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Abstract /

The stress field in the vicinity of a broken fiber-reinforced composite is
analyzed by means of a shear-lag model. The broken filament is posi-
tioned eccentrically relative to its neighboring fibers to simulate the com-
monplace non-uniformity of fiber spacing within the transverse plane. It
is shown that a fiber break gives rise to severe bending, in addition to
tension, in the neighboring fibers - with a substantial overstress focused
on the nearest unbroken filament. The complex nature of the stress field,
which is caused by the failure of a fiber within a composite casts doubt on
the applicability of failure statistics derived from tensile failure data of
single fibers, which is commonly used to predict the strength of compos-
ites.
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INTRODUCION

Concentric shear-lag models have been used extensively in the analysis of
composites, in particular, in the context of micromechanical aspects of fail-
ure (see, for example, Hull, 1981). Indeed, the interplay between mi-
cromechanics and the statistics of fiber failure appears to be the most dif-
ficult aspect in modeling the strength of fibrous composites.

Due to the complexity of the phenomenon, the theoretical analysis invokes
a variety of assumptions, the influence of which may be difficult to assess.

m,1 , f the basic appivachcs was set forth by G'ucer and Gurland (1962)
who represented a material as a series of layers. Each layer was consid-
ered to consist of fiber-like elements loaded in parallel, which allows for
the use of the bundle theory (Daniels, 1945) to analyze its strength. The
overall failure of the layered structure may then be predicted by the
weakest link approach. This theory has left, however, the layer thickness
unspecified. Rosen (1965), proposed to identify this parameter as the so-
called fiber ineffective length, ,, and provided a definition of this quantity.

Since then this approach which combined micromechanical and statistical
considerations, has been of particular interest in failure investigations.
Garg et, al (1973), provided a good exposition of the approach, which re-
mained of particular interest up to the present time, such as in the recent
investigations of composite failure by Prewo (1986) and Schweifert and
Steif (1990).

As noted earlier, the models of statistical strength are essentially approxi-
mate and invoke various assumptions. A fortuitous agreement with exper-
iments may therefore well occur. It is instructive that a prediction of fail-
ure which is based upon the simple-minded rule of mixtures appears to fit
the experiments reported by Prewo (1986) fairly well, while a much more
sophisticated approach by Zweben and Rosen (1970) provides good results
only if the ineffective length is taken to be orders of magnitude larger than
the value derived from the theoretical analysis. Thus, it becomes clear
that there may be important micromechanical and other factors, which
were overlooked by the analysis.

To discuss these factors we recall the basic result given by Rosen (1965) as
follows

'/ F(1+ 1/ (1)
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Ilere (Te and o L are the statistical mode of composite failure stress and
the mean tensile strength of an individual fiber, respectively, 8 and L are

the ineffective length and the fiber length, respectively, /3 is an empirical

Weibull parameter, and 1'( .)is the Gamma function. One observes from
Equation (1) that the composite mechanical behavior manifests itself
through the ineffective length, 8, while the statistical nature of the phe-

nomenon is introduced through the Weibull parameter, /3, which is ob-
tained from failure data for "dry" fibers in pure tension.

There appear to be two major arguments which cast doubt on the accuracy
of Equation (1) and its underlying methodology. The first argument, for-
warded by McCarthy and Orringer (1975), indicates that statistical
strength data obtained for tensile loading of fibers involve samples with
lengths of about one inch. On the other hand, according to the analysis of
Rosen (1965), the ineffective length, 8, which specifies the layer thickness
in Equation (1), is usually between 10 and 40 microns. This brings into

question the validity of the value of /3, as obtained from fiber tensile tests,
in predicting the strength of composites.

The second argument deals with the absence of load concentration effects
in Equation (1). Zweben (1968) and Zweben and Rosen (1970), attempted
to modify the theory in order to account for these effects. While the over-
load suffered by the fibers adjacent to a broken filament does indeed play
an essential role in the failure mechanism, the above works still do not
provide a satisfactory agreement with experiments (Prewo, 1986).

