RVE

ﬁs,.
© 13
— s

P
FROGPAM

S

- ~

B PR T wete

PR

<<<<<

<
Al

RCE

. v
TR s ok Ve

Rl e Boane

EE]

poeed

no=atied
ey
- W

.
ST

U

!

kS

-
-

P

Apprcres 0t

Taimoeac

' DIETREUTION

M o el vete ia.‘)wed;a "

DEPARTMENT OF THE Ml

-

g
e

o
[- 4

AR UNIVERSITY

%
o

AIR FORCE INSTI

A
r—

F TECHNOLOGY

TUTE'O

10

‘Ohi

it Force Base,

A

Vright-Patterson

0 12 21 061

AFIT/GLM/LSM/905-58

DEVELOPMENT OF SOFTWARE FOR THE
BASE-LEVEL WAR RESERVE
MATERIELS (WRM) PROGRAM

THESIS
Kevin M. Tanzer, Captain, USAF

AFIT/GLM/LSM/90S-58

Approved for public release; distribution unlimited

The opinions and conclusions in this paper are those of the
author and are not intended to represent the official
position of the DOD, USAF, or any other government agency.

Ao -
ALC3EN0 T bor
- o -
R cnnad v
RN - .— . =
' NERS o
S | b 1
,]
o L oo
1
By |
Lot tie)

AFIT/GLM/LSM/90S-58

DEVELOPMENT OF SOFTWARE FOR THE

BASE-LEVEL WAR RESERVE MATERIELS (WRM) PROGRAM

THESIS

Presented to the Faculty of the School of
Systems and Logistics
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Masters of Science in Logistics Management

Kevin M. Tanzer, B.A.

Captain, USAF

September 1990

Approved for public release; distribution unlimited

Preface

The purpose of this research was to decide if a personal
computer application was useful for managing War Reserve
Materiel (WRM) information. The research required
interviews with several expert logisticians in offices
throughout the Air Force. Based on the requirements of the
experts, a database management system application was
developed. The computer application was then evaluated by a
group of users. The program was well received, and was
accepted by 86.7 % of the users as a useful tool. The
program should be further developed, expanded, and evaluated
in an operational environment.

In performing the research and writing of this thesis I
had the support of several people. I am indebted to my
advisor, Major Phil Beard for his patience and assistance,
particuarly the software utilities used to capture images of
the computer program screens. I also wish to thank my
friend Susan M. Coller for her understanding and patience on
the many evenings and weekends I had to work at my desk.

Kevin M. Tanzer

ii

Preface

Table of Contents

List of Figures . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o « &

Abstract

. . . e - . . - -

I. Introduction . . .« . & ¢ & ¢ ¢« ¢ e o o e o W
General Issue ¢ ¢ ¢« ¢ e o o o
Problem Statement
Investigative Questions
Justification e e e e .
Method of Treatment and Organlzatlon .
Limitations of the Study e e o o o o s
Assumptions
Summary of Chapter I e e e e e e e e .

II. Literature Review « « .« .
Introduction e e e 4 e e e e e e e e .
Discussion of Literature e e e o o e e

Database Management System
Hierarchical structure
Network structure e e e s+ e o &
Relational structure

Characteristics of a Good Database . .

Data independence e e e e e e e
Data redundancy e e« e+ e & e = e @
Data Integrity

Objectives of a Database e e e e e & s
Selection of software . . . e o s
Similar applications of dBASE III Plus

Summary of Chapter II

IITI. Methodology . . ¢ ¢ ¢ ¢ v v ¢« o o o o o
Introduction e e e e e e e e e e e e
Program Design Cycle e e e e e e e e .

Collect User Requirements « o o e
Verification of User Information .
Derive Minimal Cover

Convert to Static Logical Database
Augment Static Logical Database .
Conversion to Physical Database .
Estimate Minimum Response Times .
Optimizing for User Requirements .
Version 2.0 Development e e s e s

Program Validation e e e s e e s s e .
Summary of Chapter III e e e e e s e e

IV. Findings and Discussion
Introduction e e s s s e e s e e e s s
User Requirements « « « &

iii

Page

ii

<
e

O~ B

Reports and Listings Requirements

Interface with the SBSS .

Incorporating Good Database Design

Version 1.0 Evaluation .
Program Objectives .
Program Functions .
Screen Appearance .
Reports and Listings

Program Validation e e

Investigative Questions Answered

Summary of Chapter IV . .

V. Conclusion and Recommendations
Introduction e e s e o
Results
Conclusions
Recommendations
Summary of Chapter V . .

Appendix A: Dictionary of Terms .

Appendix B: User's Guide
Overview of Program . . .
Required Hardware
Recommended Hardware . .
Installation e e e 4 e
Program Functions

Main Menu e . e e .
Authorizations . . .
Supply Documents . .
Quantity Balances .
Organizational Data

Authorizations with Detalls

Inspection and Discrepancies

Reports and Listings

Read In and Backup Databases

Quit Program

Using the Help function .
Extracting SBSS Data . .
Catastrophic Disaster . .
Appendix C: Program Source Code .
Appendix D: Research Participants
Bibliography « . . .

Vita . . . ¢ ¢ ¢ v 4 4 e e e e

iv

Page

41
45
46
47
47
48

51
52
53
55

57
57
57
59
60
61

62

66
66
66
66
67
67
67
67
70
71
73
74
74
76
77
77
78
79
79

81
148
149
152

List of Figures

.

Figure
1. Database development cycle
2. Use of a data field as foreign key
3. SIMBL program main menu
4. Authorization with supply details .
5. Authorization screem
6. Supply documents screen
7. Organizational information screen .
8. Inspection function screen
9. Detailed view of amemo
10. Menu for reports and listings . . .
11. Menu for database management
12. Quantity balances screen
13. Program warning to avoid classified data
14. Confirmation box for deletions . . .
15. Main menu screen
16. Authorization screen
17. Supply screen . . . ¢« ¢ .+ « < + 4+ .
18. Quantity balances screen
19. Organizational data screen
20. Authorization with supply documents
21. Inspection screen
22. Closeup of a memo field
23. Reports and listings menu screen . .
24. Database management menu
25. Confirmation box for deletions . . .

Page

22

34
35
36
38
39
40
41
42
46
49
50
51
68
69
70
71
72
73
75
75
76
77

78

AFIT/GLM/LSM/90S-58

Abstract

This study investigated the requirements for development
of a software program for managing War Reserve Materiel
(WRM) consumable assets. Areas examined included the
requirements for collection, organization, and presentation
of data. The research also examined which computer language
was appropriate for the program, interface requirements,
criteria for successful implementation, and acceptance by
the users. A literature review revealed numerous instances
of softwarc programs researched and developed to permit
management of other WRM program information. The research
followed a ten step methodology for developing a database
management system application. As part of the methodology,
the researcher interviewed eleven experts to determine
program requirements. The study developed the prototype
software, which was then evaluated by an expert. Following
correction of program flaws, a final version of the
prototype software was develop. The program was then
delivered to fifteen experts for evaluation. The program
was accepted by 86.7% of the experts as being a useful tool

for managing a WRM program.

vi

DEVELOPMENT OF SOFTWARE FOR THE
BASE-LEVEL WAR RESERVE MATERIELS (WRM) PROGRAM

I. Introduction

General Issue

After the United States withdrew from Vietnam, the
individual services recognized the need for readily
available equipment and supplies for deploying forces. One
way to provide the equipment and supplies is to stockpile
them at convenient locations for use by deploying forces.
Since equipment and materiels cost money, stockpiling
results in trading cost for time -- the time it would take
to overcome production and delivery lead times.

In the early 1970's, the Army began an aggressive
program in Europe, called POMCUS (Pre-positioning of
Materiel Configured Unit Sets) with the aim of having fully
combat capable equipment available to arriving support
forces from the United States. The Navy began a similar
program in 1979, stationing 12 ships at Diego Garcia in the
Indian Ocean with enough supplies and equipment to support
three marine amphibious brigades (23:281). The Air Force
also recognized a need for pre-positioning of materiels
overseas, and set up the War Readiness Materiel program in
the mid 1960's. Many problems existed with the system:

incorrect inventory balances, wrong items included in the

1

program, and serious omissions (4:11). For example, gun
barrels and parts were included in the early WRM kits, but
not gun oil. Although many of the vprogram problems have
been solved, the program is still scrutinized closely at the
base level. The most common concerns include actual (on-
hand) inventory amounts versus planned (authorized) amounts,
availability of some items from the supply system, and the
physical condition of items on-hand (20).

The aim of the War Reserve Materiel (WRM) program is to
give wartime support for US forces and allies. To meet this
objective, the WRM program covers

... authorization, acquisition, prepositioning,

prestockage, storage and maintenance of all WRM

needed to support HQ USAF approved wartime plans

and programs (11:1-1).

This charter covers a broad range of assets. There are many
classes of WRM assets: support equipment, munitions, WCDO
consumable items, vehicles, Harvest Bare, Harvest Eagle, and
Harvest Falcon equipment packages. Support equipment
includes aircraft repair parts and spares for aircraft.
Munitions are missiles, ordnance, explosives and related
materials; it also includes chaff and flares. WCDO
consumable items are expendable items directly related and
necessary for a weapons system or combat support (1ll:Attch
2). Not all vehicles are WRM items, only those specifically
authorized in the Table of Allowance (TA) 010. The Harvest
packages support personnel, maintenancr and supply in a
bare base environment, and are used for deployment of either

flying or non-flying units. The Harvest Bare packages

2

include portaonle housing, electrical generators, tents, mess
hall cooking equipmen%, and other items needed to set up and
maintain an 'instant' base at a prepared sight. Harvest
Eagle and Harvest Falcon are similar to Harvest Bare
packages, but are tailored in size and composition to
support just the personnel needed for deployment of an F-15
or F-16 aircraft package (11:5).

To help manage these items, several different listings,
or reports, are available from HQ USAF, the Major Commands
(MAJCOM) and from the supply computer system 1t the bases.
The task of reviewing, analyzing, and understanding the
listings used at the base level is challenging and needs
simplifying (28). Listings generated by computer systems at
the MAJCOM headquarters and at the base come in many
different formats. The base logistician frequently must go
through different reports to e.-tract data elements, and then
relate the separate data pieces. There is a need to
organize the mass of data presented to the base logistics
planner and to presert thai data in an informative manner
(20).

The many assets involved in the War Reserve Materiels
program have put a heavy workloai on the Logistics Plans and
Program office (LGX) at most bases. Logistics planners in
the Tactical Air Command (TAC), Pacific Air Forces (PACAF),
Strategic Air Command (SAC!, and the US Air Forces in Europe
(USAFE) spend a considerable amount of time tracking,

inspecting, and managing WRM program data (7;15).

The use of a computer is applicable to organizing WRM

data because computers have the ability to store large

amounts of data, can quickly retrieve data, and are flexible

in presenting desired information.

Problem Statement

This study proposes to develop a prototype software

program to permit management of WRM asset information,

including Pre-Positioned Packages (PPP), War Consumable

Distribution Objective (WCDO) items and consumable items in

the Wartime Plans Additive Requirements Report (WPARR).

Investigative Questions

To develop an effective software program to track and

manage WRM asset information, several investigative

questions must be answered:

1.

Can a program be developed that will meet requirements
identified by logisticians and by Air Force
Regulations?

What are the functional requirements of a WRM software
system for effective collection, organization and
presentation of information?

What is the appropriate computer language for system
development that will be efficient, effective, and
still maintain user-friendliness?

What form should a database take to efficiently
organize WRM data?

Will the program need to access and work with existing
databases or computer systems?

What are the criteria to ensure successful
implementation and acceptance by base-level
logisticians?

Justification

The Logistics Plans and Program (LGX) office manpower
availability is decreasing while the workload increases,
therefore the time spent handling information is at a
premium. A reduction of the hours spent leafing through
reams of paper to piece together data will save the time of
the logistics planner. By automating the printing of a
specialized report or the search for specific data, it would
free the time spent by the base logistician to pursue other
tasks. The logistician could use this time to focus on
problem areas in the WRM program. With increasing interest
in the levels and conditions of spare parts and equipment,
the Air Force needs to improve the 'stubby pencil' approach
to maintaining information (10:64). The benefit of
developing WRM software is a savings of the man-hours spent
in managing the WRM program. A user who spends all day
managing WRM might save as much as an hour per day. Also,
an increase in the accuracy of WRM program data may result

in additional savings (5).

Method of Treatment and Organization

Chapter I gives background information, the specific
problem, associated investigative questions, limitations,
and assumptions of the study. Chapter II reviews the
literature in support of the study, covering the
characteristics of a database and database management

systems, and similar applications of a database management

system. Chapter III outlines the methodology., a
requirements determination through a series of telephone
interviews, initial program development, review of the
program by a user, further program development and
validation of the program by many users. Chapter IV
contains the data and results of the methodology outlined in
Chapter III. It includes recommendations of the on-site
visit with the Air Force Logistics Management Center
(AFLMC). Chapter V contains the analysis and conclusions
from the program review and validation, along with

recommendations for further study.

Limitations of the Study

This study does not examine the requirements for
handling of classified information, which would require
expensive hardware investments by the user and approval of
the software developed from this research. In the Air
Force, classified data is restricted to use on TEMPEST
approved computer systems. Large computer systems must meet
similar restrictions. The TEMPEST personal computers are
significantly more expensive than non-TEMPEST machines and
most LGX offices do not have these machines. Additionally,
to gain approval to use the resulting software on a TEMPEST
computer would require more time than is available for this
study. The resulting software developed from this study
could handle classified information on an appropriate

systen.

Additionally, the software program does not handle
every possible type of WRM item. Specialized software
programs are available for use with Harvest Eagle, Harvest
Bare, and Harvest Falcon packages. The author did not try
to duplicate existing software capabilities, such as
mainframe software programs (14). An interface with other
programs would have complicated program execution, data
structures, and imposed security classifications on the
software. Also, the software program does not handle every
possible manipulation of WRM data, but rather the most
strongly desired capabilities expressed during the

requirements determination process.

Assumptions

Program development is a continuous process. A program
developed to meet user specifications needs more development
when the user actually sees and uses the final software.
This study assumes that a review of the initial program will
identify any major problems or shortfalls with the software
and documentation. The final version of the program should
then correct those findings.

This study also assumes that the individuals
interviewed to develop program requirements are
representative of the population of logistics planners;
their views represent the views of base logistics planners.

The interview technique used in determining
requirements does not allow the users to evaluate the

software as a single group. Every user was sent the

7

software and User's Guide by mail for evaluation. It was
assumed that if seventy five percent or more of the
respondents accepted the software as helpful in managing a
WRM program, the research project was a success. The
results of the evaluation were not statistically evaluated

because of the small sample of participants.

Summary of Chapter I

The WRM program of the Air Force involves a variety of
assets, such as consumables, vehicles, and equipment. Many
of the assets are included in different reports, each with
different formats. Managing the information in the WRM
program is time-consuming, and places a heavy workload on
Logistics Plans and Program offices. A computer application
is applicable to organizing the data because of the
computers ability to retrieve large amounts of data, and
organize the data. A series of investigative questions were
presented. The study is limited to non-classified data, and
did not try to duplicate existing software program
capabilities. The study assumed the software developed was
a prototype, and that the requirements stated by the
logistic planners were representative of the population of
all the planners. The study also assumed that a seventy
five percent acceptance of the program would represent a

successful program development.

II. Literature Review

Introduction

Computers have quickly become an integral tool for the
military and are used in many aspects of daily operations.
With the increasing availability of computer systems, there
has been an increasing demand for computer programs that
effectively use computer capabilities. The need for a
database management system (DBMS) was identified to help
manage War Reserve Materiel assets in the Air Force by the
AFLMC at Gunter AFB (28:1).

To ensure that a DBMS application will meet the
requirements of the user, the program must have good
programming techniques and program structure. This
literature review identifies the characteristics of a good
database and some goals of a database management system,
discusses selection of software, and reviews prior instances
where database management system applications have been

applied to similar problems.

Discussion of Literature

Database Management System. Databases are used to

store information about an item or a subject in an orderly
way. Each set of information about the item or subject is
called a ecord. A record can be thought of as a single

line of information about an item, such as height, width,

weight, and cost. By adding more records, a database is
created. Every time another item is added to the database,
another line of information is added with height, width,
weight and cost data. A record is also called a node and
several nodes, or records, make up a database (18:67). A
formal definition of a database is "a collection of
interrelated data stored together without harmful or
unnecessary redundancy to serve one or more applications in
an optimal fashion™ (21:19). Martin breaks a database
management system into its parts.

A collection of information gathered together by

common criteria is a database. A data item is the

smallest unit of data. Data which is grouped

together in a named collection is a record. A

file is the named collection of records. A

database is a collection of records that contains

the relationship between records and data items.

(21:19)
Databases can be electronic, as in a computer application,
or physical; a library card catalog is a database. All
cards in the catalog contain the same types of information:
name of author, title of the work, publisher, publishing
date, and a catalog number. The collection is a database
because all the cards are part of the Library of Congress
Catalog Number System. This system establishes the
relationships among the cards. A practical definition of a
database is "a collection of related data about an
enterprise with multiple uses" (1:11). A database

management system application is then a collection of

databases, however, the contents of the different databases

10

>

are independent, and not always related to each other. A
database management system (DBMS) stores, organizes, and
retrieves the data from the databases in a way that makes
sense to the user, turning data into information (18:2).
Computer databases take one of three different forms:

hierarchical, network, or relational (Martin:95).

Hierarchical structure. A hierarchical database
structure is similar to the root structure of a tree. The
structure consists of 'nodes' or records, connected by
‘branches’' that link the nodes. The links allow the
database to move from one record to the another. The first
node is the root node, and will have several nodes connected
below it (1:67). The relationship of a node to another is a
‘parent' or 'child' where the child node is dependent on the
parent node to describe its location in the database. A
hierarchical structure allows the database management system
to move to any of the records connected below the parent
record. If the parent node is removed from the database
without connecting the child node to another parent node,
the child node is lost, as are all lower nodes. 1In the
hierarchical structure, there is no limit to the number of
child nodes or records that & parent node can have. The
distinguishing feature of a hierarchical structure is that
every node (except the root node) has exactly one parent

node (1:69).

11

Network structure. A network database structure is a

complex arrangement of relationships between nodes, where a
child node is tied to several parent nodes (1:93). Network
databa<e structures can have a string of nodes where the
last node is a parent to the first node in the string. This
complexity in relationships makes it difficult to change the
structure of the database (18:82). The advantage to this
method is that it allows the programmer to reflect the
complex relationships between the information in the nodes

(18:85).

Relational structure. A relational database structure
is the most common structure used in database management
systems. The form of the structure is a stack, where each
node represents a record (21:95). Each node is the parent
to a single child node directly below it. Since each node
has the same types of data, Martin describes this structure
as a table of columns and rows (21:97). The row is a node,
while the column represents common data types. A simple
example of a database is a table of measurements for several
like pieces of equipment. Bach piece of equipment has its
own row, while all the similar data, like weight, is in the
same column. The technical literature refers to a column as
an attribute, and a row as a tuple. The most common terms
to describe a relational database structure are table,

column, and row (21:96).

12

Characteristics of a Good Database

Data independence. The structure of a database should
not be dependent on the type of data stored. This is done
by using variable names that represent the data element or
column. After removing a data element or column from the
structure, the system can still access any node in the
structure without referring to the missing data element.

The net effect is the ability to use the database without

knowing the representative details of the data (1:15).

Data redundancy. When storing the same data repeatedly
in the records or nodes of a database, it is redundant data.
If the data results in faster recall, it is beneficial to
database operation. As the number of records increases,
however, the repeated storage of the data takes additional
memory, and can slow down the processing time significantly
(12:20). The storage of the same data many times over also
increases the size of the database, and uses more of the
storage media. By storing the repeated information in a
separate table or database and recalling it or.ly as needed

by the program, data redundancy is kept to a minimum (1:45).

Data Integrity. Data integrity is the process of
"ensuring that the updates (of data) are correct, even
during failure periods" (21:63). To preserve data
integrity, the programmer must plan for making backups of
the data and protecting against input errors from the user.

The programmer must also plan for catastrophic damage to the

13

program and data files and restoration of the damaged files
(21:64). The most common backup methods are making copies
of all necessary files on a scheduled basis, and continuous
backups of information from changes. To protect against
input errors, the program should check the type of data
entered against the type of data it expects (12:56). For
example, if the program is asking for a social security
number, the program should not allow alphabetic characters.
The program should also check the value of data entered to
ensure it is does not exceed expected ranges. For example,
the number of supply items ordered should not be a negative
number, nor should it be a zero quantity. Similar checking
should be done for calendar dates. If the program is asking
for the name of a person to search for, it should not allow
the user to enter a number.

Protection against catastrophic damage, typically fire
or water damage, is dependent on the facility having the
database management system (12:54). The programmer can plan
for recovery of the system if such a failure occurs through
a separate program that re-establishes the software when
run, and prompts the user for the most recent backup files.
Elbra suggests that one means of restoring a database is
reading in a backup copy of the database. Alternatively, a
running log of changes to the database since the last backup
can update the database again, and thereby restore the

system to its exact state before the system failure (12:55).

14

Objectives of a Database

The development of a database shares several common
objectives with the development of a database management
system as described by Atre. The programmer should consider
using the same database for several program functions,
eliminating data redundancy and preserving data
independence, and data integrity (1:13). Another element to
consider is the ease of use in adding, editing, deleting,
and retrieving data. Most database management systems allow
the user to perform the four basic functions of adding data,
editing existing data, deletion of data, and creation of

reports or listings of data (16:189).

Selection of software

The author has experience with several database
management systems and programming languages. The database
software included Enable and Condor III1, as well as dBASE
II, dBASE III and ABASE III Plus (tm). The programming
languages have included BASIC, FORTRAN, C, and Pascal. Of
the database software and languages, dBASE III Plus (tm)
offers the most power and flexibility with the least
programming work. The dBASE III Plus (tm) system also
offers a menu driven program to build databases and create
report programs compatible with the database structures.
Additionally, 4BASE III Plus (tm) has a wide base of
commercial and free software that supports program
development. The dBASE III Plus (tm) software is readily
available through commercial outlets and General Services

15

Administration (GSA) purchase schedules. The capabilities
of the ABASE III language can be extended by using a
compiler and a screen design program (or code generator) as
discussed below.

Compiler programs are software programs that convert a
program file written as text irto machine language or
machine code, which the computer understands as
instructions. Compiled programs do not require other
programs, but can execute the machine code by itself. This
‘stand alone' capability is useful because it removes the
need for a second software program to run the original text
code. A compiled 4dBASE III Plus (tm) text file can run
without the dBASE III Plus (tm) program. A compiled proyram
protects the source code of the program, since the compiled
version is machine instructions, and bears little
resemblance to the orginal text code. A user cannot make
changes to the program and thereby cause loss of valuable
and irreplaceable data. Also, a compiled program generally
uses less disk space than a separate program and text file
program. A compiled program will also execute faster when
running, a benefit when organizing large amounts of data.
Programs which are not compiled are interpreted or executed
a line at a time. The interpreter views a single line of
text code, converts it to machine language and executes the
instructions. Interpreter driven programs are slow because

the compiler does this for each line of text code.

16

-

Several compiler programs are avaiiable through
commercial sources. The available programs ai: Clipper
(tm), FoxBASE (tm), and QuickSilver (tm). All three
programs offer an expanded version of the dBASE III Plus
(tm) language that enhances the capabilities of 4BASE III
Plus (tm). All three programs will produce machine code.
The deciding factors for selection were availability and
price. Clipper (tm) was available through local sources,
and programming help was available from the faculty. 1In
addition, the Clipper (tm) program was available for a lower
price than the other two programs.

One other software program was useful in developing the
software for this study. The program is UI Programmer (tm),
a code generation program. UI Programmer (tm) translates
graphic designs into text program instructions. The
graphics can be menu screens, input and display forms, or
informational screens. UI Programmer (tm) creates text
programs for 4BASE III Plus (tm) and Clipper (tm), among
others. The text programs created are compiled by Clipper
(tm) into executable form. The Ul Programmer is Object
Oriented Program (OOP) software, which :treats each screen
design as an object and creates text code to relate that
object to other objects in the screen. The COP technique of
program design is present in many commercial software
programs. This technique is seen in many programs that
allow the user to move program files, applications and

windows around the computer screen. The UI Programmer (tm)

17

software is not necessary for the study, but is a useful
tool, since it can reduce the time spent designing, writing,
and trouble-shooting a program. The program was available

through commercial sources.

Similar applications of 4BASE III Plus (tm).

Several programs using dBASE (tm) are in use in the Air
Force, the Department of Defense, and its' allies for
managing personnel data, vehicle data, and supply
information.

The first program identified is a product of a March
1987 Naval postgraduate School thesis. The system supports
the Republic of Korea (R.0.K.) military personnel management
system. The system uses dBASE III Plus (tm) software and
data extracted from that nations' existing database
management system (17:13).

The second program identified is a product of a 1986
Naval Post Graduate School thesis. The Student Mix Software
System (SMSS) assigns students to seminars based on user
selected rules, and to prepare the required output reports.
The system also uses dBASE III as the software for creating
the database and manipulating the data into reports
(24:1iii).

The third program identified was an AFIT thesis written
that developed a WRM Vehicle Management program. The
program is a dBASE III Plus (tm) system for maintaining

information on WRM fleet vehicles (29:v). The software was

18

delivered to Air Force bases in the US, and is still in use
by many transportation units.
The fourth report identified was an AFIT thesis written

in September 1987 that created a DBMS to aid the U.S. Navy

in producing high-priority 'Hot List' reports (25:xi). The
system uses dBASE III Plus (tm), and the program meets or
exceeds the requirements identified. Smith noted that the
resulting software program was easy to install, easy to use,
and did not require knowledge of the ABASE language by the
user (25:xi).

