NRL Report 9283

Explicit State Vector Representation for Heteroassociative Memories

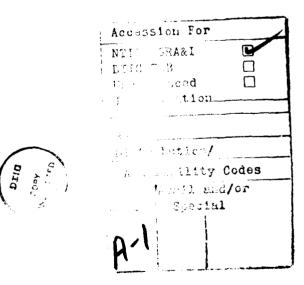
JEFFREY K. UHLMANN

Battle Management Technology Branch Information Technology Division

November 21, 1990

Approved for public release; distribution unlimited.

90 12 11 071


Table memory models and provided of a formation of the memory in the term of te	REPORT DOCUMENTATION PAGE			Form Approved OMB No 0704-0188		
1. AGENCY USE ONLY (LEQUE DATE: November 21, 1990 3. REPORT TYPE AND DATES COVERED November 21, 1990 4. TITLE AND SUBTICLE S. FUNDING NUMBERS Explicit State Vector Representation for Heterospeciative Memories S. FUNDING NUMBERS 5. AUTHOR(S) F 62702E Jeffrey K. Uhlmann Report Type AND DATES COVERED WU - DN150-127 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(S) 8. PERFORMING ORGANIZATION REPORT NUMBER Naval Research Laboratory 4555 Overlook Ave. NRI. Report 9283 Washington, DC 20375-5000 In SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency Naval Technology Program Office 1400 Wilspon Bid. NRI. Report 9283 11. SUPPLEMENTARY NOTES In SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) In SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 12. DISTRIBUTION / A VAILABULTY STATEMENT In SPONSORING/MONITORING OPERATION In SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 13. ABSTRACT (Maximum 200 words) A new vector representation is shawn to eliminate constraining symmetries through the introduction of a noncommutative correlation of sectors is also shown that this representation leads to are curver formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Affire transformations Higher order neural networks<	gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson					
Explicit State Vector Representation for Reteroassociative Memories PE - 62702E TA - 5625 WU - DN150-127 5. AUTOR(S) Jeffrey K, Uhlmann PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory 4555 Overlook Ave. Washington. DC 20375-5000 8. PERFORMING ORGANIZATION REPORT NUMBER NRL Report 9283 3. SPONSORING/MONTORING AGENCY NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency Naval Technology Program Office 1400 Wilson Bird. Artington, VA 22209-2308 10. SPONSORING/MONTORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION / AVAILABILITY STATEMENT 12. DISTRIBUTION / AVAILABILITY STATEMENT 12. DISTRIBUTION / AVAILABILITY STATEMENT 12. DISTRIBUTION / AVAILABILITY STATEMENT 12. DISTRIBUTION code 13. ABSTRACT (Maximum 200 words) A new vector representation is skawn to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a nonicear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 15. NUMBER OF PAGES 9 14. SUBJECT TERMS Associative memories Merzia prevoks Affine transformations Higher order neural networks 19. SECURITY CLASSIFICATION 9 20. UMINTATION OR ABSTRACC UNCLASSIFIED 20. UMINTATION OR ABSTRACC UL		k) 2. REPORT DATE		أسريه ويراجعها والمحارك فترك فالمتحا المحارك فالمتكاف والمحار والمحار والمحار		
for Heteroassociative Memories 12 - 07.02E for Heteroassociative Memories T - 5625 G. AUTHOR(S) WU - DN150-127 Jeffrey K. Uhlmann 9 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory 4555 Overlook Ave. NRL. Report 9283 Washington, DC 20375 5000 10 SPONSORING/MONITORING AGENCY MAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency Naval Technology Program Office 10 SPONSORING/MONITORING AGENCY MAME(S) AND ADDRESS(ES) Distribution IVA 22209-2308 10 SPONSORING/MONITORING Actington, VA 22209-2308 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION : AVAILABILITY STATEMENT Approved for public release: distribution unlimited. 12. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is examined as an alternative to the bipolar form often used in associative memory models. This represente theteroperator. It is also shown that this re	4. TITLE AND SUBTITLE			5. FUNDING NUMBERS		