The above observations show that there may be factors which are over-
looked by the previous analyses. Among these we would particularly note
the randomness of the fiber location in the transverse plane. Typical mi-
crographs, for graphite/BMI and graphite/epoxy composites are shown in
Figures (la) and (1b), while results of Monte-Carlo simulations are exhib-
ited in Figures (2a) and (2b). It is obvious that since fibers are not uni-
formly spaced within the cross sections, the concentric shear-lag model
does not account for this commonplace phenomenon within composites.

The eccentric model, introduced herein, reveals essential effects induced
by the above mentioned randomness. The present investigation indicates
that in contrast with the premises of bundle theory, the failure of a fila-
ment in a composite causes a complicated stress field in the vicinity of
break. Specifically, the neighboring fibers suffer extensive bending, in
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addition to tension, and may therefore be subjected to failure mechanisms
other than the,'-, associated with pure tension. Though bending in neigh-
borino fibers occurs even in concentric configurations around a broken fil-
ament, eccentricity serves to accentuate bending effects. It is shown in the
present paper that, with rather commonplace eccentricities, the overload
due to bending may be quite substantial, with values of about twice those
of the intact case.

Consequently, the present micromechanical analysis casts further doubt on
the applicability of the commonly used statistical data obtained for free
fibers in pure tension to the prediction of strength of fibrous composites

2. ANALYSIS

Shear-lag models, which abound in the mechanics literature provide useful
approximations for the mechanism of force transfer between "soft" and
"hard" material components such as layered structures or fiber reinforced

composite materials. The formulation of all these models derives from the
common assumption that the "soft" material responds only in shear, while
the "hard" matter carries normal loads alone.

When applied to load transfer mechanisms in uniaxially reinforced poly-
meric composites this assumption appears to provide an excellent approx-
imation in many important circumstances. For instance, under tension
parallel to the fiber direction, the fibers carry between 95 and 99 percent
of the applied load. It can also be shown that their shear distortion
amounts to no more than 5 percent of their normal strain.

Since our analysis of the eccentric case is constructed as a perturbation
from the concentric configuration, it is helpful to formulate the concentric
case in a form which is readily amenable to the perturbation scheme.

2.1 A Shear-Lag Model for the Concentric Case

Consider the central fiber "f" of radius a positioned within a perfect hexag-
onal array of neighboring fibers. Also, let h denote the distance between
the centers of adjacent fibers and b the outer radius of the "shear zone" as
shown in Figures 3a and 3b.*

* Note that since (alb)2 # vf the "shear layer" a < r < b extends beyond the representa-

tive volume element which is used in analyses of effective properties. Therefore the
two cylinders with radii a and b should not be confused with the concentric cylin-
ders employed in "the three phase" model (Chritensen, 1979).
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Tl fiber volume fraction is given by vf = 21ra 2i h2 whereby

h=27rA 3v) a and b = it- a = [Y27tnA_ vvr)-1)a

Let r, 0, z denote cylindrical coordinates and consider a perfectly hexago-
nal, uniaxially reinforced fibrous array of infinite extent under uniaxial
stress 9z = cGo. Consider the case of a single broken fiber at z = o. The effect
of this break can be analyzed by superposition of the "undisturbed" solu-

tion (a,= cro everywhere) and the solution to the disturbance caused by

(az (r,0, o) = -co (o < r < a, o _< 0 < 2r).

The solution to the latter problem will be based upon the following as-
sumptions:

(a) the only non-vanishing displacement is Uz = uz (r, z).
(b) discard the shear deformation in the broken fiber, whereby

u =f(z) o<_r<a , oz<o,, (2)

and
afz= E ff'(z) (3)

As in the Bernoulli-Euler beam theory, the shear stresses that act
upon the broken fiber can be determined as a reaction, rather than
from constitutive relations.

