
d4&)-A229 729

044

Cz LE1O S TW.RE FOP.R HL

-;ELFESERVE

44

DEATET. F THE AR S-F5

~AIR -UNIVERSITY

AIR FORCE IN STITUTEOF TEGHNOLOGY

Wright-Patterson Air Force Base,',Obio

90 12 21 06]1

AFIT/GLM/LSM/90S-58

D TC
DEC S O i

DEVELOPMENT OF SOFTWARE FOR THE
BASE-LEVEL WAR RESERVE
MATERIELS (WRM) PROGRAM

THESIS

Kevin M. Tanzer, Captain, USAF

AFIT/GLM/LSM/90S-58

Approved for public release; distribution unlimited

The opinions and conclusions in this paper are those of the
author and are not intended to represent the official
position of the DOD, USAF, or any other government agency.

I . " J

--- -- --- ------

AFIT/GLM/LSM/90S-58

DEVELOPMENT OF SOFTWARE FOR THE

BASE-LEVEL WAR RESERVE MATERIELS (WRM) PROGRAM

THESIS

Presented to the Faculty of the School of

Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Masters of Science in Logistics Management

Kevin M. Tanzer, B.A.

Captain, USAF

September 1990

Approved for public release; distribution unlimited

Preface

The purpose of this research was to decide if a personal

computer application was useful for managing War Reserve

Materiel (WRM) information. The research required

interviews with several expert logisticians in offices

throughout the Air Force. Based on the requirements of the

experts, a database management system application was

developed. The computer application was then evaluated by a

group of users. The program was well received, and was

accepted by 86.7 % of the users as a useful tool. The

program should be further developed, expanded, and evaluated

in an operational environment.

In performing the research and writing of this thesis I

had the support of several people. I am indebted to my

advisor, Major Phil Beard for his patience and assistance,

particuarly the software utilities used to capture images of

the computer program screens. I also wish to thank my

friend Susan M. Coller for her understanding and patience on

the many evenings and weekends I had to work at my desk.

Kevin M. Tanzer

ii

Table of Contents

Page

Preface i

List of Figures v

Abstract vi

I. Introduction 1
General Issue 1
Problem Statement 4
Investigative Questions 4
Justification 5
Method of Treatment and Organization 5
Limitations of the Study 6
Assumptions 7
Summary of Chapter I 8

II. Literature Review 9
Introduction 9
Discussion of Literature 9

Database Management System 9
Hierarchical structure 11
Network structure 12
Relational structure 12

Characteristics of a Good Database 13
Data independence 13
Data redundancy 13
Data Integrity 13

Objectives of a Database 15
Selection of software 15
Similar applications of dBASE III Plus (tm) . 18
Summary of Chapter II 19

III. Methodology 21
Introduction 21
Program Design Cycle 21

Collect User Requirements 23
Verification of User Information 24
Derive Minimal Cover 25
Convert to Static Logical Database 25
Augment Static Logical Database 26
Conversion to Physical Database 28
Estimate Minimum Response Times 28
Optimizing for User Requirements 29
Version 2.0 Development 30

Program Validation 30
Summary of Chapter III 31

IV. Findings and Discussion 33
Introduction 33
User Requirements 33

iii

Page

Reports and Listings Requirements 41
Interface with the SBSS 45
Incorporating Good Database Design 46
Version 1.0 Evaluation 47

Program Objectives 47
Program Functions 48
Screen Appearance 50
Reports and Listings 51

Program Validation 52
Investigative Questions Answered 53
Summary of Chapter IV 55

V. Conclusion and Recommendations 57
Introduction 57
Results 57
Conclusions 59
Recommendations 60
Summary of Chapter V 61

Appendix A: Dictionary of Terms 62

Appendix B: User's Guide 66
Overview of Program 66
Required Hardware 66
Recommended Hardware 66
Installation 67
Program Functions 67

Main Menu 67
Authorizations 67
Supply Documents 70
Quantity Balances 71
Organizational Data 73
Authorizations with Details 74
Inspection and Discrepancies 74
Reports and Listings 76
Read In and Backup Databases 77
Quit Program 77

Using the Help function 78
Extracting SBSS Data 79
Catastrophic Disaster 79

Appendix C: Program Source Code 81

Appendix D: Research Participants 148

Bibliography 149

Vita 152

iv

List of Figures

Figure Page

1. Database development cycle 22

2. Use of a data field as foreign key 27

3. SIMBL program main menu 34

4. Authorization with supply details 35

5. Authorization screen 36

6. Supply documents screen 38

7. Organizational information screen 39

8. Inspection function screen 40

9. Detailed view of a memo 41

10. Menu for reports and listings 42

11. Menu for database management 46

12. Quantity balanceR screen 49

13. Program warning to avoid classified data 50

14. Confirmation box for deletions 51

15. Main menu screen 68

16. Authorization screen 69

17. Supply screen 70

18. Quantity balances screen 71

19. Organizational data screen 72

20. Authorization with supply documents 73

21. Inspection screen 75

22. Closeup of a memo field 75

23. Reports and listings menu screen 76

24. Database management menu 77

25. Confirmation box for deletions 78

v

AFIT/GLM/LSM/90S-58

Abstract

This study investigated the requirements for development

of a software program for managing War Reserve Materiel

(WRM) consumable assets. Areas examined included the

requirements for collection, organization, and presentation

of data. The research also examined which computer language

was appropriate for the program, interface requirements,

criteria for successful implementation, and acceptance by

the users. A literature review revealed numerous instances

of software programs researched and developed to permit

management of other WRM program information. The research

followed a ten step methodology for developing a database

management system application. As part of the methodology,

the researcher interviewed eleven experts to determine

program requirements. The study developed the prototype

software, which was then evaluated by an expert. Following

correction of program flaws, a final version of the

prototype software was develop. The program was then

delivered to fifteen experts for evaluation. The program

was accepted by 86.7% of the experts as being a useful tool

for managing a WRM program.

vi

DEVELOPMENT OF SOFTWARE FOR THE
BASE-LEVEL WAR RESERVE MATERIELS (WRM) PROGRAM

I. Introduction

General Issue

After the United States withdrew from Vietnam, the

individual services recognized the need for readily

available equipment and supplies for deploying forces. One

way to provide the equipment and supplies is to stockpile

them at convenient locations for use by deploying forces.

Since equipment and materiels cost money, stockpiling

results in trading cost for time -- the time it would take

to overcome production and delivery lead times.

In the early 1970's, the Army began an aggressive

program in Europe, called POMCUS (Pre-positioning of

Materiel Configured Unit Sets) with the aim of having fully

combat capable equipment available to arriving support

forces from the United States. The Navy began a similar

program in 1979, stationing 12 ships at Diego Garcia in the

Indian Ocean with enough supplies and equipment to support

three marine amphibious brigades (23:281). The Air Force

also recognized a need for pre-positioning of materiels

overseas, and set up the War Readiness Materiel program in

the mid 1960's. Many problems existed with the system:

incorrect inventory balances, wrong items included in the

1

program, and serious omissions (4:11). For example, gun

barrels and parts were included in the early WRM kits, but

not gun oil. Although many of the program problems have

been solved, the program is still scrutinized closely at the

base level. The most common concerns include actual (on-

hand) inventory amounts versus planned (authorized) amounts,

availability of some items from the supply system, and the

physical condition of items on-hand (20).

The aim of the War Reserve Materiel (WRM) program is to

give wartime support for US forces and allies. To meet this

objective, the WRM program covers

... authorization, acquisition, prepositioning,
prestockage, storage and maintenance of all WRM
needed to support HQ USAF approved wartime plans
and programs (11:1-1).

This charter covers a broad range of assets. There are many

classes of WRM assets: support equipment, munitions, WCDO

consumable items, vehicles, Harvest Bare, Harvest Eagle, and

Harvest Falcon equipment packages. Support equipment

includes aircraft repair parts and spares for aircraft.

Munitions are missiles, ordnance, explosives and related

materials; it also includes chaff and flares. WCDO

consumable items are expendable items directly related and

necessary for a weapons system or combat support (11:Attch

2). Not all vehicles are WRM items, only those specifically

authorized in the Table of Allowance (TA) 010. The Harvest

packages support personnel, maintenanc, and supply in a

bare base environment, and are used for deployment of either

flying or non-flying units. The Harvest Bare packages

2

include porta.)le housing, electrical generators, tents, mess

hall cooking equipment, and other items needed to set up and

maintain an 'instant' base at a prepared sight. Harvest

Eagle and Harvest Falcon are similar to Harvest Bare

packages, but are tailored in size and composition to

support just the personnel needed for deployment of an F-15

or F-16 aircraft package (11:5).

To help mana~e these items, several different listings,

or reports, are available from HQ USAF, the Major Commands

(MAJCOM) and from the supply computer system it the bases.

The task of reviewing, analyzing, and understanding the

listings used at the base level is challenging and needs

simplifying (28). Listings generated by computer systems at

the MAJCOM headquarters and at the base come in many

different formats. The base logistician frequently must go

through different reports to e.-tract data elements, and then

relate the separate data pieces. There is a need to

organize the mass of data presented to the base logistics

planner and to presert that data in an informative manner

(20).

The many assets involved in the War Reserve Materiels

program have put a heavy workload on the Logistics Plans and

Program office (LGX) at most bases. Logistics planners in

the Tactical Air Command (TAC), Pacific Air Forces (PACAF),

Strategic Air Command (SAC:, and the US Air Forces in Europe

(USAFE) spend a considerable amouint of time tracking,

inspecting, and managing WRM program data (7;15).

3

The use of a computer is applicable to organizing WRM

data because computers have the ability to store large

amounts of data, can quickly retrieve data, and are flexible

in presenting desired information.

Problem Statement

This study proposes to develop a prototype software

program to permit management of WRM asset information,

including Pre-Positioned Packages (PPP), War Consumable

Distribution Objective (WCDO) items and consumable items in

the Wartime Plans Additive Requirements Report (WPARR).

Investigative Questions

To develop an effective software program to track and

manage WRM asset information, several investigative

questions must be answered:

1. Can a program be developed that will meet requirements
identified by logisticians and by Air Force
Regulations?

2. What are the functional requirements of a WRM software
system for effective collection, organization and
presentation of information?

3. What is the appropriate computer language for system
development that will be efficient, effective, and
still maintain user-friendliness?

4. What form should a database take to efficiently
organize WRM data?

5. Will the program need to access and work with existing
databases or computer systems?

6. What are the criteria to ensure successful
implementation and acceptance by base-level
logisticians?

4

Justification

The Logistics Plans and Program (LGX) office manpower

availability is decreasing while the workload increases,

therefore the time spent handling information is at a

premium. A reduction of the hours spent leafing through

reams of paper to piece together data will save the time of

the logistics planner. By automating the printing of a

specialized report or the search for specific data, it would

free the time spent by the base logistician to pursue other

tasks. The logistician could use this time to focus on

problem areas in the WRM program. With increasing interest

in the levels and conditions of spare parts and equipment,

the Air Force needs to improve the 'stubby pencil' approach

to maintaining information (10:64). The benefit of

developing WRM software is a savings of the man-hours spent

in managing the WRM program. A user who spends all day

managing WRM might save as much as an hour per day. Also,

an increase in the accuracy of WRM program data may result

in additional savings (5).

Method of Treatment and Organization

Chapter I gives background information, the specific

problem, associated investigative questions, limitations,

and assumptions of the study. Chapter II reviews the

literature in support of the study, covering the

characteristics of a database and database management

systems, and similar applications of a database management

5

system. Chapter III outlines the methodology, a

requirements determination through a series of telephone

interviews, initial program development, review of the

program by a user, further program development and

validation of the program by many users. Chapter IV

contains the data and results of the methodology outlined in

Chapter III. It includes recommendations of the on-site

visit with the Air Force Logistics Management Center

(AFLMC). Chapter V contains the analysis and conclusions

from the program review and validation, along with

recommendations for further study.

Limitations of the Study

This study does not examine the requirements for

handling of classified information, which would require

expensive hardware investments by the user and approval of

the software developed from this research. In the Air

Force, classified data is restricted to use on TEMPEST

approved computer systems. Large computer systems must meet

similar restrictions. The TEMPEST personal computers are

significantly more expensive than non-TEMPEST machines and

most LGX offices do not have these machines. Additionally,

to gain approval to use the resulting software on a TEMPEST

computer would require more time than is available for this

study. The resulting software developed from this study

could handle classified information on an appropriate

system.

6

Additionally, the software program does not handle

every possible type of WRM item. Specialized software

programs are available for use with Harvest Eagle, Harvest

Bare, and Harvest Falcon packages. The author did not try

to duplicate existing software capabilities, such as

mainframe software programs (14). An interface with other

programs would have complicated program execution, data

structures, and imposed security classifications on the

software. Also, the software program does not handle every

possible manipulation of WRM data, but rather the most

strongly desired capabilities expressed during the

requirements determination process.

Assumptions

Program development is a continuous process. A program

developed to meet user specifications needs more development

when the user actually sees and uses the final software.

This study assumes that a review of the initial program will

identify any major problems or shortfalls with the software

and documentation. The final version of the program should

then correct those findings.

This study also assumes that the individuals

interviewed to develop program requirements are

representative of the population of logistics planners;

their views represent the views of base logistics planners.

The interview technique used in determining

requirements does not allow the users to evaluate the

software as a single group. Every user was sent the

7

software and User's Guide by mail for evaluation. It was

assumed that if seventy five percent or more of the

respondents accepted the software as helpful in managing a

WRM program, the research project was a success. The

results of the evaluation were not statistically evaluated

because of the small sample of participants.

Summary of Chapter I

The WRM program of the Air Force involves a variety of

assets, such as consumables, vehicles, and equipment. Many

of the assets are included in different reports, each with

different formats. Managing the information in the WRM

program is time-consuming, and places a heavy workload on

Logistics Plans and Program offices. A computer application

is applicable to organizing the data because of the

computers ability to retrieve large amounts of data, and

organize the data. A series of investigative questions were

presented. The study is limited to non-classified data, and

did not try to duplicate existing software program

capabilities. The study assumed the software developed was

a prototype, and that the requirements stated by the

logistic planners were representative of the population of

all the planners. The study also assumed that a seventy

five percent acceptance of the program would represent a

successful program development.

8

II. Literature Review

Introduction

Computers have quickly become an integral tool for the

military and are used in many aspects of daily operations.

With the increasing availability of computer systems, there

has been an increasing demand for computer programs that

effectively use computer capabilities. The need for a

database management system (DBMS) was identified to help

manage War Reserve Materiel assets in the Air Force by the

AFLMC at Gunter AFB (28:1).

To ensure that a DBMS application will meet the

requirements of the user, the program must have good

programming techniques and program structure. This

literature review identifies the characteristics of a good

database and some goals of a database management system,

discusses selection of software, and reviews prior instances

where database management system applications have been

applied to similar problems.

Discussion of Literature

Database Management System. Databases are used to

store information about an item or a subject in an orderly

way. Each set of information about the item or subject is

called a -ecord. A record can be thought of as a single

line of information about an item, such as height, width,

9

weight, and cost. By adding more records, a database is

created. Every time another item is added to the database,

another line of information is added with height, width,

weight and cost data. A record is also called a node and

several nodes, or records, make up a database (18:67). A

formal definition of a database is "a collection of

interrelated data stored together without harmful or

unnecessary redundancy to serve one or more applications in

an optimal fashion" (21:19). Martin breaks a database

management system into its parts.

A collection of information gathered together by
common criteria is a database. A data item is the
smallest unit of data. Data which is grouped
together in a named collection is a record. A
file is the named collection of records. A
database is a collection of records that contains
the relationship between records and data items.
(21:19)

Databases can be electronic, as in a computer application,

or physical; a library card catalog is a database. All

cards in the catalog contain the same types of information:

name of author, title of the work, publisher, publishing

date, and a catalog number. The collection is a database

because all the cards are part of the Library of Congress

Catalog Number System. This system establishes the

relationships among the cards. A practical definition of a

database is "a collection of related data about an

enterprise with multiple uses" (1:11). A database

management system application is then a collection of

databases, however, the contents of the different databases

10

are independent, and not always related to each other. A

database management system (DBMS) stores, organizes, and

retrieves the data from the databases in a way that makes

sense to the user, turning data into information (18:2).

Computer databases take one of three different forms:

hierarchical, network, or relational (Martin:95).

Hierarchical structure. A hierarchical database

structure is similar to the root structure of a tree. The

structure consists of 'nodes' or records, connected by

'branches' that link the nodes. The links allow the

database to move from one record to the another. The first

node is the root node, and will have several nodes connected

below it (1:67). The relationship of a node to another is a

'parent' or 'child' where the child node is dependent on the

parent node to describe its location in the database. A

hierarchical structure allows the database management system

to move to any of the records connected below the parent

record. If the parent node is removed from the database

without connecting the child node to another parent node,

the child node is lost, as are all lower nodes. In the

hierarchical structure, there is no limit to the number of

child nodes or records that a parent node can have. The

distinguishing feature of a hierarchical structure is that

every node (except the root node) has exactly one parent

node (1:69).

11

Network structure. A network database structure is a

complex arrangement of relationships between nodes, where a

child node is tied to several parent nodes (1:93). Network

database structures can have a string of nodes where the

last node is a parent to the first node in the string. This

complexity in relationships makes it difficult to change the

structure of the database (18:82). The advantage to this

method is that it allows the programmer to reflect the

complex relationships between the information in the nodes

(18:85).

Relational structure. A relational database structure

is the most common structure used in database management

systems. The form of the structure is a stack, where each

node represents a record (21:95). Each node is the parent

to a single child node directly below it. Since each node

has the same types of data, Martin describes this structure

as a table of columns and rows (21:97). The row is a node,

while the column represents common data types. A simple

example of a database is a table of measurements for several

like pieces of equipment. Each piece of equipment has its

own row, while all the similar data, like weight, is in the

same column. The technical literature refers to a column as

an attribute, and a row as a tuple. The most common terms

to describe a relational database structure are table,

column, and row (21:96).

12

Characteristics of a Good Database

Data independence. The structure of a database should

not be dependent on the type of data stored. This is done

by using variable names that represent the data element or

column. After removing a data element or column from the

structure, the system can still access any node in the

structure without referring to the missing data element.

The net effect is the ability to use the database without

knowing the representative details of the data (1:15).

Data redundancy. When storing the same data repeatedly

in the records or nodes of a database, it is redundant data.

If the data results in faster recall, it is beneficial to

database operation. As the number of records increases,

however, the repeated storage of the data takes additional

memory, and can slow down the processing time significantly

(12:20). The storage of the same data many times over also

increases the size of the database, and uses more of the

storage media. By storing the repeated information in a

separate table or database and recalling it or2.y as needed

by the program, data redundancy is kept to a minimum (1:45).

Data Integrity. Data integrity is the process of

"ensuring that the updates (of data) are correct, even

during failure periods" (21:63). To preserve data

integrity, the programmer must plan for making backups of

the data and protecting against input errors from the user.

The programmer must also plan for catastrophic damage to the

13

program and data files and restoration of the damaged files

(21:64). The most common backup methods are making copies

of all necessary files on a scheduled basis, and continuous

backups of information from changes. To protect against

input errors, the program should check the type of data

entered against the type of data it expects (12:56). For

example, if the program is asking for a social security

number, the program should not allow alphabetic characters.

The program should also check the value of data entered to

ensure it is does not exceed expected ranges. For example,

the number of supply items ordered should not be a negative

number, nor should it be a zero quantity. Similar checking

should be done for calendar dates. If the program is asking

for the name of a person to search for, it should not allow

the user to enter a number.

Protection against catastrophic damage, typically fire

or water damage, is dependent on the facility having the

database management system (12:54). The programmer can plan

for recovery of the system if such a failure occurs through

a separate program that re-establishes the software when

run, and prompts the user for the most recent backup files.

Elbra suggests that one means of restoring a database is

reading in a backup copy of the database. Alternatively, a

running log of changes to the database since the last backup

can update the database again, and thereby restore the

system to its exact state before the system failure (12:55).

14

Objectives of a Database

The development of a database shares several common

objectives with the development of a database management

system as described by Atre. The programmer should consider

using the same database for several program functions,

eliminating data redundancy and preserving data

independence, and data integrity (1:13). Another element to

consider is the ease of use in adding, editing, deleting,

and retrieving data. Most database management systems allow

the user to perform the four basic functions of adding data,

editing existing data, deletion of data, and creation of

reports or listings of data (16:189).

Selection of software

The author has experience with several database

management systems and programming languages. The database

software included Enable and Condor III, as well as dBASE

II, dBASE III and dBASE III Plus (tm). The programming

languages have included BASIC, FORTRAN, C, and Pascal. Of

the database software and languages, dBASE III Plus (tm)

offers the most power and flexibility with the least

programming work. The dBASE III Plus (tm) system also

offers a menu driven program to build databases and create

report programs compatible with the database structures.

Additionally, dBASE III Plus (tm) has a wide base of

commercial and free software that supports program

development. The dBASE III Plus (tm) software is readily

available through commercial outlets and General Services

15

Administration (GSA) purchase schedules. The capabilities

of the dBASE III language can be extended by using a

compiler and a screen design program (or code generator) as

discussed below.

Compiler programs are software programs that convert a

program file written as text icto machine language or

machine code, which the computer understands as

instructions. Compiled programs do not require other

programs, but can execute the machine code by itself. This

'stand alone' capability is useful because it removes the

need for a second software program to run the original text

code. A compiled dBASE III Plus (tm) text file can run

without the dBASE III Plus (tm) program. A compiled program

protects the source code of the program, since the compiled

version is machine instructions, and bears little

resemblance to the orginal text code. A user cannot make

changes to the program and thereby cause loss of valuable

and irreplaceable data. Also, a compiled program generally

uses less disk space than a separate program and text file

program. A compiled program will also execute faster when

running, a benefit when organizing large amounts of data.

Programs which are not compiled are interpreted or executed

a line at a time. The interpreter views a single line of

text code, converts it to machine language and executes the

instructions. Interpreter driven programs are slow because

the compiler does this for each line of text code.

16

Several compiler programs are avaiiable through

commercial sources. The available programs aii Clipper

(tm), FoxBASE (tm), and QuickSilver (tm). All three

programs offer an expanded version of the dBASE III Plus

(tm) language that enhances the capabilities of dBASE III

Plus (tm). All three programs will produce machine code.

The deciding factors for selection were availability and

price. Clipper (tm) was available through local sources,

and programming help was available from the faculty. In

addition, the Clipper (tm) program was available for a lower

price than the other two programs.

