
RADC-TR-90-276
Final Technical Report
November 1990

AD-A229 751

ADAPTIVE INTERFACES

Lockheed Al Center

Sherman W. Tyler

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC
ELECTE"

',SDEC IS 1MnT'c

Rome Air Development Center
Air Force Systems Command.

Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public 'fairs Division (PA)

and is releasable to the National Technical Informatic-. Services (NTTS) At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-276 has been reviewed and is ar-roved for publication.

APPROVED:*(AIJ(ý~

SHARON M. WALTER
Project Engineer

APPROVED:

RAI-MOND P. URTZ, JR.
Technirn1 Trprrnr
Utrectorate of Command & Control

FOR THE COWMANDER: /

/ BILLY G. OAKS

Directorate cf Plans & Programs

If yc ,,r address has changed or if you wish to be removed from the RADC

mailing list, or if the addre3see is no longer employed by your

organization, please notify RADC (COES) Criffiss AFB NY 03441-5700.

This will assist us in maintaining a current mailing list.

Do not return copies of this report niless contractual obligations or

notice-; on a sDecific document require that it be returned.

REPORT DOCUMENTATION PAGE I o.Ap0o7,eo
PLA*k'Gqortr,' wow~ few a-,, c c rfoyr cngsesW, e Cu-'~e :o riou~ Do les'.Wna rca.j- Ir tTo mew fcrv-w.w-g r~tr-.indiQmrom s

c.eouon o 'ricmr ,ym . rcidckg ugesaLon for rejrg Iri t' wo to Wes-r~con HaaJC sW, Srvele, Ctreocgre for rtov'rwn OPW= urdR",a z 1215 J.fws.so
Ou&m MQ'b.w*. SLA*10. Ailrigin VA Z322024 a- to Tv a Cfceof MalmgWarO- "- 8Lxcho Pfouwewo(Pe)juzr Pfon (0704-M SM. Weetvwor DC 20=

1. AGENCY USE ONLY (Leave elank) 2- REPORT DATE 13, REPORT TYPE AND DATES COVERED
November 1990 FIinal Mar 89 - May 90

4. TME AND SUBTITLE 5 FUNDING NUMBERS

ADAPTIVE INTERFACES C - F30602-87-D-0087
PE - 62702F

6. AUTHOR(S) PR - 5581

Sherman W. Tyler TA - Q4
WU - C)1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESI(ES) 9 PERFORT NUMBERGANIZATON

Lockheed AI Center [' •. - -.
3251 Hanover Street ',

Palo Alto CA 94303 -- -

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADD SS(ES) 10. SPONSORINCIWONITORING

Rome Air Development Center (COES) AGENCY REPORT NUMBER
Griffiss AFB NY 13441-5700 1 RADC-TR-90-276

_ ___ __

11. SUPPLEMENTARY NOTES/4
RADC Project Engineer: Sharon M. Waltor/COES/(315) 330-3577/ /

12a.p DISTRIBUTION/AVAILA•ILUTY :STATEMENT / 12b. DwsTUON CODE

Approved for public release; distr/ution unlimited.

I ý, ABSTRACT(Near-vj 2~w~5

,, The CHORIS, ftware system is aintelligent interface architecture which supports
mixed modaliti input and output, high-level plan management, adaptation to individual
users and use• roles, and tailoring of system response informatizs, to the currently
executing high-level task and the user's preferences. CHORIS has been extended to
support users with different roles within the command--and-control-style domain of
emergency management. The interface demonstrates the powerful effects that the
functionaliti, captured within CHORIS can have in enhancing ujer performance in
responding yo complex situations in a timely manner.

- - - - - - '.-'-, .,.-

1_ pJBJECT TERMS i I NUMBER OF PAGES". 'Interface, Command and Control, Adaptive Interface, 36

Intelligent Interface, User Modeling a PRICE CODE

17. SECURITY CLASSIFICATICN 1& SECURITY CLASSIFICATION jg. SECURITY CLASSIFICATION 20. UMITATION OF A' STRACT
IOF REPORT OF THIS PAGE OF ABSTR~ACT

UNCLASSIFIED UNCLASSIFIED UNCLASSTFIED SAR
NSN 1540-01 -29 o-5M Stv Kio F or- -Po % 2 8%f

Pro dbtli AN1SI § Z39-14
2gmf(•2

Adaptive Interfaces
Final Report

Contract No.: PAR-SC-87-0087-0O
Principal Investigator: Sherman W. Tyler

Associate Investigators:
Tim Bickmore, Linda Cook, John Tortorice, Robert Gargan

April 1990
Lockheed Missiles & Space Company, Inc.

Lockheed Artificial Intelligence Center

1 Purpose of Contract

-7J The purpose of this research and development endeavor was to design and implement an
adaptive intelligent interface for a command-and-control-style domain. The primary
functionality of the resulting interface was to be able to adapt its presentation of
information to the individual user, based upon the current task and the user's personal
preferences and experiences as captured in an explicit user model. -. . ,.--

2 Dom qn

To fulfill this purpose, the domain of emergency crisis management was chosen. This
is clearly a type of command-and-control domain, and one that is complex enough to
exercise the issues of concern for this effort. In this application, the user views a map
of a geographic area and must respond appropriately when some emergency situation
arises. If, for example, there is a hazardous material spill, the user sees map information
reflecting that spill and might have to determine such things as where to set up the
team of people to contain the emergency, whether the area must be evacuated and
if so, in what way and to what new location, and so on. A range of different users
might be using the system, from someone in charge of state-wide efforts to a person in
command at the actual emergency site. A variety of emergency situations right also
occur, including earthquakes, floods, fires, and airplane accidents.

The new domain is a type of geographic information system (GIS). A GIS is a com-
puterized database management system for capturing, storing, retrieving, analyzing,
and displaying map data. Its notable features are an ability to overlay different sets
of data onto a single map and to do multiscale map displays. These systems are in
wide use for such activities as managing natural resources, analyzing census data., and
assessing natural hazards. In Lockheed, large efforts are underway in both C31 and
anti-submarine warfare to apply CI~s.

N by
Diatributi o0/

Availability Codes
/Avail asd/oi

112J1"SL JIls SPeojal"

3 Tasks

The work encompasses 5 main technical tasks, as follows:

1. Analysis of Current Interface Technologies

2. Dejineation of User Roles

3. Development of User Models

4. Design of Interface Architecture

5. Development of Feasibility Demonstration

The sections that follow will give a summary of how each of these tasks was accom-

plished and the results of that effort.

4 Analysis of Current Interface Technologies

A wide range of devices and modalities for possible use in this domain was considered.
This analysis concluded that the technologies of most value for emergency management

were these. For the input of commands and requests, menu selection, direct manipula-
tion, and natural language, using the combination of a mouse and keyboard, were found
to be most useful. Menu selection permits easy selection and execution of commands
and clearly indicates the range of actions available. Direct manipulation is appropriate
because users in this domain often need to interact directly with objects shown on the
map, to ask for information about those objects (e.g., the bedcount of a hospital) or
to indicate that the object is a parameter for a command. Natural language enables
users to ask for information by describing what is needed when direct manipulation
cannot be easily used. Thus, for example, a user might want to know "What hospitals
in San Mateo County have a bedcount of more than 100", and this could most easily
be accomplished through naturaJ language. For output of information, the best options
involve the use of high-resolution color displays to present information in the form of
business graphs, changes to the map display, or simple natural language sensiences. In

certain settings, the use of speech input and 6utput might be helpful as well, but given
the current state of the art and the frequently noisy environment of an emergency en-
vironmneut, its incorporation in an interface for use during an actual emergency might
be premature.