(c) discard the contribution of normal stresses to the response of the
matrix region a < r < b. Consequently consider only the shear strain

Du y

7'z- = r shear stress zrmz= Gmnr r  and equilibrium governed

by
9 rz +---rZ = 0. (4)

Dr r

(d) The displacements u~m vanishes at r = b.

Obviously, it is necessary to satisfy the displacement continuity condition
at r = a and "global" equilibrium for the broken fiber.
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In view of the foregoing assumptions we construct the solution to the pre-
e;nt problem as follows:

By hypothesis u= f (z), consequently consider u= f (z) g (r) (a _ r h.
0 <

From the equilibrium condition (4) we get g"+g'/r = 0, hence g (r)=

A + B mr. The conditions um (z, a) = u f (z, a) and um (z, b) = 0 yield

utm - In (b/r)f W (5)
In (b/a)

Finally, force equilibrium in the z direction for the fiber gives

a2 daY + 2raz (a, z) = 0 (6)
dz

which, upon employment of equations (3) and (5), gives

f" k 2

f (z) - ka2 f (z) = ° (7)

where

k 2 2Gm
Ef In (b/a)

Finally, the boundary conditions u/= -c 0 at z = 0 and af = 0 as z - oc yield

f W = OL° A! e-k wza)

Efk (8)

and c-= - 0 e-k (zia)

By superposition, the total stress on the broken fiber is

af(Total) C [I - e-k (z/a)] (9)
z
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2.2 Eccentric Shear Lag

It is conjectured that a reasonable estimate of the effects of random fiber
spacings, exhibited in Figures 1 and 2, can be obtained by analyzing the
idealized circumstance of a perfect hexagonal array consisting an eccentric
central fiber as shown in Figure 4. (The circle drawn in dashed lines shows

the concentric position of that fiber.) In the sequel we let 77 = e/ and con-
struct a shear-lag model which employs qi as a perturbation parameter.
We shall assume that the circumstance of maximum eccentricity within the
idealized configuration shown in Figure 4 (when e = b - a, T1 = (b - a)/b) ac-
counts for the effects of the commonplace randomness of the arrays shown
in Figures 1 and 2.

Obviously, when the inner fiber breaks at z = 0 the eccentricity will give
rise to non-uniform shear stresses rz around the fiber/matrix interface.
These stresses may vary not only along the z direction, but also with the
angle 0, and they attain their highest values at the place of nearest ap-
proach. Consequently, that fiber will be subject to bending moments and
undergo rotations in addition to normal deformation.

In line with assumptions (a) through (d) of the previous section we con-
sider now

uf, (r,0,z)=f(z)+r71(z) rcosO(o<_r a,0<_0<27r, Oz <oc) (10)

Equation (10) implies that fiber deformation satisfies the hypothesis that

lan--s remain planes."

Within the matrix region a < r < b the displacement Uzm and the shear

stress C rm depend on 0 and equation (4) must be replaced by

b~- m+ Zr--z + 1-6aZ = 0 (1

ar r r aO

with rmz = Gm auzrand r-G

Let uzm(r, O,z )= q(z)p(r,O) then employment of (11) and (12) yields
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' i)2 I ]u'n

+ .. .. + 0. 0

r r 2 0 0 2

wc li rc by
J =p()A + B lnr + (Ain r m + B,,r-l) cos tO '13)

In =1

where even symmetry in 0 was considered without loss of generality.

Expressions (10) and (13) are readily amenable to a solution by the per-
turbation method of Parnes and Beltzer (1986), employing the eccentricity

q as the perturbation parameter. Although this method can be carried to
any desired degree of accuracy by expanding to ever higher powers of il
we deliberately refrain from going beyond the first power in 17 in deriving
our estimate for the effects of fiber eccentricity. We eschew the employ-
ment of higher order expansions because the idealization involved in se-
lecting the configuration shown in Figure (4) to represent the behavior of
random arrays, such as shown in Figures 1 and 2, leads us to believe that
higher order mathematical accuracy may, in fact, be devoid of physical

content. Nevertheless, an expansion to 0(713) is given in Appendix A to
demonstrate the applicability of the perturbation technique.