Other applications of ABASE III Plus (tm) in civilian
environments underscore its usefulness in managing database
information. The use of dBASE III Plus (tm) in a
telemarketing package gave it a distinct advantage over
similar programs (26:57). Advantages cited were its speed,
flexible reports, and form-letter generator. In addition,
dBASE III Plus (tm) has received strong ratings by critics |
evaluating commercial software (19:121).

The successful use of ABASE III Plus (tm) by both the
military and civilian companies for problem solving is
testimony to its capabilities. It can support larger
information systems, or be used by itself. The 4BASE III
Plus (tm) system can manage personnel data as well as

transportation data with positive results.

Summary of Chapter II

The creation of a database requires an understanding of

the basic terminology that describes a database, the

19

characteristics of well-made databases, the objectives of
designing a database, and selection of software to support
the database design. Last, the examination of similar
program applications shows that the software selected will
support the thesis.

First, the basic terms are data item, record, file, and
database. A database management system is the collection of
these elements that serves some common purpose or
enterprise. A database can take one of several forms:
hierarchical, network, or relational. The difference in the
three forms is how the nodes within the structure link to
each other in parent-child relationships.

Second, the characteristics of a good database are data
independence, data redundancy, and data integrity.

Third, the objectives of designing a database are to
support several functions related to the enterprise, while
preserving data independence and integrity. Minimizing data
redundancy ensures the program uses the smallest amount of
disk space and computer memory.

Finally, there are similar programs whicﬁ confirm the
use of ABASE III Plus (tm) as a database management system

for effective management of large amounts of data.

20

JII. Methodolo

Introduction

This chapter outlines the methodology used to develop
the database management system application. The ten steps
include the collection of user requirements, verify user
requirements or information, derive minimal cover,
conversion to a static, logical database, augment the static
database, convert it to a physical database, estimate
minimum response times, and optimize user requirements. The
last step of the methodology ends with a flexible,

recoverable, user friendly database application.

Program Design Cycle

Vesely outlines a design cycle for development of a
database system as having ten steps, as shown in Figure 1

(30:2).

This design assumes that someone accepts responsibility for
the program after delivery to the user. Program errors may
require additions or modifications, which should be done by
a qualified programmer. A large business or firm which
decides to invest in a database system will have a
programmer or computer section capable of performing the
required program maintenance. The researcher delivered the
prototype to the Standard Systems Center at Gunter AFB, but

the program lacks a sponsor to bear responsibility for

21

USER COLLECT USER
REQUIREMENTS
¥
DERIVE VERIFY
MINIMAL COVER INFORMATION
4
CONVERT TO AUGMENT
STATIC LOGICAL STATIC LDB
DATABASE
4
ESTIMATE CONVERT LDB
MINIMUM ey TO PHYS D-BASE
RESPONSE TIMES

OPTIMIZE FOR
USER REQUIREMENTS

p

FLEXIBLE,
RECOVERABLE,
USER FRIENDLY

DATABASE

further

program.

useless
product

used in

or increased benefit.

Figure 1.

In a program developed for a business,

or advantage needed.

development, distribution,

Similarly,

Database development cycle

and maintenance of the

a poor or

program is not used if it fails to provide the
a program is not
the Air Force if it does not provide some advantage

This prototype program requires a

validation of the program to decide if a software system

would be helpful in managing a WRM program.

22

-~ i
Collect User Requirements. The development of WRM
software will use a model designed from requirements
outlined by experts and functional WRM managers. First, the
researcher conducted telephone interviews with experts at
the Logistics Management Center {(AFLMC/LGXW), at five of the
Major Commands, and with at least one experienced functional
managers of WRM assets at the base level within each Major
Command. The researcher solicited five of the Major
Commands for inputs: the Strategic Air Command (SAC),
Military Air Command (MAC), Tactical Air Command (TAC), US
Air Forces Europe (USAFE), and the Pacific Air Forces
(PACAF). The Major Command experts were from the Logistics
Plans and Programs office, the office of primary
responsibility for administering policy and practice of the
WRM program. The researcher interviewed one functional ‘
manager from a base in each command, selected by
recommendation from the Major Command offices. There were
eleven initial interviews, with other interviews conducted
with the users to clarify previous inputs and allow
expansion on the user's ideas. The evaluation also included
five more managers, one from each major command, to get a
larger sample from which to draw a consensus. The result
was sixteen possible evaluations. No statistical analysis
of the evaluations was performed.
Several iterations of the interview process developed a

clearer understanding of program requirements. There were

some requirements beyond the capability of the researcher to

23

address, due to complexity or software limitations. The
requirements which were not addressed by the researcher are
included in Chapter IV. The unmet requirements were not
critical to the research, and could be met with additional
research, and a dedicated programming effort. Establishing
requirements among the experts and managers was the most
difficult part of the requirements determination.

The researcher selected telephone interviews for
determining requirements for several reasons. Interviews
provide feedback quickly, allow flexibility and can be
repeated several times to expand ideas. Telephone
interviews can be done quickly, the structure of interviews
allows exploration of ideas, and clarification of confusing
ideas (13:169). Several telephone interviews with each
expert developed ideas into clear requirements.

The individuals interviewed were not experts in
computers or program development, they are actual WRM
program managers or past program managers who have developed
expertise dealing with the WRM program. They should

therefore be representative of functional WRM managers.

Verification of User Information. The different data

elements needed for the program came from the available Base
Supply reports and interview results. Obtaining the data
from the Standard Base Supply System (SBSS) required a
specialized computer program to extract data from the SBSS
in a useable form. The individual users supplied some data

elements, as they are unique to the base or WRM program.

24

Second interviews verified the need for major program
elements and functions. 1In the third interview, the author
confirmed the data elements recommended or desired. Some
data elements came from other sources; for example, the unit
price and total quantities determine the value of inventory

on hand.

Derive Minimal Cover. The identified data elements

were separated into related or natural groups of
information. For example, on-hand inventory balances,
authorized quantity, and authorized unsupportable quantity
were grouped as inventory data. By grouping information,

it became easier to define the relationships between groups

of data. A grouped data set will have a 'key' field which f
uniquely identifies the data record. This process, called
normalization, groups data under a key field. The key field

provides each record a unique identity so the record can be

moved, rewritten, or deleted as a group. Normalization of

the data sets then eliminates redundant data and provide a

logical method for locating unknown data by related known

data (30:5).

Convert to Static Logical LCatabase. Another
consideration was the amount of data to store in each data
set, and as a whole in the system. An extremely large data
set might need to be broken into two or three separate data
sets to avoid having too large a data set for the system to

handle. Also, adding information to the system makes the

25

data set grow. The design allows for the added information
so the system does not exceed physical limitations and
thereby 'crash'. The anticipated number of inserts,
updates, and deletes made to the data set were also
considered (30: 6). Any insertion of a new record,
overwrite, or deletion of an existing record may require
additional actions by the system to maintain file size. A
deletion, for example, would require a repacking of all
records with a sort of the records, and a re-creation of the
associated index file. This process takes time, and the
system should minimize the time spent by the user waiting
for the system to complete required actions. The design
process anticipates number of queries using second keys,
described in the next step, as these qQueries could also
impact the system's 'dead' time. Dead time is the time that
a computer is searching for data or performing some other
task when the user cannot make inputs or perform other
computer operations. In effect, until completing the query,

nothing else can be done with the computer.

Augment Static lLogical Database. The next step

requires identification of the primary keys and secondary
keys, as well as foreign keys. A primary key is a field
within the table that points to one and only one record of
the table, a primary key is the way to find a unique record.
A secondary key is useful when there is some information
about the desired record, but not enough to uniquely

identify it. A secondary key would locate many records that

26

match the desired data. An example of a primary key is the
Social Security Number, which uniquely identifies every
taxpaying citizen. A secondary key could be the last name,
which would narrow the search considerably for a particular
individual; the name 'Smith' for example, could belong to

many records.

Database |1 Data field 3
Key Data Data Data is the key
Field Field Field Field field of
1 2 3 database 2

¥

Database 2
Key Data Data
Field Field Fleld

4 ®)

Figure 2. Use of a data field as a foreign key

Some data tables use a 'foreign key' to connect one
data set to another, as shown in Figure 2. An example of a
foreign key is a data field within a table that relates to
the key field of a second table (30:119). An item
discrepancy table would contain a field for the
organizational number used as a key field in a second table
to find the organizations name, phone number and point of

contact.

27

Conversion to Physical Database. The translation of

the users requirements into program design was made easier
through the use of a database software development system.
This software, UI Programmer (tm), is a database system tool
that decreases the amount of effort and time required to
develop a system. UI Programmer (tm) generates dBASE III
Plus (tm) and Clipper (tm) program code for menus, reports,
sorting routines, organizing, and relating database
information. The dBASE code is compiled using Clipper (tm),
a dBASE compiler, to produce an executable program. Using
UI Programmer (tm) to design input and output screens,
instructions for how to process database information were
attached to these screens. UI Programmer (tm) used these
screens and instructions to write the Clipper (tm) program
code. The result of this process was a physical database
program that meets the program requirements outlined by the

users.

Estimate Minimum Response Times.

Database management system applications can suffer from
long delays in processing new data, recalling old data,
sorting records, and presenting reports created from the
data. The design of the database management system
application had to consider the number and kinds of search
operations the system had to perform to meet user

requirements. For example, searching for a specific

28

document number in the database can use a general search of
the database or a search of an index file.

Index files are separate files containing the key field
of a database and the location of a corresponding record in
the database. An application can quickly search the index
file and then jump directly to the appropriate record.
Alternatively, an application can directly search the
database key field to locate a record. A search using a
index file is a much faster search method for a database
with many records, but not for a database with few records.
The difference in the speed is a result of the amount of
data the computer must store in its memory to compare
against a desired search value. For a normal search,
without an index file, the computer stores all the data from
a single record in memory, but compares only the key field
against the search value. Moving the entire record data in
and out of memory requires more time than a single, indexed
field value compared to the search value.

This application has the potential to maintain records
on thousands of supply documents, and even greater numbers
of WRM authorizations. These databases required index files

to ensure minimum waiting times for the user.

Optimizing for User Requirements. The first version of
the program, Version 1.0, was tested by one of the WRM
managers. The author worked with the manager to test the
capabilities of the program in the field using procedures

outlined in the User's Guide. The manager (or tester) tried

29

every function of the program. It was assumed that major
program errors were identified at the time. Existin
problems or difficulties were noted and corrected in the
next version of the program (14).

The user who evaluated the initial software was
familiar with WRM and computers. This enabled the manager
and researcher to readily exchange ideas about the software.
The manager who evaluated the initial program was an
experienced WRM manager, and is responsible for some WRM
software at the Air Force Logistics Management Center.
Testing of the Version 1.0 by a functional manager ensured
the program was moving toward meeting the objective of the
program development. It also ensured the program worked in
a logical manner in doing the needed functions. This step
represents the ninth of Vesley's ten steps. Having
developed the application, the last step results in a

flexible, recoverable, user-friendly database.

Version 2.0 Development. From feedback from the on-

site test, a revised version of the program, called Version
2.0, was developed. The second version included corrections
in program execution and omissions in the User's Guide.

Once these changes to the program were completed, the

program was mailed to the users for evaluation.

Program Validation

In the last step, the managers evaluated the final

version of the program. Evaluation was performed to ensure

30

“hat the program meets the requirements outlined by the
experts and managers in the interview process. The program,
Users uide, cover letter, and response card were sent by
mail to the users for evaluation. Evaluation by mail does
not allow for problem solving of software problems or
exposition of instructions, but is a cost effective method
of having many users try the program. By having the program
evaluated by the same users that developed the requirements,
it was easy to determine if the program is helpful. The
managers decided if the program meets the objective of the
study. Several users also provided feedback about the
program and recommendations for changes. This final version
and User's Guide, along with any open additional
requirements, was delivered to the Air Force Logistic
Management Center at Gunter AFB for distribution and

possible further program development.

Summary of Chapter III

The process of designing a database management system
application used a methodology having ten steps. These are:
collect user requirements, verify user requirements or
information, derive minimal cover, conversion to a static,
logical database, augment the static database, convert it to
a physical database, estimate minimum response times,
optimize user requirements, and end with a flexible,
recoverable, user friendly database application.

The key element of the design cycle was determining and

verifying user requirements. The requirements determined

31

the initial capabilities and functions of the application.
If the requirements do not address the needs of the users,
the resulting application will not meet the needs. Each
additional step of the design cycle contributed to the
flexibility, speed, and usefulness of the application. The
application was optimized by having the application
evaluated and reviewed by a user experienced in both WRM
management and computer applications. Errors were
corrected, and the application was evaluated by many users

to determine the usefulness of the application.

32

IV. Findings and Discussion

Introduction

This chapter outlines the program developed from the
previously discussed methodolgy. The user requirements
formed the authorization, supply., inspection, and quantity
functions. Other functions, such as the reports and
listings function, were developed to support the basic

program functions.

User Requirements

User requirements were collected through telephone
interviews. Some of the requirements involved
simplification of existing reports, such as the War
Consumable Distribution Order (WCDO)/Base Level Support
Spares (BLSS) R0O7 Report, while other requirements were an
amalgam of existing data. The users identified many
requirements for a WRM program, several of which were beyond
the scope of the research or the capabilities of the
researcher to develop.

The inputs from the users determined the major program
functions, as shown in the program main menu in Figure 3.
User requirements became the basis for the basic
authorization, supply document, inspection, and quantity
balances functions. The functions for organizational point
of contact, supply details, reports, reading in, and

backing-up database information were developed to support

33

Syston for Consumable HRN Invewtory Managoment at the Base lowel
S.1.0.B.L. Vors 2.8 (Prototype)

] S |
T] Supply Quantity
Authorizations etails Ralances
0 T)
Organization Authorizations Discrepancies
hata with betails Inspections
L R Read In 9 Quit
Reports & Backup ad
Listings hatabases Exit to DOS
Use Cursor Keys « to Highlight Box thew ENTER 4/ to Select

Figure 3. SIMBL program main menu

the basic functions. From this menu, the user can select
any of the program functions.

A common need of the users was a technique for handling
WRM authorizations, supply document data, inventory
balances, and surveillance visit or inspection reports.
Also, the users wanted to print listings of the data, along
with supporting information. For example, at least one of
the users wanted to link a WRM authorization to all the
supply documents related to the authorization, with an

option to print the listing (9).

34

Authorizations and Supply Petails
Prins National
Authorized Stock
Iten: UPEKNONN Nunber: 5330087602481

Authorized Quantity.

Quantity Owhand:

betails supporting this authorization
Bocunent 8 Type KN Rte Ordered Rate k2 Quantity
MoGOKAD1078B33 0 5330087662481 0167 0 i

Figure 4. Authorization with supply details

Several of the interview subjects expressed a desire to
tie supply information to unfilled WRM authorizations. 1In
some cases, an authorization exists, but the item is on
order and awaiting funds (memo due-out) before it can be
bought. Some high cost equipment falls into this category.
Some consumable items may not be available, or are due-in
from the source of supply. The researcher addressed this
need by creating a program option relating an authorization
to the supply details (14). This function allows the user
to move through the database of national stock numbers while

displaying the descriptive phrase for that stock number.

35

Figure 4 illustrates this function: the top window shows the
authorized stock number and the bottom window shows the
supply details. When the user finds the national stock
number of interest, the program displays a list of all

supply documents associated with that stock number.

Authorized R [tews
Item Description: OXYGEN AYIATOR WSN: 6830086889531

Authorized Quantity: 4 OnHand Qty: ¢

Unit of Issue: GL Docunent Munber
Price of Unit. 8.4 of futhorization:
HBBZ(RO0000848

Ualue of Units: 1.3%

ERRC Code: XI3

Figure 5. Authorization screen

Each authorization requires a unique national stock
number (NSN), which also appears on supply documents. The
stock number is an example of a foreign key as previously
discussed, which provides the key to locating supply

documents. Since each authorized NSN may have several

36

documents related to it, a second database of supply
documents was needed. The second database used was the
supply document database, which uses the NSN as a secondary
key field. The primary key for the supply document database
is the document number, which uniquely identifies each
document.

Relating authorizations and supply documents assumes
this information is available. This necessitated two
program functions, one for authorizations and another for
supply details. The authorization screen shown in Figure 5
presents basic information about an authorization. It
allows the user to view pertinent data about the

authorization.

The second required function deals with supply
documents. The supply documents function, pictured in
Figure 6, presents basic information about each supply
document. Supply documents created with this function show
up in the program function relating authorizations with

supporting supply documents.

Most logistics planners deal with many organizations,
each of which may have several individuals responsible for
WRM items. For example, a supply squadron will have
separate points of contact for gun o0il, engine oil, and
aviation fuels. A method is needed for referencing the
point of contact for each WRM item or organizational shop

(20).

37

Supply Document Details Screem

Bocunent Type: Bue Out Ordering Organization: 66821
Docunent Number: M6G82199749838 Date Ordered: 9874
Estimated Delivery Bate: 8

Status: Jue In Doc: 16682192538168
[ten Ordered: UNKNOUN Quantity Ondered: 1 u
Matiomal Stock Mumber: 1658083329192 Unit Price. 6.2 ﬂ'
Prine or Substitute: Total Value! .00

Point of Cowtact Information
Name: OLD T. CIVILIAN
Organization: LOGISTICS
Office: /L5SM
Phowe: 255-4437

Figure 6. Supply documents screen

The point of contact for each supply document is shown
in the lower left part of the screen in Figure 6. The point
of contact data is entered into the computer in a separate
function. To fulfill this need, the researcher created a
database of point of contact (POC) data where the
organizational shop code is the primary key field. The
organizational data screen, shown in Figure 7, allows the
user to build a library of information on the points of
contact for each organization. Some of this data appears in
the supply documents function, a report of point of contact

38

Organizatiomal Data

Hing or Air Division: Z7SHTH ABM

Squadron: LOGISTICS

Branch: MATERIAL MANAGENENT
Branch Symbol: /LSSH

Organization Nusber: 66821

Point of Comtact ata

POC Nane: OLD T. CIVILIAN NC Rank: CIY
POC Phons Number: 255-4437 POC Building: 1
PCRoomE: M

Figure 7. Organizational information screen

data, and in a report of inspection data.

Inspections of WRM items involve a significant amount
of time for the base logistician. Some of these inspections
result in deficiency reports and follow-up inspections. 1In
addition, these inspections occur on a semi-annual basis. A
method to track inspection dates. open and closed inspection
reports, discrepancies, and responses is useful.

The program meets this need by creating a database of
inspection data, keyed to the organizational shop code.
Figure 8 shows the screen used to enter and view inspection

results. This database is referenced by the organization

39

Inspection and Discrepancy Information

Hing: Z7S0AN Last Inspection: 84/15/98
Squadron: 968 TFS Next Inspection ue: 18/15/98
Branch: OPERATIONS
Off ice Symbol: /0PS Org Munber: 16210

Inspoction Results
hate: 04/15/99

Discrepancy: fwy kind of discrepancy im this field. It can bo edited
Reference: Some referewce for future use. AFR 888-H8, Uol. 1, Chap 5,
Response. Use Catrl-B for reformatting of the paragraph.

Follow Up (YN): Reinspection on: 85/15/98

STATUS: OPEN

Figure 8. 1Inspection function screen

shop code number, which is entered from the keyboard using
the search option. Inspection dates recur on at least an
annual basis, and a method of tracking inspections,
annotating discrepancy information and scheduling subsequent
inspections is available in this function. The program
function addresses this need by maintaining the results of
WRM surveillance visits and inspections through memos, as
discussed below.

The inspection program allows the user to record
inspection data, results, and to schedule reinspection

dates. Every inspection can have three memos associated

40

-
with it. PFigure 9 is a close-up example of a memo box that
appears in the bottom portions of the inspection screen.
Some inspections will need only short memos, while other
memos are larger; the program allows the user to enter memos

as long as 64,000 letters.

Any kind of discrepancy in this field. It can be edited
with the DELETE and INSERT keys: the total length of

all menos can be up to 64K characters. Hord wrap and
refornatting are also available.

Enter Discrepancy info: “H to Save, ESC to abort

Figure 9. Detailed view of a memo

Reports and Listings Requirements.

Each of the logisticians had ideas of what reports were
needed, which items to include, additional data to present,
and what format to use in the reports. The researcher
looked for common elements among the requirements and
developed listings to support the needs of the users and the
major program functions. The result was the menu of reports
listed in Figure 10.

There was a need for a listing identifying all
authorized/on-hand imbalances for every item tracked as WRM.
A combined listing is more useful than the three individual
listings now available (9;7). This listing could also

include a requirement “<or a munitions listing identified by

41

Reports amd Listings Mewu

A Report of all futhorized

Itens (ALl URN Auth’s)
e——

D Report of all Authorized
Itens and all details

I Report of all Inspections

0 Report of all Organization
Points of Comtact iwlo

Q BReturn to Main Mew

Pigure 10. Menu for reports and listings

Chief Master Sergeant (CMSgt) Stock. Munitions were not
included in the program, as there is a program for munitions
under development (14:27).

Differences between quantity authorized versus quantity
on-hand are of interest, and several additional pieces of
information should be presented: due-in and due-out document
numbers. This allows the logistician to identify those
items to look at more closely (20). The report and listings
menu has an option to generate a listing for each
authorization, with the current inventory balance and any

supply documents.

42

A listing of which units and areas need inspection
would be useful (7:20). There is an option on the reports
and listings function that generates the appropriate report.

A large WRM program has many points of contact the
logistician needs to know, particularly when the unit is
inspected infrequently (20). For example, a unit may have
several pieces of equipment, each being managed by a
different shop and point of contact. A tactical ground
control unit has radar equipment, vehicles, and munitions,
each having a different point of contact. The report of
organization points of contact provides a medium for the
base logistician to track the responsibility in a multitude
of organizations for each shop code.

All the base-level logisticians interviewed stated that
the present R0O7 WCDO/BLSS report provides more information
than they use on a daily basis. CMSgt Stock of the SAC/LGX
office expressed the greate¢st concern with authorized versus
on-hand quantities (27). Imbalances in these inventory
levels are of high interest at both the base and Major
Command offices.

There is a need for a Vehicle Status report to reflect
storage costs, maintenance costs, and the vehicle status
(9). A report of this data is available through the Air
Force WRM Vehicle Management System, although the system
does not provide cost Figures for the vehicles (29:62).

Because of the complexity of obtaining the appropriate data

43

and updating the database, the researcher declined to pursue
the requirement.

The possession of pallets and nets change hands rapidly
with deployments, as well as their location and condition.

A simple way to annotate the transfer of pallets and nets
from one unit to another would be useful (27;20;22). The
scope of the program encompasses consumable items but
pallets and nets are equipment, and these items are not part
of the program.

The ability to produce a listing by storage location
would be useful, when the materiels are in storage at
several locations for the organization (8). Bases in the
Pacific Air Forces (PACAF) and the United States Air Forces
in Europe (USAFE) must keep track of items stored at
multiple locations. Some overseas bases are responsible for
WRM equipment stored at dispersal points. When the location
code, a four letter identifier, is linked with the name of
the location, the information is classified SECRET. This
program is not designed to process classified information,
so location codes and location names are not inéluded. A
later revision of the program may include the four letter
codes.

The money spent on a WRM item is of interest to the
base logistician. The money comes from a WRM budget
controlled by the base resource manager (8:;7). Dollar
expenditures are not in this program, as it would greatly

complicate the programming, and involve accessing accounting

44

and finance records in addition to base supply records.
Collecting dollar data from Accounting and Finance records
would greatly complicate the program, and require cecntinuous

updates of those data elements.

Interface with the SBSS

An interface with the SBSS would be useful to allow
updates on the status of WRM item due-in and due-outs (7).
The database management menu in Figure 11 shows the options
available for reading in SBSS extracted data, backing-up the
current databases and restoring previous databases. The
first menu option uses a data file created by a separate
program which is run on the SBSS computer. This separate
Query Language Program (QLP) file was developed by a
technical mainframe supply programmer at the request of the
researcher (2). The QLP pulls data from the SBSS, sorts and
rearranges the data into a temporary file, which is
transferred to a computer diskette. The file is read by the
SIMBL program, and the data is stored in the either the
authorization or supply document database.

The two last menu options were necessary in case of a
failure in the system, as discussed earlier. The process of
backing-up and restoring database files is simple and easy.
Backing-up the database files is a much easier process than
reading the data into the computer. The user must place a
computer diskette, also called a floppy disk, in the 4disk
drive, and select the menu option. The program will copy
the database files to the floppy disk. If t*e copy was not

45

R Read In SBSS Extracted hata
(Replaces all authorization
and supply detail docunents)

B} Rckup current JataBases
(Do this weekly!) Q BReturn to Main Mem

D DRestore previously saved
hatabases (ie, the ones
you backed up weekly...)

Figuré 1l1. Menu for database management

successful, the program tells the user of the problemn.
The last menu option recovers the computer database
files from a floppy disk, and returns the program to the

current status it was in when the files were last saved.

Incorporating Good Database Design

The researcher ensured the program included good
database design characteristics in several ways. The
program provides data integrity by giving the user a method
of backing up all the database files. The program also

restores the database files from the user's backup disk.

46

-
Data redundancy is minimized in each database. Some data is
stored in separate databases that allow access from any
portion of the program. For example, the name of a point of
contact is used in the supply documents function, the
organizational information function, and in several reports.
Having a single table of this data eliminates the need to

store the data at least three times for three functions.

Version 1.0 Evaluation

The first version of the program was examined by
Lieutenant Colonel Campbell and Major Steve Hagel of the Air
Force Logistics Management Center. They made many
recommendations for the program about objectives, program
design, program functions, screen appearance and the report

listings (14).

Program Objectives. The evaluators recommended the

program objective to include just consumable items,
excluding War Readiness Spares Kit (WRSK) items. They
stated there are several tools available for handling other
WRM information, but there is no tool for just consumable
data. Also, for exchanging information from the SBSS to
this personal computer (PC) software, they recommended the
establishment of an interface file to maintain compatibility
with future versions of the SBSS and the PC program. This
suggestion will be a recommendation for a fully developed

version of the program.