B. KURION(S) Jeffrey K. Uhlmann 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory 4555 Overfook Ave. Washington. DC 20375-5000 NRL. Report 9283 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects. Agency Navi Technology. Program Office 1400 Wilson Blvd Artington. VA 22209-2308 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION / AVAILABILITY STATEMENT 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution unlimited. 12b. DISTRIBUTION code 13. ABSTRACT (Maximum 200 words) 11 is also shown to eliminate constraining symmetries through the introduction of a noncommutative correlation is examined as an alternative to the bipolar form often used in associative memory models. This representation is examined as an alternative to the bipolar form often used in associative memory models. 14. SUBJECT TERMS 4/fine transformations Associative memories Alfine transformations Higher order neural networks 15. NUMBER OF PAGES 14. SUBJECT TERMS 20. LIMITATION OF ABSTRACT 15. PRICE CODE 16. PRICE CODE 17. SECURITY CL	Explicit State Vector Repres			PE - 62702E TA - 5625		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Navai Research Laboratory 4555 Overlook Ave: NRL Report 9283 Washington. DC 20375-5000 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense: Advanced Research Projects Agency Navai Rechology Program Office 1400 Wilson Blvd. Artington, VA 22209-2308 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION / AVAILABILITY STATEMENT 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution unlimited. 12b. DISTRIBUTION / AVAILABILITY STATEMENT 12a. ABSTRACT (Maximum 200 words) 12 shown that this representation leads to a recursive formulation for a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a noncommutative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBLECT TERMS 15: NUMBER OF PAGES Associative memories Affine transformations Higher order neural networks 17: SECURITY CLASSIFICATION 16: SECURITY CLASSIFICATION 18: OVERT TERMS 06: UNIT PAGE 19: SECURITY CLASSIFICATION 16: SECURITY CLASSIFICATION 10: OF THIPS PAGE 10: UNITATION OF ABSTRACT	6. AUTHOR(S)			WU - DN150-127		
Naval Research Laboratory 4555 Overlook Ave. Washington. DC 20375-5000 REPORT NUMBER S. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency Naval Technology Program Office 1400 Wilson Blvd. Artington, VA 22209-2308 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION / AVAILABILITY STATEMENT 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A new vector representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Associative memories Auger order neural networks 15. NUMBER OF PAGES 9 15. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OUNCLASSIFIED 20. LIMITATION OF ABSTRACT UL	Jeffrey K. Uhlmann					
Naval Research Laboratory 4555 Overlook Ave. NRL. Report 9283 NRL Report 9283 NRL Report 9283 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER Defense Advanced Research Projects Agency Naval Technology Program Office 1400 Wilson Bivd. 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 12b. DISTRIBUTION / AVAILABILITY STATEMENT A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Associative memories Alfine transformations Higher order neural networks Higher order neural networks 15. NUMBER OF PAGES 9 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF REPORT 19. SECURITY CLASSIFICATION OF REPORT 20. LIMITATION OF ABSTRACT UNCLASSIFIED	7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)				
3.30 OVERIOG AVC. Washington. DC 20375-5000 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency Navail Technology Program Office 1400 Wilson Blvd. Artington. VA 22209-2308 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 12b. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a noncommutative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS 15. NUMBER OF PAGES Associative memories Affine transformations 9 15. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTRACT UNCLASSIFIED	Naval Research Laboratory					
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING Defense Advanced Research Projects Agency Naval Technology Program Office 1400 Wilson Blvd. Arlington, VA 22209-2308 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 12b. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 12b. DISTRIBUTION / ODE 13. ABSTRACT (Maximum 200 words) A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operation to prove block on the properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS 15. NUMBER OF PAGES Associative memories Affine transformations Neural networks Higher order neural networks 11. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 14. SUBLECT TERMS 20. LIMITATION OF ABSTRACT 0. MILLASSIFIED UNCLASSIFIED	4555 Overlook Ave.			NRL Report 9283		
