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Models for Evolutionary Software Development

Lugi

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

ABSTRACT

This report explores the benefits to be deiived from elaborating and automating
models for evolutionary software development. The structure of the report is
summarized in Fig. 1.

1. Introduction

In recent years, the software engineering research community has been focusing
significant attention on the process of software development and enhancement as a com-
plement to the more traditional emphasis on the products of those processes. This
interest recently has led to several new approaches to modeling and analyzing software
processes [1-6] which provide ways of coping with some of the difficulties encountered
in previous models.

In view of the rapidly expanding number of competing approaches, it is important

to re-assess the key issues of software development processes, re-examine some funda-
mental assumptions, identify common characteristics of life-cycle models, and determine

* The Problem
* Objectives

* Key Issues

* Advantages
* Approach

* Example

Fig. 1 Outline




some principles guiding the steps of software processes.

Examples of models for evolutionary software development are provided in the
attached additional technical reports, as summarized below.

(1)  NPS 52-88-39 "Software Evolution Via Prototyping", describes rapid prototyping
models used in evolutionary software development.

(2) NPS 52-89-16 "Petri-Net Based Models of Software Engineering Process”
presents an extension of the classical Petri net model to formally define the func-
tional, structural, and dynamic aspects of software engineering processes.

(3) NPS 52-89-44 "Software Analysis and Testing Through Prototyping" focuses on
the validation and verification aspect of the software development process, and
indicates the role of prototyping methods in this context.

(4) NPS 52-89-56 "Multi-level Software Analysis and Testing in Evolutionary
Software Development” discusses research directions on aspects of software
analysis and testing in the software process, and identifies needed software
analysis processes at all levels of the development process, from requirements
analysis to software evolution.

1.1. Problems With Models

Some of the difficulties encountered in previous models are shown in Fig. 2. The
variety of incomparable models makes it difficult to compare and evaluate different
software development processes, and to combine different models which focus on dif-
ferent aspects of software development. Alternative paradigms for development make
comparisons difficult because concepts important in one model may not have any coun-
terparts in another model based on a completely different paradigm. Accurate comparis-
ons are impossible "vhen the basic concepts and notations defining a model have not been
clearly defined, and experimental evaluation becomes impossible when actual develop-
ment practices do not correspond to the models used to describe and analyze those

* the variety of incomparable models,
* alternative underlying software development paradigms,
* lack of precise meaning of concepts and notation used, and

* mismatch between models and practical development practices.

Fig. 2 Difficulties With Previous Models




processes.

Some of these issues are illustrated in Fig. 3, which shows a plausible but informal
description of the software development process. Some questions raised by this example
are shown in Fig. 4. An essential problem with previous models has been that they are
too informal. Early models were described by simple block diagrams without any under-
lying mathematical structure or precise definitions. Such models may be useful for orien-
tation purposes, but they do not provide enough structure to form the basis for computer-
aided software development.

Application Transformation | Design
Concept -
validation ’
Implementation Verification
Operational
System

Fig. 3 Example of an Imperfect Process Model

* What does the notation mean (box, arrow, text)?
* How are these elements composed?

* How can complete observation of such a model be guaranteed?

Fig. 4 Questions Raised by the Imperfect Process Model




Practical software development processes must cope with the difficulties shown in
Fig. 5.

Most software products are developed for a group of users with differing needs and
concerns. These concerns may conflict with each other, and are imprecisely known
because most of the potential users of the system do not interact directly with the
developer. In addition to being uncertain, the goals for a large system can be very com-
plex, to the point where a single person may not be able to understand them all in detail.
Currently software objects, processes, and tools are not completely understood, partially
because of unresolved technical and scientific questions, and partially because all three
are constantly being changed and extended. In the face of so much uncertain informa-
tion, feedback is essential for avoiding wasted effort and reducing risk. Such feedback is
needed early in the process to provide the opportunity to solve potential problems before

* uncertain, complex requirements
* a variety of user concerns

* incomplete knowledge about software objects, software
processes, and tools

* insufficient use of validated, prefabricated, & adaptable
software components

* risks of misdevelopment due to late or insufficient feedback
information

* individuality of application domains, organizations, methods
and tools implies need to adapt processes

* long lifetime of software requires enhancements due to
changing requirements and environmental conditions

* need to integrate development and maintenance processes
performed by different organizations

Fig. 5 Difficulties of Software Development




the allotted time for the project has run out. Software development processes must be
adaptable to different applications and methods because the conditions for different
development projects can vary widely. This implies that software development 1s not a
single process, but rather a family of related processes with a rich structure and many
conceptual dependencies. Finally, the long lifetime of software products and the large
fraction of the costs associated with software evolution is a major concern. Practical
software development must accommodate many modifications or enhancements to the
product as the process proceeds, and it must address the issue of handing the product
over to a maintenance organization once the initial development is complete.

2. The Problem

The need to model and analyze software engineering processes is more important
today than ever, because the advent of new methods and technologies aimed at various
aspects of these processes is forcing managers and developers to decide how to best util-
ize them. The variety of life-cycle and process models presents a problem. Different
approaches are hard to compare and judge for the reasons listed in Fig. 6.

Most of the life-cycle models do not have sufficient empirical data to prove their
effectiveness and show their impact on software quality. In the mass of competing
approaches much of the common sense and many of the basic principles of software
engineering processes hidden in technical details of specific process models need to be

* emphasize different aspects of software development
processes and thereby are likely to sacrifice others,

* use different concepts and notations, and
* support different software development paradigms such as

- automatic programming and formal program transfor-
mation,

- evolutionary development via rapid prototyping and
fourth generation languages, and

- ’knowledge-based software assistant’ approaches.

Fig. 6 Difficulties in Comparing Different Approaches




re-assessed. Theoretical foundations and analytical comparisons are needed in this area
because it is very expensive to develop a life cycle model, create the necessary tool sup-
port and carry out experiments to determine the relative effectiveness of competing
approaches in practice. The conceptual foundations of the field must be clarified to the
point where meaningful questions can be asked, and appropriate experiments can be
designed to provide useful answers to those questions with a relatively small number of
case studies.

3. Objectives

The objectives for future work on software process models should include the ones
listed in Fig. 7.

A meta-model is needed to provide a formal framework and precise notations for
formalizing and comparing alternative approaches. Such formalization is needed to sup-
port meaningful comparisons and automated tools for effectively realizing the process
models in practice. Prototyping is a promising new approach for supporting evolutionary
software development, which provides a useful and challenging test case for exercising
the meta-model. A meat-model should be capable of describing development methods
and supporting tools with sufficient detail to enable automated monitoring or control
functions which are capable of preventing or detecting errors and recording derivations
or justifications for design decisions based on the process model. The model should pro-
vide the basis for automating the aspects of development concemning coordination of
component activities and interactions between the different people or processes involved.
The process model should also aid in the analysis and description of the product, and pro-
vide guidance for the design and construction of automated engineering database support
for analyzing and describing the resulting software products.

4. Key Issues

Some of the key issues in the proposed approach are identifying and separating the
goals of the meta-model and the goals of the software development process models it will
define. The meta-model should provide the capabilities shown in Fig. 8.

A comprehensive and standardized vocabulary is needed to ailow meaningfui com-
parisons of different process models. In addition to standardized terminology, standard-
ized structures for describing the elements of software development processes are
needed. Such elements include engineering data, states of a development project, actions
transforming states and data, constraints on the order of the actions, and the mechanistns
for carrying out the actions or verifying that they have been correctly carried out.

Software process models will be defined using the facilities provided by the meta-
model. Software process models derived should have the properties listed in Fig. 9.

A process model can be subjected to useful scientific analysis and automated pro-
cedures for supporting the model can be objectively designed only if the process model
has a precise formal representation. A flexible representation scheme is needed, because
the process often has to be changed as it is carried out in response to new information and
new circumstances. Management considerations indicate that the model should provide
measurable properties of the process which can support estimation, planning, and quality
control activi‘ies in an objective and coinputer-aided way. The process models should be




* Defining a meta-model of software processes which
- supports alternative development paradigms,

- reflects common understanding and fundamental charac-
teristics of software processes,

- accommodates enhancements to an ongoing process,
- facilitates effective management of development processes,
- enables automation
* Designing a concrete process model supporting evolutionary
software development through prototyping.
* Describing suitable methods and support tools.
* Preventing/detecting errors.
* Recording derivation/justification

* Providing foundations for automating part of the process,
reducing coordination problems and increasing speed.

* Analyzing & documenting the product model with the assis-
tance of design/project/engineering databases.

Fig. 7 Objectives for Research




* A comprehensive vocabulary.

* A small set of structuring principles
to describe the elements and structure of

- data domains,
- development states,
- actions transforming software objects from one state into another

- mechanisms that help affect such transformations
on different levels of abstraction and from different perspectives.

Fig. 8 Properties of a Meta-Model
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A software process model should

* be formal and explicit to enable automated consistency and
completeness analysis, reasoning, and replay

* he executable to support symbolic testing and a priori
demonstration of designed development processes

* be changeable as they are executed, to respond to new infor-
mation

* be measurable for estimation, planning, quality control

* be parameterized to reflect dependencies on properties of the
application

* organize tools to guide coordination of development tasks
and define units of configuration control

* provide a coherent framework for communication, manage-
ment, and tool development

* provide reusable standard process components with alterna-
tives

Fig. 9 Properties of a Software Process Model

paramelterized to capture the dependencies of the process model on the properties of the
application domain, so that the necessary adaptation can be carried out in a disciplined
and predictable way. The process model provides the context for organizing tools and
coordinating development tasks in terms of meaningful transactions which can serve as
the basis for configuration control. By making the process predictable and providing a
systematic structure for representing alternative choices, formalized process models pro-
vide a basis for communication, project management, tool development, and the con-
struction of reusable libraries of standardized process components. This should provide
better control over the development process and should enable effective tailoring of the
process to current needs of particular projects.
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5. Advantages
The advantages of the jroposed approach are summarized in Fig. 10.

It is very difficult to make accurate cost and schedule estimates if the tasks to be
carried out are unknown. The process model provides a structure for predicting and iden-
tifying the tasks involved in particular projects, thus aiding estimation. A clear picture of

* Schedul~s and costs of development steps can be better calcu-
lated based on precise knowledge of actions involved.

* Resources can be better allocated based on knowledge about
causal dependencies among actions.

* Development history of individual components can be traced.
* Alternatives courses of development are made explicit.
* Process model execution can be automated.

* Alternative development steps can be evaluated prior to pro-
cess execution.

* Different process models can be compared and put into con-
trast.

* Fundamental characteristics of software processes are
reflected by the basic building blocks and structuring mechan-
isms of the meta-model.

* Families of process models are constructed via parameteriza-
tion and (de-)composition mechanisms.

* Process histories are formally deduced from process models.

Fig. 10 Advantages of the Proposed Approach
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causal dependencies between actions can make planning more systematic and can enable
automated procedures for aiding decision makers in evaluating their options. The
development history of a product can be presented in meaningful terms if it can be linked
to a coherent process model. The development history of a software product contains a
huge amount of information, which is useless unless it can be structured and simplified to
make it comprehensible and to enable people to find the particular pieces of information
about the past which will help them make meaningful decisions about what to do in the
next step. The formal structure can enable automated support for identifying and
evaluating the alternative choices a designer has at each point in the development. The
structure also allows evaluation of different process models, and can provide decision
support tools for determining which process model is most appropriate for a particular
project. The structures provided by generic process components with parameters, expli-
cit composition mechanisms, and standard sets of building blocks enable concise descrip-
tions of different alternatives, which make it easier to represent alternatives and to iden-
tify chuices. Similar structures induced on process histories can be used for re-evaluating
decisions when the product must be modified, by locating and organizing the relevant
design choices in terms of the structure of the development processes involved. These
structures can also be useful in diagnosing and locating errors.

