cd. Then A has an (f- 1)-admissible synchronous timed execution
prefix a' such that

1. tend(d) _ (f - 1)d and

2. a' is bivalent,

and such that there are two fast ff-extensions of a', #j, j =- 0,1, satisfying
the following properties:

1. #5j is an extension of a' by exactly one block, j = 0,1,

2. fli is j-valent, j = 0, 1, and

3. j1o and #I are indistinguishable to all but at most one process.

Proof: By Lemma 6.3, A has a (f - 1)-admissible synchronous timed
execution prefix a satisfying the following properties:

1. tend(a) = c1, and

2. a is bivalent.

Let r be the set of finite bivalent fast if-extensions of a. Each such
extension must have its final time strictly less than (f - 1)d + Cd, since A
is assumed to decide within that time. Since each block takes time C1, there
must exist a maximal element of r, i.e., one that has no proper extensions
in r; let at be such a maximal element.

32

Let 0 be the set of all finite fast if-extensions of a' consisting of a'
followed by a single block. In other words, every 9 E 0 consists of a' followed
by a sequence of message deliveries and a single step by each process. Since
fast f-extensions are synchronous, tcnd(P) = tnd(a') + cl for each fi E E).
By maximality of a', every timed execution prefix in 0 is univalent. Since a'
is bivalent, there must be at least one such extension that is 0-valent and at
least one that is 1-valent. (This uses the fact that bivalence is by definition
with respect to fast if-extensions.) Let fl E 0 be j-valent, for j = 0, 1.

Now we construct a sequence, Pi", 0 < i < n, of elements of 0 such that
P = f, g, =#',and for all i, 1 < i < n, 1 and are indistinguishable
to all processes other than pi. The construction is inductive. First define

PO = 3 . Then for each i, 1 < i < n, define fl' E 0 to be the same as Pi"
except that the message deliveries to pi in fi' are as in 0'. (Since all the
messages delivered to pi in P' are sent by time t,,d(a'), such a f3 ' exists.)

Since each P3 ' E 0, it is univalent. Since PO" is 0-valent and -O" is 1-valent,
there must exist i, 1 < i < n, such that "P1i-1 is 0-valent and f# ' is 1-valent.
Then defining f80 - and P1 = il suffices to prove the lemma. U

6.5 The Final Step

For the final step of our proof, we now use Lemma 6.2 once again to yield
our main lower bound theorem.

Theorem 6.5 Assume 1 < f 5 n - 1. There is no algorithm in the timing-
based model that solves the agreement problem for f faults within time strictly
less than (f - 1)d + Cd. Moreover, this lower bound holds in the case of
synchronized start.

Proof: Suppose, by way of contradiction, that such an algorithm A exists.
Then Lemma 6.4 yields an (f - 1)-admissible synchronous timed execution
prefix a' such that tend(a') _ (f - 1)d and a' is bivalent, and such that
there are two fast if-extensions of a', f3j, j = 0, 1 satisfying the following
properties:

1. Pj is an extension of a' by exactly one block, = C, 1,

2. fPj is j-valent, j = 0,1, and

3. go and i31 are distinguishable to all but at most one process.

But then 0 and P, satisfy all- the conditions in Lemma 6.2, with t = (f-1)d.
This Immediately yields a cofitradictlion.

33

Remark 4 The lower bound obtained in this proof is not always the best
possible. If d = kc2 + 6 for some integer k then we can actually obtain a
bound of (f - 1)(d + c2 - e) + Cd. Since in theory e can be arbitrarily small,
we get essentially (f - 1)D + Cd in the worst case.

7 Implications for Synchronous Processes with
Message Delivery Uncertainty

In the Introduction, we indicated that our results could be applied to the
model used in [HK89], in which process steps -are completely synchronous,
that is, cl = C2, SO C = 1, and in which 6, the actual message delivery bound
in a particular execution, can be much smaller than the worst-case message
delivery time d. In this subsection, we say more about these applications.

