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ABSTRACT

Three new methods for the detection and interception of frequency-hopped
waveforms are presented. The first method extends the optimal, fixed-block
detection method based on the likelihood ratio to a sequential one based on the
Sequential Probability Ratio Test (SPRT). The second method is structured
around a compressive receiver and is highly efficient yet easily implemented.
The third method is bdsed ufl the new concept of Amplitude Distribution Func-
tion (ADF) and results in a detector that is an extension of the radiometer.

The first method presents a detector structured to make a decision sequen-
tially, that is, as each data element is collected. Initially, a purely sequential
test is derived and shown to require fewer data for a decision. A truncated
sequential method is also derived and shown to reduce the data needed for a
decision while operating under poor signal-to-noise ratios (SNRs). A detailed
performance analysis is presented along with numerical and Monte Carlo anal-
yses of the detectors.

The second method assumes stationary, colored Gaussian interference and
presents a detailed model of the compressive receiver. A locally optimal de-
tector is developed via the likelihood ratio theory and yields a reference to
which previous ad hoc schemes are compared. A simplified, suboptimal scheme
is developed that trades off duty cycle for performance, and a technique for
estimating hop frequency is developed. The performance of the optimal and
suboptimal detectors is quantified. For the suboptimal scheme, the trade-off
with duty cycle is studied. The reliability of the hop frequency estimator is
bounded and traded off against duty cycle.

In the third method, a precise definition of the ADF is given, from which
follows a convolutional relationship between the ADFs of signal and additive
noise. A technique is given for deconvolving the ADF, with which signal and
noise components can be separated. A detection statistic based directly on
this deconvolution technique is defined and statistically characterized, yielding
a framework on which to synthesize a detector. The detector's performance is
analyzed and compared with the radiometer.
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CHAPTER 1

INTRODUCTION AND
BACKGROUND

1.1 MOTIVATION

The goal of the intercept receiver is to detect, identify, and geolocate hostile

electromagnetic (EM) sources and use this information to counter with Elec-
tronic Counter Measures (ECM) and Electronic Counter Counter Measures
(ECCM). For military communications, the receiver is expected to intercept

any one of a set of target communications. The interception task is hindered
by a dense EM environment that consists of other communication signals, both

friendly and hostile, possibly jamming or masking signals in addition to ever-
present noise interference. With the advent of frequency-hopped and other
spread-spectrum communications, the search bandwidth that assures a rea-
sonable probability of intercept is greatly increased, thereby aggravating the
problem of interference, because greater numbers and types of interferences
cbqcre the, --- ft signal, Tk, ;Pnreased complevity of the interception prob-
lem motivates the search for new methods of detection and interception of

frequency-hopped waveforms.

1.2 TARGET SIGNALS

Military and other secure communications use spread-spectrum signaling

involving some variety of modulation whose purpose is to add ambiguity or
"randomness" to the waveform as a measure against unintended detection or

interception. The usual procedure for randomizing the waveform is pseudo-
random variation of transmission times (time hopping or TH), phases (direct
sequence or DS), or frequencies (frequency hopping or FH). This work concen-
trates solely on the interception of FII waveforms that have form

N,
s(t) = Zz,(t) (1.1)

i=1

where

xi(t) equals 'v/ 2"Ssin(wk,t + 0,) for iTh < t < (i + l)Th;

{w)K= is a family of known frequencies within the spread-spectrum band-
width;
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{ks } are integer-valued, independent, uniformly distributed, random vari-

ables ranging inclusively between I and K;

{0 6} are continuous, independent, uniformly distributed, random variables
ranging between 0 and 21r that represent carrier phase; i
is a real constant denoting the average signal energy;

T is a real constant denoting the epoch, or time duration, of each hop; 3
Nh is a positive integer denoting the number of hops during message

transmission. 3
This general model of frequency-hopped waveforms includes a large nutiiber of

modulations such as frequency shift keying (FSK) and mininium shift keying
(MSK). Some important modulations not included are those whose carrier phase

is correlated from hop to hop, for example, continuous phase FSK (CPFSK).
Even for these cases, these results apply but may not be optimal.

1.3 INTERCEPT RECEIVER FUNCTIONS i

An intercept receiver extracts, for further processing, a small number of i
candidate signals from the plethora of signals in a communication band of
interest. The initial processing steps that discard signals are called Pruning
Functions. After pruning, secondary processing, known as feature extraction, I
yields information aiding in emitter identification and countering. After feature
extraction, further processing could yield the actual information embedded in

'he communication signal, but this is peripheral to the primary function of the
intercept receiver, namely ECM and weapons support, and consequently will

not be explored here.

1.3.1 Pruning I

Given the frenetic activity in most communication bands, the intercept re- 5
ceiver must, early in its processing, choose out of all candidate signals within
the band a small number of potential target signals. Pruning Functions achieve
this by eliminating all but the most promising prospects for processing. Prun-

ing Functions fall into four categories: Initial Detection, Direction Finding, Fre-
quency Estimation, and Time of Arrival Measurement. As is evident from their

names, Initial Detection separates potential target signals from background

noise, Direction Finding classifies and possibly eliminates signals by direction !
of origin, Frequency Estimation censors signals based on a measurement of car-

rier frequency, while Time of Arrival Measurement differentiates between pulsed
signals based on their arrival times. It is useful conceptually to consider the

Pruning Functions as independent processes applied separately, but in a practi-
cal system these functions are usually highly coupled in that a single processing
step may accomplish two or more Pruning Functions.

Initial Detection separates the candidate signal from the background noise, I
usually in the form of a threshold operation applied on a test statistic derived

121
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from the received waveform. It may be a dedicated operation, meaning that
the only information gleaned is the presence or nonpresence of a communication
waveform, or may yield other information such as the time of arrival (time do-

main) or tile dominant frequency (frequency domain), or, for feature detectors,

the hop rate.

The signal direction can be found by using a scanning narrowbeam antenna
whose scan position at the time of detection determines direction. Difference
in signal phase from two separate antennas can yield the angle from which a

candidate signal is emitted; however, this interferometry technique suffers from

a vulnerability to coherent interference. In a similar fashion, tile amplitude
difference between the same signal received from different antennas or anternna-

patterns can determine emission angle but the technique is even more vulnerable
to interferences, coherent or noncoherent. The difference between the times of

arrival of different receivers is an alternative way to determine angle. This

method seems more directed to pulse signals, such as radar, in which arrival
time is a relatively simple quantity to measure, but it could be applied to more

complicated communication signals, by cross correlation for instance.

By estimating the dominant frequency of a candidate signal, narrowband
interferences such as other non-spread-sp-ctrum communication signals can be

identified and rejected. Additionally, the current hop frequency of the target

signal can be determined and subsequently used to narrowband jam the current
hop band. The estimated hop frequency also can be used for identification

processing or informat ion extract ion.

Time of Arrival Measuremient can not only determine emission angle, as

previously mentioned, but also can prune. This use is primarily useful for
pulse radar signals, in which times of arrival can determine pulse repetition

rates and hence asso(iate the intercepted pulse with the emitting radar. For
frequency-hopped conuunicat ions, the arrival times of individual hop intervals
determine the emitters' hop rate and hence discriminate between target signal

and interferers.

1.3.2 Feature Extraction

Feature Extraction is the measurement of characterizing features of the com-
munication waveforms. Features such as hop rate, hop frequency, modulation
type, and bit periods serve as examples. Feature Extraction overlaps the Prun-

ing Functions in that operations such as center frequency estimation and time-
of-arrival measurements yield useful features. The loose distinction is one of
precision and purpose. Measurements made while pruning are coarse and serve

only to decimate what otherwise would be an unmanageable number of can-
didate signals, while extracted features are of sufficient accuracy to serve the
intercept purposes of jamming and identification.

1.4 EXISTING METHODS

All aspects and functions of the intercept receiver were described. However,

this work concentrates solely on initial detection and feature extraction and on

feature extraction; only hop frequency estimation will be explored.

13
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Figure 1.l. Wideband Energy Detector I

1.4.1 Wideband Energy Detector

The Wideband Energy Detector 1' 2 is the simplest to implement of all exist-
ing detection schemes. Also called a radiometer, it is a device for measuring the I
energy of a signal over a prescribed time and bandwidth. A typical radiome-
ter (Figure 1.1) consists of a bandpass filter followed by a square law device
and an integrator. The bandpass filter, of bandwidth W, selects the frequency
band .;-er which the energy measurement is made. The square law device and
integrator calculate the energy of this bandpassed signal over the interval of
length T. The radiometer is used to detect spread-spectrum signals by setting
the center frequency and bandwidth of the bandpass filter so that the filter will I
pass the expected spread-spectrum signal. A decision is made by comparing

the output of the radiometer to a threshold.
As can be guessed, the wideband r" diometric detector is most efficient when U

the bandwidth exactly matches the spread-spectrum bandwidth K/7Th and the
integration period matches the transmission time NhT'/ of the spread-spectrum
signal. Under these conditions and for large time bandwidth (TW > 1000)
products, the prforruance of the wideband radiometer is described below for
the case of white-noise interference with single-sided spectral density No as

S'T 1  A(12

and
d = Q- 1 (PF) - Q-'(PD) (1.3)

where Q-'(.) is the inverse of the complementary Gaussian probability dis-
tribution and S'Th/No is the required signal-to-noise ratio for detection with

probability PD and false-alarm probability PF.

In addition to being the easiest detector to implement, the wideband en-
ergy detector assumes the least known about the spread-spectrum signal. For
optimal detection of a given spread-spectrum waveform, only the bandwidth
and message duration need to be known. lowever, an approximate knowledge

'M.K. Simon, J.K. Omura, R.A. Scholtz, and B.K. Levitt, Spread Spectrum Communica-
tions, vol. 111, Computer Sciences Press, Rockville, Md., 1985.

2D. Torrieri, Principles of Secure Communication Systems. Artech [louse, Dedham, Mass.,
1985.
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of these parameters degrades performance cnly slightly. Because the perfor-
mance of the wideband energy detector is invariant to the details of the spread-
spectrum waveform, i. is equally effective in the detection of either FH, TH, or
DS waveforms. It is also useful as a lower bound on the performance of otherdetectors designed around the particulars of a given spread-spectrum waveform.

1.4.2 Optimal Channelized Detector

The Optimal Channelized Detector2 ' 3 uses a more precise knowledge of a
spread-spectrum waveform to achieve performance gains over the Wideband
Energy Detector and other detector configurations. In the context of FH wave-
forms, the message duration and the period and phase of the pulse epochs are
assumed to be known. Also assumed to be known are the exact frequencies
of the pulsed sinusoids that constitute the individual "hops" of the spread-
spectrum waveform. The signal amplitude relative to the background noise
is also assumed to be known. Not known are the relative phase between the
individual hops and, of course, the pseudo-random code that produces the hops.

With these assumptions and that of white-noise interference, detectiot, the-
ory yields the detector shown in Figure 1.2. This detector consists of individual
filters matched in time and frequency to each of the possible pulsed sinusoids
component to the FH waveform. The envelopes of the matched filter outputs
are "emphasized" by normalizing by expected noise energy and applying the
zero-order modified Bessel function of the first kind 10. The emphasized filter
outputs are summed to yield a likelihood function over a single epoch. These
individual likelihood functions for each epoch of the message are multiplied to
yield the overall likelihood function, from which a decision can be made via a
threst. )d comparison.

The generalized performance expression for the optimal multichannel de-
tector cannot be obtained due to an inability to specify the output probability
distribution functions. When the number of hops Nh is large (e.g., Nh > 100), it
is possible to closely approximate the true answer by using Gaussian statistics.
This analysis gives S'Th/N needed for a given PFA and PD as

S, -I  1 - K + Ke (1.4)

where d is given before.
Unfortunately, however, the Optimal Channelized Detector is only of aca-

demic interest because of its implementation complexity and its sensitivity to
the FHI waveform parameters. It is useful primarily for establishing an upper
bound to the performance of other more implementable and robust detectors.

1.4.3 Suboptimal Channelized Detectors

Because of the implementation complexity of the Optimal Channelized De-
tector, Suboptimal Channelized Detectors are considered. These are several

3 D.G. Woodring, "Performance of Optimum and Suboptimum Detectors for Spread Spec-
trum Waveforms", Naval Research Laboratory, Washington, D.C., Technical Report No.
8432, December 1980.
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The combinations of a matched filter followed by an envelope detector are lr
replaced by narrowband radiometers of bandwidth 11Th. This simplifica-
tion degrades the resulting performance over that of the predicted perfor-mance of the Optimal Channelized Detector. However, this performance
difference would be less in practice, because the Optimal Channelized De-teio
tector would not achieve the optimum performance due to the inevitable

mismatch between the actual frequencies received and the frequencies for
which the filters are matched. Doppler shift and transmitter waveform
diversity are the likely culprits of this mismatch.

The emphasizing function is linearized. This is mainly an implementation sir-
plification. However, the optimality of the Optimal Channelized Detector

depends on a priori knowledge of the amplitude of the FH waveform, which
is a parameter of the emphasis. Thus the loss of optimality in practice is
lessened because of the uncertainty of the FH waveform amplitude.

Decisions are made at the channel level and are then combined to form a
statistic upon which the final decision is based. This type of detector is
appealing if a frequency estimate of the detected is also desired.

Instead of having a filter for each FH frequency, the entire spread-spectrum
bandwidth is subdivided into coarse subbands. The subbands most likelyeedt contain thecurrenthop are selected for application of any of the above c
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Figure 1.3: Autocorrelation Detector

1.4.4 Autocorrelation Detector

An Autocorrelation Detector 4" is composed of a bank of autocorrelators,
each operating on a subband of the total spread-spectrum bandwidth (Figure
1.3). The autocorrelators estimate the autocorrelation y(r) of their bandlimited
input over the time period T. The power of each correlation is sampled yielding
Wk which are weighted with ak and summed to derive the decision statistic Y.
This is summarized by the equation

G-1 H1

Y= akWk > Threshold. (1.5)
k=1 H0

There are three issues concerned with the design of the autocorrelation de-

tector. The first is the coarseness of the individual subbands relative to the
total spread-spectrum bandwidth. It seems intuitively appealing to assume

that performance would improve by reducing the width of this subband up to
the limits of the FH frequency spacing; however, no analytical or numerical
results confirm this conjecture. The second design issue is the time interval
over which we estimate the autocorrelation function. The third issue involves
the weights used in the computation of the decision statistic.

1.5 HOP FREQUENCY ESTIMATORS

As previously described, feature detectors focus on a particular time-domain
feature of the spread-spectrum waveform. In this work, we develop a detector
based on the feature hop frequency. These devices can do the job of initial

detection, but we focus on their estimation performance. Two noteworthy es-
timators in the literature fit this billing. The first' is a maximum likelihood

estimator with a structure similar to the optimal detector of Figure 1.2, except
that, instead of summing the outputs of each channel, it selects the channel

4 A. Polydoros and J.K. Holmes, "Autocorrelation Techniques for Wideband Detection of
FH/DS Waveforms in Random Tone Interference", MILCOM '83 Conference Proceedings,
Boston, Mass., pp. 781-785, October 17-20, 1983.

'A. Polydoros and K.T. Woo, "LPI Detection of Frequency-Hopping Signals using Auto-
correlation Techniques", IEEE J. Select. Areas Commun., vol. SAC-3, no. 5, September
1985.

6 N.C. Beaulieu, W.L. Hopkins, and P.J. McLane, "Interception of Frequency Hopped Spread
Spectrum Signals", to be published in IEEE Trans. Comrnmun.
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Figure 1.4: Maximum Likelihood Hop Frequency Estimator

with the output of maximum magnitude. The hop frequency corresponding to
that channel is declared the estimate (Figure 1.4). The second estimator of
note7 is based on the first one but has reduced complexity. In this method,

wideband radiometers cover the spread-spectrum bandwidth in order to select
a small number of subbands that most likely contain the particular hop. These
subbands are further processed into fine bands, enabling the ultimate selection
of the band with the current hop.

1.6 NEW METHODS FOR DETECTION
AND HOP ESTIMATION 5

1.6.1 Sequential Detector I
In this work, a new detector is developed based on the ideas of sequential

detection. It is essentially like the optimal channelized detector but, instead of
basing its decision on accumulated energy on a predetermined large number of
hop dwells, it decides, after each hop dwell, on the presence or nonpresence of
a frequency-hopped waveform. Because the detector is based on the Sequential
Probability Ratio Test (SPAT), the test is optimal in the sense that no other

7 W.W. Short and R.D. Chapman, "Adaptively Configured Channetized Receiver for Fre-
quency Hopped Signal Detection and Tracking", IEEE Internalional ConJerence on Com-
rnunications, 1965, pp. 832-838, 1985.

18I
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sequential test will make a decision in less time on average than the SPRT.
However, optimality occurs only if the signal is present at a predetermined
SNR. For smaller SNRs, the SPRT actually can perform worse than a test
based on a Fixed Sample Size (FSS). This shortcoming is averted by mixing
the SPRT with the FSS test to create the Truncated Sequential Test (TST).
From these results is designed an optimal test whose worst-case average decision
time is minimal. Netted are three new detectors that exploit the advantages of
sequential detection: the pure SPRT, the TST, and the optimal TST.

With each of these techniques, the number of samples needed for a reliable
decision is dramatically reduced. One way this detector performance gain can
yield a performance gain in the interceptor itself is through decreased duty
cycle. A typical interceptor might scan a particular direction in order to de-
termine the presence or absence of communications. Because of the gains due
to the sequential detector, the scan time is significantly reduced. Another way
to take advantage of the performance gain is to add robustness to the signal
parameters. It was already mentioned that the decision time. of the sequential
tests is dependent on the SNR. By hypothesizing that the signal rests in a band
of SNRs, a sequential test can be designed that still outperforms tests based on
a fixed sample time.

1.6.2 Compressive-Receiver-Based Detector and Hop
Estimator

The compressive receiver, which simultaneously estimates frequency com-
ponents over a wide, predetermined band, has promise as an interceptor with
both the simplicity of a wideband device and the performance of the channelized
device. The use of the compressive receiver for interception is a largely unex-
plored area with all previous results being superficial and ad hoe. By contrast,
two different detectors and a hop frequency estimator are developed using an
optimal likelihood function approach. The first, the locally optimal detector,
is a detector with structure similar to the channelized detector but operating
on the output of the compressive receiver. It is locally optimal, meaning that
for signals with low SNR it gives the greatest probability of detection for a
given probability of false alarm. Because the locally optimal detector has an
unwieldy structure, it defeats the motivation to use a compressive receiver: sim-
plicity and high performance. Therefore, a time-multiplexed detector is used
that, at the expense of duty cycle, can achieve performance as close to optimal
as desired. Both the locally optimal and the time-multiplexed detector have
hop frequency estimator versions. By choosing as the hop frequency estimate
the hop frequency corresponding to the detector channel with maximum out-
put, a hop frequency estimator is formed. In conclusion, two detectors and
a hop frequency estimator are developed with performance comparable to the
channelized devices but with the simplicity of the broadband devices.

1.6.3 Detector Based on the Amplitude Distribution
Function

A new idea for detection is developed based on the Amplitude Distribu-
tion Function (ADF). The ADF is precisely defined as a function from which,
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through a sequence of lemmas and theorems, two results are established. One
result is that the ADF is roughly the average distribution of a stochastic process,

and the second is that, for signal plus noise, the resulting ADF is the convolution
of the ADFs of signal and noise individually. The convolutional relationship for
signal plus noise motivates the construction of statistical transform, called the
deconvolution statistic, that converges to something that is arbitrarily close to
the signal ADF and hence has potential for separating signal from noise even
for low signal levels. How close the deconvolved ADF matches the signal ADF
depends on the proper choice of the kernel of the deconvolution statistic. An op-
timal detector is presented that directly observes samples of the deconvolution
statistic, yielding a test statistic of quadratic form. The ADF-based detector is
a robust device that is a generalization of the radiometer and quite immune to
the details of spread-spectrum modulation.

1.7 DOCUMENT ORGANIZATION

This work is partitioned into five chapters. The first chapter presents the
problem, precisely defines the type of frequency-hopped waveforms under con-
sideration, and describes the functions of the intercept receiver from a system
viewpoint. It also briefly describes existing interception methods in the cate-
gories of initial detection and hop frequency estimation and then contrasts them I
with the new methods developed.

The second chapter describes in detail the new sequential detection meth-
ods. Within this chapter, the likelihood function for a single epoch is developed
and asymptotically analyzed for a large number of hop frequencies. Based on
this analysis, the synthesis of the FSS test, SPRT, and TST are developed. Per-
formance equations are presented along with the results of numerical and Monte
Carlo analyses. The optimal TST is described and the asymptotic efficiencies, g
which capture the low-SNR test behavior, are presented. Finally, conclusions

are drawn.
The third chapter gives a detailed description of the detector and hop fre-

quency estimator based on a compressive receiver. It does this first by precisely
defining the signal and compressive-receiver models and then using them to
develop equations for the output signal component and to characterize statisti-
cally the noise at the compressive-receiver output. With the detection problem
translated to the output of the compressive receiver, likelihood ratio theory is
applied for the low-SNR case to create the locally optimal detector. A sim-
plified detector, the time-multiplexed detector, is also presented along with a I
hop frequency estimator. All detectors are performance analyzed and numerical

results given. Finally, conclusions are drawn.