One other software program was useful irj developing the

software for this study. The program is UI Programmer (tm),

a code generation program. UI Programmer (tm) translates

graphic designs into text program instructions. The

graphics can be menu screens, input and display forms, or

informational screens. UI Programmer (tm) creates text

programs for dBASE III Plus (tm) and Clipper (tm), among

others. The text programs created are compiled by Clipper

(tm) into executable form. The UI Programmer is Object

Oriented Program (OOP) software, which treats each screen

design as an object and creates text code to relate that

object to other objects in the screen. The OOP technique of

program design is present in many commercial software

programs. This technique is seen in many programs that

allow the user to move program files, applications and

windows around the computer screen. The UI Programmer (tm)

17

software is not necessary for the study, but is a useful

tool, since it can reduce the time spent designing, writing,

and trouble-shooting a program. The program was available

through commercial sources.

Similar applications of dBASE III Plus (tm).

Several programs using dBASE (tm) are in use in the Air

Force, the Department of Defense, and its' allies for

managing personnel data, vehicle data, and supply

information.

The first program identified is a product of a March

1987 Naval postgraduate School thesis. The system supports

the Republic of Korea (R.O.K.) military personnel management

system. The system uses dBASE III Plus (tm) software and

data extracted from that nations' existing database

management system (17:13).

The second program identified is a product of a 1986

Naval Post Graduate School thesis. The Student Mix Software

System (SMSS) assigns students to seminars based on user

selected rules, and to prepare the required output reports.

The system also uses dBASE III as the software for creating

the database and manipulating the data into reports

(24:iii).

The third program identified was an AFIT thesis written

that developed a WRM Vehicle Management program. The

program is a dBASE III Plus (tm) system for maintaining

information on WRM fleet vehicles (29:v). The software was

18

delivered to Air Force bases in the US, and is still in use

by many transportation units.

The fourth report identified was an AFIT thesis written

in September 1987 that created a DBMS to aid the U.S. Navy

in producing high-priority 'Hot List' reports (25:xi). The

system uses dBASE III Plus (tm), and the program meets or

exceeds the requirements identified. Smith noted that the

resulting software program was easy to install, easy to use,

and did not require knowledge of the dBASE language by the

user (25:xi).

Other applications of dBASE III Plus (tm) in civilian

environments underscore its usefulness in managing database

information. The use of dBASE III Plus (tm) in a

telemarketing package gave it a distinct advantage over

similar programs (26:57). Advantages cited were its speed,

flexible reports, and form-letter generator. In addition,

dBASE III Plus (tm) has received strong ratings by critics

evaluating commercial software (19:121).

The successful use of dBASE III Plus (tm) by both the

military and civilian companies for problem solving is

testimony to its capabilities. It can support larger

information systems, or be used by itself. The dBASE III

Plus (tm) system can manage personnel data as well as

transportation data with positive results.

Summary of Chapter II

The creation of a database requires an understanding of

the basic terminology that describes a database, the

19

characteristics of well-made databases, the objectives of

designing a database, and selection of software to support

the database design. Last, the examination of similar

program applications shows that the software selected will

support the thesis.

First, the basic terms are data item, record, file, and

database. A database management system is the collection of

these elements that serves some common purpose or

enterprise. A database can take one of several forms:

hierarchical, network, or relational. The difference in the

three forms is how the nodes within the structure link to

each other in parent-child relationships.

Second, the characteristics of a good database are data

independence, data redundancy, and data integrity.

Third, the objectives of designing a database are to

support several functions related to the enterprise, while

preserving data independence and integrity. Minimizing data

redundancy ensures the program uses the smallest amount of

disk space and computer memory.

Finally, there are similar programs which confirm the

use of dBASE III Plus (tm) as a database management system

for effective management of large amounts of data.

20

III. Methodology

Introduction

This chapter outlines the methodology used to develop

the database management system application. The ten steps

include the collection of user requirements, verify user

requirements or information, derive minimal cover,

conversion to a static, logical database, augment the static

database, convert it to a physical database, estimate

mininum response times, and optimize user requirements. The

last step of the methodology ends with a flexible,

recoverable, user friendly database application.

Program Design Cycle

Vesely outlines a design cycle for development of a

database system as having ten steps, as shown in Figure 1

(30:2).

This design assumes that someone accepts responsibility for

the program after delivery to the user. Program errors may

require additions or modifications, which should be done by

a qualified programmer. A large business or firm which

decides to invest in a database system will have a

programmer or computer section capable of performing the

required program maintenance. The researcher delivered the

prototype to the Standard Systems Center at Gunter AFB, but

the program lacks a sponsor to bear responsibility for

21

USER COLLECT USER

REQUIREMENTS

DERIVE VERIFY
MINIMAL COVER INFORMATION

CONVERT TOH AUGMENT
STATIC LOGICAL STATIC LDB

DATABASE

ESTIMATE IICONVERT LDB
MINIMUM TO PHYS D-BASE

RESPONSE TIMESI
FOPTIMIZE FOR
USER REQUIREMENTS

FLEXIBLE,
RECOVERABLE,
USER FRIENDLY

DATABASE

Figure 1. Database development cycle

further development, distribution, and maintenance of the

program. In a program developed for a business, a poor or

useless program is not used if it fails to provide the

product or advantage needed. Similarly, a program is not

used in the Air Force if it does not provide some advantage

or increased benefit. This prototype program requires a

validation of the program to decide if a software system

would be helpful in managing a WRM program.

22

Collect User Requirements. The development of WRM

software will use a model designed from requirements

outlined by experts and functional WRM managers. First, the

researcher conducted telephone interviews with experts at

the Logistics Management Center (AFLMC/LGXW), at five of the

Major Commands, and with at least one experienced functional

managers of WRM assets at the base level within each Major

Command. The researcher solicited five of the Major

Commands for inputs: the Strategic Air Command (SAC),

Military Air Command (MAC), Tactical Air Command (TAC), US

Air Forces Europe (USAFE), and the Pacific Air Forces

(PACAF). The Major Command experts were from the Logistics

Plans and Programs office, the office of primary

responsibility for administering policy and practice of the

WRM program. The researcher interviewed one functional

manager from a base in each command, selected by

recommendation from the Major Command offices. There were

eleven initial interviews, with other interviews conducted

with the users to clarify previous inputs and allow

expansion on the user's ideas. The evaluation also included

five more managers, one from each major command, to get a

larger sample from which to draw a consensus. The result

was sixteen possible evaluations. No statistical analysis

of the evaluations was performed.

Several iterations of the interview process developed a

clearer understanding of program requirements. There were

some requirements beyond the capability of the researcher to

23

address, due to complexity or software limitations. The

requirements which were not addressed by the researcher are

included in Chapter IV. The unmet requirements were not

critical to the research, and could be met with additional

research, and a dedicated programming effort. Establishing

requirements among the experts and managers was the most

difficult part of the requirements determination.

The researcher selected telephone interviews for

determining requirements for several reasons. Interviews

provide feedback quickly, allow flexibility and can be

repeated several times to expand ideas. Telephone

interviews can be done quickly, the structure of interviews

allows exploration of ideas, and clarification of confusing

ideas (13:169). Several telephone interviews with each

expert developed ideas into clear requirements.

The individuals interviewed were not experts in

computers or program development, they are actual WRM

program managers or past program managers who have developed

expertise dealing with the WRM program. They should

therefore be representative of functional WRM managers.

Verification of User Information. The different data

elements needed for the program came from the available Base

Supply reports and interview results. Obtaining the data

from the Standard Base Supply System (SBSS) required a

specialized computer program to extract data from the SBSS

in a useable form. The individual users supplied some data

elements, as they are unique to the base or WRM program.

24

Second interviews verified the need for major program

elements and functions. In the third interview, the author

confirmed the data elements recommended or desired. Some

data elements came from other sources; for example, the unit

price and total quantities determine the value of inventory

on hand.

Derive Minimal Cover. The identified data elements

were separated into related or natural groups of

information. For example, on-hand inventory balances,

authorized quantity, and authorized unsupportable quantity

were grouped as inventory data. By grouping information,

it became easier to define the relationships between groups

of data. A grouped data set will have a 'key' field which

uniquely identifies the data record. This process, called

normalization, groups data under a key field. The key field

provides each record a unique identity so the record can be

moved, rewritten, or deleted as a group. Normalization of

the data sets then eliminates redundant data and provide a

logical method for locating unknown data by related known

data (30:5).

Convert to Static Logical Database. Another

consideration was the amount of data to store in each data

set, and as a whole in the system. An extremely large data

set might need to be broken into two or three separate data

sets to avoid having too large a data set for the system to

handle. Also, adding information to the system makes the

25

data set grow. The design allows for the added information

so the system does not exceed physical limitations and

thereby 'crash'. The anticipated number of inserts,

updates, and deletes made to the data set were also

considered (30: 6). Any insertion of a new record,

overwrite, or deletion of an existing record may require

additional actions by the system to maintain file size. A

deletion, for example, would require a repacking of all

records with a sort of the records, and a re-creation of the

associated index file. This process takes time, and the

system should minimize the time spent by the user waiting

for the system to complete required actions. The design

process anticipates number of queries using second keys,

described in the next step, as these queries could also

impact the system's 'dead' time. Dead time is the time that

a computer is searching for data or performing some other

task when the user cannot make inputs or perform other

computer operations. In effect, until completing the query,

nothing else can be done with the computer.

Augment Static Logical Database. The next step

requires identification of the primary keys and secondary

keys, as well as foreign keys. A primary key is a field

within the table that points to one and only one record of

the table, a primary key is the way to find a unique record.

A secondary key is useful when there is some information

about the desired record, but not enough to uniquely

identify it. A secondary key would locate many records that

26

match the desired data. An example of a primary key is the

Social Security Number, which uniquely identifies every

taxpaying citizen. A secondary key could be the last name,

which would narrow the search considerably for a particular

individual; the name 'Smith' for example, could belong to

many records.

Database I Data field 3
Key Data Data Data is the key

Field Field Field Field field of
1 2 3 database 2

4
Database 2

Key Data Data
Field Field Field

4 5

Figure 2. Use of a data field as a foreign key

Some data tables use a 'foreign key' to connect one

data set to another, as shown in Figure 2. An example of a

foreign key is a data field within a table that relates to

the key field of a second table (30:119). An item

discrepancy table would contain a field for the

organizational number used as a key field in a second table

to find the organizations name, phone number and point of

contact.

27

Conversion to Physical Database. The translation of

the users requirements into program design was made easier

through the use of a database software development system.

This software, UI Programmer (tm), is a database system tool

that decreases the amount of effort and time required to

develop a system. UI Programmer (tm) generates dBASE III

Plus (tm) and Clipper (tm) program code for menus, reports,

sorting routines, organizing, and relating database

information. The dBASE code is compiled using Clipper (tm),

a dBASE compiler, to produce an executable program. Using

UI Programmer (tm) to design input and output screens,

instructions for how to process database information were

attached to these screens. UI Programmer (tm) used these

screens and instructions to write the Clipper (tm) program

code. The result of this process was a physical database

program that meets the program requirements outlined by the

users.

Estimate Minimum Response Times.

Database management system applications can suffer from

long delays in processing new data, recalling old data,

sorting records, and presenting reports created from the

data. The design of the database management system

application had to consider the number and kinds of search

operations the system had to perform to meet user

requirements. For example, searching for a specific

28

document number in the database can use a general search of

the database or a search of an index file.

Index files are separate files containing the key field

of a database and the location of a corresponding record in

the database. An application can quickly search the index

file and then jump directly to the appropriate record.

Alternatively, an application can directly search the

database key field to locate a record. A search using a

index file is a much faster search method for a database

with many records, but not for a database with few records.

The difference in the speed is a result of the amount of

data the computer must store in its memory to compare

against a desired search value. For a normal search,

without an index file, the computer stores all the data from

a single record in memory, but compares only the key field

against the search value. Moving the entire record data in

and out of memory requires more time than a single, indexed

field value compared to the search value.

This application has the potential to maintain records

on thousands of supply documents, and even greater numbers

of WRM authorizations. These databases required index files

to ensure minimum waiting times for the user.

Optimizina for User Requirements. The first version of

the program, Version 1.0, was tested by one of the WRM

managers. The author worked with the manager to test the

capabilities of the program in the field using procedures

outlined in the User's Guide. The manager (or tester) tried

29

every function of the program. It was assumed that major

program errors were identified at the time. Existing

problems or difficulties were noted and corrected in the

next version of the program (14).

The user who evaluated the initial software was

familiar with WRM and computers. This enabled the manager

and researcher to readily exchange ideas about the software.

The manager who evaluated the initial program was an

experienced WRM manager, and is responsible for some WRM

software at the Air Force Logistics Management Center.

Testing of the Version 1.0 by a functional manager ensuired

the program was moving toward meeting the objective of the

program development. It also ensured the program worked in

a logical manner in doing the needed functions. This step

represents the ninth of Vesley's ten steps. Having

developed the application, the last step results in a

flexible, recoverable, user-friendly database.

Version 2.0 Development. From feedback from the on-

site test, a revised version of the program, called Version

2.0, was developed. The second version included corrections

in program execution and omissions in the User's Guide.

Once these changes to the program were completed, the

program was mailed to the users for evaluation.

Program Validation

In the last step, the managers evaluated the final

version of the program. Evaluation was performed to ensure

30

that the program meets the requirements outlined by the

experts and managers in the interview process. The program,

Users ,7uide, cover letter, and response card were sent by

mail to the users for evaluation. Evaluation by mail does

not allow for problem solving of software problems or

exposition of instructions, but is a cost effective method

of having many users try the program. By having the program

evaluated by the same users that developed the requirements,

it was easy to determine if the program is helpful. The

managers decided if the program meets the objective of the

study. Several users also provided feedback about the

program and recommendations for changes. This final version

and User's Guide, along with any open additional

requirements, was delivered to the Air Force Logistic

Management Center at Gunter AFB for distribution and

possible further program development.

Summary of Chapter III

The process of designing a database management system

application used a methodology having ten steps. These are:

collect user requirements, verify user requirements or

information, derive minimal cover, conversion to a static,

logical database, augment the static database, convert it to

a physical database, estimate minimum response times,

optimize user requirements, and end with a flexible,

recoverable, user friendly database application.

The key element of the design cycle was determining and

verifying user requirements. The requirements determined

31

the initial capabilities and functions of the application.

If the requirements do not address the needs of the users,

the resulting application will not meet the needs. Each

additional step of the design cycle contributed to the

flexibility, speed, and usefulness of the application. The

application was optimized by having the application

evaluated and reviewed by a user experienced in both WRM

management and computer applications. Errors were

corrected, and the application was evaluated by many users

to determine the usefulness of the application.

32

IV. Findinas and Discussion

Introduction

This chapter outlines the program developed from the

previously discussed methodolgy. The user requirements

formed the authorization, supply, inspection, and quantity

functions. Other functions, such as the reports and

listings function, were developed to support the basic

program functions.

User Requirements

User requirements were collected through telephone

interviews. Some of the requirements involved

simplification of existing reports, such as the War

Consumable Distribution Order (WCDO)/Base Level Support

Spares (BLSS) R07 Report, while other requirements were an

amalgam of existing data. The users identified many

requirements for a WRM program, several of which were beyond

the scope of the research or the capabilities of the

researcher to develop.

The inputs from the users determined the major program

functions, as shown in the program main menu in Figure 3.

User requirements became the basis for the basic

authorization, supply document, inspection, and quantity

balances functions. The functions for organizational point

of contact, supply details, reports, reading in, and

backing-up database information were developed to support

33

Sfstmn for Consubable HWm Imwtorj flanagmwt at the De Level

SIJIL. Ye Z.8 (hototype)

S I

Authorization -k-ils klam=

0 T

orgaization Autkorization ismpaciss
kta with kils I -ections

L sl eLu , qIitWI
IsPonta I Daclap ai
Listings tabases Exit to DoS

Use Cunor Kew' to Highlight hx then WE 41 to Select

Figure 3. SIMBL program main menu

the basic functions. From this menu, the user can select

any of the program functions.

A common need of the users was a technique for handling

WRM authorizations, supply documet,$ data, inventory

balances, and surveillance visit or inspection reports.

Also, the users wanted to print listings of the data, along

with supporting information. For example, at least one of

the users wanted to link a WRM authorization to all the

supply documents related to the authorization, with an

option to print the listing (9).

34

hitkorizatious aid Sipply aetils
rim rdtioni

Autborized btc NmuEut
ItM: " kbI.: 533S55Z461 mWae.:

Aithwoized Qutity: 8

Quvtltg Ouland: a

Metails UPMtiu this autiliution
Jcet I Type NSN Wae Ordee Wte he UAit
WL649iS9"/33 0 ----Z! I 187 S 1

Figure 4. Authorization with supply details

Several of the interview subjects expressed a desire to

tie supply information to unfilled WRM authorizations. In

some cases, an authorization exists, but the item is on

order and awaiting funds (memo due-out) before it can be

bought. Some high cost equipment falls into this category.

Some consumable items may not be available, or are due-in

from the source of supply. The researcher addressed this

need by creating a program option relating an authorization

to the supply details (14). This function allows the user

to move through the database of national stock numbers while

displaying the descriptive phrase for that stock number.

35

Figure 4 illustrates this function: the top window shows the

authorized stock number and the bottom window shows the

supply details. When the user finds the national stock

number of interest, the program displays a list of all

supply documents associated with that stock number.

Aitkrized i Item

ioe hciptioa: @= MIATOR 0: 5---Mi

Wtho,'iz4 iuatitY: 4 00 1kid 4

Uhit of Issue: CL kcuut takep
Price d iit: 8.34 d jthwizatio:

alue of Units: 1.3

K code: XI

Figure 5. Authorization screen

Each authorization requires a unique national stock

number (NSN), which also appears on supply documents. The

stock number is an example of a foreign key as previously

discussed, which provides the key to locating supply

documents. Since each authorized NSN may have several

36

documents related to it, a second database of supply

documents was needed. The second database used was the

supply document database, which uses the NSN as a secondary

key field. The primary key for the supply document database

is the document number, which uniquely identifies each

document.

Relating authorizations and supply documents assumes

this information is available. This necessitated two

program functions, one for authorizations and another for

supply details. The authorization screen shown in Figure 5

presents basic information about an authorization. It

allows the user to view pertinent data about the

authorization.

The second required function deals with supply

documents. The supply documents function, pictured in

Figure 6, presents basic information about each supply

document. Supply documents created with this function show

up in the program function relating authorizations with

supporting supply documents.

Most logistics planners deal with many organizations,

each of which may have several individuals responsible for

WRM items. For example, a supply squadron will have

separate points of contact for gun oil, engine oil, and

aviation fuels. A method is needed for referencing the

point of contact for each WRM item or organizational shop

(20).

37

S'wl i DoumMt Mails SMMc

hcumst Ty": Am Out Orderin frjanization: 6WI
hcauewt Nunmer: NW6&9S743O Date krded: 9M

atimted blivwnjDkte: S
SttAs: he In 10c: 16619259168

Iten Ordered; MlI ualtit9 Ordered: I
National Stock hunber: 165NO3i19Z (bit Price: @.B

Prim or Suatitte: Total Value: O.0

Point of Coact Iormatlon
Name: O T. CIVILIM
Organization: LOGIf'I
Office: /SSN
Phon: 4437

Figure 6. Supply documents screen

The point of contact for each supply document is shown

in the lower left part of the screen in Figure 6. The point

of contact data is entered into the computer in a separate

function. To fulfill this need, the researcher created a

database of point of contact (POC) data where the

organizational shop code is the primary key field. The

organizational data screen, shown in Figure 7, allows the

user to build a library of information on the points of

contact for each organization. Some of this data appears in

the supply documents function, a report of point of contact

38

Orgasizatiomal kta

iq or Air Divisio: Z AIN

Squadr: l OISrl

bauc: ATUIAL IW
IBMWcN SoI: M

Oryanizatiom ker: 66 1

Pot or Coact kta

iOC NM: OLD T. CIUILIAI OCWu: CI

POC Tm WI: MY-4437 PM billial: 1

M bhm 1 34

Figure 7. Organizational information screen

data, and in a report of inspection data.

Inspections of WRM items involve a significant amount

of time for the base logistician. Some of these inspections

result in deficiency reports and follow-up inspections. In

addition, these inspections occur on a semi-annual basis. A

method to track inspection dates, open and closed inspection

reports, discrepancies, and responses is useful.

The program meets this need by creating a database of

inspection data, keyed to the organizational shop code.

Figure 8 shows the screen used to enter and view inspection

results. This database is referenced by the organization

39

ImPeCiUO and Disce Iformation

mis: ZISM Lut ljin: W"YS
Squad o: %a TrS Next Inection he: W1S/A

'aewh: OFMTIW
Office Spbol: /us O glmber: 1I

InPetion hIults
Wae W15/M
Discrepmncg: Ai9 kiml of dicmpw is this field. It Can be edited

feresce: S reference for fatue mwo. Ai t8-It, Uol. I, Map 5,
Response: ue Cnt, I-3 for fomtting of the paragAPh.
follow Up (/N): kinpection on: B/1V/9
SFAT S: OPMI

Figure 8. Inspection function screen

shop code number, which is entered from the keyboard using

the search option. Inspection dates recur on at least an

annual basis, and a method of tracking inspections,

annotating discrepancy information and scheduling subsequent

inspections is available in this function. The program

function addresses this need by maintaining the results of

WRM surveillance visits and inspections through memos, as

discussed below.

The inspection program allows the user to record

inspection data, results, and to schedule reinspection

dates. Every inspection can have three memos associated

40

with it. Figure 9 is a close-up example of a memo box that

appears in the bottom portions of the inspection screen.

Some inspections will need only short memos, while other

memos are larger; the program allows the user to enter memos

as long as 64,000 letters.

Any kind of discrepancy in this field. It can he edited
with the DELETE and INSEKf ke-s; the total length of
a I memos can be up to 64(chiaracte. Nord wrap and
reformatting are also available.

gwter Disanc9y info: NJ to Save, ESC to abort

Figure 9. Detailed view of a memo

Reports and Listings Requirements.

Each of the logisticians had ideas of what reports were

needed, which items to include, additional data to present,

and what format to use in the reports. The researcher

looked for common elements among the requirements and

developed listings to support the needs of the users and the

major program functions. The result was the menu of reports

listed in Figure 10.

There was a need for a listing identifying all

authorized/on-hand imbalances for every item tracked as WRM.

A combined listing is more useful than the three individual

listings now available (9;7). This listing could also

include a requirement 'or a munitions listing identified by

41

horts hu Listing 11m

A l~oert uf all hatbwized
Items (All N Azth's)

D i of all Autborimd I

Iaens a all details I

I AqPart of all IlPtia I
0 DL eprt of all iamization

Figure 10. Mentz for reports and listings

Chief Master Sergeant (CMSgt) Stock. Munitions were not

included in the program, as there is a program for munitions

under development (14;27).

Differences between quantity authorized versus quantity

on-hand are of interest, and several additional pieces of

information should be presented: due-in and due-out document

numbers. This allows the logistician to identify those

items to look at more closely (20). The report and listings

menu has an option to generate a listing for each

authorization, with the current inventory balance and any

supply documents.

42

A listing of which units and areas need inspection

would be useful (7;20). There is an option on the reports

and listings function that generates the appropriate report.