6. Approach
Our approach to meeting these objectives consists of the tasks shown in Fig. 11.

* survey of life-cycle models and software development
methods used for evolutionary software development,

* design of a meta-model by exploiting experience from
software specification and design techniques,

* specification and restructuring of a selected prototyping ap-
proach to software development in terms of the meta-model,

* adaptation and integration of prototyping tools to support
the designed process, and

* evaluate analysis and reasoning capabilities.

Fig. 11 Summary of Tasks
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A survey of existing process models provides an initial version of the requirements
for a meta-model, by providing a set of test cases. The proposed meta-model should be
capable of representing all of the concerns addressed by current informal process models.
These concerns must be formalized and their essential features abstracted to provide a
clean and independent set of building blocks for the meta-model. The proposed meta-
model should be exercised, evaluated, and extended by applying it to the formalization
and improvement of a selected prototyping approach to evolutionary software develop-
ment. This will involve restructuring and integrating the prototyping tools to correspond
to the developed process model. The application will provide a basis for evaluating the
analysis and reasoning capabilities provided by the tools.

7. Example

A simplified example of a generalized meta-model is shown in Fig. 12. According
to this model, the software development process consumes resources and produces a
software product. Different versions of the model differ in the types of resources that are
considered and the detailed composition of the resulting products, as well as the steps
that are carried out to create the products.

7.1. Versions

The generalized model has multiple specializations, all of which fit the same gen-
eral framework. Each of the specializations represents an alternative approach to
software development. Reasons for using multiple alternatives are listed in Fig. 13.

7.2. Prototyping

The prototyping cycle is one possible variation of the meta-model. Prototyping is
an attractive approach for situations described in Fig. 14. We focus on this variation in
our case study because it covers an important class of applications.

7.3. Evaluation
Some of the important characteristics of prototyping are shown in Fig. 15.

Prototyping seeks to reduce costs and errors by providing inexpensive feedback ear-
lier in the development process. This is accomplished by separating concerns and reus-
ing software components at different levels of the process. Separation of concerns
enhances the capabilities for incremental analysis, development, and validation.

7.4. Functions of Prototyping
The roles of prototyping in software development are shown in Fig. 16.

It is difficult to communicate with users about a proposed new system because
software is abstract and difficult to visualize. Since most users are not specialists in com-
puter science, they cannot be expected to understand formal notations for describing sys-
tem behavior. Demonstrations of the behavior of a prototype provide a representation of
the proposed system’s behavior that users can readily understand and evaluate. Since a
prototype is constructed quickly and inexpensively, it can provide user feedback early in
the development process, when adjustments and modifications have a much lower cost
than near the end of the cycle. A prototype can provide a demonstration of the feasibility
of implementing key system concepts, and can provide the basis for evaluating the merits

14




Product

Resource

Product = { Version }

Version = requirements + spec + design
+ code + manuals + ...

Resource = budget + time + people
+ hardware + tools
+ software components + ...

Fig. 12 Representative/Meta/Generalized Software Development Model
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Different
* types of applications,
* tool sets, and

* development organizations.

Fig. 13 Reasons for Adapting Process Models

* unfamiliar applications,
* systems that change user organizations, and

* complex/hard real-time/embedded systems.

Fig. 14 Applicability of Prototyping




* reduced costs and errors,

* quick small feedback loops,
* separation of concerns,

* different levels of reuse, and

* incremental development.

Fig. 15 Characteristics of Prototyping

* communication with users,

* quick & inexpensive feedback,

* demonstration of feasibility,

* evaluation of alternative designs,

* aid in synthesis: decomposition, and

* platform for evolution: flexibility.

Fig. 16 Roles of Prototyping

of alternative designs for critical subsystems. A prototype can help in the construction of
the production-quality system by helping to arrive at a modular decomposition of the
problem. The prototype also provides a basis for evolution, because prototypes are typi-
cally described in simple, high level notations and provide a simplified view of the sys-
tem before optimization transformations have introduces additional details and logical

dependencies that reduce flexibility.
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7.5. Creating a CAPS

Prototyping is most effective if supported by a computer-aided prototyping system
(CAPS). Such a system is a mechanism for speeding up the process. Some of the impor-
tant characteristics of a CAPS are shown in Fig. 17.

A formal prototyping language is needed to serve as a basis for the automated tools
comprising the CAPS. Such a language should provide simplicity and expressive power
to make it easy to analyze and process prototype descriptions and allow a designer to
rapidly construct a prototype with minimal mental effort. Such a language is used as a
medium to formulate proposed system behaviors in a form that can be demonstrated and
measured by automated tools. The language is used to specify and document the
intended behavior of the system, both for guiding later development steps and as a basis

* a formal prototyping language,

* basis for automated tools,

* provides simplicity & exprescive power,

* formulate, demonstrate, measure,

* specify and document,

* link to reusable components,

* computer-aided transformation to implementation,

* execution Support: simulate, translate, schedule, monitor,
* user interface: graphics, syntax-directed edit, browser,

* database: configuration + reusable components, and

* optimization: refinement + transformation.

Fig. 17 Capabilities of a Prototyping System
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for automatically retrieving reusable software components that can help to realize the
prototype. The specification part of the prototyping language should also serve as the
basis for computer-aided transformations into production-quality implementations.

The tools for execution support should provide capabilities to simulate components
that are not yet available and to translate descriptions of system decompositions into rea-
sonably efficient implementations. While performance of a prototype is not an overrid-
ing issue, prototypes must run with sufficient speed to provide demonstrations of system
behaviors within practical time periods. Scheduling is needed to evaluate the feasibility
of meeting real-time constraints in a proposed system, relative to given estimates of
design characteristics for the system. Facilities for monitoring the execution of the proto-
type are critical for evaluation and debugging purposes. User interface considerations
are important for speeding up the process of constructing and modifying a prototype.
Graphical displays, syntax directed editing facilities which provide support for
computer-assisted design completion, and browsers for quickly locating relevant pieces
of information are some of the kinds of tools that can provide support for user interface
issues. Database support is also critical for effective rapid prototyping, because of the
large volumes of information involved. Some of the critical functions of the database
portion of a CAPS are configuration control and management of reusable components.
Tools for refinement and optimization are essential for helping to cope with performance
issues. Such issues arise when transforming a prototype design into a production-quality
implementation, and when the performance of the prototype must be improved to enable
effective demonstrations.

7.6. Levels of Analysis and Testing

A prototype serves as a vehicle for analyzing and testing proposed systems at the
earliest stages of requirements analysis and functional specification. Most approaches to
testing require the generation of system outputs or responses by some means. Three
approaches to providing this capability are summarized in Fig. 18, along with indications
of the advantages and disadvantages of each approach. Simulation involves some form
of direct execution of a component specification. The advantage of this approach is low
designer effort, because the specification is a simplified view of the component, which
leaves out many details. This approach has the disadvantage of inefficiency because the
details that are left out are needed for efficient execution. General methods for evaluat-
ing specifications, such as equation solving or logic programming, usually involve
inherently slow processes such as exhaustive, unbounded searching.

An interpreter for a module interconnection language provides better efficiency than
direct execution of specifications, and provides generally good flexibility and control
because the execution support system has access to detailed information about the execu-
tion of the prototype and its relationships to the formal prototype description. Some
disadvantages of this approach are that it requires some additional designer effort and
that the timing of the prototype execution does not reflect the timing characteristics of the
production version of the system very accurately. This second disadvantage is snaied
with the simulation approach.

The approach of translating the prototype description directly into Ada has the
advantages of providing relatively accurate timing estimates, better efficiency, and access
to many reusable software components. Disadvantages of this approach are difficulties in

19




Simulation: Executable spec
+ low designer effort

- inefficient

Interpreter: Module interconnection language
+ Flexible: dynamic binding & modification
+ Controllable: powerful debug, reverse execution

- Timing does not reflect production version

Ada: Augment and transform specifications
+ Efficient
+ Accurate timing
+ Reusable components
- Hard to construct

- Inflexible

Fig. 18 Evaluation of Approaches to Prototype Execution

modifying the properties of the prototype as it executes, and difficulties in constructing
the prototype, because of the extra details the designer must specify.

Since none of these approaches is clearly superior to the others, a CAPS should sup-
port all three possibilities, and allow them to be used together in the same prototype.

20




7.7. Verification and Validation

Verification and validation are essential parts of the prototyping process, as illus-
trated in Fig. 19. The aspect of a prototype design that is most important to verify is the
correctness of a proposed system decomposition.

Testing means simulating the design using a finite set of test cases to see if the pro-
posed structure operates as inteded. Testing is an effective means of detecting errors, but
it is usually not capable of certifying correctness of a design. In cases where reliability is
critical, mechanically checked proofs of correctness may be needed. Such proofs involve
showing that a given interconnection of specified components realize the specified
behavior of the subsystem for all possible inputs. Such proofs are simpler than tradi-
tional proofs of correctness because they operate entirely at the specification and design
level, without any consideration of coding details.

The other major function of prototyping is to validate proposed system behavior.
Demonstrations allow the user to inspect actual system behaviors and determine whether
they meet the real needs of the user, rather than some approximation to those needs cap-
tured by a written specification. To effectively carry out such validations, it is necessary
to identify a set of typical operational transactions or scenarios which illustrate actual
problems that are supposed to be solved by the proposed system. Such transactions act
as test cases to be used in the user demonstration. These test cases must be mapped into
the interactions supported by the prototype. In cases where this mapping cannot be car-
ried out, faults in the system are detected without the need for users to be involved in a
demonstration.

Verification
* testing, or

* proof at component spec level.

Validation
* user demonstrations, and

* typicai operational transactions.

Fig. 19 Verification and Validation via Prototyping
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7.8. Configuration Control

The need for speed in developing prototypes implies that more than one designer
will usually be involved in the process. The purpose of the configuration management
facilities of a CAPS is to help coordinate group activities as detailed in Fig. 20. It is
essential that modifications made by one designer do not get lost or invalidate work done
by other designers. Configuration control mechanisms meet these goals by enforcing
serializability of updates via some type of locking protocol. Configuration control sys-
tems are subject to additional goals of minimizing the amount of lost time due to waiting
for locks.

Another function of configuration control is to avoid wasting everyone’s time by
making a damaged version of a subsystem visible to the entire group. This goal can be
partially met by automatically running mechanical error checking procedures before
making a version public, and requiring repairs before allowing a version into the baseline
in case the mechanical checks fail.

Configuration control for prototypes provides software objects with frozen versions.
The motivation for this capability is shown in Fig. 21.

* Non-interference: locking, serializability, and

* Correctness: enforce error checking.

Fig. 20 Configuration Control in Prototyping

* stability,
* no read locks,
* creating new alternatives: no write locks, and

* computer-aided merging of alternatives.