The fourth chapter introduces the ADF-based detector and proceeds with
an exposition of the mathematical tools developed for the ADF, which consist of
a sequence of theorems and lemmas culminating in a convolutional relationship
between the ADFs of signal and noise. The deconvolution statistic is intro-

duced along with family of kernels to be used in the statistic. The large-time
statistical character of the deconvolution statistic is shown to be the basis of
the ADF-based detector. Synthesis and performance analyses of the detector

are presented and conclusions are drawn. I
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The fifth chapter summarizes the previous chapters and highlights the im-
portant points. It then suggests possible extensions to be investigated in the
future and finally concludes the document.
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CHAPTER 2

SEQUENTIAL DETECTION
METHODS

2.1 BACKGROUND AND
INTRODUCTION

The first task in the interception of spread-spectrum communicatiors is the

detection of the waveform. This is a prelude to other interception processes,

such as feature detection, channel tracking, and message extraction. As a new

development toward the detection problem, this chapter applies and extends
previously published results in sequential detection to the problem of the op-
timal detection of noncoherent frequency-hopped (FH) waveforms. By using

likelihood function methods, the problem was solved 8 for an FH waveform with
a known signal-to-noise ratio (SNR) and epochs with known starting times and

durations. However, in that approach, the decision was based on a data seg-

ment of fixed size. Here a sequential approach is taken, meaning that whenever

a new data element is collected, a decision about the presence or nonpresence of

an FH waveform is attempted. If no decision is reached, another data element

is collected.

The sequential approach to detection has a rich history. For the binary hy-
pothesis problem with discrete-time independent identically distributed (i.i.d.)
data, Wald 9 has derived the optimal sequential test. This test is optimal in

the sense that no other test can reach a decision of the same Neyman-Pearson
reliability within a shorter average time. This result has been extended to con-
tinuous time data.1 "," Others have suggested tests that must make a decision
within a prescribed time. These are the "truncated" tests. 12 , 13 , 14 Truncation

is desirable not only for implementation reasons, but also for improving the

performance of a sequential test when the input statistics differ from those as-

sumed in designing the test. In particular, Tantaratana and Poori 3 derive a

8J.D. EdeU, "Wideband, Noncoherent, Frequency-Hopped Waveforms and their Hybrids in
Low-Probability-of-Intercept Communications", Naval Research Laboratory, Washington,

D.C., Technical Report No. 8025, November 1976.
9

A. Wald, Sequential Analysis, Wiley, New York, 1947.
ION. Shiryayev, Optimal Stopping Rules, Springer-Verlag, New York, 1977.

"D.A. Darling and A.J.F. Siegert, "The First Passage Problem for a Continuous Markov
Process", Ann. Math. Stat., vol. 24, pp. 624-6.39, 1953.

1
2 T.W. Anderson, "A Modification of the Sequential Probability Ratio Test to Reduce the

Sample Size", Ann. Math. Stat., vol. 31, pp. 165-197, 1960.
I'S. Tantaratana and .V. Poor, "Asymptotic Efficiencies of Truncated Sequential Tests",

IEEE Trans. Inform. Theory, vol. IT-28, no. 6, pp. 911-923, November 1982.
'4 S. Tantaratana and J.B. Thomas, "Truncated Sequential Probability Ratio Test", Inform.

Sci., vol. 13, pp. 283-300, 1977.
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I
truncated sequential test for i.i.d. Gaussian data with an unknown mean, which
is the foundation of the results in this chapter.

Development of the sequential test is begun by defining the observations
model for a composite hypothesis problem. Specifically, given the observation
y(t), the problem is one of choosing between H0 , which is the hypothesis that
an FH waveform is not present, and H.,, which is the hypothesis that an FH I
waveform is present with an SNR y' where 0 < f'. Exactly, the model is

H0 : y(t) - ,t

versus (2.1)
H.,, y(t) = s(t) + n(t) 0 < "Y (1

where s(t) is given by (1.1) and n(t) is white Gaussian noise with two-sided
spectral density .a The hypothesized SNR -' is related to the other model I
parameters by -' = S'Th/No.

Because a reliable test cannot be devised for an FH waveform with an arbi-
trarily small SNR, the preceding composite hypothesis problem is simplified to
a binary hypothesis problem: H0 versus H1, where -y is specified as the smallest
SNR W1at is to be accurately detected. The quantity - = ST No with S being

the corresponding signal energy. The relative SNR r = /71/7 is also used.

Using the above observations model, the design of a sequential test for the
detection of FH signals is approached as follows. An asymptotically optimal test
is derived by applying the likelihood function theory to the simplified binary
hypothesis problem H 0 versus Hy. The parameters of this test are specified I
to ensure a maximum probability of detection for a given probability of false
alarm. This binary hypothesis test is then applied to the more general composite
hypothesis problem with a resulting degradation in detection time Ehat is shown
to be controllable by properly truncating the test procedure.

The derivation of the asymptotically optimal test begins with the derivation
of the likelihood function for a single-epoch observation, which is appropriately

called the Single-Epoch Likelihood Function (SELF). By invoking the central
limit theorem, Gaussian densities are found that are asymptotic to the actual
SELF densities as the number of frequencies becomes large. In determining
these densities, the SELF's means and variances will be explicitly computed 1
under each hypothesis. By next considering individual SELFs as the observa-
tions, the problem wili be reduced to a binary hypothesis problem with Gaus-
sian i.i.d. observations. This simplification is justified because each epoch of
FH waveform has independent statistics and because the SELF's statistics do
not depend on the particular hop frequency. Using these equivalent observa-
tions and their asymptotic densities, the Asymptotic Log-Likelihood Function

(ALLF) is derived. The ALLF is then used to synthesize tests for the binary I
hypothesis problem. This procedure requires extending the previously pub-
lished sequential tests to the cases of data with variances that depend on the
hypothesis. Applying these results, a Fixed-Sample Size (FSS) test, a Sequen- I
tial Probability Ratio Test (SPIRT), and a Truncated Sequential Test (TST) are
designed.

Each of the three tests is analyzed by approximating the test statistic by a
Wiener process and then employing the classical theory of diffusion. 1

1,
12 This

analysis is more general bc:ausc it yiclds the performance of each test to the
composite hypothesis problem rather than just the binary hypothesis problem

on which the tests are based. This analysis yields the average decision time of I
each test as a function of the input SNR, as well as the operating characteristic
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of each test. From these results comes an optimal test, whose worst-case av-
erage decision time is minimal. Finally, a computer simulation confirms these
analytical results.

To further extend these results to the case of a test that was synthesized
under the expectation of detecting an FII waveform with extremely small SNR,
an asymptotic analysis of a different sort is undertaken. This analysis shows
how the above tests perform for the composite hypothesis problem as the min-
imum reliably detectable SNR of the FH waveform becomes increasingly small.
Numerical results for this case are given, but a corresponding computer simu-
lation is not possible due to the rate of increase of the number of computations
required as the SNR diminishes.

2.2 LIKELIHOOD FUNCTION: ONE
EPOCH

The statistical test for the composite hypothesis problem is defined by find-
ing an asymptotically optimal test for a binary hypothesis problem and applying
that test to the compositc case and accepting the resulting degradation. This
simplified binary problem consists of the two hypotheses H0, where no signal is
present, and H', where a signal is present with SNR -. For this binary hypoth-
esis problem, Appendix 2.A contains a derivation of the SELF, which is the
likelihood function Ai of the ith-epoch observation y(t) for iTh < t < (i + 1)Th.
The SELF is expressed as

Ai(y) -_ &k [A,(y/k)] (2.2)

E I0 +(2.3)
Kk=o

where I0 is the zeroth order modified Bess,. function of the first kind and

2f [(i+l)Th

k = .y(t) cos wk,t dt

(i+1)T(2.4)
Qk = y(t)sinwk,t dt.

Because of the statistical independence of their respective observations, the
likelihood function of the n-epoch observation is then [-I" Ai, i.e., the product
of these individual SELFs.

The SELF is nicely modeled as the configuration of well-known devices, as
indicated in Figure 2.1. That is, the SELF is channelized so that each channel
has a matched filter that is tuned to a particular hop frequency and whose
output is envelope detected and emphasized by a Bessel function non-linearity.
The output of each channel, after scaling by C-'/K, is summed to produce the
SELF.
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Matched Envelope Emphasizing
Filter Detector Function

e-1l t 2I

()dt 12 _L(2 1. [/k) r K

Figure 2.1: Block Diagram of Single-Epoch Likelihood FunctionI!

Ii
The Asymptotic Log-Likelihood Function (ALLF) is asymptotic to the n-epoch

likelihood function, I 1  Ai, as the number of FH channels becomes large. The
critical idea behind the derivation of the ALLF is the application of the central
limit theorem to yield asymptotic densities for the SELF from which, using an

n-epoch collection of SELFs as an equivalent observation set, the ALLF will be
determined.

The SELF (2.3) was computed assuming a binary hypothesis problem, i.e.,
H0 is the hypothesis that no FH waveform is present, while H, is the hypothesis

that an FH waveform exists with a known SNR -y. The following analysis will
assume that an FH waveform, if present, will have a SNR f' or equivalently
an average signal energy S' that is not necessarily equal to the average signal

energy S assumed known in the binary case. This generalization is not necessary
for deriving the ALLF but will be needed to analyze the performance of the
ALLF in the composite hypothesis problem.

Proceeding with the derivation of the ALLF, the central limit theorem is
applied to the SELF to obtain an asymptotic density under all hypotheses,
0 < 7'. The central limit theorem is justified here because the SELF's output
is the sum of many channels whose statistics will be shown to be nearly inde-
pendent and nearly identical. It will be shown that the degree of dependence
between channels is determined by the amount of isolation between channels,
which is perfect for minimally spaced channels as is the case assumed here. It

also will be shown that the channel means and variances, while different for the
signal-present and signal-absent cases, are of a commensurate magnitude.
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2.3.1 Matched Filter Output Statistics

Because the central limit theorem requires only the mean and variance of
each channel, only the statistics of the matched filter output need be deter-
mined exactly since the SELF's mean and variances can be determined from
these statistics alone. Assuming that the signal present is in the kth channel,
then the matched filter output in the lth channel can be found from (2.4) as

J' v/72sinO+vi for 1 = kfolt (2.5)1/1t for 1 4 k

Q 27 cosO+6, for I k (2.6)Qt for I k

where

a UI T n(t)cos witdt
N -N-N-0Th i, (2.7)

A 2 f )Th

- ri n(t) sin wit dt.

The matched filter outputs for the no-signal-present hypothesis H0 are the
special case of the above expressions for 7' = 0. Two assumptions were made in
determining these approximate expressions for the matched filter outputs. The
first assumption is that wkTh is large and equivalent to requiring a large number
of carrier cycles over a single epoch. The second assumption of orthogonally
spaced channels [i.e. (Wk - WI)Th/27r is an integer] implies, in essence, that the
channels are isolated from one another. Another condition implying channel
isolation is wide spacing between the channels [i.e. (wk - wi)Th is large]. In a
practical implementation, smooth window functions also could have been used
in the matched filter implementation to achieve the channel isolation assumed
here.

Simplified expressions for the matched filter outputs are represented by (2.5)
and (2.6). The statistical nature of their noise components, {vi} and {ft}, is
determined next. From (2.7), it follows that the random variables {vl}, {}
are Gaussian with zero mean and unity variance. Under the isolated channel
assumption, it is easy to ,how that

C[VmLnI] = 0 for m# n I<mn<K

=[Vmn] 0 for all m,n 1< m, n < K (2.8)
=[n] 0 for mtn l<mn<K.

Thus {v1}, {f} are mutually independent, since they are Gaussian. These rela-
tions also determine the joint density of vt and g as

P,,(vi, t)= -ere-
1"

2
+ 

1
1. (2.9)

The equations (2.5) and (2.6) and (2.8), along with the joint density oftj and t
(2.9), constitute a complete statistical description of the matched filter outputs
{P1 } and {Q1}.
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2.3.2 SELF Moments

The statistics of {IfP} and {QJ} were found in order to determine the mean U
and variance of the SELF (2.3). The SELF moments are needed to apply the
central linit theorem and thus ultimately produce the ALLF. A few conditions

for the application of the central limit theorem will be established now. First,
since the random variables {P) an(d {Qt} are mutually independent, each chan-

nel output of the SELF is also independent. Furthermore, the channel outputs
are all identically distributed except for the output of the channel with the I
signal present. This particular channel output will be shown to have a variance
comparable to that of the other channel outputs and thus the central liniit the-
orem still applies and with it we get a density asymptotic to the actual SELF
density.

To continue, we need explicit expressions for the mean and variance of the
SELF. Assuming a signal is present with a relative SNR of r = V7- , then

the riatched filter outputs of the channel containing the signal are by (2.5) and
(2.6)

Pt = O2 F sin 0 + vi (2.10)

Q = V2 cosO+ o210)

If it, and a2 are defined to be the mean and variance for this channel output,
then (2.9) implies

pr = (2.12)
1 Io  ,2+(121dvjd~j. (2.12)

With the rectangular-to-polar conversion, PI = pcos p, Q = p sin , and apply-
ing the identity

10(a 2 2 e a cog do (2.13)1

the integral becomes

Pr - j P/o ( V72 p) 1o ( 27p) C-dp (2.14)

= e-Y1( 2 7). (2.15)

This integral was evaluated as (1) in Section 13.31 of Watson."5 The variance

is now evaluated as follows:
Or2 + 2  [1 (V£yV~7+Q

jur 0(2.16)

lo 10c: [02(~ ~~yc~M??~~ (2.17)
'5 G.N. Watson, A Treatise on tke Theory of Bessel Functions, Cambridge University Press, I

New York, 1980.
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which becomes with rectangular-to-polar conversion, and applying (2.13),

/ e-'0j pi0 (VT tp) Io (V27p) e- dp. (2.18)

This integral is evaluated by applying (16) froni Section 11.41 of Watson15 ,

which states

10 a( 2 + b2 
- 2abcos 0 dO = Io(a)Io(b). (2.19)

Application of this formula and an interchange of integrations reduces the in-
tegral (2.18) to a simpler integral solved as (1) in Section 13.31 of Watson.' 5

The net result is

2 2 e2 -y Co / 1
6, + Pr I e-2ycsIo (4V7sin )d. (2.20)

Summarizing, for a signal in channel I with a SNR y', the channel moments are

itr = e /O(2r')

a2  e 22 [= l e- 2y cos 0 o(4rysin) dk- i2(2ry,] "  (2.21)

where r = I .

The above calculations give expressions for the channel moments for a chan-
nel with a signal present. The moments for the case of a channel without a signal

present are special cases of the above with r = 0 and are thus denoted by Pa
and a0 . From (2.21) and the Bessel function identity (2.13), they are

PO = e-
a02 = e2- [I0(27)- 1]. (2.22)

Likewise, moments for the Ith channel (whenever it contains a signal with
strength y) correspond to the above moments with r = 1 and are thus de-
noted by p, and a.

As previously mentioned, the application of the central limit theorem de-

pends on the various channel means and variances having commensurate ampli-
tudes. The relative amplitudes between the moments are computed from (2.21)
and (2.22) and are

Pr - 1(2r-y) (2.23)

2
2- I + 2r - + 2r 2y 2 + 7 (y3). (2.24)

Hence, for small assumed SNRs (- < 1), the mean and variance of the channel
with a signal present and the mean and variance of the channels without a

signal present are within a factor of three of each other.
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Expressions for the mean and variance of the SELF are now immediate,

since the SELF is the sum of all K channels scaled by et--/K. The expressions
are

M - [(K - I)pU + Pr] 2.25)
Ki

V, = e-2 [(K - 1)," + 2]. (2.26)

Here, M, is the mean of the SELF when a signal of strength y' is present ant
M0 and M are written for the special cases of Mr, when r = 0 and r = 1,
respectively. The variances Vr, V0 , and V are defined similarly.

2.3.3 Derivation of the ALLF

With the first two moments of the SELF determined, the central limit the-
orem gives approximating densities to the SELF, A,, under the composite hy-
pothesis problem. These densities are I

H0 : Ai - e- V
versus 7 Ao -)2(2.27)

H-r,: Ai - 1--- e- for0<7'<7

which give a simplified statistical characterization of the SELF. That is, the

SELF outputs, {Ai}, are Gaussian i.i.d. variables whose means and variances
depend on the hypothesis.

As was the procedure in deriving the SELF, the Asymptotic Log-Likelihood
Function (ALLF) is designed using the simpler binary hypothesis problem. For I
a single-epoch, likelihood function theory and (2.27) imply a log-likelihood func-
tion of

Lj(A,) = c2A + c1 A, + Co (2.28)

where

C= (~; -)(2.29)1c 2 Vo Vi

Cl= (4, - MO (2.30)

CO = I(M -A l? + In f). (2.31)

VII

2o = o V, v0 v ,

Independence between observations over different epochs implies that the ALLF
up to time n is

T.= Li. (2.32)

Now that ALLF has been found, its mean and variance will be computed as a
prelude to investigating its performance in the composite hypothesis problem.
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2.3.4 Moments of the ALLF

I For the analysis that follows, it is useful to derive the moments of Li from
which the ALLF moments follow trivially from (2.32), starting with the mean

SI - E [Li (A,)] (2.33)

S= c2E(A)+cE(A,)+co (2.34)

c2 (M + V) + clM, + Co (2.35)

which expands in terms of the SELF moments to
1 v0r ,O . O,.

M --- nKln " +(21IVo) [(Mr_ Mo)2 V -(Mr M,)2 V0 +(V- V)V
(2.36)

Now to compute the variance of Li.

3 Vr = Var [Li (A,)] (2.37)

which upon substitution of (2.28) yields

V, = Var [c2 A -+-(lA + cAo (2.38)

= Var[(c2 M,2 +cIM, +co)+(2c2 M, +C,)V+c 2v2] (2.39)

where v = Ai - Mr. Proceeding,

I V, = Var [(2c2 M, +c 1 )v +c 2 v 2] (2.40)

= (2c 2 M,.+ cI) 2 V +2C Vr2  (2.41)

I 
which simplifies to

1V M)]o V,.. (2.42)

The special cases, r = I and r = 0, of the moments of Li are respectively
written as M 1 and MO for the means and as V, and VO for the variances.

2.3.5 Summary

I A log-likelihood function for the binary hypothesis problem, designated the
ALLF, has been derived that is asymptotic to the true log-likelihood function
as the number of channels becomes large. The ALLF was found with the help of
the likelihood function theory by considering an n-epoch collection of SELFs as
a set of i.i.d. observations assumed Gaussian by the central limit theorem. The
Gaussian assumption was justified by showing that each SELF was the sum of
nearly independent and nearly identical random variables. Various means and
variances were also derived that will prove useful in future discussions. The
ALLF now will be used to design an FSS test, an SPRT, and a TST.
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2.4 TEST DESIGN I

The results above reduced the problem of detecting an FIt waveform to that
of discriminating between two sets of Gaussian i.i.d. data with different means
and variances. A Fixed Sample Size (FSS) test, a Sequential Probability Ratio

Test (SPRT), and a Truncated Sequential Test (TST) based on this simplified
model will be discussed.

2.4.1 FSS Test Design

As the name suggests, an FSS test consists of comparing a test statistic TL,
based on a fixed number of observations L, to a threshold r. Then, if the test
statistic is greater than r, hypothesis H, is chosen, while a test statistic less
than r indicates hypothesis H0 . Symbolically this is

T _ > = H1 i

TLf H (2.43)< r =-> H0.-

In our case, the test statistic is the L-epoch ALLF and the test parameters L
and r are specified to correspond to prescribed false alarm PF and detection
PD probabilities. To determine L and r, the density of the TL is needed for
each hypothesis. Although this density equals the non-central X2 density, an I
approximate Gaussian density, derived via the central limit theorem, is used

instead to yield simplified expressions for the test paran-eters. These densities
are

versus TL 2 'LVo e (2.44)versus _ (T L _LAI

H1 TL ,/27LV IHI: TL "- e

From these densities, PD and PF can be computed in terms of L and r to yield

P =1-z Lo and PD = ) where 4 is the inverse c -the

distribution function of a zero-mean, unity-variance Gaussian random variable.
These are solved simultaneously to arrive at

[V 1 -(1- PD)- V°D -'(1 - P)] 2  (
L (Mi - MO) 2  (245)

L( _ M O) M,,V( - PF)- V1MA.r_,(1- PD)
(2.46) 

1
2.4.2 SPRT Design

Wald's sequential probability ratio test (SPRT) now can be defined as a test
with test statistic Tn, based on n observations and two thresholds a and 6. The
SPRT works as follows. Upon the nth observation, if Tn is greater than a, then I
hypothesis HI is chosen. If T is less than b, then hypothesis Ho is chosen. If,
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instead, T is between a and b, the test statistic is updated to include n + 1
observations and the process is iterated. Symbolically this test is described as

J >a => H,
for each n, T,, < b = Ho (2.47)3 E (a, 6) => take another sample.