47

Program Functions. The LMC evaluators recommended

several changes in program functions. The first suggestion
was to display all in-use details that support an
authorization. This recommendation is addressed by the
supply details function.

The second suggestion was that when going from
different sub-menus, the program remember the last
organizational shop code accessed and locate the database
pointer to the appropriate record in the next database. In
effect, the program 'remembers' what organization you are
dealing with, and looks for that organization when switching
to another database.

The evaluators recommended a quantity balances function
to identify overages or shortages and a comprehensive report
list of all balances. This idea has merit, but could not be
fully implemented. The data needed to calculate overages or
shortage, such as the authorized unsupportable quantity is
included in the quantity balances screen. Limiting the
function to strictly those items with imbalances was not
possible because it would be difficult to edit records where
there is no imbalance between the on-hand and authorized
quantities. This is a limitation of programming expertise,
not an inherent problem with the data or the software. The
current program design allows additions of data, but does
not discriminate between records with imbalances and those
with no imbalance. The function presents information needed

to calculate the net stock position for each national stock

48

number. PFigure 12 is a sample screen from the quantity

balances function.

futhorized vs On-hand Quantities

Iten Description: LUBRICATING OIL,AIR NSN: 9158887822627

Total Quantity Authorized: 5112

Authorized Ussupportable: 12
Net Quantity Authorized: 5188
Total Quantity Ow-hand: 4997
Quantity Short: 1803

Figure 12. Quantity balances screen

Another recommendation was that a separate report for
nets and pallets is probably not necessary, as the users who
manage these items are those heavily involved in exercises
and deployments. The status and location of pallets and
nets changes rapidly. Just keeping up with the changes to
this data would be difficult to do without developing a much
more complex software program. Also, the information is
not necessary in a program that deals only with consumable
items.

49

Another recommendation was the addition of a memo field
to the authorization screen for the user to make notes about
an authorization, and a field giving the total quantity on-
hand for each authorization. This last recommendation has
merit, but was not included in Version 2.0 due to the lack

of available time for program development.

Screen Appearance. The evaluators also suggested
several additions to the screens. The first addition was a
disclaimer on the program to inform the user not to input
classified information. The disclaimer appears as a 'pop-

up' box to remind the user before appending data records.

DO MOT USE FOR CLASSIFIED INFORMATION!!!

—

- — —

Figure 13. Program warning to avoid classified data

The program places the reminder on the screen as shown
in Figure 13 before going to the main menu, and before
appending new authorization records.

They also recommended a test of the program's screen
colors on a Liquid Crystal Screen (LCD) and a monochrome
monitor to ensure that screens are legible on common
computer systems found in the Air Force. The colors
selected for the final version of the program are clearly

50

seen on a LCD screen, but several users complained that the
colors were garish on a normal color monitor (14:7).
Additionally, they suggested changes to several menu
and screen texts to improve user understanding. One
suggested screen change was to give the user a final
opportunity to undo all deletions before exiting the
program, avoiding permanent removal of all records marked

for deletion.

You have at least one authorization record marked for

ll deletion, are you sure you want to do this? N

Figure 14. Confirmation box for deletions

This recommendation is included as a precaution against
losing valuable information. An example of this

confirmation 'box' is seen in Figure 14.

Reports and Listings. The evaluators recommended the
listings of inspections due have a limit of 30 days from the
current date or a user entered number of days. The
evaluators stated the inspection schedule would change too
frequently beyond a 30 day outlook. The report generated
has a set length of 30 days.

They suggested a report be created that lists each

authorization accompanied by the supporting in-use details,

51

due-out or DIFM details, and total quantities authorized,
supported and on-hand. The reports and listings option of
all authorized items and all details provides this data.

The evaluators also recommended that any listings to
the screen pause for each full screen. All but one of the
reports is created with the Clipper (tm) Report generator
and will automatically pause after each screen. The listing
of all available information for all WRM items is compiled
into the program, and does not pause. This program flaw

needs correction in a subsequent version.

Program Validation

The program was sent to seventeen logistic plans and
program offices, five at the Major Commands, eleven at base-
level offices, and the Logistics Management Center. The
program, User's Guide, cover letter, and response card was
sent to each office asking the users to install the prcgram
and databases and then to examine the program functions.
Responses were returned using pre-addressed, stamped
postcards. The postcard was selected as a method of
response to make it as easy as possible for the user to
respond. The postcards have a professional appearance with
laser printing, were postage paid, and the postcards were
readily available. The evaluators were asked to decide if
the program would be useful in the management of their WRM
program. Several users elected to respond in writing with
their views, comments, and observations on the software in

separate letters. Although not part of the scope of this

52

study, their recommendations are included in Chapter V for

further program development.

Investigative Questions Answered

To develop an effective software program to track and
manage WRM asset information, several investigative
questions were posed.

First, can a program be developed that will meet
requirements identified by logisticians and by Air Force
Regulations? There are several programs written in dBASE
designed to support Air Force operations, such as the WRM
Vehicle Management System. The requirements for the
prototype software were similar to the vehicle management
software, giving credence to the concept of a WRM inventory
management software program. By limiting the scope of the
prototype software to unclassified, consumable items, the
software met the requirements of users and Air Force
regulations.

Second, what are the functional requirements of a WRM
software system for effective collection, organization, and
presentation of information? Data was collected
automatically in the SBSS computer, removing the need for
the user to input each piece of data. The needed data was
available from the supply computer system, and was easily
transferred to the personal computer prototype software.
The program also allowed the user to enter new data or edit
the current data in the records. Data was presented in
groupings of like data in simple terms, with a minimum of

53

supply computer codes. Additionally, information from
several sources was presented on the screen at the same
time, to provide a clear understanding of relationship
between the data. The program also printed optional reports
for the user to provide a paper record of data.

Third, what is the appropriate computer language for
system development that will be efficient, effective, and
still maintain user-friendliness? The literature review
examinad the available database management system languages.
Several languages were available, but 4dBASE (tm) was chosen
because it was used previously to build other database
management system applications. A variant of the dBASE
language, called Clipper (tm) was selected on the basis of
price, availability and expanded capabilities. It was
readily available to the researcher, with a compiler and
technical support.

Fourth, what form should a database take to efficiently
organize WRM data? The databases were relational, because
the structures are the easiest to understand and work with.
The data was split into four separate databases to group
like information together. 1Index files were added to
increase the speed of searches, and decrease the time to
recall data.

Fifth, will the program need to access and work with
existing databases or computer systems? The prototype
software needed data that was available in the supply

computer system. A direct link with the SBSS computer would

54

have been very complicated and beyond the capability of the
researcher. The transfer of data to the prototype software
was accomplished by extracting a data file from the
mainframe to a floppy disk, and then loading the file into
the prototype software program. Other possible computer
sources of data were not readily available.

Sixth, what are the criteria to ensure successful
implementation and acceptance by base-level logisticians?
For the software program to be successful, it had to provide
an advantage over current techniques of managing WRM
programs. The program needed to reduce the time spent
leafing through paper reports, and reduce the time spent
tracking, inspecting, and managing WRM program data. The
evaluation of the program by base logisticians needed at

least seventy-five percent acceptance for program success.

Summary of Chapter IV

The requirements collected from the user interviews
were outlined, along with the program functions developed
from those interviews. The requirements were to handle WRM
authorizations, supply document data, inventory balances,
and inspection information. Also, reports were needed to
list the available data. In some cases, data from different
areas was combined into a single report. The program
required an interface with the standardized uvase supply
system (SBSS) to bring in data, and a means to backup and
recover program data. The first version of the program was
evaluated by an experienced WRM manager to identify flaws in

55

»”

the program. The evaluators recommended the program's
objective be limited to consumable items. They recommended
some changes to the program functions, screen appearance,
and the reports and listings. Changes to the program were
included, and the program was then sent to a larger group of

users for evaluation.

56

V. Conclusion and Recommendations

Introduction

This chapter covers the response of the users to the
evaluation of the program and User's Guide. Of the fifteen
evaluation packets returned, thirteen of the users decided
the program would be useful in managing a WRM program. Also
recommendations for improvements in program functions, help
screens, and the User's Guide are presented. The users
recommended the program should be further developed,
incorporating an interface file with the SBSS, and
additional programming techniques to enhance program

appearance.

Results

Of the seventeen evaluation packets sent, fifteen
responses were recorded. Of the responses, thirteen users
decided the program would be helpful in managing a WRM
program. This represents an 86.7% acceptance rate. Based
on the number of positive returns, the research project is
successful.

Several of the users expressed recommendations for
improvements in program functions. They alsoc reported
problems with the software that are unique to the hardware
and software setups on their computers. The most needed
program improvement is more context sensitive help screens

for each of the options and an expanded User's Guide. Also,

57

they suggested an expansion of the program scope to include
equipment and other non-consumable WRM items. Some software
programs cause problems when run in conjunction with this
program. A solution to this problem must be found before
the program can be released for general use.

Help screens are available for each program function,
and were well received by the users. Within each function,
there are also help screens for each menu option. The
problem is that the help screen for each menu option is not
activated until an option is selected. Within each option,
help screens are also available, but like the main menu, the
help screen is not available for each of the menu options
until it is selected. This is a result of the Clipper (tm)
programming language, and cannot easily be corrected.

The User's Guide needs to be expanded. The guide
assumes too much computer knowledge by the users. Although
there is an automated installation for the program, there
should also be an explanation of how to install the program
onto a different hard disk drive and add the appropriate
information to the system setup files. Also, the User's
Guide should have more examples of screens from the program
to familiarize the user with what to expect from the
program. Several critical screens were overlooked.

The user needs a means to select from the available
national stock numbers for use in the search function. This
need is also applicable to the supply document function,

where the search is performed by document numbers. This

58

recall can be done through a pop-up box to list available
NSN or document numbers. The user can then selact a NSN or
document number by simply scrolling through the list,
highlishting the desired item, and pressing the ENTER key.
At least one user reported problems with valid keyboard
entries that were ignored and other non-valid keyboard
commands that caused the program to terminate unexpectedly
(14). The problems occurred because of conflicts with the
keyboar¢ cursor keys and the numeric keypad (which can also
act as cursor keys). Although the program was tested on a
Zenith Z-248 computer, and an 80336 computer system, the use
of some memory-resident programs and the system setup can
interfere with the program operation. Any further program
development shouald try to better handle the different
operating environments or advise the user of the target

system for the program.

Conclusions

The program developed from this research shows that a
WRM software program is a useful tocl in managing a WRM
program. While this initial program addresses a specific
need in the logistic plans community, there is room for
improvement. The program developed from this research is
too limited in scope and capability, and requires further

requireme:; .s research and expanded programming efforts.

59

Recommendations

This program needs further development before it can be
used on a daily basis. Expansion of the program functions
and better documentation are required.

Consideration should be given to incorporating the
results of this research into an existing program, such as
HEIMS (Housekeeping Equipment Inventory Management System).

An interface file should be established with the
concurrence of the AFLMC and SSC to maintain compatibility
of the data file between the SBSS and SIMBL. 1In this way,
changes to the SIMBL program would be reflected in the data
file extracted from the SBSS computer.

The development of a software program involves hundreds
of man-hours in writing the code and debugging. There were
many programming techniques that were not used in order to
get the program completed within the time limit of the
research project. One technique not used was 'pop-up'
menus, which create a box filled with data and allows the
user to highlight an item and select that item. These
techniques could have made the program easier to use, as
well as providing the 'bells and whistles' that make a
program more enjoyable.

After further program development, the software should
be tested at several bases for an extended trial period. A
test period of several weeks may identify deficiencies or

flaws that could not be observed with the sample database.

60

Summary of Chapter V

This study validated the need for development of a
computer application supporting the War Reserve Materiels
program. The study investigated the requirements for
development of a software program for managing WRM
consumable asset data. From the requirements, a prototype
database management system application was developed,
tested, and sent to a group of users for evaluation.

Seventeen evaluation packets were sent to users in five
major commands, with fifteen responses recorded. Of the
responses, thirteen of the users decided the program would
be helpful in managing a WRM program. Based on the response
rate of 86.7%, the program is a success. This research is
important because it is an example of enhancing base LGX
operations through computer management of available data.

In addition, the methodology used proved useful for
developing the prototype software. The benefit of
developing this application is a potential savings of
management time energy through better asset inventory
accuaracy. Similar software applications could be developed
using the methodology.

Several of the users expressed recommendations for
improvements in program functions, help screens, and the
User's Guide. The program should be further developed,
incorporating an interface file with the SBSS, and
additional programming techniques to enhance program

appearance.

61

AFLMC

AFR

Authorization

BLSS

Clipper

Compiler

Condor

Consumable

Data

Database

dBASE

DBMS
DIFM

Equipment

Expendable

FORTRAN

Appendix A: Dictionary of Terms

Air Force Logistics Management Center at
Gunter AFB; responsible for development of
applications for large computer systems.

Air Force Regulation

A declaration of an item as a WRM item, but

not necessarily funded
Base Level Self-Sufficiency Spares

An expanded version of the dBASE programming
language resulting in a compiled program.

A software program that converts a text
program to executable machine code.

A programming language similar to 4BASE, it
is an interpreted language.

Expendable items directly related and
necessary for a weapon system or combat
support.

Any type of information, usually classified
as character, numeric, logical, or date.

A collection of records about a related
subject; the records are usually physical or
electronic.

A database management system and programming
environment. It forms the basis for several
other DMBS programming languages. dBASE is
an interpreted language.

Database Management System

Due In From Maintenance

Items which do not lose their individual
identity when used.

items not designed to be repaired or reused.
A computer programming language developed in

the late 1970's used primarily for scientific
applications with large computational needs.

62

FOoxXBASE

GSA

Harvest Bare

Hierarchial

HEIMS

Interpreter

LCD

LGX

Logistics

MAC

MAJCOM

Materiel

Munitions

Network

NSN

An expanded version of the ABASE programming
language resulting in a compiled program.

General Services Administration

A series of packages (Harvest Eagle, Harvest
Falcon) designed to support aircraft
operations at locations with little prior
preparation.

A database structure where each record has
one parent record, but has many child
records. Often described as a tree-like
'root' structure.

House-keeping Equipment Inventory Management
System

A software program that evaluates a single
line of text program, executes the command,
then evaluates the next line. It is a slower
method of running a program, but allows for
easier debugging.

Liquid Crystal Display

Office symbol for Logistics Plans and
Programs office

The management science of acquiring, storing,
transporting, and maintenance of supplies,
equipment, and personnel.

The Military Airlift Command
Major Command
Same as material

A general class of items that includes
bullets, bombs, missiles, flares, chaff,
pyrotechnics, fuzes, and other explosive
devices.

A database structure where each record can
have many parent records and many child
records. This complex structure is often
described as a 'neural net'.

National Stock Number - a 15 alphanumeric

code that uniquely designates any item used
in the standardized base supply system.

63

6]0) 2

PACAF

PACOPS

Pascal

POC

POMCUS

PPP

QuickSilver

QLP

Relational

Reparable

RO7

SAC

SBSS

SIMBL

sSC

Object Oriented Programming - a technique for
defining portions of computer code as
objects, and for handling the relationships
between objects. This technique is used in
many newer computer programs.

The major command designator for the Pacific
Air Forces

The major command office symbol for the
Operations section of PACAF.

A computer programming language named for a
french mathematician, the language is used
primarily for applications that manipulate
text, such as word processors.

Point Of Contact

Pre-positioning of Materiel Configured Unit
Sets; an Army program similar the Air Force
WRM program.

Pre-Positioned Packages of assets stored at a
location in anticipation of a need by a
deploying force

An expanded version of the dBASE programming
language resulting in a compiled program.

Query Language Program - one c¢f the
programming languages used on the Sperry 1160
computer system as part of the SBSS.

A database structure where each record can
have only one parent record, and one child
record. Often described as a table of data.
Items designed to be repaired or reused.

The numeric designation for the WCDO/BLSS
spares report.

The major command designator for the
Strategic Air Command

Standardized Base Supply System

System for Inventory Management for the Base
Logistician

Standard Systems Center at Gunter AFB;

responsible for development of applications
for small computer systems.

64

Stockpile

TAC

tm

USAF

USAFE

WCDO

WPARR

WRM

WRSK

2248

A technique of collecting and storing an item
in anticipation of a future increase in
demand for the item.

The major command designator for the Tactical
Air Command

trademark

The Department of Defense designator for the
United States Air Forces

The major command designator for the United
States Air Forces in Europe

Wartime Consumables Distribution Objective -
establishes the basic WRM requirements for
each unit.

War Plans Additive Requirements Report -
additional items designated as WRM by the
major command.

War Reserve Materiel

War Readiness Spares Kits - transportable
packages of equipment and aircraft spares
used to support operations on a daily basis
or at a deployed location.

An IBM/AT (80286) compatible computer made by

Zenith Data Systems, it is found in many
logistics plans and program (LGX) offices.

65

Appendix B: User's Guide

Overview of Program

This program was deveioped as a tool for the base
logistician who manages a large WRM program. This program
is designed to handle only consumable items, those with an
ERRC code of XB3. It allows the user to build databases of
authorizations and supply information without maintaining
files of paper printouts. It coordinates authorizations,
supply details, and organizational data and presents it in a
meaningful way. This program will record inspection dates,
discrepancies, references and user responses so they can be
recalled later. Also, a variety of useful reports can be

generated that consolidate existing data.

Required Hardware

An IBM PC/XT/AT or compatible computer

512K RAM or greater

A Hard disk with at least 1Mb available space on Drive C:

A floppy drive designated as Drive A:

Recommended Hardware

- A color monitor

- A printer attached to LPT1:

66

Installation

1) At the DOS prompt, put the program diskette in the
floppy drive, close the door and type the command:
A:INSTALL.

2) The program will automatically create a C:\SIMBL
directory and copy the program files from the floppy.
3) Add the SIMBL directory to the path specification

of your Autoexec.bat file.

Program Functions

Main Menu. The program will begin with a display of
the main menu. You use this menu to select which area of
the WRM information you want to work with. The highlighted
box is the currently selected program function. You move
from box to box by pressing any of the arrow keys or the
space bar. Pressing the Up arrow key, the Right arrow key,
or the space bar will advance the highlight to the next box.
Pressing the Down arrow or Left arrow keys will move the
highlight back to the previous box. When you reach the
bottom right or top left box, the highlighted box will move
to the opposite corner. Try it! Pressing the Enter key
will take you to one of the nine functions described in this

section.

Authorizations. The authorizations screen displays

information about a WRM authorization, such as the source
document number you have established, the authorized

quantity and the actual quantity on-hand. The authorized

67

Systen for Consumable WRN Iwventory Mamagement at the Base Level
S.1.M.B.L. Vers 2.8 (Prototype)

U S I
N Supply Quantity
futhorizations betails Rlances
0 T)
Organization Authorizations Discrepancies
bata with betails Inspections
L R Road In Q Qit |
Reports & Backup and
Listings Patabases Exit to DOS
Use Cursor Keys « to Highlight Box them ENTIR ¢/ to Select

Figure 15. Main menu screen

quantity is the net quantity authorized (authorized -
unsupportable). The screen also displays the unit value of
the item and the total value of all units. The sample
screen shows 96 quarts of hydraulic f£luid, which are valued
at $11.71 each, for a total of $1124.16. The ERRC Code
should be XB3 for all expendable, consumable items. It is
provided for program expansion at a later date.

The bottom line lists the different options available
for that screen. Next will call up the next record in the

database, while Prev will move 'backwards' to the previous

68

futhorized URN [tens
Itom Description: OXYCEN AUIATOR WSN: 6538080889531

Authorized Quantity: 4 OnHaed Qty: ¢

Unit of Issue: 6L Docunent Munber
Price of Unit. 8.4 of fAuthorization:
HIB200008048

Value of Umits: 1.%

ERRC Code: XI3

Figure 16. Authorization screen

record. First will go to the top of the database, and Last
will move to the bottom of the database. A record can be
located by National Stock Number (NSN) by selecting the
Search option. Edit will allow you to make changes to the
data on screen, and Append will let you add a new item and
authorization to the database. Delete is used to mark a

record for deletion. It does not actually remove the data

until you exit the program, and will prompt you to make sure

you really want to delete that record or other records.

Quit will exit the screen function and take you back to the
Main Menu.
Help is available in the Search, Edit and Append

functions by pressing the F1l key.

Supply Documents. The supply details screen is used to

maintain information about supply documents.

Supply Docunent Details Screen

Docunent Type: Due Out Ordering Organization: 66821
Document Munber: M6682190748838 Date Ordered: 9874 I
Estimated Delivery Bate! 8

Status: bue In Joc: 16682192530168
Iten Ordered: UNKNOLN Quantity Ordered: 1
National Stock Munber: 1658983329192 Unit Price: 8.5

Prine or Substitute: Total Valuo: 9.8 ”

Nane: OLD T. CIVILIAN
Organization: LOGISTICS
0ffice: /LS

Phome: 255-4437

|

Figure 17. Supply screen

These documents should be WRM items on order to £fill a
shortage. This screen breaks the Due-Out document number

into several pieces and uses them to look up other related

70

information. For example the first six characters tell the
program what kind of document it is, and what organization
submitted the document to Base Supply. If the program can
find the Organization's Org/Shop code, it displays any point
of contact it has. The dates given are Julian dates {(ie,
0102 is the one hundred and second day of the year 1990).
The program does not translate the Julian date to normal

Gregorian dates (YY/MM/DD).

Authorized vs On-hand Quantities |

Item Description: LUBRICATING OIL,AIR NSN: 9158087822627

Total Quantity Authorized: 5112

Authorized Unsupportable: 12
et Quantity Authorized: 5108
Total Quantity Ow-hand: 4997
Quantity Short: 183 i

Figure 18. Quantity balances screen

Quantity Balances. The quantity balances screen is
used to specify information about the quantity authorized,

71

authorized unsupportable amounts, the quantity on-hand, and
the quantity short for each item. When you add a new item
in the Authorization function, the program assumes the
quantity authorized is the bottom line, that is there is no
authorized unsupportable quantity. If you need to specify
that value, this option will allow you to do so using the
Edit or Append options. Also, the program will maintain the
on-hand quantity and from the available data, calculate the

shortage quantity.

Organizatiomal Data

Hing or Rir Division: Z7SOTH ABK
Squadron: LOGISTICS I

Branch: MATERIAL MAMAGEMENT
Branch Syabol: /1SSM

Organization Munber: 66821 |
Point of Contact hata .4

POC Name: OLD T, CIVILIAN POC Rank: CIV
POC Phone Munber: Z55-4437 POC Building: 1 l
POC Room B: M4

Figure 19. Organizational data screen

72

Organizational Data. This function builds a file of

org/shop codes along with point of contazst information.

Some of the information is printed in reports, while other
data is displayed with supply document (details)
information. This saves the user from having to look up the
Org/Shop code or stock number for the item just to find out
who is holding the material. This data is kept when you
read in new SBSS data, and does not go away unless you

specifically delete the record.

Authorizations amd Supply Details
fl Prine Natiomal
Authorized Stock Document
Item: (REXNOIN Nunber: 5330007602401 Number:

|

futhorized Quantity: 8

Quantity Onhasd:

Details supporting this authorization
Document & Type NSM Rate Ordered Bate ue Quantity
M660KAB1870833 0 5338887662481 8187) 1 I

.

Figure 20. Authorization with supply documents

73

”~

Authorizations with Details. Coordinating WRM

authorizations with Supply documents is the purpose of this

function. Authorizations and Stock Numbers appear in the

top half of the screen. The View option is used to look for

Supply documents (details) that correspond to the NSN in the ,
tep half of the screen. If there are any Supply Due-Out

documents that have the same National Stock Number, they

will appear in a second window in the lower half of ‘e

screen. The Supply document number, Julian date . p

due date and quantity are given on the same line.

Inspection and Discrepancies. This function is

probably the most useful of all the program options. You
can make notes of current and past inspection results, keep
track of inspection dates, and responses from the inspected
organization. Each Discrepancy, Reference, and Response can
be as long as 64,000 characters, so you can make long memos.

During an edit or append, the user can enter a long
note in the Discrepancy, Reference, and Response fields. A
sample window of data in the Discrepancy entry is shown in
the figure. All three types of notes: Discrepancy,
Reference or Response can be as long as 64.000 characters.
If the User types to the end of a line, the text will
automatically wrap around to another line.

If you enter a 'Y' or 'y' to the Follow Up field, the
program will automatically calculate a reinspection date for
30 days from the current date. The dates are in the format

of MM/DD/YY, and will appear on the inspections report.

74

|

Inspection and Discrepancy Information

Hing: Z7S0AN Last Inspection: 84/1%/%
Squadron: %8 TFS Next Inspection hue: 18/15/98
Branch. OPERATIONS
Office Sumbol: /Z0PS Org Nunber: 16280

Imspection Results
Date: 84/15/98

Discrepancy: Amy kind of discrepawcy iw this field. It cam be edited
Referonce: Some reference for future use. AFR $88-888, Uol. I, Chap 5,
Response: Use Cutrl-B for reformatting of the paragraph.

Follow Up (YM): Reinspection on: 85/15/99

STATUS: OPEN

Figure 21. 1Inspection screen

fny kind of discrepancy in this field. [t can be edited
with the DELETE and INSERT keys; the total length of

all nenos can be up to 64K characters. MNord wrap and
reformatting are also available.

Enter Discrepancy info: "W to Save, ESC to abort

Figure 22. Closeup of a memo field

75

Roports and Listings Memu

A Report of all Authorized
Itens (A1l WRN Auth's)

D Report of all Authorized
Itens ad all details

I Report of all Inspections

0 Report of all Organization

Fl Points of Comtact info

lQ Return to Main Memu
m

Figure 23. Reports and listings menu screen

Reports and Listings. You will be presented a menu of

reports that can be generated and sent to the screen and the
printer. The User selects from this menu in the same manner
as the Main Menu. The first report generates a report of all
the available information from the Authorizations screen.
The second report is useful for creating a report that lists
each WRM item and all the Supply Document Details available.
The third report lists all the organization inspection data,
while the fourth reports all the Point of Contact

information for each organization.