A large WRM program has many points of contact the

logistician needs to know, particularly when the unit is

inspected infrequently (20). For example, a unit may have

several pieces of equipment, each being managed by a

different shop and point of contact. A tactical ground

control unit has radar equipment, vehicles, and munitions,

each having a different point of contact. The report of

organization points of contact provides a medium for the

base logistician to track the responsibility in a multitude

of organizations for each shop code.

All the base-level logisticians interviewed stated that

the present R07 WCDO/BLSS report provides more information

than they use on a daily basis. CMSgt Stock of the SAC/LGX

office expressed the greattst concern with authorized versus

on-hand quantities (27). Imbalances in these inventory

levels are of high interest at both the base and Major

Command offices.

There is a need for a Vehicle Status report to reflect

storage costs, maintenance costs, and the vehicle status

(9). A report of this data is available through the Air

Force WRM Vehicle Management System, although the system

does not provide cost Figures for the vehicles (29:62).

Because of the complexity of obtaining the appropriate data

43

and updating the database, the researcher declined to pursue

the requirement.

The possession of pallets and nets change hands rapidly

with deployments, as well as their location and condition.

A simple way to annotate the transfer of pallets and nets

from one unit to another would be useful (27;20;22). The

scope of the program encompasses consumable items but

pallets and nets are equipment, and these items are not part

of the program.

The ability to produce a listing by storage location

would be useful, when the materiels are in storage at

several locations for the organization (8). Bases in the

Pacific Air Forces (PACAF) and the United States Air Forces

in Europe (USAFE) must keep track of items stored at

multiple locations. Some overseas bases are responsible for

WRM equipment stored at dispersal points. When the Location

code, a four letter identifier, is linked with the name of

the location, the information is classified SECRET. This

program is not designed to process classified information,

so location codes and location names are not included. A

later revision of the program may include the four letter

codes.

The money spent on a WRM item is of interest to the

base logistician. The money comes from a WRM budget

controlled by the base resource manager (8;7). Dollar

expenditures are not in this program, as it would greatly

complicate the programming, and involve accessing accounting

44

and finance records in addition to base supply records.

Collecting dollar data from Accounting and Finance records

would greatly complicate the program, and require continuous

updates of those data elements.

Interface with the SBSS

An interface with the SBSS would be useful to allow

updates on the status of WRM item due-in and due-outs (7).

The database management menu in Figure 11 shows the options

available for reading in SBSS extracted data, backing-up the

current databases and restoring previous databases. The

first menu option uses a data file created by a separate

program which is run on the SBSS computer. This separate

Query Language Program (QLP) file was developed by a

technical mainframe supply programmer at the request of the

researcher (2). The QLP pulls data from the SBSS, sorts and

rearranges the data into a temporary file, which is

transferred to a computer diskette. The file is read by the

SIMBL program, and the data is stored in the either the

authorization or supply document database.

The two last menu options were necessary in case of a

failure in the system, as discussed earlier. The process of

backing-up and restoring database files is simple and easy.

Backing-up the database files is a much easier process than

reading the data into the computer. The user must place a

computer diskette, also called a floppy disk, in the disk

drive, and select the menu option. The program will copy

the database files to the floppy disk. If t'e copy was not

45

katkse rhapont N=

I ead lu S= Lrac ata
(kelaces all authwizatin

ad sWqp1 detail docuuut)

I kIup mu mt ktases
(D tGis Wklq?) Q ht to in %a

I estore picisl9j saved

Da (i te ONOW
yoL bck up vskl,,.)

Figure 11. Menu for database management

successful, the program tells the user of the problem.

The last menu option recovers the computer database

files from a floppy disk, and returns the program to the

current status it was in when the files were last saved.

Incorporating Good Database Design

The researcher ensured the program included good

database design characteristics in several ways. The

program provides data integrity by giving the user a method

of backing up all the database files. The program also

restores the database files from the user's backup disk.

46

Data redundancy is minimized in each database. Some data is

stored in separate databases that allow access from any

portion of the program. For example, the name of a point of

contact is used in the supply documents function, the

organizational information function, and in several reports.

Having a single table of this data eliminates the need to

store the data at least three times for three functions.

Version 1.0 Evaluation

The first version of the program was examined by

Lieutenant Colonel Campbell and Major Steve Hagel of the Air

Force Logistics Management Center. They made many

recommendations for the program about objectives, program

design, program functions, screen appearance and the report

listings (14).

Prouram Objectives. The evaluators recommended the

program objective to include just consumable items,

excluding War Readiness Spares Kit (WRSK) items. They

stated there are several tools available for handling other

WRM information, but there is no tool for just consumable

data. Also, for exchanging information from the SBSS to

this personal computer (PC) software, they recommended the

establishment of an interface file to maintain compatibility

with future versions of the SBSS and the PC program. This

suggestion will be a recommendation for a fully developed

version of the program.

47

Proaram Functions. The LMC evaluators recommended

several changes in program functions. The first suggestion

was to display all in-use details that support an

authorization. This recommendation is addressed by the

supply details function.

The second suggestion was that when going from

different sub-menus, the program remember the last

organizational shop code accessed and locate the database

pointer to the appropriate record in the next database. In

effect, the program 'remembers' what organization you are

dealing with, and looks for that organization when switching

to another database.

The evaluators recommended a quantity balances function

to identify overages or shortages and a comprehensive report

list of all balances. This idea has merit, but could not be

fully implemented. The data needed to calculate overages or

shortage, such as the authorized unsupportable quantity is

included in the quantity balances screen. Limiting the

function to strictly those items with imbalances was not

possible because it would be difficult to edit records where

there is no imbalance between the on-hand and authorized

quantities. This is a limitation of programming expertise,

not an inherent problem with the data or the software. The

current program design allows additions of data, but does

not discriminate between records with imbalances and those

with no imbalance. The function presents information needed

to calculate the net stock position for each national stock

48

number. Figure 12 is a sample screen from the quantity

balances function.

Authorized a Ow-hAl Qautities

Item sciiptiom: UNICATINI 0ILAI NSE: 9158W7822

Total kawtitj Authorized: 512

Authorized LJmmQtable: 12

Not QiUt9 ktlaimd: so1

Total QuWtitg 0.-haul: 4997

Quatity alort: W8

Figure 12. Quantity balances screen

Another recommendation was that a separate report for

nets and pallets is probably not necessary, as the users who

manage these items are those heavily involved in exercises

and deployments. The status and location of pallets and

nets changes rapidly. Just keeping up with the changes to

this data would be difficult to do without developing a much

more complex software program. Also, the information is

not necessary in a program that deals only with consumable

items.

49

Another recommendation was the addition of a memo field

to the authorization screen for the user to make notes about

an authorization, and a field giving the total quantity on-

hand for each authorization. This last recommendation has

merit, but was not included in Version 2.0 due to the lack

of available time for program development.

Screen Appearance. The evaluators also suggested

several additions to the screens. The first addition was a

disclaimer on the program to inform the user not to input

classified information. The disclaimer appears as a 'pop-

up' box to remind the user before appending data records.

DO IF USE 701 MUMSIIE INTIO!

Figure 13. Program warning to avoid classified data

The program places the reminder on the screen as shown

in Figure 13 before going to the main menu, and before

appending new authorization records.

They also recommended a test of the program's screen

colors on a Liquid Crystal Screen (LCD) and a monochrome

monitor to ensure that screens are legible on common

computer systems found in the Air Force. The colors

selected for the final version of the program are clearly

50

seen on a LCD screen, but several users complained that the

colors were garish on a normal color monitor (14;7).

Additionally, they suggested changes to several menu

and screen texts to improve user understanding. One

suggested screen change was to give the user a final

opportunity to undo all deletions before exiting the

program, avoiding permanent removal of all records marked

for deletion.

You have at least one authorization record marked for

deletion, ae w sure 9p wat to do this? K

Figure 14. Confirmation box for deletions

This recommendation is included as a precaution against

losing valuable information. An example of this

confirmation 'box' is seen in Figure 14.

Reports and Listings. The evaluators recommended the

listings of inspections due have a limit of 30 days from the

current date or a user entered number of days. The

evaluators stated the inspection schedule would change too

frequently beyond a 30 day outlook. The report generated

has a set length of 30 days.

They suggested a report be created that lists each

authorization accompanied by the supporting in-use details,

51

due-out or DIFM details, and total quantities authorized,

supported and on-hand. The reports and listings option of

all authorized items and all details provides this data.

The evaluators also recommended that any listings to

the screen pause for each full screen. All but one of the

reports is created with the Clipper (tm) Report generator

and will automatically pause after each screen. The listing

of all available information for all WRM items is compiled

into the program, and does not pause. This program flaw

needs correction in a subsequent version.

Program Validation

The program was sent to seventeen logistic plans and

program offices, five at the Major Commands, eleven at base-

level offices, and the Logistics Management Center. The

program, User's Guide, cover letter, and response card was

sent to each office asking the users to install the program

and databases and then to examine the program functions.

Responses were returned using pre-addressed, stamped

postcards. The postcard was selected as a method of

response to make it as easy as possible for the user to

respond. The postcards have a professional appearance with

laser printing, were postage paid, and the postcards were

readily available. The evaluators were asked to decide if

the program would be useful in the management of their WRM

program. Several users elected to respond in writing with

their views, comments, and observations on the software in

separate letters. Although not part of the scope of this

52

study, their recommendations are included in Chapter V for

further program development.

Investigative Questions Answered

To develop an effective software program to track and

manage WRM asset information, several investigative

questions were posed.

First, can a program be developed that will meet

requirements identified by logisticians and by Air Force

Regulations? There are several programs written in dBASE

designed to support Air Force operations, such as the WRM

Vehicle Management System. The requirements for the

prototype software were similar to the vehicle management

software, giving credence to the concept of a WRM inventory

management software program. By limiting the scope of the

prototype software to unclassified, consumable items, the

software met the requirements of users and Air Force

regulations.

Second, what are the functional requirements of a WRM

software system for effective collection, organization, and

presentation of information? Data was collected

automatically in the SBSS computer, removing the need for

the user to input each piece of data. The needed data was

available from the supply computer system, and was easily

transferred to the personal computer prototype software.

The program also allowed the user to enter new data or edit

the current data in the records. Data was presented in

groupings of like data in simple terms, with a minimum of

53

supply computer codes. Additionally, information from

several sources was presented on the screen at the same

time, to provide a clear understanding of relationship

between the data. The program also printed optional reports

for the user to provide a paper record of data.

Third, what is the appropriate computer language for

system development that will be efficient, effective, and

still maintain user-friendliness? The literature review

examined the available database management system languages.

Several languages were available, but dBASE (tm) was chosen

because it was used previously to build other database

management system applications. A variant of the dBASE

language, called Clipper (tam) was selected on the basis of

price, availability and expanded capabilities. It was

readily available to the researcher, with a compiler and

technical support.

Fourth, what form should a database take to efficiently

organize WRM data? The databases were relational, because

the structures are the easiest to understand and work with.

The data was split into four separate databases to group

like information together. Index files were added to

increase the speed of searches, and decrease the time to

recall data.

Fifth, will the program need to access and work with

existing databases or computer systems? The prototype

software needed data that was available in the supply

computer system. A direct link with the SBSS computer would

54

have been very complicated and beyond the capability of the

researcher. The transfer of data to the prototype software

was accomplished by extracting a data file from the

mainframe to a floppy disk, and then loading the file into

the prototype software program. Other possible computer

sources of data were not readily available.

Sixth, what are the criteria to ensure successful

implementation and acceptance by base-level logisticians?

For the software program to be successful, it had to provide

an advantage over current techniques of managing WRM

programs. The program needed to reduce the time spent

leafing through paper reports, and reduce the time spent

tracking, inspecting, and managing WRM program data. The

evaluation of the program by base logisticians needed at

least seventy-five percent acceptance for program success.

Summary of Chapter IV

The requirements collected from the user interviews

were outlined, along with the program functions developed

from those interviews. The requirements were to handle WRM

authorizations, supply document data, inventory balances,

and inspection information. Also, reports were needed to

list the available data. In some cases, data from different

areas was combined into a single report. The program

required an interface with the standardized vase supply

system (SBSS) to bring in data, and a means to backup and

recover program data. The first version of the program was

evaluated by an experienced WRM manager to identify flaws in

55

the program. The evaluators recommended the program's

objective be limited to consumable items. They recommended

some changes to the program functions, screen appearance,

and the reports and listings. Changes to the program were

included, and the program was then sent to a larger group of

users for evaluation.

56

V. Conclusion and Recommendations

Introduction

This chapter covers the response of the users to the

evaluation of the program and User's Guide. Of the fifteen

evaluation packets returned, thirteen of the users decided

the program would be useful in managing a WRM program. Also

recommendations for improvements in program functions, help

screens, and the User's Guide are presented. The users

recommended the program should be further developed,

incorporating an interface file with the SBSS, and

additional programming techniques to enhance program

appearance.

Results

Of the seventeen evaluation packets sent, fifteen

responses were recorded. Of the responses, thirteen users

decided the program would be helpful in managing a WRM

program. This represents an 86.7% acceptance rate. Based

on the number of positive returns, the research project is

successful.

Several of the users expressed recommendations for

improvements in program functions. They also reported

problems with the software that are unique to the hardware

and software setups on their computers. The most needed

program improvement is more context sensitive help screens

for each of the options and an expanded User's Guide. Also,

57

they suggested an expansion of the program scope to include

equipment and other non-consumable WRM items. Some software

programs cause problems when run in conjunction with this

program. A solution to this problem must be found before

the program can be released for general use.

Help screens are available for each program function,

and were well received by the users. Within each function,

there are also help screens for each menu option. The

problem is that the help screen for each menu option is not

activated until an option is selected. Within each option,

help screens are also available, but like the main menu, the

help screen is not available for each of the menu options

until it is selected. This is a result of the Clipper (tm)

programming language, and cannot easily be corrected.

The User's Guide needs to be expanded. The guide

assumes too much computer knowledge by the users. Although

there is an automated installation for the program, there

should also be an explanation of how to install the program

onto a different hard disk drive and add the appropriate

information to the system setup files. Also, the User's

Guide should have more examples of screens from the program

to familiarize the user with what to expect from the

program. Several critical screens were overlooked.

The user needs a means to select from the available

national stock numbers for use in the search function. This

need is also applicable to the supply document function,

where the search is performed by document numbers. This

58

recall can be done through a pop-up box to list available

NSN or document numbers. The user can then selact a NSN or

document number by simply scrolling through the list,

highli'hting the desirel item, and pressing the ENTER key.

At least one user reported problems with valid keyboard

entries that were ignored and other non-valid keyboard

commands that caused the program to terminate unexpectedly

(14). The problems occurred because of conflicts with the

keyboare cursor keys and the numeric keypad (which can also

act as cursor keys). Although the program was tested on a

Zenith Z-248 computer, and an 80386 computer system, the use

of some memory-resident programs and the system setup can

interfere with the program operation. Any further program

development should try to better handle the different

operating environments or advise the user of the target

system for the program.

Conclusions

The program developed from this research shows that a

WRM software program is a useful tool in managing a WRM

program. While this initial program addresses a specific

need in the logistic plans community, there is room for

improvement. The program developed from this research is

too limited in scope and capability, and requires further

requiremei .s research and expanded programming efforts.

59

Recommendations

This program needs further development before it can be

used on a daily basis. Expansion of the program functions

and better documentation are required.

Consideration should be given to incorporating the

results of this research into an existing program, such as

HEIMS (Housekeeping Equipment Inventory Management System).

An interface file should be established with the

concurrence of the AFLMC and SSC to maintain compatibility

of the data file between the SBSS and SIMBL. In this way,

changes to the SIMBL program would be reflected in the data

file extracted from the SBSS computer.

The development of a software program involves hundreds

of man-hours in writing the code and debugging. There were

many programming techniques that were not used in order to

get the program completed within the time limit of the

research project. One technique not used was 'pop-up'

menus, which create a box filled with data and allows the

user to highlight an item and select that item. These

techniques could have made the program easier to use, as

well as providing the 'bells and whistles' that make a

program more enjoyable.

After further program development, the software should

be tested at several bases for an extended trial period. A

test period of several weeks may identify deficiencies or

flaws that could not be observed with the sample database.

60

Summary of Chapter V

This study validated the need for development of a

computer application supporting the War Reserve Materiels

program. The study investigated the requirements for

development of a software program for managing WRM

consumable asset data. From the requirements, a prototype

database management system application was developed,

tested, and sent to a group of users for evaluation.

Seventeen evaluation packets were sent to users in five

major commands, with fifteen responses recorded. Of the

responses, thirteen of the users decided the program would

be helpful in managing a WRM program. Based on the response

rate of 86.7%, the program is a success. This research is

important because it is an example of enhancing base LGX

operations through computer management of available data.

In addition, the methodology used proved useful for

developing the prototype software. The benefit of

developing this application is a potential savings of

management time energy through better asset inventory

accuaracy. Similar software applications could be developed

using the methodology.

Several of the users expressed recommendations for

improvements in program functions, help screens, and the

User's Guide. The program should be further developed,

incorporating an interface file with the SBSS, and

additional programming techniques to enhance program

appearance.

61

Appendix A: Dictionary of Terms

AFLMC Air Force Logistics Management Center at
Gunter AFB; responsible for development of
applications for large computer systems.

AFR Air Force Regulation

Authorization A declaration of an item as a WRM item, but
not necessarily funded

BLSS Base Level Self-Sufficiency Spares

Clipper An expanded version of the dBASE programming
language resulting in a compiled program.

Compiler A software program that converts a text
program to executable machine code.

Condor A programming language similar to dBASE, it
is an interpreted language.

Consumable Expendable items directly related and
necessary for a weapon system or combat
support.

Data Any type of information, usually classified
as character, numeric, logical, or date.

Database A collection of records about a related
subject; the records are usually physical or
electronic.

dBASE A database management system and programming
environment. It forms the basis for several
other DMBS programming languages. dBASE is
an interpreted language.

DBMS Database Management System

DIFM Due In From Maintenance

Equipment Items which do not lose their individual
identity when used.

Expendable items not designed to be repaired or reused.

FORTRAN A computer programming language developed in
the late 1970's used primarily for scientific
applications with large computational needs.

62

FoxBASE An expanded version of the dBASE programming

language resulting in a compiled program.

GSA General Services Administration

Harvest Bare A series of packages (Harvest Eagle, Harvest
Falcon) designed to support aircraft
operations at locations with little prior
preparation.

Hierarchial A database structure where each record has
one parent record, but has many child
records. Often described as a tree-like
'root' structure.

HEIMS House-keeping Equipment Inventory Management
System

Interpreter A software program that evaluates a single
line of text program, executes the command,
then evaluates the next line. It is a slower
method of running a program, but allows for
easier debugging.

LCD Liquid Crystal Display

LGX Office symbol for Logistics Plans and
Programs office

Logistics The management science of acquiring, storing,
transporting, and maintenance of supplies,
equipment, and personnel.

MAC The Military Airlift Command

MAJCOM Major Command

Materiel Same as material

Munitions A general class of items that includes
bullets, bombs, missiles, flares, chaff,
pyrotechnics, fuzes, and other explosive
devices.

Network A database structure where each record can
have many parent records and many child
records. This complex structure is often
described as a 'neural net'.

NSN National Stock Number - a 15 alphanumeric
code that uniquely designates any item used
in the standardized base supply system.

63

OOP Object Oriented Programming - a technique for
defining portions of computer code as
objects, and for handling the relationships
between objects. This technique is used in
many newer computer programs.

PACAF The major command designator for the Pacific
Air Forces

PACOPS The major command office symbol for the
Operations section of PACAF.

Pascal A computer programming language named for a
french mathematician, the language is used
primarily for applications that manipulate
text, such as word processors.

POC Point Of Contact

POMCUS Pre-positioning of Materiel Configured Unit
Sets; an Army program similar the Air Force
WRM program.

PPP Pre-Positioned Packages of assets stored at a
location in anticipation of a need by a
deploying force

QuickSilver An expanded version of the dBASE programming
language resulting in a compiled program.

QLP Query Language Program - one of the
programming languages used on the Sperry 1160
computer system as part of the SBSS.

Relational A database structure where each record can
have only one parent record, and one child
record. Often described as a table of data.

Reparable Items designed to be repaired or reused.

R07 The numeric designation for the WCDO/BLSS
spares report.

SAC The major command designator for the
Strategic Air Command

SBSS Standardized Base Supply System

SIMBL System for Inventory Management for the Base
Logistician

SSC Standard Systems Center at Gunter AFB;
responsible for development of applications
for small computer systems.

64

Stockpile A technique of collecting and storing an item
in anticipation of a future increase in
demand for the item.

TAC The major command designator for the Tactical

Air Command

tm trademark

USAF The Department of Defense designator for the
United States Air Forces

USAFE The major command designator for the United
States Air Forces in Europe

WCDO Wartime Consumables Distribution Objective -
establishes the basic WRM requirements for

each unit.

WPARR War Plans Additive Requirements Report -
additional items designated as WRM by the
major command.

WRM War Reserve Materiel

WRSK War Readiness Spares Kits - transportable
packages of equipment and aircraft spares
used to support operations on a daily basis
or at a deployed location.

Z248 An IBM/AT (80286) compatible computer made by
Zenith Data Systems, it is found in many
logistics plans and program (LGX) offices.

65

Appendix B: User's Guide

Overview of Program

This program was developed as a tool for the base

logistician who manages a large WRM program. This program

is designed to handle only consumable items, those with an

ERRC code of XB3. It allows the user to build databases of

authorizations and supply information without maintaining

files of paper printouts. It coordinates authorizations,

supply details, and organizational data and presents it in a

meaningful way. This program will record inspection dates,

discrepancies, references and user responses so they can be

recalled later. Also, a variety of useful reports can be

generated that consolidate existing data.

Required Hardware

- An IBM PC/XT/AT or compatible computer

- 512K RAM or greater

- A Hard disk with at least 1Mb available space on Drive C:

- A floppy drive designated as Drive A:

Recommended Hardware

- A color monitor

- A printer attached to LPT1:

66

Installation

1) At the DOS prompt, put the program diskette in the

floppy drive, close the door and type the command:

A:INSTALL.

2) The program will automatically create a C:\SIMBL

directory and copy the program files from the floppy.

3) Add the SIMBL directory to the path specification

of your Autoexec.bat file.

Program Functions

Main Menu. The program will begin with a display of

the main menu. You use this menu to select which area of

the WRM information you want to work with. The highlighted

box is the currently selected program function. You move

from box to box by pressing any of the arrow keys or the

space bar. Pressing the Up arrow key, the Right arrow key,

or the space bar will advance the highlight to the next box.

Pressing the Down arrow or Left arrow keys will move the

highlight back to the previous box. When you reach the

bottom right or top left box, the highlighted box will move

to the opposite corner. Try it! Pressing the Enter key

will take you to one of the nine functions described in this

section.