The threshold values a and b are assigned to give the desired Neyman-Pearson
probability of detection PD and probability of false alarm PF. Relationships be-
tween the thresholds and these probabilities are given by Wald's approximations 9

a ; In (fD (2.48)

b ;z n(In)- (2.49)

U 2.4.3 TST Design

Truncated Sequential Test (TST) is a hybrid of the above two tests. Specif-
ically, TST follows the rules of a sequential test with test statistic T" and with
thresholds a and b, but has the added feature of forcing a decision at time L
(if no decision has been made) by comparing the test statistic to a threshold 7.
Symbolically,

>a H,

• foreachn<L, Tn <(b 2Ho
I E (a,b) = take another sample

but forn= L, TL { T : Ho,

Two relations secure the specification of the TST parameters a, b, L, and r.
If P; and PL are the actual Neyman-Pearson probabilities for the TST, then
from Tantaratana and Poor13

PP < PFSS+PSPRT (2.51)

(1 - PL) < ()- P (-pPRr) (2.52)

where PFSS is the probability of false alarm for the TST, if L = 00, and pPRT
is the false-alarm probability for the TST, if a = -b = oo. PDSS and pSPRT are
defined similarly. Thus the errors of the TST can be viewed as a mixture of the
errors of an FSS test with parameters L and r and an SPRT with parameters a
and b. These inequalities can be verified by viewing the ALLF T, as a discrete
stochastic process with time index n and enumerating its sample paths. For
instance, a sample path leading to a false alarm must either cross threshold a
before threshold b and before time L or be greater than threshold r at time L.
Since these events also correspond to false alarms in either the FSS test part
or the SPRT part of the TST, the inequality (2.51) must follow.

The above inequalities can be used to specify a TST, whose actual error
probabilities PP. and 1 - PL are less than any specified error probabilities PF
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and I - PD. Thus, the TST can be designed by partitioning the bounding
errors (1 - PD) and PF among the SPRT and FSS test parts of the TST and
then using the appropriate equation to compute the parameters L, r, a, and b
for TST"3 . Specifically, this partitioning is quantified with the introduction of
two constants, 0 < C1 < 1 and 0 < C 2 < 1, which are defined as TST mixture
constants, then I

pFSS = C1PF (2.53)

pSPRT = ( - C)PF (2.54) I
(1 pSS) = C 2(1 - PD) (2.55)

(1 - pDSPRT) = (I - C2)(1 - PD) (2.56)

for the error probabilities of the FSS test and SPRT parts of the TST. From the
above inequalities and (2.45), (2.46), (2.48), and (2.49), the TST parameters l
are determined as follows:

L- pSS) - V02'(1 PFSS)] (2.57)

(M 1 - MO)
2

[=) (t- IA ( I~~-( _ PFSS) V V -'47(1 - FSS)]im -(%-MAMo)

(2.58)

= In (p--PRT) (2.59)

I_ pSPRT

b=In ( D.~R (2.60)

Note that (2.51) and (2.52) guarantee that the actual detection errors

P; :5 RE (2.61)

1-P < I-PD. (2.62) 1
The mixture constants C1 and C2 reflect proportions of the FSS test and SPRT
parts of the TST since, if C, = C2 = 1, a pure FSS test is defined, and if I
C1 = C 2 = 0, a pure SPRT is defined. Criteria for choosing the mixture
constants will be discussed in Section 2.6.

2.5 PERFORMANCE OF TESTS m

The problem addressed by the preceding tests (the FSS test, the SPRT, I
and the TST) is the detection of an FH waveform. The detection of the FH
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waveform is a prelude to other interception processes, such as feature detection,
channel tracking, and message extraction. Here the performance of the tests
in detecting an FH waveform with variable amplitude and in the presence of
white Gaussian noise is quantified.

The three tests were designed under the assumption of binary hypotheses.
These hypotheses are Ho (FH waveform is not present) and H-y (FH waveform
is present and has SNR y). Of concern here is the performance of the three
tests when the actual SNR 7' of the FH waveform is more generally 0 < y' < -.
Two parameters characterize a test's performance for a particular 7'. The
first, denoted by E(N/r, y), is the Average Sample Number (ASN) defined as
the average of the number of samples needed to reach a decision. The second
parameter, denoted by Pa(r, y), is the Operating Characteristic (OC) defined
as the probability of declaring the absence of an FH waveform. Both the ASN
and OC are defined as functions of relative SNR r and the assumed SNR -y.

2.5.1 Analysis of FSS Test

For the FSS test, the ASN is obviously L, while the OC can be determined
by approximating the ALLF at time L by a Gaussian random variable with the
same moments. This central-limit-theorem argument produces

Po(r, ) - r - LT 4Mr) (2.63)

for the OC.

2.5.2 Analysis of SPRT

For the SPRT, the analysis is more difficult but can be approached as a
diffusion problem. Here we approximate the test statistic by a Wiener process.
Specifically, if T(t) is a Wiener process with variance function V,1 and mean
function Mn, then the ALLF, Tn, converges weakly to T(t) at integer times
i = n, provided n is sufficiently large. This last restriction is needed to ensure
that Tn has an approximate Gaussian density as implied by the central limit
theorem. In terms of the approximating Wiener process T(t), the problem of
finding the OC function is now the problem of finding the probability that T(t)
will "touch" the lower threshold b before the upper threshold a. Likewise, the
problem of finding the ASN is now the problem of finding the average time
that T(t) first "touches" either threshold (a or b). This time is also called the
average stopping time. Expressions for these quantities are given 11 , 12 as

P0( r , 7) e_2b4- hr

Po(r, t) = e - e - a M $ (2.64)

a

aPo(r,) + b[1 - Po(r,7)] Mr $0
C(N/r, -y) = ab M. M2.65)

V 1 M.=0
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2.5.3 Analysis of TST

The diffusion analysis technique also applies to the TST but is more in-
volved. The ASN is by Darling and Siegert"

' n -k L

E(N/r,-) = A (-1) Bj(e2 - 1) (2.66)

where 
n=1

V.

A - (a-b)2  (2.67) 1
a - b)2 a nr

Bn= e 2-'sin ~-e ',si n~rb (2.68)a-b as- b

k= M ~Vni 2 (2.69)
2Vr 2(a-b)2 

*.I

The OC function is defined by Anderson 1 2 as

PO(r, t) = $( -LM.)

- Ze2 ["na-(-I)b],(I r- LMr-2[a-(n-l)b)
n=1 VT LV-r

+e2*_rn(a-b)t Jr-LM, -2n(a-b)\ 3
+e 2 ., [,b(n),t)a (2[nb - (n -1)al-r+LMr

_e24n(b-a)s (2n(b - a) - r + LMr

Equations (2.63) through (2.70) represent a complete characterization of the
performance of the FSS test, the SPRT, and the TST.

The fact that the diffusion technique yields accurate expressions for the
ASN and OC functions will not be proved here but will be verified below by
computer simulation. l
2.5.4 Numerical Results

The FSS test, the SPIT, and the TST were simulated by the computer to
verify the assumptions of the analysis and as an independent measure of the
relative performance of the three tests. The simulated detector consisted of 512
channels and each test was synthesized to ensure a probability of false alarm
PF of no more than 1% and a probability of detection PD of at least 99%.
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Here the fairly relaxed probability of false alarm of 1% was chosen in order
to limit the number of data needed for a decision. Under these specifications,
the simulation was run until 1,000 decisions were reached for each of 11 SNRs
evenly spaced between 0 and 7. The decisions that no FH waveform was present
were averaged to estimate the OC, while the number of observations taken to
reach a decision was averaged to estimate the ASN. Additionally, the standard
deviation of ASN average was measured to indicate the ASN estimation error.

Figure 2.2 and Figure 2.3 are, respectively, the ASNs by simulation and
by theory when the assumed SNR -y = 1, while Figure 2.4 and Figure 2.5
are the corresponding curves for (-y = 0.3). As predicted, the ASN is greatly
reduced, by about 57%, for the SPRT in the regions around -' = 0 and 7' = 7.
These curves exemplify a general property of the SPRT: to perform very well
when the observation statistics are close to those assumed, but to exhibit a
degraded performance, often to the point of being worse than the FSS test,
when the observation statistics are different. In our context, this degradation
is evidenced by a large ASN for the SPRT, when the actual SNR y' is midway
between the two assumed values 0 and 7. The TST reduces the ASN in this
mid-SNR region, as shown by the figures, but it does so at the expense of
performance in the regions around 7' = 0 and 7' = 7. Despite this performance
loss, truncation is necessary for implementation reasons. It also will be shown
that the TST has the desirable property of having a higher detection probability
than the SPRT at small SNRs and that, through optimization of th'e mixture
constants, the TST can regain much of what it lost in ASN around 7' = 0 and
7' =7.

Focusing on the OCs (Figures 2.6 and 2.7 for 7 = 1, Figures 2.8 and 2.9
for y = 0.3),it is obvious that the FSS test has slightly higher probability of
detection for small SNRs while the SPRT has degraded performance in this
region. Notice that these test performances are reversed for SNRs close to 7.
The OCs also show that the TST's actual detection errors, PF and 1 - PD, are
within 79% of their specified bounds, P; and 1 - PL.

Throughout the analysis, various simplifying approximations were made
whose accuracies were hard to quantify, especially the Wiener process approx-
imations to the ALLF. Thus the computer simulation was compared quanti-
tatively to results predicted by theory as a validation of assumptions made.
Table 2.1 for 7 = 1 and Table 2.2 for 7 = 0.3 show how well the simulation
of the three tests corresponds to the analysis. The quantity AASN is the nor-
malized difference between the theoretical ASN and the simulation ASN, where
the normalizing factor is the estimated standard deviation of the average used
to estimate the ASN. The AASN values show a good correspondence between
theory and simulation, since they are within two standard deviations 86% of
the time. The quantity AOC is the normalized difference between the theo-
retical OC and the simulation OC. Here the normalizing factor is the standard
deviation of the OC average, assuming that the theoretical OC value is correct.
In other words, the normalizing factor for a theoretical OC of Po(y') and 1,000
simulption runs is aoc = VPo(y')[1 - P0(y')]/1000. Here again, in Tables 2.1
and 2.?, a good correspondence between theory and simulation is apparent.

The purpose of the computer simulation was to validate the assumptions
made in the specification and analys.i of the three tests: the FSS test, the
SPRT, and the TST. The accuracy with which the analysis predicts quantities
measured by simulation, as shown above, substantiates the assumptions made.
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Figure 2.5: ASN from Theory versus SNR, y = 0.3
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I
Table 2.1: Comparison Between Theory and Simulation for t=1 3

I I FSS test= SPRT I TST
A ' AASN A OC AASN]zA OC I A ASN OC 

0.00 0.00 0.84 -1.19 -0.03 -1.47 0.03

0.10 0.00 1.11 -0.48 2.77 -0.76 2.03
0.20 0.00 0.45 -1.05 1.92 -1.84 1.02

0.30 0.00 0.18 1.16 -0.09 1.19 -0.18
0.40 0.00 -0 25 1.09 0.89 0.20 -0.40
0.50 0.00 0.73 0.60 0.83 -0.64 1.53

0.60 0.00 0.22 0.23 0.02 -0.14 -0.15
0.70 0.00 0.37 -1.47 1.64 -2.35 3.20
0.80 0.00 -2.16 -0.94 2.25 0.76 1.17

0.90 0.00 -1.33 -1.38 0.83 -1.88 1.02
1.00 0.00 -0.84 -1.16 3.50 -1.38 1.29

I
I
I

Table 2.2: Comparison Between Theory and Simulation for -y=0.3

FSS test = SPRT TST I
S A OA OASN A_ I A OCIA SN I AO C

0.00 0.00 -0.71 -1.92 0.02 -1.04 2.09

0.03 0.00 -0.73 0.32 -175 1.38 -2.18
0.06 0.00 0.34 1.59 -0.82 -0.71 -1.03

0.09 0.00 0.68 -0.65 -0.49 0.07 0.28
0.12 0.00 -0.24 -1.72 0.33 -0.14 0.08
0.15 0.00 -2.17 -1.09 0.17 -0.48 0.69
0.18 0.00 0.91 -0.96 -0.19 -2.32 0.16
0.21 0.00 0.88 -1.04 -1.83 -2.49 -1.93 I
0.24 0.00 0.56 0.98 0.09 0.78 0.43
0.27 0.00 -0.18 1.79 2.02 1.70 2.68

0.30 0.00 -0.30 -0.70 1.67 0.63 0.20 1

I
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2.6 TEST EXTENSIONS

The analytical expressions for the ASN and the OC of the TST, (2.66 and
2.70), can be used to determine a TST with an optimum mixture of FSS and
SPRT parts. Specifically, the maximum ASN with respect to the SNR y' varies
as a function of the mixture constants C and C2 . This function is graphed in
Figure 2.10. The figure indicates that the optimal TST should have a greater
rmix of SPRT than the value one-half used in Section 2.5, since the maximum
ASN of smallest value occurs for smaller values of the mixture constants C1 and
C2 . The optimal mixture constants were found numerically to be C, = 0.286
and C2 = 0.284. The ASN and OC of the optimal TST are shown in Figures 2.11
and 2.12. It is interesting that, by minimizing the maximum ASN, the ASN in
the extreme regions about y' = 0 and y' = -f is also reduced. This is believed
to be a consequence of the optimal TST having a greater SPLT mix than the
half-and-half arbitrarily picked for the Section 2.5 simulation and, therefore,
exhibiting properties closer to a pure SPRT. Of course, if the first TST was
specified to have a larger SPRT mix, then optimization would have increased
the ASN in the extreme regions. The optimal TST offers a good compromise
between the need to maximize the ASN performance in the extreme regions
and the need to minimize the maximum ASN.

Another extension to the previously described tests is the robustification of
the tests with respect to the assumed SNR y. This can be accomplished by
specifying the assumed SNR 7 as the worst case, and then choosing a corre-
sponding minimum probability of detection PL that is somewhat relaxed. This
procedure produces a test that adequately detects over a broader range of SNRs,
and it is a way to effectively use the smaller detection times of the SPRT and
TST. In this way, either a TST or an SPRT can be designed to adequately
detect over a broader range of SNRs than an FSS test with the same or greater
detection time.

The described tests also can be extended to the slow FH case. The detector
structure itself is optimal under the fast FH assumption but is also a reasonable
suboptimal structure for slow FH signals. This is especially true when there are
a large number of hops over a given detection time. Even though the detector
itself is suboptimal for slow FH, all the performance and design analysis devel-
oped for fast FH applies directly. This is because all design and performance
analysis depended only on the chip duration being known and the interference
being additive white Gaussian noise.I
2.7 ASYMPTOTIC EFFICIENCIESI

The previous analysis did not include the performance of the tests when the
assumed SNR 7 is small. This case will be examined here. Since the ASN and
OC are functions of both 7 and the actual SNR 7', the ASN and OC can be
recast as functions of y and the relative SNR r = /Y. Test performance
in the dwindling SNR case is captured by the limit of the ASN and OC, as -
diminishes while r is held constant. For the OC, this is a finite limit, but the
ASN increases without bound. Thus, rather than comparing the ASNs directly,
the limit of the ASN times 72 is computed. In other words, a quantity, identified
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as the asymptotic ASN E(N/r), is defined as

i (Nlr) = lir -
2 C(N,'r,f). (2.71)~-.0

The asymptotic ASN is useful because it preserves the relative efficiencies be-
tween the ASNs as -f diminishes. For instance, consider the FSS test ASN,
CFSS(Nlr,-), and the SPRT ASN, EsPRT(Nlr,7) and write

lir a (N/r, -- I (2.72)I- 0.6SPRT(Nr
' y) -tSPRT(Nlr)

where EFSS(N/r) and ESPRT(N/r) are the asymptotic ASNs of the FSS test
and SPRT, respectively. The asymptotic OC is simply defined as

Po(r) = lim Po(r, ). (2.73)

I As an aid in evaluating these limits, asymptotic expressions for moments of
the single-epoch ALLF derived in Appendix 2.B are defined as follows:

5 Mr = MrY2 + 0(73 ) (2.74)

w eeVr = V,.7f2 + C7(y3l) (2.75)
1 where

5(1r _ K+ 2(r 2 _ (2.76)

3= K+ 2  (2.77)I _ K2 •

Throughout this discussion, the quantity 0(y") represents any function, say
1(y), such that -y lim f() < 0. (2.78)

The particular function represented by 0(t') is determined from the context
of the equation in which it appears.

To ease the expression of the asymptotic ASN and asymptotic OC, the vari-
ables L, f, a, and b are defined. They will be labeled the asymptotic test
parameters. Depending on the test type, they have expressions that corre-
spond to that test type's parameter equations, where M, is replaced with A. ,
and, likewise, V,. is replaced with 1,. For instance, the FSS asymptotic test

parameters from (2.45) and (2.46) are

L = - - -  (2.79)

=-. - M-'(1 - PF) - V1 Mo- 1 (1 - PD))]

(2.80)
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By using the asymptotic expressions (2.74) and (2.75), we have proved that the
asymptotic ASN and OC of a particular test are exactly those of a test with the
corresponding asymptotic test parameters. For example, this fact and (2.63)
suggest that for the FSS test the asymptotic ASN is

£ SS(N/r)=L (2.81)

while the FSS test's asymptotic OC is

Po(r) = . (2.82)

The ASN and OC for the three different tests are plotted and compared in 3
Figures 2.13 and 2.14. The relative relationship among the tests' asymptotic
ASNs is almost exactly like that between the ASNs for -y = I and 7 = 0.3, shown
in Figures 2.2 through 2.5. This indicates that the three tests have reached I
their asymptotes, even for - = 1. This comment also applies to the OCs. The
usefulness of this asymptotic analysis, beyond verifying that the relationship
among tests remains the same for diminishing SNR, is that it simplifies the test
parameter relationships with respect to the parameters 7 and r. Thus for each
test, we could choose parameters L = L - 2, r = i, a = a, and b = b and have
comparable performance for any small 7. This feature simplifies any adaptation
with respect to y that might be added to this detection scheme. I
2.8 CONCLUSIONS 3

Methods for the sequential detection of noncoherent fast FI1 waveforms have
been developed. In the process, the FH waveform is modeled to have an in-
formation component that consisted of a series of chips with a known constant
epoch, where each cip frequency is one of a known ensemble of frequencies.
In the model, a particular chip frequency is independently determined by a
uniform random variable on the frequency ensemble. The FH waveform is as-
sumed to have an additive white-noise component. By assuming the modeled
FH waveform to be a known SNR, the optimal detector based on a single-epoch
observation (SELF) is developed using likelihood-function theory. SELF is the I
sum of many nearly identical and nearly independent random variables and thus
has nearly Gaussian statistics. This central-limit argument allows a multi-epoch
collection of SELFs to be considered an equivalent set of Gaussian i.i.d. vari-
ables. From these simplified observations, a log-likelihood function (ALLF) is
computed that is asymptotic to the exact log-likelihood function as the number
of possible hop frequencies becomes large. The ALLF becomes the test statistic
on which three detection tests are based. The tests are the FSS test, SPRT, I
and TST. These are defined to ensure that detection errors are below desired
levels. By modeling the ALLF as a Wiener process, diffusion theory yields the
performance of the three tests not only for an FH waveform of the assumed SNR
but also for all SNRs below the one assumed. This analysis compares favorably
with a computer simulation of the detector that validates the analysis. The
analysis also becomes a tool used to numerically optimize performance of the
TST, when the actual FH SNR deviates from that assumed. In order to study
the performance of tests synthesized by assuming an extremely small FH SNR,
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expressions for the asymptotic test efficiencies are computed. This asymptotic
analysis also yields simplified test parameter expressions applicable to the small
SNR case.