76

R Road In SBSS Extracted hata
(Replaces all authorization
and supply detail docunents)

3 Backup current hatabases
(Do this weskly?) Q@ Returw to Main Memu

D lRestore previously saved
hataBases (ie, the ones
you backed up weekly...)

Figure 24. Database management menu

Read In and Backup Databases. With this function, the

User can bring in data from the Supply Base Computer and
thereby create new databases of authorization and supply
document information. See the section entitled 'Extracting
SBSS Data' for how to get data from Supply onto a floppy
disk to use with this program. The User can also backup
current data to a floppy disk, or restore data from a

previously backed up floppy disk.

Quit Program. Will exit the program, deleting marked
records and cleaning up any loose ends. The program will

77

give you a last chance to recover records that you have
marked for deletion. If you confirm the deletion by
pressing the 'Y' key, the program will remove that
information from the databases. If you do want to delete,
and you confirm the deletion you will erase only the records
marked for deletion, this data cannot be recovered! 1If you
do not want to delete information, but confirm the deletion,
the data will be gone and the only way you have to get it

back is to re-enter it the hard way.

You have at least one authorization record marked for

deletion, are you sure you want to do this?

—
N

Figure 25. Confirmation box for deletions

The bottom line here is that if you are unsure about
deleting any information, press 'N' (or any key except 'Y'),
and then all the records marked for deletion will be

recovered.

Using the Help function

Pressing the <F1> key will access the Help function

built into the program. The help information consists of a

78

rectangular window that pops up on the screen, and displays
some additional information about the current function. It
does not work during the opening screen, the Report &

Listings screen, or the Readin Databases screen.

Extracting SBSS Data

NOTE: To save you time and energy. the developer has
included sample databases so you can experiment on the
different program functions with real data.

There is a separate program on the diskette, which
should also be in the SIMBL directory, called WRM.PRG. This
file is a QLP program written to pull data from the SBSS
1100/€0 computer. Make a copy of the WRM.PRG file and take
it to the computer operator at Base Supply. The operator
can upload the program, run it, and download the resulting
file. The output file can be loaded into the SIMBL program
using the ReadIn function. When you access the Readln
function, put in the diskette, and the program will do the

rest!

Catastrophic Disaster

Into every life a little rain must fall, and at some
point you will probably have a catastrophic failure of
either software or hardware on your computer. Your best
defense against software failure is to backup your databases
whenever you make changes to them, particularly after adding
new information. 014 data you can delete easily, the new

data might have to typed in all over again! If disaster

79

-
should occur with the software, such as a file being
damaged, copy your data backup disk into the C:\SIMBL
directory. If the program still will not run, reinstall the
program from the original disks, and then recover your
current databases from the backup data disk. If none of
these steps solve the problem, then it is likely there is a
problem with the hardware of your machine.

This program is a prototype, it is not a full fledged
program that will do anything and everything! From the
comments of you and other logisticians, this may form the
basis for an expanded version with greater capabilities and
functions. Your comments are important to the success of
this project, so please return the completed response card
as soon as possible.

Captain Kevin M. Tanzer

AFIT/LSG

Wright-Patterson AFB, OH 45433

Home Phone: (513) 297-0551
Work Phone: AV 785-4437

80

Appendix C: Program Source Code

[& & 1
#x* C:\CLIP\SIMBL.PRG : Main menu.
xx Generated March 18, 1990 from C:\UI\WW\MAINMENU.WW

®*** Target environment: Clipper Summer 87
Ak Kk

* environment

SET SCOREBOARD off
SET CONFIRM off
SET CURSOR OFF

SET KEY 28 TO Help

* Database flags for PACK/REINDEX

PUBLIC
mBASIC,mINSPECT, mORGDATA , mDOCUMENT, mBACKUP, mLastOrg, help_cod
e;

mLastArea

mBASIC = .F.

mMINSPECT = .F.

mORGDATA = .F.

mDOCUMENT = .F.

mBACKUP = .F.

help_code = "simbl"

c_normal = "W+/N,B+/N,N,N,B+/N"

c_selected = "W+/N,W+/B,N,N,B+/N"
c_unselected = "B+/N,B+/W,N,N,B+/N"
c_flashing = "R*/W,B+/N,N,N,B+/N"

* menu initialization

PRIVATE optkeys, numopts, oldchoice, newchoice, key
optkeys = "WSIOTDLRQ"

numopts = 9

oldchoice = 0
newchoice = 1
key =0

DO Setup
* jnitialize databases

* inkey aliases
PRIVATE RKup,RKdn,RRrt,RKlt,RKret, RKspc

RRup = 5
RRdn = 24
RRrt = 4
RK1lt = 19
RKret = 13
RRspc = 32

* Reminder about not using classified data
DO ClassScr

81

* main loop: iterates once for each time an option action is
performed
DO WHILE .t.

* display the menu screen

SET COLOR TO &c_normal

CLEAR

@ 22, 5 SAY "Use Cursor Keys "+chr(27)+chr(26)+" to
Highlight Box then ENTER "+chr(17)+"J to Select"

SET COLOR TO &c_normal

@ 0, 0, 5, 79 BOX "H|J=l=|"

SET COLOR TO &c_selected

@ 1,1,4,78 BOX " "

@1, 5 SAY "System for Consumable WRM Inventory Management
at the Base Level"”

@ 2, 25 SAY "S.I.M.B.L. Vers 2.0 (Prototype)"

@ 4, 35 SAY "MAIN MENU"

SET COLOR TO &c_selected

@6, 0, 10, 15 BOX " |J—L| "

SET COLOR TO &c_unselected

@ 7, 1 SAY "w"

@ 8, 6 SAY "WRM"

@ 9, 1 SAY "Authorizations"

SET COLOR TO &c_selected

@ 6, 32, 10, 47 BOX " — |d-L| "

SET COLOR TO &c_unselected

@ 7, 33 SAY "g"

@ 8, 36 SAY “"Supply"

@ 9, 36 SAY "Details"

SET COLOR TO &c_selected

@ 6, 64, 10, 79 BOX " (— |d-L| "

SET COLOR TO &c_unselected

@ 7, 65 SAY "1I"

@ 8, 68 SAY "Quantity"

@ 9, 67 SAY "Balances"

SET COLOR TO &c_selected

@ 11, 0, 15, 15 BOX " — [4-L] "

SET COLOR TO &c_unselected

@ 12, 1 SAY "O"

@ 13, 2 SAY "Organization"

@ 14, 5 SAY "Data"

SET COLOR TO &c_selected

@ 11, 32, 15, 47 BOX "r—1AJ—L| "

SET COLOR TO &c_unselecte

@ 12, 33 SAY "T"

@ 13, 33 SAY "Authorizations"

@ 14, 34 SAY "with Details"

SET COLOR TO &c_selected

@ 11, 64, 15, 79 BOX "r‘1'j‘L| "

SET COLOR TO &c_unselecte

@ 12, 65 SAY "D"

® 13, 66 SAY "Discrepancies"

@ 14, 66 SAY "Inspections"

82

SET COLOR TO &c_selected

@ 16, 0, 20, 15 BOX " — |d4-L]| "
SET COLOR TO &c_unselected

@ 17, 1 SAY "L"

@ 18, 4 SAY "Reports”

@ 19, 4 SAY "Listings"

SET COLOR TO &c_selected

@ 16, 32, 20, 47 BOX "r_1$J_L| "
SET COLOR TO &c_unselecte

@ 17, 33 SAY "R Read In"

@ 18, 33 SAY "& Backup"

@ 19, 33 SAY "Databases"”

SET COLOR TO &c_selected

@ 16, 64, 20, 79 BOX "r—1iJ—L| "
SET COLOR TO &c_unselecte

@ 17, 65 SAY "Q Quit"”

@ 18, 65 SAY "and"

@ 19, 65 SAY "Exit to DOS"

* keyhit loop: iterates ones for each key input, breaks on
selection
DO WHILE .t.

* if selected option has changed, update the bounce-bar
IF oldchoice<>newchoice

* highlight new option

DO CASE

CASE newchoice =1
SET COLOR TO &c_normal
@ 6, 0, 10, 15 BOX "r—1$J-L|"
SET COLOR TO &c_selecte
@ 7,1,9,14 BOX " "
@ 7, 1 SAY "w"
@ 8, 6 SAY "WRM"
@ 9, 1 SAY "Authorizations"”

CASE newchoice =2
SET COLOR TO &c_normal
@ 6, 32, 10, 47 BOX " j4-t|"
SET COLOR TO &c_selecte
@ 7,33,9,46 BOX " "
@ 7, 33 SAY "s"
@ 8, 36 SAY "Supply"”
@ 9, 36 SAY "Details"

CASE newchoice =3
SET COLOR TO &c_normal
@ 6, 64, 10, 79 BOX " [4=-L]"
SET COLOR TO &c_selecte
@ 7,65,9,78 BOX " "
@ 7, 65 SAY "I"
@ 8, 68 SAY "Quantity"
@ 9, 67 SAY "Balances"

83

CASE

CASE

CASE

CASE

CASE

CASE

newchoice =4

SET COLOR TO &c_normal

@ 11, 0, 15, 15 BOX " BRI
SET COLOR TO &c_selecte

® 12,1,14,14 BOX *“ "

@ 12, 1 SAY "O"

@ 13, 2 SAY "Organization"

@ 14, 5 SAY "Data"

newchoice =5

SET COLOR TO &c_normal

@ 11, 32, 15, 47 BOX "r—1|J‘L|"
SET COLOR TO &c_selected

@ 12,33,14,46 BOX " "

@ 12, 33 SAY "T"

@ 13, 33 SAY "Authorizations”
@ 14, 34 SAY "with Details"

newchoice =6

SET COLOR TO &c_normal

@ 11, 64, 15, 79 BOX " — |d-L|"
SET COLOR TO &c_selected

@ 12,65,14,78 BOX " "
@ 12, 65 SAY "D"

@ 13, 66 SAY "Discrepancies"

@ 14, 66 SAY "Inspections"

newchoice =7

SET COLOR TO &c_normal

@ 16, 0, 20, 15 BOX " |J—L|"
SET COLOR TO &c_selecte

@ 17,1,19,14 BOX " "

@ 17, 1 say "L"

@ 18, 4 SAY "Reports"

@ 19, 4 SAY "Listings"

newchoice =8

SET COLOR TO &c_normal

@ 16, 32, 20, 47 BOX "r—1|J—L|"
SET COLOR TO &c_selected

@ 17,33,19,46 BOX " "
@ 17, 33 SAY "R Read In"

@ 18, 33 SAY "& Backup"

@ 19, 33 SAY "Databases"

newchoice =9

SET COLOR TO &c¢_normal

@ 16, 64, 20, 79 BOX " — |d-L|"
SET COLOR TO &c_selected

@ 17,65,19,78 BOX " "
@ 17, 65 SAY "Q Quit"

@ 18, 65 SAY "and "

@ 19, 65 SAY "Exit to DOS"

84

ENDCASE

* reset oldchoice for another pass
oldchoice =newchoice
ENDIF

* if return or an option trigger has been hit, perform
the option
IF key=RKret .or. at{upper(chr(key)), optkeys) >0
SET COLOR TC &c_normal
* fall out to action loop
EXIT
ENDIF

* get key input
key=inkey (0)

* update choice number based on key response
DO CASE
* down/right arrow: increment choice or wrap
CASE key =RKdn .or. key =RKrt .or. key =RKspc
newchoice = iif(oldchoice=numopts,l,o0ldchoice+l)
* up/left arrow: decrement choice or wrap
CASE key = RKup .or. key = RK1lt
newchoice = iif (oldchoice=1,numopts,oldchoice-1)
* option trigger: set choice to option
CASE at(upper{(chr(key)), optkeys) > O
newchoice = at(upper (chr(key)), optkeys)
ENDCASE

IF oldchoice<>newchoice
* lowlight old option
DO CASE

CASE oldchoice =1
SET COLOR TO &c_normal
@6, 0, 10, 15 BOX " j4=L|"
SET COLOR TO &c_unselected
@ 7,1,9,14 BOX " "
@ 7, 1 SAY "wW"
@ 8, 6 SAY "WRM"
@ 9, 1 SAY "Authorizations"

CASE oldchoice =2
SET COLOR TO &c_normal
@ 6, 32, 10, 47 BOX "r—1|J—L|"
SET COLOR TO &c_unselected
@ 7,.33,9,46 BOX " "
@ 7, 33 SAY "s"
@ 8, 36 SAY "Supply"”
@ 9, 36 SAY "Details"

CASE oldchoice =3

85

Eed

SET COLOR TO &c_normal

@ 6, 64, 10, 79 BOX "r-1'J‘L|"
SET COLOR TO &c_unselected

@ 7,65,9,78 BOX " "

@ 7, 65 SAY "1I"

@ 8, 68 SAY "Quantity"

@ 9, 67 SAY "Balances"

CASE oldchoice =4
SET COLOR TO &c_normal
@ 11, 0, 15, 15 BOX "r—TIJ L|"
SET COLOR TO &c_unselected
@ 12,1,14,14 BOX " "
@ 12, 1 SAY "o"
@ 13, 2 SAY "Organization”
@ 14, 5 SAY "Data"

CASE oldchoice =5
SET COLOR TO &c_normal
@ 11, 32, 15, 47 BOX " AJ L|"
SET COLOR TO &c_unselecte
@ 12,33,14,46 BOX "
@ 12, 33 SAY "T"
@ 13, 33 SAY "Authorizations"
@ 14, 34 SAY "with Details"”

CASE oldchoice =6
SET COLOR TO &c_normal
@ 11, 64, 15, 79 BOX " AJ L|“
SET COLOR TO &c_unselecte
® 12,65,14,78 BOX "
@ 12, 65 SAY "D"
@ 13, 66 SAY "Discrepancies"”
@ 14, 66 SAY "TITnspections"

CASE oldchoice =7
SET COLOR TO &c_normal
@ 16, 0, 20, 15 BOX " — [d4-L|"
SET COLOR TO &c unselected
@ 17,1,19,14 BOX " "
@ 17, 1 SAY "L"
@ 18, 4 SAY "Reports"”
@ 19, 4 SAY "Listings"

CASE oldchoice =8
SET COLOR TO &c_normal
@ 16, 32, 20, 47 BOX " iJ L|"
SET COLOR TO &c_unselecte
@ 17,33,19,46 BOX "
@ 17, 33 SAY "R Read In"
@ 18, 33 SAY "& Backup"
@ 19, 33 SAY "Databases"

CASE oldchoice =9

86

END
ENDIF

SET COLOR TO &c_normal

@ 16, 64,

20, 79 BOX " —

J_Llll
SET COLOR TO &c_unselecteA
@ 17,65,19,78 BOX " "

@ 17, 65
@ 18, 65
@ 19, 65
CASE

SAY "Q Quit"
SAY "and "
SAY "Exit to DOS"

* end of keyhit loop

ENDDO

* perform selected option

DO CASE

CASE
DO

CASE
DO

CASE
DO

CASE
DO

CASE
DO

CASE
DO

CASE
DO

CASE
DO

CASE
DO

ENDCASE
* gset ©

current o
oldchoi

newchoice
AUTHRZ

newchoice
SUPPLY

newchoice
IMBALANC

newchoice
ORGANIZ

newchoice
AUTHDOC

newchoice
INSPECT

newchoice
LISTINGS

newchoice
READIN

newchoice
CLEANUP

14 choice
ption
ce =0

var to 0 so we get a highlight on the

* and set key input var to 0 so we don't fall out again

key =0

87

ENDDO

RkRkhkkkhkkkkk

* PROC Setup.prg define databases and index files

* Kevin M. Tanzer - 4 May 90
Rk kkkkkkkkk

* initialize databases and index files, along with alias
names
SELECT 1

mLastArea = 1

USE Basic INDEX BasicNSN AL .S Objectives

GOTO TOP

SELECT 2
mLastArea = 2
USE OrgData INDEX OrgData ALIAS WhosWho
GOTO TOP
mLastOrg = ORG_NUMBR

SELECT 3
mLastArea = 3
USE Document INDEX Document ALIAS Details
GOTO TOP

SELECT 4
mLastArea = 4
USE Inspect INDEX Inspect ALIAS Performance
GOTO TOP

*x** SELECT 5 - Area is used in Procedure AUTHDOC to build
temporary database
x of supply documents to be viewed.

**x* SELECT 9 - Area is used in Procedure READIN to read in
extracted SBSS

**x* data into a long character string, which is then parsed
into the

**x* fields of the BASIC.DBF (authorization) and DOCUMENT.DBF

RETURN

Ak %k

*** C:\CLIP\AUTHRZ.PRG : Add, Edit, Browse, Delete, Search
(standalone)

**x% Generated on March 11, 1990

**% Source .WW file: C:\UI\WW\AUTHRZ.WW

x Target environment: Clipper Summer 87

**x%x Modified by K. Tanzer on 11 Mar 90 for use with LIMP
V1.0

*x% environment stuff
* environment
SET SCOREBOARD off

88

SET CONFIRM off

SET CURSOR ON

* menu initialization
PRIVATE key

* DBF initialization
SELECT 1
mLastArea = 1

RRRRKAARRR Ak A XX

main menu loop:

*
®x
x
* jterates once for each time an option action is performed.
* this loop calls procedures to perform selected actions.

* (Procedures are defined below this loop)

x

x

ARXRARRRXRAR A AR

DO authscrn

DO WHILE .t.
help_code = 'authrz'

* display entry record
DO authdisp

L % B

* user selects action here
% %k %k

SET COLOR TO &c_unselected

24,2 PROMPT " Next "
24,9 PROMPT " Prev "
24,16 PROMPT " First "
24,24 PROMPT " Last "
24,38 PROMPT " Search "
24,47 PROMPT " Edit "
24,54 PROMPT " Append "
24,63 PROMPT " Delete "
24,72 PROMPT " Quit "

MENU TO key

* perform selected option
DO CASE
CASE key =1
DO authnext
CASE key =2
DO authprev
CASE key =3
DO authfirst
CASE key =4
DO authlast

89

CASE key =5

DO authsearch
CASE key =6

DO authedit
CASE key =7

DO authappnd
CASE key =8

DO authdel
CASE key =9

DO authquit

RETURN

ENDCASE

ENDDO
RETURN
kxkkxkkxkxxkkxtkx END OF MENU PROCEDURE

I EE SRR A SRR SRS ER R R R 2

LS EEEEREERE S S

action procedures:

X
*
*
* the following are called by the menu loop above.
*
X

RARRARRRA kAKX

AREARRRRRRKR AKX R AR R R AR AR KRR AR AR RN KRR AR AR R AR AR R ARk k&

* authscrn: displays the screen background
REEKKXAXARRARARARAAARRRRARRRRRARRRRRRRA R AR KA R AR AR A X
PROC authscrn
* display fixed text
CLEAR
SET COLOR TO &c_normal
@ 1, 0, 22, 79 BOX "r_1AJ_L|"
SET COLOR TO &c_selecte
2,1,21,78 BOX " "
2, 30 SAY "Authorized WRM Items"
, 2 SAY "Item Description:"+space(22)+"NSN:"
, 2 SAY "Authorized Quantity:"+space(9)+"0On Hand Qty:"
. 2 SAY "Unit of Issue:"+space(24)+"Document Number"
, 2 SAY "Price of Unit:"+space(24)+"of Authorization:"
10, 2 SAY "Value of Units:"
12, 2 SAY "ERRC Code:"
24,1 SAY " | | | | |

w0 ~lohw

21,2 SAY " Next "
24,9 SAY " Prev "
24,16 SAT " First ”
24,24 SAY " Last "
24,38 SAY " Search "
24,47 SAY " Ed4it "
24,54 SAY " Append "

90

@ 24,63 SAY " Delete "
@ 24,72 SAY " Quit "
RETURN

RARXRRRKXEXEXRRAARNARAARKRRRRARAAR AR AR R RR KA A

* authnext: go to next record
ARXRARRXRRRRRRRRRRRRRRARRARARKRARRRAR KK
PROC authnext
SKIP
IF eof ()
GOTO BOTTOM
DO statmsg with “End of file!"
ELSE
DO statmsg with ""
mLastOrg = SUBSTR (SOURCE_DOC, 2,5)
DO authdisp
ENDIF
RETURN

AXKRRKKRAXRKRREAARXRAR AR AR R ARA A ARRKR KR AR R

* authprev: go to previous record
% % %k %k %k Kk %k %k %k ok ok ok ok Kk kk ok ok ok ok ok ok kkkokkkkkkkkxk
PROC authprev
SKIP -1
IF bof ()
GOTO TOP
DO statmsg with "Beginning of file!™"
ELSE
DO statmsg with ""
mLastOrg = SUBSTR(SOURCE_DOC, 2,5)
DO authdisp
ENDIF
RETURN

ARRKRKRAXRAARRARRAKR AR AR A AR AR AR AARRR

* authfirst: go to first record
AARRXRRARKRRRRKRAAARR AR ARARRR KRR AR R R AKX XX
PROC authfirst
GOTO TOP
DO statmsg with ""

mLastOrg = SUBSTR (SOURCE_DOC,2,5)
DO authdisp
RETURN

RRAXRRARRARRRRRARAKR AR R A KRR AR AR AR AR KR

* authlast: go to last record
RARXRXARRRRERAERRARARARRRRAA A A AR KX A A Rk Rk kXX

PROC authlast
GOTO BOTTOM
DO statmsg with ""

91

-

mLastOrg = SUBSTR (SOURCE_DOC, 2,5)
DO authdisp
RETURN

ARRARRRRR AR AR R AR R KRR AR AR AR AR R AR RR AR AR A RR R AR AR R R A AR KRR A AR AR KRR Rk kA kX
Rkhkkhkhkhkkhkhkhkkkkk

* authsearch: search for a record, given entry into desired

criterion fields
AAXRKXXRR AR R AR AR AR AR RRERRRARRRERRRRAARRRRARAR R R ARRARRR AR AR R ARk %

RRRAX A A AR A ARAARRX

PROC authsearch
PRIV searchval,orecno
help_code = 'authsearch'’
searchval = space(15)
DO statmsg with ""
@ 23,2 SAY "Enter NSN value: " GET searchval PICTURE '@!
NNNNNNNNNNNNNNN ' . .
READ
orecno = RECNO()
SEEK searchval
IF .NOT. FOUND()
GOTO orecno
DO statmsg with "NSN value not found!"
ELSE
DO statmsg with ""
orecno = recnol)
GOTO orecno
mLastOrg = SUBSTR (SOURCE_DOC,2,5)
DO authdisp
ENDIF
RETURN

ARAKRRRARAXRRRAARA KA A KRR AR AR AR AR K Kk & &

* authedit: edit current record
RARAXRAR R AR ERRA AR R R A AR KK A KKk kkkkk

PROC authedit

*** create memvar duplicates for all fields

PRIVATE mNOMENCLATR, mSTOCK_NBR, mATHRZD_QTY, mQTY_ONHAND,
MUNIT_ISSUE

PRIVATE mUNIT_PRICE, mSOURCE_DOC, mERRC_CODE

help_code = 'authedit'

*x%x ___and initialize 'enm
MNOMENCLATR = NOMENCLATR
mSTOCK_NBR = STOCK_NBR

mATHRZD_QTY = ATHRZD_QTY
mQTY_ONHAND = QTY_ONHAND
MUNIT_ISSUE = UNIT_ISSUE
mMUNIT_PRICE = UNIT_PRICE

92

mSOURCE_DOC =
mERRC_CODE =

DO statmsg with "Edit record.

SOURCE_DOC
ERRC_CODE

“W to save; Esc to abandon"

% get input fields into memvar duplicates

@ 3, 20 GET mNOMENCLATR PICTURE '@! NNNNNNNNNNNNNNNNNNN'
@ 3, 46 GET mSTOCK_NBR PICTURE '@! NNNNNNNNNNNNNNN'

@ 5, 23 GET mATHRZD_QTY PICTURE '99999"'

@ 5, 44 GET mQTY_ONHAND PICTURE '99999'

@ 7, 18 GET mUNIT_ISSUE PICTURE '@! NN’

@ 8, 18 GET mUNIT_PRICE PICTURE '9999999.99"

@ 9, 40 GET mSOURCE_DOC PICTURE '@! NNNNNNNNNNNNNN'

@ 12, 13 GET mERRC_CODE PICTURE '@! NNN'

DO statmsg with ""

IF lastkey() =

27 && user escaped out of READ

RETURN

ENDIF

REPLACE
REPLACE
REPLACE
REPLACE
mTemp =
REPLACE
mTemp =
REPLACE
REPLACE
REPLACE
REPLACE
REPLACE

mLastOrg =

NOMENCLATR WITH UPPER {(mNOMENCLATR)
STOCK_NBR WITH mSTOCK_NBR
ATHRZD_QTY WITH mATHRZD_QTY
QTY_ONHAND WITH mQTY_ONHAND
mATHRZD_QTY - QTY_UNSUPP

NET_QTY WITH mTemp

mTemp - mQTY_ ONHAND

QTY_SHORT WITH mTemp

UNIT_ISSUE WITH UPPER (mUNIT_ISSUE)
UNIT_PRICE WITH mUNIT_PRICE
SOURCE_DOC WITH UPPER (mSOURCE_DOC)
ERRC_CODE WITH UPPER (mERRC_CODE)

SUBSTR (SOURCE_DOC, 2, 5)

DO authdisp

RETURN

ARXRARXRXXRRRARARARRARRRRARRARAR R A R kX

* authappnd:

append new record

RERERRARRR AR XX AXARRRARRRA A AR R XA AR X
PROC authappnd

DO ClassPop

* Popup

reminder about classified data

DO authscrn
DO authdisp
*** create memvar duplicates for all fields

93

PRIVATE mNOMENCLATR, mSTOCK_NBR, mATHRZD_QTY, mQTY_ONHAND,
MUNIT_ISSUE

PRIVATE mUNIT_PRICE, mSOURCE_DOC, mERRC_CODE

help_code = 'authappnd'

xxx _ _and initialize ‘'em
MNOMENCLATR = SPACE(19)
mSTOCK_NBR = SPACE(15)

mATHRZD_QTY = 0
mQTY_ONHAND = 0
mUNIT_ISSUE = SPACE(2)
mUNIT_PRICE = 0.00
mSOURCE_DOC = SPACE(14)

mERRC_CODE = SPACE(3)

DO statmsg with "Enter new record. “W to save; Esc to
abandon"

***x gat input fields into memvar duplicates

@ 3, 20 GET mNOMENCLATR PICTURE '@! NNNNNNNNNNNNNNNNNNN'
@ 3, 46 GET mSTOCK_NBR PICTURE '@! NNNNNNNNNNNNNNN'

@ 5, 23 GET mATHRZD_QTY PICTURE '99999'

@ 5, 44 GET mQTY_ONHAND PICTURE '99999'

@ 7, 18 GET mUNIT_ISSUE PICTURE '@! NN'

@ 8, 18 GET mUNIT_PRICE PICTURE '9999999.99'

@ 9, 40 GET mSOURCE_DOC PICTURE '@! NNNNNNNNNNNNNN'

@ 12, 13 GET mERRC_CODE PICTURE '@! NNN'

READ

DO statmsg with ""

IF lastkey!() = 27 && user escaped out of READ
RETURN
ENDIF

* append into DBF fields

APPEND BLANK

REPLACE NOMENCLATR WITH UPPER (mNOMENCLATR)
REPLACE STOCK_NBR WITH mSTOCK_NBR

REPLACE ATHRZD_QTY WITH mATHRZD_QTY
REPLACE QTY_ONHAND WITH mQTY_ ONHAND

mTemp = ATHRZD_QTY - QTY_UNSUPP

REPLACE NET_QTY WITH mTemp

mTemp = mTemp - mQTY_ ONHAND

REPLACE QTY_SHORT WITH mTemp

REPLACE UNIT_ISSUE WITH UPPER (mUNIT_ISSUE)
REPLACE UNIT_PRICE WITH mUNIT_PRICE
REPLACE SOURCE_DOC WITH UPPER (mSOURCE_DOC)
REPLACE ERRC_CODE WITH UPPER (mERRC_CODE)
mBACKUP = .T.