Authorizations. The authorizations screen displays

information about a WRM authorization, such as the source

document number you have established, the authorized

quantity and the actual quantity on-hand. The authorized

67

S tfo r Co auble 0 !uotor kKulmt at the hn Lev!
S.IN.IL, Vor Z,S ('ototwv)

U Is i:
towtis ,Ikluatat

ttharizatiou b" lJ

Quiatio AuUz ization lisumincies
kta vitb betails lmectio

L I~s adacInp luit
Listiaps ktakms Exit to Dos

Use Dow legs to Highli t Nx the OM 4J to Select

Figure 15. Main menu screen

quantity is the net quantity authorized (authorized -

unsupportable). The screen also displays the unit value of

the item and the total value of all units. The sample

screen shows 96 quarts of hydraulic fluid, which are valued

at $11.71 each, for a total of $1124.16. The ERRC Code

should be XB3 for all expendable, consumable items. It is

provided for program expansion at a later date.

The bottom line lists the different options available

for that screen. Next will call up the next record in the

database, while Prey will move 'backwards' to the previous

68

ktkrized 0 Item

oir hsriptia: O WI MIATOI NS:

Wkized ,uatity: 4 h Hudt 9: ,

Wit of Issue: L ucu ut Wabe
price d Uit: 8.34 o-iuthm'intim

alue of Wits: 1.36

09 Code: X3

Figure 16. Authorization screen

record. First will go to the top of the database, and Last

will move to the bottom of the database. A record can be

located by National Stock Number (NSN) by selecting the

Search option. Edit will allow you to make changes to the

data on screen, and Append will let you add a new item and

authorization to the database. Delete is used to mark a

record for deletion. It does not actually remove the data

until you exit the program, and will prompt you to make sure

you really want to delete that record or other records.

69

Quit will exit the screen function and take you back to the

Main Menu.

Help is available in the Search, Edit and Append

functions by pressing the Fl key.

Supply Documents. The supply details screen is used to

maintain information about supply documents.

S&LPP~lo culent Deails Scmue

emt T ": he Out Oreriv Orguizatio,: Y
Dnuet SmW: N 98740 Date Otered: 974

Estimated Delives'y Date: 6
Statl: he Is c: 190638

Item Odered: LOW quastitj Odewe: I
National Stock Naber: 165NW1Z92 Unit Price: 8.0

hiw o Sutitte: Total Value: @

Point of Contact Information
Name: OL . CIUILIAN
Organization' LOISTICS
Off ice: /LSS
Ph=: M-4437

Figure 17. Supply screen

These documents should be WRM items on order to fill a

shortage. This screen breaks the Due-Out document number

into several pieces and uses them to look up other related

70

information. For example the first six characters tell the

program what kind of document it is, and what organization

submitted the document to Base Supply. If the program can

find the Organization's Org/Shop code, it displays any point

of contact it has. The dates given are Julian dates (ie,

0102 is the one hundred and second day of the year 1990).

The program does not translate the Julian date to normal

Gregorian dates (YY/MM/DD).

utborizma is On-Iwr Quantities

Itm hsciptiov: U3ICATII 01L,AIR N: 915U878Z

Total %antity Authized: 5112

Atlized Umiortable: 12

Net Quawtity Ahoimrid: 510

Total Qualtitj ORhani: 4997

Quatit9 Shou't M8

Figure 18. Quantity balances screen

Quantity Balances. The quantity balances screen is

used to specify information about the quantity authorized,

71

authorized unsupportable amounts, the quantity on-hand, and

the quantity short for each item. When you add a new item

in the Authorization function, the program assumes the

quantity authorized is the bottom line, that is there is no

authorized unsupportable quantity. If you need to specify

that value, this option will allow you to do so using the

Edit or Append options. Also, the program will maintain the

on-hand quantity and from the available data, calculate the

shortage quantity.

Orsauizatiml Data

Ming or Air Division: ZM AN

Sipadro: LOGISTICS

Drand,: flAUIAL NDUI
Brawk SJnio1: /MSS

oryanization Wa)r: AI

MC Nw.): D T, CIVILIM MC kwhA CI

NC Ph= %e: 2M-4437 FC hilliq: I

POClomi: M4

Figure 19. Organizational data screen

72

Orcanizational Data. This function builds a file of

org/shop codes along with point of cont&at information.

Some of the information is printed in reports, while other

data is displayed with supply document (details)

information. This saves the user from having to look up the

Org/Shop code or stock number for the item just to find out

who is holding the material. This data is kept when you

read in new SBSS data, and does not go away unless you

specifically delete the record.

Athrization aid SulI etai Is
Prim Natioal
ithiuriznd Stuck kMA
It": MW kt.a: Q39 461 kt.k:

Adtffized Quawtitq: 8

Mtit9 Odel: 8

Matils suriu this authoi'ization
Pocu t I Tqpe 0 hte bded h Ike Quatity
1WK 1 iS733 0 51N7 S1 SIM? S 1

Figure 20. Authorization with supply documents

73

Authorizations with Details. Coordinating WRM

authorizations with Supply documents is the purpose of this

function. Authorizations and Stock Numbers appear in the

top half of the screen. The View option is used to look for

Supply documents (details) that correspond to the NSN in the

top half of the screen. If there are any Supply Due-Out

documents that have the same National Stock Number, they

will appear in a second window in the lower half of e

screen. The Supply document number, Julian date .

due date and quantity are given on the same line.

Inspection and Discrepancies. This function is

probably the most useful of all the program options. You

can make notes of current and past inspection results, keep

track of inspection dates, and responses from the inspected

organization. Each Discrepancy, Reference, and Response can

be as long as 64,000 characters, so you can make long memos.

During an edit or append, the user can enter a long

note in the Discrepancy, Reference, and Response fields. A

sample window of data in the DIscrepancy entry is shown in

the figure. All three types of notes: Discrepancy,

Reference or Response can be as long as 64.000 characters.

If the User types to the end of a line, the text will

automatically wrap around to another line.

If you enter a 'Y' or 'y' to the Follow Up fiel, the

program will automatically calculate a reinspection date for

30 days from the current date. The dates are in the format

of MM/DD/YY, and will appear on the inspections report.

74

lupection and iEscemc l etomtio

miss: ZU Lat lmpectiou: W/IV
S*adm: M TFS Next Juspectiomhe 18/15/98
B'anch: OFiTIWNS
Office Sol: /S on ber: I

lnpection & Isult
late: 94/"59
lixctepanc: Aj kiad of discepwaj is this field. It can be edited
WRemsce: Son refenxe for future use, MR At-WI oi, I, Chay 5,

sponse: Use CtrI-I for ref'omttti4 of the paagiaph.
Follow Up (Y/): hipection on: 85/15/9
StATUS: OPEN

Figure 21. Inspection screen

Any kini of discrepanc in this field, It can be edited
with the DELETE and INSER keys; the total length of
all mos can be up to 64Xcha ters Mod wrap and
reforatting are also available.

Enter Discrepancy info: AU to Save, EC to abort
Figure 22. Closeup of a memo field

75

hya.'t and Listinp N=m

A bw of all Ahtk~rized|
Itms &(All W ath's)]

D L o all Autlowized
Items and all details

I Dbert ot all lngsctioW I
0 t all OranaizationIPoints of Contact iotaj

Figure 23. Reports and listings menu screen

Reports and Listings. You will be presented a menu of

reports that can be generated and sent to the screen and the

printer. The User selects from this menu in the same manner

as the Main Menu. The first report generates a report of all

the available information from the Authorizations screen.

The second report is useful for creating a report that lists

each WRM item and all the Supply Document Details available.

The third report lists all the organization inspection data,

while the fourth reports all the Point of Contact

information for each organization.

76

I had In SIO Ltacted kta
(kplaces all authkizatiom

and supplv detail documts)

I acu cu t)atDes
(D thisg Neklq!) Q Autum to kin %=

I ksn PMViMwlaR
takms (it, tie os

ywu lacked up veel...

Figure 24. Database management menu

Read In and Backup Databases. With this function, the

User can bring in data from the Supply Base Computer and

thereby create new databases of authorization and supply

document information. See the section entitled 'Extracting

SBSS Data' for how to get data from Supply onto a floppy

disk to use with this program. The User can also backup

current data to a floppy disk, or restore data from a

previously backed up floppy disk.

Quit Program. Will exit the program, deleting marked

records and cleaning up any loose ends. The program will

77

give you a last chance to recover records that you have

marked for deletion. If you confirm the deletion by

pressing the 'Y' key, the program will remove that

information from the databases. If you do want to delete,

and you confirm the deletion you will erase only the records

marked for deletion, this data cannot be recovered! If you

do not want to delete information, but confirm the deletion,

the data will be gone and the only way you have to get it

back is to re-enter it the hard way.

Yu have it least one autlWrization d mked for

deletion, are p s re u mat to do tOis? N

Figure 25. Confirmation box for deletions

The bottom line here is that if you are unsure about

deleting any information, press 'N' (or any key except 'Y'),

and then all the records marked for deletion will be

recovered.

Using the Help function

Pressing the <F1> key will access the Help function

built into the program. The help information consists of a

78

rectangular window that pops up on the screen, and displays

some additional information about the current function. It

does not work during the opening screen, the Report &

Listings screen, or the Readin Databases screen.

Extracting SBSS Data

NOTE: To save you time and energy, the developer has

included sample databases so you can experiment on the

different program functions with real data.

There is a separate program on the diskette, which

should also be in the SIMBL directory, called WRM.PRG. This

file is a QLP program written to pull data from the SBSS

1100/E0 computer. Make a copy of the WRM.PRG file and take

it to the computer operator at Base Supply. The operator

can upload the program, run it, and download the resulting

file. The output file can be loaded into the SIMBL program

using the ReadIn function. When you access the ReadIn

function, put in the diskette, and the program will do the

rest!

Catastrophic Disaster

Into every life a little rain must fall, and at some

point you will probably have a catastrophic failure of

either software or hardware on your computer. Your best

defense against software failure is to backup your databases

whenever you make changes to them, particularly after adding

new information. Old data you can delete easily, the new

data might have to typed in all over again! If disaster

79

should occur with the software, such as a file being

damaged, copy your data backup disk into the C:\SIMBL

directory. If the program still will not run, reinstall the

program from the original disks, and then recover your

current databases from the backup data disk. If none of

these steps solve the problem, then it is likely there is a

problem with the hardware of your machine.

This program is a prototype, it is not a full fledged

program that will do anything and everything! From the

comments of you and other logisticians, this may form the

basis for an expanded version with greater capabilities and

functions. Your comments are important to the success of

this project, so please return the completed response card

as soon as possible.

Captain Kevin M. Tanzer
AFIT/LSG
Wright-Patterson AFB, OH 45433
Home Phone: (513) 297-0551
Work Phone: AV 785-4437

80

Appendix C: Program Source Code

**C:\CLIP\SIMBL.PRG :Main menu.
SGenerated March 18, 1990 from C:\UI\WW\MAINMENU.WW
**Target environment: Clipper Summer 87

*environment

SET SCOREBOARD off
SET CONFIRM of f
SET CURSOR OFF
SET KEY 28 TO Help

*Database flags for PACK/REINDEX
PUBLIC
mBASIC, mINSPECT, mORGDATA, mDOCUMENT, mBACKUP,mLastOrg, help-.cod
e;
mLastArea
mBASIC = .F.
mINSPECT = .F.
mORGDATA = .F.
mDOCUMENT = .F.
INBACKUP = .F.
help-code = "simbl"
c-normal = "W+/N,B+/N,N,N,B+/N"
c-selected = "W+/N,W+/B,N,N,B+/N"
c -unselected = "B+/N,B+/W,N,N,B+/N"
c-flashing = "R*/W,B+/N,N,N,B+/N'

* menu initialization
PRIVATE optkeys, numopts, oldchoice, newchoice, key
optkeys = "WSIOTDLRQ"
numopts = 9
oldchoice = 0
newchoice = 1
key =0

DO Setup
" initialize databases

" inkey aliases
PRIVATE RKup,RKdn,RKrt,RKlt,RKret,RKspc
RKup = 5
RKdn = 24
RKrt = 4
RKIt = 19
RKret = 13
RKspc = 32

* Reminder about not using classified data
DO ClassScr

81

* main loop: iterates once for each time an option action is

performed
DO WHILE .t.

* display the menu screen

SET COLOR TO &cnormal
CLEAR
* 22, 5 SAY "Use Cursor Keys "+chr(27)+chr(26)+" to

Highlight Box then ENTER "+chr(17)+"J to Select"
SET COLOR TO &c normal
* 0, 0, 5, 79 BOX
SET COLOR TO &cselected
* 1,1,4,78 BOX
* 1, 5 SAY "System for Consumable WRM Inventory Management

at the Base Level"
* 2, 25 SAY "S.I.M.B.L. Vers 2.0 (Prototype)"
* 4, 35 SAY "MAIN MENU"
SET COLOR TO &cselected
* 6, 0, 10, 15 BOX "-,-IJ-LI "

SET COLOR TO &cunselected
* 7, 1 SAY "W"
* 8, 6 SAY "WRM"
* 9, 1 SAY "Authorizations"
SET COLOR TO &cselected
* 6, 32, 10, 47 BOX ifr-,I 1JL1
SET COLOR TO &cunselected
* 7, 33 SAY "S"
* 8, 36 SAY "Supply"
* 9, 36 SAY "Details"
SET COLOR TO &cselected
* 6, 64, 10, 79 BOX "- IJ-LI"
SET COLOR TO &cunselected
* 7, 65 SAY "I"
* 8, 68 SAY "Quantity"
@ 9, 67 SAY "Balances"
SET COLOR TO &cselected
* 11, 0, 15, 15 BOX "riLJ-L
SET COLOR TO &cunselected
* 12, 1 SAY "0"
* 13, 2 SAY "Organization"
* 14, 5 SAY "Data"
SET COLOR TO &cselected
* 11, 32, 15, 47 BOX "r-- J-LJ "
SET COLOR TO &cunselected
* 12, 33 SAY "T"
@ 13, 33 SAY "Authorizations"
& 14, 34 SAY "with Details"
SET COLOR TO &cselected
* 11, 64, 15, 79 BOX "

r- . 1. - L I "1
SET COLOR TO &cunselected
* 12, 65 SAY "D"
* 13, 66 SAY "Discrepancies"
* 14, 66 SAY "Inspections"

82

SET COLOR TO &cselected
* 16, 0, 20, 15 BOX "--,1J-L"
SET COLOR TO &c_unselected
* 17, 1 SAY "L"
* 18, 4 SAY "Reports"
@ 19, 4 SAY "Listings"
SET COLOR TO &cselected
0 16, 32, 20, 47 BOX "r- JLI
SET COLOR TO &cunselected
* 17, 33 SAY "R Read In"
* 18, 33 SAY "& Backup"
* 19, 33 SAY "Databases"
SET COLOR TO &cselected
* 16, 64, 20, 79 BOX "r_ J-LI 1
SET COLOR TO &cunselected
* 17, 65 SAY "Q Quit"
* 18, 65 SAY "and"
* 19, 65 SAY "Exit to DOS"

* keyhit loop: iterates ones for each key input, breaks on
selection
DO WHILE .t.

* if selected option has changed, update the bounce-bar
IF oldchoice(>newchoice

* highlight new option

DO CASE

CASE newchoice =1
SET COLOR TO &cnormal
* 6, 0, 10, 15 BOX "r- . J-Lj"
SET COLOR TO &cselected
f 7,1,9,14 BOX

"

* 7, 1 SAY "W"
* 8, 6 SAY "WRM"
@ 9, 1 SAY "Authorizations"

CASE newchoice =2
SET COLOR TO &cnormal
* 6, 32, 10, 47 BOX " IJ-LI
SET COLOR TO &cselected
* 7,33,9,46 BOX "
* 7, 33 SAY "S"
@ 8, 36 SAY "Supply"
* 9, 36 SAY "Details"

CASE newchoice -3
SET COLOR TO &cnormal
* 6, 64, 10, 79 BOX " J-L '

SET COLOR TO &cselected
* 7,65,9,78 BOX "

* 7, 65 SAY "I"
* 8, 68 SAY "Quantity"
* 9, 67 SAY "Balances"

83

CASE newchoice =4
SET COLOR TO &cnormal
* 11, 0, 15, 15 BOX Q-IJ-L"
SET COLOR TO &cselected
* 12,1,14,14 BOX
* 12, 1 SAY "0"
I 13, 2 SAY "Organization"
* 14, 5 SAY "Data"

CASE newchoice =5
SET COLOR TO &cnormal
* 11, 32, 15, 47 BOX ".. .iLJ-L
SET COLOR TO &cselected
* 12,33,14,46 BOX "

* 12, 33 SAY "T"
* 13, 33 SAY "Authorizations"
* 14, 34 SAY "with Details"

CASE newchoice =6
SET COLOR TO &cnormal
* 11, 64, 15, 79 BOX "r I-LI"
SET COLOR TO &cselected

* 12,65,14,78 BOX of
* 12, 65 SAY "D"
@ 13, 66 SAY "Discrepancies"
* 14, 66 SAY "Inspections"

CASE newchoice =7
SET COLOR TO &cnormal
* 16, 0, 20, 15 BOX " -IJ-LI"
SET COLOR TO &cselected
a 17,1,19,14 BOX of

* 17, 1 SAY "L"
* 18, 4 SAY "Reports"
* 19, 4 SAY "Listings"

CASE newchoice =8
SET COLOR TO &cnormal
* 16, 32, 20, 47 BOX " iJ-Lj
SET COLOR TO &cselected
* 17,33,19,46 BOX "
* 17, 33 SAY "R Read In"
* 18, 33 SAY "& Backup"
* 19, 33 SAY "Databases"

CASE newchoice =9
SET COLOR TO &cnormal
* 16, 64, 20, 79 BOX "triJ-Lj
SET COLOR TO &cselected
a 17,65,19,78 BOX "
* 17, 65 SAY "Q Quit"
* 18, 65 SAY "and "

* 19, 65 SAY "Exit to DOS"

84

ENDCASE

* reset oldchoice for another pass
oldchoice =newchoice

ENDIF

* if return or an option trigger has been hit, perform
the option

IF key=RKret .or. at(upper(chr(key)), optkeys) >0
SET COLOR TO &cnormal
* fall out to action loop
EXIT

ENDIF

* get key input

key=inkey(O)

* update choice number based on key response
DO CASE

* down/right arrow: increment choice or wrap
CASE key =RKdn .or. key =RKrt .or. key =RKspc

newchoice = iif(oldchoice=numopts,l,oldchoice+l)
* up/left arrow: decrement choice or wrap
CASE key = RKup .or. key = RKlt
newchoice = iif(oldchoice=l,numopts,oldchoice-1)

* option trigger: set choice to option
CASE at(upper(chr(key)), optkeys) > 0
newchoice = at(upper(chr(key)), optkeys)

ENDCASE

IF oldchoice<>newchoice
* lowlight old option
DO CASE

CASE oldchoice =1
SET COLOR TO &cnormal
* 6, 0, 10, 15 BOX ". IJ-LI"
SET COLOR TO &cunselected
* 7,1,9,14 BOX

" "
* 7, 1 SAY "W"
* 8, 6 SAY "WRM"
* 9, 1 SAY "Authorizations"

CASE oldchoice =2
SET COLOR TO &cnormal
* 6, 32, 10, 47 BOX "- IJ-Ll"
SET COLOR TO &cunselected
* 7,33,9,46 BOX "

* 7, 33 SAY "S"
* 8, 36 SAY "Supply"
* 9, 36 SAY "Details"

CASE oldchoice =3

85

SET COLOR TO &cnormal
* 6, 64, 10, 79 BOX "r-, .J-LL"
SET COLOR TO &cunselected
* 7,65,9,78 BOX
* 7, 65 SAY "I"
* 8, 68 SAY "Quantity"
* 9, 67 SAY "Balances"

CASE oldchoice =4
SET COLOR TO &cnormal
* 11, 0, 15, 15 BOX "# r-
SET COLOR TO &c unselected
@ 12,1,14,14 BOX
* 12, 1 SAY "0"
* 13, 2 SAY "Organization"
* 14, 5 SAY "Data"

CASE oldchoice =5
SET COLOR TO &cnormal
* 11, 32, 15, 47 BOX r-1lJ-L '

SET COLOR TO &cunselected
* 12,33,14,46 BOX " "

* 12, 33 SAY "T"
* 13, 33 SAY "Authorizations"
* 14, 34 SAY "with Details"

CASE oldchoice =6
SET COLOR TO &cnormal
* 11, 64, 15, 79 BOX " _ LJ-l"
SET COLOR TO &c unselected
* 12,65,14,78 BOX to

* 12, 65 SAY "D"
@ 13, 66 SAY "Discrepancies"
* 14, 66 SAY "Inspections"

CASE oldchoice =7
SET COLOR TO &cnormal
* 16, 0, 20, 15 BOX "1- IJ-Ll'

SET COLOR TO &cunselected
* 17,1,19,14 BOX
* 17, 1 SAY "L"
* 18, 4 SAY "Reports"
* 19, 4 SAY "Listings"

CASE oldchoice =8
SET COLOR TO &cnormal
* 16, 32, 20, 47 BOX "n r1J-L
SET COLOR TO &cunselected
* 17,33,19,46 BOX
* 17, 33 SAY "R Read In"
* 18, 33 SAY "& Backup"

* 19, 33 SAY "Databases"

CASE oldchoice -9

86

SET COLOR TO &cnormal
a 16, 64, 20, 79 BOX "r-71J-l"
SET COLOR TO &cunselected
a 17,65,19,78 BOX "
a 17, 65 SAY "Q Quit"
* 18, 65 SAY "and "

* 19, 65 SAY "Exit to DOS"

ENDCASE
ENDIF

* end of keyhit loop

ENDDO

* perform selected option

DO CASE

CASE newchoice =1
DO AUTHRZ

CASE newchoice =2
DO SUPPLY

CASE newchoice =3
DO IMBALANC

CASE newchoice =4
DO ORGANIZ

CASE newchoice =5
DO AUTHDOC

CASE newchoice =6
DO INSPECT

CASE newchoice =7
DO LISTINGS

CASE newchoice =8
DO READIN

CASE newchoice =9
DO CLEANUP

ENDCASE

* set old choice var to 0 so we get a highlight on the

current option
oldchoice -0

* and set key input var to 0 so we don't fall out again

key =0

87

ENDDO

*** * * *

* PROC Setup.prg define databases and index files
* Kevin M. Tanzer - 4 May 90

* initialize databases and index files, along with alias
names
SELECT 1
mLastArea = 1
USE Basic INDEX BasicNSN AL iS Objectives
GOTO TOP

SELECT 2
mLastArea = 2
USE OrgData INDEX OrgData ALIAS WhosWho
GOTO TOP
mLastOrg = ORGNUMBR

SELECT 3
mLastArea = 3
USE Document INDEX Document ALIAS Details
GOTO TOP

SELECT 4
mLastArea = 4
USE Inspect INDEX Inspect ALIAS Performance
GOTO TOP

*** SELECT 5 - Area is used in Procedure AUTHDOC to build

temporary database
* of supply documents to be viewed.