A significant feature of the SPRT exposed by the analysis is that, with the
same error probabilities, an FH waveform with a given SNR can be detected
in less than half the time of the corresponding FSS test. This reduction in
detection time is especially significant for Low Probability of Intercept (LPI)
applications in which the transmissions are purposely short. For the pure SPRT,
detection time increases whenever the observed SNR differs from that assumed
in the test's synthesis. For SNRs midway between zero and the assumed value,
it is even comparable to the corresponding FSS test. The TST significantly
improves this anomaly while sacrificing little performance over that of the purely
sequential test, and what little performance is lost is largely regained by the
optimal TST. The decrease in the detection time of the sequential tests can
be used to robustify the test with respect to the input SNR, while maintaining
better performance than that of the non-robust FSS test. The simplified test
parameter expressions derived by asymptotic methods may be useful for any
schemes to adapt these tests for varying FH SNRs. The three tests and their
corresponding design and performance analysis also apply to the slow FH case.
The detector structure is suboptimal for slow FH but it is believed that the
performance loss is small, especially for detection times that include a large
number of hops.

It is apparent that other simplifications and extensions to these results are
possible. For instance, it is assumed that the starting time and duration of the
chip epoch are known. This first restriction might be relaxed by redefining the
SELF to per-form sliding window integration instead of the integrate-and-dump
operation now performed. This, of course, would degrade the detector's per-
formance for some values of epoch starting time, but probably wo',ld exhibit
a better average performance. There are also possible simplifications to the
SELF to improve its implementability; for example, removal of the emphasiz-
ing function would make the detector structure suboptimal but probably still
asymptotically optimal for small assumed SNRs. Another simplification could
be coarse subband preselection, where the total spread-spectrum bandwidth is
subdivided into subbands, each containing a large number of chip frequencies.
An algorithm then could be used to select a subset of the subbands that most
likely would contain the intercepted signal. Detailed processing on these pres-
elected bands then could be done with the methods described in this chapter.

2.A DERIVATION OF SELF

Proceeding from Appendix B of Woodring," the likelihood function, given
the carrier phase 0 and the channel k, the conditional likelihood function for
the ith epoch is

Ai (yl/k, 0) = e- e + 9)Ts,(.)dt (2.83)

where E is the single-epoch energy of the FH signal, i.e.,
~(i+I )Ta

E = 2Ssin2 (wk,t + O)dt. (2.84)
J iT5
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I
But

E , S7i for w k,Th > 1 (2.85)

which, upon substitution into the conditional likelihood function (2.83) and

expanding z,(t), yields

A. (y/k,O) = e-- e"/ -( P-si O+Q, cs0) (2.86) 3
where

2 f(i+I)Th
P = -- T" YiT. y(C)cosw k. dt 382 (2.87)
Qk = '= liT y(t)sinwk,t dt.

Taking expectations with respect to 0 defines

A,(y/k) a= Fo [A,(y/k, 0)] (2.88) 3
which is the likelihood function conditional only on the channel. This expecta-

tion can be evaluated as 3
Fe [A,(y/k,O)] - e'FI (Pkin+Qkc°9)do (2.89)

= j2 X eV ( "/ /-w '+ Q  sin(O+VP)dO (2.90)
2r J

where ¢ = Arg(Pk + jQk). Now by the periodicity -f the integrand I

Se [A,(y/k,o)] _ 2r f e'12Y ° dO (2.91)

by the identity

lo(a) - o2w e"ac'dO (2.93) 3
where 10 is the zeroth-order modified Bessel function of the first kind. Taking
expectations with respect to the channel k yields the single-epoch likelihood

function (SELF)I

Aj(y) Ek [A,(y/k)] (2.94)

-- Z to(- V PC2PO). (2.95)
k=0I
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2.B ASYMPTOTIC EXPRESSIONS OF
THE ALLF MOMENTS

We want to examine the behavior of the ALLF moments when SNR y di-
minishes while the relative SNR r is held constant. The asymptotic expressions

derived here encapsulate this behavior. To derive asymptotic expressions for
the mean and variance of the ALLF, consider the mean and variance M'r and

1'r of the single-epoch ALLF only. To this end, it will be useful to derive asymp-

totic expression of two functions of the channel moments: pr/(7o and a2/o0 .2

Starting with the first expression and substituting (2.21) and (2.22) forms

,4 _ Ig(2rT)

Or02 - [Io(2y) - 1] (2.96)

We will need a partial power series expansion of Io(x), i.e.,

z
2  X

4

Io(X) = 1 + - + - + O(X6). (2.97)
4 64

Here and throughout this discussion, the quantity O(x") represents any func-

tion, say f(x), such that
z -' limaf(x) < cx. (2.98)

x- 
0

The particular function represented by O(x) is determined from the context

of the equation in which it appears. With the above power series for 10, (2.96)

becomes

14 _ [1 +r y 0(y4)] 2  (2.99)0r2 2 7 +  4  +  o ( ,y6)

1 + 2r 2 y 2 + 0(y 4 ) (2100)
- 2t 4 + 0(y6)

= -2 + (2r 2 
- I) + 0(72) (2.101)

= [7-' + (r'2 _) + 0(f3)]2 (2.102)

thus
= y- + (r2  _ y + 0(_). (2.103)

Now let us evaluate the second channel moment function. Using (2.21) and

(2.97) plus the power series for e, after carrying out the multiplications we

get

T2 = [lo(2 ) '-' e- Io(4r-sin -)d - 1 (2.104)
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=2 [-1 + 411' + 0)(9I)] { J
2y os4 + 29 cos 2 ) - 7Co 3 3 + 2 coS4 04)- + o(,1)

+4r 272 sin 2 P + 4r47 4sin
4 P + 7(7)j d4 (2105)

- [ + r2  4 + 4 + o(44)]

0,,2 = [t +1_y + a(-to)] , 2 o•2 4
010 0(7)1

+ (4r2Sin2 C + 2co, 0) -y2 (8r2 oOS Sin2 ± + Ios30) y3, (2.106) 
I

+ cos 4  + 8r 2 cCS2 0 sin 2 0 + 4r 4 sin4 ±) 74 + O(), 75) dO

- [I +2r2 Y2 + r"7 + 0(76)] }
Let f(0, 75) be the particular function represented by the symbol 0(0, 7) under 3
the integral, then

Jim 7-5 f f(4, t)j Jim -t -f()') < 00 (2.107)3-Y0,0 r, - 0 o
implying that f f (0, 75) E O(7S). The interchange of the limit and integration
is justified as follows. The function f(4), 7) inherits continuity on the compact
set {0,,7 : E [0, ir] and Y E [0, 1]} from the integrand. Therefore, 7-5 f(O,s 5 ),
which has a finite limit at the origin, is also continuous on this compact set
and hence is bounded, say by B, on this set. The function B is integrable
on 0 E [0,ir], from which the interchange follows by the Lebesgue Dominated
Convergence theorem. The interchange implies that (2.106) can be integrated
term wise to yield

0 [72 X 

3
r_ = [- 2+ I t + o (-Y)]- X

047

{[1 + (2r 2 + 1)y2 + 2r 2 y3 + (1 + 2r 2 + r")7" + 0(y5) (2.108)
- [1 + 2r 2"y2 + r 4 + 0(6)y }

which simplifies toI

w-- 1 + 2r - + 2r2y2 + 0(7). (2.109)

With these asymptotic expressions for pr/ao and r/0 we proceed with the
derivation of asymptotic expressions for the ALLF moments. The ALLF mean
is expressed in terms of the SELF moments as

M, = In 1 + {[Mr [M2]2 V 0[M-M2V+[VV

(2.110)
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The last three terms can be evaluated as follows:

I ~ ~~~~~~~12V Vof11ro)V -'i 2 V+ViV]r

[K _K[ __ [K_] [K + i ]} o.11
0 0

_ 11 {[r .o(9) ]
2 + [K _I+l+,

I
= - [K + 2-y + O(-f)j- [r- + (_/)I 2 [K + 0(-y)]

-K [(r 2-0) 7 + o(_t,)] 2

+ [K + 2r 2_ + O(-y)] [2-t + 2-Y2 + 0(-Y3)] } (2.112)

(K + ( -r2 + K-4) 72 + 0(73). (2.113)

Now for the final term. We will need the following power series expansion for
in(x)

lz n(1 + ) = - -- + O( 3 ) (2.114)

Iln Vo Ii [I I I Orl

In + n] (2.115)

1 2 2 2
= -In 11+ KY +7K + 0(73)] (2.116)

K+ -t 2 + (9y) (217

I combining (2.113) and (2.117)

K r2 (r 2 + O(Ty)" (2.118)

Now to proceed with the variance

Vr 2  2 +)M1l+ (\M IM o 2

2 = 2 o -iVo VV , VJ MV+ V , (2.119)

* 59

I



The Johns Hopkins University I
Applied Physics Laboratory I

The first term can be evaluated as

v2 /11\ 1 {_L~ Ji. .- oJI (2.120)1
21

V0(22)2 KI + 0(7)]2

I {t + [K+0((). (2.120)

I I M = M 2-

1 2  + ( 72)][K + 0(, t)] (2.12 )

+ K - -[+ + 0(-/)]11

2t + o(3) 3

= K ,()] [-+2- + (1 , - +0 ]} 215

The second term of (2.119)

M.+(M!O )]12 3
T~O i7 V V

2 1K1+-r 12 KP
0,2 L2 2o ~

(2.123)

I [K + 0(-y)] {[2-7+2_Y2 + 0(73)] [K7-' + 0(Y)] (2.124)

I

+ K [. 1 + 8y

- K [ + - y0(9y)] [I1+ 2-y+2,y2+0(3)] }

(K +0(t) I [2K +2K + 0(72)1 + K -2 - y + 0() } 12 (2.125)
-K

2 [K + 0(-/)]2'

+ 00f 30y). (2.126)3
K

Combining (2.122) and (2.126) yields3

=, ! K+2 2 + C7(-1). (2.127)
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Summarizing these results

M L±_ r2 _ _ (3) (2.128)

Yr K~~+2 0( 3) (2.129)
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* CHAPTER 3

*I OPTIMAL INTERCEPTION VIA A
*COMPRESSIVE RECEIVER

I
3.1 INTRODUCTION

I The goal of the intercept receiver is to detect deceptive electromagnetic
sources and follow up by extracting waveform features for use in the jamming

or exploitation of that source. With the advent of frequency-hopped and other
spread-spectrum signals, the search bandwidth that assures a reasonable proba-
bility of intercept is increased greatly with a corresponding increase in the com-
plexity of the intercept problem. For these cases, wideband interceptors prove
unacceptable, while high-performing channelized interceptors prove virtually
unimplementable. The compressive receiver, which simultaneously estimates

frequency components over a wide, set band, has promise as an interceptor
with both the simplicity of a wideband device and the performance of the chan-
nelized device.

The lit rature is rich' , 
2
, 16,17,7 with intercept methods for frequency-hopped

waveforr There are also some analyses of the detection performance of the
compressive receiver. 8,' 9 However, very little has been written on the appli-
cation of the compressive receiver to the interception of spread-spectrum sig-
nals (Milstein and Li2" is an exception) and even less on the interception of
frequency-hopped waveforms. To fill the void, this chapter fully develops an
optimal and a simplified suboptimal method for the detection of frequency-
hopped waveforms. The chapter further exhibits a structure for hop frequency
estimation.

The chapter models the compressive-receiver input as consisting of either
stationary Gaussian noise of known autocorrelation or aoise plus a hopped
signal of known hop epoch, unknown phase, and energy above a minimum de-
tectable level. Approximate transfer relationships for signal and noise are de-

16 A. Polydoros, J.K. Holmes and K.T. Woo, "Advanced LPI Intercept Detector Research",
Technical Report No. R8511-3, Axiomatix, Los Angeles, Calif., November 13, 1985.

'
7

W.E. Snelling and E.A. Geraniotis, "Sequential Detection of Unknown, Fast Frequency-
Hopped Waveforms", IEEE J. Select. Areas Commun., vol. 7, no. 4, pp. 602-617, May
1989.

'
8

K.D. Breuer, J.J Whelehan, and K. Ross, "Compressive Receivers Applied to ESM System
Design", MSN Microwave Syst. News &_ Commun. Techno., vol. 16, no. 11, pp. 66-68,
70, 72, 74-75, Oct. 1986.

1 9 B.K. Harms and D.R. liummels. "Calculation of Detection Probability for Frequency Com-
pressive Receivers", IEEE Trans. Aerospace and Electronic Systems, vol. AES-21, pp.
106-116, January 1985.

2
°K.11. Li and L.B. Milstein, "On the Use of a Compressive Receiver for Signal Detection",

to be published in IEEE Trans. Commun.
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veloped separately and used to translate the detection problem to an equivalent
one on the compressive-receiver output. Likelihood function theory is applied
to the equivalent problem and yields a locally optimal (i.e. optimal for small
signal-to-noise ratio) detector. The locally optimal detector has an unwieldy
structure that defeats the motivation of using a compressive receiver: that of
simplicity plus high performance. Therefore, a time-multiplexed detector is de-
veloped that, at the expense of duty cycle, can achieve performance as close to
optimal as desired. Asymptotic statistics of the detector's output are derived
and used to quantify performance. A hop frequency estimator is presented and
its probability of track estimated.

3.2 PRELIMINARIES

Several areas need elucidation before a useful interceptor can be developed,
in particular, a precise statistical model of the compressive-receiver input and a
precise model of the compressive receiver itself. In order to statistically model
the compressive-receiver output, transfer relationships are needed for both the
noise and signal.

3.2.1 Input Signal Model

The signal model is for a composite hypothesis problem. Specifically, given
the observation y(t), the problem is one of choosing between H0 , which is the
hypothesis that an FII waveform is not present, and H,,, which is the hypothesis
that an FH waveform is present with an SNR 7' greater than some minimum
SNR -y. Exactly, the model is

Ho: y(t) = n(t) (versus(.1
H ( ) = s(t) + n(t) < (31

where the frequency-hopped signal s(t) is given by (1.1) and n(t) is station-
ary, colored Gaussian noise with variance or? and with autocorrelation function
oR,(t). The hypothesized SNR -y' is related to the other model parameters by

- S'Th/o'?, while similarly the minimum SNR y = STh/o.
Significantly, the signal model allows for colored noise and is, therefore,

quite general. Note that the model assumes that all signal parameters except
amplitude and hop frequency are known.

3.2.2 Receiver Model

Figure 3.1 blocks out the compressive-receiver model. The compressive re-
ceiver mixes the input signal yi(t) with a linearly frequency-modulated signal

a(t) = cos(Wot _ Ot 2 ) 0 < t < T, (3.2)

that scans downward in frequency from wo to WO - 23T,. Here T, is the scan
time. The scanned waveform is input to a pulse compression filter, hence, the
name compressive receiver. The filter has impulse response

h(t) = cos(Wot + 3t 2) w(t) 0 < t < T, (3.3)
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I

* a(t)

Figure 3.1: Block Diagram of Compressive Receiver Model

where w(t) is a weighting function used to minimize energy spillover between
signals of different frequencies. The output of the compressive receiver now
follows as

3 yW(t) = JT a(t - r)y,(t - r)h(r) dr T, < t < 7, (3.4)

where = xo(t) + no(t) (3.5)

X0 (t) A T a(t - r)xi(t - r)h(r) dr T t < T (3.6)

no(t) E j a(t - r)ni(t - r)h(r) dr T: t < T . (3.7)

3 3.2.3 Output due to Signal

Using (3.2), (3.3), and the commuted version of (3.7), the output of the3 compressive receiver can be expressed as
Pt

zo(t) = z(r) cos(WOr - 3r2 ) cos [wo(t - r) + ,3(t - r) 2] w(t - r) dr (3.8)

whenever T, _ 1 < T,. Trigonometric manipulation leads to

2 , cos(wof + it)  (r) cos(2tr)w(t - r) dr

+ sin(wo z(r)sin(2tr)w(t -r) dr + c. (3.9)

3 Application of Lemma 2 shows that error term

Pwpr (3.10)
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where P is the positive variation of the window w(t) on t E [0,T,] and where
P, is the positive variation of the input x(t) on t E (0, T1. The definition of
positive variation appears as Definition 1 in Appendix 3.B.

The error bound has special meaning when X(t) is a sine wave of angular
frequency w. In this case, P, _ wT,/7r < 23TT,/ir and hence

Ij1 < 2 . C (3.11)

which is very small for typical values of w, T, T, and 3.

3.2.4 Output due to Noise

As shown in Appendix 3.A (3.95 and 3.99), the normalized autocorrelation
(divided by o,?) of the compressive-receiver output is

R,(t,d) =8 R,(ul - d)

jS ° -  cos [(wo - 2[3t + iu2 )(u1 - d)] cos [(wo + 3u 2)Ul

W ero t U ) U2 u ) d2 dul + c. (3.12)

The error term is bounded as

IIIl s: g p.2BT, (3.13)

where
B 1 2 2 (-4

2/-T + 2wo -2j3T, +  o2,3 - T (3.14)

with P being the positive variation of w(t) defined by Definition I in Appendix
3.B.

Under typical operating constraints, the error bound can be simplified fur-
ther. The term 2fl(T0 - T) represents the total frequency spanned by the
compressive filter, which is very large (typically on the order of megahertz).
Additionally, the frequency w0 is usually in the tens to hundreds of megahertz
range, hence wo > 106. These two facts, along with the fact that the scan time
is typically twice the compression time (i.e. T, = 2T,), imply that B < 1/T.
Under these assumptions, the error is bounded as

d P2  (3.15)

8 I
Of interest are special cases of the autocorrelation. When the input noise is

white, meaning* that aPR,(t) - 6(t)NO/2, then the output noise is stationary

*Since the variance of a white noise process is undefined, arbitrarily let &2 = No where
No is the single-sided spectral density of the white noise process. This choice make the
signal-to-noise ratio, -y, consistent with other definitions in the literature.
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and has autocorrelation

R,(d) 2T = ldl cos[dl(wo + Ou2)] u+ 2 - d,) dU216 d 2d) 2 2 du

m (3.16)

whenever ]dj _< T, otherwise R,(d) = 0. If the window function w is rectangu-
lar, then

R.(d) = 1 sin [/lldl(T: - }al) ] cos [Idi(wo +/3T)] (3.17)8od = 3 1dl

whenever Idl < To, otherwise Ro(d) = 0. Regressing to the case of general
stationary noise but now considering only rectangular windows,

R, (t, d) ! Ri(ul - d)g(ul,t,d) dul (3.18)

where

g(ul, t, d,) . sin [(O3d - 2/3u,)(T, - Jul 1)]
(3d- 2u,)

x cos [wod + 2I0t(ul - d) - 2w 0ul + (fid - 2,3u,)Te]

in [/3d(T¢ - Iu H)
+ -i d - Ju ),Cos [wod + 2,3t(ul - d) +/?dT,]. (3.19)13d

3.3 LOCALLY OPTIMAL DETECTOR

I We aim to develop a locally optimal detector of frequency-hopped wave-
forms based on a compressive-receiver output. Keying on the fact that the
optimal detector of frequency-hopped waveforms integrates coherently over a
single hop period,'" we conjecture that an optimally configured compressive
receiver should integrate over a period commensurate with the hop epoch Th.

But because we are also interested in the detector's performance in estimating
the hop frequency, we want to eliminate interference from adjacent hops. We
thus choose T, = Th and assume that the compressive receiver is synchronized
to frequency hops. This is not a realistic assumption in the pure detection
problem but it will lead to an optimal detector whose performance degrades
gracefully upon relaxing this assumption.

Because the interfering noise is typically of much larger bandwidth than the
hop rate, the correlation between hops is negligible and so the optimal multi-I hop detection statistic is simply the sum of the optimal single-hop detection
statistics. We thus confine ourselves to the problem of using the compressive
receiver to optimally detect, given an observation period of Ts, a sine wave of
unknown amplitude and phase and whose frequency is one of the known hop
frequencies.

Based on the above assumptions, the detection problem is now

versus (3.20)
H1, x (t) = v/'Ssin(wkt +0) + ni(t)
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for 7 < -t' and Te < f < T. The parameters 0, W, ', wk, and ni(t) are as
defined in Section 3.2.1.

By using the results in Sections 3.2.3 and 3.2.4, the detection problem based
on the output of the compressive receiver is

versus Ho: xo(t) = n(t) 3
s H, : xo(t) = V2' cosO y,(t,wk) + v/ SsinO y,(t,wk) + no(t)

(3.21) 1
for y < 7' and T, < t < T and where no(t) is stationary, colored Gaussian
noise with autocorrelation function Ro(t) as defined by (3.12) and

ye(tUjk) 1 COS(W~t + t2)  cos(wk) cos(2/3tr)w(t - r) dr

+ 2 sin (wo t + t2) TI cos(w kr ) sin (2 i3tr )w (t - r ) d r

(3.22) 1

y'(t,Wk) 2 1 cos(Wot + 3t2 ) sin(wk r) cos(23t1r)w(t - 7-) dT

+ 1 sin(wot + fOt2) sin(wckr)sin(2/?tr)w(t - r) dr.

(3.23)

From Van Trees 2 1 , the conditional log-likelihood function for this problem be-
comes

r.2y ~T.
;_ ,, fT, d+ ---- sin 0 o(T)gs(rwk) dr-2hCos I  orgr wk) dr + 2 TI o(,o,"
VIT 

ui Th
J

S T.