REINDEX

mLastOrg = SUBSTR (SOURCE_DOC, 2,5)

94

DO authdisp
RETURN

AXRKXRARXRARARARARRARRRARARARARARXRARAARNRR AR KA A AR A A ARk &k

* authdel: delete record. If deleted, recall
ARAXRRA AR KR AR XERARKRR R A REAARRAR A RAR R AR AR R AR AR AR X R ARk &k
PROC authdel
IF .not. deleted()
DELETE
mBASIC = .T.
ELSE
RECALL
ENDIF
DO statmsg with ""
DO authdisp
RETURN

KARARKARRAKARARRRRRRR AR R RRARRARKRARAR K
* authquit: various quit things
ARAREARARR A AR ERRRRR AR R RA KRR R AR R AXRAR X
PROC authquit

SET COLOR TO &c_normal

SET CURSOR OFF

CLEAR

RETURN

REAKARAKAARAR AR R RAKRKRXARRA R AR A RARA R AR AR AR AR Ak ¢ Ak kR kX

* statmsg: displays passed message on line 23

* this routine is common to all the subprograms
ARAREXAXRKRAARA AKX RRRRAKRAR AR AR RAARRRRR AR RARRARAR AR AR AR KK
PROC statmsg

PARAM s

@ 23,0 SAY " "+s+space(54-len(s))

RETURN

L EEEEEEREEEERERRRR R R RSl iii i ol i s s 22 i 2222 A2 R 2 2 8]
ARRRRRAKNKX

* authdisp: displays current record, along with recno() and
deleted ()

REARRRRARARRRARAAAARRRRRARRARARR AR AR XA RRARAARRARA AR RR AR R AR XRA R R AR A A KR
RARERRKR R K

PROC authdisp
PRIVATE mQTY_ONHAND

SELECT 1
mLastArea = 1

95

SET COLOR TO &c_selected
IF recno() =0

GOTO TOP
ENDIF

DO statmsg with ""

@ 3, 20 GET NOMENCLATR

@ 3, 46 GET STOCK_NBR -
@ 5, 23 GET ATHRZD_QTY

mQTY_ONHAND = QTY_ONHAND

@ 5, 44 GET QTY_ONHAND

@ 7, 18 GET UNIT_ISSUE

@ 8, 18 GET UNIT_PRICE PICTURE '9999999.99'
NetValue = UNIT_PRICE * mQTY_ONHAND

@ 10, 18 SAY NetValue PICTURE '9999999.99"

@ 9, 40 GET SOURCE_DOC

@ 12, 13 GET ERRC_CODE

CLEAR GETS

@ 23,70 SAY iif(deleted(),"Deleted"," ")

RETURN

KXk X

%x C:\CLIP\SUPPLY.PRG : Add, Edit, Browse, Delete, Search
(standalone)

*** Generated on March 11, 1990

*** Source .WW file: C:\UI\WW\SUPPLY.WW

x Target environment: Clipper Summer 87

*x*x Modified by K. Tanzer on 11 Mar 90 for use with LIMP
v1i.0

x environment stuff
* environment

SET SCOREBOARD off
SET CONFIRM off

SET CURSOR ON

* menu initialization
PRIVATE key

* DBF initialization

* Open database DOCUMENT (alias DETAILS)
]

SELECT 3

mLastArea = 3

GOTO TOP

ERRRARKRRARRRARRAARARKRRRRRRRARRARRRRARRRRARARRARAARAARRA KRR R AR R A A XX -
KhkRhkhkhkhkkhkhkik
®

main menu loop:

%
*
* jterates once for each time an option action is per.ormed.
* this loop calls procedures to perform selected actions.

96

* (Procedures are defined below this loop)
x

RRXRRRRRRRRR AR R AR AR RRAARARR AR AR AR R AR RARRRRRRARARNARRRRR AR KRR AR R
RARAAXR AR KRR X

* display fixed text

SET COLOR TO &c_normal

CLEAR

SET COLOR TO &c_normal

@ 0, 0, 22, 79 BOX “r—1AJ—L|"

SET COLOR TO &c_selecte

@ 1,1,21,78 BOX " "

@ 1, 25 SAY "Supply Document Details Screen"

@ 3, 5 SAY "Document Type:"+space(21)+"Ordering

Organization:"

4, 3 SAY "Document Number:"+space(21l)+"Date Ordered:"

5, 39 SAY "Estimated Delivery Date:"

6, 20 SAY "Status:"+space(l1l5)+"Due In Doc:"

9, 3 SAY "Item Ordered:"+space(30)+"Quantity Ordered:"

10, 3 SAY "National Stock Number:"+space(27)+"Unit Price:"

11, 5 SAY "Prime or Substitute:"+space(26)+"Total Value:"

SET COLOR TO &c_normal

@ 13, 4, 20, 55 BOX " ja=L]"

SET COLOR TO &c_selecte

14,5,19,54 BOX " "

14, 15 SAY "Point of Contact Information"

15, 6 SAY “Name:"

16, 6 SAY "Organization:"

17, 6 SAY "Office:"

18, 6 SAY "Phone:"

24,1 SAY " l | | | ! |
' ”

24,2 SAY " Next " I '

24,9 SAY " Prev "

24,16 SAY " First "

24,24 SAY " Last "

24,38 SAY " Search "

24,47 SAY " Edit "

24,54 SAY " Append "

24,63 SAY " Delete "

24,72 SAY " Quit "

DO WHILE .t.

help_code = 'supply’
* display entry record
DO dispsupply

RREARRARRRRRARRRARRR AR AR RRA R AR AR KRR AR AR RRAARAR KRR AR RRRR R A A A A XX
XR R

* user selects action here

RARRRRERER KRR KRR AR R AR ARRAERAR AR R AR R R AR R R R R AR R AARRRARARRR AR R A AR KRR kX
Rk %

97

rd

SET COLOR TO &c_unselected

24,2 PROMPT " Next "
24,9 PROMPT " Prev "
24,16 PROMPT " First "
24,24 PROMPT " Last "
24,38 PROMPT " Search "
24,47 PROMPT " Edit "
24,54 PROMPT " Append "
24,63 PROMPT " Delete "
24,72 PROMPT " Quit "

MENU TO key

* perform selected option
DO CASE

CASE key =1

DO nextsupply
CASE key =2

DO prevsupply
CASE key =3

DO firstsuppl
CASE key =4

DO lastsupply
CASE key =5

DO srchsupply
CASE key =6

DO editsupply
CASE key =7

DO appsupply
CASE key =8

DO delsupply
CASE key =9

DO quitsupply

RETURN

ENDCASE

ENDDO
RETURN
RRRAXRARRXRARARAXX2 END OF MENU PROCEDURE

RRRARAKRARRAARRRARRRARKAKRAXRARRRR AR KX

ARRRRAKRRRRRARRRRARAARRARRARAA XA RRRAXRARARKAKRRRR R A AR R A RR AR A RA R R AR A AR
RARRRAXARRAKRA R AR
®

* action procedures:

* the following are called by the menu loop above.
4

RRARRRRRRARARRARRRARRARARARRARRRRRRRRRRARARRRARARAARARAR A AR AR AR AR
RARRARARK KRR Kk

98

ARKRKRRAARRAKRARAARRRRR R R AR A AR A A AR A AKX

* nextsupply: go to next record
RARRER KA RRA R KRR R A AR KA KRR Rk kkkkkkkkhkkk
PROC nextsupply
SKIP
IF eof ()
GOTO BOTTOM
DO statmsg with "End of file!"
ELSE
DO statmsg with ""
mLastOrg = SUBSTR (DOC_NUMBER, 2,5)
DO dispsupply
ENDIF
RETURN

I EEREEREER RS EEEEEEREERR R R RERE

* prevsupply: go to previous record
AAkRRERRXRKXARRXRR A AR KA RXR AR A AR KR XA AR XA AXR KRk RXK
PROC prevsupply
SKIP -1
IF bof ()
GOTO TOP
DO statmsg with "Beginning of file!"
ELSE
DO statmsg with ""
mLastOrg = SUBSTR (DOC_NUMBER, 2,5)
DO dispsupply
ENDIF
RETURN

AAXARKXAAKRAKRARAA AR AR KR AR KRXA A kA ARk kXkkkkk

* firstsuppl: go to first record

AAAREARAXRRARRKRKXRRRKRAKRRRAKRR AR AR AR AKX

PROC firstsuppl

GOTO TOP

DO statmsg with "Top of file!"
mLastOrg = SUBSTR (DOC_NUMBER, 2,5)

DO dispsupply

RETURN

RAXKARKAKAKRRKA AR R RRR A AR R AR R AR K kX kkxk

* lastsupply: go to last record

RERXARXRKARRRAKRRARRARRRARKR R AR A KRk kkkkkkk

PROC lastsupply

GOTO BOTTOM

DO statmsg with "Bottom of file"
mLastOrg = SUBSTR(DOC_NUMBER,2,5)

DO dispsupply

RETURN

99

REXAX AR AARRRRRRRARARA AR R ARKR AR R A AR A RARRN R AR R AR R A AR AR AR A AR A A Kk kR
ARRKRKKAKRAKRKXKRARR < K

* srchsupply: search for a record, given entry into desired

criterion fields
ARXRRXRRARRRERRRRARRARRRRRRAARRRRRRRRRARARARRRARARARRRAAXRANRRAARRRRR AR A AR XX

RhkkkkRAXkkhkkkkkkX

PROC srchsupply
PRIV searchval,orecno
help_code ='srchsupply'’
searchval = space(14)
DO statmsg with ""
@ 23,2 SL "Enter Document number: " GET searchval PICTURE
'@! NNNNNNNNNNNNNN'
READ
orecno = recno()
SEEK searchval
IF .NOT. FOUND()
GOTO orecno
DO statmsg with "Search value not found!"
ELSE
DO statmsg with ""
mLastOrg = SUBSTR(DOC_NUMBER, 2, 5)
DO dispsupply
ENDIF
RETURN

ARRKRR AR RA AR R KRR RR A AR AR A A AA R KRR XKk

* editsupply: edit current record
ARXRAXAXARKKRARARXREAA R AR AKX AR R K AR XX AR R KX

PROC editsupply

*** create memvar duplicates for all fields

PRIVATE

mDOC_NUMBER , mSTOCK_NBR ,mPRIME_SUB,mEDD, mSTATUS , mDUE_IN_DOC,m
QTY_ORDERD

help_code = 'editsupply'

*x% . _.and initialize 'em

mDOC_NUMBER = DOC_NUMBER

mSTOCK_NBR = STOCK_NBR

mPRIME_SUB = PRIME_SUB

mEDD = EDD

mSTATUS = STATUS

mDUE_IN_DOC = DUE_IN_DOC

mQTY_ORDERD = QTY_ORDERD

DO statmsg with "Edit record. "W to save; Esc to abandon”

x% get input fields into memvar duplicates

@ 4, 20 GET mDOC_NUMBER PICTURE '@! NNNNNNNNNNNNNN'
@ 5, 65 GET mEDD PICTURE '9999'

@ 6, 28 GET mSTATUS PICTURE '@! AAAAA'

100

@ 6, 54 GET mDUE_IN_DOC PICTURE '@! NNNNNNNNNNNNNN'
@ 9, 64 GET mQTY_ORDERD PICTURE '99999'

@ 10, 26 GET mSTOCK_NBR PICTURE '@! NNNNNNNNNNNNNNN'
@ 11, 26 GET mPRIME_SUB PICTURE '@! A’

READ

DO statmsg with ""

IF lastkey() = 27 && user escaped out of READ
RETURN
ENDIF

REPLACE DOC_NUMBER WITH UPPER (mDOC_NUMBER)
REPLACE STOCK_NBR WITH UPPER (mSTOCK_NBR)
REPLACE PRIME_SUB WITH UPPER (mPRIME_SUB)
REPLACE EDD WITH mEDD

REPLACE STATUS WITH UPPER (mSTATUS)

REPLACE DUE_IN_DOC WITH UPPER (mDUE_IN_DOC)
REPLACE QTY_ORDERD WITH mQTY_ORDERD

mLastOrg = SUBSTR (DOC_NUMBER, 2,5)
DO dispsupply

RETURN

RERXRRERRRRRKARRRRARRRARA AR R A A Kk kX%

* appsupply: append new record
RAXRERXXAXRAR AR AR AR AR AR KA AR KA A AR Ak khk kX

PROC appsupply

*** create memvar duplicates for all fields

PRIVATE

mDOC_NUMBER , mSTOCK_NBR ,mPRIME_SUB,mEDD, mSTATUS ,mDUE_IN_DOC,m
QTY_ORDERD

help_code = 'appsupply'

*xx __ _and initialize 'em
mDOC_NUMBER = SPACE(14)
mSTOCK_NBR = SPACE(15)
mPRIME_SUB = SPACE(1l)
mEDD = 0

mSTATUS = "BO"
mDUE_IN_DOC
mQTY_ORDERD

= SPACE(14)

= 0

DO statmsg with "Enter new record. "W to save; Esc to
abandon"

2 get input fields into memvar duplicates

@ 4, 20 GET mDOC_NUMBER PICTURE '@! NNNNNNNNNNNNNN'
@ 5, 65 GET mEDD PICTURE '9999'

@ 6, 28 GET mSTATUS PICTURE '@! AAAAAA'

@ 6, 54 GET mDUE_IN_DOC PICTURE '@! NNNNNNNNNNNNNN'

101

@ 9, 64 GET mQTY_ORDERD PICTURE '99999'
@ 10, 26 GET mSTOCK_NBR PICTURE '@! NNNNNNNNNNNNNNN'
@ 11, 26 GET mPRIME_SUB PICTURE '@! A’

READ
DO statmsg with ""

IF lastkey() = 27 && user escaped out of READ
RETURN
ENDIF

* append into DBF fields

APPEND BLANK

REPLACE DOC_NUMBER WITH UPPER (mDOC_NUMBER)

REPLACE STOCK_NBR WITH UPPER (mSTOCK_NBR)
mSTOCK_NBR = UPPER (mSTOCK_NBR)

REPLACE PRIME_SUB WITH UPPER (mPRIME_SUB)

REPLACE EDD WITH mEDD

REPLACE STATUS WITH UPPER (mSTATUS)

REPLACE DUE_IN_DOC WITH UPPER (mDUE_IN_DOC)

REPLACE QTY_ORDERD WITH mQTY_ORDERD

REPLACE DOC_TYPE WITH 'O’

mBACKUP = .T.

REINDEX

mLastOrg = SUBSTR (DOC_NUMBER, 2,5)
DO dispsupply
RETURN

REKARRARAKRARRARARRRARRR AR ARAXRARRRAR AR A AR R A AR A A k&

* delsupply: delete record. If deleted, recall
ARRRRARRRRRRA AR RRRRRARARKRRARRRARRRR AR AR AR A AR R A Xk Xk &k %k
PROC delsupply
IF .not. deleted()
DELETE
mDOCUMENT = .T.
ELSE
RECALL
ENDIF
DO statmsg with ""
DO dispsupply
RETURN

AERRRARARRAARRARRARRRAARRA AR AR AKX R kX
* quitsupply: various quit things
ARARREARRRAARRRARRRRAARARRRARARARARASR
PROC quitsupply

SET COLOR TO &c_normal

SET CURSOR OFF

CLEAR

102

RETURN

AREARR XA A RAR KRR AR R KRR R R AR R R RKRARARRARRARRARARRARRRRRRRRRAARRRRKRRARRAR K
Akkkkkkkxk

* dispsupply: displays current record, along with recno()
and deleted()

ARRA R AR AR A AR R R R R R AR R R R R AR R R R R RRRRAARRARRR R R AR KRR RRRARRARRRRARARRR K
Xk kkkkkkk

PROC dispsupply

PRIVATE

mORG, mDOC , mDATE , mITEM, mQUANT , mPRICE, mVALUE, mTYPE, mSTOCK_NBR,
searchval, orecno

SELECT 3
mLastArea = 3
IF recno() =0
GOTO 1
mLastOrg = SUBSTR (DOC_NUMBER, 2,5)
ENDIF

mDOC = DOC_TYPE

DO Doc_Look with mDOC

*** Translate the DOC_TYPE to a plain english string
@ 3, 20 SAY mDOC

@ 4, 20 GET DOC_NUMBER

*** Break Document Number into separate elements
mORG = SUBSTR (DOC_NUMBER, 2,5)

mDATE = SUBSTR (DOC_NUMBER,7,4)

@ 3, 64 SAY mORG

@ 4, 55 SAY mDATE

mSTOCK_NBR = STOCK_NBR

SELECT 1

mLastArea = 1

LOCATE ALL FOR STOCK_NBR = mSTOCK_NBR
@ 9, 17 SAY NOMENCLATR

MPRICE = UNIT_PRICE

*** Lookup POC Information based on organization number
SELECT 2
mLastArea = 2
searchval = mORG
orecno = recno()
SEEK searchval
IF .NOT. FOUND() .OR. OFFICE = 'UNKNOWN'
GOTO orecno
DO statmsg with "This Org/Shop number needs to be
defined."”
ELSE
@ 15, 12 GET POC_NAME
@ 16, 20 GET SQUADRON

103

-~

@ 17, 15 GET OFFICE
@ 18, 14 GET POC_PHONE PICTURE '@R 999-9999'
ENDIF

SELECT 3

mLastArea =3

5, 65 GET EDD PICTURE '9999"’

6, 28 GET STATUS

6, 54 GET DUE_IN_DOC

9, 64 GET QTY_ORDERD

10, 64 SAY mPRICE PICTURE '9999999.99"
10, 26 GET STOCK_NBR

11, 26 GET PRIME_SUB

mMPRICE = mPRICE*QTY_ORDERD

@ 11, 64 SAY mPRICE PICTURE '9999999.99"'

CLEAR GETS
@ 23,70 SAY iif(deleted(),"Deleted”","” ")

RETURN

X%k %k

**%x C:\CLIP\IMBALANC.PRG : Add, Edit, Browse, Delete, Search
(standalone)

***x Generated on March 11, 1990

kxx Source .WW file: C:\UI\WW\IMBALANC.WW

%x% Target environment: Clipper Summer 87

*x*x Modified by K. Tanzer on 11 Mar 90 for use with LIMP
Vi.0

*%** environment stuff
* environment

SET SCOREBOARD off
SET CONFIRM off

SET CURSOR ON

* menu initialization
PRIVATE key

* DBF initialization
* UUse Basic database
SELECT 1
mlastArea = 1
2% SET FILTER TO QTY_SHORT <> 0
IF EOF()
GOTO TOP
ENDIF

RRARRRARRRARR A AARARRARARARARRRRRRARRRRAARRAARAARRRARRARRRRARARARARRAR X
I E AR R EREREEES
x

* main menu loop:
*®
* jterates once for each time an option action is performed.

104

* this loop calls procedures to perform selected actions.

* (Procedures are defined below this loop)
*

ARKRRRAXRRRRRKR AR RRARRRA AR AR R R AR R RARRRR AR AR RRRARRRRRR AR AR AR KRR RA AR X
RRAARARKRRARK KX

* display fixed text
SET COLOR TO &c_normal
CLEAR
SET COLOR TO &c¢_normal
@ 0, 0, 22, 79 BOX “r_jiJ_L|"
SET COLOR TO &c_selecte

1,1,21,78 BOX " "
1, 18 SAY "Authorized vs On-hand Quantities"
4, 4 SAY "Item Description:"+space(27)+"NSN:"
9, 4 SAY "Total Quantity Authorized:"
11, 4 SAY "Authorized Unsupportable:"
13, 9 SAY "Net Quantity Authorized:"
15, 10 SAY "Total Quantity On-hand:"
17, 18 SAY "Quantity Short:"
24,1 say | | | | | |
21,2 SAY " Next " I
24,9 SAY " Prev "
24,16 SAY " First "
~4,24 SAY " Last "
24,38 SAY " Search "
24,47 SAY " Edit "
24,54 SAY " Append "
24,63 SAY " Delete "
24,72 SAY " Quit "

DO WHILE .t.
help_code = 'imbalanc'

* display entry record
DO imbaldisp

RARRRRRRARRARRRARXRRAR AR R R AR AR AR R RARRRRARRARRRAARRARARARRRRARA KRR AR
XKk %

* user selects action here

RRRRARARRARRARRRNRARARRRARRARR R XA KA RRARRRRRARRRRR AR AR AR R AR RARR AR
KA R

SET COLOR TO &c¢_unselected

24,2 PROMPT " Next "
24,9 PROMPT " Prev "
24,16 PROMPT " First "
24,24 PROMPT " Last "
24,38 PROMPT " Search "
24,47 PROMPT " Edit "
24,54 PROMPT " Append "

105

@ 24,63 PROMPT " Delete "
@ 24,72 PROMPT " Quit "

MENU TO key

* perform selected option
DO CASE
CASE key =1
DO imbalnext
CASE key =2
DO imbalprev
CASE key =3
DO imbalfirst
CASE key =4
DO imballast
CASE key =5
DO imbalsrch
CASE key =6
DO imbaledit
CASE key =7
DO imbalappnd
CASE key =8
DO imbaldel
CASE key =9
DO imbalquit
RETURN
ENDCASE
ENDDO
RETURN
RAAARX AR AR RR X Ak Rk kX END OF MENU PROCEDURE

REAXARNRKXKRAAKRRAR A A AR A AAXRRA A AR KR AR R kX

ARAKRRRKR AR R KRR R R KA KRR R R AR ARKR A AR AR AR AR AR KRR KRR AR AR AR RRRR KRR AR Rk Rk k%
AkkAkkkkkkhkhkkhkkk
*

* action procedures:
*

* the following are called by the menu loop above.