Employment of the expression (10) and the form given in equation (13),

together with the requirement that u. (a, 0, z) = umn (a, 0, z) and the as-
sumption u m (b, 0, z) = 0 yield

f(z) In (bir ) + r a, blr - bru I (r,Oz)-n (b/a) l b 2 _a2

+ 7p(z) a 2  r cosO a<_r<_b,O0<2r (14)
b 2 a  a 2 r

The normal stress in the fiber and the shear stress in the matrix are given
by

uf = E f [f (z ) + q b " (z) rcos e 0]ra (15)

and
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- l--1(-- ) in + 7 1 -+---L 1r -2 os 0r 1 , i (b/a b - U
10)

+) 11 cs 02a1) 2 a + 2 a

I&orcc equilibrium for the fiber in the z direction reads

J~ '~~---rdr dO +j2 T 11 (a, 0, z ) a do = 0 V

while the moment equilibrium of the fiber about the y-axis 0

Oives

a0 !(2n ac r2 cos 0 drdO+Jo z (a, 0, z ) a 2 cos 0 dO= 0 (18)

upon substitution of equations (15) and (16) in expressions (16) and (18)
we obtain the tollowing field equations for f(z) and fl(z):

2 2 GM

a 2 
Ef In (b/a)

and

/3 (z) - -/3(z) - f (Z) = 0 (20)
a 2  a 2

where 1 2 =4Gm a2+b 2  n2 = 8Gm b
Ef b 2 - a2 E f (b 2 - a2) In (bla)

Note that equation (19) is identical with the concentric result given in
equation (6). When higher order expansions in r/ are employed this is no
longer the case and the field equations for f(z) and /3(z) are fully coupled.
The uncoupling in equation (19) occurs because the lowest order correction

to uf is0(77 2).

For an extended medium and a semi-infinitely long broken fiber, 0_< z < oo,

we have f (z) = Ae-k(zla) and the boundary condition at z = 0

9



K.[ 0"< (r, O, 0) rdrdO= -2 "

which, together with expression (14) gives A = g- whereby
Ef k

go a -k (z/a)i.{:: ___o{_ a e(2 1)

Ef k

s in c u,--ttion (8).

Since the disturbance introduced by fiber breakage involves no applied
nioient at z = 0, we have

.o. ( -/I (r, 0, 0) r 2 cos 0 dr dO= 0

whereby, in view of equation (15), we obtain the boundary condition

/3(0) = 0 (22)

Substituting (2t) into (20), together with the condition (22) and the re-
quirement that lim fl(z)= 0 we obtain after several manipulations:

Z -> 00

(Z) 2 [r 0 - e -k (z/ a) - - - e - 1(z/ a )  (23)

k 2_2 Ef l

For realistic values of vf (0.4 < vf < 0.7) k and I are of similar magnitude.

With f(z) and P(z) thus determined, equations (10), (14) - (16), provide the
"complete" solution to the perturbed field caused by the break of the inner

fiber. The total field is given by adding a-4 = cro to expression (15).

We are now in a position to assess the overload caused in the nearest
neighboring fiber, centered at r = h, 0 = 0. Assume that the fiber is over-
burdcned by the shear stresses which are shed upon it over an arc of
length 2 irb16. As shown in Figure 5, these shear stresses correspond to

r'zn (b, z, 0) spanning the range - a _ 0!_7 a, where a = + a' and
12
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tan a' __=d- hz/2-
3 a V Ta

The overload (force) is given by

N(z) -, r /1 (b, 0, z) MOd: (24)

Substitution of equations (16), (21) and (23) into expression (24) yields,
after several manipulations