*** SELECT 9 - Area is used in Procedure READIN to read in
extracted SBSS
*** data into a long character string, which is then parsed
into the
*** fields of the BASIC.DBF (authorization) and DOCUMENT.DBF

RETURN

*** C:\CLIP\AUTHRZ.PRG : Add, Edit, Browse, Delete, Search
(standalone)
*** Generated on March 11, 1990
*** Source .WW file: C:\UI\WW\AUTHRZ.WW
* Target environment: Clipper Summer 87
* Modified by K. Tanzer on 11 Mar 90 for use with LIMP

Vl.0

*** environment stuff
* environment

SET SCOREBOARD off

88

SET CONFIRM off
SET CURSOR ON
* menu initialization
PRIVATE key

* DBF initialization

SELECT 1
mLastArea = 1

* main menu loop:

* iterates once for each time an option action is performed.
* this loop calls procedures to perform selected actions.
* (Procedures are defined below this loop)

DO authscrn

DO WHILE .t.
help-code = 'authrz'

* display entry record

DO authdisp

* user selects action here

SET COLOR TO &cunselected

* 24,2 PROMPT " Next "

* 24,9 PROMPT " Prev "
* 24,16 PROMPT " First
* 24,24 PROMPT " Last
* 24,38 PROMPT " Search
* 24,47 PROMPT " Edit
* 24,54 PROMPT " Append
* 24,63 PROMPT " Delete
* 24,72 PROMPT " Quit

MENU TO key

* perform selected option
DO CASE

CASE key =1
DO authnext

CASE key =2
DO authprev

CASE key =3
DO authfirst

CASE key =4
DO authlast

89

CASE key =5
DO authsearch

CASE key =6
DO authedit

CASE key =7
DO authappnd

CASE key =8
DO authdel

CASE key =9
DO authquit
RETURN

ENDCASE

ENDDO
RETURN

******~ END OF MENU PROCEDURE

* action procedures:

* the following are called by the menu loop above.

******************** ************************

* authscrn: displays the screen background

PROC authscrn
* display fixed text
CLEAR
SET COLOR TO &cnormal
* 1, 0, 22, 79 BOX "r-'-IJ-LI"
SET COLOR TO &cselected
* 2,1,21,78 BOX

" "

* 2, 30 SAY "Authorized WRM Items"
* 3, 2 SAY "Item Description:"+space(22)+"NSN:"
* 5, 2 SAY "Authorized Quantity:"+space(9)+"On Hand Qty:"
* 7, 2 SAY "Unit of Issue:"+space(24)+"Document Number"
* 8, 2 SAY "Price of Unit:"+space(24)+"of Authorization:"
* 10, 2 SAY "Value of Units:"
* 12, 2 SAY "ERRC Code:"
@ 24,1 SAY "11 1 I" "I I I -
* 24,2 SAY " Next "
* 24,9 SAY " Prey "

* 24,16 SAY " First
0 24,24 SAY " Last
* 24,38 SAY " Search
* 24,47 SAY " Edit
* 24,54 SAY " Append

90

* 24,63 SAY " Delete
* 24,72 SAY " Quit
RETURN

• authnext: go to next record

PROC authnext
SKIP
IF eof()

GOTO BOTTOM
DO statmsg with "End of file!"

ELSE
DO statmsg with
mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO authdisp

ENDIF
RETURN

• authprev: go to previous record
******* * *** **** *** * *** * * **

PROC authprev
SKIP -1
IF bof()

GOTO TOP
DO statmsg with "Beginning of file!"

ELSE
DO statmsg with
mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO authdisp

ENDIF
RETURN

****** ** ***** ** ** * ******** ***

* authfirst: go to first record

PROC authfirst
GOTO TOP
DO statmsg with

mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO authdisp
RETURN

* authlast: go to last record

PROC authlast
GOTO BOTTOM
DO statmsg with

91

mLastOrg = SUBSTR(SOURCE-DOC,2,5)
Do authdisp
RETURN

*authsearch: search for a record, given entry into desired
criterion fields

PROC authsearch
PRIV searchval ,orecno
help-code = 'authsearch'
searchval = space(15)
DO statmsg with "
* 23,2 SAY "Enter NSN value: "GET searchval PICTURE '0!
NNNNNNNNNNNNNNN'
READ
orecno = RECNO()
SEEK searchval
IF .NOT. FOUND()

GOTO orecno
DO statmsg with "NSN value not found!"

ELSE
DO statmsg with
orecno = recno()
GOTO orecno
mLastOrg = SUBSTR (SOURCE DOC, 2,5)
DO authdi9p

ENDIF
RETURN

*authedit: edit current record

PROC authedit

**create memvar duplicates for all fields
PRIVATE mNOMENCLATR, mSTOCKNBR, mATHRZD_QTY, mQTYONHAND,
mUNITISSUE
PRIVATE mUNITPRICE, mSOURCE-DOC, niERRCCODE
help-code = 'authedit'

* * .. and initialize 'em
mNOMENCLATR = NOMENCLATR
mSTOCK NBR = STOCK-NBR
mATHRZDQTY = ATHRZDQTY
mQTY -ONHAND = QTY ONHAND
mUNITISSUE = UNITISSUE
mUNITPRICE = UNITPRICE

92

mSOURCEDOC =SOURCEDOC

mERRCCODE =ERRCCODE

DO statmsg with "Edit record. -W to save; Esc to abandon"

*** get input fields into memvar duplicates
* 3, 20 GET mNOMENCLATR PICTURE '@ ~NNNNNNNNNNNNNNNNNN'
* 3, 46 GET mSTOCKNBR PICTURE '!NNNNNNNNNNNNNNN'
* 5, 23 GET mATHRZDQTY PICTURE '99999'
* 5, 44 GET mQTY_-ONHAND PICTURE '99999'
* 7, 18 GET mUNITISSUE PICTURE '0! NI'
* 8, 18 GET mUNITPRICE PICTURE '9999999.99'
* 9, 40 GET mSOURCEDOC PICTURE '0! NNNNNNNNNNNNNN'
* 12, 13 GET mERRCCODE PICTURE '0! NNN'
READ

DO statmsg with

IF lastkey() = 27 &&user escaped out of READ
RETURN

ENDIF

REPLACE NOMENCLATR WITH UPPER(mNOMENCLATR)
REPLACE STOCKNBR WITH mSTOCKNER
REPLACE ATHRZDQTY WITH mATHRZDQTY
REPLACE QTY-ONHAND WITH mQTYONHAND
mTemp = mATHRZDQTY - QTY-UNSUPP
REPLACE NETQTY WITH mTemp
mTemp = mTemp - mQTY-ONHAND
REPLACE QTYSHORT WITH mTemp
REPLACE UNITISSUE WITH UPPER(mUNITISSUE)
REPLACE UNITPRICE WITH mUNITPRICE
REPLACE SOURCEDOC WITH UPPER(mSOURCEDOC)
REPLACE ERRCCODE WITH UPPER(mERRCCODE)

mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO authdisp
RETURN

*authappnd: append new record

PROC authappnd

DO ClassPop

* Popup reminder about classified data

DO authscrn
DO authdisp

*~create memvar duplicates for all fields

93

PRIVATE mNOMENCLATR, mSTOCKNER, mIATHRZD_QTY, mQTYONHAND,
mUNITISSUE
PRIVATE Jn1NIT_PRICE, mSOURCEDOC, IERRCCODE
help code = 'authappnd'

**..and initialize 'em
mNOMENCLATR =SPACE(19)
mSTOCKNBR =SPACE(15)

mATHRZD_QTY = 0
mQTY -ONHAND = 0
mUNITISSUE = SPACE(2)
mUNITPRICE = 0.00
mSOURCEDOC =SPACE(14)
mERRCCODE =SPACE(3)

DO statmsg with "Enter new record. -W to save; Esc to
abandon"

** get input fields into znemvar duplicates
* 3, 20 GET mNOMENCLATR PICTURE '!NNNNNNNNNNNNNNNNNNN'
* 3, 46 GET mSTOCKNBR PICTURE '!NNNNNNNNNNNNNNN'
* 5, 23 GET mATHRZDQTY PICTURE '99999'
* 5, 44 GET mQTYONHAND PICTURE '99999'
* 7, 18 GET mUNITISSUE PICTURE '0! NN'
* 8, 18 GET mUNITPRICE PICTURE '9999999.99'
* 9, 40 GET mSOURCEDOC PICTURE '!NNNNNNNNNNNNNN'
* 12, 13 GET mERRCCODE PICTURE '!NNN'
READ

DO statmsg with

IF lastkey() 27 &&user escaped out of READ
RETURN

ENDIF

* append into DBF fields
APPEND BLANK
REPLACE NOMENCLATR WITH UPPER(mNOMENCLATR)
REPLACE STOCKNBR WITH mSTOCKNBR
REPLACE ATHRZDQTY WITH mATHRZDQTY
REPLACE QTY-ONHAND WITH mQTYONHAND
mTemp = ATHRZDQTY - QTYJJNSUPP
REPLACE NETQTY WITH mTemp
mTemp = mTemp - mQTY-ONHAND
REPLACE QTYSHORT WITH mTemp
REPLACE UNITISSUE WITH UPPER(mUNITISSUE)
REPLACE UNITPRICE WITH mUNITPRICE
REPLACE SOURCEDOC WITH UPPER(mSOURCEDOC)
REPLACE ERRC-CODE WITH UPPER(mERRCCODE)
mBACKUP = .T.

REINDEX

mLastOrg -SUBSTR(SOURCEDOC,2,5)

94

DO authdisp
RETURN

* authdel: delete record. If deleted, recall

PROC authdel
IF .not. deleted()

DELETE
mBASIC = .T.

ELSE
RECALL

ENDIF
DO statmsg with
DO authdisp
RETURN

* authquit: various quit things

PROC authquit
SET COLOR TO &cnormal
SET CURSOR OFF
CLEAR
RETURN

*** *******

* statmsg: displays passed message on line 23
* this routine is common to all the subprograms

PROC statmsg
PARAM s
* 23,0 SAY " "+s+space(54-len(s))
RETURN

* authdisp: displays current record, along with recno() and
deleted()

PROC authdisp
PRIVATE mQTYONHAND

SELECT 1
mLastArea = 1

95

SET COLOR TO &cselected
IF recno() = 0

GOTO TOP
ENDIF

DO statmsg with

* 3, 20 GET NOMENCLATR
* 3, 46 GET STOCKNBR
* 5, 23 GET ATHRZDQTY
mQTYONHAND = QTYONHAND
* 5, 44 GET QTYONHAND
* 7, 18 GET UNITISSUE
* 8, 18 GET UNITPRICE PICTURE '9999999.99'
NetValue = UNITPRICE * mQTYONHAND
* 10, 18 SAY NetValue PICTURE '9999999.99'
* 9, 40 GET SOURCEDOC
* 12, 13 GET ERRCCODE
CLEAR GETS
* 23,70 SAY iif(deletedo,"Deleted"," ")

RETURN

• *C:\CLIP\SUPPLY.PRG : Add, Edit, Browse, Delete, Search
(standalone)
•** Generated on March 11, 1990
•** Source .WW file: C:\UI\WW\SUPPLY.WW
•** Target environment: Clipper Summer 87
•** Modified by K. Tanzer on 11 Mar 90 for use with LIMP
Vl.0

•** environment stuff
* environment
SET SCOREBOARD off
SET CONFIRM off
SET CURSOR ON

* menu initialization

PRIVATE key

" DBF initialization
" Open database DOCUMENT (alias DETAILS)

SELECT 3
mLastArea = 3
GOTO TOP

** **

* main menu loop:

* iterntes once for each time an option action is perfurmed.
* this loop calls procedures to perform selected actions.

96

* (Procedures are defined below this loop)

* display fixed text

SET COLOR TO &cnormal
CLEAR
SET COLOR TO &cnormal
* 0, 0, 22, 79 BOX "r11 _ jJ-LI"
SET COLOR TO &cselected
* 1,1,21,78 BOX " o

* 1, 25 SAY "Supply Document Details Screen"
* 3, 5 SAY "Document Type:"+space(21)+"Ordering
Organization:"
* 4, 3 SAY "Document Number:"+space(21)+"Date Ordered:"
* 5, 39 SAY "Estimated Delivery Date:"
* 6, 20 SAY "Status:"+space(15)+"Due In Doc:"
* 9, 3 SAY "Item Ordered:"+space(30)+"Quantity Ordered:"
* 10, 3 SAY "National Stock Number:"+space(27)+"Unit Price:"
* 11, 5 SAY "Prime or Substitute:"+space(26)+"Total Value:"
SET COLOR TO &cnormal
* 13, 4, 20, 55 BOX " -J-LI ".

SET COLOR TO &cselected
* 14,5,19,54 BOX "

* 14, 15 SAY "Point of Contact Information"
* 15, 6 SAY "Name:"
* 16, 6 SAY "Organization:"
* 17, 6 SAY "Office:"
* 18, 6 SAY "Phone:"
@ 24,1 SAY "I I I I

III
* 24,2 SAY " Next
* 24,9 SAY " Prey
* 24,16 SAY " First
* 24,24 SAY " Last
* 24,38 SAY " Search
0 24,47 SAY " Edit "

* 24,54 SAY " Append
0 24,63 SAY " Delete
* 24,72 SAY " Quit

DO WHILE .t.
helpcode = 'supply'

* display entry record

DO dispsupply

* user selects action here

97

SET COLOR TO &cunselected

* 24,2 PROMPT " Next "
* 24,9 PROMPT " Prey "
* 24,16 PROMPT " First
* 24,24 PROMPT " Last
* 24,38 PROMPT " Search
* 24,47 PROMPT " Edit "
@ 24,54 PROMPT " Append"
* 24,63 PROMPT " Delete
* 24,72 PROMPT " Quit

MENU TO key

* perform selected option

DO CASE
CASE key =1

DO nextsupply
CASE key =2

DO prevsupply
CASE key =3

DO firstsuppJ
CASE key =4

DO lastsupply
CASE key =5

DO srchsupply
CASE key =6

DO editsupply
CASE key =7

DO appsupply
CASE key =8

DO delsupply
CASE key =9

DO quitsupply
RETURN

ENDCASE

ENDDO
RETURN
S****************** END OF MENU PROCEDURE

* action procedures:

* the following are called by the menu loop above.

98

*nextsupply: go to next record

PROC nextsupply
SKIP
IF eof()

GOTO BOTTOM
DO statmsg with "End of file!"

ELSE
Do statmsg with
mLastOrg = SUBSTR(DOCNUMBER,2,5)
DCA dispsupply

ENDIF
RETURN

*prevsupply: go to previous record

PROC prevsupply
SKIP -1
IF bof()

GOTO TOP
DO statmsg with "Beginning of file!"

ELSE
DO statmsg with
mLastOrg = SUBSTR(DOCNUMBERI2,5)
DO dispsupply

ENDIF
RETURN

*firstsuppl: go to first record

PROC firstsuppl
GOTO TOP
DO statmsg with "Top of file!"

mLastOrg = SUBSTR(DOCNUMBER,2,5)
Do dispsupply
RETURN

*lastsupply: go to last record

PROC lastsupply
GOTO BOTTOM
DO statrnsg with "Bottom of file"

mLastOrg = SUBSTR(DOCNUMBER,2,5)
DO dispsupply
RETURN

99

* srchsupply: search for a record, given entry into desired
criterion fields

PROC srchsupply
PRIV searchval,orecno
help-code ='srchsupply'
searchval = space(14)
DO statmsg with ""
* 23,2 S;.' "Enter Document number: " GET searchval PICTURE
'@! NNNNNNNNNNNNN'
READ
orecno = recno()
SEEK searchval
IF .NOT. FOUND()

GOTO orecno
DO statmsg with "Search value not found!"

ELSE
DO statmsg with
mLastOrg = SUBSTR(DOCNUMBER,2,5)
DO dispsupply

ENDIF
RETURN

* editsupply: edit current record
******** * **** ** **** *** ** **

PROC editsupply

*** create memvar duplicates for all fields
PRIVATE
mDOC_NUMBER,mSTOCKNBRmPRIMESUB,mEDD,mSTATUS,mDUE_INDOC,m
QTYORDERD
help code = 'editsupply'

*** ...and initialize 'em
mDOCNUMBER = DOCNUMBER
mSTOCKNBR = STOCK_NBR
mPRIMESUB = PRIMESUB
mEDD - EDD
mSTATUS = STATUS
mDUE IN DOC = DUE IN DOC
mQTYORDERD = QTYORDERD
DO statmsg with "Edit record. -W to save; Esc to abandon"

*** get input fields into memvar duplicates
* 4, 20 GET mDOCNUMBER PICTURE '@! NNNNNNNNNNNNNN'
* 5, 65 GET mEDD PICTURE '9999'
* 6, 28 GET mSTATUS PICTURE '0! AAAAA'

100

* 6, 54 GET mDUEINDOC PICTURE '0! NNNNNNNNNNNNNN'
* 9, 64 GET mQTY_-ORDERD PICTURE '99999'
* 10, 26 GET mSTOCK_-NBR PICTURE '0! NNNNNNNNNNNNNNN'
* 11, 26 GET mPRIMESUB PICTURE '@! A'
READ

Do statmsg with

IF lastkey() = 27 &&user escaped out of READ
RETURN

ENDIF

REPLACE DOCNUMBER WITH UPPER(mDOCNUMBER)
REPLACE STOCKNBR WITH UPPER(mSTOCKNBR)
REPLACE PRIMESUB WITH UPPER(mPRIHESUB)
REPLACE EDD WITH mEDD
REPLACE STATUS WITH UPPER(mSTATUS)
REPLACE DUEINDOC WITH UPPER(mDUEINDOC)
REPLACE QTY-ORDERD WITH mQTYORDERD

mLastOrg = SUBSTR(DOCNUMBER,2,5)
DO dispsupply

RETURN

*appsupply: append new record

PROC appsupply

** create memvar duplicates for all fields
PRIVATE
mDOCNUMBER,mSTOCKNBR,mPRIME_SUB,znEDD,mSTATUS,mDUE_INDOC,m
QTYOiRDERD
help..code = 'appsupply'

.. .and initialize 'em
mDOCNUMBER =SPACE(14)

mSTOCKNBR =SPACE(15)

mPRIMESUB =SPACE(1

mEDD = 0
mSTATUS = "O
mDUEINDOC = SPACE(14)
mQTY-ORDERD = 0

DO statmsg with "Enter new record. -W to save; Esc to
abandon"

** get input fields into memvar duplicates
* 4, 20 GET mDOCNUMBER PICTURE '0! NNNNNNNNNNNNNN'
* 5, 65 GET mEDD PICTURE '9999'
* 6, 28 GET mSTATUS PICTURE '0! AAAAAA'
* 6, 54 GET mDUEINDOC PICTURE '0! NNNNNNNNNNNNNN'

101

* 9, 64 GET mQTYORDERD PICTURE '99999'
* 10, 26 GET mSTOCKNBR PICTURE '0! NNNNNNNNNNNNNNN'
* 11, 26 GET mPRIMESUB PICTURE '6! A'

READ

DO statmsg with

IF lastkey() = 27 && user escaped out of READ
RETURN

ENDIF

* append into DBF fields

APPEND BLANK
REPLACE DOCNUMBER WITH UPPER(mDOCNUMBER)
REPLACE STOCKNBR WITH UPPER(mSTOCKNBR)

mSTOCKNBR = UPPER(mSTOCKNBR)
REPLACE PRIMESUB WITH UPPER(mPRIMESUB)
REPLACE EDD WITH mEDD
REPLACE STATUS WITH UPPER(mSTATUS)
REPLACE DUEINDOC WITH UPPER(mDUEINDOC)
REPLACE QTYORDERD WITH mQTYORDERD
REPLACE DOCTYPE WITH '0'
mBACKUP = .T.

REINDEX
mLastOrg = SUBSTR(DOC_NUMBER,2,5)

DO dispsupply
RETURN

• delsupply: delete record. If deleted, recall

PROC delsupply
IF .not. deleted()

DELETE
mDOCUMENT = .T.

ELSE
RECALL

ENDIF
DO statmsg with
DO dispsupply
RETURN

* quitsupply: various quit things

PROC quitsupply
SET COLOR TO &cnormal
SET CURSOR OFF
CLEAR

102

RETURN

*dispsupply: displays current record, along with recno()
and deleted()

PROC dispsupply
PRIVATE
mORG, mDOC, mDATE, mITEM, mQUANT ,mPRICE, mVALUE, mTYPE ,mSTOCKNBR,
searchval ,orecno

SELECT 3
mLastArea =3

IF recno() 0
GOTO 1
mLastOrg = SUBSTR(DOCNUMBER,2,5)

ENDIF

mDOC = DOCTYPE
DO DocLook with mDOC
*** Translate the DOCTYPE to a plain english string
* 3, 20 SAY mDOC

a 4, 20 GET DOCNUMBER
*** Break Document Number into separate elements
mORG =SUBSTR(DOC_-NUMBER,2,5)
mDATE =SUBSTR(DOC_-NUMBER,7,4)
* 3, 64 SAY mORG
* 4, 55 SAY mDATE

mSTOCKNBR =STOCKNER

SELECT 1
mLastArea =1

LOCATE ALL FOR STOCKNBR = mSTOCKNER
* 9, 17 SAY NOMENCLATFR
mPRICE = UNITPRICE

** Lookup POC Information based on organization number
SELECT 2
mLastArea = 2
searchval = mORG
orecno = recno()
SEEK searchval
IF .NOT. FOUND) .OR. OFFICE - 'UNKNOWN'

GOTO orecno
DO statmsg with "This Org/Shop number needs to be

defined."
ELSE

* 15, 12 GET POC_-NAME
* 16, 20 GET SQUADRON

103

* 17, 15 GET OFFICE
* 18, 14 GET POCPHONE PICTURE 'OR 999-9999'

ENDIF

SELECT 3
mLastArea =3
* 5, 65 GET EDD PICTURE '9999'
* 6, 28 GET STATUS
* 6, 54 GET DUEINDOC
* 9, 64 GET QTYORDERD
* 10, 64 SAY mPRICE PICTURE '9999999.99'
* 10, 26 GET STOCKNBR
* 11, 26 GET PRIMESUB
mPRICE = mPRICE*QTYORDERD
* 11, 64 SAY mPRICE PICTURE '9999999.99'

CLEAR GETS

* 23,70 SAY iif(deletedo,"Deleted","

RETURN

• *C:\CLIP\IMBALANC.PRG : Add, Edit, Browse, Delete, Search
(standalone)
• *Generated on March 11, 1990
S** Source .WW file: C:\UI\WW\IMBALANC.WW

*** Target environment: Clipper Summer 87
*** Modified by K. Tanzer on 11 Mar 90 for use with LIMP
Vi.0

*** environment stuff

* environment

SET SCOREBOARD off
SET CONFIRM off
SET CURSOR ON

* menu initialization

PRIVATE key

" DBF initialization
" Use Basic database
SELECT 1
mLastArea = 1
*** SET FILTER TO QTYSHORT <> 0
IF EOF()
GOTO TOP

ENDIF

* main menu loop:

* iterates once for each time an option action is performed.