Fig. 21 Advantages of Frozen Versions
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Since versions cannot change, a prototype constructed from a given set of versions
of its subsystems provides a stable and reproducible snapshot of a design alternative.
Such a snapshot can be recreated and evaluated as necessary, without concern for
interference by ongoing experimentation with alternative versions of the prototype.
Since versions cannot change, there is no need for locks preventing the reading of a ver-
sion, thus producing maximum access to all existing versions. If the configuration
management system supports creating new alternative lines of development, then there is
no need for write locks either, and all designers are free to create new versions without
the need to worry about interference. This is made possible by creating a new alternative
line of development whenever a lock would have blocked access in an ordinary database
system. Such a facility must be combined with automated support for recombining or
merging the features of alternative lines of development. This process must be reliable,
in the sense that all potential conflicts need to be detected by the merging process.

7.9. Derivations: Evolution and Variations

The database for supporting rapid prototyping should provide facilities for capturing
and utilizing derivation information for the decisions embodied in a prototype design.
Desirable properties of such derivations are shown in Fig. 22.

The logical structure of a design history indicates what decisions were made and the
logical dependencies between them. This information is different than the historical
order in which decisions were made, because independent decisions should not be
artificially ordered by historical accident. Also, logical dependencies between decisions
should not be hidden just because they were made out of order by mistake. The logical
structure of a design history should indicate the refinements in each line of development,
where each refinement corresponds to the information added by a compatible design
decision. Alternatives represent incompatible ways of resolving the same aspect of a
design, and represent choice points for the designer. Separating logical dependencies
from historical orderings and explicitly representing alternative choices enables computer
support for reordering decisions and factoring out common parts of different lines of
development. This allows the system to simplify and clarify the choices faces by the

* logical structure, not actual history,
* refinements and alternatives, and

* computer-aided reordering and factoring.

Fig. 22 Properties of Derivation Histories
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designer, and makes it easier to navigate through the design space when seeking to
modify an evolving system.

7.10. Versions of Composite Objects

Prototypes of practical software systems are too large to be built as monolithic
structures, and hence are usually realized by some type of hierarchical decomposition.
This introduces the problem of managing the versions of composite objects, which is
described in Fig. 23.

A change to the specification of a composite subsystem introduces a natural unit of
atomic transaction: the change should be made either completely or not at all. This
induces some dependencies between the versions of the components of the modified sub-
system. A configuration control system should support such atomic transactions by keep-
ing track of which versions of the components at the next lower level correspond to each
version of the composite subsystem. This facility is important for exploring design alter-
natives quickly, because it allows the designer to switch between alternative versions of a
high level subsystem without concern for the dependencies between the subcomponents:
these are managed automatically by the configuration control system.

8. Conclusion

More than 25 theses at NPS show the feasibility of different aspects of computer
aided prototyping. Improved solutions for many problems are desirable. Many of these
solutions involve interactions between different aspects of the software development pro-
cess. We have found the need for better formulations of the structure of the development
process to provide more effective tools support and to guide the further development of
computer-aided prototyping systems.
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ABSTRACT

This paper presents a view of research directions in multi-level software analysis and testing. -
Software analysis is needed at different levels of the development process. Appropriate research
goals are identified for exploring software analysis at each of these levels in order to produce good
quality software at reduced cost.

1. Introduction

The goals of software analysis and testing are to measure essential software proper-
ties and to enable development of software systems with specified ranges for those pro-
perties. Reliability of software products is gaining increasing importance, particularly
for systems whose malfunction may result in loss of human life, compromise of national
security, or massive loss of property. Software properties related to reliability include
constraints on functional behavior, timing, and storage space. Software maintenance is
also a major concemn because it typically accounts for more than half the cost of a
software system. Software properties related to maintenance include the subset of a
software system affected by a proposed change, the effects of a software modification on
a given reliability property, and invariant relationships among members of a family of
software systemns.

Classical approaches to reliability are based on the assumption of an imperfect
software development process, and hence focus on detecting errors and measuring relia-
bility properties of software products. More recently proposed approaches explore spe-
cial types of computer-aided software development processes which can guarantee the
resulting software products are free of particular classes of errors via properties of the
formalized development process. Research on software analysis and testing should
address processes for achieving desired properties of software products as well as
methods for measuring those properties.

2. Levels of Software Analysis and Testing

Different types of software analysis and testing are appropriate at different stages of
software development, as summarized in Fig. 1.
2.1. Requirements Level

The requirements level established the goals for a proposed system and fonmulates
models of the problem and the expected environment of the proposed system.
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Level Type of Analysis and Testing

Requirements consistency: truth maintenance
model validation: simulation and proof
subgoal verification: prototyping and proof

Specification adequacy: prototyping, operational scenarios
consistency: type and domain checking
safety: proofs
validation: paraphrasing, views, simplification

Design verification: proof of decomposition
liveness: deadlock and starvation checking
robustness: impact of degraded hardware
design for testing: control and observation
performance: complexity analysis
feasibility: satisfiability proofs

Coding synthesis: meaning-preserving transformations
perfonnance: time and space analysis
liveness: proof of (clean) termination
real-time: analysis of scheduling methods
generic units: analysis of component families
error detection: complete test sets
error location: weakest preconditions

Evolution change impact: symbolic differences
restructuring: meaning-preserving transformations

Fig. 1 Types of Software Analysis and Testing

An important aspect of requirements analysis is achieving and maintaining con-
sistency as the analysts discover and record the requirements. A promising approach to
this problem is providing automated support for calculating and maintaining derived pro-
perties and consequences of the requirements, and for tracing dependencies to determine
the causes of conflicts and inconsistencies. Better algorithms for this process and primi-
tives suitable for expressing and effectively maintaining dependencies in software
requirements should be investigated.

Another aspect of requirements analysis is modeling the environunent of a proposed
system. Especially for embedded software systems, an accurate formal characterization
of the system to be controlled is essential for assessing the effectiveness of the control
software. The environment of such a system must often be simulated or otherwise
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formally analyzed to enable safe and meaningful testing or analysis of the embedded
software system. Systematic methods for validating and testing the formal models of the
environment against the properties of the actual physical systems they represent are
needed. Both analytical and experimental methods should be explored to establish that
the formal environment models used in other software analysis and testing activities are
adequate representations of reality.

Many critical software systems are embedded systems, which means that the
software is part of a larger system. Thus an essential part of checking the adequacy of
the requirements for the software is checking that any system meeting the requirements
will be sufficient to meet the requirements for the larger system in its intended opera-
tional context. Hard real-time constraints in an embedded system are often motivated by
the requirement to control the larger system to ensure it remains within a given range of
operating states. For example, the cycle rate of an auto-pilot must be sufficiently high to
ensure that the airplane remains within a given radius of its planned position at all times.
At the current time, lower level requirements are usually formulated based on past
experience and informal guidelines rather than on systematic derivations or verification
procedures with respect to the higher level requirements. Both formal and experimental
methods for systematically establishing such properties are needed. Required supporting
technology for this process includes computer-aided construction of prototypes.

2.2. Specification Level

The specification level is concemed with defining the interface of a proposed sys-
tem, both at the functional and the command representation levels.

The primary measure of the adequacy of a specified interface is whether it will meet
the needs of the user. This question is best addressed by experimental rather than analyt-
ical techniques because it addresses the problem of checking the correspondence between
a formalized specification and the actual and informal needs of the users. One way of
approaching this problem is via prototyping and operational scenarios. Operational
scenarios are common tasks in the customer’s problem domain, expressed in the user’s
terms. Such scenarios serve as test cases for the specifications, whose purpose is to
determine whether a proposed interface is adequate for carrying out all of the tasks the
users will have to perform. Such a test passes if the facilities provided by the proposed
system interface can be combined to carry out the tasks in the operational scenario, and
provide a systematic means for exercising a prototype in a demonstration to the users.
Systematic methods for deriving sets of scenarios from a requirements document, cover-
age criteria, and experimental evaluation of the effects of such coverage criteria on
change requests to the affected interfaces curing systein maintenance should be investi-
gated.

A related concem is validating a formal specification, to ensure that it correctly cap-
tures the intentions of the users. While this is an informal process, it can be aided by for-
malized and automatable procedures. Some of the processes involved are paraphrasing,
projection, and simplification. Paraphrasing is the process of transforming a formal
specification into a form that a user can understand, while preserving its meaning. Pro-
jection is the process of extracting the parts of a specification relevant to a particular user
or task, while hiding other details. Simplification is the process of transforming a formal
specification into a simpler form with an equivalent meaning. These three processes can
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be combined to help users selectively review formal specifications using representations
they can understand. The research questions in this area concem certifying the transfor-
mations to ensure they preserve the meaning of the specification and experimentally
evaluating the effectiveness of different representations for communicating with
untrained users.

Consistency of a specification is another common concem, especially for large and
complex systems. Since consistency is a property of a formal document, it can be
addressed by analytical techniques. Some aspects of consistency checking that need
further development are type and domain consistency checking. Type checking at the
specification level is more difficult than the corresponding problem at the code level
because types can have subtypes defined by semantic considerations. Domain checking
is the process of ensuring that partial functions or predicates are used only within their
domain of definition, and that partially defined generic units are instantiated only with
actual parameters in their respective domains of definition. Logical inference capabilities
are necessary for both of these kinds of specification analysis.

Another concern with fonmal specifications is checking safety properties. For
example, past research proiects have been concerned with whether a proposed operating
systems kemel satisfied certain security properties, such as the impossibility of transmit-
ting classified information from a process with a high security classification to an unau-
thorized process. The goals of safety analysis procedures are to identify cases where the
specifications allow behaviors violating the safety properties, or to certify that no such
cases exist. Systematic procedures for this process are needed because the connection
between a formal specification and a safety property can be quite indirect and can require
extensive reasoning and analysis to establish.

2.3. Design Level

The design level is concemned with the decomposition of a problem into a hierarchi-
cal structure of independent modules. Such a decomposition consists of interconnection
information and formal specifications for the components.

The primary reliability property of a decomposition structure is whether it will
correctly realize the specification at the next higher level. This problem is subject to
mathematical proof techniques. The problem is easier to solve than the general proof of
correctness problem at the code level because the module interconnection language is
can be considerably simpler than a programming language. Most of the analysis can be
carried out at the specification level, since the problem is to check whether a given com-
bination of specified components will satisfy the required properties of the composite.
Research questions in this area involve the best choice of interconnection primitives to
support effective and efficient inference procedures.

Another type of property of interest for parallel and distributed systems is liveness.
Techniques for checking for potential deadlock or starvation conditions in such a design
are desired. Such techniques can be based on the combination of fast graph algorithms
with satisfiability checking for paths leading to potential problems. The main research
questions are finding efficient special purpose analysis techniques that can address
semantic issues which are neglected by classical Petri net techniques or involve infinite
graphs if encoded as standard Petri nets.
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An important class of analysis involves the effects of degraded hardware on the pro-
perties of a design, relative to a mapping of software components to hardware com-
ponents. This kind of analysis is essential for achieving reliable fault tolerant systems,
especially those with distributed implementations. In addition to certifying that proposed
configurations realize given degrees of fault tolerance, automatic derivation of the
implied constraints on allocation of software functions to hardware units is desirable.

Automated assessment or augmentation of a design for supporting testing is another
issue at the design level. Facilities for control and observation of closed modules such as
abstract data types and machines are needed to support testing. Guidelines for what attri-
butes of a system need to be controlled or monitored for effective testing must be
developed, along with automated techniques for generating the code that realizes the con-
trol and monitoring functions to be added during testing. Such an investigation should be
coupled with an analysis of the impact of the additional code on time and space require-
ments, and techniques for automatically compensating for their effects in checking tim-
ing and space constraints.

Evaluation of a design for time and space perforance is another kind of software
analysis that has potential importance. Automated support for classical complexity
analysis is needed, along with estimates for the ranges of input sizes and constant factors
determined by classes of algorithms.