5 Delineation of User Roles and Development of

User Models

Information needed for the purpose of modeling the important elements of this domain
was obtained from a variety of government agencies. Especiall3 helpful were individ
uals working in the California Office of Emergency Services (OES), both at the state

3

capital and at one of the more progressive regional centers (San Mateo County). These
individuals provided both detailed verbal information as well as books summarizing
general einergency management procedures and analyses of responses to previous ac-
tual disasters. Using these various sources of information, models were developed for
the domaiii ,bjects, comnaandz, tasks, and users. The resulting user models are now
described. LL a. later section, the other models wiU be discussed.

User models for the new domain had to be constructed. In an emergency situ-
ation, many different individvals may have some role to play. This can range from
those trying to contain the local emergency at what is called the Incident Command
System (ICS), to the person in charge of the entire affected region (such as a county
EOC administrator), to the Federal government personnel at the Federal Emergency
Management Association (FEMA). In the initial version of the prototype, two distin-t
user models were designed.

One type of user modeled by the system is the ICS Commander. This is the person
in charge of the team trying to contain the immediate emergency. For example, in
a hazardous material spill, this would be the person directing the group trying to
contain the spill and protect those in its immediate vicinity. This user is concerned
with setting up the local communications network, viewing the local road system,
and warning individuals in the area about the disaster and possibly pick-up points for
evacuation. Figure 1 shows a sampling of the kinds of information stored in the current
implementation of this user xiodel for the CHORIS interface. AUl knowledge bases in
CHORIS are represented as CommonLisp Object System (CLOS) objects. As Figure 1
shows, the ICS Commander user model includes such object slots or attributes as the
commands preferred by this type of user, the tasks typically executed, the commands
and tasks this user is not permitted to carry out, and information on how the screen
display should initially be organized for this user role.

The second user model embodies the Emergency Operations Center (EOC) Com-

mander, the person in charge of handling the emergency at the regional level. This
person must deal with all emergency incidents in the entire region (typically a county),
deciding how to allocate available regional resources to each. This user would acti-
vate the ICS initially when the emergency occurs, would be concerned only with the

main regional highways, would try what if questions covering the entire county, and in
situations such as evacuations, would be concerned with the destination of the evacu-
ation and getting persons from the incit.'nt area to the destination. Figure 2 shows a
sampling of the typical attributes and attribute values for this user type.

6 Design of Interface Architecture

This work was based on extending the CHORIS (Computer-Human Object-oriented
Reasoning Interface System) architecture developed by the Intelligent Interfaces Project

at the Lockheed Al Center. The CHORIS system is a knowledge-based intelligent inter-
face. Its knowledge bases include models of the user and domain, descriptions of domain

4

iii~fljtt in 'c ('. >-11U -Cfi 1: C-Mflar--52Ca Ile St 10W-C i ',Y-1ha 1:3,

C 1-ea rit Is i ~ o; (- 3O1d

"adc;Aiona y-cn,,-ýns -- y-it

:initirm fl)
(Ta ii'Prefs :docu::;cutal-ion, "list of tasks user prefers"

earthquake
fire
a i.r u 1ane -crash
t ralin - crda ~ i
mnedical-incident))

(F~xcludedCrrds :d-octurnentation "cortunands user is not ppermlitted to execute"
initformn ' (aict ivate-cornuiiriunjcation--rit,(work

set -,a3ssembly-points
act ivat e-hazrn3t -team

(Exc-ludediTasks :documkentation "list of tasks user ks not allowed to execute"

(InitialWindows :docuimentation
"List of windows that, will appear on screen when user

f irst logs on"
:initforrn ' (map-window map-corrmands3 agenda-cmds

event-logger
nl-qu~ery netcom icons))

(AllWinidows -documentat ion
"Total litof wi.ndowr, - noct that some will no-t be

exposýed at the start"
.mit form ' (map-window map-corrmands ni-query

context-graph
event-logger netcom clipboard

(LayOutPteferences :documrentation
"The layout, preferences for the EOC Corviander

as needed by the Display Manager"
initf orm (pcl: :*mnake-instarlce

linterfaceview
mtap-wi ndow
'(:region (0 300 500 599)

bay-area

(:metaclass choris-metaclass))

Figure 1: Sample of the EOC Commander User Model.

(de ci as's 1c" -CoriuiiaIndk r (ao c UcM~l'1
Hdocument at i oill i is tOlie user miode~ I thc It;CSomiiiie
(CmdPrel:is :documinetaL io i i t of conuniiidi.; tv;er [)r(Žters"

init foInI ' cs a-nic siuayc lear-icons; t.-h1(zte
., 2 L -mrrtp -,-;C ca e
di splay -i consý-by-c it. y
dF i,;p lay- iconr,-by-County
ho r Icopy - ýuiwiuuor)

(TaskrPrefs, (:document-ationi "list of tasks user prefers"
:initformr ' (hazmat-spill

tearthquake

a i rp1 la ric - c ra sh
train-crash
mnedical-incident:)

(Addit ioz'ia1C:inds :dacuinenitat ion "addit joia 1 coiuuiands on pec:; i.stent c~inid enu"
:initformn ' (locate-hospitals show-roads

acl.-ivate--comiunuficat ion-not work))
(ExcludedCmds :documen'tation "commnands user is noc permitted to execute"

:initform ' (notification
get -icon-ainto-by-di st.aiic -- rein-po int-
number-of-people-at fected

(ExcludedI'fask's :cocuinentatior, "lis-t ot task6 user is not Allowe26 to OexeCute",
:initform ' (eoc-loc-determiinat ion

regional-situaticn-gaming))
(Initial~qindjows :doc;-~eritation "List of windows that will appear on screen

when user first logs on"
:initform ' (map-Window map-commands crnd-task-graphi
..)

(All'.-indows :documentation "Total list of windows - note that some will not
be exposed At the start"
:initforrn I (map-window map-comruands context-graph

event-logger netcom clipboard

(LayoutVIreferences :documnentation "interface view for 1CS COMMA-VINDER.1'

'interfaceview
:map-window
'(:region (0 300 500 599)

bay-area
(:min-)_ongitude -122.850716

(:wetaclass chotis-metaclass))

Figure 2: Sample of t~he ICS Commnander User Model.

