
Naval Research Laboratory S
Washington, DC 20375-5000

NRL Report 9282

Co

M Enhancing Multidimensional Tree Struc ,ares by
N Using A Bi-Linear Decomposition

JEFFREY K. UHLMANN

Battle Management Technology Branch
Information Technology Division

November 19, 1990

DTIC
ELECTE

S-11EC111 Du3B

Approved for public release; distribution unlimited.

form Approved

REPORT DOCUMENTATION PAGE OM No io0 ve18

PubtiC reoo"ting burden for this ..ztlecton ot t.formation s 5trfmate o to average I hour per lesporse inludlng tre time for reviewing Instructions Seardhnq eting data source,
gathertie and rnainta-rig the Data ne-ded, and comoeting and repewinq the .ofleton of : formaton Send comments regarding this burden estimate or any other asoec of this
collectiOn Of hforrmatrOf. nc,Jng suggestOns to, reducing thi burden tO vashrngton ifeadduarters Serices. Orectorate for nformacion Operations and Reports 215 Jefferson
Davis Hqhwav. Suite 1204 Ar ,lrgton. VA 22202-302. and to the Offie if Management and 8udget PeperwOrk Reducli On Project (0704.0188). Wasnington uC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Enhancing Multidimensional Tree Structures by PE - 63223C
Using a Bi-Linear Decomposition PN - 55-2354-NO

6. AUTHOQ(S) WU - DNI55-097

Jeffrey K. Uhlmann

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory NRL Report 9282
Washington. DC 20375-5000

9. SPONSORING / MONITORING AGENCY NA ME(S) AND ADDRE ,S(E S) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Strategic Defense Initiative Organization
1717 K Street. NW
Washington. DC 20006

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A performance of k-d trees for identifying near-neighbors can be improved through the use of a bi-linear
decomposition. This gain in performance is obtained by enhancing the tree structure so that it can not only
store where things are, but also where they are not. This approach is particularly advantageous when the search
and query se's are correlated.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Bi-Linear decomposition Range searching 12
Multidimensional search Computational geometry 16. PRICE CODE
k-d trees Correlation

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

I t~,rc'(A 'SIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01.280-5500 Standard Form 298 (Rev 2 89)
Ptscril' r by ,AN i Std 1I39.

CONTENTS

INTRO D UCTIO N ... 1

THE HIERARCHICAL DIVISIBILITY PROBLEM I

THE BI-LINEAR DECOMPOSITION .. 3

EXTENSIONS TO THE VOLUMETRIC CASE 5

TEST R ESU LTS .. 5

T E ST I 6

T E S T 2 ... 6

T E ST 3 ... 7

SU M M A R Y .. 7

R EFER EN C ES ... 7

Accession For

NTIS GRA&I

DTII1 TAP 0
Un .r, ;u'd [

, . .v Codes
nzid/or

;iSt w'L)
II

ENHANCING MULTIDIMENSIONAL TREE STRUCTURES BY
USING A BI-LINEAR DECOMPOSITION

INTRODUCTION

The k-d tree data structure 1--- provides a relatively distribution-independent means for satisfying
orthogonal range queries on k-dimensional objects in average case time. This time is pr9 portional to the

theoretic optimum for any data structure whose storage requirements scale linearlyjt2--. Given this
optimality, much work in the area of distribution-independent near-neighbor algorithms has been directed
toward enhancing the k-d tree and its associated search techniques to reduce its search time proportionality
constant. This report suggests an enhancement that furthers this end. Important applications include data
correlation problems associated with multitar.&et tracking. In particular, techniques described in this report
have been incorporated into the TRC J3,4,4 and REAL [6-,7 tracking and correlation systems.

A k-d tree is a binary tree in which the set of k-dimensional points may be partitioned at each node
according to any of the k coordinates.j'he discriminating coordinate for each node can be selected to
prevent anisotropy in the distribution (81. This is accomplished by recursively partitioning the set according
to the median data point of the projection of the data onto the coordinate axis that has the greatest dispersion.
Thus, a node will contain (either implicitly or explicitly) identification of the discriminating coordinate ard
pointers to the set of points whose values for the discriminating coordinate are greater than that of the
median and to the set of points whose values are less than the median:The methods for searching the tree are
then completely analogous to those used to search ordinary single-dimension binary trees. For range
searching, the worst-case scaling for a single query is O(NW + m), where N is the size of the dataset, k is the
number of dimensions, and m is the number of neighbors returned. In many applications, however, the
average-case scaling approaches O(k log N + m). ,)

THE HIERARCHICAL DIVISIBILITY PROBLEM

The problem with the k-d tree is what has been called the hierarchical divisibility (HD) problem [91.
This problem results from the manner in which a tree structure recursively partitions a spatial region into
smaller subregions. Each node in a tree represents a hyperplane that divides the space and thus partitions the
dataset. However, if a near-neighbor query defines a neighborhood that is intersected by one of these
hyperplanes, then at least two paths beginning at the node associated with the plane must be examined to the
full depth of the tree to determine if any more points are in the neighborhood. Even if no plane intersects the
neighborhood, a complete path from the root to a terminal node must still be examined. In ;hort, :he HD
problem arises because a finite interval can be infinitely subdivided.