A final consideration is satisfiability. The satisfiability of a specification can be
established if an implementation can be produced and certified to be comrect. However, it
would be useful to determine whether it is possible to satisfy a given specification before
the implementation is attempted, and in cases where it is not, to characterize the set of
inputs for which the specification is impossible to meet. Analytical techniques for con-
structing weakest infeasible preconditions characterizing this set of inputs should be
explored.

2.4. Code Level

The best way to achieve quality is to systematically prevent errors. Automatable
methods for synthesis of efficient code from formal specifications via meaning-
preserving transformations should be investigated. Of particular interest are systems that
can choose transfonmations without explicit human guidance, or with guidance from gen-
eral declarative advice that can be formulated without explicit reference to the details of
the current state of the derivation and does not require explicit human interaction during
the derivation process.

Accurate perforiance analysis requires detailed code and knowledge about proper-
ties of a particular compiler and target machine. Generic table driven methods for per-
fornming such analysis, and for relating design-level properties of abstract algorithms to
detailed properties of actual machine-level implementations and compiler optimizations
is needed to accurately certify correctness of programs with hard real-time and real-space
constraints. Research problems in this area include formal modeling of implementation-
specific properties and constraints in ways that can be combined with implementation-
independent analyses of abstract programs.

Another problem is certification of clean termination. This problem gains new
dimensions in parallel and distributed systems, where termination can be influenced by
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scheduling properties and hardware failures. Research questions include models and
techniques for analyzing programs in these domains.

Analysis of real-time systems includes analysis of scheduling methods to determine
whether a proposed scheduling discipline will meet specified deadlines under all possible
operating conditions. Research questions in this area have flexible scheduling methods,
the effects of shared resources, overload resolution policies, and remote comnmunications
as major concems.

The problem of certifying generic code units or families of related programns gen-
erated by meta-programming schemes is a major concem in systems for managing reus-
able software. A software component is most effectively re-used if it is flexible and can
be adapted to many needs. Such a component often corresponds to a family of related
program units with an unbounded number of elements. The problems of testing and
analyzing the reliability of such program families is an important research question.

Classical testing approaches need more foundational work on the construction of
complete test sets. A complete test set is a set of test cases which is guaranteed to detect
any error in a particular well-defired class of errors. More work is needed on the con-
~ struction of finite complete test sets, an on characterizing the set of faults whose absence
is guaranteed by successful execution of the test set. Such work should include
automated techniques for constructing the required test oracles from the formal
specifications of the code to be tested.

An aspect of code analysis of great practical importance is error location. One
- approach to this problem is to derive weakest preconditions for suspected pieces of code,
to characterize the space of inputs for which the code fails.

2.5. Evolution Aspects

Software maintenance is acknowledged to be more difficult and error prone than the
initial development. An important kind of software analysis for this part of software
development is characterization of the effects of a change to a software system. Sym-
bolic representations for the parts of the input space and the output space of a program
affected by a given change to the code are useful for testing and evaluating a
modification for conformance with the expected results. Computer-aided identification
of the parts of a specification affected by a given requirements change, the parts of a
design affected by a given specification change, and the parts of the code affected by a
given design change are also important areas for research.

When changing a software system, it is often necessary to reverse an earlier design
decision while preserving the later ones. Automated construction and application of
meaning-preserving transformations that accomplish this is an important research prob-
lem.

3. Conclusion

Advances in software analysis and testing are essential for realizing trusted software
systems. Work in this area should be expanded beyond the traditional domain of testing
code in a programming language to include software products at all stages of develop-
ment, from requirements analysis to system evolution. Further work on testing at the
code level is also needed, to enable firm conclusions to be drawn fromn finite sets of test
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cases constructed by definite and effective methods. Software analysis techniques
addressing properties of parallel, distributed, real-time, and knowledge-based systems
should be explored as well as those for sequential systems. Well founded and mechaniz-
able analysis techniques are needed for meta-programming and program transformation
systems as well as for individual software products.
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ABSTRACT

Rapid prototyping is widely accepted as an alternative methodology for software
development. The problems of software maintenance are magnified in rapid pro-
totyping because prototypes are subject to frequent and repeated changes. The
concepts and mechanisms presented in this paper support such changes in rapid
prototyping based on component specifications. We discuss the following impor-
tant issues for software evolution via prototyping: (1) explicit interactions
between prototype components for easily determining the impact of a proposed
change, (2) requirements tracing facilities for identifying the parts of a prototype
affected by a proposed requirements change, (3) structured system construction
by maximizing reusability of software components, and (4) the use of
specifications in retrieving, composing, and adapting reusable components in
minimizing effort for code analysis and modification in software maintenance.
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1. Introduction

Software evolution is a most important issue in software development because
changes to existing systems account for more than half of the total software cost. Evolu-
tion corresponds to the maintenance phase in traditional software life cycle, and consists
of the process of firming up the requirements and adapting the software system to main-
tain the correspondence between the two. It is difficult to eliminate this expensive pro-
cess because later phases of development often bring more knowledge and more insight
into the problem domain and the properties of the intended system to the designers and
customers, but the need for some types of changes can be reduced [12]. Software sys-

tems are changed for the following reasons:

Requirements errors
The developers have incorrectly understood the requirements and have produced a

system that does not meet user needs.

Implementation errors

A faulty design or implementation does not correspond to the specification.

Phased delivery
A partial implementation has been delivered because the customer cannot wait until

a complete implementation is available.

User education
Customer requirements have changed because experience with the current version
of the system has changed their perception of how computers can be used to solve

their problems.

40




New situations
Changes in the environment of the system have introduced new requirements.
Examples of such changes are new external systems, new policies, new technolo-

gies, and new competitive pressures.

Prototyping can help reduce the need for unplanned changes by stabilizing the
requirements before a significant amount of effort has been invested in implementation.
A key problem in large scale software development is the need for communication
between people with different areas of expertise. Typically customers know much more
about the problem domain than they do about programming, while the programmers
know much more about programming than they do about the customer’s problems. Both
the problem domain and the programming domain have many specialized concepts and
terms, many of which are unfamiliar to people who are not experts on the domain. The
requirements for the proposed software system are influenced by constraints from both
the problem domain and the programming domain that cannot be completely understood
without knowledge of specialized concepts from both domains. Requirements are
difficult to construct and validate because usually there is no single person who under-
stands all of the constraints on the proposed system. This is especially evident in large
systems with hard real-time constraints, since the requirements for such systems are gen-

erally very difficult to understand or describe.

A prototype is a concrete executable model of selected aspects of the proposed sys-
tem. Prototypes are valuable aids in requirements analysis because they can be used to
demonstrate the behavior of the proposed system in a form that can be readily understood

by all concerned parties. Prototypes can help customers visualize and test consequences

41




of their requirements and provide an effective basis for communication between the cus-
tomers and the requirements analysts. The process of constructing a prototype also helps
the analysts to determine what questions they need to ask to construct a coriceptual model
of the problem domain that is sufficiently complete to be used in designing the proposed

system.

Prototyping can help reduce maintenance costs primarily by reducing requirements
errors, so that fewer changes to the software are needed. This applies both to the original
formulation of the system and for evolutionary changes sparked by user education or new
situations. Phased delivery has traditional been the main mechanism for inducing
requirements changes due to user education. Extensive exercising of a prototype by a
group of users can trigger some of the requirements changes due to this effect before the
production version of the system has been produced. This can alleviate wasted design
effort, which is one of the main problems with phased delivery. Phased delivery is usu-
ally accomplished by developing a design for the whole system, and then choosing a sub-
set for implementation and delivery in the first release. If the requirements changes due
to user education are severe, the design for the rest of the system can be invalidated

before it is ever implemented.

Prototvping can also help reduce implementation errors. The prototype can allow
more extensive testing of a system by providing a means for evaluating test results. The
output of the production code can be mechanically compared to the corresponding output
of the prototype, thus allowing more test cases to be examined without increasing the
amount of human effort involved. The prototype can also be used by implementors to

resolve questions about the intended behavior of the sysiem in particular cases. This can
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reduce the incidence of errors caused by programmers making plausible but unfounded
assumptions about unspecified cases. Such assumptions are often needed in traditional
software development because specifications a.e incomplete and schedule pressures do
not allow queries to the customer about every minor detail of system behavior. Imple-
mentation errors can also be reduced by systematic development techniques supported by

formal methods and automated tools [1].

For large systems, every adjustment to the requirements has to be recorded and
incorporated into the system specifications, as well as the architecture and the implemen-
tation. A systematic way to reduce the extraordinary effort required for software mainte-
nance is to manage the changes in the system needed to reflect adjustments to the
requirements at the specification level rather than the implementation level. We can
view these two aspects of software maintenance in a unified way if we can mechanically
transform specifications into code. While mechanical transformations from black-box
specifications into production quality code is not practical at the current time, computer-

aided generation of prototype implementations is both feasible and useful [3].

1.1. The Prototyping Life Cycle

The traditional software life cycle consists of a series of phases which yield runn-
able software only late in the process. One view of the traditional life cycle is illustrated
in Fig. 1. A major problem with the traditional approach is that there is no guarantee the
resulting product will reliably solve the customer’s problem. Often users will be able to
indicate the true requirements only by observing the operation of the system, and the
traditional life cycle yields executable programs late in the process, when too much

money has already been spent and there is no time left to recover from requirements
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When this traditional life cycle approach is applied to hard real-time or embedded
systems, the potential for inconsistencies increases. One of the major differences

between a real-time system and a conventional computer system is the required precision
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and accuracy of the application software. The response time of each individual operation
may be a significant aspect of the associated requirements, especially for operations
whose purpose is to maintain the state of some external system within a specified region,
as is common in embedded software systems. In hard real-time systems response times
are a critical determining factor in the accuracy of the software. These response times, or
deadlines, must be met or the system will fail to function correctly, with potentially
catastrophic consequences. For example, as part of a larger computer system, the
requirements for an embedded system can incorporate stringent real-time constraints,
parallel processing on multiple computers, and a high degree of reliability. These
requirements will often exceed the intellectual capacity of a single software engineer,
requiring several individuals working independently on different segments of the system.

In such cases the requirements can be very difficult to understand.

Current research suggests a revised software development life cycle, which consists
of two phases, rapid prototyping and automatic program generation [8]. This prototyp-
ing life cycle is an altemative to the traditional life cycle which has been proposed to
alleviate problems stemming from incorrect requirements, especially when designing
hard real-time systems. Although current capabilities preclude completely automatic
program generation, the required software tools and capabilities do exist for computer-
aided rapid prototyping. As a software methodology, rapid prototyping provides the user
and designer with a fast, efficient and easy-to-use stepwise process. When utilized dur-
ing the early stages of the development life cycle, rapid prototyping allows validation of
the requirements, specifications and initial design before valuable time and effort are
expended on implementation software. Fig. 2 graphically describes this methodology as

a feedback loop [8]. Rapid prototyping initially establishes an iterative process between
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the user and the designer to concurrently define specifications and requirements for the
time critical aspects of the envisioned system. The designer then constructs a model or
prototype of the system in a high-level, prototype description language. This prototype is

a partial representation of the system, including only those critical attributes necessary
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for meeting user requirements, and is used as an aid in analysis and design rather than as
production software. During demonstrations of the prototype, the user validates the
prototype’s actual behavior against its expected behavior [9). If the prototype fails to
execute properly or to meet any critical timing constraints, the user identifies required
modifications and redefines the critical specifications and requirements. This process
continues until the user determines that the prototype successfully meets the time critical
aspects of the envisioned system. Following this validation, the designer uses the vali-

dated requirements as a basis for the design of the production software.