First, we consider the cost of implementing the timeout task in the C = 1
model. The timeout strategy of Section 3 yields a timeout bound T of at
most d + 6 + 3cl. However, since processes are synchronous, the timeout
bound can be improved slightly, using a different strategy. Process pj broad-
casts the message (alive,j,k) at its k-th step for all k. If process pi has not
received the message (alive,j, k) by its (k + Ld/cij + 1)-th step, then pi adds
pj to its set of halted processes. This strategy gives a timeout bound of
T = d+ 2cq.

We consider the simple upper and lower bounds for agreement. The
simple upper bound of approximately (f + 1)Cd of Section 4- specializes to
yield an upper bound of approximately (f+ 1)d, even for executions in which
6 < d. On the other hand, a simple lower bound, obtained by adapting the
(f + 1) round lower bound for the rounds model, is (f + 1)6. This leaves a
gap of a multiplicative factor of d/6.

The main algorithm of this paper helps to close this gap. Since we carried-
out the analysis of our main algorithm in terms of 6. and T, it is easy to
translate the result to the C = I model. Using the improved timeout bound
above, we conclude that the algorithm runs in time

(2f - 1)A + max{d,36} + 3cl,

or approximately (2f - 1)6 + max{d, 36} if cl < 6. Therefore, the number
of faults multiplies the actual message delay 6 rather than the worst-case
delay d.

We note that the methods of [DLS88] give a completely different agree-
ment algorithm in the C = 1 model with time complexity O(n6), provided

34

that n > 2f + 1. (The methods of [DLS88] do not work when n < 2f.)
We now consider lower bounds in the C = I model. The lower bound

techniques of this paper can be modified to give a lower bound of time
(2f - n)6 + d provided that f + 1 < n < 2f. More specifically, in the case
where n < 2f, a "partitioning" argument, similar to ones used in [BT85] and
[DLS88], easily gives a lower bound of d, even in certain executions in which
the actual message delay 8 is cl, so messages are being delivered essentially as
fast as possible. By combining the partitioning argument with the argument

used to prove the (f + 1) round lower bound (sne the discussion preceding
L.emma 6.1), a lower bound of (2f - n)6 + d can be shown if f +1 < n < 2f.
This bound can be compared to the upper bound of roughly (2f - 1)6 + d
described above. In the case n > 2f, the upper bound O(nb) shows that
the time need not depend on d at all.

8 Conclusions and Open Questions

Although there is a gap between our lower bound of (f - 1)d + Cd and
our upper bound of approximately 2fd + Cd, we feel we have substantially
answered the question of how the time requirement depends on the timing
uncertainty, as measured by C = C2/cl. In particular, we have shown that
only a single "long timeout" (i.e., a timeout requiring time Cd) is required,
and this long timeout cannot be avoided. Similarly, for the-case in which
C = 1, we have shown that the time depends on the worst-case message
delivery time d only once.

An obvious open problem is to close the gap between the lower and upper
bounds. Another question is whether these results can be extended to other
types of failures such as Byzantine or omission failures. Some results on this
last question have already been obtained by Ponzio [P90].

A more general direction for future research is to try to extend the tech-
niques described in this paper to permit simulation of arbitrary round-based
fault-tolerant algorithms in the model with timing uncertainty. The hope is
that such a simulation will not incur the multiplicative overhead of T of the
simple transformation described in Section 4.

Our algorithms assume that each message is delivered within at most
time d under all circumstances, in particular, even if the message delivery
system is overloaded with messages. A more reasonable assumption is that
all messages get delivered within at most time d, provided that the number
of messages in transit is bounded. The algorithms we present in this paper

35

send only a bounded number of messages, and so would work under such a
restriction. Our lower bound does not rely on this restriction, and carries
over a fortiori for the restricted case. Some preliminary quantitative results
relating the time complexity of a timeout task to the capacity of the channels
appear in [P90].

As mentioned earlier, the work presented in this paper is part of an
ongoing effort to obtain a precise understanding of the role played by time,
and timing uncertainty in particular, in distributed systems. The upper
bound presented in this paper is based on an approach that departs from
known algorithms for agreement in the synchronous model. We believe
that there are many other fundamental tasks in distributed systems whose
study might lead to the discovery of new approaches for coping with timing
uncertainties.