Defense Advanced Research Projects Agency Naval Technology Program Office 1400 Wilson Bid. Arlington, VA 22209-2308 AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 12b. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE ABSTRACT (Maximum 200 words) A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Associative memories Associative memories Affine transformations Higher order neural networks 15. NUMBER OF PAGES 9 17. SECURITY CLASSIFICATION UNCLASSIFIED 18. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 19. SECURITY CLASSIFICATION UNCLASSIFIED 20. LIMITATION OF ABSTRACC	Washington, DC 20375-5000)				
Defense Advanced Research Projects Agency Naval Technology Program Office 1400 Wilson Bid. Arlington, VA 22209-2308 AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 12b. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE ABSTRACT (Maximum 200 words) A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Associative memories Associative memories Affine transformations Higher order neural networks 15. NUMBER OF PAGES 9 17. SECURITY CLASSIFICATION UNCLASSIFIED 18. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 19. SECURITY CLASSIFICATION UNCLASSIFIED 20. LIMITATION OF ABSTRACC	9. SPONSORING / MONITORING AG	ENCY NAME(S) AND ADDRESS(ES	;)	10. SPONSORING / MONITORING		
11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS 15. NUMBER OF PAGES Associative memories Affine transformations Neural networks 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED UNCLASSIFIED	Defense Advanced Research Naval Technology Program 1400 Wilson Blvd.	Projects Agency	,			
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation operator. It is also shown that this representation leads to a recursive formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS 15. NUMBER OF PAGES Associative memories Affine transformations Neural networks 15. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED UNCLASSIFIED	Armigion, VA 22209-2508					
Approved for public release: distribution unlimited. 13. ABSTRACT (Maximum 200 words) A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Affine transformations Associative memories Affine transformations Neural networks Higher order neural networks 17. SECURITY CLASSIFICATION OF ABSTRACT 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UL						
13. ABSTRACT (Maximum 200 words) A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Affine transformations Associative memories Affine transformations Neural networks Higher order neural networks 17. SECURITY CLASSIFICATION OF ABSTRACT 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED UNCLASSIFIED	12a. DISTRIBUTION / AVAILABILITY STATEMENT		1	126. DISTRIBUTION CODE		
A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Affine transformations Associative memories Affine transformations Neural networks Higher order neural networks 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED UNCLASSIFIED	Approved for public release:	distribution unlimited.				
A new vector representation is examined as an alternative to the bipolar form often used in associative memory models. This representation is shown to eliminate constraining symmetries through the introduction of a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation for a nonlinear associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Associative memory with provable convergence properties. Generalizations using higher order correlations are described. 14. SUBJECT TERMS Affine transformations Associative memories Affine transformations Neural networks Higher order neural networks 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED UNCLASSIFIED	13. ABSTRACT (Maximum 200 word	ls)				
Associative memories Neural networks Affine transformations Higher order neural networks 9 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTRACT UL	memory models. This repr a noncommutative correlation for a nonlinear associative	esentation is shown to elimination operator. It is also shown t	te constraining symmetric hat this representation le	es through the introduction of adds to a recursive formulation		
Associative memories Neural networks Affine transformations Higher order neural networks 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTRACT UL		<u></u>	<u></u>	1		
OF REPORT OF THIS PAGE OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UL						
	OF REPORT	OF THIS PAGE	OF ABSTRACT			
		UNCLASSIFIED	UNCLASSIFIED			