Computer-aided rapid prototyping further refines the efficiency and accuracy of this
new methodology. While utilizing the same iterative approach, computer-aided rapid
prototyping relies on software tools which assist the designer in constructing and execut-
ing the prototype. We have designed a computer-aided prototyping system (CAPS) to
provide an integrated set of tools to support prototyping of complex software systems
which may include hard real-time constraints [7]. These tools operate on the prototyping
language PSDL (Prototype System Description Language) [10]). This language has been
designed to support the needs of rapid prototyping by providing a high level description
of the system which can be used to demonstrate the behavior of the prototype by means
of the above software tools. Since requirements are especially difficult to define for large
systems with hard real-time constraints, PSDL has been designed to apply to such sys-

tems.

Prototyping is an iterative process which depends on the ability to rapidly adjust the
behavior of the prototype based on feedback from the customer or user. The problems of

software maintenance are magnified in rapid prototyping because prototypes are subject
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to frequent and repeated changes. The goal of the prototyping life cycle is to shift a siz-
able part of the initial maintenance activity from the production software to the proto-
type. The potential benefits to be gained from prototyping depend critically on the ability
to modify the behavior of the prototype with substantially less effort than that required to
modify the production software. The purpose of PSDL and the associated software tools

is to provide this ability. The mechanisms by which this is achieved are described below.

1.2. Mechanisms to Support Modifications

The prototyping language PSDL approaches the requirement to support frequent

design modifications by means of the following subgoals.

Modularity
The language must make it easy for the system designer to create a prototype with a
high degree of module independence and to preserve its good modularity properties
across many modifications.

Simplicity
The language should be simple and easy to use.

Reuse
The language should be suitable for specifying the retrieval of reusable modules
from a software base.

Adaptability
The language should support small modifications to the behavior of a module

without the need to examine its implementation.
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Abstraction
The language should support a set of abstractions suitable for describing complex

software systems with real-time constraints.

Traceability

The language should support requirements tracing.

Good modularity is essential for achieving ease of modification. An experimental
study shows that many of the problems with correctly performing software modifications
are due to interactions between widely separated pieces of code [4]. Locality of informa-
tion was an important design goal of PSDL. The underlying computational model was
chosen to make all interactions between components explicit. This model supports a sys-

tem decomposition criterion that combines data flow and control flow considerations [8].

PSDL is simple and easy to use because it contains a small number of powerful con-
structs. Designs are described in PSDL as networks of operators connected by data
streams. Such networks can be represented as dataflow diagrams augmented with timing
and control constraints. The user interface uses the diagrams to provide a convenient
means for presenting the system structure to the designer. The operators in the network
can be either functions or state machines. The data streams can carry exception condi-

tions in addition to values of arbitrary abstract data types.

PSDL supports reusable components by means of black-box specifications suitable
for retrieving modules from a software base. The specification part of a PSDL com-
ponent contains several attributes which describe the interface and behavior of the com-
ponent. These attributes can be used to automatically generate a uniform specification

for the reusable component [6]. These uniform specifications are used both for retrieval
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of reusable components and for organizing the software base.

PSDL supports small modifications to modules by means of control constraints.
Control constraints can be used to impose preconditions on the execution of a module, to
add filters to the output of a module, to suppress or raise exceptions in specified condi-
tions, and to control timers. These facilities allow small modifications to the behavior of

a module which do not involve the internal implementation of the module.

PSDL provides abstractions suitable for describing large systems and real-time con-
straints. These include the non-procedural control constraints mentioned above, timing
constraints, timers, functional abstractions, and data abstractions. Timing constraints can
be used to associate hard real-time constraints with operators. Examples of timing con-
straints include the maximum execution time, the maximum response time, and the
minimum calling period. Timing constraints implicitly determine when operators with
hard real-time constraints will be executed. This simplifies the designer’s view of the
prototype by removing explicit scheduling considerations from tne design of the proto-
type system. Timers are used to control aspects of behavior that depend on the duration
of particular system states or classes of system states. Timers allow static descriptions of
durational timing constraints, allowing the designer to ignore the operational details
involved in their implementation. A rich set of functional and data abstractions are pro-
vided by the pre-defined part of the software base. The designer can define additional
functional and data abstractions, either by adding them to the software base or by

defining them in terms of more primitive abstractions using PSDL.

PSDL supports requirements tracing by means of a construct for declaring the

requirements associated with each part of the prototype. Requirements tracing is impor-

50




tant because the prototype must be adapted to the changing perceptions of the require-
ments resulting from demonstrations of prototype behavior. The links between each
requirement and the parts of the prototype realizing the requirement are used to deter-
mine which parts of the prototype must be modified when a requirement is changed or
dropped. In order to prevent the structure of the design from being corrupted by multiple
modifications, it is important to remove parts of the code that are no longer suppored by
an updated set of requirements. This cannot be done safely unless the correspondence
between the requirements and the code is recorded and kept up to date. In situations
where this correspondence is not maintained, each change to the system results in the
addition of new code, without the removal of any old code. Such a process leads to
increasingly complex systems that eventually escape from human control, making remo-
val of old code essential for systems that will be changed many times. The facilities for
recording requirements trace information in PSDL are used by software tools in CAPS to

provide automated aid in maintaining and using this information.

1.3. Benefits of Prototyping

Prototyping allows an appreciable part of the maintenance activity to be carried out
in terms of the prototype rather than in terms of the production code for the intended sys-
tem. This is useful because the prototype description is significantly simpler than the
production code, is expressed in a notation tailored to support modifications, and the
software tools in the computer-aided prototyping environment can be used to help carry

out the required modifications.

Rapid prototyping is also a useful tool in feasibility studies, for reducing project

risks and estimating costs. Prototypes of critical subsystems or difficult parts of a com-
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plicated system can significantly increase the confidence that the system can be built
before large amounts of effort and expense are committed to the project. Rapid prototyp-
ing helps in estimating costs, since the cost of the intended system is usually proportional
to the cost of the prototype. The experiences gained in applying rapid prototyping to spe-
cial applications, eg. database design, the metaprogramming method and others, have
substantiated the expected cost relationships between the prototype and the comple.ted
system [5]. A prototype can also be used to specify a well modularized skeleton design
for the intended system and to validate the important attributes of the intended system,

eg. timing constraints, input and output formats, or interfaces between modules.

2. Computer-Aided Prototyping System

The main software tools in the computer-aided prototyping system are shown in
Fig. 3. These tools communicate by means of the PSDL language, which serves o

integrate the tools and provide a uniform conceptual framework for the prototype

designer.
CAPS
User Software Execution
Interface Database Support
System System

Fig. 3 Main Software Tools in CAPS
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The user interface consists of a syntax-directed editor with graphics capabilities, an
expert system for communicating with end-users, a browser, and a debugger. The editor
enables convenient entry of PSDL descriptions into the system while preventing syntax
errors. It also provides support for displaying graphical summary views of the prototype,
maintaining the requirements trace, and locating parts of the prototype design related to
particular requirements or data streams. The expert system provides a paraphrasing
capability which generates English text from PSDL descriptions, to allow end-users to
directly examine the prototype without the need for familiarity with PSDL. The browser
allows the designer to interact with the software database. In particular the browser pro-
vides facilities for retrieving and examining reusable components stored in the software
database system. The debugger allows the designer to interact with the execution support
system. In particular, the debugger provides facilities for initiating execution of the pro-
totype, displaying results or trace information, and gathering statistics about prototype

behavior and performance.

The software database system consists of a design database, a software base, a
software design-management system, and a rewrite subsystem. The design database con-
tains the PSDL prototype descriptions for each software development project using
CAPS. The software base contains PSDL descriptions and code for all available reusable
software components. The software design-management system is responsible for
managing and retrieving the versions, refinements, and altenatives of the prototypes in
the design database and the reusable components in the software base. The rewrite sub-
system translates PSDL specifications into a normalized form that is used by the design-

management system for retrieving reusable components from the software base [6].
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The PSDL execution support system contains a translator, static schedaler, and a
dynamic scheduler [9]. The translator generates code binding together the reusable com-
ponents extracted from the software base. Its main functions are to implement data
streams, control constraints, and timers. The static scheduler allocates time slots for
operators with real-time constraints before execution begins. If the allocation succeeds,
all operators are guaranteed to meet their deadlines even with worst-case execution
times. The dynamic scheduler invokes operators without real-time constraints in the time

slots not used by the operators with real-time constraints as execution proceeds.

3. Using CAPS for Maintenance

If the prototyping process is carried out manually, the associated benefits are limited
because it takes too much effort. CAPS can increase the leverage of the prototyping stra-
tegy by reducing the effort that must be spent by the designer in producing and adapting
a prototype to perceived user needs. This section describes how the facilities provided
by CAPS can be used to assist in the maintenance activities involved in the prototyping

process.

In the prototyping life cycle shown in Fig. 2, the maintenance activity for the proto-
type starts after the cycle has been carried out once: the analysts have determined the ini-
tial requirements by talking to the customers, constructed an initial prototype, and
demonstrated it to the customer, who finds some aspects of the prototype’s behavior
unacceptable and requests some modifications. The process of demonstrating the proto-
type is aided by the user interface, which has facilities for presenting the results of proto-
type execution to the customer and for guiding the choice of which aspects of the proto-

type to demonstrate. The latter function is accomplished by an embedded expert system
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containing heuristics for exercising prototypes and a facility for recording test case cov-
erage information. The analysts use customer feedback about the behavior of the proto-
type to modify or refine the requirements, which are maintained as a tree of subgoals.
The incremental change leading to the new version of the requirements is entered into the
system. At this point the facilities provided by CAPS are used to adapt the prototype to
the new requirements.

The user interface helps the nrototype design team identify the tasks that have to be
carried out to update the prototype. The user interface maintains a list of unresolved new
requirements and a list of unresolved modified requirements. Whenever a member of the
design team is ready for a new task, the system presents the lists and lets the designer
pick an item to resolve. If a modified requirement is chosen, the interface returns a list of
modules previously supporting the requirement, and lets the designer check them off as
they are adapted or determined to be still valid. The effort required to do this task coor-
dination is minimized by presenting the lists as men-s, and allowing the designer to pick
items by means of a pointing device. Choosing an item results in a summary view of the

module, which can be browsed and updated as required.
The user interface speeds up the process of adapting the prototype by
(1) Helping to coordinate tasks performed by a team of designers,
(2)  Helping to focus the designer’s attention on the information relevant to a task,
(3)  Providing summary views of the system or selected components. and
(4) Locating all potentially relevant parts of the prototype.
The components of the software database actively contribute to the process of

adapting the prototype to new requirements. The software design-management system
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helps to maintain the design history and to locate relevant reusable software components.
The design history consists of the relationship between each version of the requirements
and the corresponding .c..ions of parts of the prototype. This information is u<eful
because sometimes the customer will retreat to previous versions of the requirements.
Situations in which this may happen include cases where the customer gives up on an
ambitious requirement in response to cost or performance estimates resulting from exam-
ination of the prototype. In such cases parts of the requirements are returned to previous
configurations, and the system can help to restore the corresponding parts of the proto-

type to their previous configurations.

