
r,, A Heterogeneous
o~eiParallel ProgrammingSCapablty

FFinal Report

J.W.Flower 2, A.Kolawa

ParaSoft Corporation g2500, E. Foothill Blvd

Pasadena, CA 91107

Phone: (818)-792-9941M
FAX: (818)-792-0819 "

Contract: N00014-90-C-0179
Topic Number SDIO-90-010

November 30, 1990

1. Research sponsored by SDIO/ST and managed by ONR/NOSC under the SBIR program.
2. Principal Investigator

go 12 3 103

Table of Contents

1. Statement of the Problem

1.1 Portability and Standardization 1
1.2 "Meta"-Computers 2
1.3 System Integration 2
1.4 Heterogeneous parallel processing with Express 3

2. Phase I Objectives 4

3. Phase I Results 5
3.1 Implementation Strategy 5
3.2 Evaluation of network protocols 7

ISIS., 7
"Standard" RPC mechanisms., 7
Socket level communication, 8

3.3 Basic Interprocess Communication Design 8
3.4 Network Configuration 9
3.5 Booting the Workstation Network 11
3.6 Implementation of Express runtime system 12
3.7 A distributed debugger 13

Using ptrace on running programs, 13
Single stepping, 15
Alternatives, 15

3.8 Performance Monitoring 16
3.9 System Checkout 16

4. Conclusions and the Future17 ... J
4.1 User level "domains"......... 18
4.2 Object Oriented Engineering 18
4.3 Support for external Express implementations 19
4.4 Stronger Language Support 19 ,
4.5 Integration of hardware and software "domains".................. 19

Appendix A. Detailed "domtool" Documentation 20

Statement "A" per telecon Dr. Keith

Bromley. Naval Ocean Systems Center/
c A 912-5U00.

VHG 12/04/90

I i1. Statement of the Problem

In creating a heterogeneous parallel processing capability we are really trying to approach three
basic problems with current systems:

Supercomputer and parallel computer hardware architectures vary widely but need
to support one or two fairly standard programming languages and programming

models. A particularly important issue concerns the short life cycle of individual

hardware designs'
j

Many algorithms require capabilities beyond the reach of single supercomputers

but could be approached by several machines working togetherj , I

3 Performing a given task requires integration of a system that may contain many

components in addition to the super or parallel compute itself. Peripherals from
many different manufacturers must be incorporated. 2 ' .

In addressing these issues we have developed several useful tools which have utility outside the
range of the original plan. These will be discussed in connection with the "Implementation Strate-U gy" in a later section.

I 1.1 Portability and Standardization f

SIMD architectures such as Thinking Machine's Connection Machine have shown that enormous

CPU power can be achieved from extremely simple components used in large quantities. Further-
more this architecture has been applied to a number of important applications with good results.

5 Distributed memory MIMD machines such as the hypercubes continue to achieve greater and

greater speeds as technology increases the speed of the basic processor and the internode commu-3 nication channels. These machines have built up a powerful body of successful results and continue

to do so.

Shared Memory MIMD machines such as the Cray, Alliant, Convex, etc. are also becoming faster
as the basic technology improves. Newer switch designs are achieving better results with lower3 memory and Bus contention. Programming tools have been developed that partly automate the po-

cess of generating multi-processor programs.

3 While these three categories of machine are, each independently, successful there is little standard-

ization among the systems and as a result the most successful applications have often been devel-

oped for one particular class of machine, or even a single member of that class, through painstaking

work by engineers and scientists. Once compler this application is then condemned to live out its

I
!1

useful life on a particular machine with little hope of being able to take advantage of the next series

of hardware developments.

The last few years have, however, begun to see powerful efforts in the computer community to

standardize many aspects of the software development cycle. Standards for languages such as Ada,

ANSI-C and the new Fortran/90 are attempts to eliminate idiosyncracies among language dialects

which hinder program portability. The emergence of UNIX has also gone a long way to giving pro-

grammers a standardized working environment. What neither of these strategies provides, howev-

er, is a "standard" programming model.

Express is an attempt to fill this gap for parallel processing.

In assessing its success in fulfilling this role we note that Express currently runs on most of the
important distributed memory MIMD machines and also some of the shared memory machines. It

is in widespread use in a broad range of applications.

1.2 "Meta"-Computers

Although the advent of supercomputer systems has allowed many problems to be addressed that

were previously believed impossible it has also promoted interest in solving new, even harder,
problems. Computational chemistry and computer animation, for example, are fields which have

arisen more or less as a direct consequence of the availability of superco nputer power.

Some applications, however, remain beyond the reach of even the fastest supercomputers. In par-3 ticular defence related projects typically still require computer performance at least one order of
magnitude higher than is available now. It is also to be expected that as more CPU power becomes3 available harder problems will be attempted.

One possible approach to this problem is the "meta"-computer concept as shown in Figure 1. The3 simple idea is that if parallel processing is accepted among homogeneous processing elements why

not between supercomputers treated as nodes of a heterogeneous system? In this manner we can3 hope to address two important issues - providing performance greater than any single supercom-

puter and also better matching between algorithms and architectures.
1.3 System Integration

It is rare for the solution to any large problem to consist of CPU power alone. Typically I/O sup-
port, graphics and mass storage media are all involved in a complete solution. In advanced areas it

may be required to interface complex custom designed hardware for data collection or analysib.-

Components of the integrated system may also be required to control, in real time, pieces of hard-

ware either locally or remotely.

2

Connection NCUBE

Machine

III
I Loa1re e

Data acquisition and Local Area Net

i processing center

U Figure 1 A "meta-computer"

3 It is unreasonable, however, to expect that supercomputer manufacturers will be able to support

interfaces to all possible types of peripheral. Even though standardization has begun in some areas3 it has not yet reached the stage where any one protocol can be said to dominate. As a result we be-

lieve that supercomputer solutions can best be realized by using peripherals and CPU units as in-

terconnected building blocks. In case one particular type of interface is unavailable it can be re-

placed by some combination of others. In this way a complex heterogeneous system can be built

which offers solutions to the various CPU, I/O bandwidth, real-time, control and other constraints

I of the problem.

Once again, however, we are faced with the problem of controlling this system in a coherent man-

ner. It is to be hoped that at the very least a portable programming model can be developed which

allows the programmer some degree of uniformity across the various pieces.1
i.4 Heterogeneous parallel processing with Express

3 Until now the various implementations of Express attempted to address only the first of these is-

sues - providing a portable, standard platform for parallel programming on a wide variety of dif-

I
I!

5 ferent systems. Each implementation, however, was independent, but allowed programs to execute

on a single parallel computer system while being source level compatible with other implementa-

3 tions.

The purpose of this proposal is to develop a "Heterogeneous parallel processing" capability in3which programs could be written to execute simultaneously on several different parallel processing

platforms potentially of different architectures physically located in widely separated sites. These
programs would still be able to use the Express parallel processing paradigms and system calls

and would be able to execute on much more limited resources when required but would offer the

potential of extremely powerful "meta-computers" built up of communicating networks of super-

computers. We believe that such a system will become increasingly important, especially in areas

such as SDI where real-time coordination of a vast number of processing tasks must be accom-3 plished. The extra flexibility provided by the ability to combine different hardware architectures is
likely to be of central importance. SIMD machines, for example, are extremely good at spatially

homogeneous simple processing tasks such as early stages of image recognition. MIMD architec-

tures, however, provide the flexibility to operate sophisticated Al systems. Combined with data3collection equipment such a system might be expected to be the keystone of an SDI program.

2. Phase I Objectives

Our Phase I objectives were to investigate the requirements of a heterogeneous parallel processing

system in an environment made up of standard workstations. By creating a working version of Ex-
press on this platform we would learn many of the features and problems to be expected when
integrating other parallel computers.