27- J [cos9 y,(r, wk) + sin 0 y,(r,wk)] [cosO gc(T,wk) + sin 0 g,(r,wk)] dr

(3.24)

where the functions gc(t,wk) and g,(t,wk) are respectively defined by the inte-
gral equations

J. R r-t gi:(r,w)di- = !jc(t,Wk) (3.25)

"R ,+--t] g,(r,wk)dr = y,(t,.W) (3.26)

2 1 H.L. van Trees, Detection, Estimation, and Modulation Theory, Part I, Wiley, New York,

1968.
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for T, < t < To. Since we are interested in a locally optimal test (i.e. small y),
we neglect the last term of (3.24) and say

In A [Z 0 )/Wk, 0,71 -

23' cosO dr 2 . .sin0 oT. (7-)g (r, w ) dr.

I 
(3.27)

Averaging this approximate likelihood ratio over 0 and wk yields

A [xo(t)/y] = K 2 xo(r)Gk(r) (3.28)
k=1

where I0 is the modified Bessel function of the first kind and zero order and
where the complex-valued function Gk(t) is defined as

i Gk (t) - g(t, Wk) + i g,(t,Wk). (3.29)

Consider again the small y case and note that Io(x) 1 + x 2 /4 for small x.
Conjure (3.28) into a locally optimal statistic

r = 1-- T Ki 12(.0

T j x (r)Gk(r) (3.30)

where the scale factor l/o,?Th is added for convenience in future analyses. Fig-
ure 3.2 blocks out (3.30). To complete the detector, r is compared against a
threshold v, whose value determines the probability of false alarm PF. (Sec-
tion 3.5 shows the exact relationship between v and PF.) The statistic -Y being
locally optimal will, for small signal-to-noise ratios, yield the greatest possible
probability of detection, hence it is locally the most powerful test in terms of
signal-to-noise ratio.

I 3.4 TIME-MULTIPLEXED DETECTOR

The locally optimal detector of the last section efficiently detects frequency-
hopping waveforms. As will be shown, it rivals the optimal detector that directly
observes the original time waveform. Unfortunately, it also rivals the optimal
detector in implementation complexity and thus undermines the attractive sim-
plicity of the compressive receiver. In this section, we construct a detector based
on the locally optimal detector that maintains simplicity of implementation for
a small performance cost.I The time-multiplexed detector depicted in Figure 3.3 is both efficient and
simple. The detector consists of a complex filter whose impulse response GE(t)
is constructed from the pseudo-signals Gk(t) by the equation

K
G t= Z Gj [T, - t + (j - 1)AT]. (3.31)
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Complex Envelope-Squared
Matched Filter Detector

G2(t)

GK (0

Figure 3.2: Locally Optimal Single-Epoch Detector

Complex Envelope-Squared Sampler/
Matched Filter Detector Accumulator

X0(t( t) 1) 12 A

Figure 3.3: Time- Multiplexed Detector
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The envelope of the filter's squared output is then sampled at times,

t = T, + (k- 1)AT for k= 1,...,K (3.32)

then summed and scaled by l/uTh to produce the test statistic f. It is easily

shown that

= xKr)TI; [T, +(k - 1)AT - r 2 dr (3.33)

Ii hnk=1

which by defining

Id (t) - G[ [T, - t + (k - )AT)j for T _< t < T (3.34)

yields the alternate expression

K Th -o(T)Gk(r) dr 2 (3.35)
k=1

Note that (3.31) transforms (3.34) to
K

Gk(t) E , [(j - k)AT + t] (3.36)
j=l

which, for AT > T, - To, implies Gk(t) = Gk(t), since the Gjs are zero outside
the range T, < 1 < T,. Hence the time-multiplexed detector is equivalent to

locally optimal detector for this choice of AT. We aim to show that AT can
be made significantly smaller for a small performance cost, thus concluding

that the time-multiplexed detector captures most of the detectability of the

locally optimal detector but maintains the simplicity of the compressive-receiver

cunfig&i ation.

I 3.5 DETECTOR PERFORMANCE
ANALYSIS

In both the locally optimal detector and the time-multiplexed detector, the

test statistic is the sum of squares of a large number of weakly correlated random

variables. Namely, for the locally optimal detector,

2K

r E( (3.37)I j=1
where 1 T.

S ,2 J xo(r)hj (r) dr (3.38)

and where hj(t) is defined as below with 1 < m < K

h2m -1 (1) = g:(t,wm) (3.39)

h 2m(t) = g,(t, w). (3.40)
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Similarily for the time-multiplexed detector, the test is2K

E(3.41)

where 
=

a f m Kf x0 (r) hj(r) dr (3.42)

and for I < m < K, 71 fT

h A-l ~,w (3.43)I

h2,.() A i.,(t, W,. (3.44)

Here, E(t,W)_ R [Gn(t)] and !(t,wm)a [m(t)]. In the analysis to fol -
low, the hat notation will be dropped since the results apply to each detector
in the same way. In other words, to get the result for the time-nmultiplexed
detector, add hats to the appropriate variables.

Pccausc the test statistic is the sum of a large number of weakly corre-
lated random variables, there is reason to believe, despite the correlation, that

the statistic has approximately Gaussian distribution. We proceed under this
assumption with justification to follow later. To specify the asymptotic dis-
tribution of r, we need its mean and variance under the signal-present and
signal-absent hypotheses. For this purpose, define z1 (t), I < < 2K, as I

Z2 m.-l(t) = y,(t,W.) (3.45)

Z2 m(t) = Y,(t,Wm) (3.46) I
with m ranging between 1 and K, while zj(t), for I < j < 2hK, is defined as

z2 m-l(t) = j Ro [ ,t - " g,(t,w,) dr (3.47)I '
i 2m(t) = j Ro [ 2 r] g,(t,w.) dr (3.48)

with m also ranging between 1 and K. For the same reason as above, we define 3
the time cross correlations

mnn - +j zm(r)hi(r) dr (3.49)

m,,n = m(r)h,(r) dr (3.50)
h c

for 1 < m, n < K. (For the locally optimal detector case, note that ,jk = j,,')
Assume now that the signal is at frequency wl. Then I

2= v7cos 0 (21_1k + VF 7sin O 2,k + Ilk (3.51)
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where the random variable 0 is uniformly distributed on [0,27] and the iTks are
zero-mean Gaussian with covariances E(7ij 10 = ,k . From (3.132) in Appendix
3.C

k 1 (I,/oa) 2I.k 21,k) + k,k. (3.52)
When averaged over I and summed over k, the mean of r is

, 2K 2K 2K

IM_, = II7Y 2d,1 + E k-. (3.53)
k=l 1=1 k=1

Use (3.51) and (3.136) to construct the covariance between the jth and kth
terms of r when the signal is at frequency wl. The result is

VjkI 2(-y') 2  
2-j~I 2-1k~Ik±(

1 2  
_'I* 2

vi~-p 2(')bl2-ij 6aIJ 21-1,.k 21,k- + 2 121- ( ,k

I L)2 2,J (2 (7/)2 ,2 2j 2 (71)2 2 2
+ 2 21 , - _ 21-1,k

+ 4 7'21-1,j 21-Ikj,k + 47 '21Jj21,k-4,k + 2 0j, (3.54)

which upon averaging over I and summing over j and k, becomes

( 2 2K K 2 2 -1j 2,j & Ik 2 kI V, = - 1 Y, (

2 (27,)2j Gk - 2 2 2

2K 2K 2K 2K 2KI + I Ijl,k 6, +2 2,
j1, 1-, k -

Sk =(3.55)

Of course, for the signal-not-present case, the mean and variance are simply
(3.53) and (3.55) with the signal-to-noise ratio I' = 0.

Since the test statistic F has an approximately Gaussian distribution, the
threshold v and probability of detection PD, for a given probability of false
alarm, follow as /'IT) 1(1 - bf) + I 0  (3.56)

I and 3 :l -( -  I - anf -) M + M ° ) (3.57)

where D(x) is the distribut ln funct ion of the standard Gaussian.

We now justify the albove use of t lie central limit theorem. First let,

i E i: ] (3.58)
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which is the covariance matrix of the (is, and

. k2l-1,1 COS0 + 21,1 sin ] I
Ee, ' l (3.59)

COS,2 co0 + 61 ,2K" sin 0I

which are 1/'VF-7 times the means of the (is under the condition that the signal

has phase 0 and frequency wt. We note that, since Z is nonnegative definiteI Z Iand symmetric, there exists a square-root matrix X1 such that 2 T 1 = Z.

Consider also the diagonalization of E - - 22- = TTAT where

[Al 0... 0 U
0 A2 0

A =(3.60)

S0 ... A2K

is the matrix of eigenvalues of E and T is an orthogonal matrix of eigenvectors.
Use the above diagonalization and 2 to rewrite the test statistic as

r =(G + r27" TA (G + V/27M 9 ,1 ) (3.61)I

where

G = [h] 
(3.62)

92

with {gi} independent, zero mean, unity variance, and Gaussian and where I

Mal [ " ]- T T
Z-Eaj. (3.63)

The test statistic r is now the sum of squares of independent Gaussian variables. I
Through application of the Berry-Esse~n Theorem, 22 F, conditioned on 0 and I,
is approximately Gaussian distributed with an error no more than 4c/u where

c max A 7,I8y'mi2, + 2 (3.64) ii'O'l 87'rnm,, s + 2

2ZA?(8T'm,, t + 2). (3.65)

3=1

If this error bound is small, a fact that must be established numerically, then
the cur applies uniformly to the conditional distribution of 1'. If, in addition,
the overall mean My, and variance V, remain essentially constant with respect

22 A. Papoufs, Probability, Random Variables, and Stochastic Processes, Second Edition,
McGraw-Hill, New York, 1984.
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to I and 0, then the CLT applies to the unconditional distribution of F as well.
This fact must also be established numerically.

The above analysis using the asymptotic distribution of r is supplemented
with upper- and lower-bounding distributions. Specifically,

I 1QK~v~ < <Pr[r <a < I [Vn ~

(3.66)

where Am.x, Amin are respectively the maximum and minimum eigenvalues of

the covariance Er and where emax, emin are respectively the maximum and
minimum over all eigenvalues of the matrices

B, A-
A T rA 1, I < 1 < K (3.67)

with

I At - L " ' (3.68)

and finally where Qm is the generalized Marcum Q-function defined as

Qm(,3) A-= x (x)m-1 e-(r2 +a 2 )I,,,_(ax) dx. (3.69)

I Of interest is that the upper bound equals the lower bound only when the
channel outputs are i.i.d. and the sum of the square magnitude of the signal
component across the channels is independent of signal phase. In a sense, the
bounds give an indication of how well the detector fits the i.i.d. assumption,

since the upper bound corresponds to the detector distribution under the i.i.d.
and phase independence assumptions, but with an increased noise level, while
the lower bound has the same interpretation, but with a decreased noise level.

These bounds, when averaged, approximate the detector distribution, the use-
fulness of which will be studied and compared with the asymptotic distribution
in Section 3.7.

3.6 HOP FREQUENCY ESTIMATOR

I The time-multiplexed detector can be modified to estimate hop frequency
as depicted in Figure 3.4. tlere, instead of accumulating samples of the square
envelope, the maximum sample is found as

jGi{'= max IGI1 2 . (3.70)

Then U)ki is declared the hop frequency estimate.

We need the performance of this maximum likelihood estimator. For this
purpose, the probability of track PT is defined as the probability that, given
the presence of a signal, the hop estimate matches the actual hop frequency.

Because of the lack of symmetry and independence between the squared enve-
lope samples, an exact expression of PT that is also computable is very difficult
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Complex Envelope-Squared Hop 3
Matched Filter Detector Estimation

x0(t) 2 MLGo ~t) I Estimator -

Figure 3.4: Hop Frequency Estimator

to find, although it can be expressed as a K-dimensional integral. We will be
satisfied to tightly bound PT when it is large. The results will be accurate
under the useful operating conditions of the estimator.

Proceeding in this fashion, we will need to define the distribution function
of each sampleI

of e c a p eFk( ) '-_ P r (JG k I' < x) (3.71)

and note that its density fk(x) exists and will be computed exactly later. Now
suppose the signal is at hop i; then the probability that IGil 2 is between x

and x + Az is approximately fi(x)Azx and, given that it is between these two
numbers, the probability that it is the maximum, hence correctly chosen, is
approximately I

T()P r n ~ (iGkl ) (3.72)
k= I
-k 1

Therefore, upon letting Azx -0 and averaging over 1,K
T fi(x)T(x) dx. (3.73)

In order to produce the promised bounds on PT, we will need to produce
bounds on TI(x). Using De Morgan's law,

77(z) = 1 - Pr [U (iGki12 > X)] (3.74)

= I1- P((x)+ EP 2 (x)+ (3.75) U
singles pairs

- I I I

where P1 (z) is the probability that a single sample exceeds x and, sinilarly,
P2 (z) is the probability that both of a given pair of samples exceed x. The
above expression is useful, because, for the case of large x, the events that
samples other than the /th exceed x are approximately disjoint. In this case,
the first two terms of the series accurately approximate T(r). With enough
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terms, this series can detrrnine 7:(z) to any desired degree of accuracy and,
being alternating, implies bounds on T1(x) since the series out to positive terms
is above the actual probability and, similarly, the series out to negative terms
is below. We will use the first three terms of the series in just this way along
with (3.71) to write

bU b(x) :5 T, (x) :5 bi (r) + c (x) (3.76)
where

I K
b,(z) = 1- E [1- Fk(r)] (3.77)

k -1

K K

(X) Z Z {1-max[Fk(x),Fj(x)]}. (3.78)I k---1 j-1Ik ;EI j01,L

Equations (3.73) and (3.76) now determine

PT T f,(x) max[b(x),O] dx (3.79)

Tj f(x) min [b(x) + ((x), 1] dx (3.80)PT K - ~

which, along with explicit expressions for fI(x) and FI(x) below, complete the
performance analysis of the hop estimator:

Fi(x)v 2 (Z-M)- (Z-M) dddOdr (3.81)F,( )0 I. J 03 where
Xan -1,2k-I G2-1,21 ] 

(3.82)

I and

a Z = rsin j (3.83)
and 

sn

1[ 2-1,2k-I cO',O +6 t2,2k-1 i  (3.84)

I L (26- 1,2k COS 0 + 2,2 sin J
following upon differentiation is

fj(1) - 21 w1 2w c (Y-M) TE -'(Y-M) d4idO (3.85)

I where
Y = [XsinC ] (3.86)

177



The Johns Hopkins University

Applied Physics Laboratory !
3.7 PERFORMANCE COMPARISONS

This section graphically compares the performance of the locally optimal
detector, based on the compressive-receiver output, to that of the optimal de-
tector, based on receiver input. Also evaluated is the performance of the time-
multiplexed detector as a function of the sampling AT.

The parameters chosen to make comparisons are: Tc = 50 ps, T = 1000
ps, 'o = 2r x 40 Mhz, the minimum hop frequency equals 2 Mhz and the
maximum hop frequency equals 4 Mhz, 100 hop frequencies, and a hop rate of
20 Khops/sec.

Figure 3.5 shows how the locally optimal detector compares with the opti-
mal detector based on the original observations. As expected, for low SNRs the I
locally optimal and the optimal compare favorably. On the other hand, there
is about a 3 db difference between the performances in the high region. Two
factors are responsible. One is that the analysis of the optimal receiver used the
CLT, a poor model when one channel dominates as in the high SNR case. It
is, in fact, optimistic. Another, as explained later, is a modeling phenomenon
that can account for up to 3-db error between predicted and actual perfor-
mances. Also note how the distribution bounds are pessimistic relative to the
CLT analysis. This also may be due to the inappropriateness of the CLT when
one channel dominates.

Figure 3.6 shows how performance degrades immediately as AT becomes
less than the compression time T. This indicates that any tradeoff between
performance and duty cycle would not be worth the degradation.

Figure 3.7 differs from the previous case in that the noise is bandpass instead
of white. It has the same general character as far as the degradation with respect
to AT but is approximately 3 db better. This is not an actual performance
difference but a modeling phenomenon. As far as noise analysis is concerned,
the compressive receiver is a mixer followed by a narrow bandpass filter. If the
input noise is white, there will be uncorrelated noise contributions from the
sum and difference frequencies produced by the mixer, hence the 3 db. A more
realistic scenario has noise of uniform spectral density across the analysis band I
of the compressive receiver. In this case, the sum contribution is filtered out.
This reasoning also explains the difference betweeni the optimal and the locally
optimal detectors.

I
I
I
I
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LEGEND

Optimal ________

CR -B ased_ _ _

Upper

O'O Lower_____________

4)7

I -d.0 1

-5 __ __ __ __ _ _ _ _ _ _ _

Signal to Noise Ratio (db)

Figure 3.5: Performance of Locally Optimal, Compressive Receiver-Based De-

tector versus Optimal Detector Based on Direct Observations
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I.-0
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Signal to Noise Ratio (db)

Figure 3.6: Performance of Locally Optimal Detector Compared with Time-
Multiplexed Detector, White-Noise CaseI
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Figure 3.7: Performance of Locally Optimal Detector Compared wit'l Time-I Multiplexed Detector, Handpass Noise Case
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3.8 CONCLUSIONS

Presented were two detectors of frequency-hopped waveforms based on the 1
compressive receiver. The first was developed by applying the likelihood-ratio
theory to the observed compressive-receiver output and yielded a locally op-
timal (low-SNR) detector. The second, motivated by the simplicity of imple-
mentation, was a time-multiplexed version of the first that, through the choice
of a parameter, either could, at the expense of a low duty cycle, achieve the

detectability of the first or, at the expense of degraded performance, achieve I
higher duty cycles. The second detector was modified into a maximum likeli-
hood estimator of hop frequency. Performance of both detectors and the hop
frequency estimator were analyzed and compared.

The compressive receiver fulfills its promise as a simple, yet high-performing
interceptor. The performance of the locally optimal detector shows that rela-
tively little detectability is lost in the compressive-receiver processing. Most of

the discrepancy is due to the difference in coherent integration time (one-half for
the parameters used). Furthermore, for a small performance cost, the simplicity
of the compressive-receiver approach can be retained by the time-multiplexed
detector. The hop frequency estimator again compares favorably with the cor- I
responding device that used raw input instead of compressive-receiver output.

3.A DERIVATION OF I
COMPRESSIVE-RECEIVER
AUTOCORRELATION 3

The normalized autocorrelation of the compressive-receiver output is defined
to be dd

2 2R 0 (od)(3.87)

under the restrictions that T
T _ t __ %(3.88)

and 3
d < min(t - T,, T, - t). (3.89)2 -

Substitute the expression for the output noise, (3.7), interchange expectations
and integration, and use the definition of the normalized input correlation; I
Ri(r) = E[n.(t)n,(t + r)]/o'2, to get

Ro(t,d) = ,, -- R i(ri - r2 - d)

cos ( t + (- - 3 t + d- )2] cos [or, + O]r2 w(r)

cos [ot- d _- 2) t - d 7-2) ] cos [worT2 +-221 w(r 2 ) dr2 dri.
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3 Table 3.1: Coefficients of (3.94)

I !_____11___________ _________L I
wot - 2flt2 _ d 2+fldul 2flt 0

2

wot + 2t2 + d 2 (wofdu+~ Uwo - 2~t

5 (wot - 2ft)(u, - d) + -u2 wo -+fd + fu,
212

6 -wot+2It2 +  d 2+(wo- 3d)ui+ui wo-2tl fl 2

f 7 wod + 20t(u, - d) Od 0

8 (wo - 213t)d + (-2wo + 213t)ui /3d - 2lui 0

I
(3.90)

To exploit the stationarity of the input noise, first transform the above integral
with

I 7= - T2 (3.91)

I U T1 + r r 2  (3.92)

and then reduce the cosine components with multiple applications of the identity

I cos(A) cos(B) = 1/2cos(A + B) + 1/2 cos(A - B) (3.93)

to form

j=1

JO-uI +wjU 2 + 2 (2 )w (U2 2 U ) du 2 } dui

I (3.94)

where Oj, wi, and flj are given by Table 3.1. Use more trigonometry and apply
Lemma 2 to terms 3-8 to rewrite the autocorrelation as
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( I
R,(t,d) Ri(ul - d)

J2T-Ju cos [(wo0 - 2t + ,3u2 )(u - d)] cos [(w0 + /u 2)ui] I
w (112+U1) W (U 2 - u) du2  dul + (3.95)

with error term (
1:1 [R,,u-d) dul (3.96)

8, _ =< e -Tc (wji + 2/3 Ilu 1l)

where Pw is the positive variation of w(t) defined by Definition 1 of Appendix
3.B. Simplify the error bound by minimizing each term, wj + 2/3jiull, with
respect to ul, d, and t, while noting the restrictions (3.88) and (3.89). The
result is 3

I <1 P2 B iR,(ul - d)l dul (3.97)

where
_ _ 1 _ ____ - _ __ __ _

B 1 1 2 2 (B 2=13 + 2wo -23T, + - + -2TT (3.98)2/T, 2~ 2 o~ -0 2/3T, wo- T¢

The relation IR(t)i < 1 further simplifies the bound as 3
i1 p !2PBT'. (3.99)

3.B BOUNDS ON INTEGRALS OF I
LINEARLY
FREQUENCY-MODULATED I
SINUSOIDS I

The first bound, Lemma 1, is a tool used only to prove the second bound,
Lemma 2, which is used for derivations concerning the output of the compressive
receiver: namely, the derivation of the noise autocorrelation and the derivation

of a simplified expression for the output signal component.