Manuscript approved August 8, 1990.

J. K. UHLMANN

As an example, consider a trivial one-dimensional case in which a query is made to find all the data
points on the interval 150, 601 in the set 149, 97, 7, 91, 13, 45, 85. 19, 61, 55, 73, 31, 67, 25, 37, 791.
Figure 1 shows its balanced tree (whose nonterminal nodes are computed from the average of the high and
low values of their subtrees).

52.0

28.0 75.0

16.0 40.0 64.0 87.0

10,0 22.0 34.0 46.0 58.0 70.0 82.0 94.0

7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Fig. I - Balanced tree

After examining the number 52.0 at the root, the search must examine the set of values that are less than
52.0 to determine whether its largest elements fall within the range. The set of values larger than 52.0 must
then also be examined to determine whether its smallest elements fall within the range. Because the extreme
values in a balanced tree are always associated with terminal nodes, the subtrees associated with these two

sets must be traversed from their roots to at least one terminal node (Fig. 2).

52.0

28.0 75.0/ /\
16.0 40.0 64.0 87.0

10.0 22.0 34.0 46.0 58.0 70.0 82.0 94.0A\/A/A A A/A/A/A
7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Fig. 2 - Search path through the k-d tree

This problem is exacerbated by a correlation between the query intervals and the search set because the
partitioning planes are also correlated with the search set. In other words, such a correlation increases the
likelihood at some level in the tree that each query interval will straddle a partitioning plane.

2

NRL REPORT 9282

THE BI-LINEAR DECOMPOSITION

The solution to the HD problem is to construct a bi-linear decomposition (BLD). A BLD differs from
an ordinary binary tree in that each of its nodes represents two partitioning hyperplanes rather than one.
This pair of planes delimits a k-dimensional volume that can be eliminated from the search space. The
partitioning planes are determined simply by identifying the two median data points in the coordinate
projection at the current level of the tree. The following pseudocode demonstrates the simplicity of the
construction process:

< This recursive function accepts as parameters a set S of
data points, the FIRST index into the array, the LAST
index into the array, and the coordinate D according to
which the set is to be partitioned. >

function BLD (S, FIRST, LAST, D):

< The following four lines associate a point with a
nonterminal node and then returns. >

if FIRST equals LAST then

NODE.POINT INDEX = FIRST;

return(NODE);

endif;

< The following line sorts the array of data points by
the Dth coordinate into ascending order. Actually,
only the middle two elements of the sorted array need
to be in their proper positions; hence, an 0(n)
routine [101 may be substituted for the 0(nlogn)
sort. This substitution is necessary to ensure that
the construction process requires only 0(nlogn) time. >

sort (S, FIRST, LAST, D);

< The following two lines associate two hyperplanes
(which delimit the empty space in the Dth dimension
between the data points in the two sets) with the
nonterminal node. >

NODE. LEFTHYPERPLANE = S[(FIRST + LAST)/2].DIMENSION[D];

NODE. RIGHTHYPERPLANE = S[((FIRST + LAST)/2) + 1].DIMENSION[DI;

< The following four lines determine the new discrimi-
nating coordinate and then invoke BLD on the two
sets and assigns the results to the node's left and
right pointers. >

3

J. K. UHLMANN

if D equals the number of dimensions then D = 1;
else D = D + 1;
NODE.LEFT = BLD(S, FIRST, (FIRST+LAST)/2, D);
NODE.RIGHT = BLD(S, NODE.LEFT+ 1, LAST, D);
return(NODE);

end.

Using this procedure on the data from the previous example, the tree shown in Fig 3 is produced.

[49,55]

[25,31] [73,79]

[13,191 [37,43] [61,67] [85,91]

[7,13] [19,25] [31,37] [43,49] [55,61] [67,73] [79,85] [91,97]

7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Fig. 3 - BLD form of one-dimensional, balanced tree

The philosophy of the BLD is that it is more efficient to determine the location of something by first
determining where it is not located; hence, nonterminal nodes are used to identify hyperplanes that delimit
empty space. Thus, to find points on the interval [50, 60), compare the value 50 with one hyperplane while
comparing the value 60 with the other. If 50 is less than or equal to the value representing the 'left'
hyperplane, then the search must include the set of nodes pointed to by the node's left pointer. Similarly, if
60 is greater than or equal to the value representing the 'right' hyperplane, then the search must include the
set of nodes pointed to by the node's right pointer (Fig. 4).