298 172

1

CONTENTS

INTRODUCTION	1
THE EXPLICIT STATE REPRESENTATION	2
HIGHER ORDER ASSOCIATIVE MEMORIES	4
SUMMARY	5
REFERENCES	5

EXPLICIT STATE VECTOR REPRESENTATION FOR HETEROASSOCIATIVE MEMORIES

INTRODUCTION

A critical issue in the analysis and development of associative memory (AM) models is the representation of information. Typically, information to be processed is presented in the form of a fixed-length vector of binary (two-state) variables. Clearly, the binary (0,1) representation is sufficient; for a variety of reasons, however, the bipolar (-1,+1) scheme is more commonly used. One reason in particular is that it avoids normalization considerations because every *n*-length bipolar vector has the same \sqrt{n} magnitude. This report examines an alternative vector representation that maintains the advantages of the bipolar form while leading to more powerful, nonlinear AM formulations.

Given a set of bipolar vector pairs $\{(\mathbf{u}_1, \mathbf{v}_1)...(\mathbf{u}_n, \mathbf{v}_n)\}$, a bidirectional associative memory M can be constructed as a sum of outer products:

$$M = \sum_{i=1}^{n} \mathbf{u}_{i}^{T} \mathbf{v}_{i}.$$
 (1)

This matrix is referred to as being bidirectionally associative [1] because for a learned pair $(\mathbf{u}_i, \mathbf{v}_i)$ it has the property that $\langle \mathbf{u}_i M \rangle = \mathbf{v}_i$ and $\langle \mathbf{v}_i M^T \rangle = \mathbf{u}_i$, where the $\langle \cdot \rangle$ function converts the elements of a vector to bipolar form (according to sign). In this single-pass model of an AM, associations are maintained as a matrix of first-order correlations between elements of the input vectors and elements of the output vectors. It is easy to establish that such a model can guarantee perfect recall only if the condition $\mathbf{u}_i \cdot \mathbf{u}_j = 0$, $i \neq j$, is satisfied because $\mathbf{u}_i M$ can be expressed as ([1] Eq. (17)):

$$\mathbf{u}_i M = \mathbf{u}_i \mathbf{u}_i^T \mathbf{v}_i + \sum_{j \neq i} \mathbf{u}_i \mathbf{u}_j^T \mathbf{v}_j.$$
(2)

This orthogonality constraint can be relaxed (at the possible expense of bidirectional recall) to simple linear independence by a more powerful recursive formulation using the Widrow-Hoff delta rule [2]:

$$M(i) = M(i-1) + \alpha \mathbf{u}_i^T (\mathbf{v}_i - \langle \mathbf{u}_i M(i-1) \rangle), \tag{3}$$

Manuscript approved July 9, 1990.

JEFFREY K. UHLMANN

where α is a weighting factor which determines the influence of the residual error in changing the state of the memory. The attractive features of this model are that it is provably convergent when α is sufficiently small and that it yields the LMS (least mean squares) solution when the input vectors are linearly dependent. Unfortunately, like all first-order bipolar correlation memories, this model possesses the constraining symmetry that if $\langle \mathbf{u}M \rangle = \mathbf{v}$, then for the complement of \mathbf{u} , $\bar{\mathbf{u}}$, $\langle \bar{\mathbf{u}}M \rangle = \bar{\mathbf{v}}$. In other words, first-order bipolar AMs are incapable of storing distinct associations for complementary vectors.

THE EXPLICIT STATE REPRESENTATION

Symmetry under complementation in bipolar AMs derives from the fact that elemental correlations are computed as simple products that are invariant under commutation. This symmetry can be viewed statistically as a tacit assumption that $P(b|a) = 1 - P(b|\tilde{a})$ for all elements a of a vector and all elements b of its associated vector. To relax this assumption, then, a noncommutative correlation operator is required that maps each of the four distinct elemental pair possibilities to a unique result. Fortuitously, the vector outer product operator can be employed for this purpose by simply representing (0, 1) states with the two-element orthonormal vectors ([0 1], [1 0]). Vectors whose states are represented in this fashion are referred to as being in *explicit state* (ES) form. For example, the vector $[0 \ 1 \ 0 \ 1]$ is represented in ES form as $[0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0]$. Although ES form is not as compact as bipolar, ES vectors can be processed exactly like bipolar vectors in the AM model described in Eq. (3) (except that the $\langle \cdot \rangle$ function uses relative magnitudes of state pairs when coercing vectors to strict ES form) in order to eliminate the complementation symmetry. Normalization issues are avoided since the ES form of every *n*-length binary vector has magnitude \sqrt{n} .

To contrast the bipolar a..d ES forms, consider the result of storing a mapping from training examples in which a complementary pair of vectors is associated with the same vector. In the bipolar model, this mapping of anticorrelated vectors to correlated ones results in complete destructive interference. Specifically, the sum of the two correlation matrices yields a zero matrix. In the ES model, however, no interference results. The one-to-many inverse mapping necessarily produces destructive interference for any model, but the difference between the bipolar and ES formulations is that in the bipolar model of Eq. (1), the noise equally affects the forward and inverse channels (i.e., M and M^T) while in the ES model, these channels are independent. The character of the channel independence in the ES representation is easily demonstrated given vectors **u** and **v** and observing that:

$$\mathbf{u}^{T}\mathbf{v} \otimes \mathbf{u}^{T}\bar{\mathbf{v}} = \mathbf{0},$$

$$\mathbf{u}^{T}\mathbf{v} \otimes \bar{\mathbf{u}}^{T}\mathbf{v} = \mathbf{0},$$

$$\mathbf{v}^{T}\mathbf{u} \otimes \bar{\mathbf{v}}^{T}\mathbf{u} = \mathbf{0},$$

$$\mathbf{v}^{T}\mathbf{u} \otimes \mathbf{v}^{T}\bar{\mathbf{u}} = \mathbf{0},$$

(4)

where \otimes is the Hadamard product $C = A \otimes B$ defined as $c_{ij} = a_{ij}b_{ij}$.