104

* this loop calls procedures to perform selected actions.
* (Procedures are defined below this loop)

* display fixed text
SET COLOR TO &cnormal
CLEAR
SET COLOR TO &cnormal
0 0, 0, 22, 79 BOX " r_ J-LI"

SET COLOR TO &cselected
* 1,1,21,78 BOX " "

* 1, 18 SAY "Authorized vs On-hand Quantities"
* 4, 4 SAY "Item Description:"+space(27)+"NSN:"
* 9, 4 SAY "Total Quantity Authorized:"
* 11, 4 SAY "Authorized Unsupportable:"
* 13, 9 SAY "Net Quantity Authorized:"
* 15, 10 SAY "Total Quantity On-hand:"
e 17, 18 SAY "Quantity Short:"
* 24,1 SAY '1 1 I

* 21,2 SAY " Next "
* 24,9 SAY " Prey "

* 24,16 SAY " First
* 24,24 SAY " Last
* 24,38 SAY " Search
* 24,47 SAY " Edit "
* 24,54 SAY " Append
* 24,63 SAY " Delete
* 24,72 SAY " Quit

DO WHILE .t.
help-code = 'imbalanc'

* display entry record
DO imbaldisp

* user selects action here

SET COLOR TO &cunselected

* 24,2 PROMPT " Next "
* 24,9 PROMPT " Prey "

* 24,16 PROMPT " First
* 24,24 PROMPT " Last
* 24,38 PROMPT " Search
* 24,47 PROMPT " Edit "

* 24,54 PROMPT " Append

105

* 24,63 PROMPT " Delete

* 24,72 PROMPT " Quit

MENU TO key

* perform selected option
DO CASE

CASE key =1
DO imbalnext

CASE key =2
DO imbalprev

CASE key =3
DO imbalfirst

CASE key =4
DO imballast

CASE key =5
DO imbalsrch

CASE key =6
DO imbaledit

CASE key =7
DO imbalappnd

CASE key =8
DO imbaldel

CASE key =9
DO imbalquit
RETURN

ENDCASE
ENDDO
RETURN
** END OF MENU PROCEDURE

******* * **** *** ***** *** **** *****************

* action procedures:

* the following are called by the menu loop above.

***** ** *** ** ******** *******************

* imbalnext: go to next record
******* ************* **********

* Will locate the next record that has a non-zero
* shortage quantity

PROC imbalnext
SKIP
IF eof()

GOTO BOTTOM
DO statmsg with "End of File!"

ELSE

106

DO statmsg with
mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO imbaldisp

END IF
RETURN

*imbalprev: go to previous record

PROC inibalprev
SKIP -1
IF bof()

GOTO TOP
DO statmsg with "Beginning of File!"

ELSE
mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO statmsg with

ENDIF
DO imbaldisp
RETURN

*imbalfirst: go to first record

PROC imbalfirst
GOTO TOP
DO statmsg with

mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO imbaldisp
RETURN

*imballast: go to last record

PROC imballast
GOTO BOTTOM
DO statmsg with

mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO imbaldisp
RETURN

*imbalsrch: search for a record, given entry into Clebired
criterion fields

PROC imbalsrch

PRIV searchval, orecno

107

help-code = 'imbalsrch'
searchval = space(15)
DO statmsg with "
* Make a search by National Stock Number
* 23,2 SAY "Enter NSN search value: " GET searchval PICTURE
W@ NNNNNNNNNNNNNNN'
READ
orecno = recno()
SEEK searchval
IF .NOT. FOUND()

GOTO orecno
TONE (900 ,2)
DO statmsg with "That NSN not found!"

ELSE
Do statmsg with
mLastOrg = SUBSTR(SOURCEDOC,2,5)
Do irnbaldisp

ENDIF
RETURN

*imbaledit: edit current record

PROC imbaledit

*** create memvar duplicates for all fields
PRIVATE mNOMENCLATR, mSTOCKNBR, mATHRZDQTY, mQTYUNSUPF,
mNET-QTY
PRIVATE mQTY -ONHAND, mQTYSHORT
helpcode = 'imbaledit'

* * ..and initialize 'em
mNOMENCLATR = NOMENCLATR
mSTOCKNBR = STOCKNER
mATHRZDQTY = ATHRZDQTY
mQTY -UNSUPP = QTY-UNSUPP
nNETQTY = mATHRZDQTY - mQTY_UNSUPP
mQTY -ONHANJD =QTY -ONHAND
mQTY SHORT =mNETQTY - mQTYONHAND

DO statmsg with "Edit record. -W to save; Esc to abandon"

*** get input fields into memvar duplicates
* 4, 22 GET mNOMENCLATR PICTURE '0! NNNNNNNNNNNNNNNNNNN'
* 4, 53 GET mSTOCKNBR PICTURE '0 NNNNNNNNNNNNNNN'
* 9, 31 GET mATHRZDQTY PICTURE '99999'
* 11, 31 GET mQTY UNSUPP PICTURE '99999'
* 13, 34 GET TNETQTY PICTURE '99999'
* 15, 34 GET mQTY -ONHAND PICTURE '99999'
* 17, 34 GET mQTY SHORT PICTURE '99999'
READ

DO statmsg with

108

IF lastkey() 27 && user escaped out of READ
RETURN

END IF

REPLACE NOMENCLATR WITH UPPER(MNOHENCLATR)
REPLACE STOCKNBR WITH rnSTOCKNBR
REPLACE ATHRZDQTY WITH mATHRZDQTY
REPLACE QTY-UNSUPP WITH mQTYUNSUPF
REPLACE NETQTY WITH nmNETQTY
REPLACE QTY-ONHAND WITH mQTY-ONHAND
REPLACE QTYSHORT WITH mQTY_SHORT

DO imbaldisp
RETURN

*imbalappnd: append new record

PROC imbalappnd

*** create memvar duplicates for all fields
PRIVATE rNOMENCLATR, mSTOCKNBR, mATHRZD_QTY, mQTYUNSUPP,
mNET-QTY
PRIVATE ,QTY -ONHAND, mQTY SHORT
help-code = 'imbalappnd'

** . and initialize 'em
mNOMENCLATR = SPACE(19)
jnSTOCKNBR = SPACE(15)
mATHRZDQTY = 00000
mQTY -UNSUPP = 00000
mNET-QTY = 00000
mQTY -ONHAND =00000
mQTY SHORT =00000

DO statmsg with "Enter new record. -W to save; Esc to
abandon"

** get input fields into memvar duplicates
* 4, 22 GET MNOMENCLATR PICTURE '0! NNNNNNNNNNNNNNNNNNN'
* 4, 53 GET mSTOCKNBR PICTURE '@! NNNNNNNNNNNNNNN'
* 9, 31 GET mATHRZDQTY PICTURE '99999'
* 11, 31 GET mQTY UNSUPP PICTURE '99999'
* 13, 34 GET JAET :QTY PICTURE '99999'
* 15, 34 GET mQTY -ONHAND PICTURE '99999'
* 17, 34 GET mQTY SHORT PICTURE '99999'
READ

DO statmsg with

IF lastkey() - 27 &&user escaped out of READ

109

RETURN
END IF

* append into DEF fields
APPEND BLANK
REPLACE NOMENCLATR WITH UPPER (mNOMENCLATR)
REPLACE STOCKNBR WITH mSTOCKNBR
REPLACE ATHRZD_QTY WITH mATHRZDQTY
REPLACE QTY-UNSUPP WITH mQTYUNSUPP
REPLACE NETQTY WITH ZNETQTY
REPLACE QTYOPNHAND WITH mQTYONHAND
REPLACE QTYSHORT WITH mQTYSHORT
mBACKUP = .T.

REINDEX

mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO imbaldisp
RETURN

*imbaldel: delete record. If deleted, recall

PROC imbaldel
IF .not. deleted()

DELETE
mBASIC = .T.

ELSE
RECALL

ENDIF
DO statmsg with
DO imbaldisp
RETURN

*imbalquit: various quit things

PROC imbalquit
SET COLOR TO &c-normal
SET FILTER TO
SET CURSOR OFF
CLEAR
RETURN

*imbaldisp: displays current record, along with recno() and
deleted()

110

PROC imbaldisp
IF recno() = 0

GOTO 1
ENDIF
i 4, 22 GET NOMENCLATR
* 4, 53 GET STOCKNBR
* 9, 31 GET ATHRZDQTY
* 11, 31 GET QTYUNSUPP
* 13, 34 GET NETQTY
* 15, 34 GET QTYONHAND
* 17, 34 GET QTYSHORT
CLEAR GETS
* 23,70 SAY iif(deletedo,"Deleted","

RETURN

" PROC Setup.prg define databases and index files
" Kevin M. Tanzer - 4 May 90

* initialize databases and index files, along with alias
names
SELECT 1
mLastArea = 1
USE Basic INDEX BasicNSN ALIAS Objectives
GOTO TOP

SELECT 2
mLastArea = 2
USE OrgData INDEX OrgData ALIAS WhosWho
GOTO TOP
mLastOrg = ORGNUMBR

SELECT 3
mLastArea = 3
USE Document INDEX Document ALIAS Details
GOTO TOP

SELECT 4
mLastArea = 4
USE Inspect INDEX Inspect ALIAS Performance
GOTO TOP

*** SELECT 5 - Area is used in Procedure AUTHDOC to build
temporary database
• *of supply documents to be viewed.

S** SELECT 9 - Area is used in Procedure READIN to read in
extracted SBSS

111

*** data into a long character string, which is then parsed
into the
*** fields of the BASIC.DBF (authorization) and DOCUMENT.DBF

RETURN

* C:\CLIPPER\AUTHDOC.PRG : Add, Edit, Browse, Delete,
Search
* also with scrolling lookup window for details
*** Generated on April 7, 1990
* Source .WW file: C:\UI\WW\AUTHDOC2.WW
*** Target environment: Clipper Summer 87
*** Modified by K. Tanzer on 11 Mar 90 for use with LIMP
Vi.0

* meau initialization

PRIVATE key,mKEY
SET CURSOR ON

* DBF initialization

SELECT 1
mLastArea = 1
GOTO TOP

* main menu loop:

* iterates once for each time an option action is performed.
* this loop calls procedures to perform selected actions.
* (Procedures are defined below this loop)

* display fixed text
SET COLOR TO &cnormal
CLEAR
SET COLOR TO &cnormal
0 0, 0, 9, 79 BOX 'r..wJ.L '

SET COLOR TO &cselected
* 1,1,8,78 BOX 7
* 1, 23 SAY 'Authorizations and Supply Details'
* 2, 2 SAY 'Prime'+space(23)+'National'
* 3, 2 SAY
'Authorized'+space(18)+'Stock'+space(20)+'Document'
@ 4, 2 SAY 'Item:'+space(23)+'Number:'+space(18)+'Number:'
* 6, 2 SAY 'Authorized Quantity:'
* 8, 6 SAY 'Quantity Onhand:'
• 24,1 SAY 'I I I I I

I I '
• 24,2 SAY ' Next

'

112

* 24,9 SAY ' Prey
* 24,16 SAY First
* 24,24 SAY ' Last
* 24,32 SAY ' Search
* 24,42 SAY ' View Supply Details
* 24,72 SAY 'Quit

DO WHILE .t.
help-code = 'authdoc'

* display entry record
DO disprec

* user selects action here

SET COLOR TO &cunselected

* 24,2 PROMPT ' Next
* 24,9 PROMPT 'Prev
* 24,16 PROMPT First
* 24,24 PROMPT ' Last
* 24,32 PROMPT ' Search
* 24,42 PROMPT ' View Supply Details
* 24,72 PROMPT ' Quit

MENU TO key

* perform selected option
DO CASE

CASE key =1
DO nextthing

CASE key =2
DO prevthing

CASE key =3
DO firstthing

CASE key =4
DO lastthing

CASE key =5
DO searchthing

CASE key =6
mKEY = STOCK_NBR
DO details with mKEY

CASE key =7
DO quitthing
RETURN

ENDCASE

ENDDO

113

* action procedures:

* the following are called by the menu loop above.

* nextrec: go to next record

PROC nextthing
SKIP
IF eof()

GOTO BOTTOM
DO statmsg with 'End of file!'

ELSE
DO statmsg with
mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO disprec

ENDIF
RETURN

* prevrec: go to previous record

PROC prevthing
SKIP -1
IF bof()

GOTO TOP
DO statmsg with 'Beginning of file!'

ELSE
DO statmsg with
mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO disprec

ENDIF
RETURN

* firstrec: go to first record
** *** ** ****** *** ****** ** ****** *

PROC firstthing
GOTO TOP
DO statmsg with

mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO disprec
RETURN

114

* lastrec: go to last record
** *** ** ****** ** ********* **** * * *

PROC lastthing
GOTO BOTTOM
DO statmsg with

mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO disprec
RETURN

* ** ***** * *************************

* search: search for a record, given entry into desired
criterion fields

PROC searchthing
PRIV searchval,orecno
help-code = 'searchthng'
searchval = space(14)
DO statmsg with ''
* 23,2 SAY 'Enter Document number: ' GET searchval PICTURE
'0! NNNNNNNNNNNNNN'
READ
orecno = recno()
LOCATE ALL FOR SOURCEDOC = searchval
IF .NOT. FOUND()

GOTO orecno
DO statmsg with 'Document number not found!'
mLastOrg = SUBSTR(SOURCEDOC,2,5)

ELSE
DO statmsg with
mLastOrg = SUBSTR(SOURCEDOC,2,5)
DO disprec

ENDIF
RETURN

* quitstuff: various quit things
** *** **** *** * *** ***********

PROC quitthing
SET COLOR TO &cnormal
SET CURSOR OFF
CLEAR
RETURN

115

* disprec: displays current record, along with recno() and
deleted ()
** ** * * * * ************************

PROC disprec

* 4, 8 GET NOMENCLATR
* 4, 38 GET STOCKNBR
6 4, 63 GET SOURCE_DOC
* 6, 23 GET NETQTY
* 8, 23 GET QTY_ONHAND
CLEAR GETS
@ 23,70 SAY iif(deletedo),'Deleted',')

RETURN

* ** ** ** * *************************

* Details: scrolling lookup window for supply details

* Creates a scrolling window to view all documents based on
the
* National Stock Number of the Authorization being viewed.
PROC Details
PARAM extractkey

PRIVATE up, down, left, right, pgup, pgdn, home, end,
carret, ;
scrltop, scrlleft, scrlbot, scrlright, scrlheight,
currow, lastrec, firstrec, saverec, oldrec, xkey
help-code = 'details'

* inkey aliases

up = 5
down = 24
left = 19
right = 4
pgup = 18
pgdn = 3
home = 1
end = 6
carret = 13

* scroll area coords & dimensions (does not include box
border/header)
scrltop = 12
scrlleft = 1
scrlbot = 20
scrlright = 78
scrlheight = scrlbot - scrltop +1
currow = scrltop

116

oldrec = recno()

SET CURSOR OFF

DO statmsg with 'Collecting documents, one moment please...'
SELECT 3
mLastArea = 3
COPY TO TEMP2 FIELDS
DOCNUMBER,DOCTYPE,STOCKNBR,QTYORDERD,
DUEINDOC,EDD FOR STOCKNBR = extract-key
SELECT 5
mLastArea = 5
USE TEMP2
* Copies only the needed records to a temporary database,
this is ok because
* the user can -only_ view the records

GOTO TOP
firstrec = recno()
GOTO BOTTOM
lastrec = recno()

* pop the lookup window
Details = savescreen(10,0,21,79)
SET COLOR TO &cnormal
* 10, 0, 21, 79 BOX ' r-1iLj
* 10, 20 SAY ' Details supporting this authorization
SET COLOR TO &cunselected
* 11,1,20,78 BOX '
* 11, 2 SAY 'Document # Type NSN'+space(13)+'Date
Ordered Date Due Quantity'

DO statmsg with 'Use -X^Y to scroll documents, (Esc> to
exit'

* display first window of records, hilite first one
GOTO TOP
DO Dedisp WITH .t.
DO De_hidsp

xkey - 0

DO WHILE xkey <> 27 .and. xkey <> carret && not <ESC> or
<CR>

xkey = inkey(0)
skey = upper(chr(xkey))

DO CASE

CASE xkey - up
IF recno() = firstrec

tone(900,2)

117

ELSE
IF currow > scritop

DO De_lodsp
currow = currow-1
SKIP -1
DO De-hidsp

ELSE
DO De_lodsp
SKIP -1
scroll (scritop, scrileft, scribot,

scriright, -1)
DO De-hidsp

ENDIF
END IF

CASE xkey = down
IF recno() lastrec

tone (900, 2)
ELSE

IF currow < scribot
DO De_lodsp
currow = currow + 1
SKIP
DO De-hidsp

ELSE
DO De_lodsp
SKIP
scroll (scrltop, scrlleft, scrlbot,

scrlright, 1)
DO De-hidsp

END IF
END IF

CASE xkey = pgdn
SKIP scrltop - currow + (2*scrlheight) -1
IF eof()

tone (900 ,2)
SKIP -scrlheight
DO De -disp WITH .f.
DO De-hidsp

ELSE
SKIP 1 -scrlheight
DO De -disp WITH .t.
DO De -hidsp

ENDIF

CASE xkey = pgup
SKIP scrltop - currow -scrlheight

1F bof()
tone (900 ,2)
GOTO TOP
DO De -disp WITH .t.
DO De-hidsp

ELSE

118

DO Dedisp WITH .t.
DO Dehidsp

ENDIF

CASE xkey = home
GOTO TOP
DO Dedisp WITH .t.
DO Dehidsp

CASE xkey = end
GOTO BOTT
SKIP 1 - scrlheight
IF bof()

GOTO TOP
ENDIF
DO Dedisp WITH .f.
DO Dehidsp

ENDCASE
ENDDO

DO statmsg with
restscreen(10,0,21,79,Details)
SET COLOR TO &cunselected

*** SELECT 5 && not really neccesary, just in case
though....
*** mLastArea = 5
*** ZAP && clean out temporary database
SELECT 1
mLastArea = 1
GOTO oldrec
RETURN && go back to bottom line menu

* Dehidsp: hilites prompt line at currow

PROC De hidsp
SET COLOR TO &cselected
* currow, 2 SAY DOCNUMBER
* currow, 17 SAY DOCTYPE
* currow, 23 SAY STOCK_NBR
* currow, 43 SAY SUBSTR(DOCNUMBER,7,4)
* currow, 57 SAY EDD
* currow, 63 SAY QTYORDERD
RETURN

* De_lodsp: lolites prompt line at currow

PROC De lodsp
SET COLOR TO &cunselected
* currow, 2 SAY DOCNUMBER

119

* currow, 17 SAY DOCTYPE
* currow, 23 SAY STOCK_NBR
* currow, 43 SAY SUBSTR(DOCNUMBER,7,4)
* currow, 57 SAY EDD
* currow, 63 SAY QTY_ORDERD
RETURN

• Dedisp : displays a window full of records.

• *If called WITH .t., currow and recno() will be set to
the first
S** record in the window.

• *If called WITH .f., currow and recno() will be set to
the last
• *record in the window.

PROC De disp
PARAM set to top

PRIVATE thisrow, toprec

SET COLOR TO &cunselected
* scrltop, scrlleft CLEAR TO scrlbot, scrlright
* 11, 2 SAY 'Document # Type NSN'+space(13)+'Date
Ordered Date Due Quantity'

toprec = recno()
thisrow = scrltop
DO WHILE .not. eof() .and. thisrow <= scrlbot

* thisrow, 2 SAY DOCNUMBER
* thisrow, 17 SAY DOCTYPE
@ thisrow, 23 SAY STOCKNBR
* thisrow, 43 SAY SUBSTR(DOCNUMBER,7,4)
* thisrow, 57 SAY EDD
* thisrow, 63 SAY QTYORDERD
SKIP
thisrow = thisrow + 1

ENDDO

IF setto top
GOTO toprec
currow = scrltop

ELSE
SKIP -1
currow = thisrow -1

ENDIF

RETURN

SC:\CLIP\INSPECT.PRG Add, Edit, Browse, Delete, Search
(standalone)
•** Generated on March 11, 1990

120

*** Source .WW file: C:\UI\WW\INSPECT.WW
*** Target environment: Clipper Summer 87
*** Modified by K. Tanzer on 11 Mar 90 for use with LIMP
V1.0

*** environment stuff
* environment

SET SCOREBOARD off
SET CONFIRM off
SET CURSOR ON

* menu initialization
PRIVATE key

* DBF initialization
* Use database INSPECT

SELECT 4
mLastArea = 4
GOTO TOP
LOCATE FOR ORGNUMBER = mLastOrg
IF .NOT. FOUND()
GOTO TOP

ENDIF

* main menu loop:

* iterates once for each time an option action is performed.
* this loop calls procedures to perform selected actions.
* (Procedures are defined below this loop)

* display fixed text

SET COLOR TO &cnormal
CLEAR
SET COLOR TO &cnormal
* 0, 0, 22, 79 BOX ' r-i IJLI
SET COLOR TO &cselected
* 1,1,21,78 BOX '
* 1, 21 SAY 'Inspection and Discrepancy Information'
* 3, 2 SAY 'Wing:'+space(33)+'Last Inspection:'
* 4, 2 SAY 'Squadron:'+space(29)+'Next Inspection Due:'
* 5, 2 SAY 'Branch:'
6 6, 2 SAY 'Office Symbol:'
* 6, 38 SAY 'Org Number:'
* 8, 15 SAY 'Inspection Results'
* 9, 2 SAY 'Date:'
* 10, 2 SAY 'Discrepancy:'
* 11, 2 SAY 'Reference:'
* 12, 2 SAY 'Response:'

121

* 13, 2 SAY 'Follow Up (Y/N): Reinspection on:'
* 14, 2 SAY 'STATUS:'
@24,1 SAY'

* 21,2 SAY ' Next
* 24,9 SAY ' Prey
* 24,16 SAY First
* 24,24 SAY Last
0 24,38 SAY Search'
* 24,47 SAY Edit
* 24,54 SAY Append
* 24,63 SAY Delete
* 24,72 SAY Quit

DO WHILE .t.
help code = 'inspect'

I display entry record
DO inspdisp

• user selects action here

SET COLOR TO &cunselected

@ 24,2 PROMPT 'Next'
* 24,9 PROMPT ' Prev
* 24,16 PROMPT First
* 24,24 PROMPT Last
@ 24,38 PROMPT Search '
* 24,47 PROMPT Edit
* 24,54 PROMPT Append '
* 24,63 PROMPT Delete
* 24,72 PROMPT Quit

MENU TO key

* perform selected option
DO CASE

CASE key =1
DO inspnext

CASE key =2
DO inspprev

CASE key =3
DO inspfirst

CASE key =4
DO insplast

CASE key =5
DO inspsearch

CASE key =6

122

DO inspedit
CASE key =7

DO inspapprec
CASE key =8

DO inspdelrec
CASE key =9

DO inspquit
RETURN

ENDCASE

ENDDO
RETURN
***************************** END OF MENU PROCEDURE

* action procedures:

* the following are called by the menu loop above.