Note that our approach in this regard is unique. Several other groups have tried to develop distrib-

uted programming environments. ISIS and Nectar are two such systems which concentrated on the

workstation as the basic implementation platform. Neither system, however, has been implement-
ed on a parallel processing platform and as a result their design goals and minimum requirements3are rather different from ours. Because Express has already been implemented in the rather harsh

support environment offered by supercomputer class parallel processing systems we have been3forced to adopt programming models and minimum requirements which will more easily be able

to support the eventual integration which is our goal.

The basic goals of our Phase I research wereasfollows:

Evaluate possible networking models and existing distributed systems as potential

I an didates for the Express message transport system.

1 4

Design a communication "server" which can support all of the requirements of

Express.

5 Provide a tool which allows users to design distributed heterogeneous systems.

Implement the standard communication mechanisms in Express and the parallel3 I/O and graphics extensions.

0 Implement the debugging and performance analysis systems to complete the

3 standard Express system.

0 Evaluate the system as a prototype for future development into a heterogeneousIparallel system and, in particular, understand what modifications, if any, are

required in the Express system.

I We believe that we have satisfactorily completed all of these tasks. Many interesting lessons have

been learned about both Express and the various features of standard workstations as they apply3 to parallel processing. We have developed a system which can execute on a network of simple

workstations the same Express programs as run on various supercomputer parallel machines. To3this extent the workstation environment can be viewed as a cheap and readily available platform
for prototyping applications for execution on dedicated parallel hardware although it offers addi-5tional features which make it useful in its own right.

As well as answering the questions of our Phase I work plan we have found additional areas which

require work and which were not appreciated originally. Some of these regard the efficiency of var-

ious pieces of the Express system while others concern the whole area of heterogeneous progiam-

i ming. We will discuss these in a later section and hope to pursue them in Phase II of this project.

3. Phase I Results

I 3.1 Implementation Strategy

3The implementation of the heterogeneous version of Express builds around standard networking

systems as its message transport medium. In this sense we are again fortunate that the standardiza-

tion efforts of recent years have been so successful. The basic idea behind the system is that the

various parallel machines making up the "meta-computer" will be linked together across an ether-
net to which an interface is provided which supports all of the standard Express system calls.

To achieve this goal we make the assumption that each parallel processing system involved has at
least one "point of attachment" to an ethernet. For the shared memory architectures this require-

ment is usually met trivially since each processor typically runs some version of UNIX. The dis-

tributed memory and SIMD architectures normally provide, at the very least, a "host" which can

15

i
be connected to the ethernet and next generations will probably have special purpose peripherals

designed solely for ethernet connectivity. We do not believe, therefore, that this assumption is re-

strictive.

Once each of the machines has a connection to an ethernet we can begin to set up a programming3 model. The simplest extension would be to allow, for example, nodes in a hypercube to be allocat-

ed to a program running on a machine other than the natural "host" for the system. This configu-3 ration would use the ethernet as an intermediary as shown in Figure 2. From this point it is simple

I

Legend:
...... Ethernet

Dedicated hardware3 Communication path

Figure: Remote access to hypercube nodes via network daemonsI
to make the extension which would allow two parallel computer systems to be connected and their

nodes to communicate with each other, Figure 2.

nI

Legend:I..... Ethernet
Dedicated hardware3 4O Communication path

Figure 3 Interconnection of two parallel processing systems via servers

Phase I of this proposal requires the construction of a basic parallel processing capability among
a group of ethernet connected workstations. The technology required to build such a system is

clearly the major part of that required to realize Figure 2.

I
I 6

The workstation system is also useful in its own right. The explosive growth in the workstation in-

dustry has led to a situation in which there are often as many people as machines in many organi-3 zations. Furthermore the CPUs of many of these machines are often idle or very underloaded. Con-

sidering that the CPU power of many of the advanced workstaoions rivals that of many of the older

parallel computers there is an enormous amount of computing power going to waste.

One mechanism for utilizing this "waste" is to use "distributed" programming methods such as

those embodied in Linda and Strand88. These programming methods are able to take advantage of

wasted CPU cycles by operating in "master-slave" modes in which work is assigned to idle pro-

cessors on a network. These methods are suitable for some types of problem but suffer from weak

implementations on dedicated parallel processing hardware. As a result the programs generated do

not scale well when "real" hardware becomes available.

I An alternative option is to use a genuine "parallel processing" model such as Express in the work-

station environment. This approach shares with Linda and Strand88 the advantages of simplicity

and portability but also leads naturally to extremely efficient implementations on full scale hard-

ware.

* 3.2 Evaluation of network protocols

5 We evaluated several different types of network software when deciding on the lowest levels of the

Express system.

I 3.2.1 ISIS.

Carnegie Mellon's ISIS system is a message passing environment for use on large workstation net-
works. As such it corresponds to the lowest level functionality of the Express system. A particu-

larly strong feature of the system is its availability for a wide range of workstation types and the

I simple "fault tolerance" concepts which have been developed.

Unfortunately the current implementation is not compatible with the multi-threaded approaches re-

quired to implement some of the Express features and we are unable to take advantage of the sys-

tem. We iitend to periodically review this decision.

3.2.2 "Standard" RPC mechanisms.

3 We also examined the two leading RPC mechanisms (Sun Microsystems and the Open Software

Foundation) as a basis for our system. Both offer similar functionality for our purposes and could3 be used to generate tasks on remote workstations. The biggest problem with using this type of soft-

ware for our purposes is the overhead involved in the RPC parameter passing mechanisms which

I
I7

are much too general for our needs. Furthermore the programming model typically assumes that
the spawning program will not need to communicate with the spawned process other than to pass
it its initial arguments and to collect its results. As a result the process of establishing a communi-

cation channel to the new process is no simpler than would be the case for a much lower level ether-
net interface.

3.2.3 Socket level communication

The simplest way of maintaining and using an ethernet connection is to use the "socket" system
calls and either TCP/IP or UDP datagrams.These methods impose no restrictions on the types of
data to be transmitted and have much lower overheads than the RPC mechanisms. They are, how-
ever, just as portable. The choice between the two network layers, TCP/IP and UDP, is again ba-
sically one of overhead. The advantage from our point of view of the TCP/IP layer is that it guar-

antees delivery of network packets in the order in which they are sent, providing, of course, that3 the target machine does not fail. On the other hand the UDP transport mechanism is much faster.

We have currently adopted the TCP/IP layer for our message transport but have isolated the appro-
priate code in modules with well-defined interfaces so that we can, at a later date, adopt either the

UDP ethernet protocol or the ISIS methods.

3 3.3 Basic Interprocess Communication Design

In practice it was discovered that the requirements of the basic interprocess communication played

an important role in the decision of basic network transmission protocol. The difficulties inherent
in the two processes discussed below, for example, we responsible for our decision not to use ISIS3 as the basis for our communication strategy.

One of the strong features of Express is its support for "message interrupts". The exhandle sys-
tern call allows a standard message to trigger an immediate response from a function embedded in

the program executing on the target node. This feature allows us to support "real-time" operations3 modes as well as a remote procedure call mechanism and multitasking all based on messages as

the fundamental operation.

3 Support for this features requires that the program running at the target node be interrupted when
an appropriate message arrives and the necessary "handler" routine invoked to process it. To this3 extent a "multi-threaded" programming model is required. (Note that a multi-threaded operating
system is not required, only the ability to interrupt a user application.) Most operating systems sup-3 port this type of functionality either by means of the UNIX "signal" mechanism or some form

of "lightweight process" library.