Lemma 1 Under the restrictions that b > a, w > 0, fi > 0, and w + 29ia > 0,
Irb dt 2

I C8(0 + U)t + gt 2  d < w --.20 (3 100)

Proof (

Define the function

T(O,w,fl) = j sin(O + wt +dt2) dt (3.101)
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where

-1 + 1F+ 4)3(ir -)

.= 4 2/3 j0 (3.102)

S= 0mod ;r. (3.103)

This is simply the integral of sin(G + wt + flt2) from t = 0 to its first zero
crossing.

Preliminarily, three facts need to be proven: first, that T(0,w,,#) decreases
with respect to /3; second, that it decreases with respect to w; and third, that
with 3 = 0 it decreases with respect to j.

Beginning with the first fact we will show that T(O,w,/3) decreases with
respect to/3 by proving its partial derivative to be negative. Employ the chain
rule to get

6T( , ) J t2 cos(0 + wt + f2) dt. (3.104)

Let x = tt,. and observe that /3t2 = 7r - wt,.; then

dj3,cot w. ir-w ,x .6 ,3dfl T JO x2 cos[ + wtrx + (7r - 0 wtr)x') dx. (3105)

To tightly bound the above integral, find its supremum by observing that from
wt. > 0 follows 0 +wtrX + (r -0- Wt,.)x 2 > 7rx 2 on x E [0, 11, from which

I x 2 Cos [j+ wt,.z + (?r ,t - X ]1x2 dx < j' X2 cos(7rX2 ) dX (3.106)
upon noting that the cosine argument is always within the region [0, 7r], a region
where the cosine decreases. Substitution u x 2 yields10 10

j 2 cos(rx 2 )dx = 2-f u1cos(7ru) du (3.107)

2- 2 j cos(7ru) du = 0 (3.108)

after observing that u2 cos(7ru) < 2- cos(;ru) on u E [0, 1). The function
T(0,w,3) is decreasing with respect to /3 > 0, since (3.105), (3.106), and (3.108)
imply that the partial derivative of T(O,w,/3) with respect to / is negative.

The second preliminary fact, that T(O,w,3) decreases with respect to w,
will be proven similarly by applying the chain rule to compute

-- 6 T ( 0 , wu , 3 ) C_ -t6T(-= 1 t cos(O + wt + 13t 2 ) dt. (3.109)

Again let x = tt., observe that3t' = 7r-0-wt., and apply the same reasoning
leading to (3.106); then

T , < I'J x cos(7rX2 ) dx = 0. (3.110)
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The partial dei',.,tive 6T(6, w,13)/6uw < 0 implies the promised result.
The third preliminary fact, that T(w,0,03) decreases with respect to j, fol- I

lows because 0 = 7r - wt, implies

T(0, ,0) = j sin(0 + wt) dt = cos0 + 1 (3.111)
y0 W, m

The fact that 0 E [0, ir), a region on which the cosine decreases, clearly demon-
strates that T(0,w,3) also decreases. b +m

Now with the preliminary facts established, consider fL cos(0 + wt + /3t2 )dt
and let ,1 }j= be, in order, the zeros of the integrand on (a,b). In other words,
a < ?i- <7, <b and, whenever t E (a, b), cos(0 + wt + t2) = 0, if and only if
t = Yli for some i (if there are no zeros then set ill = b). Decompose the integral
into subintegrals between the zeros and get

Icos(O + Wt + t2) dt - (-1)'ea (3.112)
I = 0"

where
= T (0- , 2a,3) for i 0

J= T (0,w + 2)3rh,3) for0<i<n (3.13)

< T (0, w + 2377,)3) for i= n.

Since the es are an alternating sequence of elements whose magnitude, after
the first element, decreases,

cos(O + wt + 13t 2) dt _ max(eo, el). (3.114)

Use the fact that T(0, w,3) decreases with respect to )3 to maximize e0 ,el
by putting13 = 0. Next, maximize with respect to the other arguments to show

max(eo, e1) < T(0,w + 2/3a, 0) - 2(3115)
w + 23a" (315

The conclusion of the lemma now follows from (3.115) and (3.114).

Definition 1 Given the partition P = [a = to < i ... tn- 1 ,tn = b], the positive
variation of x(t) on [a,61 is l

n

P, = sup J[r(ti) - x(t,_.)] + + x(a)+ + x(b)+ (3.116)
P i=1

where r+ has the value r, if r > 0, and the value zero, otherwise.

Definition 2 Given the partition P = [a = to < ti .tn-l,tn = b], the nega-
tive variation of x(t) on [a,b] is

= inf Zfx(t,) - x(t,_l)]- + x(a)- + x(6)- (3.117)

where r- has the value r, if r < 0, and the value zero, otherwise.
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A function is said to be of bounded variation if both its positive and negative

variations are finite.

Under the restrictions that b > a, w > 0, w + 2/ia > 0, and that x(t) and3 y(t) are piecewise continuous and of bounded variation on [a, b],

COsO + W 1 t -- 2 )x(t)y(t) dt < 2 --, y (3.118)
dt-w + 2,3a

where P, and P, are the pc it," nations of x(t) and y(t).

Since the function x(t), ,--ed variation, it is integrable implying
that, for arbitrary c > 0, there t . ep function x(t) = i= (t 1 l_
with corresponding part it liot [a j< tt-. 1,In = b], such that

l. (t) - r,(t)l dl < (. (3.11|9)

The step funition represent ed above is tihe suni of nonoverlapping steps. We
want to reconstruct it aLs the stim of overlapping steps with the property that

the accurimlated absolute am||plitudes of the steps are minimal, We do this in

an iterated fashioii by -,rerig the step ateplile(hs P = x(tj) _ p J-
x(ti , 'O, P + 0, =J xl ,+) . - p,, : (t..) with the zero amplitude
included and defining t hi incremnemis I1 [P - ,P. Starting with the kth

step, an incretntt 1, is consiere.d ' " if 1j C [0, E r(t, )] atid "closed"
otherwise. Whenever an itcri m'nt trafnsitios froni open to closed, defino

a step of amplit ide rk,. = C(I) ) and of duration dk.. ranging from tk to the
time when the incre.ment was last opened. 'roceedinig in this manner, the step3 futnction now has the flirm

.r, (1) :rk j , 1t -, ,j (3.120)

j= ) k [)I)
1pon setiing rk, = 0 for isrviotisly undefined valies,

At each stag, i I f' i it 1 'rafion, not ice tfhat I lhi, sum of the Jngi his of incre-

lierits either opened or clsed is equal to t lie variat liii of I lie- step ftict ion at
that point, i|iplvig that E ll:0 ri.2 j = r(t , l ) Not ice also that an incre-

merit oset.n,- Isv ti an r,./,hecr;L., it lh, stp function can be closed only by
a future opposite drra../iscras., ri.aiig cvcrN stost is tiiu ly as sciated
with a piit of incr,.a.s, I l sv fc't, its,;-n lhat

>. k j + (~) [xo)) (3 121)
r:- k~ I --i

V7 I(3 122)

whire th li t r,'astiont fsll,,ws fri It h, ,I,.tfils ,fl .. .. 4 1 ,-variatisst |Prsprlk

s, -fiine c ;tl I, irt I ,rtis f r ;sis, i. t, ri,

x ) , I ,. ,. (3 123 )
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with '= c < P. and f' Jx(t) - x,(t)ldt < c. A similar step function exists
for y(t), namely,

y.(t) > bj71[u 1.,u,] (3.124)

with I bi < Py and y. (I) - y <) < . I
With these two step functions in hand, compute

sin(O+wt+/3t2 )x(t)y(t) dt = sin(O+wt+0t2 )X'(t)y,(t) dt+e(t) (3.125)

where le(t)l < (MI I + MlyI) + (2, M I = sup Ix(t)l < oc, and Mly=

sur), ly(t)l < oo. Putting (3.123) and (3.124) into (3.125) yields

1 bkc, sin(O + wt + 01t2)[7,_ ,rjn[uh-,.uk] dt. (3.126)
k=1 1=1 1

Applying Lemma 1 and maximizing the bound by replacing the starting time
for each step with the worst case a forms

b P2P Py
cos(O + wt + /3t')z(t)y(t) dt < : e(t) (3.127)

after noting that -, c < P, and EmI bk _< Py. Let (-0, then le(t)l -0
and the lemma is proved.

3.C MOMENTS BETWEEN SQUARES OF I
CORRELATED GAUSSIAN RANDOM
VARIABLES WITH RANDOM PHASE
COMPONENT

We have in this section two random variables I
P = ocosO+3sin+v (3.128) I
Q = ycosO+bsin0 + (3.129)

where the random variable 0 is uniformly distributed on the on [0, 2r] and the
Gaussian random variables v and P7 are zero-mean with covariances a., a?), and
a2,. We want to compute the mean and variance of p 2 , the mean and variance

of p2, and the covariance between p 2 and Q2.
Our calculations will be assisted by a formula of the general fourth moment I

between the Gaussian random variables X0, X), X2, and X3 with means rn, =
C(Y,) and covariances a2= [(r, - ,n,)(, - m, )]. The formula is

2 2 2 2 2 ,

r(XZ1XXi = 9 +7 I e 3 + 0'(7 M Y1 + 0'()270 11 Tl~7i 71j+ 2 , 3 + r (07gu + '7 ,01Y-2  + 01

+ noTrn 1 .i 2  (3.130)

I
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We will now compute the mean of P 2 and Q2. Equation (3.128) -

[P 2/p] = &2 cos 2 9 + /2 sin 2 9 + 2a/3cos Osin 9 + ,2 (3.131)

3 which, upon averaging over 0, becomes

E[p 2] =- - + D>2 (3.132)
2 2 1

I Similarly,

=7.., 622S = - + +0,2 
(3.133)

Onward to the covariances. Equations (3.128), (3.129), and (3.130) imply
that

£[p2 Q2 /O] = uF + 2 + o(cos 0 + 6 sin9)2

+ 4n(acos0+/3sin)(7ycos0+6sinO)+o r(acos0+sinO)2

I + (acosO +/3sinO) 2(Tcos9+ 6sin O)2 (3.134)

i which, upon averaging over 6, becomes

.Frp2 Q2 ] o.2o2 0,4~ + L- Y2 +6+ (+0. 2 ) ,

V[ 2 2 ( 2 2 2 2( +2 -y(a7 3)I
+ 3 / 2 + /3262) + 1(Y2032 + 4ac3y6 + a 2 62 ). (3.135)

8 8

With (3.132), (3.133), and (3.135), we conclude that

coV[p2 ' Q
2 1 =

2or 4 + 2ar 2 (c-Y + 136) + -((2.y2 + /3262 - 72,32 - 0262) + /a376b(3.136)

which specializes to

var[P ] = 2c04 + 2(7(a2 + 32) + (4 + /34) + Ia2/32 (3.137)

var[Q2  = 2(4 + 2t2(y 2 + 62) + ((_4 + 4) +-1 ",2" (3.138)I

I
I 8
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3.D DERIVATION OF UPPER AND
LOWER BOUNDING 3
DISTRIBUTIONS FOR THE SUM OF
SQUARES OF CORRELATED
GAUSSIAN RANDOM VARIABLES
WITH RANDOM PHASE
COMPONENT

Theorem 1 Define the n-dimensional vector pT , pn] to have com- I
ponents

pi aicosO+ bisinO+wi, I <i<n (3.139)

where each ai and bi is a constant, 0 is a uniformly distributed random variable
on [0,27r], and {wi}P is a sequence of zero-mean Gaussian random variables
with an invertible covariance matrix '. Then, with P defined as,

I -Q~ [\im,, <J Pr[P <Pk] 1-Q I v~ - 1a
(3.140)

where ,max, Amin are respectively the maximum and minimum eigenvalues of X I
and where emax, emin are respectively the maximum and minimum eigenvalues
of the matrix

B A ATEIA (3.141)

with

A ] (3.142)
an bri

and, finally, where Q, is the generalized Marcurn Q-function defined as

A -I m 
1  .L2

Qn(a,3) 4 ]z 0 e-x +X, ,_(cix) dx. (3.143)

Proof
The proof consists of three parts. In the first part, the conditional proba-

bility Pr[PTP < k/0] is expressed as an integral of a multidimensional Gaus-
sian density over a spheroid centered at the origin. Upon transformation with
a decorrelating matrix, the region of integration becomes ellipsoidal and the
Gaussian density becomes independent with each of its marginal densities hav- I
ing unity variance. Then through eigonvalue analysis, the ellipsoidal region of
integration is inscribed and circ umscribed with spheroids yielding corresponding
bounds on the integral. The second part of the proof shows that the integral of

an independent Gaussian distribution over an arbitrary spheroid depends only
on the magnitude of the mean vector and decreases with respect to it. This fact

I
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I
will enable further bounding in the third part after computing the mininmum
and maximum of the mean as a function of 0. An aftereffect will be the removal
of 0 dependence in the bounds allowing their direct application to the uncondi-
tional probability Pr[PTP < k]. Next the bounds, which are still expressed as
integrals, are evaluated in closed form via the generalized Marcum Q-function.

Part I

By applying the expression for a multivariate Gaussian density, the condi-
tional probability

Pr[pTp < k/B] - 1 j -[P-AC] -[P-AC] dP

(3.144)

where

C o si0 (313 ~sill 0 315

The matrix X-2 with the property E-2E- 2 = E 1 is guaranteed to exist,
Tsince E is an invertible covariance matrix. Furthermore, for the same reason,there exists an orthogonal matrix T, such that E' = TTFAT, where A is a

diagonal matrix of eigenvalues of E. We can now define the transformation3 X = T27- P, from which follows

S = k j -[X-M [X-Me] dX (3.146)

where

M9 = TE- AC. (3.147)3 Now, since X is an invertible covariance matrix, each entry of A (i.e. eigenvalues
of X) is positive. lence

3 [AmaxXTX < k] C [XTAX < k] C [AminXTX < k] (3.148)

from which

I je_[XMOI T[M]
Pr[pTP < kC] >! - [X[XM IX - M O] dX (3.149)

* and

Pr[pTp < k/C]X 1 e -X-Me][X - Me] dX. (3.150)27r O XTX<klA-"]

Part II

We aim to show that, for a given r,

27 X I e- [X -M][X 
-M] dX (3.151)

depends only on the riagnitude of M and decreases as IMI gets larger.
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There exists an orthogonal matrix U, such that UM r -- [IM;,C, T

The matrix U is simply a change of orthonormal basis to one that includes
M/IMI as its first member. Now Y = UX transforms (3.151) to

R = yry<r. 2 dY. (3.152)

As promised for a given r, (3.152) depends only on the magnitude of M, hence
the notation R(IMI).

We now show that R(IMI) decreases with respect to the magnitude of M
by showing that, for any positive increment AIMI, the corresponding difference

AR(IMI) ___ R(IMj + AIMI) - R(IMI) is negative.
Make the respective substitutions z1 = Yj - IMI, zi = yi, for 2 < i < n, to

R(IMI) and z1 = j- IMI -AIMI, zi = y,, for 2 < i < n, to R(IMI + AIMI).
Then

henAR(IMI) Je-ZZ dZ - e- J - dZ (3.153)

where the sets G and H are I
ZG - AIMI f 2 + i ,2 i < sr (3.154)

ylR Ms=2

H = (I:+z. - r] (3.155) 5

i=22

Cancel out the common points of G and 11 then

AR(IMI) e-.7 + M dZ - 1 /H, dZ. (3.156)

Let v, = - 21I - AJMI, vi zi, for 2 < i < n, in the second integral
above; then H -~G is mapped to G -~ H and the integrals can he combined to
yield

' IG~ e- [I - e- 1(21f I+AIM))'-zi(2JM'i+AA')} dZ.U

The coordinate z, is in G -I1, if and only if(317

(Z1 + IMI)2 + 2A IMI(Z1 + IMI) + (AIMI) 2 + zi r (3.158)

ad(Z 1 + IMI)2 + Ez, > r, (3.159)1

s=2
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Upon subtracting both relations, z, must satisfy

zI < -IMI 2 (3.160)

3 Using this relationship in (3.157) implies that AR(IMI) < 0, meaning that

R(IMI) decreases with increasing magnitude of M.

Part III

Further bound (3.149) and (3.150) by respectively maximizing and mini-
mizing magnitude of the mean over the random phase 0. From (3.147), the

magnitude of the mean is

IMOl 2 = MoTMo CT ATX- AC (3.161)

I following from the fact that T, being orthogonal, satisfies TTT = I. The matrix

AT..E-A, being symmetric, ensures that it can be diagonalized making

IM#12 [cosO,sinO]UT  e ,nax 0 (3.162)1 0 ermn ] s [cin0

where U is an orthogonal matrix and Cmax and emin are the eigenvalues of

AT.- 1A. Since U is orthogonal, it rotates the plane by some angle 0. This

means that
u[Cos~ 1 cos(O - ~ 313II sinO J Lsin(O- (

and hence that

3 IMOl2 =  a cos2 (O _ 0) + enn sin 2(O -). (3.1641)

The eigenvalues Cmax and (,rnj are nonnegative since ATE-IA has a square

I root,, namely, A This fact, along with (3.164), implies

_n IM 61 <_ ernx. (3.165)

Use (3.165) and (3.152) to doduce from (3.150) and (3.149) the bounds

Pr[PTP < k] (__ V JYrY<Z 
2

3 ,(3.166)
Pr[2T ] LJ[Y

TYkI/,1U 2 2
1

( V~: dY.

(3.167)

The integrals in the above bounids are simplified by showing that they are
the distribution functions, evaluated respectively at k/A/max and k/An,n of the
sum of n non-central .2 ran(lomn variables with noncentrality (max, ern. An
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explicit expression for this distribution is given in Torrieri 2 and leads to the
conclusion of the theorem: 3

1-Q [V i rax Pr[T<k] i-Q. v;7

(3.168)

9
I
I
I
I
I
l
I
I
I
I
I
I
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I CHAPTER 4

IDETECTION VIA THE AMPLITUDE
DISTRIBUTION FUNCTION

I
4.1 BACKGROUND AND MOTIVATION

The unfriendly detection and interception of secure communications is a
topic of much current research. Secure communications usually involve some
variety of spread-spectrum modulation, whose purpose is to add ambiguity or
"randomness" to the communication waveform as a measure against unintended
detection or interception. The usual procedure for randomizing the waveform is
pseudo-random variation of transmission times (time hopping), phases (direct
sequence), or frequencies (frequency hopping). The development of a method
to detect frequency-hopped waveforms is the subject of this chapter.

The use of the Amplitude Distribution Function (ADF) for detection is
a new idea with potentially many diverse applications. lowever, although
this work focuses solely on the detection of frequency-hopped waveforms, the
general ADF technique can be applied to related areas such as radar or sonar
detection. The central idea of the technique is that the ADF of an observed
signal in additive noise is the convolution between the individual ADFs of signal
and noise. We have shown through the use of deconvolution techniques that
the signal component can be separated and thus detected even for small signal
levels.

There are previous works 2 3
,
24' 25 , 26 that, in essence, use the ADF but none

has given a precise definition and mathematical development like those offered
here. Moreover, to our knowledge there is no reference that directly uses the
ADF idea for detection.

The ADF indicates the time fraction that a waveform is below a given am-
plitude, much like a probability distribution function measures the probability
that, a random variable is below a given value. Previous researchers have used3 this concept but failed to give a precise definition of the ADF as it applies to

2 3
R.F. Pat ula, S.O. Rice, and J.il. Roberts, "Distribution of the Phase Angle Between
Two Vectors Perturbed by G;aussian Noise", IEEE Trans. Comrun., vol. COM-30, pp.
1828-1840, August 1982.

24 J 1t. Highae, "Adaptive Nonlinear Suippression of Interference", AILCOM '88 Conference

Proceedings, 23.3.1-23.3.9, October 1988.
2 5S.O. Rice, "Statisti,'al Properties of a Sine Wave Plus Random Noise," Bll Syst. Tech.