[49,55 %

[25,31] [73,79)

'13,19] [37,43] [61,67] [85,91]

[7,131 [19,251 [31,371 [43,49] 155,61] [67,73] [79,85] [91,97]
/\\ / \ A \ /\AA

7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Fig. 4 - Search path through the BLD tree

4

NRL REPORT 9282

In this example, therefore, only five nodes are visited (as opposed to the 10 nodes that must be visited
when using the traditional tree approach).

EXTENSIONS TO THE VOLUMETRIC CASE

An important related class of problems requires the efficient identification of intersecting volumes. For
practical reasons, it is often assumed that the volumes are approximated by isothetic rectangles, i.e., boxes
whose sides are parallel to the coordinate axes. However, since the projection of boxes onto an axis results
in a set of intervals, possibly overlapping, the notion of a projection median that can always divide a dataset
into two disjoint sets can no longer be applied. Thus, a multidimensional tree that is enhanced to handle
volume queries cannot be strictly binary.

The multidimensional ternary tree search structure is a ternary tree in which the set of d-dimensional
boxes is partitioned at each node according to one of the d coordinates. The resulting tree is ternary because
at each node the set is partitioned into a set of boxes that lie entirely to the left of the partitioning plane, a set
of boxes that lie entirely to the right of the partitioning plane, and a set of boxes that are intersected by the
partitioning plane. The method for searching the tree then simply involves the determination of which set
the search box would be assigned according to the partitioning plane at each node. For example, if the
search box lies entirely to the left of the partitioning plane, then the subtree of boxes that lie entirely to the
right of it can be ignored. Similarly, if the search box lies entirely to the right of the partitioning plane, then
the subtree of boxes that lie entirely to the left of it can be ignored. In the case where the partitioning plane
intersects the search box, all subtrees must be examined.

As in the k-d tree case, the levels at which the query range intersects the partitioning plane contribute
significantly to the overall cost of the search. This is because at least three paths beginning at the node
associated with the plane must be examined to the full depth of the tree. In direct analogy to the binary tree, a
BLD enhancement can be made to the ternary tree structure. In the ternary case, however, the pair of panes
delimits a d-dimensional volume for which only the middle subtree must be examined. The partitioning
planes can be identified by finding the median of the left endpoints of the projection intervals and
partitioning the dataset into three sets, as described above. The left and right partitions are then simply the
max and min values, respectively, of the left and right sets of intervals.

TEST RESULTS

The following test results (performed on a Sun-260) are provided to compare a leaf-oriented, balanced
k-d tree to a BLD-enhanced version. These results demonstrate the effect of variables such as dataset size,
neighborhood size, and number of dimensions on the relative performances of the two algorithms for
uniformly distributed point sets. Measurements are made of the setup time for the data structure, the search
time required for n queries (where n is the number of data points in the system), the average number of
neighbors found per query, and the average number of distance calculations required per query. In the
construction of both data structures, the discriminating coordinates are chosen in a nonpreferential, cyclical
fashion to avoid subtle selection-dependent effects on relative performance. Even for uniformly distributed
points, however, such a selection strategy significantly degrades performance as the number of dimensions
increases.

J. K. UHLMANN

TEST 1

In test 1, the algorithms are run on 8 K, 16 K, and 32 K datasets in three dimensions with
neighborhoods that have an average of five points. Table 1 shows that the BLD is appro';imately 15 % faster
than the k-d tree and that this increase is independent of the size of the dataset.

Table I - Test 1 Results

Test 1.1 Test 1.2 Test 1.3

BLD Tree BLD Tree BLD Tree

Number of objects (N) 8192 8192 16384 16384 32768 32768

Number of dimensions 3 3 3 3 3 3

Setup time (s) 2.0 2.0 4.3 4.3 9.4 9.4

Search time (N queries) 10.6 12.6 22.5 26.5 44.8 53.0

Avg. no. of neighbors 5 5 5 5 5 5

Avg. no. of nodes visited 51.9 56.3 54.7 59.0 57.0 61.4

Avg. no of dist. calcs. 20.4 26.4 20.7 26.7 19.7 26.0

TEST 2

In test 2, the algorithms are run on a 16 K dataset in three dimensions with neighborhoods that have
averages of 5, 10, and 20 points. Table 2 shows that the advantage in speed decreases slightly as the size of
the neighborhood increases. More extensive tests show that the BLD maintains an advantage for small
(relative to the size of the system) neighborhoods. Clearly, if the neighborhood includes every point in the
system, searching each structure (i.e., BLD and tree) requires visiting every node.