I

Of these alternatives the latter is more attractive since it uses (presurmably) optimized context

switching. Unfortunately, however, most current implementations offer only non-preemptive

scheduling and/or suffer from the problem that if any thread in - process sleeps the entire user pro-

cess sleeps. Neither is suitable for Express. The "signal" method, on the other hand, suffers

from the known defects of the UNIX signal procedures. Nevertheless it is the only solution which

fills the needs of Express and has been adopted for our use.

Since the area of multi-threaded applications is one which is receiving a lot of attention currently

we will continue to review progress in the field for better solutions which match our requirements.

The second design feature which motivated our choice was the desire to use optimized "shared

memory" transfers for communication between processes resident on the same workstation. Obvi-

ously using this medium for communication is much faster than going through the ethernet proto-

cols.

I 3.4 Network Configuration

The question or network configuration is central to the heterogeneous computing system. Unless

the system consists of processors of more or less equal capability we are faced with the task of as-
signing work to processing units with widely varying strengths and weaknesses. This presents5problems in load balancing and other areas but also opens up many interesting possibilities for the

user. As indicated in the opening comments to this report one of i'he interesting and impoi tar.t goals

of our research is to provide parallel programns with facilities not easily achieved by using a single

type of parallel processor. In this case we must allow the user to take advantage of facilities pro-
vided bv the differing capabilities of workstations on the network.

One common use of such a capability is in high performance graphics applications. Many work-
stations possess sophisticated systems for viewing objects but may not possess the "number

crunching" power to generate the necessary data. Other useful capabilities such as video interfaces

or CD-ROM devices may only be available on a restricted set of workstations.

I To deal with these cases we must build into the heterogencous system the ability to take advantage

of such capabilities in a user friendly manner. Also, for administrative reasons, we need a facility

for overall contro! of the workstation resources used by Express programs, in particular the net-

work bandwidth and connections.

3 To approach these two problems we built a graphical utility, "domtoc 1", whiclh allows worksta-

tions to be added and/or removed from the network and also allows the specification of etnernet
Sconnections between machines. A sample of the display is show ii Figure 4. The basic idea is that

I

I
i Quit

SUN4SUN3ConfigureSUN4 SUN3 Qi
Display

7 Cosmetics

Add Ethernet

I Delete Ethernet

Add Machine
I Delete Machine

kala - - -i Move Machine
gobi Inspect Machine

i__Modify Machine
Machine name sahara sahara Plot Old Conf.
Domain name :SUN4
Number of nodes :4 Create New Conf
"local"/'attached" 1

I
Figure 4 Use of the "domtool" configuration utility

as ea!ch workstation is added to the display a series of questions are asked regarding its use. These

I questions are basically:

i The ethernet name of the workstation. This is required only when booting the

sy stem.

I Thce "domain" to which the machine will belong. This is a concept relating directly

to the "heterogeneous" nature of the workstation environment and is discussed

below.

The In Iximum number of "nodes" to be attached to this workstation. Note that these

are "nodes" the sense previously described.

Whether these nodes are "local ' or "attached". This difference concerns the nature

of the "nodes". If they bel-vr,, to a genuine parallel)rocessor they should be

described as "attached" if they are to Le executed on the works:ation itself they

U
i1 l)

I

should be described as "local". This difference may disappear as the system

evolves.

The "domain" concept was developed in response to our debugging needs and exceeds the bounds
of the Phase I proposal. Originally the first phase work was intended to be solely on the worksta-Ition/ethernet aspects of the system with the bulk of the "heterogeneous" topics delayed until
Phase 2. In debugging the networking interface, however, we soon had to deal with a network com-I posed of both Sun-3 and S _n-4 workstations - a heterogeneous system.

Our solution to these problems is to create a secondary classification scheme for machines; do-
mains. The only real restriction on a domain is that all the processors in a single domain must be
able to execute a given executable file if any of them can. A domain can, for example, contain sev-
eral Sun-3 machines or several Sun-4s but not a mixture of both.

A more subtle use of the system is to categorize machines by their capabilities. A domain might be
constructed consisting of all the nodes with local disks or special purpose graphics hardware. In

this case the set of Sun workstations of a given CPU type might be further subdivided.

The use of this concept allows the application programmer several levels of sophistication in run-

ning parallel programs. At the most detailed level individual workstations can be specified by name
for the nodes of a parallel program. At the opposite extreme no specification can be made in which

case Express attempts to find any workstation in the system to execute a given program. The in-
termediate (and most useful) stage allows the nodes of the user program to be mapped to the "do-

I mains" defined by "domtool". This maintains the flexibility and reconfigurability of the latter
approach while still allowing Express to make decisions about process assignment.

j As well as assigning domains "domt oo 1" serves another important purpose - the allocation of net-
work bandwidth to interprocessor communication channels and "socket" resources.

I Since ethernet bandwidth is a fairly important commodity Express allows restrictions to be placed
upon the particular channels it uses. No assumption is made about the connectivity of the underly-

ing network. Further "socket" connections between workstations are only made as indicated to
"domtool". Workstations which are required to communicate but which have no direct socket
connection use the forwarding system built into Express. This restriction is required, especially
for large systems where it is impossible to open enough sockets to fully connect a large network.

I 3.5 Booting the Workstation Network

Once the network has been "designed" with "domtool" it is booted with the "exinit" com-

mand familiar to users of Express in other contexts. This command is responsible for setting up

Ii 11

I

5 the desired socket connections and downloading information to "server" processes started on each
workstation. Among the data required to operate are

The "forwarding" table which describes the paths through the sockets between any

pair of workstations.

The "domain" map which assigns workstations to domains used for loading user

applications.

3 The processor numbers and other Express related information.

The booting process is the one location where we use the RPC commands, albeit indirectly. The

UNIX "rsh" command is used to spawn the appropriate daemons.

Again this decision represents a compromise. In practice setting up a network to use "rsh" in the

correct mode, with the correct privileges is a slightly non-trivial process which we have found in
field tests to be quite tricky. A potentially better alternative is to use the RPC mechanisms directly3 by locking special ethernet "port addresses" to the Express daemons. This solution also has its
problems in the setup phase but might in the long run offer more attractive features than the "rsh"

* mechanism in use now.

One of the most challenging problems in booting the system concerns the issue of abrupt program
termination. In a smoothly functioning environment it is easy to construct servers which correctly
respond to user programs. Unfortunately, however, we are faced with a development environment
in which some users will be running "functioning" parallel programs while others are developing

new algorithms with their associated "bugs". As a result the system of servers must be able to cope
with programs that "disappear" as they are aborted by their users or which "crash" due to other

problems. This is a rather weak area for UNIX but we are able, by combining various "signal"
mechanisms with periodic "cleaning" processes to deal with most cases.

3.6 Implementation of Express runtime system

5 Once the underlying message transport mechanisms had been completed we proceeded to imple-
ment the standard Express communication utilities which make up the majority of the user-visible3 Express programming model. In addition to the basic communication utilities we also implement-

ed the Cubix I/O system and the Plotix graphical system.

5 The implementation of the runtime system proved to be relatively straightforward once the under-

lying protocols had been developed. In particular the implementation of the exhandle, exsend5 and exreceive system calls was easily achieved by using the UNIX signal mechanisms. This

I
I 12

3 had been included in the original decisions that led to our choice of networking protocols and serv-
er designs and so caused few additional problems.

3 At the completion of this work we were able to execute the standard set of Express test, example

and demonstration programs on the workstation network.

E3.7 A distributed debugger

The implementation of the distributed debugger, ndb, proved to be rather more troublesome. In

general the implementation of the debugger is a two stage problem:

3, Implementation of code which parses the compiler generated symbol tables and

builds appropriate data structures.