6

LLIE

- --- _ _____ I i,)U /Otj'l. /__uLp

r; !! " ((er
I-i

I I0..-v I cd.',: . ISC .
Plon VocabulaiyI 1-? 5s ectitaLi0n

'Ianaer Uomain Model Manaer
Command/lask Model

tJW;er Model

LLFLYLLPa sitor1

-igure 3: The CtIORIS Architecture.

conunands and tasks, and a representation of the domain vocabulary. The nature of

each of these knowledge bases in the emergency management domain is discussed more

fully later. These knowledge bases ale in turn used by several domain-independent

r-asoning modules (see Figure 3). These reasoning modules are briefly described next,

followed by a more detailed treatment of each major reasoning component.

The Virtual Termi-inal (VT) module contains those aspects of the interface that

are tied to the particular hardware the interface is running on. The Input/Output

Manager is where the input from the user is integrated and converted from its human

understandable representation to the logical form used by the interface for reasoning

purposes (and vice versa for output); this module also executes display coniniaids. The

Plan Manager analyzes user input aud produces a iepresentation of the high-level in-

tention(s) of the user, which becomes the basis for developing a plan to accomplish the

implied goals of that user on the target application. The Adaptor module is responsible

for monitoring the actions of the user and a lapting the features and behavior of the

interface to best suit that user and the currently executing task. Finally, the Presenta-

tion Manager takes the information returned from the application as the consequence

of a user request and dynamically deternmines how to best present this information. A

more detailed treatment of these reasoning modules now follows.

"7

7 Input/Output Manager

The primary purpose of the Input/Output Manager is to integrate multimodal input
(e.g., mouse picks and natural language) into a single logical revresentation that can be

used by the interface to reason about the user's actions. On the output side, it takes
the high level commands from the Presentation Manager and translates them into the
lower level generic operations required by the Virtual Terminal. A major focus has
been on integrating the natural language (NL) processor into the overall architecture,
having it serve as a useable tool for obtaining information and for taking actions. This
component aims at making it easier for users to communicate intent. Supporting NL
and mixed modes of input allows for naturalness of interaction; the user is free to use
the direct manipulation or NL descriptions, whichever is easier.

This work built on the natural language processor Chat-80 developed by Fernando
Pereira. Chat-80 is : natural-language query-answering system implemented in Quin-
tus Prolog. The research done in modifying Chat-80 was done in collaboration with
Fernando Pereira and Phil Cohen of the Al Lab at SRI International. The modifica-
tions to Chat-80 consisted of adding the capability to 1) interpret deictics (pointing
acts as with the mouse to elements on the screen) that are inserted directly into the
lexical string being entered by the user; 2) process imperative sentence structures to
support NL annotation of commands using forms; and 3) maintain a graphical repre-
sentation of the discourse context for anaphor resolution. This section presents a brief
examination of this component (for detailed information, see [Cohen89]).

Deizis -- In everyday language, deictic utterances, consisting of words such as this,
that, and those, typically accompanied by a pointing gesture, axe often employed to

point out something directly. Deictics can reduce referential ambiguity and enable suc-
cinct NL input by increasing the communication bandwidth. In the CHORIS interface,
a preprocessor handles the insertion of deictics into the natural language input window.

An example of the use of deictic reference in the emergency management domain
would be the user typing "What is the capacity of these schools pick pick pick ?". The
three "picks" would be mouse selections from the graphical depiction of the schools on
the map and would produce a query with the syst,.:ms's names for each pick entered
in the NL string. Equivalently, the user could have typed the full name of each of the
schools.

As can be seen from the example, the use of deictics provides an elegant way to
combine the generality of NL with the specificity inherent in the graphic items depicted
on the computer screen to provide the user a more natural method of interaction.

NL Annotated Cornmandi - A common feature of user interfaces developed in the
last few years is to have mouse sensitive "menu" commands (e.g., DELETE, MOVE,

OPEN) that, when selected, activate a prescribed action. Often these commands
require the entry of an &rgument, either by selecting a -mouse sensitive item on 4he
screen or by typing in the argument (e.g., the OPEN command would require the entry
of a file name as the argument.) Modifying Chat to handle imperative sentences was
done to add considerable flexibility to the ways in which users can specify commands

8

and the degree of structure provided by the system in support of coma-and cutry.
At present three levels of commands have been implemented: i) the standard

method as described above, which is the most structured and least flexible.; 2) a forms
based %,-,ion that ailows the user to enter NL phrases in the argument slots; this
niethud provides the structure of the standard method, but adds considerable flexibil-
ity in specifying the arguments; 3) complete NL entry of command as an imperative
sentence; this method has minimal ctructure but maximal flexibility. The forms mode
of command entry provides the user with a fairly high degree of structure. The com-
iiiand options are selectable from a permanent menu or submenus thereby making clear
the legal command options and reducing the burden on the user s memory. By adding
the option of usixig NL phrases as the arguments, the user now has flexibility in spec-
ifying the command arguments and can easily initiate actions which would be most
cumbersome within a direct manipulation style of interface.

Graphical Anaphor Resolution - Anaphora occurs when a speaker uses certain
words (anaphors) to refer back to people, objects, events, etc. that were previously
mentioned in the discourse context. Although anaphora is used effectively in conversa-
tions, the heavy reliance on memory cap contribute to misunderstanding and confusion
when the memories ('discourse models' in linguistic terms) of the listener and speaker
do not correspond. When a NL processor is the 'listener' this problem is exacerbated
(the maintenance of a good discourse model is computationally very expensive).

In analysing the NL requirements for various domains, many situations were found
to benefit from the capability to use anaphoric references. For example, the person
responsible for product assurance might be trying to trace down the source of a manu-
facturing problem. To do this, he might begin asking questions that become increasingly
more specific. In these situations the individual is branching down a decision tree in
pursuit of a solution to the problem. That is, he is establishing a dynamic discourse
model in which each question builds on the previous questions and their answers.

To accomp!ish this task using a standard database query language would require the
user to build longer and longer queries as the questions become more and more specific.
A more parsimonious approach is one that permits the user to ask simple NL queries
that refer to elements of the discourse context estabLished by previous questions.

To avoid the computational problems associated with currently offered processing
solutious to discourse models, a graphics based method for explicitly maintaining and
presenting, a disccurse model was developed. Figure 4 shows an example of a window

that is generated in response to a NL c uery. These windows are the basic elements of
the graphical discours,' model. Each window has attached to it Contexts that allow
the user to ask follow up questions referring to just items that are in a particular
context. This restricts Chat's query planner to query the database only about those
items that are in the current context. In the example window the context is TEST. To
ask a question just about the tests shown in the example window, the user would select
TEST and then type the question after the prompt "FOLLOW UP:" in the figure. The
system's response will be just for those tests.

A question histrry window displays the intekrelationship among all the questions

9

1115 ,IOtJSL :. .

r',JrntIr sit bisrd; irs s'itds ittl thi.tt husi '.slth trt

r n ber ut bo.,.l

, LIt iiJ llK
numbu l of l b a sn 6 j 1,t thCq tilul, test

.Ih lot

t Oil (3W I-.

S(:ok U s tdv.• fo-l k

Figure 4: An Example Response Window,

that have been asked. It can be called up as a system facility by opening the "?" icon.
If the user needs t.c ask another question in relation to a previous one, for example, s/lie
can pick that response in the Question History Window and the system will redispl.ay
that window. The user can then enter a new fohow up questicn in the contexts available
at that point. The system wili display the response, and the question wiql be added to
the question history window (see below for rmore discussion on this facility).