*
RRRARRRRARRARRRARRRRA R R AR R RARARRRRR AR RRARARRRRARARARRRRARARRRR AR X
RRXRARARARKAARRER X

RRARARARKRARARRRAKRARARR AR AR A AR R &k &k &k k&

* imbalnext: go to next record
RAXAREARRRARRREARRRKARARRRRRARARRARARRAARRRR R
* Will locate the next record that has a non-zero
* gshortage quantity
PROC imbalnext
SKIP
IF eof()
GOTO BOTTOM
DO statmsg with "End of File!"
ELSE

106

DO statmsg with ""
mLastOrg = SUBSTR (SOURCE_DOC,2,5)
DO imbaldisp

ENDIF

RETURN

RARRRKXRKA AR A A AR A A AR A X RRR A AR X A kR

* imbalprev: go to previous record
AAXARRRARRARRRRARRAKRRRARRARRA KRR AR R R A AKX R
PROC imbalprev
SKIPp -1
IF bof ()
GOTO TOP
DO statmsg with "Beginning of File!"
ELSE
mLastOrg = SUBSTR (SOURCE_DOC, 2,5)
DO statmsg with ""
ENDIF
DO imbaldisp
RETURN

RRARRAR A AR KR ARARXRRARARAAARRKRKRKRA R AR A kR

* imbalfirst: go to first record
ARRRRKRAEARRRRXRRARRRARRAXRR A AR A RRRE R XX
PROC imbalfirst
GOTO TOP
DO statmsg with "*"

mLastOrg = SUBSTR (SOURCE_DOC,2,5)
DO imbaldisp
RETURN

EARKRAKXRAKRRAAARARKRAR R AR R AR R AR AARKR

* imballast: go to last record
ARRRARRXAARAAARXRRRR A A AR AR KA RAR KA RRR KX
PROC imballast
GOTO BOTTOM
DO statmsg with ""

mLastOrg = SUBSTR (SOURCE_DOC,2,5)
DO imbaldisp
RETURN

RRRERAEARARARRRRAARRRRAR AR R RARRARRRAARRRRRRRAR AR AR AR RAR AR AR AR AR R AR AR
REARRRRRARERR R RR X
* imbalsrch: search for a record, given entry into desired

criterion fields
ARRRARRRRAXARRARRRRRRRRRRAARARRRRARRRARARAXARARRAARARARRRRRARARRARRARR

RRRRRARARRR AR A A KK

PROC imbalsrch
PRIV searchval,orecno

107

help_code = 'imbalsrch'
searchval = space(1l5)
DO statmsg with ""
* Make a search by National Stock Number
@ 23,2 SAY "Enter NSN search value: " GET searchval PICTURE
‘'@! NNNNNNNNNNNNNNN'
READ
orecno = recnof)
SEEK searchval
IF .NOT. FOUND()
GOTO orecno
TONE (900, 2)
DO statmsg with "That NSN not found!"
ELSE
DO statmsg with ""
mLastOrg = SUBSTR(SOURCE_DOC,2,5)
DO imbaldisp
ENDIF
RETURN

RRAKRXRKRAARRRARAARRRRAA AR X AR KA XX

* imbaledit: edit current record
ARRARRRRRARARRRARRRRRARRRRRRAXR R AR KXRKR R X

PROC imbaledit

*x*x create memvar duplicates for all fields
PRIVATE mNOMENCLATR, mSTOCK_NBR, mATHRZD_QTY, mQTY_UNSUPP,
mNET_QTY

PRIVATE mQTY_ ONHAND, mQTY_SHORT

help_code = 'imbaledit'

x%x . _and initialize 'em

MNOMENCLATR = NOMENCLATR

mMSTOCK_NBFE. = STOCK_NBR

MATHRZD_QTY = ATHRZD_QTY

mQTY_UNSUPP = QTY_UNSUPP

mNET_QTY = mATHRZD_QTY - mQTY_UNSUPP
mQTY_ONHAND = QTY_ONHAND

mQTY_SHORT = mNET_QTY - mQTY_ONHAND

DO statmsg with "Edit record. “W to save; Esc to abandon”

*xx get input fields into memvar duplicates

@ 4, 22 GET mNOMENCLATR PICTURE '@! NNNNNNNNNNNNNNNNNNN '
@ 4, 53 GET mSTOCK_NBR PICTURE '@! NNNNNNNNNNNNNNN'

@ 9, 31 GET mATHRZD_QTY PICTURE '99999'

@ 11, 31 GET mQTY_UNSUPP PICTURE '99999°

@ 13, 34 GET mNET_QTY PICTURE '99999'

@ 15, 34 GET mQTY_ONHAND PICTURE '99999°

17, 34 GET mQTY_SHORT PICTURE '99999'

READ

DO statmsg with ""

108

IF lastkey() = 27 && user escaped out of READ
RETURN
ENDIF

REPLACE NOMENCLATR WITH UPPER (mNOMENCLATR)
REPLACE STOCK_NBR WITH mSTOCK_NBR

REPLACE ATHRZD_QTY WITH mATHRZD_QTY
REPLACE QTY_UNSUPP WITH mQTY_UNSUPP
REPLACE NET_QTY WITH mNET_QTY

REPLACE QTY_ONHAND WITH mQTY_ONHAND
REPLACE QTY_SHORT WITH mQTY_SHORT

DO imbaldisp
RETURN

ARRRRERAARRKRAXAAXAARARRAARA AR R AR A Kk kkkk

* imbalappnd: append new record
ARXKRRRXRRRXRAXRRRRARARRRAKRRRARRXARR A A KX

PROC imbalappnd

*** create memvar duplicates for all fields

PRIVATE mNOMENCLATR, mSTOCK_NBR, mATHRZD_QTY, mQTY_UNSUPP,

mNET_QTY
PRIVATE mQTY_ONHAND, mQTY_SHORT
help_code = 'imbalappnd’

*x% ___and initialize 'em
mMNOMENCLATR = SPACE(19)
mSTOCK_NBR = SPACE(15)
mATHRZD_QTY = 00000
mQTY_UNSUPP = 00000
mNET_QTY = 00000
mQTY_ONHAND = 00000
mQTY_SHORT = 00000

DO statmsg with "Enter new record. “W to save; Esc to
abandon"”

*x% get input fields into memvar duplicates

@ 4, 22 GET mNOMENCLATR PICTURE '@! NNNNNNNNNNNNNNNNNNN'
@ 4, 53 GET mSTOCK_NBR PICTURE '@! NNNNNNNNNNNNNNN'

@ 9, 31 GET mATHRZD_QTY PICTURE '99999°

@ 11, 31 GET mQTY_UNSUPP PICTURE '99999'

@ 13, 34 GET mNET_QTY PICTURE '99999°

@ 15, 34 GET mQTY_ONHAND PICTURE '99999'

17, 34 GET mQTY_SHORT PICTURE '99999'

READ

DO statmsg with ""

IF lastkey() = 27 && user escaped out of READ

109

RETURN
ENDIF

* append into DBF fields

APPEND BLANK

REPLACE NOMENCLATR WITH UPPER (mNOMENCLATR)
REPLACE STOCK_NBR WITH mSTOCK_NBR

REPLACE ATHRZD_QTY WITH mATHRZD_QTY
REPLACE QTY_UNSUPP WITH mQTY_ UNSUPP
REPLACE NET_QTY WITH mNET_OTY

REPLACE QTY_ONHAND WITH mQTY_ ONHAND
REPLACE QTY_SHORT WITH mQTY_SHORT

mBACKUP = .T.

REINDEX

mLastOrg = SUBSTR(SOURCE_DOC,2,5)
DO imbaldisp
RETURN

KRKRRRKRARXRAAKRRARA R KRR R AR ARKKRARRA AR AR Rk AR AR A RAR AR AKX

* imbaldel: delete record. If deleted, recall
ARXRAXRRKRRARRR R AR R AR KR ARRR A AR AKRRRR AKX A AR RRAARRAARRARR
PROC imbaldel
IF .not. deleted()
DELETE
mBASIC = .T.
ELSE
RECALL
ENDIF
DO statmsg with ""
DO imbaldisp
RETURN

ARRRAARRR AR KRR ARKRRRRRRAARRXR AR R RN R AR XA XK
* imbalquit: various quit things
ARRAERRAARRARARARRRRRRRARXRAR AKX AR AR A X k%
PROC imbalquit

SET COLOR TO &c_normal

SET FILTER TO

SET CURSOR OFF

CLEAR

RETURN

AREARRRRRARRRRARRRARKARRARARRRRRXARARRRRRRRARARRRRRARARARARRRRR R R AR
RRRRERRARK
* imbaldisp: displays current record, along with recno() and
deleted()

110

RERXRRKRRRXRRKARARRR KRR RRRAANRRARKRARRRRRRAARRRAARKR AR RRA R AR R AR AR Kk X
ARRAkAkkk ki

PROC imbaldisp

IF recno() =0

GOTO 1
ENDIF
@ 4, 22 GET NOMENCLATR
@ 4, 53 GET STOCK_NBR
@ 9, 31 GET ATHRZD_QTY
@ 11, 31 GET QTY_UNSUPP
@ 13, 34 GET NET_QTY
@ 15, 34 GET QTY_ONHAND
@ 17, 34 GET QTY_SHORT
CLEAR GETS
@ 23,70 SAY iif(deleted(),"Deleted"," ")
RETURN

ARARARR AR RRRAARR R AR RE AR AA R A AR A R AR RRRR KRR AKX AR KR KA XRARAARRKR AR A RK KKK
KXKRARRX KX XX

* PROC Setup.prg define databases and index files

* KRevin M. Tanzer - 4 May 90
ARAERXRRARAARRRARRARRRRA AR R AR RR R AEARRARRARRRRRARRERRRRRRARRRRRARRARR AR

RXRRXRXRRR XXX

* jnitialize databases and index files, along with alias
names
SELECT 1

mLastArea = 1

USE Basic INDEX BasicNSN ALIAS Objectives

GOTO TOP

SELECT 2
mLastArea = 2
USE OrgData INDEX OrgData ALIAS WhosWho
GOTO TOP
mLastOrg = ORG_NUMBR

SELECT 3
mLastArea = 3
USE Document INDEX Document ALIAS Details
GOTO TOP

SELECT 4
mLastArea = 4
USE Inspect INDEX Inspect ALIAS Performance
GOTO TOP

*x*x SELECT 5 - Area is used in Procedure AUTHDOC to build
temporary database
2% of gsupply documents to be viewed.

*xx SELECT 9 - Area is used in Procedure READIN to read in
extracted SBSS

111

-

x data into a long character string, which is then parsed
into the
*xx fields of the BASIC.DBF (authorization) and DOCUMENT.DBF

RETURN

X%

*%x% C:\CLIPPER\AUTHDOC.PRG : Add, Edit, Browse, Delete,
Search

*** also with scrolling lookup window for details

x Generated on April 7, 1990

*x% Source .WW file: C:\UI\WW\AUTHDOC2.WW

x Target environment: Clipper Summer 87

»x%* Modified by K. Tanzer on 11 Mar 90 for use with LIMP
V1.0

* meau initialization
PRIVATE key,mKEY
SET CURSOR ON

* DBF initialization
SELECT 1

mLastArea = 1

GOTO TOP

RRRRRRRARARRR A A AR AR R R AR R RN AR R AR R AR RARAARRRRARRRR AR R R R R R R AR
RARRRRXNRKXARXR X
®

main menu loop:

iterates once for each time an option action is performed.
this loop calls procedures to perform selected actions.
({Procedures are defined below this loop)

*» % % % %

*
ARRXRRARRRARARARRRARRARRRARRRAARRRRARRAARRRRRRARRRRARRRRRRARNRRKRRRARRR
RRRRRARRARRKXR AKX

* display fixed text
SET COLOR TO &c_normal

CLEAR
SET COLOR TO &c_normal
@ 0, 0, 9, 79 BOX ' Ji=t}’

SET COLOR TO &c_selected

@ 1,1,8,78 BOX °)

@ 1, 23 SAY 'Authorizations and Supply Details'
@ 2, 2 SAY 'Prime'+space(23)+'National’

@ 3, 2 SAY
'Authorized'+space(18)+'Stock'+space(20)+'Document’

@ 4, 2 SAY 'Item:'+space(23)+'Number:'+space(18)+'Number:'
@ 6, 2 SAY 'Authorized Quantity:'

@® 8, 6 SAY ‘'Quantity Onhand:'

® 24,1 SAY '| | | | | |

® 24,2 SAY ' Next ' '

112

-

® 24,9 SAY ' Prev '

@ 24,16 SAY ' First '

@ 24,24 SAY ' Last °

@ 24,32 SAY ' Search '’

@ 24,42 SAY ' View Supply Details '
@ 24,72 SAY ' Quit °

DO WHILE .t.

help_code = 'authdoc'

* display entry record
DO disprec

REARRRRRARRARARARRRARRAARA AR R AR R R R ARKA AR AR AR AR N R AR R R R AR AR R R AR A Ak
x kX

* user selects action here

RARRKARAARRRARRARAKRRAKRARRRKARRAA KRR KRR AR AR KR AR KR RKK AR KA A AR R A AR A Ak k k&
LR %

SET COLOR TO &c_unselected

24,2 PROMPT ' Next '
24,9 PROMPT ' Prev '
24,16 PROMPT First '
24,24 PROMPT Last '

24,42 PROMPT View Supply Details '
24,72 PROMPT Quit '

24,32 PROMPT ' Search '

MENU TO key

* perform selected option
DO CASE
CASE key =1
DO nextthing
CASE key =2
DO prevthing
CASE key =3
DO firstthing
CASE key =4
DO lastthing
CASE key =5
DO searchthing
CASE key =6
mKEY = STOCK_NBR
DO details with mKEY
CASE key =7
DO quitthing
. RETURN

ENDCASE

ENDDO

113

.

RRARARRRRKARRARR XA AAARAAARRARRRRRKRXEARARR A KRR AR R AR RKR AR ARRARA R A KKk R KX
KRRRARRRAR AR KX

* action procedures:

* the following are called by the menu loop above.

RARRRRRRARRRRRRRRRARRARRR AR KRR RRRRAARAARRXRRARRARRAARRARRAAA R KRR K &
IR R R EREREEER RS

ARRRAARRAKRRRRARRRRARRRAARXARRRRXA AR KRR AR

* nextrec: go to next record
RRRRARAARRRARRRRARRRARARR AR AR RXR AR AARR
PROC nextthing
SKIP
IF eof ()
GOTO BOTTOM
DO statmsg with 'End of file!'
ELSE
DO statmsg with ''
mLastOrg = SUBSTR(SOURCE_DOC,2,5)
DO disprec
ENDIF
RETURN

RRRRRAARARKXRARRRRAR AR AR AR AR R A A AR A AKX

* prevrec: go to previous record
RRRAREAKRRAKR R AR KRR AR RRARNARRARRRRR AR AR R X
PROC prevthing
SKIP -1
IF bof ()
GOTO TOP
DO statmsg with 'Beginning of file!'
ELSE
DO statmsg with ''
mLastOrg = SUBSTR(SOURCE_DOC,2,5)
DO disprec
ENDIF
RETURN

RRRRAARKRRARRRRRRRRRRARA R A ARAAR AR AKX

* firstrec: go to first record
RRRERRRRRRARRARARARARRRRRARRRARXRR KA AR R
PROC firstthing
GOTO TOP
DO statmsg with '

mLastOrg = SUBSTR(SOURCE_DOC,2.,5)
DO disprec
RETURN

114

AARRRRARRRRR A AR RARAXNA AR AR R AR Ak k kX

* lastrec: go to last record
ARARXRRRRARARRARRRARRRRARAR AKX AR AR A AR Ak Ak k&
PROC lastthing
GOTO BOTTOM
DO statmsg with '’

mLastOrg = SUBSTR (SOURCE_DOC, 2,5)
DO disprec
RETURN

AXRKRRRRR KRR R AR R AR R R AR A AR R R AR R AR R AR RARR AR KRR AR AR RRRARRRR R R AR R kX
RRAXKAKRKR AKX ARk AR KK

* search: search for a record, given entry into desired

criterion fields
RARRXRRARARRARKRRRRA AR R R R RA AR RRR RN AR RRRRKRARRKRRRARRRARRRARRRR AR kR

RhkRkkAkkkhkkkkkhkkkk

PROC searchthing
PRIV searchval,orecno
help_code = ‘searchthng’
searchval = space(14)
DO statmsg with '’
@ 23,2 SAY 'Enter Document number: ' GET searchval PICTURE
'@! NNNNNNNNNNNNNN'
READ
orecno = recno()
LOCATE ALL FOR SOURCE_DOC = searchval
IF .NOT. FOUND()
GOTO orecno
DO statmsg with 'Document number not found!'
mLastOrg = SUBSTR(SOURCE_DOC,2,5)
ELSE
DO statmsg with ''
mLastOrg = SUBSTR (SOURCE_DOC,2,5)
DO disprec
ENDIF
RETURN

RRRAARRARAKARRARRARRRARRRAKRR AR ARR AR KRR R

* quitstuff: various quit things
ARRRARRRRRARRRRRRRRRRRARRARAR AR AR AR AR
PROC quitthing

SET COLOR TO &c_normal

SET CURSOR OFF

CLEAR

RETURN

REARRAARARARRRRRRARKAA AR RRRRRRRRARRRRRARRRRARARRRARKRAARRRRRARARRR
ARRARRARRK

115

* disprec: displays current record, along with recno() and
deleted()

RRARRRKAAKRRRRRRRARRRAR AR A AR ARK AR A RARRRRARRRRRRARRARRARARRARRARRR R AR
RRRARXKKkkkk

PROC disprec

8 GET NOMENCLATR

38 GET STOCK_NBR

63 GET SOURCE_DOC

23 GET NET_QTY

23 GET QTY_ONHAND

CLEAR GETS

@ 23,70 SAY iif (deleted(), 'Deleted’,’ ")

9006 S
® O i

RETURN

RRXKRRERRRARARARR AR RR AR A RRR AR AKRKRR AR AR AR AR R RRKRARARRARRRR KRR XA AR K kX%
kkkkkkkkk

* Details: scrolling lookup window for supply details
AXKAXRAXRRXRAARAEARRRAKRRRRRARARARRRRRRRARA AR AR RA AR R A RXRAXRARRR AR AR AR A Kk Xk &
Xk kkkhkkhkkk

* Creates a scrolling window to view all documents based on
the

* National Stock Number of the Authorization being viewed.
PROC Details

PARAM extract_key

PRIVATE up, down, left, right, pgup, pgdn, home, end,
car_ret, ;

scrltop, scrlleft, scrlbot, scrlright, scrlheight, ;
currow, lastrec, firstrec, saverec, oldrec, xkey

help code = 'details'’

* inkey aliases

up = 5
down = 24
left = 19
right = 4
pgup = 18
pgdn = 3
home = 1
end = 6

car_ret = 13

* gcroll area coords & dimensions (does not include box
border/header)

scrltop = 12

scrlleft = 1

scrlbot = 20

scrlright = 78

scrlheight = scrlbot - scrltop +1

currow = scrltop

116

oldrec = recnol)
SET CURSOR OFF

DO statmsg with 'Collecting documents, one moment please...’
SELECT 3

mbastArea = 3

COPY TO TEMP2 FIELDS

DOC_NUMBER ,DOC_TYPE, STOCK_NBR,QTY_ORDERD,
DUE_IN_DOC,EDD FOR STOCK_NBR = extract_key

SELECT 5

mLastArea = 5

USE TEMP2

* Copies only the needed records to a temporary database,
this is ok because

* the user can _only_ view the records

GOTO TOP

firstrec = recno()
GOTO BOTTOM
lastrec = recno()

* pop the lookup window

Details = savescreen(10,0,21,79)

SET COLOR TO &c_normal

@ 10, 0, 21, 79 BOX ' — |d4-L|’

@ 10, 20 SAY ' Details supporting this authorization '
SET COLOR TO &c_unselected

@ 11,1,20,78 BOX ' !

@ 11, 2 SAY 'Document # Type NSN'+space(l3)+'Date
Ordered Date Due Quantity’

DO statmsg with 'Use “X°Y to scroll documents, <Esc> to
exit'

* display first window of records, hilite first one
GOTO TOP

DO De_disp WITH .t.

DO De_hidsp

xkey = 0
DO WHILE xkey <> 27 .and. xkey <> car_ret && not <ESC> or
<cg;ckey = inkey(0)

skey = upper (chr(xkey))

DO CASE

CASE xkey = up
IF recno() = firstrec
tone (900, 2)

117

ELSE
IF currow > scrltop
DO De_lodsp
currow = currow - 1
SKIP -1
DO De_hidsp
ELSE
DO De_lodsp
SKIP -1
scroll (scrltop, scrlleft, scrlbot,
scrlright, -1)
DO De_hidsp
ENDIF
ENDIF

CASE xkey = down
IF recno() = lastrec
tone (900,2)
ELSE
IF currow < scrlbot
DO De_lodsp
currow = currow + 1
SKIP
DO De_hidsp
ELSE
DO De_lodsp
SKIP
scroll(scrltop, scrlleft, scrlbot,
scrlright, 1)
DO De_hidsp
ENDIF
ENDIF

CASE xkey = pgdn

SKIP scrltop - currow + (2*scrlheight) -1

IF eof ()
tone (900, 2)
SKIP -scrlheight
DO De_disp WITH .f.
DO De_hidsp

ELSE
SKIP 1 -scrlheight
DO De_disp WITH .t.
DO De_hidsp

ENDIF

CASE xkey = pgup
SKIP scrltop - currow - scrlheight
1F bof ()
tone (900,2)
GOTO TOP
DO De_disp WITH .t.
DO De_hidsp
ELSE

118

L d

DO De_disp WITH .t.
DO De_hidsp
ENDIF

CASE xkey = home
GOTO TOP
DO De_disp WITH .t.
DO De_hidsp

CASE xkey = end
GOTO BOTT
SKIP 1 - scrlheight
IF bof ()
GOTO TOP
ENDIF
DO De_disp WITH .f.
DO De_hidsp

ENDCASE
ENDDO

DO statmsg with ''
restscreen(10,0,21,79,Details)
SET COLOR TO &c_unselected

*xx SELECT 5 && not really neccesary, just in case
though....

*** mlLastArea = 5

*xx ZAP && clean out temporary database
SELECT 1

mLastArea = 1

GOTO oldrec

RETURN && go back to bottom line menu

kR

x De_hidsp: hilites prompt line at currow
A&k Xk

PROC De_hidsp

SET COLOR TO &c_selected

@ currow, 2 SAY DOC_NUMBER

@ currow, 17 SAY DOC_TYPE

@ currow, 23 SAY STOCK_NBR

@ currow, 43 SAY SUBSTR(DOC_NUMBER,7,4)
@ currow, 57 SAY EDD

@ currow, 63 SAY QTY_ORDERD

RETURN

LR &

*** De_lodsp: lolites prompt line at currow
k k&

PROC De_lodsp

SET COLOR TO &c_unselected

@ currow, 2 SAY DOC_NUMBER

119

@ currow, 17 SAY DOC_TYPE

@ currow, 23 SAY STOCK_NBR

@ currow, 43 SAY SUBSTR(DOC_NUMBER,7,4)
@ currow, 57 SAY EDD

@ currow, 63 SAY QTY_ORDERD

RETURN

X %k %k

x De_disp : displays a window full of records.

% %k Kk

*x%x Jf called WITH .t., currow and recno() will be set to
the first

x% record in the window.

*xx Jf called WITH .f., currow and recno() will be set to
the last

x record in the window.

x kX

PROC De_disp

PARAM set_to_top

PRIVATE thisrow, toprec

SET COLOR TO &c_unselected

@ scrltop, scrlleft CLEAR TO scrlbot, scrlright

@ 11, 2 SAY 'Document # Type NSN'+space(l13)+'Date
Ordered Date Due Quantity'

toprec = recnof)
thisrow = scrltop
DO WHILE .not. eof() .and. thisrow <= scrlbot

@ thisrow, 2 SAY DOC_NUMBER
@ thisrow, 17 SAY DOC_TYPE
@ thisrow, 23 SAY STOCK_NBR
@ thisrow, 43 SAY SUBSTR(DOC_NUMBER,7,4)
@ thisrow, 57 SAY EDD
@ thisrow, 63 SAY QTY_ORDERD
SKIP
thisrow = thisrow + 1
ENDDO

IF set_to_top

GOTO toprec

currow = scrltop
ELSE

SKIP -1

currow = thisrow -1
ENDIF

RETURN

kA%

%x C:\CLIP\INSPECT.PRG : Add, Edit, Browse, Delete, Search
(standalone)
x Generated on March 11, 1990

120

*** Source .WW file: C:\UI\WW\INSPECT.WW

*** Target environment: Clipper Summer 87

*x*x Modified by K. Tanzer on 11 Mar 90 for use with LIMP
vVi.o0

x environment stuff
* environment

SET SCOREBOARD off
SET CONFIRM off

SET CURSOR ON

* menu initialization
PRIVATE key

* DBF initialization
* Use database INSPECT
*x
SELECT 4
mLastArea = 4
GOTO TOP
LOCATE FOR ORG_NUMBER = mLastOrg
IF .NOT. FOUND()
GOTO TOP
ENDIF

ARRARRRARARA AR AR AR RRR AR AR R R KR AR R A AR AR A AR ARA R AR AR R AR AR AR AR AR A
RkkAkARRkAkAAkXk XX
*x

main menu loop:

iterates once for each time an option action is performed.
this loop calls procedures to perform selected actions.
{Procedures are defined below this loop)

* % % % »

*
REARARKARRRRAR AR AR R AR RR R RRAARR AR AR RR AR R R AR R AR R AA KR AR A A A ARAARAR
L EEE R RS R RS R

* display fixed text
SET COLOR TO &c_normal
CLEAR
SET COLOR TO &c_normal
@ 0, 0, 22, 79 BOX 'r_1$J_L|'
SET COLOR TO &c_selecte
1,1,21,78 BOX ' '
1, 21 SAY 'Inspection and Discrepancy Information'
. 2 SAY 'Wing:'+space(33)+'Last Inspection:’
, 2 SAY 'Squadron:'+space(29)+'Next Inspection Due:'
. 2 SAY 'Branch:’
, 2 SAY 'Office Symbol:'
. 38 SAY 'Org Number:'
. 15 SAY 'Inspection Results'
, 2 SAY 'Date:’
10, 2 SAY 'Discrepancy:’
11, 2 SAY 'Reference:'’
12, 2 SAY 'Response:’

X NN NN NN N N NN
WONAU & W

121

@ 13, 2 SAY 'Follow Up (Y/N): Reinspection on:'

@ 14, 2 SAY 'STATUS:'

@ 24,1 SAY ' | | | | |

@ 21,2 SAY ' Next ' l l

@ 24,9 SAY ' Prev ' .
@ 24,16 SAY ' First '

@ 24,24 SAY ' Last '

@ 24,38 SAY ' Search ' .
@ 24,47 sAY ' Edit '

@ 24,54 SAY ' Append '

@ 24,63 SAY ' Delete '

@ 24,72 SAY ' Quit '

DO WHILE .t.
help_code = 'inspect'

* display entry record
DO inspdisp

REKXRXRRAKRRXRRARRRRRARRRRKRARKRRRRN R AR A AR A RAARR AR R AR AR AN A AR A ARk kkk kX
XXX

* user selects action here

REARKAR KA RAA KA KA AR RRRAKR A AR AR AKX AR R AR RARRRARA AR AR AR AR A A A A XA XXk kkkkk
Xk R

SET COLOR TO &c_unselected

@ 24,2 PROMPT ' Next '

@ 24,9 PROMPT ' Prev '

@ 24,16 PROMPT ' First '
@ 24,24 PROMPT ' Last '

@ 24,38 PROMPT ' Search '
@ 24,47 PROMPT ' Edit '

@ 24,54 PROMPT ' Append
@ 24,63 PROMPT ' Delete '
@ 24,72 PROMPT ' Quit '