1 Support at the kernel level for single stepping, breakpoints, etc.

In our experience with dedicated parallel processing systems the former is often quite tricky be-

cause the compilers are often non-standard or are early prototypes that follow no conventions as
regards symbol table formats. Often it is difficult to extract the information required by ndb from3 the executables, even if it is present. In contrast supporting memory reads/writes, breakpoints and

other standard debugging features is often simplified by the extremely simplistic nature of the op-
erating systems on such hardware. In most cases it has proved simple to add the necessary support

to existing kernels.

In the workstation environment we originally hoped that the process would be doubly simple.

UNIX typically supports fairly standard symbol table formats and has well matured compilers. Fur-
thermore the availability of high-quality debuggers for sequential programs led us to hope that we3 would have a relatively easy task in implementing our debugger.

The situation with the symbol tables was indeed fairly str.,ghtforward. Documentation was easily

forthcoming and the formats are well understood and reasonably well thought-out. (The one excep-
tion being Sun's dbx format which is extremely verbose and clumsy.)

I Our current problems center on the use of the pt race system call as the entry point to UNIX's
debugging mechanism. In principle this supports all of the features that we would expect but it suf-

I fers from several defects as explained below.

1 3.7.1 Using ptrace on running programs

As implemented on most workstations the pt race system call is only supported when the pro-3 gram being debugged is "stopped". In a conventional debugger this causes no real problems since
the debugging cycle is typically "insert breakpoints, examine variables, continue execution". Be-

I
I 13

5 cause of this cycle the user only examines the state of the target application when it is stopped at a

breakpoint or when it has "dumped core" and pt race is sufficient.

3 In a parallel program, however, much more complex situations arise. Consider, for example, a rath-
er contrived case as shown in the following "pseudo-code".

3 Node 0 Node 1

10 foo = 100; 10 foo = 200;
11 bar = 100; 11 while(1);
12 joe = 100; 12 joe = 300;

In this example we assume that due to some extremely odd "bug" the program in Node 1 will never

reach line 12. Let us assume that the programs in both nodes are currently stopped at breakpoints
at line 10. The user inserts a breakpoint and line 12, examines various variables and finally asks3 the program to continue on both processors.

At this point the program in node 0 will execute line 11 and then stop at line 12. The program in3 node 1, however, will execute forever at line 11, never reaching its breakpoint.

In standard sequential debuggers this situation would result in the user never being given back a
I command prompt. This is reasonably acceptable in a sequential debugger since the user is aware

of the problem and can interrupt the program with some keyboard command to see what is happen-

S ing.

In this particular case this solution may be vaguely acceptable in the distributed debugger since,

after all, node 1 is never going to reach the breakpoint and the user program has no chance of fin-
ishing. On the other hand a much better solution would be to tell the user that node 0 has reached3 the breakpoint and that node 1 is still executing code. The user would then be in a much better po-
sition to try and find the problem. In more complex cases where several nodes are each waiting for

each other in some complex sequence it is vital that the user be able to examine the processing state

even when some of the nodes are still executing code.

Unfortunately the standard implementation of the pt race system call does not support this capa-

bility. When requests are made of a currently executing process the results returned by pt race
are typically wrong, often with no indication of an error.

At this point our solution to this problem is to implement a "weak kill" mechanism by which one

of the server processes sends a UNIX signal to a process whose state is requested by ndb. This

causes the process to halt and thus generate correct responses to the pt race call once account has
been taken of the fact that the user program was interrupted by the debugger itself asking for infor-

I mation. Once the response has been received the server restarts the node process.

1
| 14

This process is, unfortunately, both slow and error pronc. The use of UNIX signals is complex

and non-intuitive with many different combinations of events causing unpredictable behavior. At

this time we are attempting to find alternative solutions to this problem.

3.7.2 Single stepping

A second area of difficulty in connection with the distributed debugger concerns the single-step-

ping process. Even in debuggers for sequential programs this can be quite a slow process depend-

ing on the degree of support from the underlying hardware and the complexity of the user program.

In the parallel case, however, other problems occur.

Consider the following program fragment:

3 Node 0 Node I

10 foo = 100; 10 foo = 200;
11 sync with node 1; 11 sync with node 0;
12 joe = 100; 12 joe = 300;

Again we assume that the program is stopped at a breakpoint in both nodes at line 11. If we now

5 try to single step both nodes to line 12 a potential problem arises.

The sequential debugger carries out a single-step by continually executing machine instructions

until reaching the next line number in the user program. If we apply this procedure to the code in

node 0, however, we will reach an impasse because the program in node 0 will never reach line 12

-it will wait to synchronize with node I which is still stopped at its breakpoint.

A solution to this problem is to alternate the low level single stepping process between the affected

3 nodes. In this way we will eventually meet the synchronization criterion and reach line 12.

The penalty for this approach, however, is its speed. Communicating with the Express servers on

3 each node is a high bandwidth, high latency process because of the nature of the underlying Ether-

net. Since the control messages used by the debugger are short we have only to contend with the

if high latency and as a result the single stepping process can become prohibitively slow.

At the present time we are exploring possible alternatives to this approach.

I3.7.3 Alternatives

At the present we are somewhat disappointed by the implementation of the pt race system call.
While offering all the capabilities required by a debugger for sequential programs it is seriously

lacking in support for more complex applications. An additional problem is that different machines

tend to support this facility in subtly different ways which make this aspect of our system less por-

15

table than we would like. Almost the only aspect of the ptrace interface that is common is its
refusal to allow debugging of running processes!

An alternative implementation of the debugging process is implemented on a few UNIX like sys-
tems. A "pseudo-device" is created for each running process which can then be addressed in a man-
ner reminiscent of a standard file. In particular one can read and write the memory of a process
using the conventional UNIX read and write system calls. We are particularly interested in this
approach since it offers potential to solve at least the first of the problems discussed in this section.

In future it may also be possible to implement local interprocess communication through this

mechanism which will provide an alternative to the shared-memory implementation adopted in

Section 3.2.

A task for further research is to evaluate this mechanism in regard to both debugging and use as a

standard messaging protocol for Express.

3.8 Performance Monitoring

The final part of the standard Express system to be implemented on the workstation network is
the performance analysis system, PM. Again the implementation of this process proved relatively
straightforward. The "communication" and "event-driven" systems required only simple "porting"
similar in nature to that required to implement the basic high-level communication system. The
"execution" profiler relies on periodic interrupts in the same manner as the conventional UNIX
profilers "pro f" and "gpro f" and was implemented in the same manner.

3.9 System Checkout

We have evaluated the system, at least for correctness, by executing the standard set of test, exam-
ple and demonstration programs as are used for Express check-outs on dedicated parallel comput-

er systems.

We have found that the programs execute without modifications to the source code - a powerful

exhibition of the source code compatibility of the Express system.

In terms of performance we have, as yet, little idea of the absolute capabilities of the workstation

environment. Already apparent, however, is the fact that we can usefully use a network of Sunj-4
class machines to develop parallel applications in the absence of dedicated hardware. In some re-
spects this is actually preferable to the real target system - the compilers are more mature and ex-
ecute much faster than the cross-compilers typically used for genuine parallel hardware. This short-
ens the compile/run/debug cycle and also relieves the developer from struggling with the compiler
"bugs" often found in immature parallel processing software. The graphical capabilities of the

16

workstation environment also make it an attractive alternative to parallel processing hardware

which may support only very primitive operations.

We have also found that a single workstation can support up to four "node" programs without be-

coming too overloaded to perform useful work without impacting its neighbors on the local area

net.