CHORIS provides the user with the capability to make anaphoric references to
previously answered questions by combining a graphic context environment with NL.
Because the system handles the context the user no longer has to build more and more
specific queries. The graphics interface makes clear what the current context is and
the series of questions that lcd up to the current response.

8 Plan Manager

The Plan Manager has as its primary function assisting the user throigh knowledge
about typical plans for achieving high-level goals on the target application. Operating
from knowledge of the user's current goals and plans, the interface can: detect and try
to correct global errors, errors in user plans that would not otherwise be regarded as
nistakes; complete high-level tasks, as by filling in default parameters and directly ex-
ecuting the system commands composing the plan steps; interpret ambiguous requests;
indicate the current state of an executing plan; and in general help the user in mapping

10

"" - -- - - , ' ,

/ ,- i

"/"

/C Q

ligurc 5: Ai Example Task Ili"archy: Manage Ilaziat Incident.

I ,h.i,-el i'oa] it ,) the hw -levei coinnmands of tile aptplicatio*
--- 4Q - 1 0•

Such a plan-based approach requires three critical elements: 1) a declarativc repre-
seatation of plans; 2) routines for utilizing such representations to diecctly assist users
;it their iMteractions, as described above; and 3) the reasoning ability within the inter-
fatx tv deterinin- what particular goals users are trying to achieve. To date, substantial
pogress has bccii made ui the tirst two elements. A useful way of representing plans as
a stpaiate knowledge base within the interface was developed. Plans in the interface are
rcprcscI~tcd as object liacrarcdies, with each object standi'ig for a substep of the plan.
lFigTre 5, for cxample, shows the object hierarchy for the Manage ibzazardous Material
Spill task mii the i emnergic'.- ijian agenieut prototype. Thus, when an ICS Commander
inimst InallatC a hazarduu:, iniatliýI'.1 spill, the system knows that this task consist of
sudh stcps as activating the hazriiat teamii, aloing a situation assessment, activating a
, .immunication network, aud so on. Thus, the top of the tree represents the high-level

g.)al itself, non-leaves constitute substeps of the plan for achieving that goal, and, at
the lowest level of the hierarcIy, the leaves stand for actual commands that can be
61 *.'cn to the systeij.

lFaCh step .,f tie task, as an object, is described by a number of variables or slots.
The most crqti al variable is a list of the iiilinediate subbteps of the given step and of the
interreiationships aiiong those substeps. The interrelationship information includes the
required preceding and following substeps of a given substep, as well as the nfinimum
and ziiaxiinuiri number of executions of that step permuitted in executing the task.

The second main element of the Plan Manager, namely, the routines to support
assisting isers based on their current goals, has also been realized to a significant degree.

11

Thus, the interface can consider the commands and arguments to commands provided
by the user, compare those with the constraints on the task substep's parameter values,
and thereby detect global errors. This same mechanism allows the interface to make
reasonable guesses, about what default parameters are appropriate for the current
task step, and to provide these automatically for the user. In this way, ambiguous
commands and incomplete commands can be specified without the need for precision
and completeness on the user's part. The interface can also provide an indication of
the current state of the plan. This is done by graphically displaying the task hierarchy
in a separate window on the screen, with the currently executing step highlighted and
those steps already execated shown boxed. The current interface prototype supports
executing several tasks at once, or suspending the execution of one plan and resuming
it at another time.

9 Adaptor

When the range of user abilities and roles is large, or there are varying constraints on
task execution (as rapid vs. self-paced response times), having a single interface for all
situations is inadequate. Different users will need more or less descriptive information
on interface features, will require varying commands in interacting with the system,
and will operate best when their view of the domain is tailored to their role and when
!he format mf th. tnfo^mat- n utr . r-m t.. system supports the k._ind Of .VI--b.i:.

they must make. Therefore, another powerful capability for an intelligent interface is
the ability to adapt its own features to the needs ead preferences of the current user
and the user's present task.

There are three key issues that must be addressed in designing and implementing
the Adaptor: when to adapt, what to adapt, and how to adapt. The solution to these
three issues, as well as a discussion of the major components of the Adaptor, will now
be considered.

When to adapi . Dialogue Phaaes. To answer the first question of when to adapt, the
system must have some way of looking at the dialogue that permits detecting changes
in the current dialogue state that warrant adaptation of the dialogue as the next state is
entered. In the Adaptor, this issue can be resolved by viewing the interaction of the user
and the computer system as consisting of a series of interaction events, with each event
in turn composed of a set of distinct dialogue phases (see [Benbasat84D). An interaction
event is an atomic unit that brackets the actions from when a user enters a request or
command until the system returns a response. In the basic sequence of phases, the user
enters some input, such as a natural language request (lnputNLPhase), the response is
sent on to the system for execution (ExecutionPhase), and the response of the system
is displayed to the user (SystemResponsePhase). Looking at the dialogue as a series
of interaction events, each composed of such phases, provides a way of organizing the
Adaptor so that: 1) it is triggered at the appropriate times, i.e., when an event causes
the dialogue to enter a new phase; and 2) the adaptive mechanism can be applied
in a discrete fashion, considering only what can be adapted in the interface for the

12

impending dialogue phase. This leads to the second issue for the Adaptor.
What to Adapt .. Dimensions of Interface Variability. To determine what to adapt,

the interface needs to know what the possible range of options is for each major attribute
of the interface at any given point in the dialogue, and must be able to select any
appropriate combination of those features for dynamic realization. Much of the power
of the Adaptor arises from its interaction with the other interface modules: calling upon
the user model to interpret ambiguous input, reduce the search space of possible user
intentions, and indicate how best to organize the interface to meet user preferences.
In isolation, the Adaptor in the emergency management prototype of the interface
currently considers four primary dimensions of variability. The first is the screen view
of the geographic area, that is, the map. The system can present various geographic
areas and can scale these to varying levels of detail, depending on the needs of the
user. The interface is also able to vary the commands provided to the user for direct
or forms-based execution, and can similarly vary the hig1l-level tasks made available
in the agenda or task hierarchy windows. An EOC Commander, for example, could
be directly supported in taking the necessary steps to handle an earthquake incident.
The interface can also select certain facilities, such as the Event Logger or the Netcom
(see below), to be open by default for a given user. Finally, the interface ran vary the
way in which data is presented to the user, showing users information in their preferred

mode of viewing.
How to adapt - Main components. Figure 6 shows the major components of the

Adaptor and how they interrelate. Each of these components is inctantiated in the
interface as a separate object or group of objects (in software terms). Aside from the
knowledge bases, the main components of the Adaptor are these: the Monitor, which
updates each of the different knowledge bases as conditions change; the Accessor, which
provides generic functions for obtaining information from each of the knowledge bases,
allowing other interface components to use them without having to know the internal
details of their structure; the dialogue phases, each of which has parameters describing
how the interface should look when that phase is entered as well as rule sets for adapting
the interface for that phase; and an ExecutiveRouter, which decides, when an interface
event occurs, what the new dialogue phase should be, and coordinates the overall
operation of the other Adaptor components..