J., pp. 1(Y)- 157, January 1948.
2 6 j. Salz, and S. Stein, ")istribution of Instantaneows Freque,,cy for Signal Plus Noise",

IEEE Trans. Inform. Theory, vol. IT-10, pp. 272 274, October 19C'4.
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I

nI
I

Figure 4.1: Definition of ADF

both deterministic and stochastic signals. For signal X(t), our definition is 3
1

Fx(a) =lim I {.C[t : X(t) _< a, 0 < t < T]} (4.1)
T-co 7'

where C is set function giving length. Figure 4.1 illustrates that the ADF is I
simply the time fraction that X(t) is below a given threshold a. With this def-
inition, we have proved that, under very general conditions, the ADF of signal
plus noise is the convolution of the signal ADF and the noise ADF individually. I
This result would not have been possible without a definition that applied to
both deterministic and stochastic signals.

The adf or amplitude density function is the density, if it exists, implied I
by the ADF. There is, of course, a corresponding convolutional relationship
between the adf of signal and noise and the individual adf's of signal and noise.
Some examples exemplify this convolutional relationship and hint at the poten-
tial of the ADF in signal detection. Figure 4.2 shows the ADF of a modulated I
sine wave (the signal), the ADF of noise, and the ADF of signal plus noise.
The main point here is that the ADF of a sine wave is invariant, under most
phase and frequency modulations, but these are exactly the modulations used U
to thwart a potential interceptor. Therefore, the most typical spreading modu-
lations will not degrade the performance of an ADF detector. Also of interest
is the complex ADF, that is, the two-dimensional distribution in amplitude of
the signal's in-phase (1) and quadrature phase (Q) components (Figure 4.3).

Both of the last two examples illustrate the convolutional spreading of the
ADF due to additive noise. Like a photograph taken while the camera is out of

focus, noise smears the signal part of the ADF. By a technique borrowed from
image processing, the picture (i.e., ADF) can be refocused to reveal the un-
derlying picture detail (i.e., signal). Deconvolution, 2 7 as this process is called,

27H.C. Andrews and B.R. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs,

New Jersey, 1977.
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i Figure 1.2: The adf of Modulated Sine Wave and Noise
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Figure 4.3: Comiplex adf
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involves convolving the picture with a kernel function k(x) that has been spe-
cially constructed from noise details. Figure 4.4 shows the result of the process,
an out-of-focus picture before and after deconvolution.

Our original idea allows the direct application of the deconvolution tech-
niques to signal detection. Suppose a noisy signal X(t), observed over the

interval T, is transformed into the function Fx (x) by

FX(Z) ifT k[x - X(t)ldt (4.2)I0

where k(x) is the deconvolution kernel. We have shown that, for large T,

Fx(z) converges directly to the deconvolved ADF. For this reason, we call
this the "Deconvolution Statistic". Furthermore, we have shown that samples
of the Deconvolution Statistic are approximately jointly Gaussian, to which
well-known optimal detection techniques apply.

In summary, our approach consisted of precisely defining the ADF and prov-

ing the existence of an intuitive relationship between signal and noise, that of
convolution. Borrowing techniques from image processing, we showed that the
effects of the noise could be separated from the signal by a process called de-

convolution. By transforming the observed waveform, we generated a random
process that converges directly to the deconvolved ADF and upon which stan-
dard detection techniques apply.

4.2 MATHEMATICAL TOOLS FOR THE
ADF

The ADF, as defined here, is an original concept and thus needs a firm
ri.athematical foundation. This section precisely defines the ADF in , way that
applies equally well to deterministic and stochastic signals. This basic definition

is extended to include the concepts of a joint ADF and the notion of amplitude
independence, a notion analogous to independence in probability. By way of a
sequence of lemmas and theorems, two significant results are established. The
first is the already promised result that the ADF of signal plus noise is the
convolution of the signal ADF with the noise ADF. This is proved under the

very general constraint that the second derivative of the noise autocorrelation
exists and is finite at time difference zero. The remaining result of significance
is a linkage between the ADF and the instantaneous probability distributions

of the signal plus noise. We begin with a precise definition of the ADF.

Definition 3 The Amplitude Distribution Function (ADF), written Fx(a) for3 a stochastic process X(t), is

FX(a) =lim F{[t: X(t) < a, 0 < t < T]} (4.3)

3 where C is a set function giming length. Additionally, the limit must erist for
all a.

3 If the signal is (leterministic, then the definition of the ADF reduces to

FX(a) in {[t : X(t) < a, 0 < t < TI} . (4.4)
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The ADF is not a distribution function in the strict sense because its extreme
values are not necessarily one or zero and it may not be right-continuous. For
example, the function

S() t for 0 < tmodl < 1/2 (45)

S -t for other t

has ADF identically equal to 1/2. Consider also the function

I for 0 < tmod I < 1/2 (4.6)
-1 for other t.

Its ADF is
0 for oo < a < -I

Fs(a) 1/2 for -1 <a< 1 (4.7)
1 for 1 < a

which is right-continuous at -1 and left-continuous at 1. The ADF, not neces-
sarily being a true distribution, creates problems in situations which require an
ADF-induced measure, for instance, the Lebesgue-Stieltjes integral. In these
cases, we use the right-continuous extension of the ADF, defined as

F*(a) = lim F(x). (4.8)
. a+

Analogous to the joint probability function of random variables, there exists
a joint ADF of two different, stochastic processes, defined as follows.

Definition 4 The joint ADF, written Fxy(a, b) for stochastic processes X(t)
and Y(t), is

Fx, y(a,b) = lim -FIL {L[t :X(t) < a and Y(t) < b, 0 <t < 7}. (4.9)
T-c T

This definition will be used to define the following concept of amplitude inde-
pendence, analogous to that of independence between random variables.

Definition 5 Two stochastic processes X(t) and Y(t) are amplitude indepen-
dent, if their joint ADF is the product of the ADF for each process. In other
words,

Fx,' (a, b) = Fx(a)Fy (b). (4.10)

We now will show a relationship between the ADF of stationary Gaussian
noise and its instantaneous probability distribution, thus enabling the estab-
lishment of more directly applicable results.

Lemma 3 Let Y(t) be a stationary, zero-mean, Gaussian process with auto-
correlation R(t), such that -R"(O) < oc; then, for any measurable set A,

F {L[t : Y(t) < a, t E A] =P a CA (4.11)

where (b is the distribution function of a standard Gaussian random variable
and ao = v/7 .

101



The Johns Iiupkins Uiversaity

Applied Physics Laboratory I
The proof for Lemma 3 is included in Appendix 4.A.

In words, the above lemma means that the average time that the noise

process is below the threshold a on the set A is equal to the percent of time

that the noise process is below a at any single point times the length of the set

A. This result implies that the ADF of stationary Gaussian noise is identical

to its instantaneous distribution.

With the help of the previous results, we now can prove amplitude inde-

pendence between a deterministic signal and stationary Gaussian noise, whose
autocorrelation has finite second derivative at time difference zero. This result U
will be necessary to prove the convolutional relationship between signal and

additive noise.

Theorem 2 Let S(t) be a deterministic signal and let N(t) be a stationary,

zero-mean, Gaussian process with autocorrelation R(t) such that -R"(0) < 00:

then S(t) and N(t) are amplitude independent. Stated symbolically,

FsN(a,b) = Fs(a)FN(b). (4.12) I

Proof

By Lemma 3,

f {C[t : S(t) < a and N(t) ( b, 0 < t < T}

= 0{C[t: N(t) < b, t ES- In[0,T)]} (4.13)

= Fv(b)C [S.1 n[0,T)] (4.14) I
where S.' = [t : S() < a]. lence the joint ADF of S(t) and N(t) is

Fs,N(a,b) = FN(b) lint T a n[0,T), (4.15)
rI T

= Fs(a)FN(b) (4.16)

implying the amplitude independence of S(t) and N(t). 5
We now can pro.e the most important result of this section, that of convolu-

tion between the ADFs of signal and additive noise. The idea of deconvolution

and the deconvolution statistic rest firmly on this result. 3
Theorem 3 Let S(t) and N(t) be amplitude independent and let either FN or

Fs be continuous; then the ADF of Y(t) = S(t) + N(t) is

Fy(a) = F(a- s) dF(s) (4.17)

= Fs(a - n)dF dn) (4.18)

where F; and F are the right-continuous ertensions of Fs and FN. 3
The proof for Theorem 3 is given in Appendix 4.B.

The next theorem is a general statement about the ADF of signal with

additive noise and its instantaneous distribution. Alternatively, this theorem

could have served as the definition of the ADF, but then there would be technical

difficulties in determining the ADFs of purely deterministic signals.

102 £
I



The Johns Hopkins University

Applied Physics Laboratory

Theorem 4 Let Y(t) = S(t) + N(t) and let Fs be right-continuous; then, if
either FN or Fs is continuous, the ADF of Y(t) is

ya)=lmfN [a - S(t)l dt. (4.19)

The proof for Theorem 4 is included in Appendix 4.C.

4.3 DECONVOLUTION STATISTIC

As shown in the previous section, the ADF of signal plus noise is the ADF
of the signal convolved with the ADF of the noise. What was exactly shown is
that

for X(t) = S(t) + N(t) where N(1) is a stationary Gaussian process
with autocorrelation R(t) satisfying -R"(0) < oo and where S(t) is
a deterministic signal with defined ADF; then Fx = Fs * FN where
Fx, Fs, and FN are the respective ADFs of X(t), S(t), and N(t).

To apply this result in the construction of a detector, we will assume from herein
that the above restrictions are met and that the noise, signal, and observations

have densities defined as fx '_ dFx(x)/dx, fs A dfs/da, and fN A dFN/da.
These densities will be called the amplitude density functions (adf). We will,
for reasons explained later, make the restriction that the noise autocorrelation
is zero after some duration (i.e. R(t) = 0, for t greater than some TI). This is
a sufficient but probably not necessary condition for the asymptotic statistical

characterization of the detection statistic.
If the adf of the observed signal could somehow be measured or estimated,

then by deconvolution the signal component could be separated from the noise
component and hence detected. An understanding of deconvolution is prerequi-
site to understanding of how the deconvolution statistic effects this separation.

In general to deconvolve, take a function that is the convolution of two
different functions and convolve it again with a kernel function whose net effect
is to undo the first convolution. As such, convolution of the kernel function
with the original convolving function should result in a delta function. The
construction of a kernel function with this property is usually not possible
exactly and so some approximation must be made.

To use the idea of deconvolution in a detection scheme, the adf could be
measured using standard density estimation techniques and then convolved with
a kernel function to separate signal from noise. But there is a more direct
approach, that of the deconvolution statistic

fX() 1 k[x - X(t)] di (4.20)

where k(x) is the deconvolution kernel.

The usefulness of this statistic is that, as T gets large, it converges uniformly
in probability to the desired convolution of the kernel function with the adf of
the observations. In a sense, the statistic maps the observations into another
domain, the amplitude domain. The problem of dete:,t7)n is nw onc oi, this
new der,..!. ,d Ir":L h,.r.i, ;t i6 approached in a classical manner.
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4.3.1 Deconvolution Kernel

We want to construct a kernel with the property that when it is convolved
with the noise adf, a function closely approximating the delta function results.

The approach is to solve the equivalent problem after Fourier transformation,
that is, to find a function that when multiplied by the Fourier transform of
the noise adf yields a constant. It is shown below that this car be done only

approximately.

Proceeding by Theorems 3 and 4, the noise has adf

1 -. 2

fN(x)- e (1

where a0l = R(0). The Fourier transform of the noise adf is

CN(w) = fN(x)e 2" " dx = e- o1 22. (4.22)

From the convolutional relationship between noise and signal, the transform

of the observation adf is Cx(w) = CN(w)Cs(w). From this relationship, we
might be led to construct a kernel with characteristic function 1ICN(w), but

this proves fruitless since the inverse Fourier transform does not exist. Instead,
if before Fourier inversion, we multiply 1/CN(w) with window function

cos'--), -<w<-, d>0 (4.23)

we then get a family of kernels kd(x) indexed by d with the property that

kd * fN(X) -- 6(x) as d -- 0, hence convolution with kd(x) can approximate, to
an arbitrary accuracy, perfect deconvolution.

Application of the above strategy with equations (4.22) and (4.23) produces 3if(1(o ) e( o) dO. (4.24)

kd(() =. - O.

The quantity d, which controls the amount of deconvolution, is called the de- I
convolution index.

4.3.2 Statistical Characterization 3
In order to set up the detection problem, we need at least an asymptotic

statistical characterization of the deconvolution statistic. Specifically, we want U
to show that samples of the deconvolution statistic are asymptotically jointly

Gaussian for large T, and we want its asymptotic mean and variance.

As for the jointly Gaussian property, consider samples of the deconvolution
statistic I

Zi= I k[x, - X(t)] dt (4.25) I
for some finite sequence {xi} . In order to prove that the zi's are jointly Gaus-
sian, it is sufficient to prove that jn cizi is Gaussian for arbitrary constants ci.
Rewrite

ci z, =Y 12j + E 12j,- (4.26)
ij=1 $=1
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where
I max(T, kT,) n

lk = T f(k) Zci k [z - X(t)] d (4.27)

TTI (4.28)

m = + 1. (4.29)

It is easily seen that the 12j's are independent and the I2j-'s are independent.
Hence, for large T, each sum, E,= 12j and Z I2j-1, is individually asymp-
totically Gaussian. Furthermore, even though the sums are correlated, the
overall sum is approximately Gaussian, since each component sum is Gaussian.
Hence, samples of the deconvolution statistic are jointly Gaussian.

As for the mean,

p(r) -  £ ffx(x)] (4.30)

= [xj - x(t ] (4.31)

rL k*fx(x) forlargeT (4.32)

with the last step following from Theorems 3 and 4.
As for the variance,

Or2(X, y) El {[jX(X) _ p(X)l []x(y) _ g(y)]}1 (4.33)

-joo k(x - v)k(y - w)h(v, w, T) dvdw - p(x)p(y)

(4.34)

where
h(v,w,T) = y2- 1 0 2 -. - dsdt (4.35)

A = [1 - p2(s - t)] (4.3G)

M = v-S(s) ] (4.37)M = w- S(1)

I -( s - ) ( 43l= F - 1 -t,' J (.)

n -(-S -

p(s- ) - R(s -t) (4.39)
0
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Figure 4.5: ADF-Based Detector

We want to show that the variance goes to zero as the integration time T U
goes to infinity from whence it follows that the detection statistic converges, in

probability, to its mean. To this end, assume T > T and rewrite

1 [ 1 e--_M T ErM
h(v,w,T) = f 2 2A e dsdt (4.40)

1 2 " a e dsdt (4.41)

where the regions within the square, Q = [s, t : 0 < s < T, 0 < T], are I
D1  = [s,t:s-t<Tjl]nQ (4.42) m

D2 = [s,1:s-t>Ti]fnQ. (4.43)

The area of D1 is less than 2TTI and, for r0 > 0, the integrand is bounded by
1/21ra'2. Furthermore A = I in region D2 . Hence, i
h(v,w,T) < o-'+1  2 fe ds (4.44)

-T 27ruOT 2 100 ds eI (.4

Now assuming k(x) is integrable, we have from (4.44) and (4.32) that or2(x, y) -

0 for large T, as conjectured. I
The fact that samples of the deconvolution statistic are asymptotically

jointly Gaussian, and the expressions of its mean and variance will be necessary
for the detector development, below. 3
4.4 ADF-BASED DETECTOR

Using the fact that samples of detection statistic are asymptotically jointly
Gaussian, a classical detector can be constructed that observes the amplitude
domain. We assume the original observed waveform to be of the form X(t) =
v2STsinwot + n(t), for 0 < t < T, where n(t) is white noise of spectral density
NO/2, S ' is the average signal energy, and wo/27r is unknown frequency in the
band [f, - W/2, f, + W/2]. In this setting, the detection problem is one of
choosing between HO (signal absent) and H, (signal present with SNR, -t =
S'T/No > y = ST/No). Before we apply our detector, we filter the observations
with a bandpass nilter to produce the waveform Y(t) (see Figure 4.5). This filter
has unity gain within the bandwidth W and has center frequency f,. It further
has response such the noise has autocorrelation R(t) with R(1) = 0 for I greater

106 £
I



The Johns Hopkins University

Applied Physics Laboratory

than some T1 .* We next transform the output of the filter into the amplitude
domain via the deconvolution statistic. The new detection problem becomes,
after sampling, one of deciding between the presence and absence of a signal
given {zi = fy(zi)}I' As shown earlier, the zi's are jointly Gaussian and have
means (4.32),

p(xi), signal absent (4.45)

p* r(xi), signal present

where

p(x) - N e- ?W (4.46)

r(x) = Xv/7_2' 
2 <2S' (4.47)

and covariances a.,(xi, xj) defined by (4.34) with

R(t) = No1V(1 - Wt), -I < Wt < 1 (4.48)

S(t) = Vf27sinwt. (4.49)

The R(t) used here is a first approximation to the one described earlier. Be-
cause of this, there will be a small amplitude variation in the signal with respect
to frequency that will be ignored in the analysis to follow. The above analy-
sis completely characterizes the asymptotic joint statistics of samples of the

deconvolut ion statistic.

We now use classical methods to design a detector on the amplitude domain.
The philosophy assumes that both the noise and signal amplitudes are known.
Then under this condition, an optimum detector is synthesized. To relax this
unrealistic assumption, we will assume that the noise level is known or mea-
sured and that the signal level is above that used in the detector's synthesis.

This will be suboptimum in general but in the important low-signal-level case,
performance will approach the optimum.

We can now, via the likelihood ratio,21 define the optimal test statistic as
R 1 E0 -E R 'E, (4.50)

where

: (4-51)

and

E'Y= :1(4.52)
. -, - )

In order to evaluate the performance of this detector, we note that, since

R. is nonnegative-definite and symmetric, there exists a matrix I such that

*This filter is not realizable exactly but can be approximated to an arbitrary degree.
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R4 R. Use this fact and the diagonalization of ;R- =

T T to rewrite the test statistic as

L = (G+ M.,,o)TA,,o(G + M7,,o) - (G + M_ , ,_ )TAry,,,(G+ M, ,r) (4.53)

where 3
G ] • (4.54)

with {gi} independent, zero mean, and unity variance and where

[r 1 ".~ . I" [ - (4.55)

M J', [ ,(Xr)- P(Y)J-)

We note that (G+ M,,, )T A, , (G+ My , ,r ) is a sum of squares of independent

Gaussian variables. We now have, through application of the Berry-Esse~n
Theorem, 22 that this term is approximately Gaussian distributed with an error

of no more than 4c/a where

24m2 
,+

c = maxA-, .Y y(.6
24m 2

,, +27 (4.56)!
e a i, , 4m rn 'r 

+ 2

i,. 2 1 2 tm

= (4 m? + 2). (4.57)

For each particular detection problem and for each value of SNR, this error
bound determines the validity of the CLT argument. Assuming the bound is

small, then L itself must be approximately Gaussian, being the sum of two
Gaussian distributed random variables. The distribution and hence perfor-
mance of L is determined by its mean and variance as computed below. The
mean is

Y [A,,,,O(m,,, , 1) - + 1)] (4.58)

while the variance is I

" -[2 + 4 (m1 ,"'0 "°0- m )2 "

(4.59)

Since the test statistic L has an approximately Gaussian distribution, the I
threshold v and probability of detection PD, for a given probability of false
alarm, follow as

V= vVo -(1- P) +Mo,- (4.60) I
and

PD = I -, ( vV '° ' - (1 - PF)- ' + MO,' ) (4.61) 3
where O(z) is the distribution function of the standard Gaussian.
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4.5 CONCLUSIONS

The ADF was introduced and shown to be roughly the average probability
distribution of a random process. Because the ADF is original, a mathematical
foundation was laid consisting of a sequence of definitions, lemmas, and theo-
rems, the most significant of which was the fact that the ADF of signal plus
noise is the convolution of the ADF of signal and the ADF of noise taken sepa-
rately. The technique of deconvolution used in image processing was the germ
from whence emerged the deconvolution statistic, a statistical transform that
mapped a stochastic process into the amplitude domain. It was shown that
by proper choice of a kernel any degree of separation between the noise and
signal components could be obtained. For the particular problem of detecting
a modulated sinusoid in stationary Gaussian noise, a detector was developed
around the detection statistic. The detector's performance was analyzed and
compared with that of a radiometer.

The use of the ADF in detection has room for many new developments in
just its mathematical development, not to mention specific applications in de-
tection theory. For instance, the basic results possibly could be extended to
non-Gaussian and nonstationary noise. In terms of the deconvolution statistic,
the class of kernels used was very narrow. The investigation of various kernels,
especially those used in im-ge processing, would be in itself a worthwhile un-
dertaking. Within the class of kernels presented, the choice of an optimal kernel
for various classes of detection problems would be a possible topic to pursue.
Finally, the most fertile ground for the application of the ADF to detection
could be the detection of noise in noise.