An examination of the complementation symmetry reveals that the bipolar model in Eq. (1) is only capable of learning invertible mappings. (In fact, effects from anticorrelated bit pairs introduced in the ES formulation make the bipolar form of Eq. (1) better suited for one-pass learning of invertible mappings. However, with a more sophisticated retrieval method, the ES version can surpass the bipolar performance even in this case.) The advantage of the ES representation to Eq.

NRL REPORT 9283

(3) can be demonstrated by taking any three of the possible four 2-bit binary vectors (even the zero vector) and noting that the ES conversion transforms the linearly dependent set to one that is linearly independent. For example, the linearly dependent set $\{[0 1], [1 0], [1 1]\}$ is transformed to the linearly independent set $\{[0 1 1 0], [1 0 0 1], [1 0 1 0]\}$. A deeper analysis yields the following theorem:

Theorem: The explicit-state form of Eq. (3) converges to the following nondistributive, hence nonlinear, affine transformation:

$$\mathbf{y} = \mathbf{x}T + \mathbf{b},\tag{5}$$

where T is a matrix and **b** is a constant vector.

Proof: Writing $\bar{\mathbf{u}}$ as $1 - \mathbf{u}$, and similarly for $\bar{\mathbf{v}}$, the ES forms of binary vectors \mathbf{u} and \mathbf{v} can be partitioned as $[\mathbf{u}|(1-\mathbf{u})]$ and $[\mathbf{v}|(1-\mathbf{v})]$, respectively, simply by separating the even and odd elements. The transformation then takes the form:

$$[\mathbf{u}|(\mathbf{1}-\mathbf{u})]M = [\mathbf{v}|(\mathbf{1}-\mathbf{v})].$$
(6)

Partitioning M as

$$M = \left| \begin{array}{cc} A & B \\ C & D \end{array} \right| \tag{7}$$

yields the following bipolar expression for \mathbf{v} :

$$\mathbf{v}_{(bipolar)} = \mathbf{u}A + (\mathbf{1} - \mathbf{u})C - \mathbf{u}B - (\mathbf{1} - \mathbf{u})D,\tag{8}$$

which simplifies to

$$\mathbf{v}_{(bipolar)} = \mathbf{u}(A - B - C + D) + \mathbf{1}(C - D).$$
(9)

Letting T = (A - B - C + D) and $\mathbf{b} = \mathbf{1}(C - D)$ completes the proof.

One important consequence of this result is that it assures that any mapping of a linearly independent set of input vectors can be learned even in the presence of constant additive noise. This is surprising because an additive noise vector always exists that transforms a linearly independent set of vectors to one that is linearly dependent. (A trivial case is the addition of a vector z to each vector in a linearly independent set S when $-z \in S$.) In other words, the ES representation somewhat relaxes the linear independence condition required for perfect learning in Eq. (3). This can also be accomplished in the bipolar model by appending a constant '1' to each vector. The advantage of the ES representation is that recall from an incomplete vector (i.e., containing [0 0] states) results in a transformation that subtracts the contributions of the missing vector positions from both T and b. In the bipolar model, however, the additive component of the affine transformation is unaffected by zero entries in the input vector. Thus, the ES representation generally should have superior recall performance from incomplete inputs than the bipolar representation.

In addition, the ES representation supports probabilistic measurements with confidence factors. Specifically, a state $[\alpha \beta]$ can represent knowledge that an event is true with probability α and is

JEFFREY K. UHLMANN

false with probability β where $\alpha + \beta < 1$. For example, if a measurement process with confidence q (i.e., is accurate to within some acceptable tolerance bounds with probability q) suggests that a given event is true with probability p, this information could be encoded as $[pq \ (1-p)q]$. Thus, the results of a measurement having zero confidence would be treated by the recall process as though no information about the event were available. This is not equivalent to encoding the state as $[0.5 \ 0.5]$.