How to adapt - Operational details. In general terms, adaptation occurs as follows
(see Figure 6). When a significant interface event occurs, the Executive Router is called.
Based upon the current dialogue phase and the nature of the event, this component
determines what the next dialogue phase should be. The original dialogue phase is
then called upon. It typically updates some of the knowledge bases, recording in the
user model, for example, that a given command was successfully executed from a form
by the user. The old phase also adjusts the interface if necessary, as by removing
interface features associated with that phase (e.g., a particular menu or form). The
Executive Router then calls upon the new dialogue phase. The new phase exercises the
most fundamental mechanism of adaptation by firing its particular set of rules. These
rules consult the state of the appropriate knowledge bases through the Accessor, and

13

LEXeCCJtivC riout•''

_ _ A _

- i c U,--,.-0_

Old Dilo D orr -Ici0 1 F[,._I<=3 cT
Po s (D e Dalou

0 "intcertace"' ' j s[S
r S

SInter[ace

Figure 6: The Main Adaptor Components.

based on the contents of these knowledge bases, the main parameters of that dialogue
phase are set (details on the fokm of the rule sets for cach dialugue phabc trau.isiiou

can be found in [Tyler86,TyIler88]. The new dialogue phase then determines what
features should be present in the interface based on the values of its parameters, and

the interface i:• accordingly modified. The resulting action can range from something

very simple, such as constructing a form for filling in the arguments to a command, to
something much more complex, such as defining the context for a high-level task, which

involves displaying graphically the task substeps and their states (e.g., executed or still
to be accomplished), inferring default parameters and actions, dynamically designing

menus of substeps, and interpreting user actions in terms of the selected task.
The impact of this module can be seen in a number of the features of the example

screen of Figure 7. First, because the user is concerned with emergencies throughout
a given region, the view provided by the map (left window) shows the entire Bay Area

at a relatively low level of detail. Furthermore, the set of map commands offered in
the menu attached to the map have been filtered to include only those actions this
user would likely want to perform (e.g., looking at the locations of city halls as possible

EOC locations). The system also determines how to show information to the user based

upon that user's needs. Therefore, Figure 4 shows a barchart, facilitating detection of
trends. Another type of user or task might suggest instead that actual values were

more important than trends, in which case, the interface would display the data as a

table instead.
None of the decisions made by the interface are final, however. The user is given the

option of making other choices. Hence, under the Map Commands menu, there is an

entry callcd Additional Commands which allows the user to ,elect a command not on

14

the immediate menu. If the user selects a particular command from that additional list,
then that fact is recorded in the user model. If the command is selected often enough,
the interface will automatically add it to the main menu. Similarly, when tie system
generates a response, as in Figure 4, the user can use the mouse to bring up a menu of
possible alternative ways of showing the same data. If one of these is selected, the data
is redisplayed in that format, and the user model is updated; enough such selections
can lead to a decision by the interface to modify the way it shows such data by default
(this is also discussed in the next section). The overriding objective of the adaptor
module, then, is to assure that the interface is modified to best suit a given individual's
needs, thereby easing the user's burden in accomplishing tasks on the system.

10 Response Planner

The final module of the intelligent interface is the response planner. A response planner
is needed for several reasons. First, different users prefer to see the same kinds of infor-
mation in different fashions. Additionally, there are many different types of modalities
and techniques within those modalities which are accessible. A response planner can
examine the data returning from the application and determine the most appropriate
modality and modality technique(s) for presenting the information. Finally, having a
response planner removes the requirement that the designers continually redesign and
implement the output side of an applicattion each time system requirements change.

There are three steps to planning a response - 1) expressiveness, 2) effectiveness,
and 3) adaptation. These steps are incorporated into the selection of modality as well
as one or more techniques within the chosen modality for presenting the information
to the user.

Rather than describing modality selection and technique selection (which is dis-
cussed more fully in [Jr88]), this paper presents the basic process in terms of the three
steps introduced above.

Expressiveness Expressiveness is a measurement of a presentation technique's abil-
ity to present the given information [Maddnlay86]. During this test, the Response
Planner examines and compares the information to the constraints of the various pre-
sentation techniques. For instance, during technique selection, if some numerical in-
formation, some symbolic information and some relationship between those two ifields
exists, then a bar chart can be used to fully express the information.

Effectiveness The effectiveness step compares the expressive techniques and modal-
ities within the context of human perception and understanding. Values used for com-
parison come from a user model which has inherited the values from the canonical user
model. The canonical model contains general perceptual information (size of bars in bar
charts, line widths, spacing, frequency, etc.) [Cleveland84,Hochberg86,Tukey861 and in-
formation comparing relative values of one technique versus another [Clark86,DeSanctis84].
For example, the bar chart's effectiveness step checks for the number of bars. The

15

greater the number of bars the more difficult it is to distinguish the relationships be-
tween any two bars. This is a result of a greater distance between the first and last bar
making it more difficult to distinguish relative height.

Adaptation The last step in the response planning process is to adapt the response
to the individual user. Here the techniqaes which have passed the effectiveness test are
ordered based on which technique can most support the user's intention. Finally, the
response planner presents the information using the technique within that list that the
user prefers. So, for example, one user may prefer to see specific numerical information
in a table, while another might prefer a bar chart for that same data.

The response planner considers a variety of techniques and modaliti!s each time the
user issues a query or a command to the interface in a similar process. As a r dit, it
is unnecessary for an interface designer to sit down with the system in order to -ayout
all the possible responses. This means that us the users or the underlying application
change, it is not necessary to "redesign and construct" the output of the interface.

11 Development of Feasibility Demonstration

The main focus of this research endeavor was to develop a running prototype implemen-
tation of the CHORIS architecture in the new domain of emergency management. Fig-
ure 7 shows an example screen from this implemented demonstration. To construct the
implemented system involved a number of activities. First, although originally devel-
oped on Xerox-1186 computers, it was more appropriate to implement the new domain
in a more standard environment so that it could be run on widely available hardware,
including Sun computers. To this end, the Interlisp code was translated to Common-
Lisp and and the CommonLisp Object System (CLOS), and the X-Window system
was employed for window management. In addition, since the major action necessary
to implement CHORIS in the new domain involved building the new domain-specific
knowledge bases, some tools were developed or extended to facilitate this process. In
particular, a tool to aid with defining the domain objects and their relations was de-
signed.

The actual implementation of an intelligent interface for the emergency management
domain required constructing both domain-specific knowledge bases and a number of
special interface features or facilities to aid the emergency manager. These are now
detailed.

11.1 Knowledge Bases

Aside from the user models, which have already been described, the new knowledge
bases required for the CHORIS architecture included the domain objects and the corn-
man'ts and high-l vei tasks for acting upon those objects. These are now briefly de-
scribed.