The issue of the absolute performance of these systems will probably remain an open question until

an interface to a real parallel processing system is constructed and a "heterogeneous" system is

built. Only in this context will we be able to examine properly the trade-offs between the process-

ing speeds and bandwidth requirements of the genuine parallel processing systems and the inter-

face "glue" provided by the workstation environment. Also important in this evaluation are "load

balancing" issues which are addressed more closely in another SBIR project currently being un-

dertaken by ParaSoft. For this and other reasons we believe that the Phase II work carried out on

this project should be combined with that of our other current SBIR award since important aspects

of the work on the two projects overlaps.

4. Conclusions and the Future

The simplest conclusion realized by the Phase I research is the delivery of an implementation of

the Express system that can run on a network of standard workstations. We have completed this

project and have been able to implement all of the features of the other versions of Express which

run on dedicated parallel processing hardware. In performing this work we have learned some of

the strengths and weaknesses of the workstation environment and the UNIX support tools. In all

cases we have found appropriate solutions to meet our needs although some of these are still un-

dergoing study to see if improvements can be made.

The degree to which this project has been successful is indicated by the fact that we are able to run,

without changes to the source code, all of the standard Express test and example programs. Even

further we were able to compile and execute a significant adaptive grid finite element fluid me-

chanics solver without source code modifications.

The workstation system has been shipped to several Express user's and we are currently awaiting

feedback on the strengths and weaknesses of the design.

The idea of a "domain" was a development that arose early in our research and had fundamental

repercussions throughout the project. Originally we had intended that this concept be left undevel-

oped until reaching Phase II and real "heterogeneous" systems. In practice, however, we discov-

ered that even a network composed of Sun-3 and Sun-4 class machines is genuinely "inhomoge-

17

I
neous" and requires more advanced support. The creation of "domtool" was a major effort in

making the workstation system useful.

The most exciting results of this Phase I research, however, are the new and unexpected areas

which have emerged. When originating this project we expected to create versions of Express

that, while heterogeneous, shared the same programming tools and models of the original parallel

processing systems. In fact what has happened is that in examining the requirements of the heter-

ogeneous systems and its potential users we have found exciting new ways to extend the older ver-

sions of Express and improve its internal structure. We intend to explore these issues more fully

in our Phase H proposal but some of the basic items are discussed below.

4.1 User level "domains".

The concept introduced at the current level is basically that of a hardware distinction between the

capabilities of various machines. We believe that this must be supported by a corresponding soft-

ware concept which will allow the user to partition their original algorithm into groups of process-

ing elements which share a common task. These "groups" may or may not correspond to the hard-

ware "domains".

This concept represents a middle ground between pure "domain decompositions" in which the

same program executes on each node and the data is distributed and pure "functional decomposi-

tions" in which a different program or task executes in each node. The concept seems to be appro-

priate to the structure of the heterogeneous networks and should be supported at all levels of the

Express system from the communication system, through the 1/0 system, to the automated paral-

lelization system.

4.2 Object Oriented Engineering.

Current versions of Express are written with what may be called "old-fashioned" style code. Ex-

tensive use is made of external variables and common routine names to simplify the porting of the

system between architectures. While this has proved valuable in the individual Express imple-

mentations it will cause problems in the heterogeneous environment where a single user program

may require to be interfaced with several different runtime Express systems according to the types

of hardware in the heterogeneous system under its control.

We intend to adopt an "object oriented" design philosophy in which types of hardware are abstract-

ed and a clear distinction is made between code common to all implementations and machine spe-

cific details.

18

I
4.3 Support for external Express implementations.

All of the current versions of Express were generated either by company employees or by working

in close collaboration with other organizations. This has proved effective to date since the number
of dedicated parallel processing systems is small. Now that the system is being extended to cover
not only workstation interfaces but also arbitrary combinations of machines there are far too many
variants to carry out all the necessary work internally.

It is our intention, therefore, that Express become an "open system" for which the source code
will be made available to users with novel hardware architectures. To facilitate this process we
have to create a much "cleaner" development system than is currently used internally. We intend

to build a semi-automatic "porting" methodology that should ensure that the system can be inte-
grated with new hardware at minimal expense. This will require extensive automation of the inter-

nal procedures used to create the tools and runtime support and major documentation.

In conjunction with this idea we intend to setup an advisory committee drawn from the Express

users who will have responsibility for developing the extensions and improvements to the system
that will inevitably be generated by other groups working with the Fxpress source code.

4.4 Stronger Language Support.

The Express system is itself written in C although the tools and runtime support are available to
Fortran programmers. The techniques by which the Fortran interfaces are derived is currently
somewhat time consuming and error prone and requires extensive improvement. This is particular-
ly so since we intend to support other languages in the future such as ADA.

4.5 Integration of hardware and software "domains".

The "domain" concept must be extended to cover all of the software tools in use with Express. In
particular programs such as the various profiling and debugging tools must be taught about the un-
derlying hardware structures. It is our intention to attempt to conceal the underlying hardware con-

figuration of the heterogeneous systems just as we currently hide the hardware topology of the var-
ious parallel processing systems.

This is of particular importance when debugging - we aim to provide a system in which the physical
CPU type on which a process is executing is invisible to the user. This involves developing tech-
niques by which the hardware specific features of all the software tools can be mixed interchange-
ably at runtime. As well as requiring a more object-oriented approach as described in 4.2, we must
also integrate some sort of data-base of hardware types and capabilities.

19

U
I Appendix A. Detailed "domtool" Documentation

3 This appendix contains the full documentation for the "domtoo 1" domain configuration utility.

I
5
I
I
I
I
I
I
5
I
I
I
I
U
I

20

!

I i1 Introduction

To this point the networks used with Express have been "homogeneous" in the sense that
a program, once compiled for the machine, can be executed on any of the attached nodes.
Examples of this type of system are hypercubes and transputer arrays. With the exception
of the host computer the nodes are all of the same basic architecture and can usually be Heterogeneous

treated as a homogeneous system. However, consider the network show in Figure 1. This networks

Connection A Hypercube

Data acquisition and Local Area Net

processing center

5
Figure I An Inhomogeneous Parallel Computing SystemI

system can be used for parallel processing but can, by no means, be called homogeneous.
The "node" programs that execute on the Connection Machine are completely different
from those that execute on the hypercube. Similarly the programs that run on the
workstation network will be different, not only from the executables for the other types of
system, but may also vary from one workstation type to another. As well as these
fundamental, but straightforward, differences between "node" types we are also faced with
a much more complex programming problem as the capabilities of the components of the

I parallel computer differ widely from one node to the next.

2 Domains, Processors and Nodes

To deal with such complex issues Express uses the concept of "domains". A domain is a
group of parallel processing nodes with the same hardware architecture. In Figure 1, for
example, the hypercube system would be a single domain containing multiple nodes while

21

the Connection Machine would be a domain with only a single node. The workstation
network might be a single domain if all the machines were of the same type, or it could be
several domains - one containing Sun-4 machines, one with Sun-386i's, etc.

Definitions."terminology Before proceeding to a discussion of the programming model used on such systems we
becomes complex should first clarify the terminology to be used. This is made complex by the fact
for heterogeneous homogeneous systems are normally described in Express as having a "host" and one or
systems more "nodes". While this concept is suitable for simple systems it requires extension in

more complex situations. As a result let us define the following terms:
Domains Domain A domain is a group of machines of the same hardware architecture.

This is a logical concept introduced to facilitate programming
heterogeneous systems and is assigned when configuring an
Express system. The most important factor in assigning domains is
that an Express executable which can run on one machine in a
given domain should be able to execute on all machines in that
domain.

Processors Processor The individual unit of computation, at the level of the underlying

hardware. A hypercube, for example, may have 1, 2, 4,.... 512,...
"processors" each capable of running programs. A workstation, by
virtue of its multi-tasking operating system may be configured to
have any number of processors since it can run several programs at
once.