Acknowledgements:

We thank Stephen Ponzio for many helpful discussions and feedback on
preliminary versions of this paper, in particular, for first noting the simple
lower bound result. We are grateful also to Mark Tuttle for stimulating
discussions in the early stages of this research. Michael Merritt helped us
realize the relevance of our results to the model of [HK89].

References

[AL89] H. Attiya and N. A. Lynch, "Time Bounds for Real-Time Pro-
cess Control in the Presence of Timing Uncertainty," Proc. 10th
1EEE Real-Time Systems Symposium, 1989, pp. 268-284. Also:
Technical Memo MIT/LCS/TM-403, Laboratory for Computer
Science, MIT, July 1989. Also: To appear in Information and
Computation.

[AM90] H. Attiya and M. Mavronicolas, "Efficiency of Semi-Synchronous
versus Asynchronous Networks," to appear in the 28th annual
Allerton Conference on Communication, Control and Comput-
ing, 1990. Also: Technical Report .1-90, Department of Com-
puter Science, Harvard University, September 1990.

(BGP89] P. Berman, J. A. Garay and K. J. Perry, "Towards Optimal
Distributed Consensus," Proc. 300h IEEE Symp. on Foundations
of Computer Science, 1989, pp. 410-415.

36

[BT85] G. Bracha and S. Toueg, "Asynchronous Consensus and Broad-
casting Protocols," Journal ofthe. ACM, Vol. 32 (1985), pp. 824-
840.

[CASD86] F. Cristian, H. Aghili, tI.R. Strong and D. Dolev, "Atomic
Broadcast: From Simple Message Diffusion to Byzantine Agree-
ment," Proc. 15th Int. Conf. on Fault Tolerant Computing, 1985,
pp. 1-7. Also: IBM Research Report RJ5244, revised October
1989.

[C86] B. A. Coan, "A Communication-Efficient Canonical Form for
Fault-Tolerant Distributed Protocols," Proc. 5th ACM Symp. on
Principles of Distributed Computing, 1986, pp. 63-72. A revised
version of this paper appears as Chapter 2 of [C87].

[C87] B. A. Coan, "Achieving Consensus in Fault-Tolerant Distributed
Computer Systems: Protocols, Lower Bounds, and Simulation,"
PhD thesis, Massachusetts Institute of Technology, June 1987.

[CD86] B. A. Coan and C. Dwork, "Simultaneity is Harder than Agree-
ment," Proc. 5th IEEE Symp. on Reliability in Distributed Soft-
ware and Database Systems, 1986, pp. 141-150.

[CT90] B. Coan and G. Thomas, "Agreeing on a Leader in Real-Time,"
to appear in Proc. 11th IEEE Real-Time Systems Symposium,
1990.

[DLM82] R. DeMillo, N. A. Lynch and M. Merritt, "Cryptographic Proto-
cols," Proc. 14th Annual ACM Symp. on Theory of Computing,
May 1982, pp. 383-400.

[DDS87] D. Dolev, C. Dwork and L. Stockmeyer, "On the Minimal Syn-
chronism Needed for Distributed Consensus," Journal of the
ACM, Vol. 34, No. 1 (January 1987), pp. 77-97.

[D82] D. Dolev, M. J. Fischer, R. Fowler, N. A. Lynch and H. R.
Strong, "Efficient Byzantine Agreement Without Authentica-
tion," Information and Control, Vol. 52 (1982), pp. 257-274.

[DHS86] D. Dolev, J. Halpern and H. R. Strong, "On the Possibility and
Impossibility of Achieving Clock Synchronization," Journal of
Computer and Systems Sciences, Vol. 32, No. 2 (1986) pp. 230-
250.

37

[DRS82] D. Dolev, R. Reischuk, and H. R. Strong, "Eventual Is Earlier
Than Immediate," Proc. 23rd IEEE Symp. on Foundations of
Computer Science, 1982, pp. 196-203.

[DS83] D. Dolev and H. R. Strong, "Authenticated Algorithms for
Byzantine Agreement," SIAM Journal on Computing, Vol. 12,
No. 3 (November 1983), pp. 656-666.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer, "Consensus in the
Presence of Partial Synchrony," Journal of the ACM, Vol. 35
(1988), pp. 288-323.