MENU TO key

* perform selected option
DO CASE
CASE key =1
DO inspnext
CASE key =2
DO inspprev
CASE key =3 s
DO inspfirst
CASE key =4
DO insplast
CASE key =5
DO inspsearch
CASE key =6

122

DO inspedit
CASE key =7

DO inspapprec
CASE key =8

DO inspdelrec
CASE key =9

DO inspquit

RETURN

ENDCASE

ENDDO
RETURN
AARKRAARRRRARRRRRRRAAKRAAARAX%x END OF MENU PROCEDURE

RERARARAKRKRARRRXAKR KRR X % %k k%

AERKRRRAARRAARRAARARRRRRARRRRRARRRRARRRAARARR AR A XRR AR KRR R AR KR A A A X X
RkRRRRX kR XXX
x

* action procedures:

* the following are called by the menu loop above.
x

KRAKXRARRARKRKARARARARR AR RRRRARARKXAKRRARR AR A AR RARRA AR AR AR ARAR AR R R A AR
kkkhkkkhkhkhkkkkkxk

ARRERRKRRKRRRAKRRRARRRR A AR A AR RKR AR XA KAR

* inspnext: go to next record
ARXRRRRRRRARXRRRRRRR AR RR R AR ARARRA AKX AKX
PROC inspnext
SKIP
IF eof ()

GOTO BOTTOM

DO statmsg with 'End of file!'
ELSE

DO statmsg with ''

mLastOrg = ORG_NUMBER

DO inspdisp
ENDIF
RETURN

ARERRARARAARRAARRRRRRARRRRRRAR AR R

* inspprev: go to previous record
ARXRRRARRRARRRAKRARAXRARARRRRARRAXRARRARRR
PROC inspprev
SKIP -1
IF bof ()

GOTO TOP

DO statmsg with 'Beginning of file!’
ELSE

DO statmsg with ''

mLastOrg = ORG_NUMBER

123

DO inspdisp
ENDIF
RETURN

AARXRAXEXAXARKRRRAARRAARRRRA AR AR KRR AR R A R X

* inspfirst: go to first record
ARARRXAKXRRXRRRAXARARRRR R AR AR R AR AR R R
PROC inspfirst
GOTO TOP
DO statmsg with ''
mLastOrg = ORG_NUMBER
DO inspdisp
RETURN

RAXARRARARARAARRRA R AR AR KR A AR AR AR AR AKX

* insplast: go to last record
RERREE AR KA KRR AR A AR R AR AR AR R AR ARk A k%
PROC insplast
GOTO BOTTOM
DO statmsg with '°
mLastOrg = ORG_NUMBER
DO inspdisp
RETURN

LR R E SRR R SRR SR SRR SRR R 2 s Rt g R R R 2 R 8
KRARKRkA AR R A AR ANk KX

* inspsearch: search for a record, given entry into desired

criterion fields
AR XRAERRRRRARRRRRRARRRARRR AR RRRRRRRRRRRR AR A AR R R AR A A A AR A RXA R ARRXRKX K

IR R E R R R SRS R EES S

PROC inspsearch
PRIV searchval,orecno
help_code = 'inspsearch'
searchval = space(6)
DO statmsg with '°
@ 23,2 SAY 'Enter Org/Shop number: ' GET searchval PICTURE
'@! NNNNN'
READ
orecno = recno()
SEEK searchval
IF .NOT. FOUND()
GOTO orecno
DO statmsg with 'Organization number not found!'
ELSE
DO statmsg with ''
mLastOrg = ORG_NUMBER
DO inspdisp
ENDIF
RETURN

124

AAAKRAKARRAR KA ARRAKRRRRARA KRR AR R Ak A%

* inspedit: edit current record
AREXARRARAXRRRRRRR XA AR REAARXR AR AR Rk K k%

PROC inspedit

2 create memvar duplicates for all fields
PRIVATE mLAST_INSP, mNEXT_INSP, mDISC_DATE, mORG
PRIVATE mFOLLOW, mFOLLOW_UP, mSTATUS

help_code = 'inspedit'

x . _and initialize 'em
mLAST_INSP = LAST_INSP
mMNEXT_INSP = NEXT_INSP
mMORG = ORG_NUMBER
mDISC_DATE = DISC_DATE
mFOLLOW = 'N'

mFOLLOW_UP = FOLLOW_UP
mSTATUS = STATUS

DO statmsg with 'Edit record. “W to save; Esc to abandon'

*** get input fields into memvar duplicates
@ 3, 57 GET mLAST_INSP

@ 4, 61 GET mNEXT_INSP

@ 6, 50 GET mORG PICTURE '@! NNNNNN'

@ 9, 8 GET mDISC_DATE

READ

DO Fred

@ 13, 19 GET mFOLLOW PICTURE 'Y’

READ

IF mFOLLOW = 'Y' && reinspection needed

mFOLLOW_UP = mFOLLOW_UP + 30

@ 13, 40 GET mFOLLOW_UP
ENDIF
@ 14, 10 GET mSTATUS PICTURE '@! AAAAA'
READ

IF lastkey() = 27 && user escaped out of READ
RETURN
ENDIF

REPLACE LAST_INSP WITH mLAST_INSP
REPLACE NEXT_INSP WITH mNEXT_INSP
REPLACE ORG_NUMBER WITH UPPER (mORG)
REPLACE DISC_DATE WITH mDISC_DATE
REPLACE FOLLOW_UP WITH mFOLLOW_UP
REPLACE STATUS WITH UPPER (mSTATUS)

mLastOrg = ORG_NUMBER

DO inspdisp
RETURN

125

REARKRRRAARAKAXRXARXAR R A AR AR A AR X K k&

* inspapprec: append new record
RERERAKERAARA KA A ARR AR AR A kA AR XKk k kX

PROC inspapprec

x create memvar duplicates for all fields
PRIVATE mLAST_INSP, mNEXT_INSP, mDISC_DATE, mDISCREPNCY,
mREFERENCE, mORG

PRIVATE mRESPONSE, mFOLLOW, mSTATUS
help_code = 'inspappnd'

xxx ___and initialize 'em

mLAST_INSP = DATE()

WNEXT_INSP = DATE()+30

mORG = SPACE(5)

mDISC_DATE = DATE()

mFOLLOW_UP = DATE()

mFOLLOW 'Yy’

mSTATUS 'OPEN'

** Erase several blocks of the new record
3, 9 SAY SPACE(10)

4,13 SAY SPACE(12)

5,11 SAY SPACE(25)

6,18 SAY SPACE(10)

3,57 SAY SPACZ=(8)

4,61 SAY SPACE(8)

9,8 SAY SPACE(8)

10,16 CLEAR TO 12,76

14,10 SAY SPACE(6)

PHOOHBOBBOD »

DO statmsg with 'Enter new record. “W to save; Esc to
abandon’

*** get input fields into memvar duplicates
@ 6, 50 GET mORG PICTURE '@! NNNNNN'
@ 3, 57 GET mLAST_INSP
@ 4, 61 GET mNEXT_INSP
@ 9, 8 GET mDISC_DATE
@ 13, 19 GET mFOLLOW PICTURE 'Y’
READ
IF mFOLLOW = 'Y’ && reinspection needed
mFOLLOW_UP = mFOLLOW_UP + 30
@ 13, 40 GET mFOLLOW_UP
READ
ENDIF
@ 14, 10 GET mSTATUS PICTURE '@! AAAAAA'
READ

IF lastkey() = 27 && user escaped out of READ

RETURN
ENDIF

126

* append into DBF fields

APPEND BLANK

REPLACE LAST_INSP WITH mLAST_INSP

REPLACE NEXT_INSP WITH mNEXT_INSP

REPLACE ORG_NUMBER WITH UPPER (mORG)

REPLACE DISC_DATE WITH mPISC_DATE

REPLACE FOLLOW_UP WITH mFOLLOW_UP

REPLACE STATUS WITH UPPER (mSTATUS)

DO Fred && This way the memo fields are empty!
mBACKUP = .T.

REINDEX

mLastOrg = ORG_NUMBER
DO inspdisp
RETURN

AREARKXA KRR AR KR RR R R AR KRR RARARA AR AR AR AR AR AR R AR AR A RR AR AR A RR AR KX
AkkkXkkxX

* Fred : edit the DISCREPNCY, REFERENCE and RESPONSE Memo
fields

REARREARKARR AR AR AR ARARARARAR XA AR AKX RRARRNRR AR R R KRR AR AR A A A AR AR AR A R Rk kX X
XAk Kkkkikxk

PROC Fred

SET CURSOR ON

SET COLOR TO &c_selected

@ 16, 1, 21, 61 BOX ' — |d-L]"
help_code = 'fred’

DO statmsg with 'Enter Discrepancy info: “W to Save, ESC to
abort'
REPLACE DISCREPNCY WITH MEMOEDIT(DISCREPNCY, 17,2,20,60,.T.)

DO statmsg with 'Enter Reference. “W to Save, ESC to abort'
REPLACE REFERENCE WITH MEMOEDIT (REFERENCE, 17,2,20,60,.T.)

DO statmsg with 'Enter User Response. “W to Save, ESC to
abort'
REPLACE RESPONSE WITH MEMOEDIT(RESPONSE, 17,2,20,60,.T.)

DO statmsg with '°

SET COLOR TO &c_unselected
SET CURSOR OFF

RETURN

RRARARRARRRRARRARRAANRRARRARA AR RARARRARRA R AR AR R A Rk kX

* inspdelrec: delete record. If deleted, recall
RRARRRARARARRRRARRAARRRAARXRA R ARARRAARXRAA KRR R AR R AR Kk kX
PROC inspdelrec
IF .not. deleted()

DELETE

127

mINSPECT = .T.
ELSE
RECALL
ENDIF
DO statmsg with '
mLastOrg = ORG_NUMBER
DO inspdisp
RETURN

ARXRAAXRARRR KRR AR AR R ERRR AR R AR A AR RRRK
* inspquit: various quit things
RRRARRAAERRARRARARARRRRREARRRRARARAR AR R AR
PROC inspquit

SET COLOR TO &c_normal

SET CURSOR OFF

CLEAR

RETURN

ARKAAR AKX AR R AR R A AR AR AR R AR KRR AR R R AR AR AARA R A AR AR AR A AR AR AR R R AR kR
Rkkkkihkkk

* inspdisp: displays current record, along with recno() and
deleted ()

ARARAKRKARRRXAA R KRR AR RR AR R AR AR R AR A RR R AR R R AR AR AR KRR RRARRRARARA R R AR AR RN
Rkkhkkkk kX
PROC inspdisp
PRIV searchwval,mblank
SELECT 4
mLastArea = 4
@ 6, 50 GET ORG_NUMBER
searchval = ORG_NUMBER
SELECT 2 && Switch to the ORGDATA datalkase
mLastArea = 2
SEEK (searchval)
IF eof ()
DO statmsg with 'You need to define this organization.'
ELSE
@ 3, 9 GET WING
@ 4, 13 GET SQUADRON
@ 5, 11 GET BRANCH
@ 6, 18 GET OFFICE
ENDIF
SELECT 4 && Switch back to the INSPECT
database
mLastArea = {4
@ 3, 57 GET LAST_INSP
@ 4, 61 GET NEXT_INSP
@ 9, 8 GET DISC_DATE
mblank = space(60)
@ 10, 16 CLEAR TO 12, 76
@ 10, 16 SAY MEMOLINE(DISCREPNCY,S50,1)
@ 11, 16 SAY MEMOLINE (REFERENCE,60,1)
@ 12, 16 SAY MEMOLINE (RESPONSE,60,1)

128

@ 17, 2 CLEAR TO 20, 60
@ 13, 40 GET FOLLOW_UP
@ 14, 10 GET STATUS

CLEAR GETS

@ 23,70 SAY iif(deleted(),'Deleted’',’ ')
SET COLOR TO &c_unselected

RETURN

kX%

*%x% C:\CLIP\LISTINGS.PRG : Main menu.
x*%* Generated March 17, 1990 from C:\UI\WW\LISTINGS.WW

x Target environment: Clipper Summer 87
* Xk %k

* menu initialization

PRIVATE optkeys, numopts, oldchoice, newchoice, key, mTemp,
mTime, mDate

optkeys = "ADIOQ"

numopts =
oldchoice
newchoice
key =0
mKey = 78
help_code = 'listings'

m

0
1

* inkey aliases
PRIVATE RKRup,REKdn,RKrt,RK1lt,RKret,RKspc

RRup = 5
RKdn = 24
RKrt = 4
RK1lt = 19
RKret = 13
RKspc = 32

* main loop: iterates once for each time an option action is
performed
DO WHILE .t.

* display the menu screen

CLEAR

SET COLOR TO &c_normal

@ 0, 0, 4, 80 BOX "r-1|1-l "

@ 2, 27 SAY "Reports and Listings Menu"

SET COLOR TO &c_normal

@6, 0, 9, 40 BOX " puy |dmbk] "

SET COLOR TO &c_unselected

@ 7, 2 SAY "A Report of all Authorized"
@ 8, 2 SAY "Items (All WRM Auth's)"

SET COLOR TO &c_normal

@ 10, 0, 13, 40 BOX "HI"""l "

SET COLOR TO &c_unselected

@ 11, 2 SAY "D Report of all Authorized”

129

-

@ 12, 2 SAY "Items and all details"

SET COLOR TO &c_normal

@ 14, 0, 17, 40 BOX " puuy [d=E] "

SET COLOR TO &c_unselected

@ 15, 2 SAY "I Report of all Inspections"”

SET COLOR TO &c_normal

@ 18, 0, 21, 40 BOX ".—illgl.l "

SET COLOR TO &c_unselected

@ 19, 2 SAY "O Report of all Organizations"”
@ 20, 2 SAY "Points of Contact info"

SET COLOR TO &c_normal

@ 22, 0, 24, 40 BOX " J4=k] "

SET COLOR TO &c_unselected

@ 23, 2 SAY "Q Return to Main Menu"

* keyhit loop: iterates ones for each key input, breaks on

selection

DO WHILE .t.

* if selected option has changed, update the bounce-bar
IF oldchoice<>newchoice

* highlight new option

DO CASE

CASE newchoice =1

SET COLOR TO &c_normal

@ 6, 0, 9, 40 BOX " gy [d=E]”

SET COLOR TO &c_selected

@ 7,1,8,39 BOX " "

@ 7, 2 SAY "A Report of all Authorized"

@ 8, 2 SAY "Items (All WRM Auth's)"
help_code = 'allauth'

CASE newchoice =2
SET COLOR TO &c_normal
@ 10, O, 13, 40 BOX " Jd=L]"
SET COLOR TO &c_selecte
@ 11,1,12,39 BOX " "
@ 11, 2 SAY "D Report of all Authorized"
@ 12, 2 SAY "Items and all details"”
help_code = 'authplus'

CASE newchoice =3
SET COLOR TO &c_normal
@ 14, 0, 17, 40 BOX " [4=L]"
SET COLOR TO &c_selecte
@ 15,1,16,39 BOX " "
@ 15, 2 SAY "I Report of all Inspections"
help_code = 'dueinsp’

CASE newchoice =4

130

-~

SET COLOR TO &c_normal

@ 18, 0, 21, 40 BOX " [2=L}"

SET COLOR TO &c_selecte

@ 19,1,20,39 BOX " "

@ 19, 2 SAY "O Report of all Organization"

@ 20, 2 SAY "Points of Contact info"
help_code = 'pocinfo’

CASE newchoice =5
SET COLOR TO &c_normal
@ 22, 0, 24, 40 BOX " j3=L]"
SET COLOR TO &c_selecte
@ 23,1,23,39 BOX " "
@ 23, 2 SAY "Q Return to Main Menu"
help_code = 'listings'’

ENDCASE

* reset oldchoice for another pass
oldchoice =newchoice
ENDIF

* jf return has been hit

IF key=RKret .or. at(upper (chr(key)), optkeys) > 0
SET COLOR TO &c_normal
* fall out to action loop
EXIT

ENDIF

* get key input
key=inkey(0)

* update choice number based on key response
DO CASE
* down/right arrow: increment choice or wrap
CASE key =RKdn .or. key =RKrt .or. key = RKspc
newchoice = iif(oldchoice=numopts,1l,o0ldchoice+l)
* up/left arrow: decrement choice or wrap
CASE key = RRup .or. key = RK1lt
newchoice = iif(oldchoice=1,numopts,oldchoice-1)
* option trigger: set choice to option
CASE at(upper(chr(key)), optkeys) > 0
newchoice = at(upper(chr(key)), optkeys)
ENDCASE

IF oldchoice<>newchoice
* Jowlight old option
DO CASE

CASE oldchoice =1
SET COLOR TO &c_normal
@6, 0, 9, 40 BOX " pumg |[2=L|"
SET COLOR TO &c_unselected
@ 7,1,8,39 BOX " "

131

@ 7, 2 SAY "A Report of all Authorized"”
@ 8, 2 SAY "Items (All WRM Auth's)"

CASE oldchoice =2
SET COLOR TO &c_normal
@ 10, 0, 13, 40 BOX " EELT
SET COLOR TO &c_unselected
@ 11,1,12,39 BOX " "
@ 11, 2 SAY "D Report of all Authorized"
@ 12, 2 SAY "Items and all details"
CASE oldchoice =3
SET COLOR TO &c_normal
@ 14, 0, 17, 40 BOX " pumy |d=E|"
SET COLOR TO &c_unselected
@ 15,1,16,39 BOX " "
@ 15, 2 SAY "I Report of all Inspections"

CASE oldchoice =4
SET COLOR TO &c_normal
@ 18, 0, 21, 40 BOX " puuy |d=L]"
SET COLOR TO &c_unselected
@ 19,1,20,39 BOX " "
@ 19, 2 SAY "O Report of all Organization"”
@ 20, 2 SAY "Points of Contact info"

CASE oldchoice =5
SET COLOR TO &c_normal
@ 22, 0, 24, 40 BOX " puuy [da=i]"
SET COLOR TO &c_unselected
@ 23,1,23,39 BOX " "
@ 23, 2 SAY "Q Return to Main Menu"

ENDCASE
ENDIF

* end of keyhit loop
ENDDO

IF newchoice <> 5
CLEAR GETS
mTemp = 'N’
SET COLOR TO &c_selected
@ 10, 42, 14, 70 BOX " j3=L] "
@ 11, 44 SAY "Send Repgzl to Printer?"
@ 12, 55 SAY 'Y/N' GET mTemp PICTURE "Y"
READ
ENDIF

* perform selected option
DO CASE

CASE newchoice =1
SELECT 1

132

mLastArea = 1
IF mTemp = 'Y’

REPORT FORM All_Auth TO PRINT
ELSE

REPORT FORM All_Auth ALL
ENDIF
RETURN

CASE newchoice =2
SELECT 4
mLastArea = 4
DO AllAuth2 with mTemp
RETURN

CASE newchoice =3

SELECT 4
mLastArea = 4

CLEAR GETS

mTime = 30

@ 10, 42, 14, 75 BOX 'r_‘|J=L|

@ 11, 44 SAY 'How many days from today?' GET mTime

PICTURE '999"'

READ

mDate = DATE() + mTime

IF mTemp = 'Y’

REPORT FORM INSPECT FOR NEXT_INSP <= mDate TO PRINT
ELSE

REPORT FORM INSPECT FOR NEXT_INSP <= mDate
ENDIF
RETURN

CASE newchoice =4
SELECT 2
mLastArea = 2
IF mTemp = 'Y’
REPORT FORM AllOrgs TO PRINT
ELSE
REPORT FORM AllO0rgs
ENDIF
RETURN

CASE newchoice =5
RETURN

ENDCASE
* set old choice var to 0 so we get a highlight on the
current option

oldchoice = 0

* and set key input var to 0 so we don't fall out again
key = 0

ENDDO

133

RETURN* % %
**x%* C:\CLIP\READIN.PRG : Main meau.
x Generated March 18, 1990 from

x Target environment: Clipper Summer 87
Ttk

* environment
SET SCOREBOARD off
SET CONFIRM off

* menu initialization

PRIVATE optkeys, numopts, oldchoice, newchoice, key
optkeys = 'RBDQ'

numopts = 4

oldchoice = 0
newchoice = 1

key =0

help_code = 'readin’

* jnkey aliases
PRIVATE RKup,RKdn,RKrt,RK1lt,RKret,RKspc

RRKup = 5
RKdn = 24
RRKrt = 4
RK1lt = 19
RKret = 13
RKspc = 32

* main loop: iterates once for each time an option action
performed
DO WHILE .t.

* display the menu screen

SET COLOR TO &c_normal

CLEAR

SET COLOR TO &c_normal

@ 0, 0, 3, 79 BOX 'r-1|J-L|'

SET COLOR TO &c_selected

@ 1,1,2,78 BOX ' '

@ 1, 28 SAY 'DataBase Management Menu'
SET COLOR TO &c_unselected

4, 0, 8, 31 BOX ° J—L| !

5, 1 SAY 'R Read In SBSS Data'

6, 3 SAY '(Replaces all authorization'
7, 2 SAY 'and supply detail documents)'
10, 0, 14, 31 BOX 'r—1|J—L| !

11, 1 SAY 'B Backup current DataBases'
12, 5 SAY '(Do this weekly!)'

16, 0, 20, 31 BOX 'r_1|J-L] :

17, 1 SAY 'D Restore previously saved'
18, 5 SAY 'DataBases (ie, the ones'

19, 4 SAY 'you backed up weekly...)'
10, 40, 14, 70 BOX ' —|d4-L] '

12, 42 SAY 'Q Return to Main Menu'

134

* keyhit loop: iterates ones for each key input, breaks
on selection
DO WHILE .t.

* if selected option has changed, update the
bounce-bar
IF oldchoice<>newchoice
* highlight new option
DO CASE

CASE newchoice =1
SET COLOR TO &c_normal
@ 4, 0, 8, 31 BOX ' — [{-L}’
SET COLOR TO &c_selected
@ 5,1,7,30 BOX ' '
@ 5, 1 SAY 'R Read In SBSS Extracted Data'’
@ 6, 3 SAY '(Replaces all authorization'
@ 7, 2 SAY 'and supply detail documents)'
help_code = 'extract'

CASE newchoice =2
SET COLOR TO &c_normal
@ 10, 0, 14, 31 BOX ' EEI N
SET COLOR TO &c_selecte
@ 11,1,13,30 BOX ° !
@ 11, 1 SAY 'B Backup current DataBases'’
@ 12, 5 SAY '(Do this weekly!)'
help _code = 'backup'

CASE newchoice =3
SET COLOR TO &c_normal
@ 16, 0, 20, 31 BOX ' [4-t]"
SET COLOR TO &c_selecgza
@ 17,1,19,30 BOX ' !
@ 17, 1 SAY 'D Restore previously saved'
@ 18, 5 SAY 'DataBases (ie, the ones'’
@ 19, 4 SAY 'you backed up weekly...)'
help_code = 'restore’

CASE newchoice =4
SET COLOR TO &c_normal
@ 10, 40, 14, 7C BOX 'r_1|J_L|'
SET COLOR TO &c_selected
® 11,41,13,69 BOX ° '
@ 12, 42 SAY 'Q Return to Main Menu'
help_code = 'readin'’

ENDCASE
* reset oldchoice for another pass

oldchoice =newchoice
ENDIF

135

d

* if return or an option trigger has been hit, perform
the option
IF key=RKret .or. at(upper (chr(key)), optkeys) >0
SET COLOR TO &c_normal
* £fall out to action loop
EXIT
ENDIF

* get key input
key=inkey (0)

* update choice number based on key response
DO CASE
* down/right arrow: increment choice or wrap
CASE key =RRKdn .or. key =RKrt .or. key = RKspc
newchoice =
iif (oldchoice=numopts,1l,o0ldchoice+l)
* up/left arrow: decrement choice or wrap
CASE key = RKup .or. key = RK1lt
newchoice =
iif (oldchoice=1,numopts,oldchoice-1)
* option trigger: set choice to option
CASE at(upper (chr(key)), optkeys) > 0
newchoice = at(upper(chr(key)), optkeys)
ENDCASE

IF oldchoice<>newchoice
* lowlight old option
DO CASE

CASE oldchoice =1
SET COLOR TO &c_normal
@4, 0, 8, 31 BOX ' — |d-L]"
SET COLOR TO &c_unselected
@ 5,1,7,30 BOoxX ' !
@ 5, 1 SAY 'R Read In SBSS Extracted Data'
@ 6, 3 SAY '(Replaces all authorization'
@ 7, 2 SAY 'and supply detail documents)'

CASE oldchoice =2
SET COLOR TO &c_normal
@ 10, 0, 14, 31 BOX ' — [J-L}’
SET COLOR TO &c_unselected
@ 11,1,13,30 BOX ' '
@ 11, 1 SAY 'B Backup current DataBases'
@ 12, 5 SAY '(Do this weekly!)'

CASE oldchoice =3
SET COLOR TO &c_normal
@ 16, 0, 20, 31 BOX ' — [4-L]|°
SET COLOR TO &c_unselected
@ 17,1,19,30 BOX ' !
@ 17, 1 SAY 'D Restore previously saved'
@ 18, 5 SAY 'DataBases (ie, the ones'

136

-

@ 19, 4 SAY 'you backed up weekly...)'