Program Program In conventional systems a "program" is a particular piece of code

that performs a given task. In parallel and distributed systems we use
the term "application" for the overall structure and "program" for
the individual pieces. On a parallel computer, for example, we use
the term "program" for the code that runs in each processor. In a
distributed system a "program" is the unit which is distributed
between the processors.

Node This term should be taken to mean a single "processor" assigned to
a user's parallel processing "program". This is a logical concept -
not all the "nodes" assigned to a user need be of the same type or
come from the same "domain". When running on 16 "nodes", for
example, we may chose to use 8 processors from a hypercube and
8 from a transputer array.

Machnes Machine A "Machine" is a named entity that can be assigned to a domain and

which carries with it a specific number of processors. The name of
the machine will be used in configuring the machine and is usually
related to the "network" properties of the system. A hypercube
hosted by a workstation with name "hyper-host" would be
considered a single "machine" with this name.

While these definitions may seem needlessly pedantic (especially when considering the
vague terms in which they are expressed) they may help to resolve confusion which may
arise when configuring and using the systems.

22

U
3 In general terms we may say that

• A "domain" consists of one or more "'machines".

• A "machine" may have one or more "processors".

• The user may allocate and work on any number of "nodes" distributed in any
way among the "domains".

" The user's application is built from a number of "programs" which can be
distributed among the "nooes".

Domains and
In most cases the term "machine" in the above descr'ntions is equivalent to "workstation". "vorkstation, are
Most types of parallel computer are supported by a single workstation, the Connection norrnall,
Machine's "host", the "host" of the hypercubes or transputer arrays, the ndividual synonycMu.4

components of an Express workstation net etc. These machines are usually connected to
an etherr.:t for communication purposes and their network known name is the
identification parameter used in assigning machines to domains. The confusing issue is the
number of "processors" connected to a particular workstation and the number of
"programs" it can support. To clarify this issue let us define two more terms:

Attached Processors"Aachcd"
These are computing elements other than the workstation's CPU thir on C'a

itself which are used for parallel processing. "Tlh individual
processors of an assciated hypercube array, for example, are
"attached". This number is fixed by the hardware of the system.

L"local"
Local proces,,ors processors u~e the

This is a logical concept which describes the number of Express CPU of their
programs which can simultaneously execute on the CPU of the workstation
workstation. This number can be chosen while configuring Express
and is independent of hardware considerations. (Other than Lhe fact
that allowing hundreds of processors will slow down the machine5 quite a lot')

An important distinction that Express makes in regard to this concept is that a single
"machine" or workstation may not support both "attached" and "local" processors. This
does not mean that a program cannot simultaneously use a hypercube and a workstation net
under Express but the particular workstation supporting the hypercube cannot execute
Express pro,zrams on its own CPU while it is playing the role of "host" for the attached
nod,,.'s.

I laving defined "local" aid "attached" processors in this way we can naturally extend the
concept to the "programs" ,which will be run there. A machine with 10 "local nod% " is a
workstation which will support up to 10 simultaneous Express programs on its own CPU.

Conversely a machine with 512 "attached node" can support up to 512 simultaneous
Express programs on its attached processors but none on its own CPU.

3 Running Programs on Heterogeneous Systems; DDF Files

I Basic program control on the heterogeneous net is achieved by modifying the allocation
and loading strategies usually used by Express programs. A conventional Express "host"

23

5
lexop -r and program might use a sequence of instructions similar to

exlca J do notIsupport the t'ull if (pgina=ex:open (,'dev - .. or , DONTCA:'E) <)
capabihtl.ofhc fprintf (sterr, "7ailed to a11nc.te nodes,,.) ;

lhcerogeneous t)alct oe',)

,,etvork. exit (1) ;

n p r,t (st' , '' .-- ,,: tr i -£-A f-ai l " ;

5 to load the same program into every rode. Sintilurlv a Cubix program might be loaded with
the command

On the heterogeneous network life is not normally so simple. The above commands will
still work and should Jo the expected thing - in the first case a program called "ryprog"
will he loaded onto four identical processors \\hile in the second "mytest" will be loaded
into 16 nodes. in each case the allocated nodes will be taken from a single domain, and
furthermore, Express will try to figure out a suitable domain from the type of executable

I heing loaded.

While this is a reasonable default the heterogeneous net offers many opportunities which
a r t i e h e st T a d a f tnd

,:. _ >:. ae no avilable in homogeneous systems. To take advantage of these alteriatives

Express offers a slightly different set of allocation/loading primitives which use a "domain
description file" (DDF) to map "nodes" onto "processors"

",__ , The L..sic idea of the DDF file is to tell Express what type of processors you would like to
use in vyour parallel program, and the name of the appropriate executable for Express to
load. Consider the following "DDF", for example.

Sample domain descuiption file.
0-3 SUN4 mynod?4 Testing domains

4-6 SUN3 mynode3 on different hardware
7 GRAPHICS mygraph 512 512

I Figure 2 Sample "Domain Descr')tion File"

5)F , nrr, The first line, starting with the '#' character is a comment, ignored by Express.

[he second line specifies that nodes 0, 1, 2 and 3 should be allocated from the domain
named"..... and loaded with the program "mvnode4". In addition, argumeits
: v ', 4 " "Test in" and "domains" will be passed to the node program at runtime.

The third line indicates that the program "mynode 3" should be loaded into nodes 4,
,5 and 6 and passed arguments -;2 yr.de3 . ".on" "different" and "hardware".

These nodes will be allocated from domain "S UI ".

24

Finally the last line tells Express to allocate node 7 from domain "GRAPHICS" and load
a third executable passing it the indicated arguments.

In this example we have used domain names that strongly suggest underlying hardware
differences. We might imagine, for example, that domains "SUN4" and "SUN3" were made
up of workstations of the indicated types while the "GRAPHICS" domain were built from
machine(s) with special capabilities. This is not necessary - domain names may be
completely arbitrary: "DOG", "CAT" and "HORSE" would be just as acceptable if somewhat
less informative.

The DDF may be arbitrarily complex. Comments, continuation lines, quotes, etc. are all
processed appropriately. Furthermore the nodes may be listed in any order and domains
may be specified more than once. The following DDF loads all but one node with the
program "complex", passing no arguments and allocating from domain "SUN4".

Sample domain description file.
0-11 SUN4 complex
12 SUN3 mynode3 on different \

hardware "this is one argument"

13-15 SUN4 complex

Figure 3 Sample "Domain Description File"

Node 12 is allocated from domain "SUN3", loaded with the program "mynode3" and
passed 5 arguments of which the last is the string "this is one argument".

To use this technique in a "host-node" program we use the routines "exnopen" and Using exnopen

"exnload" in place of the more common "exopen" and "exload". If we have stored "lost-Node"
the domain description of Figure 3 in the file "domain. ddf", for example, we might use program
the code

*sAllocate and load nodes in a host program, using a5 domain description file.

#include <stdio.h>
#include "express.h"

main ()

struct nodenv nodedata;

I if(exnopen("domain.ddf") < 0) 1
fprintf(stderr, "Failed to allocate nodes\n");

5 exit (1);

exparam(&nodedat.);

S25

5 if(exnload("domain.ddf") < 0)
fprintf(stderr, "Failed to load programs\n");
exit (2);

I The exnopen and exnload system calls each have a single argument, the name of the
domain description file which describes the nodes to be allocated and the programs to be

inding the loaded.

number of nodes Note the inclusion of the call to exparam in the previous code. Normal host programs
allocated often do not need this since the number of nodes to allocate/load is a parameter to the
Sexopen call and is usually stored in some program variable anyway. In the DDF case,

however, the number of nodes to be allocated is determined directly from the domain
description file and is not specified by a program variable. A good solution is the call toIexparam (after the call to exnopen) which will return the number of allocated nodes in
the nprocs element of the nodenv structure. This method is preferable to "hard-coding"
the number of processors in the program since it will be determined at runtime from the
DDF. Changing the number of processors in use then requires changes only in the
description file.