The design database also provides concurrency control functions which allow multi-
ple designers to update the parts of the prototype without risk of unintentional interfer-
ence. In the mterests of minimizing delay, the design database will not lock out access to
any part of the design, even while the design is being updated. Instead, the system will
allow the previous version of the component to be examined, with a waming that a new
version is currently in preparation. The system will provide information about the reason
the component is being modified (i.e. some particular new or modified requirement) on
request.

The software base provides reusable software components matching given PSDL
specifications. In the PSDL prototyping method {8] modules are realized by three main
mechanisms:

(1) Retrieval of a suitable component from the software base. The software base
should contain flexible generic modules, whose parameters are determined as

part of the retrieval process. It also should contain rules for matching a
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(2)

3)

specification by means of a composite operator, which is realized by a network of
operators, at least one of which must be an available reusable component [11].
The retrieval mechanism is therefore capable of performing some routine aspects
of bottom-up design, freeing the designer from the need to be familiar with all of

the reusable components in the software base.

Decomposition of the component into a network of simpler components. This is
done by the designer if the component cannot be retrieved directly from the
software base, and the component is sufficiently complex to have a useful decom-
position into simpler parts. The designer is responsible for top-down design
activities such as inventing new abstractions. Each of the identified parts is
specified in PSDL and realized by the same set of mechanisms, applied recur-
sively.

Direct implementation in a programming language. This is done by the designer
if the component cannot be retrieved directly from the software base, and the
component does not have a useful decomposition into simpler parts. This should
be infrequent if the software base is mature, containing the results of prototyping

many other systems in the same problem domain.

The execution support system helps to speed up design changes by providing a

localized view of the processes in the prototype and by analyzing its timing properties.

These features are especially important for prototyping real-time systems. At the pro-

granming language level, implementations of real-time systems are difficult to under-

stand because the instructions of several logically independent processes must often be

interleaved to meet the timing constraints [2]. PSDL presents a view to the designer in

57




which logically distinct processes are represented as separate independent components.
The PSDL execution support system contains a translator which mechanically transfonas
this independent representation into the corresponding programming language represen-

tation, adding the necessary interleaving in a fashion transparent to the designer.

The timing properties of a real-time system are analyzed by the static scheduler. If
the static scheduler succeeds in constructing a schedule, then the operators in the
schedule are guaranteed to meet their timing constraints even under worst case operating
conditions. In case the static scheduler fails to find a valid schedule, it provides diagnos-
tic information useful for determining the cause of the difficulty and whether or not the
difficulty can be resolved by adding more processors [9]. These functions are important
because the timing constraints in complex systems can have complicated interactions that

can be very difficult to analyze manually.

The prototyping language PSDL is the vehicle for carrying a powerful set of con-
cepts useful for modeling complex systems and for providing a uniform framework for
representing prototypes and software components which is common to all of the tools.
PSDL also helps the designer achieve good modularity and allows the descriptions of
small modifications to component behavior to be separated from the potentially complex

implementations of those components.

Good modularity means the prototype should be realized by a set of independent
modules with narrow and explicitly specified interfaces. PSDL supports this concept via
operators and data streamns. An important property of the language is that two distinct
operators can communicate or affect each other’s behavior only by means of the data

streams explicitly connecting them, either directly or indirectly. This locality property is
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important for maintenance because it allows the set of modules that can potentially
interact with a given module to be determined via a simple mechanical analysis of the
data flow network, allowing the software tools to guarantee that all aspects of a proposed
change have been covered. It also encourages designs containing an independent com-
ponent for each major design decision. Such designs are easier to modify because the

information required to change a design decision is localized in one region of the code.

The locality property is embodied by the PSDL scoping rules and mechanically
enforced. The implementation of an operator can only refer to the explicitly declared
input and output streams of the operator and to data streams local to the implementation
of the operator. Implementations of operators representing state machines may contain

closed loops consisting of local data streams.

PSDL supports small modifications to the behavior of a component by means of
control constraints. This mechanism can be used to adapt the behavior of a prototype to
make a small change without examining the internal implementation of the affected com-
ponent. For example, a common kind of problem discovered in the demonstration of a
prototype is that a given operator has the intended behavior most of the time but not
always. The PSDL control constraints governing conditional execution of operators are
useful in such a case. A control constraint in the form of an input guard predicate can be
added in such a case, where the guard predicate describes the circumstances in which the
execution of the operator will produce the intended result, and serves to disable the exe-
cution of the operator in cases where it would not produce the correct result. This allows
the addition of another operator for producing the correct output in the remaining cases,

controlled by a complementary guard predicate. Another example is a case where an
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operator is discovered to have an inappropriate response to ill-formed inputs. The PSDL
control constraints goveming conditional outputs or exceptions are useful in such a case.
Such control constraints introduces an output guard predicate, which serves to disable the
output of the operator if it does not satisfy the predicate, or an exception triggering predi-
cate, which produces an exception instead of the value computed by the operator. Output
guard predicates can be used to filter out inappropriate responses in cases where no
response is needed. In particular, they can be used to disable exceptions raised by imple-
mentations of components if the conditions reported by the exception do not require any
action on the part of the prototype. Exception triggering predicates can be used to trigger
exceptions when incorrect outputs have been computed, or to rename exceptions pro-
duced by the implementation of a module to other conditions meaningful at a higher
level. Triggering an exception is useful because it allows a new module to be added for
handling the exception, again without affecting the implementation of the original com-
ponent. Renaming exceptions is useful for repairing inappropriate error messages. For
example, in the context of -« operating system, a process_table_overflow condition
might be translated into a "machine_busy" condition to convert an intemal view of a
failure in terms of the implementation to an external view meaningful to the users of the
prototyped system. An exception triggering predicate is used instead of an input guard
predicate in cases where the condition to be checked depends on the output values of the

operator in addition to its inputs values.

4. Conclusions

The effort 1equired for supporting the evolution of a software system can be reduced

via prototyping. Prototyping can be used to stabilize the requirements for either an initial
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software development project or a proposed enhancement to an existing system. Espe-
cially for systems with complex requirements, such as large or embedded real-time sys-
tems, human communication is ineffective without the feedback provided by demonstra-
tions of proposed system behavior. An iterative process involving modifications to per-
ceived requirements and proposed system behavior is needed to arrive at a common
understanding of the proposed system by the customer and the developer. It is more cost
effective to use a prototype rather than production quality code to provide the demonstra-
tions of proposed system behavior because prototypes are simpler and easier to modify

than production quality implementations.

The effectiveness of prototyping is limited if it must be carried out manually. A
high level language, a systematic prototyping method, and an integrated set of
computer-aided prototyping tools are important for realizing the potential benefits of pro-
totyping. The prototyping effort is also aided by a powerful set of abstractions appropri-
ate for a problem domain, especially if these abstractions are embodied in a set of reus-
able software components. Effort can be saved in the long run by building up a
comprehensive library of such components for an application area, especially if more
than one software system must be developed for the same problem domain, which is

often the case.

A typical software system evolves in a long series of repairs and enhancements, in
response to the discovery of faults and to changes in user requirements. Most useful sys-
tems are too large to be maintained by just one person. leading to the need for coordinat-
ing the concurrent efforts of a group of people. Enhancements to software systems must

often be developed concurrently even though they are not independent. Sometimes the

61




designers talk to each other as they proceed, and adjust their designs to make sure they
are compatible. In other cases, the designs are developed independently, and then are
merged at the end, with both designers examining each other’s code and making adjust-
ments as needed. Manual methods for merging enhancements are inadequate because
they are slow and error prone. Automatic methods for merging enhancements are
needed. To be useful, such methods should provide some assurances that the results are

correct, or else locate potential inconsistencies.

A better understanding of the software merging problem and better computer aided
design tools enabled by that understanding are important because the bulk of the cost of a
software system is due to enhancements and repairs. Coordinating the efforts of many
people working on the same software system is difficult and expensive, and a design style
that allows people to work more independently and uses automatic merging of indepen-

dent enhancements should reduce communication and coordination problems.

The ability to easily swap in different alternative choices for an aspect of the
behavior of a system would also be useful in using a prototype to aid in determining user
requirements. Automated merging would make it practical to customize software pro-
ducts for each user’s needs by picking options from a multiple choice menu, as is com-
monly done for automotive products now. Such an approach would make software sys-
tems more flexible and make it less critical to get the requirements right the first time. It
would also make it easier to design and maintain a family of software products intended

to exist in a variety of configurations.
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ABSTRACT

Prototyping is such a complementary approach, which allows many of the

traditional kinds of software analysis and testing to be applied at earlier stages.
The prototyping process helps to establish relatively static concepts of correct-
ness, which can be used as a meaningful basis for later verification efforts. The
execution of software prototypes is similar to traditional validation, except that
the developer is explicitly concerned with the length of time during which the
proposed systeni will continue to meet customer needs, rather than just ensuring
the system will meet currently perceived needs. This paper also discusses three
levels of analysis and testing that are important for real-tiine systems in rapid pro-

totyping.

1. Introduction

Robustness, reliability, and cormrectness of operation are quality aspects of software
products that gain increasing importance. This is particularl)" true for critical systems
whose malfunction may result in loss of human life, compromise of national security, or
massive loss of property [3]. Software components of hard real-time systems often are
among this class of critical system as they typically control production processes, tran-

sport systems, communication systems, chemical or power plants, etc.

The techniques for certifying such properties range from formal programn

verification and software testing to formal and informal analysis techniques [2, 5] such as
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data flow analysis, loop invariant detection, deadlock detection, software inspection,
documentation evaluation, and walkthroughs. Overview information and references to
verification can be found in Software Engineering Notes, August 1985, information about
current approaches to testing are surveyed in [4], and other validation techniques are
reported in [1] and IEEE Software, May 1989. All of these techniques have their specific
merits but also show limitations which require using a combination of validation and
verification techniques for building quality software.

Testing has a long tradition in programming and software engineering. The tradi-
tional approach to software development, however, suffers from the fact that the results
of testing operational code become available close to the end of the development process,
so that design errors detected during system testing require an immense redesign and
reimplementation effort, and are likely to cause project delays if they occur. Thus an
effective quality assurance strategy should combine testing with other approaches that
can detect requirements and design errors earlier in the cycle, when they are less expen-
sive to correct and have less external impact on the project. Prototyping is such a com-
plementary approach, which allows many of the the traditional kinds of software testing

to be applied at earlier stages.

2. The Role of Prototyping in System Validation

The faults in software systems with the largest impact are requirements and
specification errors, since such errors tend to affect large portions of the system and can
be very expensive to correct. Requirements are often uncertain at the early stages,
because the customers do not have a complete understanding of their problems or how
proposed software systems will affect their daily operations and their understanding of
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the application domain. Experience with a software system usually changes the custo-
mers’ perceptions of their problems, and opens up new possibilities which lead to new
requirements. This makes the customer’s problem a moving target. Educating customers
and developers about the problem is as much a part of the process as building a system,
so that the traditional concepts of what constitutes an error do not quite match the reality
of the early parts of the development process: a system that is "correct” at one point in

time may become "incorrect” later without any changes in system behavior.

The purpose of the iterative prototyping process illustrated below is to help stabilize

the effects of a proposed system on the customer’s perceptions and requirements before

the system is constructed on a full scale.