N(z) = 0 a 2 lae-k / a ) - 17 sin a b 2 + a2- 8a2b In (b/a) e-k(z / al

I b 2 (_U 2 ,2 I)

+ 4a2b 2  _ e- (z a)  (25)

(a2 + b2) c2

In (25) c 2 =2 (a 2+ b2) 1n (b/a) -(b 2 - a2)

In addition to the normal overload, the shear stresses which act at the in-
terface between the matrix and the nearest neighboring fiber introduce
bending into that fiber. To assess the bending effect assume that these
shear stresses are distributed uniformly over the arc PP' shown in Figure
5. This would place the line of action of N(z) at the center of gravity of the

arc PP', hence with a lever arm p = 3"13a/2rt about the center of the nearest
neighboring fiber.

Combining the normal and bending effects we have an overstress on the
nearest neighbor

amax(z ) - (I + 4 N(z) + I (26)
min ra 2  a ira 2

This expression indicates that the overload would substantially enhance
the tensile stresses at the point Pc.
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3. IR1ULTS AND CONCLUDING REMARKS

The overloads borne by the fiber which is nearest to the broken filament
are shown in Figures 6 and 7 for E-glass/epoxy and graphite/epoxy, re-

6
spectively. For E-glass/epoxy we took vf= 0.65, Ef= 45 x 10 psi and

GII = 0.2 x 106 psi , while for graphite/epoxy we employed vf= 0.65,

ET = 45 x 106 psi and Gm = 0.2 x 106 psi.

The results in Figures 6 and 7 exhibit the overstresses S = Or/o 0 at the

center of the nearest neighboring fiber, P0, at its point of contact with the
broken filament, Pc, as well as at the point which is diametrically opposite
the point of contact, PA. The total stress enhancements, as given by the

factor (S + 1), are shown by the curves gc(z)/o and UA(z)/aro in figures 8
and 9.

Note that a maximal stress increase of about 100% occurs in both
glass/epoxy and graphite/epoxy. This contrasts with rises of about 10% -

15% evaluated by Hedgepeth (1961). Furthermore, the effect of a fiber
break is confined to a smaller distance in glass/epoxy than in
graphite/epoxy since the higher modulus of the graphite fibers introduces
a stronger stress channelling effect due to the magnified anisotropy of the
composite.

An accounting for effects of overload on fibers near the broken filament
was incorporated by Zweben and Rosen (1970), where all overloads were
considered to be purely tensile and all fiber arrays were assumed periodic.
They noted that fibers adjacent to the broken one would fail at the stress

o-f/K, where af is the nominal failure stress and K denotes the overload
factor. Since fibers within composites are known to break even under low
load levels the consideration of overload effects appears to be realistic.
This argument applies in the present work as well, with the additional
proposition that stresses due to fiber bending should be incorporated in
the statistical analysis. Furthermore, it should be noted that due to the
randomness of fiber spacing within the transverse cross section the factor
K should be viewed as a random variable and the statistical analysis
should be reformulated to account for this fact. Finally, note that normal
stresses exist in the matrix (and fibers) in the transverse direction in the
vicinity of a fiber break. A method to determine these stresses was devel-
oped, within tho context of shear lag models, by Goree and co-workers
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(see, e.g., Dharani, L.R., Jones, W.F. and Goree, J.G., 1983). Obviously, such
stresses would cause bending in neighboring fibers even in perfect arrays.

In view of the above considerations, it is clear that failure mechanisms
quite distinct from tensile fracture can occur in fibers adjacent to a broken
filament. Since it is reasonable to assume that imperfections of several
kinds (such as weak, kinked, misaligned and broken fibers, debonds along
fiber/matrix interfaces, voids and cracks within the matrix, etc.) are
commonplace within fibrous composites, it is to be expected that the
complex state of stress presented in this work should be commonly
encountered in the vicinities of those imperfections. Consequently, the
failure of filamentary composites may well be attributed to comple.,
mixed-mode mechanisms which are inherently different form those
represented by the strength statistics of "dry" fiber bundles, which is
associated with purely tensile response.
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APPENDIX A: The Perturbation Expansion

Consider two eccentric circles of radii a and b, respectively and with eccen-
tricity e as shown in Figure A-1.