Using DDFfiles in Programs that use the Cubix programming model can be loaded from DDF descriptions

programs using the "-f" switch as follows

cubix -f domain.ddf

This command allocates and loads processors according to the description found in the
named file.

I4 Creating and Using Domain Descriptions

Even if your system is "homogeneous" you can use the domain description methodology
to allocate and load programs. In this case the name of the domain supplied in the DDF file
is arbitrary and will, in fact, be ignored by Express. This allows you to use the same

*domain description file on several different homogeneous machines.

dreating domain When creating description files for heterogeneous architectures the first thing you will needto know is the names of the configured domains, and their contents. The simplest way to
get this information is with the domain configuration tool, "domtool". Executing the
command

domtool -1

will produce output similar to that shown in Figure 4. For each known domain the included
"machines" are listed together with the number of "programs" that can be run there and a
description of whether the "processors" are "attached" or "local". Using this information
and knowledge of the various system capabilities one can build appropriate domain
descriptions.

26

Domains:

SUN4:
sampson 4 local programs.
pollux 2 local programs.
delilah 4 local programs.

SUN3:
wega 2 local programs.

SUN386i:
procyon 1 local program.

simic 1 local program.

GRAPHICS:
kastor 1 local program.

Figure 4 A Listing of Available Domains

I Conliguring Domains
Having described the mechanisms by which domains are used in assigning programs to
nodes, and nodes to hardware we must discuss the issue of "system configuration" in which
the domains are themselves created. The procedure is normally carried out graphically with
the domain configuration tool, "domt oo 1", and is performed by the system administrator.
After setting up certain configuration files the exinit command is then used to start-up similar role to
the necessary network servers which are used for communication between the various cnftool"machines". In this sense the process is entirely analogous to the "cnftool"/"exinit"
sequence used to configure other Express systems.
In order to build the domains on which you system will operate you need several pieces of Informationinformtion:required to
information: configure domains

• The names of the domains. These can be any strings although those that describe
underlying system architectures are easiest to use and remember.

3 The (network) names of the machines which will be assigned to the domains.

• The number of "programs" that you wish to be able to run on this machine.3 • Whether the "processors" are "local" or "attached".

In addition information should be supplied regarding the network interconnectivity
required among the machines. This information is used by Express to build
communication paths between the various machines - it is not a physical description of the
underlying hardware. You merely indicate which machines should be directly connected
by ethernet sockets and which will communicate by through-routing. Express takes care
of all the details so that your applications remain unaware of the underlying network
protocols and/or connectivity - this information is only required for system configuration.

27

I
1 5.1 An example workstation system

To make the ideas behind domain configuration more definite we will work through an
system example of the use of "domtool" to build a network consisting of three workstations. We

will assume that the following machines are available:

• "gobi", a Sun-4

S* "sahara", a Sun-4

" "kalahari", a Sun-35 The tradeoffs inassignngmachines Since the machines are not all of the same architecture we cannot constnct a system with
to domains a single domain. On the other hand we probably don't want to make each node its own

domain since that would force the user to always specify the machine on which their
programs should execute. (Express tries to load balance applications within a domain by
assigning nodes to free machines in preference to those which are already in use.)

The best compromise, therefore, is to make two domains. For convenience we choose the
names "SUN4" and "SUN3".

The trade-offs in

assigning "nodes" Having made these decisions we must now consider the assignment of "programs". None
to machines of thc. machines has an attached parallel processor so the number of "attached nodes" will

be zero. As a result we are free to assign any number of "local nodes" to the machines. For
optimum distributed performance we would probably like to assign a single "local node"
to each machine. In this way a program that uses 3 nodes would be allocated one on each
workstation resulting in best CPU performance. On the other hand our network would then
be limited to running only three "nodes" at any one time which may be too restrictive.

In this example we choose to assign three "local nodes" to each of the Sun-4 machines and
two to the Sun-3. This yields a total of 8 "local nodes" and also takes advantage of the
greater processing power of the Sun-4.

The "system The last issue to be resolved before starting he configuration system is that of the
console"

"Express system console". One of the workstations should be selected as the system
console. While all machines will appear equivalent from the perspective of the user the
system console is special in that it is the only machine capable of executing the "e x i n i t"
system call which reload., the system software and starts the network servers. On this
machine we should now execute the command

g domtool5The special files in
Express When started domt o o 1 checks for the existence of certain important system configurationfiles to see if a previous configuration is available. The names of these files vary from

system to system but are maintained in the standard Express data-base, the "customization
file". The currently used files are represented by the following macros:

NETFILE This file contains a description of the ethernet interconnections
between machines.

CONF I LE Contains the forwarding information that Express will use to send
messages between nodes.

PLOTFIL Describes the most recent image of the network as displayed by

28

I
3 domtool.

(Note that ParaSoft reserves the right to alter the contents or names of these files in any3 future release of Express.)

If"domtool" detects these files it will ask whether you wish to continue from the existing
configuration or to start from scratch. In our case we wish to build a network from scratch3so you should answer appropriately. (You may not be asked this question at all if domtool
does n% think that a configuration currently exists on your machine.) At this point the
display should contain an image such as that shown in Figure 5.

Quit
Configure
Display

Cosmetics
Add Ethernet
Delete Ethernet
Add Machine

Delete Machine

Move Machine
Inspect Machine

3Modify Machine

Plot Old Conf.

* ' P Create New Conf

Figure 5 Basic domtool display

The top part of the display contains an area which is used to display the color coding used

to indicate domains. The right hand side of the display has a menu containing commands
which are executed by "clicking". In the main display area the "machines" will be
represented by named icons. Ethernet connections between workstations are shown as solid
lines. The "Dialogue Area" shown in the Figure is used to indicate instructions and other
informative details to the user. While manipulating networks with domt oo 1 this area will
contains details of how to perform certain operations.

I

iElements of the The network description we will create consists of two elements: machines and ethernet
network connections. The former represent the CPU resources of our network and are assigned to
escription domains when created. The ethernet connections are required by Express when

forwarding messages between different machines.

4dding machines To create the configuration of our system we need to create and assign two Sun-4 and one

the network Sun-3 workstations. This can be done in any order and we choose to create "gobi" first.
o, We add a machine to the network by selecting Add Machine from the menu. The dialog

area of the display will prompt us to position the icon in the display area. Do this by moving
the cursor to the position where the machine's icon should appear and clicking the left
button. At this point a workstation icon should appear on the screen and a dialog box will
prompt for information about this machine, see Figure 5.

I Quit

3 Configure
Display

3] Cosmetics
Add Ethernet

I Delete Ethernet

Add Machine

IDelete Machine

EMove Machine
Machine name Inspect Machine

Modify Machine

Plot Old Conf.

Create New Conf.

I
Figure 6 Adding a new Machine

'Supplying

information We are being prompted for the "name" of the new machine. This information is used when
omains and nodes booting the Express system over the network and should be the "network" name of the

*0 machine. In this case we would answer "gobi". In turn we will then be prompted for the
"domain" to which this machine should be assigned, how many nodes this machine has and3whether they are "local" or "attached". In our case we have already determined our answers

30

!
3 and the completed "Data Area" should appear as shown in Figure 7.