R T + 4o +
| determine ( requirements ! construct |
| requirements !-----c-c-c-cooaoaan. >| prototype |
Focereeeeacneas + #ommme e +

- |

| requirements adjustment | prototype

l

Fecmemcenaan + v D +
| demonstrate I<--c-cccccccacecnncinnnnnann 4+-->| system |
| prototype R R >| implementation |
$reccmreeraea + requirements 0K R +

This process helps to establish relatively static concepts of cormrectness, which can be
used as a meaningful basis for later verification efforts. The géal of prototyping is simi-
lar to traditional validation, except that the developer is explicitly concemed with the
length of time during which the proposed system will continue to meet customer needs,
rather than just ensuring the system will meet currently perceived needs. Automated
tools are necessary to carry out this process with reasonable speed and cost [1, 6).
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3. Multiple Levels of Analysis and Testing

There are at least three levels of analysis and testing that are important for real-time
systems at the prototyping stage:

(1) Checking whether proposed timing requirements are sufficient to meet the higher
level functional requirements that motivate the timing requirements. Common
examples of such functional requirements include ensuring that software esti-
mates of the state of a real world system are maintained to a given accuracy, or
that the state of the real-world system is controlled to remain within some desir-
able region. A concrete example is an aircraft control system, whose purpose is
to prevent mid-air collisions. Testing is essential for this part of the problem,
because it involves the relationship between a formally described abstract object
(the software prototype) and an informally described concrete object (the physi-
cal system to be controlled). Analysis of formal models of the software and
interacting physical systems should be coupled with testing to check the

correspondence between the formal models and the real world.

(2) Checking whether a proposed design meets its requirements, given that the indi-
vidual components meet their specifications. Most large software systems are
designed using modular decompositions. The essential question at the design
stage is: will a proposed design work correctly if the implementations of the
specified subcomponents are carried out with perfect accuracy? A specification-
based prototyping approach can help answer this question before much effort has
been spent on the detailed implementation of the components. This part of the

problem is subject to formal verification techniques, which are easier than prov-




ing correctness of low level code, because only the correspondence between two

sets of specifications in the same language is at issue.

(3) Checking whether a component meets its specifications and timing constraints.
This process can be addressed at the prototyping stage by testing and instrumen-
tation that monitors the behavior of an executing prototype with respect to its
specifications. This part of the problem has both symbolic and testing aspects,
particularly with respect to the real-time behavior of the proposed implementa-
tion, which again depends to some extent on the physical properties of the
hardware systems involved in the implementation. To establish some confidence
that a proposed system will provide guaranteed service within a deadline, the
interactions between the software with users, hardware, and other physical com-

ponents must be tested.

4. How It Can Be Done

We propose a rapid prototyping approach comprising a language, called RPL, (8]}
and an integrated tool set supporting iterative prototyping of complex software systems
[6,7,10]. RPL covers a wide range of applications, including real-time, parallel, distri-
buted, and knowledge-based systems. It combines second-order logic specifications sup-
porting verification with an augmented dataflow representation for design and intercon-
nection of prototype components. The design graph is augmented with special pre/post
conditions to express real-time constraints and adjust component behavior to each appli-
cation context [9]. Execution is based on automatically generating code which links
reusable software components or simulates component behavior via an executable subset

of the specification logic. Real-time constraints are guaranteed by sutomatically con-
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structed schedules. Iterative modifications of prototypes are supported by localized
information in RPL and its computational model, component behavior modification via
logical constraints, and facilities of the tool set for code and design reuse, requirements
tracing, and static analysis. The logic and the proposed computational model provide the
basis for integrating these facilities into a coherent language and tool structure. Among
others the tool set will support execution and dynamic debugging, optimization and
transformation to final implementation, as well as formal analysis and proofs of correct-

ness.

The prototyping approach allows requirements and desirable features of the
intended system to be clarified while the system is incrementally implemented by map-
ping designs to reusable and executable software components. Design altematives can
be evaluated by observing the behavior of prototypes under real-time conditions. Test
data generation is simplified due to the the separation of concems emphasized by RPL
and its formal semantics. Predicted performance can be verified by executing the proto-
type under real-time conditions reflecting best and worst case assumptions. In particular,
static analysis can be combined with testing to verify the assumptions of the timing pro-
perties of the software components on which the design is based, with special attention to
the paths with the longest expected execution times. This can lead to greater confidence
by decoupling the empirical estimation of the execution times for individual machine
instructions from the static analysis which determines the sequence of instructions along

the longest execution path.
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§. Conclusion

The interaction between testing and prototyping should be explored from several
points of view. Since prototypes are embedded in a computer-aided prototyping system
for execution, they provide a greater degree of flexibility, observability, and control than
a production implementation, enabling new testing techniques that check some of the
critical decisions made in the early stages of software development, and provide a means
for coupling testing with simplified formal analysis with respect to high level
specifications. As in Monte Carlo simulations, the use of partial formal analysis to
reduce the variability of the unknown aspects of the problem can lead to more accurate
conclusions based on fewer test cases. Demonstrations to customers also provide a
means for using testing techniques to do requirements validation, and provide error
detection and location earlier in the development process, when it can have a much larger
beneficial effect. These possibilities open up a new and important area for future

research and development.
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Abstract

We present an extension of the classical Petri net model to formally define func-
tional, structural, and dynamic aspects of software engineering processes. In this
model Petri nets are augmented with logic specifications that serve to specify the
essential static properties of software objects involved in a process and define global
constraints to the dynamic behavior of process models. These models have an intuitive,
causality-based execution semantics which enables process simulation and formal anal-
ysis using tools and techniques that have been developed for a related Petri net-based
specification formalism. Structuring mechanisms are provided to support hierarchical
decomposition and the systematic combination of separate views of a software engi-
neering process. As an example we model selected aspects of a rapid prototyping
process which supports the reuse of archived software components and guides the use

of dedicated prototyping tools.

1 Introduction

A criticism of traditional life cycle models has been the subject and motivation of many
recent papers arguing for new approaches to software process modeling, e.g., [1, 3, 4, 8).
Rather than paraphrasing their criticism, we restrict ourselves to subsuming evaluation
criteria we found in the literature and providing a few supplementary remarks to justify
our own approach of a Petri net-based process model (PNP model) and narrow down the
range of issues it tackles.

Typical requirements posed to process models are adequacy of the model, readabil-
ity and ease of use, hierarchical decomposability, and amenability to formal analysis and
reasoning. The arguments supporting these requirements are largely obvious, except for

the notion of adequacy which is difficult to grasp due to the manifold aspects software
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engineering processes comprise. They include, for example, management aspects concern-
ing the optimal employment of people and use of material resources, contractual matters,
planning and cost issues, communication and synchronization aspects, or methodological
concerns aiming at effective development procedures and tool use.

As we can hardly imagine a homogeneous process model capturing all these different
aspects in an adequate way, we first discuss in the conceptual framework which the PNP
model covers. Basic concepts of the PNP model are described in Section 3. We emphasize
a formal approach to specifying the dynamic behavior of software engineering processes
and characteristic attributes of software objects and roles of human participants invoived.
An illustrative example is given in Section 4 where we present two partially overlapping
views of a rapid prototyping process that supports evolutionary software development by
interactive construction of executable prototypes from reusable software components [12].
In Section 5 we illustrate constructions that allow consistent combinations and stepwise
refinements of process model views In Section 6 the Petri net semantics underlying PNP
models is sketched and their poter. Jlow formal analysis and reasoning, verification,

and symbolic simulation is outlinc

2 Behavior-Oriented Softwarc Process Models

Software development is a dynamic and distributed activity in which many cooperating
participants may act partially independently of each other to iteratively transform an
initial set of requirements into a validated object system. Different participants usually
have different and sclective knowledge about an evolving software system. The object
system is typically characterized by a large set of software components such as requirements
definitions, design documentation, specification and program modules, test protocols and
the like which coexist at designated development states.

In this context model adequacy means to capture the distributedness and combinatorial
nature of information characterizing an ob ject system in its various development states and
the distributedness of changes it undergoes. Speaking in technical terms, a process model
approach must be able to handle bchavioral issues such as concurrency, synchronization,
and communication. It also means to cope with nondeterminism occurring in different
forms in the course of a development process. For example resource contention is likely to
arise due to the boundedness of resources but often cannot be resolved as a process model
is designed; or it might be necessary to specify the range of alternative possibilities to
pursue a process execution without being able to provide a deterministic decision procedure

becaues it depends on information that cannot be anticipated in sufficient detail.

88




The dynamic behavior of a process model strongly depends on the structure of software
components and specific roles of human participants in that process. Therefore it is crucial
to provide abstraction mechanisms that allow the process designer to define functional
and and structural properties of objects and roles at a level of detail that is necessary to
understand and control a development process but still admits developers to make design
decisions as needs arise.

A suitable abstraction of a program module in the context of version control, for ex-
ample, might describe its structure as consisting of a name, author, interface, and body
attribute. The role of programmers acting as authors of such modules might be sufficiently
characterized by access rights determining who is allowed to update which program mod-
ules. The behavior of the version control model then would specify at this structural level
how and under which conditions these attributes can be changed by processes but would
not refer to details of a module body, for instance. These changes include update rights as
the team of programmers involved in a project or their roles may change and new modules

are constructed as the system evolves.

3 Basic Concepts of the PNP Model

To capture equally well functional, structural, and behavioral aspects of softwarz processes,
the PNP model extends the classical Petri net model by object-oriented data abstraction
facilities. The latter allow the process designer to introduce different types of software
objects and roles of human participants, provide them with distinguishing attributes, and
describe functional relations between between them. Petri net concepts serve to adequately
specify the rules governing distributed changes to defined attributes and relationships. The
combination provides a suitable notion of distributed states and state-dependent actions
that can dynamically create new software objects, concurrently change their properties,

and delete objects that are no longer needed.

3.1 Static Aspects of Objects

Software objects are treated as typed and uniquely named entities whose structure and
properties are expressed in terms of extensible lists of attributes. Attributes either are
(references to) objects or are data. Data specifications are supported in the PNP model
based on typed Horn clause logic similar to the specification approach defined in [10].
New object types are introduced by a special form relating a new type name with names
and types of attributes which all instances of that object type share. For example, the

form
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object module: (ext-name,author:name, if:interface, body:imnl)

defines objects of type module to have at least five attributes whose values are of type
name, interface, and impl respectively. These attributes might capture those properties
of program module relevant for configuration management.

Attribute names like ext-name, author, if, and body denote (projection) functions
mapping the object type into the corresponding attribute type. Further attributes can be
added to an object as needs arise. But they can only be accessed by pattern matching

using the following tuple notation for objects:
<M,[N,A,I,B,new]>

where new is such an add-on attribute value.

Similarly to objects, immutable data structures which are composed of a specific list
of component data or have a variant type and value can easily be defined using two forms
that are inspired by the object-oriented data model introduced in [11]. An example of the
first kind is the data structure abstracting from module interfaces as consisting of two lists

of facilities that are exported and imported:
record interface: (export,import:[facility])

where angle brackets denote a list of items of the type the enclose. An example of the

second kind is the following:
variant eval-state: (new,ckd,vd:unit)

It is a trivial variant data structure which just enumerates a finite se! of distinct constants

used to denote the evaluation status of a software ob ject.

3.2 Dynamic Aspects of Objects

Objects are created dynamically during process execution. Most of the objects created
persist as system development procceds and simply change their attribute values. But
there may also be situations in which it is useful to specify that objects are no longer
needed and are better discarded. For example, patches to certain program modules can
be deleted once a new system version including the dynamically patched changes has been
released.