* ** *** * ****** ***********

* inspnext: go to next record

PROC inspnext
SKIP
IF eof()

GOTO BOTTOM
DO statmsg with 'End of file!'

ELSE
DO statmsg with
mLastOrg = ORGNUMBER
DO inspdisp

ENDIF
RETURN

* inspprev: go to previous record

PROC inspprev
SKIP -1
IF bof()

GOTO TOP
DO statmsg with 'Beginning of file!'

ELSE
DO statmsg with
mLastOrg = ORGNUMBER

123

DO inspdisp
ENDIF
RETURN

*inspfirst: go to first record

PROC inspfirst
GOTO TOP
DO statmsg with

mLastOrg = ORGNUMBER
DO inspdisp
RETURN

*inspiast: go to last record

PROC inspiast
GOTO BOTTOM
DO statmsg with

mLastOrg = ORGNUMBER
DO inspdisp
RETURN

*inspsearch: search for a record, given entry into desired
criterion fields

PROC inspsearch
PRIV searchval, orecno
help-code = 'inspsearch'
searchval = space(6)
DO statmsg with '
* 23,2 SAY 'Enter Org/Shop number: 'GET searchval PICTURE
'0! NNNNN'
READ
orecno = recno()
SEEK searchval
IF .NOT. FOUND()

GOTO orecno
DO statmsg with 'Organization number not found!'

ELSE
DO statmsg with
mLastOrg = ORGNUMBER
DO inspdisp

END IF
RETURN

124

* inspedit: edit current record

PROC inspedit

*** create memvar duplicates for all fields
PRIVATE mLASTINSP, mNEXTINSP, mDISCDATE, mORG
PRIVATE mFOLLOW, mFOLLOWUP, mSTATUS
help-code = 'inspedit'

*** ...and initialize 'em
mLASTINSP = LASTINSP
mNEXTINSP = NEXTINSP
mORG = ORGNUMBER
mDISCDATE = DISCDATE
mFOLLOW = 'N'
mFOLLOWUP = FOLLOWUP
mSTATUS = STATUS

DO statmsg with 'Edit record. -W to save; Esc to abandon'

*** get input fields into memvar duplicates
0 3, 57 GET mLASTINSP
* 4, 61 GET mNEXTINSP
* 6, 50 GET mORG PICTURE 'Q! NNNNNN'
* 9, 8 GET mDISCDATE
READ
DO Fred
* 13, 19 GET mFOLLOW PICTURE 'Y'
READ
IF mFOLLOW = 'Y' && reinspection needed

mFOLLOWUP = mFOLLOWUP + 30
* 13, 40 GET mFOLLOWUP

ENDIF
* 14, 10 GET mSTATUS PICTURE '@! AAAAA'
READ

IF lastkey() = 27 && user escaped out of READ
RETURN

ENDIF

REPLACE LASTINSP WITH mLASTINSP
REPLACE NEXTINSP WITH mNEXTINSP
REPLACE ORGNUMBER WITH UPPER(mORG)
REPLACE DISCDATE WITH mDISCDATE
REPLACE FOLLOWUP WITH mFOLLOWUP
REPLACE STATUS WITH UPPER(mSTATUS)

mLastOrg = ORGNUMBER
DO inspdisp
RETURN

125

*inspapprec: append new record

PROC inspapprec

*** create memvar duplicates for all fields
PRIVATE mLASTINSP, mNEXTINSP, mDISCDATE, mDISCREPNCY,
mREFERENCE, mORG
PRIVATE mRESPONSE, mFOLLOW, mSTATUS
help -code = 'inspappnd'

** . and initialize 'em
mLASTINSP = DATE()
mNEXTINSP = DATE0+30
mORG = SPACE(5)
mDISCDATE = DATE()
mFOLLOWUP = DATE()
mFOLLOW = Y
mSTATUS = 'OPEN'

*** Erase several blocks of the new record
a 3, 9 SAY SPACE(10)
* 4,13 SAY SPACE(12)
* 5,11 SAY SPACE(25)
* 6,18 SAY SPACE(10)
* 3,57 SAY SPACr-(8)
* 4,61 SAY SPACE(8)
* 9,8 SAY SPACE(8)
* 10,16 CLEAR TO 12,76
* 14,10 SAY SPACE(6)

DO statmsg with 'Enter new record. -W to save; Esc to
abandon'

** get input fields into memvar duplicates
* 6, 50 GET mORG PICTURE '0W NNNNNN'
* 3, 57 GET mLASTINSP
* 4, 61 GET JNEXTINSP
* 9, 8 GET mDISCDATE
* 13, 19 GET mFOLLOW PICTURE 'Y'
READ
IF mFOLLOW = 'Y' && reinspection needed

mFOLLOWUP = mFOLLOWUP + 30
* 13, 40 GET mFOLLOWUP
READ

END IF
* 14, 10 GET mSTATUS PICTURE '6! AAAAAA'
READ

IF lastkey() =27 &&user escaped out of READ
RETURN

ENDIF

126

* append into DBF fields

APPEND BLANK
REPLACE LASTINSP WITH mLASTINSP
REPLACE NEXTINSP WITH mNEXTINSP
REPLACE ORG_NUMBER WITH UPPER(mORG)
REPLACE DISCDATE WITH mDISCDATE
REPLACE FOLLOWUP WITH mFOLLOWUP
REPLACE STATUS WITH UPPER(mSTATUS)
DO Fred && This way the memo fields are empty!
mBACKUP = .T.

REINDEX

mLastOrg = ORGNUMBER
DO inspdisp
RETURN

* Fred : edit the DISCREPNCY, REFERENCE and RESPONSE Memo
fields

PROC Fred

SET CURSOR ON
SET COLOR TO &cselected
* 16, 1, 21, 61 BOX
help-code = 'fred'

DO statmsg with 'Enter Discrepancy info: -W to Save, ESC to
abort'
REPLACE DISCREPNCY WITH MEMOEDIT(DISCREPNCY, 17,2,20,60,.T.)

DO statmsg with 'Enter Reference. -W to Save, ESC to abort'
REPLACE REFERENCE WITH MEMOEDIT(REFERENCE, 17,2,20,60,.T.)

DO statmsg with 'Enter User Response. -W to Save, ESC to
abort'
REPLACE RESPONSE WITH MEMOEDIT(RESPONSE, 17,2,20,60,.T.)

DO statmsg with ''
SET COLOR TO &cunselected
SET CURSOR OFF
RETURN

* inspdelrec: delete record. If deleted, recall

PROC inspdelrec
IF .not. deleted()

DELETE

127

mINSPECT = .T.
ELSE

RECALL
ENDIF
DO statmsg with

mLastOrg = ORGNUMBER
DO inspdisp
RETURN

* inspquit: various quit things

PROC inspquit
SET COLOR TO &cnormal
SET CURSOR OFF
CLEAR
RETURN

* inspdisp: displays current record, along with recno() and
deleted()
* ** *** * ***************************

PROC inspdisp
PRIV searchval,mblank
SELECT 4
mLastArea = 4
* 6, 50 GET ORGNUMBER
searchval = ORGNUMBER
SELECT 2 && Switch to the ORGDATA database
mLastArea = 2
SEEK (searchval)
IF eof()

DO statmsg with 'You need to define this organization.'
ELSE

* 3, 9 GET WING
* 4, 13 GET SQUADRON
* 5, 11 GET BRANCH
* 6, 18 GET OFFICE

ENDIF
SELECT 4 && Switch back to the INSPECT
database
mLastArea = 4
* 3, 57 GET LASTINSP
* 4, 61 GET NEXTINSP
* 9, 8 GET DISCDATE
mblank = space(60)
* 10, 16 CLEAR TO 12, 76
* 10, 16 SAY MEMOLINE(DISCREPNCY,60,1)
* 11, 16 SAY MEMOLINE(REFERENCE,60,I)
* 12, 16 SAY MEMOLINE(RESPONSE,60,1)

128

* 17, 2 CLEAR TO 20, 60
* 13, 40 GET FOLLOWUP
* 14, 10 GET STATUS
CLEAR GETS
* 23,70 SAY iif(deletedo','Deleted','

SET COLOR TO &cunselected
RETURN

• *C:\CLIP\LISTINGS.PRG : Main menu.
*** Generated March 17, 1990 from C:\UI\WW\LISTINGS.WW
S** Target environment: Clipper Summer 87

* menu initialization
PRIVATE optkeys, numopts, oldchoice, newchoice, key, mTemp,
mTime, mDate
optkeys = "ADIOQ"
numopts = 5
oldchoice = 0
newchoice = 1
key =0
mKey = 78
help-code = 'listings'

* inkey aliases
PRIVATE RKup,RKdn,RKrt,RKlt,RKret,RKspc
RKup = 5
RKdn = 24
RKrt = 4
RKlt = 19
RKret = 13
RKspc = 32

* main loop: iterates once for each time an option action is
performed
DO WHILE .t.

* display the menu screen
CLEAR
SET COLOR TO &cnormal
* 0, 0, 4, 80 BoX " r-,11-.I "
* 2, 27 SAY "Reports and Listings Menu"

SET COLOR TO &cnormal
* 6, 0, 9, 40 BOX ".1-1. "
SET COLOR TO &cunselected
* 7, 2 SAY "A Report of all Authorized"
* 8, 2 SAY "Items (All WRM Auth's)"

SET COLOR TO &cnormal
* 10, 0, 13, 40 BOX "r".. -I"
SET COLOR TO &cunselected
* 11, 2 SAY "D Report of all Authorized"

129

* 12, 2 SAY "Items and all details"

SET COLOR TO &cnormal
* 14, 0, 17, 40 BOX "I..5 J-[I
SET COLOR TO &cunselected
* 15, 2 SAY "I Report of all Inspections"

SET COLOR TO &cnormal
* 18, 0, 21, 40 BOX " uJ.L
SET COLOR TO &cunselected
* 19, 2 SAY "0 Report of all Organizations"
* 20, 2 SAY "Points of Contact info"

SET COLOR TO &cnormal
* 22, 0, 24, 40 BOX ".J-L,
SET COLOR TO &cunselected
* 23, 2 SAY "Q Return to Main Menu"

* keyhit loop: iterates ones for each key input, breaks on

selection
DO WHILE .t.

* if selected option has changed, update the bounce-bar

IF oldchoice<>newchoice
* highlight new option

DO CASE

CASE newchoice =1
SET COLOR TO &c normal
* 6, 0, 9, 40 BOX "rjjJ-Ll"
SET COLOR TO &cselected
* 7,1,8,39 BOX
* 7, 2 SAY "A Report of all Authorized"
* 8, 2 SAY "Items (All WRM Auth's)"

help-code = 'allauth'

CASE newchoice =2
SET COLOR TO &cnormal
* 10, 0, 13, 40 BOX " ...,l-I
SET COLOR TO &cselected
* 11,1,12,39 BOX

"

* 11, 2 SAY "D Report of all Authorized"
* 12, 2 SAY "Items and all details"

helpcode = 'authplus'

CASE newchoice =3
SET COLOR TO &cnormal
* 14, 0, 17, 40 BOX "u" IJ mLI"
SET COLOR TO &cselected
* 15,1,16,39 BOX "

* 15, 2 SAY "I Report of all Inspections"
help-code = 'dueinsp'

CASE newchoice =4

130

SET COLOR TO &cnormal
* 18, 0, 21, 40 BOX "r hJ-Ll"
SET COLOR TO &cselected
* 19,1,20,39 BOX "
* 19, 2 SAY "0 Report of all Organization"
* 20, 2 SAY "Points of Contact info"

helpcode = 'pocinfo'

CASE newchoice =5
SET COLOR TO &cnormal
* 22, 0, 24, 40 BOX "r-I Lm-"
SET COLOR TO &cselected
a 23,1,23,39 BOX "

* 23, 2 SAY "Q Return to Main Menu"
help-code = 'listings'

ENDCASE

* reset oldchoice for another pass
oldchoice =newchoice

ENDIF

* if return has been hit
IF key=RKret .or. at(upper(chr(key)), optkeys) > 0

SET COLOR TO &cnormal
* fall out to action loop
EXIT

ENDIF

* get key input
key=inkey(0)

* update choice number based on key response
DO CASE

* down/right arrow: increment choice or wrap
CASE key =RKdn .or. key =RKrt .or. key = RKspc
newchoice = iif(oldchoice=numopts,l,oldchoice+l)

* up/left arrow: decrement choice or wrap
CASE key = RKup .or. key = RKlt
newchoice = iif(oldchoice=l,numopts,oldchoice-1)

* option trigger: set choice to option
CASE at(upper(chr(key)), optkeys) > 0
newchoice = at(upper(chr(key)), optkeys)

ENDCASE

IF oldchoice<>newchoice
* lowlight old option
DO CASE

CASE oldchoice =1
SET COLOR TO &cnormal
* 6, 0, 9, 40 BOX " -iIJ-LI''

SET COLOR TO &cunselected
* 7,1,8,39 BOX

"

131

* 7, 2 SAY "A Report of all Authorized"
* 8, 2 SAY "Items (All WRM Auth's)"

CASE oldchoice =2
SET COLOR TO &cnormal
@10, 0, 13, 40 BOX" IJ.LI
SET COLOR TO &cunselected
* 11,1,12,39 BOX "
@ 11, 2 SAY "D Report of all Authorized"
* 12, 2 SAY "Items and all details"

CASE oldchoice =3
SET COLOR TO &cnormal
* 14, 0, 17, 40 BOX " J.LI'

SET COLOR TO &cunselected
* 15,1,16,39 BOX"
* 15, 2 SAY "I Report of all Inspections"

CASE oldchoice =4
SET COLOR TO &cnormal
* 18, 0, 21, 40 BOX "ln jJ L
SET COLOR TO &cunselected
* 19,1,20,39 BOX "
* 19, 2 SAY "0 Report of all Organization"
* 20, 2 SAY "Points of Contact info"

CASE oldchoice =5
SET COLOR TO &cnormal
* 22, 0, 24, 40 BOX ".J-L11,
SET COLOR TO &cunselected
e 23,1,23,39 BOX "
* 23, 2 SAY "Q Return to Main Menu"

ENDCASE
ENDIF

• end of keyhit loop
ENDDO

IF newchoice <> 5
CLEAR GETS
mTemp = 'N'
SET COLOR TO &cselected
* 10, 42, 14, 70 BOX "r.IJ.LI "
* 11, 44 SAY "Send Report to Printer?"
* 12, 55 SAY 'Y/N' GET mTemp PICTURE "Y"
READ

ENDIF

* perform selected option
DO CASE

CASE newchoice =1
SELECT 1

132

mLastArea = 1
IF mTemp ='Y'
REPORT FORM AllAuth TO PRINT

ELSE
REPORT FORM AllAuth ALL

ENDIF
RETURN

CASE newchoice =2
SELECT 4
mLastArea = 4
DO AllAuth2 with mTemp
RETURN

CASE newchoice =3
SELECT 4
mLastArea = 4
CLEAR GETS
mTime = 30
* 10, 42, 14, 75 BOX ' - JlJ. L'
* 11, 44 SAY 'How many days from today?' GET mTime

PICTURE '999'
READ
mDate = DATE() + mTime
IF mTemp = IV
REPORT FORM INSPECT FOR NEXTINSP <= mDate TO PRINT

ELSE
REPORT FORM INSPECT FOR NEXTINSP <= mDate

ENDIF
RETURN

CASE newchoice =4
SELECT 2
mLastArea = 2
IF mTemp ='Y'
REPORT FORM AllOrgs TO PRINT

ELSE
REPORT FORM AllOrgs

ENDIF
RETURN

CASE newchoice =5
RETURN

ENDCASE

* set old choice var to 0 so we get a highlight on the
current option
oldchoice = 0

* and set key input var to 0 so we don't fall out again
key = 0

ENDDO

133

RETURN***
* C:\CLIP\READIN.PRG : Main menu.
*** Generated March 18, 1990 from
*** Target environment: Clipper Summer 87

* environment
SET SCOREBOARD off
SET CONFIRM off

* menu initialization

PRIVATE optkeys, numopts, oldchoice, newchoice, key
optkeys = 'RBDQ'
numopts = 4
oldchoice = 0
newchoice = 1
key =0
help-code = 'readin'

* inkey aliases
PRIVATE RKupRKdn,RKrt,RKlt,RKret,RKspc
RKup = 5
RKdn = 24
RKrt = 4
RKlt = 19
RKret = 13
RKspc = 32

* main loop: iterates once for each time an option action is
performed
DO WHILE .t.

* display the menu screen
SET COLOR TO &cnormal
CLEAR
SET COLOR TO &cnormal
* 0, 0, 3, 79 BOX 'rIJ-Ll
SET COLOR TO &cselected
* 1,1,2,78 BOX -
* 1, 28 SAY 'DataBase Management Menu'
SET COLOR TO &cunselected
* 4, 0, 8, 31 BoX ' J-L
* 5, 1 SAY 'R Read In IBSS Data'
* 6, 3 SAY '(Replaces all authorization'
* 7, 2 SAY 'and supply detail documents)'
* 10, 0, 14, 31 BOX 'r-IJ-LI'
* 11, 1 SAY 'B Backup current DataBases'
* 12, 5 SAY '(Do this weekly!)'
* 16, 0, 20, 31 BOX ' 1 IJ-j I
* 17, 1 SAY 'D Restore previously saved'
* 18, 5 SAY 'DataBases (ie, the ones'
* 19, 4 SAY 'you backed up weekly...)'
* 10, 40, 14, 70 BOX '- -,IJ-L/ I
* 12, 42 SAY 'Q Return to Main Menu'

134

* keyhit loop: iterates ones for each key input, breaks
on selection

DO WHILE .t.

* if selected option has changed, update the
bounce-bar

IF oldchoice<>newchoice
* highlight new option
DO CASE

CASE newchoice =1
SET COLOR TO &cnormal
* 4, 0, 8, 31 BOX 'r- i l J - L

'

SET COLOR TO &cselected
* 5,1,7,30 BOX I
I 5, 1 SAY 'R Read In SBSS Extracted Data'
@ 6, 3 SAY '(Replaces all authorization'
* 7, 2 SAY 'and supply detail documents)'
help-code = 'extract'

CASE newchoice =2
SET COLOR TO &cnormal
* 10, 0, 14, 31 BOX ' -IJ,-LI'
SET COLOR TO &cselected
* 11,1,13,30 BOX -
* 11, 1 SAY 'B Backup current DataBases'
* 12, 5 SAY '(Do this weekly!)'
helpcode = 'backup'

CASE newchoice =3
SET COLOR TO &cnormal
* 16, 0, 20, 31 BOX 'r-a IJ-LI'
SET COLOR TO &cselecte
* 17,1,19,30 BOX -
* 17, 1 SAY 'D Restore previously saved'
* 18, 5 SAY 'DataBases (ie, the ones'
* 19, 4 SAY 'you backed up weekly...)'
help-code = 'restore'

CASE newchoice =4
SET COLOR TO &cnormal
* 10, 40, 14, 70 BOX 'rIJ-L '

SET COLOR TO &cselected
* 11,41,13,69 BOX I
* 12, 42 SAY 'Q Return to Main Menu'
help-code = 'readin'

ENDCASE

* reset oldchoice for another pass
oldchoice =newchoice

ENDIF

135

* if return or an option trigger has been hit, perform
the option

IF key=RKret .or. at(upper(chr(key)), optkeys) >0
SET COLOR TO &cnormal
* fall out to action loop
EXIT

ENDIF

* get key input

key=inkey(O)

* update choice number based on key response
DO CASE

* down/right arrow: increment choice or wrap
CASE key =RKdn .or. key =RKrt .or. key = RKspc

newchoice =
iif(oldchoice=numopts,l,oldchoice+l)

* up/left arrow: decrement choice or wrap
CASE key = RKup .or. key = RKlt

newchoice =
iif(oldchoice=l,numoptsoldchoice-1)

* option trigger: set choice to option
CASE at(upper(chr(key)), optkeys) > 0

newchoice = at(upper(chr(key)), optkeys)
ENDCASE

IF oldchoice<)newchoice
* lowlight old option
DO CASE

CASE oldchoice =1
SET COLOR TO &cnormal
* 4, 0, 8, 31 BOX '-IJ-LI'
SET COLOR TO &cunselected
* 5,1,7,30 BOX 1
* 5, 1 SAY 'R Read In SBSS Extracted Data'
* 6, 3 SAY '(Replaces all authorization'
* 7, 2 SAY 'and supply detail documents)'

CASE oldchoice =2
SET COLOR TO &cnormal
* 10, 0, 14, 31 BOX ' r J-Lj
SET COLOR TO &cunselected
* 11,1,13,30 BOX '
* 11, 1 SAY 'B Backup current DataBases'
* 12, 5 SAY '(Do this weekly!)'

CASE oldchoice =3
SET COLOR TO &cnormal
* 16, 0, 20, 31 BOX'.-- IJ-LI
SET COLOR TO &cunselected
* 17,1,19,30 BOX '
* 17, 1 SAY 'D Restore previously saved'
* 18, 5 SAY 'DataBases (ie, the ones'

136

a 19, 4 SAY 'you backed up weekly...)'

CASE oldchoice =4
SET COLOR TO &c normal
* 10, 40, 14, 70 BOX
SET COLOR TO &cunselected
* 11,41,13,69 BOX
* 12, 42 SAY 'Q Return to Main Menu'

ENDCASE

ENDIF

* end of keyhit loop

ENDDO

* perform selected option
DO CASE

CASE newchoice =1
DO NewDataIn
RETURN

CASE newchoice =2
DO Backup
RETURN

CASE newchoice =3
DO Restore
RETURN

CASE newchoice =4
RETURN

ENDCASE

* set old choice var to 0 so we get a highlight on the
current option

oldchoice =0

* and set key input var to 0 so we don't fall out again
key =0

ENDDO
RETURN

***************************** ************************

* Replace existing Basic and Document DataBases with
* SBSS output using a QLP or SURGE program

PROC NewDataIn

PRIVATE mTemn,orecno

mTemp = 'N'

137

mAvail = .F.
CLEAR GETS
* Need to get a confirmation here before executing
SET COLOR TO &c selected
* 19, 15, 21, 55 BOA r-i IE..LI
* 19, 19 SAY 'Are you sure you want to do this?'
* 20, 17 GET mTemp PICTURE 'Y'
READ
IF mTemp = Y

* Open a window to enter drive path designation
DO GetDrive
IF mAvail =.T.