Machine Name gobi
Domain Name SUN4
Number of programs 3

I Local or attached? [I/a] I

3 Figure 7 The Completed data area.

After completing the information the machine's icon in the "Display Area" will be changed
by the addition of the name supplied in answer to the first prompt. A new icon should also
appear in the "Legend" area showing the domain to which the new machine belongs. This
will aid you in designing the overall network. Adding the other two machines is similarly
achieved by selecting the Add Machine option from the menu, the only trick being to
remember to use the domain name "SUN3" for machine "kalahari".3 After adding all three machines the display will probably look somewhat similar to

I
I
I
I
I
I
I
I
I

Figure 7. At this point the assignment of "machines" to "domains" is complete.

E3 Quit
I; Configure
SUN4 SUN3 Display

Cosmetics
Add Ethernet

Delete Ethernet
* Add Machine

Delete Machine
3 kalahari Move Machine

gobi Inspect Machine
Modify Machine

I Plot Old Conf.

sahara Create New Conf

3 Figure 8 After adding all three machines

I Note how the various domains are shaded. This allows you to quickly see which machines
belong to which domains.

Issigning Ethernet Before Express can be fully configured, however, you need to "connect" the machines in
connections the "Display Area" with ethernet sockets. To do this we use the Add Ethernet option from

the main menu. You will be p.ompted, in the "Dialogue Box", to select a pair of machines
with the mouse. Having selected an pair of machines the ethernet connection will be

I
3
I
U

32

indicated with a line, as shown in Figure 9. If you have trouble selecting objects it is

SUN4 SUN3
Display

I I Cosmetics

Add Ethernet

Delete Ethernet

Add Machine

Delete Machine
kalahari Move Machine

gobi Inspect Machine
Modify Machine

1:3 Plot Old Conf.

sahara Create New Conf

1 Figure 9 Adding an Ethernet Connection between "gobi" and "kalahari"

probably because your "mouse clicks" are not near enough to a machine to be recognized
as identifying that workstation. In this case you may see a message telling you to "exit" by
clicking with the right button, or double-clicking something. In this case just keep trying.

Indicated
Note that these connections do not refer to a physical hardware link between machines, but "connections"
will be used to set up Ethernet "socket" connections between machines when exinit is need not by
executed. These links will be used internally by Express to forward messages between "physical" wires.
,"nodes" attached to different "machines". This process is quite transparent to the user who
can program as though every node were connected to every other. By repeating the process
by which "gobi" and "kalahari" were connected we can add two more links to create

3
3
I
U

I
3the display shown in Figure 10. At this point every machine has a direct connection to each

M QuitI Configure
SUN4

SUN3
____ ___ ___ ___ ____ ___ ___ ___ ____ ___ ___ ___ __] Display3] Cosmetics

Add Ethernet

Delete Ethernet

3 Add Machine

Delete Machine

I kMove Machine

gobi Inspect Machine
Modify Machine

Plot Old Conf.

sahara Create New Conf

3 Figure 10 A Full Interconnect

* other machine and adding more connections is redundant.
trade-offs in

allocating ethernet It is important to note that network resources such as the "socket" links used by Express
onnections are not necessarily cheap on all systems and may incur overheads of their own. As a result

3it is not always beneficial to build a fully interconnected network such as that used here.
While this is feasible for three machines, using only three socket pairs, a fully connected
network of 16 machines would require 120 sockets which is rather more than can be
maintained on most systems. The solution in this case is to use less direct connections and
to let Express to perform forwarding between machines which are not directly connected.
This action is transparent to the user application. In practice we find that four connections

I per workstation is a reasonable maximum.
Saving the Before exiting from domtool we must create the configuration tables for the system and
ig save them in the places indicated by the "customization file". This is achieved by selecting

Configure from the main menu. If you see the message

Configuration Failed - topology is not connected

this means that the network you have shown consists of two or more disconnected pieces -
there are some machines which cannot be connected to others, even by forwarding through

I
£ 34

3 intermediates. In this case you need to add more ethernet connections to your system with
the Add Ethernet option.

3 5.2 Cosmetic Improvements

When building the network description you will occasionally find that the display becomes
cluttered. In these cases the Display and Cosmetics menu options are available to rectify
matters.

The Display menu offers options to scroll the display in various directions and completely3 erase and redraw the displayed system.

The Cosmetics selection offers menu items which can be used to enhance the displayed
image in several ways.

The most important type of cosmetic improvement involves adding "vertex" points to the
connection lines. The idea of this option is to allow "bends" in the lines representing3 ethernet connections. To try it out select the Make vertex option from the Cosmetics
menu. You will be prompted to indicate a line which should be "bent" and a location for
the "vertex". The result of selecting the link between "gobi" and "kalahari" and a
point roughly midway along and above the original line results in an image similar to that
of Figure 10.

I

sahara

Figure 11 Result of using the "Make vertex" command

Using this technique it should be possible to create a "clean" representation of the network.

3 6 domtool without graphics

It is easiest to create network configurations using the graphical interface just described. If,
however, you are unable to execute the graphical interface on your system an alternative,
line oriented, interface is also available. Things to do before

To show the use of this system we will build the same network as shown in Figure 10, using starting tomtool

I the more primitive interface.

To configure a system without graphics you will find life much simpler if you create, on

3

paper, an image similar to those already presented. In addition you should add a number to

each icon, starting with 0. For our example we might select the numbering

0 gobi

1 kalahari

2 sahara

To use the line-oriented interface to domtool type the command

domtool -p

As in the graphical case you may be asked whether you want to proceed from an existing
configuration or begin again. It is normally simplest, in the absence of graphics, to start
afresh.

Initially you will be asked to indicate the number of machines in your network. In our case
there will be three machines so we respond

3 Return

(Note that the "Return" in the above should not be entered as text - you should press the
key marked "Return". or "Enter".)

Next you will be prompted to enter specific information for each machine in the network,
in order of increasing "number". This is the reason that you should number the machines
in your sketch plan before starting domtool. The basic information required is in the same
format as shown in Figure 7 except that you will also be asked to enter information about
the ethernet connections to be made to this node. You will see the prompt

Please enter up to # ethernet connections:
Machine 0: Connected to ? (-I to quit) :

The exact number of links allowed is preconfigured and may vary from implementation to
implementation. It is unlikely to be less than four. In any case you should enter the
..numbers" of the machines to which this one is connected, finally giving-I when all
connections have been made. In our case "gobi" (number0) is connected to both
"kalahari" (number 1) and "sahara" (number 2) so we would enter

1 Return
2 Return
-1 Return

i.e., link 0 goes to the machine 1, link 1 goes to machine 2.

We have now described everything necessary about machine 0. "gob i".

domtool will now prompt you to enter similar data about the other machines in the
network. Rather than go through the laborious details of explaining the various responses
we merely present the correct answers. Hopefully their meaning will be clear.

Machine 1: kalahari
SUN3
2
1

36

0 2 -1

Machine 2: sahara
SUN4
3
1
0 1 -1

7 Booting Express

At this point we should have built the appropriate configuration files and have them saved
in their correct locations. Basically this process entails the creation of two special files
called "net file" and "confi le" which contain information about the way in which the
domains are configured and the manned in which network connections can be created and Rung exini
utilized. At this point we should be able to re-load the Express system with the exinit on the network
command, system.

If all goes well you should see the following response

ParaSoft Network Configuration

Killing existing servers...
Booting new servers

gobi
kalahari
sahara

Done

If there are servers currently running they will either be killed, or exinit will fail
depending on the options used to execute exinit. As each machine is initialized its name
is displayed. Finally, after all ethernet connections have been established exinit
terminates and the system is ready for use as described in Section 3.

I

I
! 37