[DM86] C. Dwork and Y. Moses, "Knowledge and Common Knowledge
in Byzantine Environments I: Crash Failures," Proc. 1st Conf. on
Theoretical Aspects of Reasoning About Knowledge, Morgan-
Kaufmann, Los Altos, CA, 198C., pp. 149-170; Information and
Computation, Vol. 88, No. 2 (October 1990), pp. 156-186.

[FL82] M. Fischer and N. Lynch, "A Lower Bound for the Time to As-
sure Interactive Consistency," Information Processing Letters,
Vol. 14, No. 4 (June 1982), pp. 183-186.

[FLPF9' M. Fischer, N. Lynch and M. Paterson, "Impossibility of Dis-
tributed Consensus with One Faulty Process," Journal of the
ACM, Vol. 32, No. 2 (1985), pp. 374-382.

[H84] V. Hadzilacos, Issues of Fault Tolerance in Concurrent Compu-
tations, Ph.D. Thesis, Harvard University, June 1984. Technical
Report TR-11-84, Department of Computer Science, Harvard
University.

[HMM85] J. Halpern, N. Megiddo and A. A. Munshi, "Optimal Precision
in the Presence of Uncertainty," Journal of Complexity, Vol. 1
(1985), pp. 170-196.

[HK89] A. Ierzberg and S. Kutten, "Efficient Detection of Message For-
warding Faults," Proc. 8th ACM Symp. on Principles of Dis-
tributed Computing, 1989, pp. 339-353.

[LF82] L. Lamport and M. J. Fischer, "Byzantine Generals and Trans-
action Commit Protocols," Tech. Report Op. 62, SRI interna-
tional, Menlo Park, CA, 1982.

38

[LM85] L. Lamport and P. Melliar-Smith, "Synchronizing Clocks in the
Presence of Faults," Journal of the A CM, Vol. 32, No. 1 (January
1985), pp. 52-78.

[LSP82] L. Lamport, R. Shostak and M. Pease, "The Byzantine Generals
Problem," ACM Transaction on Prog. Lang. and Sys., Vol. 4,
No. 3 (July 1982), pp. 382-401.

[LL84] J. Lundellus and N. Lynch, "An Upper and Lower Bound for
Clock Synchronization," Information and Control, Vol. 62, Nos.
2/3 (August/September 1984), pp. 190-204.

[M85] M. Merritt, "Notes on the Dolev-Strong Lower Bound for Byzan-
tine Agreement," unpublished manuscript, 1985.

[MMT88] M. Merritt, F. Modugno and M. Tuttle, "Time Constrained Au-
tomata," manuscript, November 1988.

[MT88] Y. Moses and M. R. Tuttle, "Programming Simultaneous Ac-
tions Using Common Knowledge," Algorithmica, Vol. 3 (1988),
pp. 121-169.

[MW88] Y. Moses and 0. Waarts, "Coordinated Traversal: (f+1)-Round
Byzantine Agreement in Polynomial Time," Proc. 29th IEEE
Symp. on Foundations of Computer Science, 1988, pp. 246-255.

[PSL80] M. Pease, R. Shostak and L. Lamport, "Reaching Agreement
in the Presence of Faults," Journal of the ACM, Vol. 27, No. 2
(1980), pp. 228-234.

[P90] S. Ponzio, "Real-time Analysis of Timing-based Distributed Al-
gorithms," MS thesis, in progress, MIT Electrical Engineering
and Computer Science, 1990.

[SDC90] H. R. Strong, D. Dolev and F. Cristian, "New Latency Bounds
for Atomic Broadcast," to appear in 11th IEEE Real-Time Sys-
tems Symposium.

[WL88] J. L. Welch and N. Lynch, "A New Fault-Tolerant Algorithm
for Clock Synchronization," Information and Computation, Vol.
77, No. 1 (April 1988), pp. 1-36.

39

OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 12 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

HEAD, CODE 38 1 copy
Research Department
* Javal Weapons Center
China Lake, CA 93555

4