HIGHER ORDER ASSOCIATIVE MEMORIES

The definition of an AM network given in Eq. (3) uses only first-order correlations in learning a heteroassociative mapping. It is well known, however, that many important mappings (e.g., XOR) require the use of higher order correlations. Fortunately, this can be achieved without altering the AM model simply by transforming the vectors so that the higher order autocorrelation information becomes explicit in the first-order. For example, a vector **u** can be transformed to a vector **x** so that the second-order information in **u** is first-order explicit in **x** as follows:

$$\mathbf{x} = [\mathbf{u}_1 \mathbf{u}_2 \mid \dots \mid \mathbf{u}_i \mathbf{u}_j \mid \dots] \quad i < j.$$
(10)

In this case the transformation is equivalent to collecting the upper triangular elements of the autocorrelation matrix $\mathbf{u}^T \mathbf{u}$ as a single vector \mathbf{x} . The generalization to kth-order is straightforward:

$$\mathbf{x} = [\mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_k \mid \dots \mid \mathbf{u}_{i_1} \mathbf{u}_{i_2} \dots \mathbf{u}_{i_k} \mid \dots] \quad i_1 < i_2 < \dots < i_k.$$
(11)

In the bipolar representation it should be apparent that the k-term products can provide only parity information, i.e., a given product will be negative if and only if an odd number of terms are negative, otherwise it will be positive. Thus, for correlations of order > 2, it is doubtful that the information added to the bipolar representation would be of significant practical value. The direct application of this *unfolding* process to ES vectors is similarly inadequate; however, this can be remedied by generalizing the ES representation.

The motivation for the ES representation was the elimination of symmetries; however, because symmetry operations always imply information loss (in the form of irreversibility), the principle behind the ES representation can be viewed as one of information maximization. Specifically, no first-order information is lost in the vector correlation process under the ES model. Thus, the generalized ES model should perform likewise for higher order correlations. This can be accomplished by representing kth-order states with a set of orthonormal 2^k -length vectors such that any ordered k-element subset of a vector maps to a unique correlation state (in direct analog to the first-order extension of binary to ES form). Because the mapping is reversible, no loss of information occurs. Unfortunately, the transformation of a vector of length n to kth-order ES form results in a vector of length $\binom{n}{k} 2^k$, where the first factor is the binomial coefficient giving the number of k-element subsets of an n-element set. Thus, the practical use of very-high-order correlations is severely limited. However, third- and fourth-order correlations for vectors having 25 to 50 elements are within the realm of feasibility for several currently available massively parallel computers and vectors having more than 500 to 1000 elements can be processed by using second-order correlations.

The computational complexity associated with the use of high-order correlation information can be often substantially reduced by eliminating redundancy in the raw vectors. For example, in many practical applications, training vectors are generated by measuring a large number of

NRL REPORT 9283

variables or parameters without regard to (or, possibly, without the ability to determine) their statistical independence or information content. Simply by transforming the raw data by using a Karhunen-Loeve Transform (KLT), or some similar transform that can be used to maximize information on limited channels [3,4], the effective lengths of the vectors may be dramatically reduced. Thus, the order of correlation that can be practically used may be increased.

SUMMARY

In summary, it has been shown that the commutative correlation operator used in most linear associative memory (AM) models enforces symmetries that preclude the learning of several classes of important mapping functions. It has also been shown, however, that these symmetries can be eliminated simply by using a different information representation scheme. The *explicit state* (ES) representation has been proposed as an alternative to the commonly used bipolar form and has been demonstrated to permit standard AM architectures to learn nonlinear mappings. In particular, it has been shown that the ES representation permits first-order AM models to learn nonlinear transformations of the form y = xT + b. This characterization is important because its properties are directly amenable to analysis by using the known properties of affine transformations. For example, it has been noted that this transformation renders the ES formulation immune to the effects of constant additive noise. It has also been shown that the ES representation can be easily generalized for the use of higher order correlation information.

REFERENCES

- 1. B. Kosko, "Bidirectional Associative Memories," IEEE Trans. on Systems, Man, and Cybernetics, 18:1, Jan./Feb., (1988).
- 2. D. E. Rummelhart, J. L. McClelland, and the PDP Research Group, Parallel Distributed Processing, Vol. I, MIT Press, Cambridge, MA (1986).
- 3. N. L. Owsley, "Adaptive Data Orthogonalization," IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, April 10-12, 109-112, Tulsa, OK (1978).
- 4. T. Sanger, "Optimal Unsupervised Learning in a Single-Layer Feedforward Network," Neural Networks, 2, 459-473, (1989).