Dynamic object creation, modification, deletion, and changes to mutable relationships
among objects and data are captured by variable predicates whose extension is changed

by occurrences of instances of actions which schematically specify similar rules of change
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The form denotes
. P

the place of all objects <idi,vi> satislying the
variable predicate p in the present davelopment
state

the change element making object <id,v> baegin

p
<id,v>
——’< ) to satisfy p

the change element making object <id,v> cease
to satisty p

a rule of change which is symbolized by the term r(i,j)
and consists of several change elements including the
creation of an object with identity K and attribute list {a]
and the deletion of objact <j,[b]>; the labeling of arcs
expresses the idea that the lifeline of object K starts and
that of object j ends with an application of the given rule

a scheme ol similar rules of change (an action); an instance

of an action is obtained by consistently substituting the

variables 1,J,K,X,Y in the scope of the action by constants

such that the lormula constraining the action is satisfied

according to the specified meaning ol functions and predicates
<K*,[X])> it is composed of; note that constants like ¢ express commonal-

q 1 ities which all instances share

constraining r(i,Jj byX<yY

Notational remarks: Variables are capitalized 1o distinguish them from function, predicate,
and relation names, which are written in lower case.

Figure 1: Expressing dynamic aspects cf soltware engincering processes
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in distributed processes. As a simple graphical notation for rcprescutiug\l\csc dynamic
aspects of software processes, we use Petri nets that are annotated as shown T}L{;lg 1.
This notation reinterprets basic concepts of high-level Petri nets (see, e.g. [6,-7}.)‘in a
specific way to reflect concepts of the application domain. Objects are always represented
as pairs. The first component is a unique identity which is implicitly provided as an object
is created. It can never be changed and allows one to follow the lifeline of an object and all
changes it underwent. The second component is alist of attribute values given in the order
determined by the corresponding object definition. Object creation is made explicit by
append a * to the variable referring to a new ob ject. Object deletion is simply expressed
by letting the lifeline of an object end in an action. A deleted ob ject is no longer accessible

in the further course of a software proccess.

3.3 Example

Using this notation and the following abbreviations

<l.V>

a side-condition
<l.V>

p
a model of a simple version control system providing only one action to release private

modules as substitutes for previous versions kept in a public module library can be com-
poscd as shown in Fig. 2. The side-condition of this action requires that only those authors
may put their private module into the public library who are assigned the right to update
library modules of the proper name.

To keep the example simple, it gives ouly an incomplete view of our simple version
control system. This view does not show how new module names are inserted in thelibrary,
how private versions are constructed, and how update rights are modified as module
names are created or author names change. As we shall see from later sections, this

sort of constructing separate and incomplete views of a process model is supported by
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J— LA INL]

i <p1,[n1,a1,i11,b11)>
1.[n1
:;‘2{:2}: ] <p2.{n1.82.112.b12}>
- M_> -3 <p3.[n2,a2,12,b2]>
<P,[N,A.1B]>
<MINALB>
library-modules rek module (A.M,P) private-modules

constraining release-module (AMP) by N« NL

Figure 2: A process model controling the release of private modules as public versions

combination mechanisms that allow one to merge simple views in a consistent way to

larger and more complex ones.

3.4 Development States and State Transitions

In a PNP model as shown in Fig. 2 development states are conceived of as distributed
entities. Their elements are derived from the variable predicates of a process model and
the objects for which those predicates are currently true. In the graphical notation the
actual marking of a place represents the current extension of a variable predicate. The
state given in the example intuitively means that there are currently two public modules
named n1 and n2 whose contents are still undefined, and we have two authors a1 and
a2 with 21 being allowed to update module ni and a2 being allowed to overwrite both
n1 and n2; further, there are three private module versions two of which, p1 and p2,
are intended to become new public versions named n1, whereas p3 might replace public
modules externally known by name n2.

Each development state together with the rules of change schematically defined by ac-
tions determines the set of possible future states. Transitions between development states
arc caused by cccurrences of instances of actions that are concurrently applicable (see [10]
for a formal definition of these concepts). One of the possible future states of our example is
shown in Fig. 3. It was caused by occurrences of the changes release-module(at,mi,p1)
and release-module(a2,m2,p3). These changes might have happened concurrently ac-
cording to the given beliavior specification. In contrast to this, two other changes that were
possible at the initial state, release-module(at,m1,p1) and release-module(a2,m1,p2),
mutually exclude cach other as they “light” for the same object named mi.

The sct of possible states and state transitions is, as usual for Petri nets, defined by

the initial marking.
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updale-rights

<m1,[nt,a1,i11.b11]> {<AINU>
<m2,[n2,82,i2.b2 i

<M_> <p2.[n1,82,112,b12)>

<P.[N.A1B]>

-

‘M'lN'A"'B]’/.. module {A.M.P) private-modules

library-modules

Figure 3: A possible future development state of the process model in Fig 2

4 Formalizing a Rapid Prototyping Process

In this section we develop a PNP model of a rapid prototyping process that supports evo-
lutionary software development by interactive, computer-aided construction of executable
prototypes from reusable software components. The model makes previous informal de-
scriptions of this prototyping approach [12] more precise and concrete in that it provides
suitable abstractions of soltware objects and captures causal dependencies and indepen-
dencies among the actions of the process model. The PNP model also provides a better
framework to develop an effective prototyping methodology, improve the functionality of
the prototyping support environment {13], and control the proper use of its tools. Two
different views of the process model are presented separately in Fig. 4 and 5 to simplify the
understanding of the overall process, localize modification, and ease its further elaboration.

First we define some of the object and data types whose instances are involved in the

rules of change specified in Fig. 4. These types refer to software concepts presented in
[12):

object req-def: (sysname:name, description:text)

object operator: (opname:name, spec:specification, state:eval-state)

record specification: (inputs,outputs,statevars:[name-type])

vpredicate system-requirements(req-def)
released-psdl-designs(operator)

action construct(req-def,specification)
modify(operator,specification)
refine(operator,req-def,implementation)

analyze(operator)

The process model view presented in Fig. 4 illustrates the principal idea of rapid proto-

typing to iteratively construct, modify, and refine a series of prototypes, cach providing
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syslem-requirements

<R|N,T.0p> <R,IN,T)>
.."'-.
construct{R.S) %
<0° [N,S,newp ‘i <RINT_ b
released-psdl-designs i
modily(O,S) ON_P <OINS.ckd._ }> reline(O.R.1)
<ONSnew,_ > <O.[N.S.new,i]>
<O,[NS.ckd,_ P> <O,[N.S.new._ }>
analyze(O)

Figure 4: Constructing prototype designs from requirements specifications

the platform for validating and improving previous requirements definitions and design
decisions.

At the given simplified abstraction level we do not want to formalize to what extend,
for example, the text describing the requirements for a specific system component sym-
bolically named N determines the specification of a newly constructed operator realizing
these requirements. We just wanted to explicate certain relationships concerning names
and references among objects. Looking more carefully at the net labelings, we recognize
that certain variables denoting altribute values of objects after a change has occurred
are not bound to attribute values existing before that change happened. An example is
variable S which appears as argument of action modify and construct. It represents
information which cannot be derived from the prehistory of the objects involved but has
to be supplied by user of an action. lere the variable represents an arbitrary operator
specification which redefines the spec attribute of the operator object changed by an in-
stance of these actions. The information flow represented by such variables allows us to
deal incomplete knowledge in such a way that at least its typical structure and its cffect
on the the behavior of a process model can be defined.

The process model in Fig. 5 shows another distinguishing aspect of the prototyping

process model supporting the PSDL approach [12). It reveals the role of prototypes to
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released-psdi-designs

{ <OIN,S,ckd._ I

produce-prolotype (O.Ms)

<P* [N link(Ms,MC,M1),O}>

executable-prololypes

<P.IN._O}> <P IN,_OJ>

validate (P.R) ‘ <R[N,_O}> <R[N._O}> improve-requirements (P.R.T)

<R,[IN.T>
<R.N._,O.vd.P]>

sysiem-requirements
Figure 5: Constructing and evaluating executable prototypes

provide executable models of a proposed system which can be demonstrated to users and
customers to validate and improve requirements specifications and design decisions prior

producing production code.

5 Horizontal and Vertical Decomposition of PNP Models

One of the primary diflicultics in modecling software processes is conceptual complexity.
Conceptual complexity can be reduced when the dynamic behavior and the objects of a
software process can be composed from independently constructed parts and can system-
atically be refined. 1li~rarchical process descriptions are supported by most of the new
process models. But horizontal compositions in the sense of combining the parts of a
modularized process model are still underdeveloped.

The PNP model approach provides constructions to consistently merge process models
representing scparate, partially overlapping views of a larger developinent process. These

constructions aflow the process designer to

1. synchronize the merged views and connect open information flow lines by identifying

actions,

2. combine behavioral alternatives covered in separate views by identifying places and
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forming the union of their initial marking, and
3. define new functions operating on ob jects from different views.

The context conditions to apply these construction and their formal semantics have been
developed in the framework of a formal specification language for distributed and concur-
rent systems [9, 10] and can easily be adapted to PNP models.

Using these constructions the two process models shown in Fig. 4 and 5 can be com-
bined by merging their common places labeled system-reqirements and released-psdl-designs.
The implicit effect of the combination constructions on the behavior of the merged parts
is graphically depicted below:

«lV> <«W> <LV»>

<, W> <l V> dV>

The PNP model also supports stepwise refinements based on substituting actions by
subnets whose border only consists of actions, substituting places by subnets whose border
contains only places, and abstract implementations of object and data types. Such refine-
ment and implcmentation concepts have been studied in [14] for the related specification
formalism with particular emphasis on defining correctness suitable criteria which provide
the basis for verification tools. An example of an action refinement is given in Fig. 6.
It shows that aclion produce-prototype can be implemented by two actions working

concurrently on appropriate extracts of the object which is input to the abstract action.

6 Semantic Issues and Conclusion

Graphical representations of software concepts have certain advantages in conveying infor-
mation to human readers but often lack a sufficiently precise semantics to be amenable to
formal analysis, verification, and reasoning. One of the strengths of Petri nets is that they
provide a simple graphical notation which is easy to comprehend even by non-experienced
readers with a strong mathematical background.

The PNP iodel aims at exploits the comprehensible graphical notation of Petri nets
and their precise causality-based execution semantics. It appears relatively easy and
straightforward to provide a formal Petri net semantics of the PNP modeling approach
by adaptins the formal definition of the Petri net based specification formalism we have
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<O,[N,S,ckd,_ >

scopy<O1°*.[N.S.0]> 1copy<02*,[N.S.0)>

construct-
schedule(01,MC)

control-moduies<C*,[MC,O}> intercon-modules<|®,{M|,O]>

<P*,[opname(N),link(Ms,MC,M|),0]>

Figure 6: Refining an action of the process model in Fig. 5

developed earlier [10] to the new concepts introduced here to accommodate specific re-
quirements of software process modeling.

The advantage of such a Petri net semantics would be that theorems, calculi, and
validation methods for Petri nets can be reused to support consistency checking, liveness

and safeness analysis, verification of the correctness of refinements [14}, and invariant

analysis techniques (5] for PNP models, too. Liveness and safeness analysis techniques, -

for example, would help to ensure the continuity of development activities and to prevent
overload situations prior to executing a given process model. Or algorithms that generate
and analyze the reachability structure of Petri nets might be adapted to support reasoning
about behavioral possibilities and inherent facts of a process model.

The Petri net scmantics also provides the basis for process model animation using
a symbolic simulator for high-level Petri net specifications [2] which redistributes and
rewrites objects according to the specificd rules of change. Symbolic executions might
help to get insight into the behavior of a the specified process and investigate the effects

of alternative procedures prior to the actual execution.
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