16

.c

L-i jf \l)

I l

ICI. 4 j-

Figure 7: An Example Full Screen: EOC Commander Managing Earthquake

17

Cr ,-.i ý_ bjects

Buildings Resources Media

S~/

HospitalIs Schools Transporotion

Name-
Location:
ERCapacity:

Bcdsnavai I: Buses
Medical.-.pec: Name:

Phone:
Units-avail:
Cap-per.unit:
OES._assigned:

Figure 8: An Example Domain Object Taxonomy.

To capture the important items in an emergency situation, a wide variety of domain

objects had to be represented in the CHORIS domain model. A portion of the resulting

domain object taxonomy is shown in Figure 8. This included representations for such

things as buildings (e.g., hospitals, schools), resources (e.g., transportati on), roads, and

organizations (e.g., Red Cross, Highway Patrol). Each of these objects was captured as

an object in terms of a number of key attributes. Especially crucial were the map icons

associated with each type of object, since these provided a way of displaying the object

visually on the screen and thereby allowing the user to both view and interrogate these

objects for crucial information. Figure 9 shows a portion of the representation of a

domain object.

The commands and high-level tasks of the domain were also embodied in an object-

oriented formalism. Individual commands include such things as displaying an incident

sunmmary or printing detailed information on a certain map icon. Many of these com-

mands require some kind of map interaction. The task representation was designed
to capture the ways in which experts achieve more complicated goals in the domain

through a series of individual commands. An example of a domain task is shown in

Figure 5 for managing a hazardous material spill. As shown in the figure, handling such

an emergency requires activating a hazmat, or hazardous material, team which tries

to contain the incident locally; assessing the situation; activating a communications

network; doing some situation gaming to try out possible future scenarios; possibly

evacuating endangered personnel; and so on. This representation enables the interface

not only to guide users in a step-by-step fashion in dealing with emergencies, but also

supplies highly useful knowledge for the purpose of training new users. Figure 10 shows

part of an example task representation.

18

(de fc lass bui (din rgs (phys ica I -oh joct
:n0ocumertat ion "Tile generic def init ion of a bii iding"

(SystemName :doctimentation "The system's name fox the building"
:allocat ion :class;)

(act ions :doc-umentation "Act ions appropriate to the buildii;g"
:allocation :class)

(name :documentation "The common name for the building")
taddress :documentation "The street address of the building")

(people-capacity :documentation "The number of people building holds")
(adult-furniture :documentation "whether furnished foe adult vs child")

(general-purpose-room :docuimentation "whether large general room pre:ient")
((cod-service :documentatioi, "If food available at building")
(parking-capacity documentation "Number of parking spaces")
)emerqeacy-pwr-generator :documentation "If has own power generator")

(site-status :documenLation "Status of site - occupied, active, etc.")

)puiblic-address-sys :d~ocumentntion "If ability to address over intercom")
(pthono-number :documentation "Phone number of main switch")

(contacL-person :documentation "person to be contacted in emerqency")

(closest-highway :documentation "Name of closest main highway"))

r:metaclass cher is-metaclass))

Figure 9: Example Domain Object Representation: Building.
(de:class l)AZMAT-SPII.L, (t.omainTask(

:documentation "trask for HAZMAT-SPILL. ")

((CallName :documentation "The symbolic name used internally for this task."
:initform 'IIAZMAT-SPILIU)

(OnlyMenu :documentation "the menu entry to displiy for this comunand."
:inittorm "HAZMAT-SPILL")

(OrdyPrompt :documentation "The mouseline prompt for this rommand."

:1nitform "To handle emergency hazardous material spill")
(PossibleSupersteps :documentation "The possible sup rtasks of this task."

:initform ' (MANAGE-CRISIS))
(SubstepList :documentation "The subtasks of this task."

:initform ' 1ACTIVATE-HAZMAT-TEAM

S ITUATION-ASSESSNMENT ACT: VATE-COMNUNICATION-NETWORK

EOC-LOC-DETERMNINATION NOTIFICATION

Regional-SITUATION-GAMING

local-situation-caming EVACUATION))

(SubsLepilcqs :documentation "Paramcters 01 the subtasks of this tank."

i n itform
((ACTIVATE-l)AZMAVT-TEAM 1 1 111

NIL nil
(SI TUATION-ASSESSMENT) Il [i,)

(SITUOTION-ASSESS:EJTY 1 99 (ACTlVATE-l);,ZMA'r-'Tt:At) till.
(ACTIVATE-IIAZMAT-T'EAM) NIL tii),)

(ACTIVATE-CO•MUNICATION-NETWORK 1 99
(ACTIVATE-IIAZNAT-TF.AM) nil

(ACT 1VATE-)IAZMAT-TEAM
SITUATION-ASSESSMENT)

NIL NIL)

(SubstepRelations :documentation "OR-Any subtask achieves task completion"

:iritform 'OR)
(SubstepExecutions :documentation "List of 1substep #) pairs giving

number at times executed."
:init form

'((ACTIVATF-11AZMAT-TEAM 0)

(SITUATION-ASSESSNENT . 0)

(ACTIVATE-COMMUNICATION-NETWORK . 0)

(Graph :documentation 'graph associated with thrs task"))

Figure 10: Example Task Representation: Manage Hazmat Incident.

19

11.2 Map System and Map Commands

In the implemented system, a large portion of the screen is occupied by a geographic
map of the region of immediate interest to the emergency manager. The map has two
main features: it can be zoomed in or out to show the appropriate level of detail; and
it can show and remove a variety of different map objects in an vverlay fashion, such
as roads, schools, hospitals, etc. The map is designed to convey the current status
of the emergency situation to the user, but also to enable direct manipulation kinds
of interactions. Thus, if the user buttons on an icon such as a hospital, the system
will display information summarizing the details of the object represented by that icon
(street location, bedcount, etc.). Furthermore, if the user selects a command that
brings up a form and the user buttons on an icon appropriate for the current slot of
that form, its relevant representation will be placed in the form's slot.

Associated with the map is a menu of commands that remain permanently avail-
able to the user for manipulating the map. This set varies with each user, but can
include such operations as changing the map center or scale, showing certain types of
objects as icons on the map (e.g., city halls, towtruck companies), clearing selected
icons from the map, or drawing the road system. Most commands, when selected, as
indicated above, can be filled in through menu selections and simple type-ins or by
direct pointing operations to the appropriate map objects. The forms and their slot
values are constructed dynamically from the system's command knowledge base, and
so the command set and the parameters of any given command can be easily altered
by simply modifying that knowledge base.

11.3 The Natural Language Input Window

The Natural L"uguage Input Window, which is located in the top righthand corner of
the screen, allows users to type queries to the system in natural language. Typically,
in this type of domain, this facility is used to request certain information that cannot
easily be asked otherwise. An example sentence might be: "What is the bedcount of
each hospital in San Mateo County?" The system passes such queries to the natural
language processor, a modified version of Chat'80 which runs in Prolog. The natural
language processor returns a logical form representing its parse of the sentence. In this
case, the logical form would look something like:
"answer(X) := hospital(Y), in(Y, san mateo), bedcount(Y,X)".
This in turn is used by a translator module to retrieve the relevant information from
the knowledge bases.