Table 2 - Test 2 Results

Test 2.1 Test 2.2 Test 2.3

BLD Tree BLD Tree BLD Tree

Number of objects (N) 16384 16384 16384 16384 16384 16384

Number of dimensions 3 3 3 3 3 3

Setup time (s) 4.3 4.3 4.3 4.3 4.3 4.3

Search time (N queries) 22.5 26.5 37.1 43.1 60.9 68.8

Avg. no. of neighbors 5 5 10 10 20 20

Avg. no. of nodes visited 54.7 59.0 80.5 86.4 121.7 129.7

Avg. no of dist. calcs. 20.7 26.7 37.0 45.5 65.5 77.6

6

NRL REPORT 9282

TEST 3

In test 3, the algorithms are run on a 16 K dataset in 2, 4, and 8 dimensions with neighborhoods that
have an average of five points. Table 3 shows the BLD to have an execution speed advantage of
approximately 15 % independent of the number of dimensions. (As mentioned earlier, a more sophisticated
strategy for selecting the discriminating coordinates when constructing the data structures can dramatically
improve performance as the number of dimensions increases. Intuitively, this is because the number of
points required to approximate a uniform distribution increases exponentially with the number of
dimensions.)

Table 3 - Test 3 Results

Test 3.1 Test 3.2 Test 3.3

BLD Tree BLD Tree BLD Tree

Number of objects (N) 16384 16384 16384 16384 16384 16384

Number of dimensions 2 2 4 4 8 8

Setup time (s) 4.3 4.3 4.3 4.3 4.4 4.4

Search time (N queries) 9.4 10.8 54.6 66.2 1677.2 1984.7

Avg. no. of neighbors 5 5 5 5 5 5

Avg. no. of nodes visited 28.7 30.8 111.2 120.5 1743.0 1856.3

Avg. no of dist. calcs. 8.9 11.6 48.7 62.2 1038.0 1271.6

SUMMARY

This report describes an enhancement to the standard multidimensional tree data structure that
modestly improves the execution speed for the satisfaction of orthogonal range queries. This enhancement,
called a bi-linear decomposition (BLD), is straightforward to implement and can be adapted for volumetric
intersection queries. Results of tests of the BLD approach reveal that a reduction in the number of nodes
visited and in the number of distance calculations required yield the speed improvements. Minimizing node
visitations is important in distributed processing environments where nodes are mapped to processors and
where the cost of interprocessor communication is significant.

REFERENCES

1. J.L. Bentley, "Multidimensional Binary Trees for Associative Searching," Commun. ACM 18(9),
509-517 (1975).

2. K. Mehlhorn, Multidimensional Searching and Computational Geometr,, (Springer-Verlag, Berlin,
1984).

3. Ball Systems Engineering Division, "SDI Midcourse Tracker/Correlator Near Neighbor Algorithm
Integration and Testing," BSED report to NRL, Jan. 25, 1990.

4. J. Uhlmann, M. Zuniga, and J.M. Picone, "Efficient Approaches for Report/Cluster Correlation in
Multitarget Tracking Systems," NRL Report 9281, 1990.

7

J. K. UHLMANN

5. M. Zuniga, J.M. Picone, and J. Uhlmann, "An Efficient Algorithm fo, i-proved Gating

Combinatoric. in Multiple-Target Tracking," submitted to IEEE Trans. Aerospace Electron.

Systems. April 1990.

6. J. Collins and J. Uhlmann. "REAL Approach to Tracking and Correlation for Large-Scale

Scenarieo.'" NRL Review, 1989-1990.

7. J.B. Collins and J.K. Uhlmann. "Efficient Data Association for Multivaiate Gaussian

Distributions," submitted to IEEE Trans. Aerospace Electron. Systems, Feb. 1990.

8. J.A. Friedman. J.L. Bentley, and R.A. Finkel, "An Algorithm for Finding Best Matches in

Logarithmic Expected Time," ACM Trans. Mathe. Software, 3(3), 209-226 (197"-'

9. J. Uhlmann, "A Remedy for the Hierarchical Divisibility Problem Using a Bi-Linear

Decomposition." Berkeley Research Technical Report BRA-89-WO40R (1988).

10. D. Knutm. Sorting and Searching, (Addison-Wesley, Reading, MA, 1973).

8