As indicated in Equations (2) and (5), the solution to the concentric shear-
lag problem is given by

u4= Uz(:) =f(z) (A-1)
z= u(r, z) - ln(b/r) (A-2)

ln(bla)

where according to Equation 8

f(z) = or  a e-k(zla) with k 2 = 2Gm (A-3)
Ef k Ef In (b/a)

In the eccentric case, considerations of static equilibrium for the fiber lead
to the incorporation of a bending component in its deformation. Upon as-
suming that undeformed cross-sectional planes of the fiber remain plane
after deformation, we choose in accordance with Equation (10):

u4= t4(r, 0, z) = ftz) + j A (z) rcos 0 (A-4)

where il =e/b. In the sequel 17 serves as our perturbation parameter.*

In addition, by equation (10) - (12), equilibrium of the matrix region
yields

z ) f(z) + [, (Amrm + cos mO p(z) (A-5)

It is now necessary to satisfy the conditions that u =uf, at r = a and that

* At first glance it may appear that the representation (A-4) is somewhat arbitrary.

However, it can be shown that if one starts with u[(z) = flz) + 01 (z) r cos 0 than a sys-

tematic expansion in i1 indeed yields 1(z) = q 3 (z). We chose (A-4) as our starting ex-
pression to circumvent non-essential details.
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0 on the boundary of' the eccentric circle of radius r=b.

According to the perturbation scheme of Beltzer and Parnes (1986) the
value of a function F(r, 0) on the boundary C, of an eccentric circle of ra-
dius b with eccentricity r = elb can be expressed by a perturbation expan-
sion in t/ as follows

F/co = F(°) + [F( ) + o40)1 l + [F2 + o(1) +021 0) 2

(2) ) 3(0) 3 (A 6)

+[(3) +0 + 0()2 + o3 3 ......

where, in the present case

o, 1U) = -b cos 0 F (j)  , W = b [b CoS20 j) 2 F,_)]

and 003 W = b 2 COSO sin 2 0 FYI - CoS2 0 F )] (A-7)

2 rr 3 rrri

In the present problem the function F(O) is given in equation (A-4), and
the boundary condition at urnc = o is satisfied by the employment of ex-
pressions (A-6) and (A-7). On the other hand the continuity condition

u = u4 at r = a does not involve the perturbation scheme since, by hy-
pothesis, r = a is a "concentric boundary." Obviously, the presence of two
functions of z, f(z) and /(z), in equation (A-4) will necessitate two series

expansions in (A-5) (to assure up = t at r = a). Denote the two series ex-
pansions by

01 Amrm + .-_- COS me]~z
M (A-8)

and -mm+-i
[ E, Ar mcos m] P(z), respectively.*

Then, a systematic application of the conditions urn/co = 0 and
uM (a, 0, z) = i4(a, 0, z) yields

• It is of course always permissible to include the "concentric" solution A + E Inr
within the perturbation expansion whenever necessary.
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iit <b/r)+ A r+B,
u ' (r, 0, z) = In (Ila) + (ixir + Cos 0

+ 772 [C 2ln(ria) + (A 2r 2 + 4 2 cos 20

+73 [(C 3r- - -- cos O+ A 3 r3  - cos 30 )f(z)

+{r7b a 2 b 2 _ r2r Cos 0

b2 _ a2  r

±7 ( q2 cos 201
KOln(rla) + ~A 2r +r2  J

+ij 37[(jir+ iCos 0 +(A3r +3) cos 3] }9 /3(z)