4.A PROOF OF LEMMA 3

We first consider the sets A, which are finite half open intervals. Of these,
it is necessary to consider only the interval [0,T), since Y(t) is stationary.
Partition A = [0, T) into n subintervals

B [(i- 1)T T) for i= 1__ n (4.62)

and define the set Y-= [t : Y(t) < a]. Observing that the length of the set
IlaI l A is the sum of the lengths of the sets Y.-I l Bi, we can write

e [c(Y- 1 n A)] = C($ C(Y- F B,)] (4.63)
i--1

= ni[L(Y; -[lB1)] (4.64)

since Y(t) is stationary. Now define the following three events:

C is the event that Y(t) < a, for some I E Bi
D is the event. that Y(1) < a, for all t E B,
E is the event, that Y(t) crosses a on i.

Notice that
(y-I fl Bi) T'ID 

(4.65)
n
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where ID is the indicator of the event D. To understand this relationship,
consider the case that the sample path Y(t) is in D, meaning that it is not

above a during the entire interval Bi. It follows that the amount of time that it

is not above a, i.e. C(Ya- -1n BI), equals the length of B1, which is T/n. Upon

taking expectations of this relationship,

e [[c(Y.- In BI)] T WDl (4.66)
n

T Pr(D) (4.67) I
n

TIpr[Y(0 ) < a] -Pr[Eand (Y(0) < a)]) (4.68)

TI

since the probability that Y(t) is not above level a over the interval B 1 is exactly

the probability that Y(0) is not above a and, under this condition, Y(t) does I
not cross a. Now, since Pr[E and (Y(O) < a)] is less than or equal to Pr(E),
we have

E [C(Y- I n B,)] > T {Pr[Y(0) K a] - Pr(E)}. (4.69)

In an analogous manner, we can produce a complementary inequality by

observing that y
£(Y?' n tB1) < -Ic. (4.70)

n

This inequality follows by considering two cases. When the sample path Y(t) is

in C, meaning that it is below a sometime during the interval 31, the amount

of time that it is not above a is not greater than the length of B, or T/n.

Alternatively, whenever Y(t) is not in C, it is not above a for zero time. Taking

expectations of this inequality yields

£[C(Y' nB,)] < -E(Ic) (4.71)

- -TPr(C) (4.72)

T {Pr[Y(0) < a] - Pr[E and (Y(0) > a)]} (4.73)
n

since the probability that Y(t) is below level a for some time during the interval 3
BI is exactly the probability that Y(O) is not below a but crosses a during the

interval BI plus the probability that Y(O) is below a initially. Now, since

Pr[E and Y(0) > a] is less than or equal to Pr(E), we have 3
V [£(Y- Il B)] < {Pr(Y(O) < a] - Pr(E)}. (4.74)

Equations (4.69) and (4.74) applied to (4.64) imply

T{Pr[Y(0) < a] - Pr(E)} < C [C (Y',; n Bi)] < T{Pr[Y(0) < a] + Pr(E)} 3
(4.75)

110 I

I



The Johns Hopkins University

Applied Physics Laboratory

thus

e [C (' - l n B1 )j = Pr[Y(0) < a]T (4.76)

= 4() CA (4.77)

if , Pr(E) -- 0.

In order to prove that l Pr(E) -- 0, we define the counting process
Na(t) as the number of crossings of the threshold a by the process Y(t) on the
interval [0, t). By Chebyshev's inequality,

Pr(E) = Pr [N, (T) 1 ] (4.78)

< [Na (T)] (4.79)

but from Karlin and 'Favlor, 28

lNVa = -- e o (4.80)
n o"

where a 2 -?(0)". Up'-n letting n - o, the last two equations imply
Pr(E) - 0. Now that the result

C[£(1'-nA)= (I0) A .8 1 )

has been proven for A, an interval, it can be extended to any finite set as follows.
Let A be a set of finite length; then for auy c > 0 there exists a finite set of
intervals {L,}1= such that

U 2[A-U 1 t, < (4.82)

and

C [ L, - .4 2 (4.83)

(see Royden 29 ). Hence,
I I

._.,oI2 nf,) lnA) < fl(YV nL,)+ . (4.84)
2= i=12

Taking expectations and applying the result for intervals

4 ( a CL, - 2< e [C(yI nA)] < () a CL,± +. (4.85)

28S. Karlin and H.M. Taylor, A First Course in Stochastic Processes, Second Edition, Aca-

deic Press, San Diego, Calif., 1975.
' 9 H.L. Royden, Real Analysis, MacMillan, New York, 1968.
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But

utLA - < ZLL, LA+ 1  I486
2 2 !4.86) 

implying

4D a E K c ((Y'n A)] P *(a)LA +r. (4 87)I

But, since ( is an arbitrary positive number, we have for a set A with finite
length, I

. [C(V-I n A)] $ (ID ) CA. (4.88)

To extend to the case in which A is not of finite length, write A = i 0 A,,
where the A,'s are disjoint and of finite length; then

S[,.- I n A)] E E [£(Y- InA)] (4.89)
i=o

E 4 ITO (4.90)
i=0 G

e l)( CA. (1.91)I

4.B PROOF OF THEOREM 3 3
Without loss of generality, assume FS is continuous. To prove the result,

we w ish to con I) te li n [Y ' 1l [0,7')] } (4.92)

where 3
wher =[t : S(I) + N(t) <_,a]. (4.93)

Begin by selecting an integer m and constructing a partition of the real line,
s- < S-m,+, < .<m), where I

(-oo for i =-mn 2

s = i/m for -m 2 < i < m2 (4.94)
00> for i = m 2 .

Continue by defining the sets

Ai = : (t)<a-siandsi-I < S(t) si] (4.95)

A +  = [It: N(t)/a- si-I and si-I < S(t) < si] (4.96)

for i = -m
2  1 .-- , _M

2
. Observe that Ai C Y,-, because S(t) + N(t) < a

whenever N(t) < a - si and si-I < S(t) < si. !lesce,

UAiCY '. (4.97) 3
i=l

112 3
I



The Johns Hopkins University

Applied Physics Laboratory

Furthermore,
n

YI_ IC UAt (4.98)

because, for any t where N(t) + S(t) < a, there exists an i in the range
-m 2 < i < m 2

, such that s,-I < S(t) < s, implying N(t) < a - si. Be-
cause {A-1} 2=m2 and A+l 2

21 are disjoint, (4.97) and (4.98) imply
that

S{c [Y n [0,T)] f { [A7 n [0,T)] } (4.99)
i=-m 2 +1

f£1 {[Y.-In[O,T)]} _< E f£{[Atn[OT)]}" (4.100)

Now notice that

Tlim 1 { [CY, n[0, T)]} = Fy(a). (4.101)

Since S(t) and N(I) are amplitude independent, Fs is continuous, and Fs(+Oc)

_± lim _o Fs(s) and Fs(-oc) lim,-_, Fs(s), it follows that

T$im F{C[Ai-n[0,T)]} = FN(a-si)Fs(si)-Fs(si-,)]. (4.102)3 T-,o T
Similarly,

lira -t{C[Afl[
T- IC T A ,T )] } = FN(a - s,_,)[Fs(s,) - Fs(s,_,)]. (4.103)

By defining two particular step functions, the above results with equation
(4.100) and (4.99) form a relationship between the ADF of S(t) + N(t) and
the integrals of the two step functions. The step functions are

FN (a - s) FN(a - s,) (4.104)

FN(a - s) _ FN(a - si-1) (4.105)

whenever s, 1 < s < s,. Upon passing T to oo, (4.100) and (4.99) become with
the aid of the above definitions and (4.101), (4.102), and (4.103),

J FT(a - s) dFs(s) < Fy(a) < j F+(a - s) dFs(s). (4.106)

Proceed by enlarging m and find that F and F+ converge weakly to FN
which coupled m ith (4.106), implies that

Fy(a) j FNi(a - s) dFs(s) (4.107)

f FN(a - s) dF(s) (4.108)
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where the last equation, following from the continuity of Fs, proves the first
convolution. Note that the interchange between limit and integration is justified
in the last operation, because the integrals have essentially all mass within a I
bounded domain, upon which the integrand is bounded between zero and one.
Note also that, if FN is not continuous, then F+ or F- may converge to some
function that differs from FN at a countable number of points, but luckily the I
hypothesis that FS is continuous makes (4.106) invariant to the limit value of
FN and F+ at these problem points.

The complementary convolution is obtained by integrating the product mea- 3
sure dF;(s) x dFk(n) over the half plane Ht = [s, n: s + n < a]. Proceeding,
we obtain with the help of Fubini's theorem

dF;(s) x dF1 (n) -- f F! dFkv(n) dF;(s) (4.109)

F(a -s)dF;(s) (4.110) 1
or, alternatively, /. ] I

dF;(s) x dF(n) =j [1 0 - dF;(s) dF(n) (4.111)

00 F; (a - n)dFk(n) (4.112)

implying omy j J(a - s)dF;(s)=j F;(a - n)dF, (n). (4.113)

The continuity of Fs and (4.108) yields

Fy(a) = F,(a - s) dF;(s) (4.114)

which with (4.113) I
Fy(a) F;(a - n) dFv(n) (4.115)

= j Fs(a - n) dF (n) (4.116)

by the continuity of Fs. Equation (4.116), the remaining convolutional rela- 3
tionship, is now proven.

4.C PROOF OF THEOREM 4 i
Begin by selecting an integer m and constructing a partition of the real line

(s3m < s-m2+1 < -" < s.2), where I
-c 00 for i = -m

si i/m for -m 2<i< m2  (4.117)

00 for i = m 2 .
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Continue by defining the sets

Et = [f : si- I < S(t) < si] (4.118)

for i m - 2 + ,...m . The sets f-i}I partition the real fine into disjoint

subsets, therefore,

M2

I,T] i=-.2+, ISn(O,T]

Furthermore, since FN is increasing, n

.( FN [a - S(t)] dt > E j]n0T FN(a - s8) dt (4.120)

4,T] i=_rn2+1 f -- n(,

and

Mr
2

FN [a - SQt)] d < I FNG - si) d. (4.11)

,T] i_=-m 2+ ,n(0,T]

Divide (4.120) by T, take expectations, and enlarge T; then, noting that Fs(+oo)

Alim,o. FS(s) and Fs(-oo) i,-oFs(s), implies
T m

2

lim { T FN[a - S(I)] dt E FN(a - si)[Fs(si) - Fs(si-1)]

,-oT 1 i=-Mn2+l

Operate similarly on (4.121) and

3 Iim FN [a - S(1)] di < FN(a-si-1)[Fs(si)- Fs(si-1)]"

(4.123)
In order to express (4.122) and (4.123) in convolutional form, define the two
step functions

FN(a - s) - FN(a - si) (4.124)

F+(a - s) aFN(a - si-1) (4.125)

whenever si- I < s < si. Since Fs is assumed to be at least right-continuous, it
follows from (4.122) and (4.123) that

SF(a - s) dF(s) jC FN[a - S(t)] dt (4.126)

and hence

FN (a - s) dF; (s) _ F+ (a - s) d F; (s). (4.127)
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Finish the proof by enlarging m and find that F and FN converge weakly
to FN which, coupled with (4.127), implies 3

r-ooLT FN[a - S(t)] dt FN(a - s) dF.(s) (4.128)

= Fy(a) (4.129)

where the final step follows from Theorem 3. Note that the interchange between

limit and integration is justified in the last operation, because the integrals

have essentially all mass within a bounded domain upon which the integrand is
bounded between zero and one. Note also that, if FN is not continuous, then

FN or F may converge to some function that differs from FN at a countable
number of points; but for this case, Fs is hypothesized to be continuous, making

(4.128) invariant to the limit value of FK and F+ at these problem points. U

I
U
I
U
I
I
U
I
U
U
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CHAPTER 5

CONCLUDING REMARKS AND

I EXTENSIONS

I
5.1 SUMMARY AND REMARKS

In the first chapter, the general setting for the interception problem was de-
scribed. A brief exposition on the function of the intercept receiver was given,
emphasizing the functions of initial detection and feature detection that are per-
tinent to this work. A brief description of existing detectors was presented with
a qualitative, and in some cases quantitative, performance evaluation. These
were the radiometer, the optimal channelized detector with various suboptimal
simplifications, and the autocorrelation detector. Of existing feature detectors
of hop frequency, a maximum likelihood receiver was described along with a
related receiver employing course subband selection. The detectors presented
in this work were then briefly described and related to existing detectors. They
were a sequential detector, two detectors and a hop frequency estimator based
on the compressive receiver, and another detector based on the new concept of
the amplitude distribution function.

In the second chapter, methods for the sequential detection of noncoher-
ent fast FH waveforms were developed. In the process, the FH waveform
was modeled to have an information component, which consisted of a series
of chips with a known constant epoch where each chip frequency was one of
a known ensemble of frequencies. In the model, a particular chip frequency
was independently determined by a uniform random variable on the frequency
ensemble. The FI waveform also was assumed to have an additive white-noise
component. By assuming the modeled FtI waveform was of a known SNR, the
optimal detector based on a single-epoch observation (SELF) was developed
using likelihood-function theory. SELF was the sum of many nearly identical
and nearly independent random variables and thus had nearly Gaussian statis-
tics. This central-limit argument allowed a multi-epoch collection of SELFs to
be considered an equivalent set of Gaussian i.i.d. variables. From these sim-
plified observations, a log-likelihood function (ALLF) was computed that was
asymptotic to the exact log-likelihood function, as the number of possible hop
frequencies became large. The ALLF became the test statistic on which three
detection tests were based. The tests were the FSS test, the SPRT, and the
TST. These were defined to ensure that detection errors were below desired
levels. By modeling the ALLF as a Wiener process, diffusion theory yielded
the performance of the three tests not only for an FII waveform of the assumed
SNR, but also the test performance for all SNRs below the one assumed. This
analysis compared favorably with a computer simulation of the detector and
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thus validated the analysis. The analysis also became a tool used to optimize
numerically the performance of the TST when the actual FIt SNR deviated
from the one assumed. In order to study the performance of tests synthesized
by assuming an extremely small FII SNR, expressions for the asymptotic test
efficiencies were computed. This asymptotic analysis also yielded simplified test
parameter expressions applicable to the small-SNR case.

A significant feature of the SPRT exposed by the analysis is that, with the
same error probabilities, an FII waveform with a given SNR can be detected
in less than half the time of the corresponding FSS test. This reduction in U
detection time is especially significant for Low Probability of Intercept (LPI)

applications, where the transmissions are purposely short. For the pure SPRT,
detection time increased whenever the observed SNR differed from that assumed
in the test's synthesis. And for SNRs midway between zero and the assumed
value, it was even comparable to the corresponding FSS test. The TST signif-
icantly improves this anomaly, while sacrificing little performance over that of
the purely sequential test; whatever little performance is lost, the optimal TST I
largely regains. The decrease in the detection time of the sequential tests can
be used to robustify the test with respect to the input SNR while maintaining
better performance than that of the non-robust FSS test. The simplified test
parameter expressions derived by asymptotic methods may be useful for any
schemes to adapt these tests for varying FIt SNRs. The three tests and their
corresponding design and performance analysis also apply to the slow-FH case.
The detector structure is suboptimal for slow FiI, but it is believed that the
performance loss is small, especially for detection times that include a large
number of hops.

In the third chapter, two detectors of frequency-hopped wavefornms based on I
the compressive receiver were presented. The first was developed by applying
likelihood ratio theory to the observed compressive-receiver output and yielded
a locally optimal (low-SNR) detector. The second, motivated by simplicity of
implementation, was a time-multiplexed version of the first that, through the
choice of a parameter, could either, at the expense of a low duty cycle, achieve
the detectability of the first or could, at the expense of degraded performance,
achieve higher duty cycles. The second detector was modified into a maximum
likelihood estimator of hop frequency. Both detectors and the hop frequency
estimator were performance analyzed and compared.

The compressive receiver fulfilled its promise as a simple, yet high-performing I
interceptor. The performance of the locally optimal detector shows that rela-
tively little detectability is lost by the processing of the compressive receiver.
Most of the discrepancy is due to the difference in coherent integration time
(one half for the parameters used). Furthermore, for a small performance
cost, the simplicity of the compressive-receiver approach can be retained by
the time-multiplexed detector. Also, the hop frequency estimator again com-
pares favorably with the corresponding device that used raw input instead of I
compressive-receiver output.

In the fourth charter, a new idea in detection, the Amplitude Distribution
Function (ADF), was introduced. The ADF is roughly the average probability I
distribution of a random process. Because the ADF is original, a mathematical
foundatioi, was laid consisting of a sequence of definitions, lemmas, and theo-
rems, the most significant of which was the fact that the ADF of signal plus
noise is the convolution of the ADF of signal and the ADF of noise taken sepa-
rately. The technique of deconvolution used in image processing was the germ
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from which emerged the Deconvolution Statistic, a statistical transform that
mapped a stochastic process into the amplitude domain. It was shown that
by proper choice of a kernel any degree of separation between the noise and
signal components could be obtained. For the particular problem of detecting
a modulated sinusoid in stationary Gaussian noise, a detector was developed
around the Detection Statistic. The detector's performance was analyzed and
compared with a radiometer.

i 5.2 EXTENSIONS-DIRECTIONS FOR

FUTURE WORK

In applying sequential detection to interception, other simplifications and
extensions are possible. For instance, it was assumed that the starting time and

I duration of the chip epoch were known. This first restriction might be relaxed
by redefining the SELF to perform sliding window integration instead of the
integrate-and-dump operation now performed. This, of course, would degrade
the detector's performance for some values of epoch starting time, but it would
probably exhibit a better average performance. There are also possible simpli-
fications to the SELF to improve its implementability. Among these could be
the removal of the emphasizing function, which would make the detector struc-
ture suboptimal but it probably still would be asymptotically optimal for small
assumed SNRs. Another simplification could be coarse subband preselection,
where the total spread-spectrum bandwidth is subdivided into subbands, each
containing a large number of chip frequencies. An algorithm could be used to
select a subset of the subbands most likely to contain the intercepted signal.
Detailed processing on these preselected bands then could be done with the
methods described in this work.

There are many remaining avenues to be traveled in the use of the compres-
sive receiver to interception. We provided many results applying to frequency-
hopped waveforms, but the essence of these ideas can apply to other spread-
spectrum modulations as well. But even in realm of frequency-hopped wave-
forms, much work remains to be done. For instance, a locally optimal detector
was derived consisting of a bank of filters operating on the compressive-receiver
output. From the filter responses in this configuration was formed the filter
response for the time-multiplexed detector. The direct derivation of this fil-
ter response using some optimality criterion over the class of expected signals
might be a promising endeavor. The extension of the detectors to a multihop
observation period was largely ignored. We simply assumed that results of the
individual detectors would be combined, as if they were independent. Here
the issue of performance versus overlap between data windows is one to be po-
tentially explored. We showed how the compressive receiver could be used to
estimate hop frequency. Other types of feature detectors such as the hop-rate
detectors or the carrier-frequency detectors, also could be pursued.

The use of the ADF in detection, being a new idea, has room for many
new developments in just its mathematical development, not to mention spe-
cific applications in detection theory. For instance, the basic results could be
extended to non-Gaussian and nonstationary noise. In terms of the Deconvo-
lution Statistic, the class of kernels used was very narrow. The investigation of
various kernels, especially those used in image processing, would be, by itself,
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a worthwhile undertaking. Within the class of kernels presented, the choice of
an optimal kernel for various classes of detection problems is a possible area
to pursue. Finally, the most fertile ground for the application of the ADF to 3
detection could be the detection of noise in noise.

5.3 FINAL REMARKS 1

This work represents a significant step in the development of new detec-
tion and interception techniques for spread-spectrum waveforms and frequency-
hopped waveforms in particular. With the three new detectors and the hop
frequency estimator presented, many new trails were blazed. Armed with the
idea of sequential detection, an existing optimal detector using a fixed number
of samples was extended, with improved performance resulting. This useful and
eclectic endeavor brought previous theoretical and practical results on sequen-
tial detection into the context of interception. The second detector and hop
frequency estimator solved the problem of how to apply effectively the com-
pressive receiver to interception. The firm mathematical development starkly
contrasted with previous ad hoc attacks on the problem. Out of this work also I
came some mathematical results of general interest; among these were bound-
ing distributions on the sum of squares of Gaussian random variables and an
extension of the Riemann-Lebesgue Lemma to integrals of linearly frequency-
modulated sinusoids. A brand new idea in detection was conceived, yielding yet I
another new detector. The original idea melded the image processing technique
of deconvolution to those of density estimation. The detector thus developed
was quite independent of the details of signal modulation. I

While there is much presented here, there is still much to be done. There are
other interceptors to be analyzed and new detection techniques to be developed.
As such, the area of spread-spectrum interception will yield new results for many
years to come.
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