This natural language capability has most of the same limits in its range of com-
prehension as the original Chat'80. It can fail for two main reasons: it may not be able
to parse the sentence; or it may not be able to find any information in the knowledge
bases which satisfies the logical form. The system is currently limited in its feedback
to providing users with messages indicating which of these failures occurred. However,
there is fairly wide coverage for the types of information emergency managers might
need to assist them in reaching their decisions.

20

'LLtK W-HIGIONAL-EOC

'EVACUATION

IS11)~ATE-N~IDIX-OF-Firf~l'tE-10-LVAL:UATE

1JETE~aC~'(tE-M?3D-OF-ThANSIOTATICrD4-tmITS

Figure 11: The Agenda Facility.

11.4 The Agenda

One of the main capabilities provided by CHIORIS is the agenda facility. T'he agenda
represents a list of commands commonly done by emergency personnel in a similar
situation. The commands are organized hierarchically into tasks to help organize the
work of the emergency specialist.

"To produce the agenda, CHORIS maintains a hierarchical organization of com-
mands and tasks for various application modes. In the current implementation, appli-
cation modes include Emergency Operating Center (EOC), hazardous material spill,
and medical incident. For each of these situations, CHORIS maintains a list of comn-
inonly associated commands organized into a task tree. This task tree can be used
directly in CHORIS to view the entire structure at once and to execute commands by
selecting leaf (command) nodes.

Although this tree can be instructive to view, users in general would finid it difficult
to navigate the complex task structure. Instead, the tree structure has been collapsed
into a scrolling menu facility with indentation to represent a lower level in the tree.
Nevertheless, the graphical depiction of the task hierarchy is available for browsing in

CHORIS.
CIORIS maintains a significant amount of information associated with each node

in th,_- task tree. Tasks are differentiated from commands by having an arrow to their
right indicating more information is contained "below" this item. Obligatory commands
and tasks are differentiated from optional ones by italics. Furthei, commands that have
bee'i executed are indicated in the agenda as blue. In some cases these items can be
executed again, if appropriate.

Initially, CHORIS loads the agenda with the first level commands or tasks for a
given situation. Conumands can then be directly executed or tasks can be expanded
into the next level of nodes. Figure 11 depicts the agenda during an iiteraction with an
EOC officer. In this figure, the "evacuation" task was expanded to reveal the commands
within thi's node.

21

11.5 The Event Logger

One problem associated with crisis situations is the effective managcment of an over-
wh'1icuing volume of information about events that result from an on-going emergency
situation. Often, this information arrives piecemeal (reports stagger in, detailing vari-
ous states of an event), is sketchy or incomplete (i.e. two different reports may describe
the same event in a substantially different manner) or is of questionable origin because
it comes from undetermined or unofficial sources.

The crisis management unit has a number ot responsibilities regarding the manage-
ment, control and use of this information. One task is to track each event as it unfolds
since more information about an eveut enables crisis managers to make more informed
decisions. Thus, it is necessary to support the saving, retrieving and updating of event
information as it enters the emergency control unit. Interface support for this neces-
sitates a logging system that is capabie of recording important attributes about the
incoming event including the time it is logged, a brief message describing the nature of
the event, its location, the person reporting the event, to whom the event information
was routed for attention and the capacity to update events as new information becomes
known. Finally, crisis managers make decisions about events such as the resources that
have been allocated in response to that event - and such information sholdd be readily
available. A second information processing task that crisis managers require is the abil-
ity to look at all on-going events from a number of different perspectives. For example,
they may wish to know how many road accidents are currently active and the location
of each.

The CHORIS interface has an event logging capability that allows the user to store,
retrieve and update event information as it becomes known. It contains a scrollable
window which displays all recorded events, in the order that they were reported to the

crisis manager. Shown for each event in the window is the event number, the type of
event, the event location and, finally, the current event status (either active or closed).

Buttoning on each individual event shown in the window allows the user to either
display a more detailed record of that event, including all currently known information

or to update that event wilh additional data. The event logger can be activated by
selecting the Log New Event button. This action results in a new event-report form
which the user may fill in with all currently available information regrading the event.
That event and its relevant information is immediately visible in the event logger's

scrollable window displaying all on-going events. Figure 12 shows an example of the
Event Logger during an ongoing emergency.

11.6 The Netcom Facility

The network communication tool (NetCom) is the primary communication link between

nodes of the emergency management system. It allows different individuals on different
machines to communicate electronically with one another. At login, the user is asked
for the role s/he will play in the domain (EOC, ICS) and for the type of incident,
and these two facts establish the user's address on the net. Some means for users

22

e l I vaenhquaie ILOC: Loma P >>eta IStatu u'i~n
Lo Iatiao Spil ,ILOC" Ho].ly &: 1 IS2atus &ct v8

Iujat overpa$3 Co~lapl~S LCTrOItauun

Figure 12: The Event Logger.

to connunicate is vital within the emergency management domain. In most current
emergency offices, this is done through telephone or walkie-talkies. In CHORIS, it was

most reasonable to make it an electronic facility which could functioa as an integrated

part of the entire system.
At tool initialization, an asynchronous process is created which queries the file

system for a mail f-ile addressed to the given user. If such a file is found, it is sent to a
second process to be handled as an incoming messageL and the header of the message

is posted to the Net~orn window, if it is open, or the NetCorn icon is flashed, if it is
not open.

The NetComn window itself allows three different actions. The user can mouse the

Send button to send a message to another node on the network. When this is done,
the system presents the user with an input form consisting of recipient, subject, ~.nd
message sections. The recipient is chosen from a menu of known network nodes (based

upon previouFlogins). The subject line is what will be posted to the reci.ient's NetCom

window when the message is sent. The main text is entered in the message section.
Once the subject line of a message hs been posted to a given Netcom window, the
user car mouse thfit lie to get a menu that allows either deleting it or displaying the
message contents in a new window. There is also a button that allows users to review
the entire message history (Retoie) and aother for hiding the NetCorn window. Figure

13 shows an example of the Net.om facility in use.

23

To: ICS- CJtA.WLh -K ZhAT-hSp eLL

11.: CTahlp•b
Enter your message belov

T• hree (3) cranes vilL aLrivn atil

cpityouM location es 47ts

ICS-Tat thAZT Evacuation D oto
CHP Toxic $pill,.

CliP In• xai Eart~hquake Report

Figure 13: The NetCom Facility. a

11.7 The Clipboard

The Ctepboard facility is a simple data management window which corresponds in
function to the metaphor of a clipboard in the sense of offering a free-forl, note-takingi
capability. Mousing the Clipboard icon opens the window to this asynchronous procesm.
To add information to that window, the user mouses the Add button. The response
is a new window which provides an area for text input and buttons for signaling the

termination of textp entry. After the text has been typed and the Done button selected,
the text is displayed on the main Clipboard window. Text entered in this way can also
be removed from the Clipboard by mousing the given text line and selecting Delete
from the resulting menu. The Clipboard serves the function in the current domain of
allowint the user to enter simple reminder mtestions that may not be covered by i he
normal task steps as described in the Agenda.