SELECT 9
mLastArea = 9
USE TEMP
APPEND FROM A:\WRM.DAT WHILE .NOT. eof() SDF

SELECT 1
mLastArea = 1
ZAP && clean out document.dbf

SELECT 3
mLastArea = 3
ZAP && clean out basic.dbf

SELECT 9 && Use Temp.dbf
mLastArea = 9
GOTO TOP
orecno = RECNO()

DO WHILE .NOT. eof() && Begin While Loop
GOTO orecno
mTemp = SUBSTR(TEMP->Big,1,3)
IF mTemp ='EOF'

SKIP
orecno =RECNO()

ELSE
mTemp =SUBSTR(TEMP->Big,94,1)

IF mTemp = '0' && Due-Out
* Extract into DOCUMENT.DBF
SELECT 3
mLastArea = 3
* extract data elements into a new record
APPEND BLANK
REPLACE STOCKNBR WITH SUBSTR(TEMP->Big,1,15)
REPLACE DOCNUMBER WITH

SUBSTR (TEMP-)Big, 16,14)
REPLACE DOCTYPE WITH '0'
REPLACE QTYTORDERD WITH

VAL(SUBSTR(TEMP->Big,30,5))
REPLACE DUEINDOC WITH

* I' +SUBSTR (TEMP->Big, 17,5) +SUBSTR (TEMP->Big, 52,8)
*Creates a DueInDocument number

REPLACE STATUS WITH SUBSTR(TEMP-)Big,60,2)

138

REPLACE EDD WITH VAL(SUBSTR(TEMP->Big,62,4))
ELSE

" Other details are MSK-
" WRM/WCDO authorizations - I
" High Priority HSK p ut
" Airborne and Non-Airborne WRSK - 'N'
" Extract into BASIC.DBF
SELECT 1
mLastArea = 1
* extract data elements into a new record
APPEND BLANK
REPLACE STOCKNBR WITH SUBSTR(TEMP-)Big,1,15)
REPLACE ATHRZDQTY WITH

VAL(SUBSTR(TEMP->Big,30,5))
REPLACE QTY-UNSUPP WITH

VAL(SUBSTR(TEMP-)Big,43,5))
INETQTY = ATHRZDQTY - QTYUNSUPP
mQTYSHORT = 0
REPLACE NET_QTY WITH mNET_QTY
REPLACE QTY-ONHAND WITH mNETQTY
REPLACE QTYSHORT WITH mQTY_SHORT
REPLACE SOURCEDOC WITH

SUBSTR (TEMP->Big, 16,14)
REPLACE DOCTYPE WITH SUBSTR(TEMP->Big,94,1)
REPLACE NOMENCLATR WITH

SUBSTR(TEMP->Big, 52,19)
REPLACE UNITPRICE WITH

VAL(SUBSTR(TEMP-)Big,71,1O))/100
REPLACE ERRCCODE WITH SUBSTR(TEMP->Big,82,3)
REPLACE UNITISSUE WITH

SUBSTR (TEMP-)Big, 85,2)
REP7'ACE ISGNUMBER WITH

SUBSTR(TEMP->Big, 87,4)
REPLACE ISGRELAT WITH SUBSTR(TEMP->Big,91,1)
REPLACE SHELFLIFE WITH

SUBSTR(TEMP->Big, 92,1)
ENDIF
SELECT 9 &&Use Temp.dbf
mLastArea = 9
SKIP && Goto next record of temp.dbf
orecno =RECNO()

ENDIF
ENDDO && End of While loop

SELECT 1 && Reconstruct index files
mLastArea - 1
REINDEX

SELECT 3
mLastArea = 3
REINDEX

SELECT 9
mLastArea = 9

139

ZAP && CLEAN OUT TEMP.DBF

DO Checking && Checks for new NSN or Org/Shop
'OdeS

ENDIF
ELSE

RETURN
ENDIF

RETURN

******* ** ***

* Copy existing DataBases and Index Files to A:\ drive

PROC Backup

* Open a window to enter drive path designation

DO GetDrive
IF mAvail = .T.

CLEAR SCREEN
* copy database files to destination disk
RUN COPY *.DBF A:*.DBF
CLEAR SCREEN
* copy memo files to destination disk
RUN COPY *.DBT A:*.DBT
CLEAR SCREEN
* copy index files to destination disk

RUN COPY *.NTX A:*.NTX
ENDIF
RETURN

* Copy files from A:\ drive to working directory

PROC Restore

* Open a window to enter source drive path

DO GetDrive
IF mAvail = .T.

CLEAR SCREEN
* copy databases from backup disk
RUN COPY A:*.DBF *.DBF
CLEAR SCREEN
* copy memo files from backup disk
RUN COPY A:*.DBT *.DBT
CLEAR SCREEN
* copy index files from backup disk
RUN COPY A:*.NTX *.NTX

ENDIF
RETURN

140

* GetDrive checks for drive availability, and sets
* mAvail to .T. or .F.

PROC GetDrive
PUBLIC mAvail
PRIVATE mTemp

mAvail = FCREATE('A:\Temp.txt')
IF FERRORO <> 0

mAvail = .F.
* Print an error message box
* 19, 15, 21, 55 BOX 'r-I J - L '
* 20, 19 SAY 'Cannot access the A: drive...'
DO Statmsg with 'Press any key to continue.'
mTemp = INKFYIO)

ELSE
mAvail = .T.
DO statmsg with

ENDIF
RETURN

* PROC CHECKING - BY Kevin Tanzer
* - Check the Document.dbf database to ensure that a NSN

listed in the
* dbf exists in the Basic.dbf, if not it will add that NSN

with an
* UNKNOWN stock number.
* - Will also check that any organization listed
* in the Document.dbf exists in the Organiz.dbf, if not it
will add that
* organization number.
** ** ******* **** ***

PRIV orecno,searchval,searchval2

DO Statmsg with 'Checking for new NSNs'

SELECT 3
GOTO TOP
orecno = RECNO()

DO WHILE .NOT. EOF()
searchval = STOCKNBR
searchval2 = SUBSTR(DOCNUMBER,2,5)

SELECT 1
SEEK searchval
IF .NOT. FOUNDO)
APPEND BLANK
REPLACE STOCK_NBR WITH searchval
REPLACE NOMENCLATR WITH 'UNKNOWN'

ENDIF

141

SELECT 2
LOCATE FOR ORGNUMBR = searchval2
IF .NOT. FOUND()
APPEND BLANK
REPLACR ORGNUMBR WITH searchval2
REPLACE OFFICE WITH 'UNKNOWN'

ENDIF

SELECT 3
GOTO orecno
SKIP
orecno = RECNO()

ENDDO

SELECT 1
REINDEX

SELECT 2
SET UNIQUE ON && Prevents duplicate org/shop codes
REINDEX
SET UNIQUE OFF
mLastArea = 2

RETURN

* ClassPop created on 2 Apr by Kevin Tanzer

PRIVATE mKey
mKey = 89

SET COLOR TO &cflashing
* 10,5,15,74 BOX " J=L
* 12,20 SAY "DO NOT UE FOR CLASSIFIED INFORMATION!!!"
SET COLOR TO &cnormal
DO statmsg WITH "Press any key to continue..."
mKey = INKEY(0)
CLEAR SCREEN

RETURN

* ClassScr.prg created 2 Apr 90 by Kevin Tanzer

PRIVATE mKey
mKey = 89

CLEAR SCREEN
CLEAR GETS
SET COLOR TO &cnormal

* 0,0,23,79 BOX "r.lJLI
* 3,29 SAY "SIMBL V2.0 (PROTOTYPE)"

142

D 5,17 SAY "THIS PROGRAM IS NOT CLEARED FOR CLASSIFIED
DATA"

SET COLOR TO &c flashing
a 10,5,15,74 BOX "-11; J.LI "
* 12,20 SAY "DO NOT UE FOR CLASSIFIED INFORMATION!!!"
SET COLOR TO &cnormal

DO statmsg with "Press any key to continue..."
mKey = INKEY(0)

CLEAR SCREEN
RETURN
*** CLEANUP PROCEDURE
S** AUTHOR: CPT KEVIN TANZER ON 16 MAR 90

*** LAST UPDATE ON 21 APR 90
*** PACK DATABASES AND REINDEX

PRIVATE mKey
mKey = 'N'

IF mBACKUP = .T.
SET COLOR TO &cnormal
* 10,5,16,74 BOX "rnuJI=LI"
CLEAR GETS
* 12,7 SAY "You have at added some data to the program,

would"
* 14,10 SAY "you like to back up the new data?" GET mKey

PICTURE "Y"
READ
IF mKey = 'Y'

DO Backup
RETURN

ENDIF
ENDIF

IF mBASIC = .T.
SET COLOR TO &cnormal
* 10,5,16,74 BOX "r..l.Li "
CLEAR GETS

* 12,7 SAY "You have at least one authorization record
marked for"
* 14,10 SAY "deletion, are you sure you want to do this?"

GET mKey PICTURE "Y"
SET COLOR TO &cflashing
DO statmsg with "Press Y to confirm deletion, any other

key to abort"
READ
IF mKey = "Y"

SELECT 1
mLastArea =1
PACK
REINDEX

ELSE
SELECT 1
mLastArea = 1
RECALL ALL

143

DO statmsg with "Recovered all authorization records"
mKey = INKEY(5)

ENDIF
ENDIF

IF mORGDATA = .T.
SET COLOR TO &cnormal
0 10,5,16,74 BOX "..11J-L "
* 12,7 SAY "You have at least one organizational record

marked for"
* 14,10 SAY "deletion, are you sure you want to do this?"
GET mKey PICTURE "Y"

SET COLOR TO &cflashing
DO statmsg with "Press Y to confirm deletion, any other

key to abort"
READ
IF mKey = "Y"

SELECT 2
mLastArea =2
PACK
REINDEX

ELSE
SELECT 2
mLastArea = 2
RECALL ALL
DO statmsg with "Recovered all organizational records"
mKey = INKEY(5)

ENDIF
ENDIF

IF mDOCUMENT = .T.
SET COLOR TO &cnormal
* 10,5,16,74 BOX of".dJ-LI
* 12,7 SAY "You have at least one document record marked

for"
* 14,10 SAY "deletion, are you sure you want to do this?"

GET mKey PICTURE "Y"
SET COLOR TO &cflashing
DO statmag with "Press Y to confirm deletion, any other

key to abort"
READ
IF mKey = "Y"
SELECT 3
mLastArea = 3
PACK
REINDEX

ELSE
SELECT 3
mLastArea = 3
RECALL ALL
DO statmsg with "Recovered all document records"
mKey = INKEY(5)

ENDIF
ENDIF

144

IF mINSPECT = .T.
SET COLOR TO &cnormal
* 10,5,16,74 BOX "rnIJ.L
* 12,7 SAY "You have at least one inspection record marked

for"
* 14,10 SAY "deletion, are you sure you want to do this?"

GET mKey PICTURE "Y"
SET COLOR TO &cflashing
DO statmsg with "Press Y to confirm deletion, any other

key to abort"
READ
IF mKey = "Y"
SELECT 4
mLastArea = 4
PACK
REINDEX

ELSE
SELECT 4
mLastArea = 4
RECALL ALL
DO statmsg with "Recovered all inspection records"
mKey = INKEY(5)

ENDIF
ENDIF

*** CLOSE DATABASES, INDEXES
CLOSE ALL
SET COLOR TO &cnormal
CLEAR SCREEN
SET CURSOR ON

* *** ** ** * *** *

* PROC DocLook - Kevin Tanzer
* Translates a single parameter (1 letter) into a string,
* the letter is a detail type code, and returns a
plain-english
* description of the detail type

**** ** ** *

PARAMETERS d_type
PRIV mtemp

mtemp = d type
DO CASE

CASE mtemp = '0'
mDOC = 'Due Out'

CASE mtemp = 'W'
mDOC = 'WRM/WCDO'

CASE mtemp = 'N'
mDOC = 'NAWRSK'

145

CASE mtemp = 'U'
mDOC = 'WRSK/HPMSK'

CASE mtemp = 'Q'
mDOC = 'MSK'

CASE mtemp = 'I'
mDOC = 'Due In'

ENDCASE

* HELP.PRG - A context sensitive help program for use with

the
* Software for Inventory Management for the Base Logistician
(SIMBL)

* Written by Kevin M. Tanzer on 24 Apr 90
* Assumes a global variable HELPCODE has been declared and
defined already.
* The three parameters are mandatory for the program, but
only
* the callprg is used. It identifies the subroutine that
called for Help.
* The other two parameters could be used for very
context-sensitive help, but
* requires a lot more work.

PARAMETERS callprg, linenum, inputvar

PRIV toprow,leftcol,bottom row,rightcol
* variables for screen locations

IF call-prg = "HEL' && Avoids recursive calling for Help
RETURN

ENDIF

top row = 5
left col = 8
bottomrow = 18
right-col = 72

SELECT 9
USE Help

LOCATE FOR HELPKEY = helpcode && Help.dbf is not
indexed

IF FOUND()
SAVE SCREEN
* Create a box on the screen, and use the MemoEdit

function to display the

146

* contents of the memo field associated with the
HELPKEY field. This

* is a variation of the help program from the Clipper
manual.

a toprow-2, left col-2 CLEAR TO bottomrow-I,
right col-1

* Draws a shadow box underneath the Help box

* toprow-I, leftcol-i, bottomrow+l, rightcol+l BOX,, .q I _ I-,
* toprow-1,35 SAY " HELP BOX "

MEMOEDIT(HELPTEXT,toprow,leftcol,bottomrow,right-col,.F.)
* Displays the memo field contents without editing

RESTORE SCREEN
ELSE

DO statmsg with "No help available..."
ENDIF

* Selects the database area that was active prior to the
Help call,
* otherwise you cause a mismatch upon returning to the
calling routine.

IF mLastArea = 1
SELECT 1

ENDIF

IF mLastArea = 2
SELECT 2

ENDIF

IF mLastArea = 3
SELECT 3

ENDIF

IF mLastArea = 4
SELECT 4

ENDIF

RETURN

147

Appendix D: Research Participants

1. Brown, Captain Bryan K., HQ TAC, TAC/LGXW, Langley AFB
VA.

2. Burke, Captain Mike, HQ PACAF, PACAF/LGXW, Hickam AFB
HI.

3. Dacyk, Captain Peter, 52 TFW/LGXW, Spangdahlem AB
Germany.

4. Degraffinreid, Technical Sergeant Willy L., HQ

MAC/LGXW, Scott AFB IL.

5. Ellenburg, Mr. Charles, 313 AD/LGXW, Kadena AB Japan.

6. Graham, Captain William, 43 BMW/LGXW, Anderson AFB
Guam.

7. Hagel, Major Stephen A., Air Force Logistics Management
Center, LMC/LGXW, Gunter AFB AL.

8. Holck, Captain Brad C., HQ USAFE, USAFE/LGXW, Ramstein
AB Germany.

9. MacDougal, Captain Damon L., 833 AD/LGXW, Holloman AFB
NM.

10. Mathews, Sergeant Williams Jr., 363 TFW/LGXW, Shaw AFB
SC.

11. Meyers, Mr. Thomas P., 3200 SPTW/LGX, Eglin AFB FL.

12. Michell, First Lieutenant Kimberly A., 92 BMW/LGXW,
Fairchild AFB WA.

13. Payne, Mr. Edward, 3 SUPS/LGXW, Clark AB Phillipine.

14. Stock, Chief Master Sergeant Joeseph P., HQ SAC, HQ
SAC/LGXW, Offut AFB NE.

15. Williams, Staff Sergeant Gerald R., 437 MAW/LGXW,
Charleston AFB SC.

148

Biblioaraphy

1. Atre, Shaku. Data Base: Structured Techniques for
Desion, Performance, and Management. New York: John
Wiley & Sons, 1988.

2. Barry, TSgt William L., NCOIC Computer Support Section.
Personal Interview. 4750th ABW Supply Squadron,
Wright-Patterson AFB OH, 1 January 1989.

3. Beard, Maj Phillip H. A Database Management System
Application for the Graduate Programs Office of the
School of Systems and Logistics, Volume 1: Development
and User's Manual. MS Thesis, AFIT/GLM/LSG/88S-3.
School of Systems and Logistics, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, September
1988 (AD-A201557).

4. Bice, Lt Col Don L. Problems in the War Readiness
Materiel Equipment Prepositioning Program. Air Command
and Staff College, Maxwell AFB AL, June 1967 (AD-
A953192).

5. Brown, Capt Bryan K., WRM Plans and Programs, HQ
TAC/LGXW. Telephone Interview. Langely AFB VA, 6
November 1989.

6. Buck, Capt Stephen D. A DataBase Management System to
Manipulate Data Collected at the National Training
Center, Ft. Irwin, CA. MS Thesis, Naval Postgraduate
School, Monterey CA, June 1987 (AD-A183197).

7. Burke, Capt Mike., WRM Plans and Programs, HQ PACOPS
(Pacific Air Forces). Telephone Interview. Hickam AFB
HI, 7 December 1989.

8. Dacyk, Capt Peter., Logistics Plans and Programs.
Telephone Interview. Spangdahlem AB Germany, 7
December 1989.

9. Degraffinreid, TSgt Willy L., NCOIC WRM Plans and
Programs HQ MAC/LGXW. Telephone Interview. Scott
AFB IL, 7 December 1989.

10. Demers, W.A. "Too Many Spares?," Military Forum: 60-64
(March 1989).

11. Department of the Air Force. War Reserve Materiel
(WRM) Policy. AFR 400- 24. Washington DC: HQ USAF, 28
November 1986.

149

12. Elbra, R. A. Database for the Small Computer User.
Manchester England: NCC Publications, 1982.

13. Emory, William C. Business Research Methods. Homewood
Illinois: Irwin, 1985.

14. Hagel, Maj Stephen A., Air Force Logistics Management
Center, AFLMC/LGXW. Telephone Interview. Gunter AFB
AL, 4 October through 14 November, 1989.

15. Holck, Capt Brad C., Plans and Programs
USAFE/LGXW. Telephone Interview. Ramstein AB
Germany, 7 December 1989.

16. House, William C. Interactive Decision Oriented
Database Systems. New York: Petrocelli/Charter, 1977.

17. Kim, Maj Sam Nam and Capt Jae Bock Park. Application
of a DataBase System for Korean Military Personnel
Management. MS Thesis. Naval Postgraduate School,
Monterey CA, March 1987 (AD-A181663).

18. Kroenke, David. Database Processing. Chicago: Science
Research Associates, Inc., 1977.

19. Liskin, Miriam. "Which Dbase Is Right for You?,"
Personal Computing, 10: 113-121 (June 1986).

20. MacDougal, Capt Damon L., Chief, Logistics Plans and
Programs. Telephone Interview. Holloman AFB NM, 22
June 1989.

21. Martin, James A. Principles of Database Management.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1976.

22. Mitchell, Lt Kimberly A., Chief, Logistics Plans and
Programs. Telephone Interview. Fairchild AFB WA, 5
Jan 1990.

23. Peppers, Jerome G., History of United States Military
Logistics: 1935-1985. Huntsville AL: Logistics
Education Foundation Publishing, 1988.

24. Ritchhart, Maj Kenneth M. and Maj Robert L. Simmons,
The Student Mix Software System (SMSS). Air Command
and Staff College, Maxwell AFB AL, April 1986 (AD-
A166689).

25. Smith, Lt Claire C. Supply Hotlist Report Generation
for Fleet Ballistic Submarine Management Meetings. MS
Thesis AFIT/GLM/LSM/87S-70. School of Systems and
Logistics, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, September 1987 (AD-A186677).

150

26. Stephenson, Peter. "Telemagic: Telemarketing Package
Helps Keep Busy People Organized," InfoWorld, 10: 57
(June 27, 1988).

27. Stock, CMSgt Joeseph P., WRM Plans and Programs HQ
SAC. Telephone Interview. Offut AFB NE, 14
November 1989.

28. Study Proposal Project Submission. AFLMC Form 13,
Logistics Need ID: 88094 (October 1989).

29. Thomas, Capt Robert S. A Computer Based Data
Management System for Air Force War Reserve Materiel
(WRM) Vehicle Management. MS Thesis AFIT/GLM/LSM/88S-
70. School of Systems and Logistics, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
September 1988 (AD-A201573).

30. Vesely, Eric G. The Practioner's Blueprint for
Logical and Physical Database Design. Englewood
Cliffs NJ: Prentice-Hall, 1986.

151

vita

Captain Kevin M. Tanzer __

, ~He graduated from Hampton High

School in Hampton, New Hampshire in 1981, and attended the

University of New Hampshire, graduating with a Bachelor of

Art in Chemistry. Upon graduating, he received a reserve

commission through the Air Force Reserve Officer Training

Corps program. After a 9 month tour of Mather AFB,

California, he was the Fuels Management Officer at Holloman

AFB, New Mexico within the 833 Supply Squadron. His duties

at Holloman AFB focused on support of flying operations and

daily contact with maintenance and operations for two wings.

of tactical aircraft. There he was responsible for

directing refueling operations of over 250 aircraft sorties .

per day, Oispensing over 36 million gallons of jet fuel each

year, until he entered the School of Systems and Logistics,

Air Force Institute of Technology, in May 1989.

152

Form Approved

REPORT DOCUMENTATION PAGE O No p4o-01

Public reporing burden for this collection of informaton is estimated to average I hour per resporse. including the time for reviewing instructions. searching esisting date sourCes.'
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of thi
collection of information, ncluding suggestions for reducing this burden to Washington HeadQuarters Services. Directorate for information Operations and Reports. 1215 Jeflerwo
Davis Higtway. Suite 1204. ArlingtOn, VA 22202-4302. and to the Office of Management and Budget. Paperworkt Reduction Project (0704-0188), Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

ISeptember 1990 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DEVELOPMENT OF SOFTWARE FOR THE BASE-LEVEL WAR
RESERVE MAq-._'IELS (WRM) PROGRAM

6. AUTHOR(S)

Kevin M. Tanzer, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GLM/LSM/90S-58

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

\X1

13. ABSTRACT (Maximum2OOw This s9 investigated the requirements for development of
a software program for managing War Reserve Materiel (WRM) consumable assests. Areas
examined included the requirements for collection, organization, and presentation of
data. The research also examined which computer language was appropriate for the
successful implementation, and acceptance by the users. A literature review revealed
numerous instances of software programs researched and developed to permit
management of other WRM program information. The research followed a ten step
methodology for developing a database management system application. As part of the
methodology, the researcher interviewed eleven experts to determine program
requirements. The study developed the prototype software, which was then evaluated
by an expert. Following correction of program flaws, a final version of the
prototype software was developed. The program was then delivered to fifteen experts
for evaluation. The program was accepted by 86.7% of the experts as being a useful
tool for managing a WRM program. I

14. SUBJECT TERMS 15. NUMBER OF PAGES
Data Processing, .D3pit yContr, ComuePrograms,-- 161

Military Equipment, Logistics Planning (/i,) (..- 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-tB
298-102