+0 (14). (A-9)

where, upon denoting A 1 - a2  , we have
ln(b/a) b 2 a2

Al =  b Ao ,B 1 - a2b Ao
b 2 _ a 2  b 2 a 2

A 2= 1 b 2 Ao B 2  I a4b 2 A
2 (b2 _ a2)2  2 (b2 a2)2

C2 - b 1 Ao
b _ a 2 log(b/a)

A 3 =- - 1--3-- A , b& B3= b 3a6 Ao3 (b 2 a2 )3  3 (b 2 -a2)

Cl = b b + b Ao
b 2 a 2 (b2 - a2)2 b 2 -a2 log (b/a)J

D3 = a2b b 4 2 1

b 2 a2 (b 2- a2 b 2- a2 log (b/a)]
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d nl d

K - hA AA2 - A 2  
a b 3 Alog (b/a) b 4 - a4  b 4 a4

b 2 1 b 4 a 4  --1+- + __a_ A
b 2 _ a 2  log (b/a) b 4-a4

D 1 2 + z 2  1l+ 1 + + 4] A
b2 _a2 log (b/a) b 4 a4

A3=- b 4 b4 +a4 A

b 6 _ a6 b 4 -a 4

B3 a6b 4  b4+a4 A-

b 6  a6 b 4 _a 4

The equilibrium of force and moment on the fiber, as given in equations
(17) and (18), yield two coupled ordinary differential equations for f(z)
and /3(z). It turns out that f(z) and /3(z) take now the following forms

f(z) = '- 9 + a 2772 + a 3773) ek(zl a) + (v 2
77 2 + v 3

77 3) e - t (z/ a)

(A-1O)
/3(z) = (fl177 + 32772 + /33173 ) e- k ( zl a) + (7117 + 721 2 + 73173) e 1 (z/a)

with k = k + 7k, + 7k 2 + 173 k3  1= 1 + 1711 + 7212 + 173/3.

As noted earlier, we refrain from employing the higher order results of
this Appendix in our computations, because the approximations involved
in our model do not warrant their use. In fact, the utilization of higher ex-
pansions may convey the fallacious impression of higher accuracy.
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Figure Titles:

Fig. I a: A typical cross-section of graphite/BMI composite, estimated vol-
ume fraction vf = 55% (courtesy of Professor W.W. Stinchcomb) (xlOOO).

Fio I b: A typical cross-section of graphite/epoxy composite, estimated
volume fraction vf = 65% (courtesy of Professor W.W. Stinchcomb)
(xlO00).

Fig. 2a: Monte-Carlo simulation of a cross-section with fiber volume frac-
tion vf = 40%.

Fig. 2b: Monte-Carlo simulation of a cross-section with fiber volume frac-
tion vf = 65%.

Fig. 3: A perfect hexagonal fibrous array, with broken central fiberOQ sur-
rounded by a concentric "sleeve" of matrix material in shear.
(a) Cross sectional view. (b) Side view.

Fig. 4: A hexagonal fibrous array as in figure 3, with broken eccentric fiber
&),eccentricity e, and nearest neighboring fiber(T.

Fig. 5: Geometric considerations for evaluating the overload carried by the
nearest neighboring fiber (D due to the fracture of the fiberQ. The load
shed upon( is related to the angle a (see text).

Fig. 6: The dimensionless overload stresses on the fiber(®S(Pcz), S(Po,z)
and S(PA,z) at points PC, PO, and PA vs. the non-dimensional distance
zia. Case of glass/epoxy, with vf = 50%.

Fig. 7: Same as figure 6, but for the case of graphite/epoxy and vf = 65%.

Fig. 8: The dimensionless stresses Crc(z)/ao and a(z)/Uo carried by the
fiber® at points Pc and PA vs. the non-dimensional distance zia. Case
of glass/epoxy, with vf = 50%.

Fig. 9: Same as figure 8, but "o-r the case of graphite/epoxy and vf = 65%.
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