11.8 The Question H-istory

Also within CHORIS, the user has the ability to retrieve answers associated with previ-
ously asked questions. These questions are presented in a scrolling menu-style window
and selecting a question retrieves its entire response window. Not only is this facil-
ity useful for examining responses to past questions, but -also the user could issue a

follow-up question to the retrieved question. In other words, the user could follow one
line of questioning by asking a query and issuing several fo~low-up questions, decide to

24

proceed down a separate line of inquiry, and then return to the initial context. This
concept of context switching supports, at a higher level, one of CHORIS's key features
of direct manipulation of context (see above).

To present the complex hierarchical structure of past contexts, CHIORIS uses a
flat list that is indented to indicate follow-up questions. This mechanism facilitates
navigation through the context tree, which can grow quite large after a sustained in-
teraction. This depiction of a complex hierarchical structure via a flat, indented list is
also consistent with another CHORIS facility, the agenda_ (•ee above).

11.9 The Resource Allocator

One of the functions of a crisis management t'am is to keep detailed records of the
resources that are available to them in the event those resources are needed in re-
sponding to an emergency situation. Examples of resources might include all tow truck
companies; alternate modes of available transportation such as buses, trains, ferries;
or all hospital facilities. It is also necessary to store with each resource a set of at-
tributes which describe unique characteristics about that resource. As an example, for
a resource such as a hospital, it would be important to know what its specialization
was (e.g. trauma, burn, or cardiac care) and whether the hospital was accessible by
helicopter. For another resource, such as schools (which serve as relocation centers) it
would be important to know the capacity of the school's ugvymnaeim i'.v whet 1he *-her
were cafeteria facilities available. However, particularly important for each resource is
the availh.iht.y status. In the event a resource is needed, the crisis manager u tst be
able to determine quickly which resources are available for assignment and which are
not.

The Resource Allocation mechanism in CHORJS operates in two different modes:
browse and allocate. In the former, the user's intent is simply to view the status of all

resources or a single resource. The user buttons on Browse and is then prompted by
CHORIS to select the desired resource(s). When resources are displayed in the browse
mode, there are two accomparing attributes: allocated and available. This is numeric
information that indicates to the user the number of units that are currently available
should they be needed.

In the allocate mode, the user buttons on Allocate and is prompted by CHORIS
to identify the type of resource to be allocated and the incident to which the resource
is being allocated. When resources are allocated, the total number of units being
allocated are subtracted from the currently available units, so the resource knowledge
base always reflects any change in the status of a resource that the crisis manager may
make. This type of support allows the user instant access to the state of the resource
knowledge base. Figure 14 shows a snapshot of the Resource Allocator in use.

11.10 Response Windows

Finally, whenever the system needs to display information in response to a user query
and this cannot be done through changes in the map, a response window is produced.

25

• •. •v• ,-- I^ . ~ ..- -.. - .-- .• -- .•--.--- -

Cuwrent kilocatxons

1LhZHAT FACILITYS: Available - 2. Allocated - 0 S77C-:t I

GROUND-AMBULANC•5: Avai•Lable - 4. Allocated - 0

AIR-AJOtLANý:S: Av&iilabls - 4. A13-ocited - 0_____

FERRYS: Avallable - 1. Allocated - 0

TOW-TMUCKS: Available - 3. Allocated - 0

BUS- FLIZ'M: Available - 2, Allocated - 0 _

Figure 14: The Resource Allocator.

The central part of this window shows the main information, which could take a variety
of forms, including bargraphs, tables, piecharts, aid natural language text. Above this
information are buttons which allow the user to view previous and succeeding response
windows or to redisplay the information in a different way (e.g., barchart changed to

a table.) Below the response window is a new editing window for asking followup

questions. In the followup section, users can select contexts referring to subsets of the
information produced in the window and then ask general questions whose answers will
be limited to that subset. For example, after asking for the bedcount of all hospitals

in San Mateo County, a user Co.ul folou atuestin• by -akigf % ite ddess of

each hospital, and the system will produce the addresses of just those hospitals in San

Mateo County. The response windows therefore attempt to provide a simple way of

navigating through complex information.

12 The Final System

The prototype emergency management system developed illustrates some of the power
of the various capabilities of the CHORIS architecture when applied to a command-and-

control-style domain, including: support for natural language and direct manipulation;

modeling user's high-level tasks to provide timely guidance in managing complex pro-

cedures (seen in the use of the Agenda facility); adapting to individual users and their

domain roles (as viewed in the differential support of the system for the EOC Comman-

der vs. the ICS Commander); and the power of dynamically tailoring the presentation

of system information to the task needs and preferences of the user (as witnessed in

the various response windows produced by the interface in response to user queries).

It is hoped that this overview of the CHORIS interface as apphed to emergency man-

agement in particular and command-and-control domains in general makes clear the

value of such an approach to intelligent interface design.

26

References

[Benbasat84] I. Benbasat and Y. Wand. A structured approach to designing human-
computer dialogues. International Journal of Man-Machine Studies,
21:105-126i 1984.

[Clark86] N. Clark. The language of data: tables and graphs as exposition. In
Proceedings ICRISAT, 1986.

(Cleveland84] W. S. Cleveland and R. McGill. Graphical perception: theory, ex-
perimentation, and application to the development of graphical meth-
ods. Journal of the American Statistical Association, 79(387):531 - 554,

September 1984.

[Cohen89] P. Cohen, J. Sullivan, M. Dalrymple, R. G. Jr., D. Moran, J. Schlossberg,
F. Pereira, and S. Tyler. Synergistic use of direct manipulation and
natural language. In Proceedings of CHI'89, Austin, TX, May 1989.

[DeSanctis84] G. DeSanctis. Computer graphics as decision aids: directions for re-
search. Decision Sciences, 15:463 - 487, 1984.

[Hochberg86] J. Hochberg and D. H. Krantz. Perceptual properties of statistical
graphs. In Proceedings of the Section on Statistical Graphics of the
American Statistical Association, 1986. This paper is a sub-paper in the
paper: "Three Perspectives on Statistical Graphs: A Basis for Defining
Evaluation Criteria" by Nancy Clark.

,Jr88] R. G. Jr., J. Sullivan, and S. Tyler. Multimodal response planning: an
adaptive rule based approach. In CHI 1988 Proceedings, May 1988.

[Mackinlay86] J. D. Mackinlay. Automatic Design of Graphical Presentations. PhD
thesis, Stanford University, December 1986. Report number: STAN-

CS-86-1138.

[Tukey86] P. A. Tukey. A data analyst's view of statistical plots. In Proceedings of
the Section on Statistical Graphics of the American Statistical Associa-
tion, 1986. This paper is a sub-paper in the paper: "Three Perspectives
on Statistical Graphs: A Basis for Defining Evaluation Criteria" by
Nancy Clark.

[Tyler86J S. W. Tyler. SAUCI: A Self-Adaptive User-Computer Interface. PhD
thesis, University of Pittsburgh, October 1986.

[Tyler88] S. Tyler. Sauci: a knowledge based interface architecture. In CHI 1988
Proceedings, May 1988.

27