CASE oldchoice =4
SET COLOR TO &c_normal
@ 10, 40, 14, 70 BOX 'r—1$J—L|'
SET COLOR TO &c_unselecte
@ 11,41,13,69 BOX ° !
@ 12, 42 SAY 'Q Return to Main Menu'

ENDCASE
ENDIF

* end of keyhit loop
ENDDO

* perform selected option
DO CASE

CASE newchoice =1
DO NewDataln
RETURN

CASE newchoice =2
PO Backup
RETURN

CASE newchoice =3
DO Restore
RETURN

CASE newchoice =4
RETURN

ENDCASE

* set old choice var to 0 so we get a highlight on the
current option
oldchoice =0

* and set key input var to 0 so we don't fall out again
key =0

ENDDO
RETURN

ARRAAKRRAAKRRRARRRARARRRRRRRRARARR AR AR KRR AR RARRAA KRR AR AR AR A K AR

* Replace existing Basic and Document DataBases with
* SBSS output using a QLP or SURGE program

KRARRRAXRRRRRAARKRRRRRRKRRRAARARRARRRKARRRARAXRRARARRAR KRR AKX

PROC NewDataln
PRIVATE mTemn,orecno

mTemp = 'N’

137

mAvail = .F.
CLEAR GETS
* Need to get a confirmation here before executing
SET COLOR TO &c_selected
@ 19, 15, 21, 55 BOA '[—|4-L] '
@ 19, 19 SAY 'Are you sure you want to do this?'
@ 20, 17 GET mTemp PICTURE 'Y’
READ
IF mTemp = 'Y’
* Open a window to enter drive path designation
DO GetDrive
IF mAvail = .T.
SELECT 9
mLastArea = 9
USE TEMP
APPEND FROM A:\WRM.DAT WHILE .NOT. eof() SDF

SELECT 1
mLastArea 1
ZAP && clean out document.dbf

SELECT 3
mLastArea 3
ZAP && clean out basic.dbf

SELECT 9 && Use Temp.dbf
mLastArea = 9
GOTO TOP

orecno = RECNO()

DO WHILE .NOT. eof() && Begin While Loop
GOTO orecno
mTemp = SUBSTR(TEMP->Big,1,3)
IF mTemp ='EOF'

SKIP
orecno = RECNO()
ELSE
mTemp = SUBSTR (TEMP->Big,94.,1)
IF mTemp = 'O’ && Due-Out
* Extract into DOCUMENT.DBF
SELECT 3

mlLastArea = 3
* extract data elements into a new record
APPEND BLANK
REPLACE STOCK_NBR WITH SUBSTR(TEMP->Big,1,15)
REPLACE DOC_NUMBER WITH
SUBSTR (TEMP->Big,16,14)
REPLACE DOC_TYPE WITH ‘O’
REPLACE QTY_ORDERD WITH
VAL (SUBSTR (TEMP->Big, 30,5))
REPLACE DUE_IN_DOC WITH
‘I'+SUBSTR(TEMP->Big,17,5)+SUBSTR (TEMP->Big, 52, 8)
* Creates a Due_In_Document number
REPLACE STATUS WITH SUBSTR (TEMP->Big,60,2)

138

REPLACE EDD WITH VAL (SUBSTR(TEMP->Big,62,4))

ELSE
* Other details are MSK - 'Q’
* WRM/WCDO authorizations - 'w'
* High Priority MSK - 'u’

* Airborne and Non-Airborne WRSK- 'N’
* Extract into BASIC.DBF
SELECT 1
mLastArea = 1
* extract data elements into a new record
APPEND BLANK
REPLACE STOCK_NBR WITH SUBSTR(TEMP->Big,1,15)
REPLACE ATHRZD_QTY WITH
VAL (SUBSTR (TEMP->Big, 30,5))
REPLACE QTY_UNSUPP WITH
VAL (SUBSTR (TEMP->Big,43,5))
mNET_QTY = ATHRZD_QTY - QTY_UNSUPP
mQTY_SHORT = 0
REPLACE NET_QTY WITH mNET_QTY
REPLACE QTY_ONHAND WITH mNET_QTY
REPLACE QTY_SHORT WITH mQTY_SHORT
REPLACE SOURCE_DOC WITH
SUBSTR (TEMP->Big,16,14)
REPLACE DOC_TYPE WITH SUBSTR (TEMP->Big,94.,1)
REPLACE NOMENCLATR WITH
SUBSTR (TEMP->Big,52,19)
REPLACE UNIT_PRICE WITH
VAL (SUBSTR (TEMP->Big,71,10))/100
REPLACE ERRC_CODE WITH SUBSTR (TEMP->Big,82,3)
REPLACE UNIT_ISSUE WITH
SUBSTR (TEMP->Big, 85, 2)
REP:ACE ISG_NUMBER WITH
SUBSTR (TEMP->Big, 87,4)
REPLACE ISG_RELAT WITH SUBSTR(TEMP->Big,91,1)
REPLACE SHELF_LIFE WITH
SUBSTR (TEMP->Big,92,1)
ENDIF
SELECT 9 && Use Temp.dbf
mLastArea = 9
SKIP && Goto next record of temp.dbf
orecno = RECNO()
ENDIF
ENDDO && End of While loop

SELECT 1 && Reconstruct index files
mLastArea = 1
REINDEX

SELECT 3
mLastArea
REINDEX

L}
W

SELECT 9
mLastArea = 9

139

ZAP && CLEAN OUT TEMP.DBF

DO Checking && Checks for new NSN or Org/Shop
rodes
ENDIF
ELSE
RETURN
ENDIF

RETURN

RARXRRXA A RR A AR R RRR AR ARRRXAARRARARRRARR A A E AR AR RA AR R A KRR KA R Ak Ak kkhkkkkk
Xk k%
* Copy existing DataBases and Index Files to A:\ drive
ARXERRARAKXEAREARARRRRKR XX AR XRRXR R R RAR AR AR R AR KRR AR R AR A AR R AR AR Rk kR k&
RAKAkR
PROC Backup
* Open a window to enter drive path designation
DO GetDrive
IF mAvail = .T.
CLEAR SCREEN
* copy database files to destination disk
RUN COPY *.DBF A:*.DBF
CLEAR SCREEN
* copy memo files to destination disk
RUN COPY *.DBT A:*.DBT
CLEAR SCREEN
* copy index files to destination disk
RUN COPY *.NTX A:*.NTX
ENDIF
RETURN

RARKARRAKRRKRAKRRA AR RA KRR RARRRARAR AR R KRR KR ARRRRA AR A AR KRR AR AR R ARR R KA X

* Copy files from A:\ drive to working directory
AAREXXRRRRRRARARRRRRRRARXRRARRRRARRR AR R KRR AARA R AR R AR Rk kA kkkkk k%
PROC Restore
* Open a window to enter source drive path
DO GetDrive
IF mAvail = .T.
CLEAR SCREEN
* copy databases from backup disk
RUN COPY A:*.DBF *.DBF
CLEAR SCREEN
* copy memo files from backup disk
RUN COPY A:*.DBT *.DBT
CLEAR SCREEN
* copy index files from backup disk
RUN COPY A:*.NTX *.NTX
ENDIF
RETURN

RRARRRRRARARRARRARXARRARRRRAARRARRRARRRARARRRRRARAA A ARKRA AR

140

* GetDrive checks for drive availability, and sets

* mAvail to .T. or .F.
ARRRARRARXRARRRAKRRRXRRRRARRARRARRRRARARRRRAR AR RAARRRRRRRA AR
PROC GetDrive

PUBLIC mAvail

PRIVATE mTemp

mAvail = FCREATE('A:\Temp.txt')

IF FERROR() <> O
mAvail = .F.
* Print an error message box
@ 19, 15, 21, 55 BOX 'r'ﬂlJ‘Ll !
@ 20, 19 SAY 'Cannot access the A: drive...'
DO Statmsg with 'Press any key to continue.'’
mTemp = INKFYI(0)

ELSE

mAvail = .T.

DO statmsg with '°
ENDIF
RETURN

ARRRRARERR AR AR R AR AR KR AR AR A AR R AR AR A AR R AR R AR AR A AR IR R AR AR R AR Ak k%
Kkkkhkhkkkkhkkkk

* PROC CHECKING - BY Kevin Tanzer

* - Check the Document.dbf database to ensure that a NSN
listed in the

* dbf exists in the Basic.dbf, if not it will add that NSN
with an

* UNKNOWN stock number.

* - Will also check that any organization listed

* in the Document.dbf exists in the Organiz.dbf, if not it
will add that

* organization number.
ARRRRRARRARRRRRARRARARRARARA A AR RR AR RRRRRRRAXRARAARNA AR R R ARR KRR A Xk X X

KRR ARKXRXR KR kR
PRIV orecno,searchval, searchval2

DO Statmsg with 'Checking for new NSNs'

SELECT 3
GOTO TOP
orecno = RECNO()

DO WHILE .NOT. EOF ()
searchval = STOCK_NBR
searchval2 = SUBSTR(DOC_NUMBER, 2,5)

SELECT 1
SEEK searchval
IF .NOT. FOUND({()
APPEND BLANK
REPLACE STOCK_NBR WITH searchval
REPLACE NOMENCLATR WITH 'UNKNOWN'
ENDIF

141

SELECT 2
LOCATE FOR ORG_NUMBR = searchval2
IF .NOT. FOUND()
APPEND BLANK
REPLAC® ORG_NUMBR WITH searchval2
REPLACE OFFICE WITH 'UNKNOWN'
ENDIF

SELECT 3

GOTO orecno

SKIP

orecno = RECNO()
ENDDO

SELECT 1
REINDEX

SELECT 2
SET UNIQUE ON && Prevents duplicate org/shop codes
REINDEX
SET UNIQUE OFF
mlLastArea = 2

RETURN
* %%

**x*x ClassPop created on 2 Apr by Kevin Tanzer
% kX
k%%

PRIVATE mKey
mKey = 89

SET COLOR TO &c_flashing

@ 10,5,15,74 BOX " d=L} "

@ 12,20 SAY "DO NO E FOR CLASSIFIED INFORMATION!!!"™
SET COLOR TO &c_normal

DO statmsg WITH "Press any key to continue..."

mKey = INKEY(O0)

CLEAR SCREEN

RETURN

XXk %

%%* ClassScr.prg created 2 Apr 90 by Kevin Tanzer
* % %k

LR R

PRIVATE mKey

mKey = 89
CLEAR SCREEN
CLEAR GETS
SET COLOR TO &c_normal
@ 0,0,23,79 BOX " |J_l! "
@ 3,29 SAY "SIMBL V2.0 (PROTOTYPE)"

142

»

@ 5,17 SAY "THIS PROGRAM IS NOT CLEARED FOR CLASSIFIED
DATA"
SET COLOR TO &c_flashing
@ 10,5,15,74 BOX " dt] "
@ 12,20 SAY "DO NO E FOR CLASSIFIED INFORMATION!!!"
SET COLOR TO &c_normal
DO statmsg with "Press any key to continue..."
mKey = INKEY(0)
CLEAR SCREEN
RETURN
*#** CLEANUP PROCEDURE
x% AUTHOR: CPT KEVIN TANZER ON 16 MAR 90
%x LAST UPDATE ON 21 APR 90
*** PACK DATABASES AND REINDEX

PRIVATE mKey
mKey = 'N'

IF mBACKUP = .T.
SET COLOR TO &c_normal
@ 10,5,16,74 BOX " d=bkf] "
CLEAR GETS — l !
@ 12,7 SAY "You have at added some data to the program,
would"
@ 14,10 SAY "you like to back up the new data?” GET mKey
PICTURE "Y"
READ
IF mKey = 'Y’
DO Backup
RETURN
ENDIF
ENDIF

IF mBASIC = .T.
SET COLOR TO &c_normal
@ 10,5,16,74 BOX " d=bk] "
CLEAR GETS f'1| I
@ 12,7 SAY "You have at least one authorization record
marked for"
@ 14,10 SAY "deletion, are you sure you want to do this?"
GET mKey PICTURE "Y"
SET COLOR TO &c_flashing
DO statmsg with "Press Y to confirm deletion, any other
key to abort"
READ
IF mKey = "Y"
SELECT 1
mLastArea =1
PACK
REINDEX
ELSE
SELECT 1
mLastArea = 1
RECALL ALL

143

DO statmsg with "Recovered all authorization records"
mKey = INKEY(5)
ENDIF
ENDIF

IF mORGDATA = .T.
SET COLOR TO &c_normal
@ 10,5,16,74 BO "r-1|J-L| "
@ 12,7 SAY "You have at least one organizational record
marked for"
@ 14,10 SAY "deletion, are you sure you want to do this?"
GET mKey PICTURE "Y"
SET COLOR TO &c_flashing
DO statmsg with "Press Y to confirm deletion, any other
key to abort"
READ
IF mKey = "Y"
SELECT 2
mLastArea =2
PACK
REINDEX
ELSE
SELECT 2
mLastArea = 2
RECALL ALL
DO statmsg with "Recovered all organizational records"
mKey = INKEY(5)
ENDIF
ENDIF

IF mDOCUMENT = .T.
SET COLOR TO &c_normal
@ 10,5,16,74 BOX "f=1|‘=l| "
@ 12,7 SAY "You have at least one document record marked
for"
@ 14,10 SAY "deletion, are you sure you want to do this?"
GET mKey PICTURE "Y"
SET COLOR TO &c_flashing
DO statmsg with "Press Y to confirm deletion, any other
key to abort"
READ
IF mKey = "Y"
SELECT 3
mLastArea = 3
PACK
REINDEX
ELSE
SELECT 3
mLastArea = 3
RECALL ALL
DO statmsg with "Recovered all document records"
mRKey = INKEY(5)
ENDIF
ENDIF

144

IF mINSPECT = .T.
SET COLOR TO &c_normal
@ 10,5,16,74 BOX " pumy |d=k] "
@ 12,7 SAY "You have at least one inspection record marked
for"
@ 14,10 SAY "deletion, are you sure you want to do this?"
GET mKey PICTURE "Y"
SET COLOR TO &c_flashing
DO statmsg with "Press Y to confirm deletion, any other
key to abort"
READ
IF mRKey = "Y"
SELECT 4
mLastArea = 4
PACK
REINDEX
ELSE
SELECT 4
mLastArea = 4
RECALL ALL
DO statmsg with "Recovered all inspection records"”
mRey = INKEY(5)
ENDIF
ENDIF

**%x CLOSE DATABASES, INDEXES
CLOSE ALL

SET COLOR TO &c_normal

CLEAR SCREEN

SET CURSOR ON
QUITH AR AR R AR AR KRR AR R AR AR R AR AR R AR AR K AR AR KRR AR R AR AR KARRARARARR

Rk AAhkkRRXkKkX

* PROC Doc_liook - Kevin Tanzer

* Translates a single parameter (1 letter) into a string,
* the letter is a detail type code, and returns a
plain-english

* description of the detail type
RAKRARRRARR KRR RARA R KRR R R AR XA R XA R AR R R RRRRARRR AR R AR R AR AR A AR R RR

ARRARARKRA XX

PARAMETERS d_type
PRIV mtemp

mtemp = d_type
DO CASE
CASE mtemp = 'O’
mDOC = 'Due Out'

CASE mtemp = 'W'
mDOC = 'WRM/WCDO'

CASE mtemp = 'N'
mDOC = 'NAWRSK'

145

CASE mtemp = 'U’
mDOC = 'WRSK/HPMSK'

CASE mtemp = 'Q"’
mDOC = °'MSK'

CASE mtemp = 'I'
mDOC = 'Due In'

ENDCASE
RETURNA A A A Rk A R A A R AR K R A A A A AR AR R A AR R AR KRR AR A AR R AR RARKRRRRAR AR AR
ARRKARKRRAKRRRRARR

* HELP.PRG - A context sensitive help program for use with
the

* Software for Inventory Management for the Base Logistician
(SIMBL)

*

* Written by Kevin M. Tanzer on 24 Apr 90

* Assumes a global variable HELP_CODE has been declared and
defined already.

* The three parameters are mandatory for the program, but
only

* the call_prg is used. It identifies the subroutine that
called for Help.

* The other two parameters could be used for very
context-sensitive help, but

* requires a lot more work.
RREKRAKARRARRRRARR R AR KRR RARARARRRRRR AR RRRAR R AR R AR AR R AR R A ARk k

AKRARARXAX XX

PARAMETERS call_prg, line_num, input_var

PRIV top_row,left_col,bottom_row,right_col
* variables for screen locations

IF call_prg = "HEL’ && Avoids recursive calling for Help
RETURN
ENDIF

top_row = 5

left_col = 8
bottom_row =
right_col = 7

18
2

SELECT 9
USE Help

LOCATE FOR HELP_KEY = help code && Help.dbf is not
indexedqd

IF FOUND()

SAVE SCREEN

* Create a box on the screen, and use the MemoEdit
function to display the

* contents of the memo field associated with the
HELP_KEY field. This

* ijs a variation of the help program from the Clipper
manual.

@ top_row-2, left_col-2 CLEAR TO bottom_row-1,
right_col-1
* Draws a shadow box underneath the Help box

@ top_row-1, left_col-1, bottom_row+l, right_col+l BOX

" 2=i
@ top_row-1,35 SAY " HELP BOX "

MEMOEDIT (HELP_TEXT, top_row,left_col,bottom_row,right_col, .F.
)
* Displays the memo field contents without editing

RESTORE SCREEN
ELSE

DO statmsg with "No help available..."
ENDIF

* Selects the database area that was active prior to the
Help call,

* otherwise you cause a mismatch upon returning to the
calling routine.

IF mLastArea 1
SELECT 1

ENDIF

fl
N

IF mLastArea
SELECT 2
ENDIF

i
w

IF mLastArea
SELECT 3
ENDIF

IF mLastArea = 4
SELECT 4
ENDIF

RETURN

147

10.

11.
12.

13.

14.

15.

Appendix D: Research Participants

Brown, Captain Bryan K., HQ TAC, TAC/LGXW, Langley AFB
VA.

Burke, Captain Mike, HQ PACAF, PACAF/LGXW, Hickam AFB
HI.

Dacyk, Captain Peter, 52 TFW/LGXW, Spangdahlem AB
Germany.

Degraffinreid, Technical Sergeant Willy L., HQ
MAC/LGXW, Scott AFB IL.

Ellenburg, Mr. Charles, 313 AD/LGXW, Kadena AB Japan.

Graham, Captain William, 43 BMW/LGXW, Anderson AFB
Guam.

Hagel, Major Stephen A., Air Force Logistics Management
Center, LMC/LGXW, Gunter AFB AL.

Holck, Captain Brad C., HQ USAFE, USAFE/LGXW, Ramstein
AB Germany.

MacDougal, Captain Damon L., 833 AD/LGXW, Holloman AFB
NM.

Mathews, Sergeant Williams Jr., 363 TFW/LGXW, Shaw AFB
SC.

Meyers, Mr. Thomas P., 3200 SPTW/LGX, Eglin AFB FL.

Michell, First Lieutenant Kimberly A., 92 BMW/LGXW,
Fairchild AFB WA.

Payne, Mr. Edward, 3 SUPS/LGXW, Clark AB Phillipine.

Stock, Chief Master Sergeant Joeseph P., HQ SAC, HQ
SAC/LGXW, Offut AFB NE.

Williams, Staff Sergeant Gerald R., 437 MAW/LGXW,
Charleston AFB SC.

148

10.

11.

Bibliography

Atre, Shaku. Data Base: Structured Techniques for
Design, Performance, and Management. New York: John
Wiley & Sons, 1988.

Barry., TSgt William L., NCOIC Computer Support Section.
Personal Interview. 4750th ABW Supply Squadron,
Wright-Patterson AFB OH, 1 Januaryv 1989.

Beard, Maj Phillip H. A Database Management System
Application for the Graduate Programs Office of the
School of Systems and Logistics, Volume 1l: Development
and User's Manual. MS Thesis, AFIT/GLM/LSG/88S-3.
School of Systems and Logistics, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, September
1988 (AD-A201557).

Bice, Lt Col Don L. Problems in the War Readiness
Materiel Equipment Prepositioning Program. Air Command
and Staff College, Maxwell AFB AL, June 1967 (AD-
A953192).

Brown, Capt Bryan K., WRM Plans and Programs, HQ
TAC/LGXW. Telephone Interview. Langely AFB VA, 6
November 1989.

Buck, Capt Stephen D. A DataBase Management System to
Manipulate Data Collected at the National Training
Center, Ft. Irwin, CA. MS Thesis, Naval Postgraduate
School, Monterey CA, June 1987 (AD-A183197).

Burke, Capt Mike., WRM Plans and Programs, HQ PACOPS
(Pacific Air Forces). Telephone Interview. Hickam AFB
HI, 7 December 1989.

Dacyk, Capt Peter., Logistics Plans and Programs.
Telephone Interview. Spangdahlem AB Germany, 7
December 1989.

Degraffinreid, TSgt Willy L., NCOIC WRM Plans and
Programs HQ MAC/LGXW. Telephone Interview. Scott
AFB IL, 7 December 1989.

Demers, W.A. "Too Many Spares?," Military Forum: 60-64
(March 1989).

Department of the Air Force. War Reserve Materiel
(WRM) Policy. AFR 400- 24. Washington DC: HQ USAF, 28
November 1986.

149

12.

13.

14.

15.

l1s6.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Elbra, R. A. Database for the Small Computer User.
Manchester England: NCC Publications, 1982.

Emory, William C. Business Research Methods. Homewood
Illinois: Irwin, 1985.

Hagel, Maj Stephen A., Air Force Logistics Management
Center, AFLMC/LGXW. Telephone Interview. Gunter AFB
AL, 4 October through 14 November, 1989.

Holck, Capt Brad C., Plans and Programs
USAFE/LGXW. Telephone Interview. Ramstein AB
Germany, 7 December 1989.

House, William C. Interactive Decision Oriented
Database Systems. New York: Petrocelli/Charter, 1977.

Kim, Maj Sam Nam and Capt Jae Bock Park. Application
of a DataBase System for Korean Military Personnel
Management. MS Thesis. Naval Postgraduate School,
Monterey CA, March 1987 (AD-2181663).

Rroenke, David. Database Processing. Chicago: Science
Research Associates, Inc., 1977.

Liskin, Miriam. "Which Dbase Is Right for You?,"
Personal Computing, 10: 113-121 (June 1986).

MacDougal, Capt Damon L., Chief, Logistics Plans and
Programs. Telephone Interview. Holloman AFB NM, 22
June 1989.

Martin, James A. Principles of Database Management.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1976.

Mitchell, Lt Kimberly A., Chief, Logistics Plans and
Programs. Telephone Interview. Fairchild AFB WA, 5
Jan 1990.

Peppers, Jerome G., History of United States Military
Logistics: 1935-1985. Huntsville AL: Logistics
Education Foundation Publishing, 1988.

Ritchhart, Maj Kenneth M. and Maj Robert L. Simmons,
The Student Mix Software System (SMSS). Air Command
and Staff College, Maxwell AFB AL, April 1986 (AD-
Al166689).

Smith, Lt Claire C. Supply Hotlist Report Generation
for Fleet Ballistic Submarine Management Meetings. MS
Thesis AFIT/GLM/LSM/87S-70. School of Systems and
Logistics, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, September 1987 (AD-A186677).

150

26.

27.

28.

29.

30.

Stephenson, Peter. "Telemagic: Telemarketing Package
Helps Keep Busy People Organized,"” InfoWorld, 10: 57
(June 27, 1988).

Stock, CMSgt Joeseph P., WRM Plans and Programs HQ
SAC. Telephone Interview. Offut AFB NE, 14
November 1989.

Study Proposal Project Submission. AFLMC Form 13,
Logistics Need ID: 88094 (October 1989).

Thomas, Capt Robert S. A Computer Based Data
Management System for Air Force War Reserve Materiel
(WRM) Vehicle Management. MS Thesis AFIT/GLM/LSM/88S-
70. School of Systems and Logistics, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
September 1988 (AD-A201573).

Vesely, Eric G. The Practioner's Blueprint for
Logical and Physical Database Design. Englewood
Cliffs NJ: Prentice-Hall, 1986.

151

Vita

Captain Kevin M. Tanzer «uiiNRSEhG G
QU e He graduated from Hampton High)

School in Hampton, New Hampshire in 1981, and attended the
University of New Hampshire, graduating with a Bachelor of
Art in Chemistry. Upon graduating, he received a reserve

commission through the Air Force Reserve Officer Training ;

Corps program. After a 9 month tour of Mather AFB,
California, he was the Fuels Management Officer at Holloman
AFB, New Mexico‘withiq the 833wSupply1§quadron. His duties
at Holloman AFB. focused on support of flying operations and
daily contactjwith maintenance and operations for two wings -
~ of tactical aircraft. There he was responsible for
vdirectinq refueling operations of over 250 aircraft sorties .
per day, dispensing over 36 million gallons of jet fuel each

&ear} until he entered the School of Systems and Logistics,

"Air Force Inétitute of Technology, in May 1989.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubiic reporting burden for this collection of information 15 estimated 10 average 1 hour per resporse. including the time for reviewing instructions, searching existing dats sources,
gathening and maintaimng the data needed, and compieting and reviewing the collection of information Send comments r arding this burden estimate or any other aspect of this
collectron of information, including suggestions for reducing this burden to wWashington Headguarters Services, Directorate for information Operations and Reports, 1215 Jetferson
Davis Highway, Suite 1204 Arlington, VA 22202-4302. and to the Otfice of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503 :

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1990 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
DEVELOPMENT OF SOFTWARE FOR THE BASE-LEVEL WAR

RESERVE MAT" °IELS (WRM) PROGRAM

6. AUTHOR(S)
Kevin M. Tanzer, Captain, USAF

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GLM/LSM/90S-58

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

\ /; .

\

T3 ABSTRACT (Maximum 200 words) This si#@y investigated the requirements for development of
a software program for managing War Reserve Materiel (WRM) consumable assests. Areas
examined included the requirements for collection, organization, and presentation of
data. The research also examined which computer language was appropriate for the
successful implementation, and acceptance by the users. A literature review revealed
numerous instances of software programs researched and developed to permit

management of other WRM program information. The research followed a ten step
methodology for developing a database management system application. As part of the
methodology, the researcher interviewed eleven experts to determine program
requirements. The study developed the prototype software, which was then evaluated
by an expert. Following correction of program flaws, a final version of the
prototype software was developed. The program was then delivered to fifteen experts
for evaluation. The program was accepted by 86.3% of the experts as being a useful

1
L

15. NUMBER OF PAGES
l6l

14. SUBJECT TERMS
Data Processing, Inventory Control, Computer Programs,

16. PRICE CODE

Military Equipment, Logistics Planning. /[/:JZ) - (/'/

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

Standard Form 298 {(Rev 2-89)
Prescribed by ANSI Std 239-18
298-102

