I FiLE CORY

Productivity Engineering in the UNIXt Environment

Pan I: An Introduction for Users

DTIC

\ ELECTE 39
NOV 29 1930

' Dck)

Technical Report

AD-A229 683 -

S. L. Graham
Principal Investigator

(415) 642-2059

“The views and conclusions contained in this document are those of the authors and

should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government.”

| DISTRIBUTION STATEMENT A, Contract No. N00039-84-C-0089
Apptoved tor pupic telea.lq .
Dismpunce Uphmated =+

August 7, 1984 - August 6, 1987

Arpa Order No. 4871

{tUNIX is a trademark of AT& T Bell Laboratories

Pan I

An Introduction For Users!

Robert A. Ballance
Michael L. Van De Vanter

Computer Science Division Accesion F_‘if \

Department of Electrical Engineering and Computer Science NTIS CRAXI a

University of California CTiC TaB o

Berkeley, California 94720 Uranaouaced J
Joustibicaton

September, 1986
Revised September, 1987 BY]
Dist is.otion]

P Ny TS
Avaaa ity Lols

Avail a~dyor

PIPER Working Paper 87-5 Dist Skcial

Al

; Abstract
/ " Pan is a prototype and testbed for ianguage-based editors and viewers. Its design addresses
the needs of experienced users who manage complex objects such as large software systems. All of
Pan’s components are multi-lingual, incremental, description-driven, customizable, and extensible.
Viewing is facilitated by semantics-based browsing and an object model which integrates text and
structure. Pan is intended to share information with other tools, allowing integration into a larger
language, program, and document development environment.

This document, a users manual, describes the basic operational facilities of Pan I, the current
implementation. It explains the concepts behind Pan’s editing environment, introduces editing
commands, and discusses techniques for customization. Appendices list command bindings (to
both keyvstrokes and menus), buffer options, bufler flags, and a compatibility guide for GNU Emacs

. - '
users (}\ {}’\) ‘ /.

!Sponsored by the Defense Advanced Research Projects Agency (DoD), Arpa Order No. 4871 (monitored by
Space and Naval Warfare Systems Command under Contract No. N00039-84-C-0089), by IBM under IBM Research
Contract No. 564516, and by the State of California MICRO program. Robert A. Ballance and Michael L. Van De
Vanter were supported in part by MICRO fellowships.

APPROVED FO . F 1ZLIC RELEASE
L..;h-up; -y U.an}:D

Contents

1 Introduction

2 Concepts
2.1 Buffers e e
2.2 VIEBWEIS . . v it v it e
221 FIames . . . v o i i i it e e e e e e e e e e e e e e
2.2.2 The Information Panel oL,
223 TheEditing Area. e e e
224 FontMaps e e e e
23 Bindingso e e e e
23.1 KeyBindings e e e
2.3.2 MenuBindings L e e e e
2.3.3 Operand Level Bindings
24 The Edit Cursor 0 i i e e e e e e e e e e e
2.5 Regionsand TheSelection
26 RINgs . .. Lo e e e e
2.6.1 The Clipboard e
26.2 KilRIngs 0 i it i e e e e
2.7 Marks and the Mark Stack L o e
2.8 Syntax Classes i i vt it e e e e e e e e e e e e e e e e e e
2.9 Options, Flags,and Variables L.
2.10 Communication with Other SUNVIEW Clients
2.11 What’s Where? e
3 Editing with Pan
3.1 Getting Started e e
32 Quitting Pano e e e e e e e e
3.3 Suppling Arguments toCommands L
3.3.1 Numeric Prefix Arguments
3.3.2 Promptsand Pop-Upso i e
34 AbortingCommands e e e e
3.5 Undoing Actions o . i i i i i e e
36 GettingHelp e
3.7 Buffersand Viewers e
3.7.1 Visiting Filesand Buffers
3.7.2 Savingand WritingFiles.
3.7.3 Manipulating Viewers o L e
3.8 Scrolling e e e e
39 CursorMotion i i i e e e e
39.1 MarkCommands
3.10 Editing Text 0 i e e
3.10.1 Settingthe Operand Level

Pan I: An Introduction For Users

3.10.2 Setting the Selection L
3.10.3 Imserting Text. o i e e
3.104 Filling Text o i i it e e e e e e e e
3.105 Deleting Text e
3.106 Killing Text i it e e e e e
3.10.7 The Clipboard it e e
3.10.8 Copyingand Moving Text i i it
3.10.9 Commands for ChangingCase
3.10.10Transposing . . . v v v vt e
3.11 Searching Text i i i e e e e e e
3.11.1 Regular Expressions
3.11.2 Balanced Bracket Commands
3.12 Editing Programs e e e e e e
3.12.1 Language-Oriented Viewers
3.12.2 Selection . . . L. L .. e e e e e e e e e e e e e e
3.123 Navigation e e e
3.12.4 Parsingand Syntactic Errors e
3.125 Editing L. e e e e e e e e e e
3.12.6 Displaying Trees using Ptree
3.13 When Things GoWrong
4 Simple Customization
4.1 Start-Up Processing i e e e e
42 Bindings e e e e e e e e e e
4.3 Getting and Setting Option Values
4.4 Lisp-Oriented Commands i it it it e e,
5 Acknowledgments
References
6 Glossary
A Default Key Bindings
A.1 Bindings By Command Name
A2 Bindings By Key e
B Default Menu Bindings in a Text Buffer
B.1 Bindings by Command Name
B.2 BindingsbyMenu
C Default Menu Bindings in the Base Buffer
C.1 Bindings by Command Name,
C.2 BindingsbyMenu e

i

31

31

32

Pan I: An Introduction For Users

Default Menu Bindings in the Help Buffer
D.1 Bindings by Command Namei....
D.2 BindingsbyMenu e

Options Defined in Pan
Flags Defined in Pan

Pan for GNU Emacs Users

G.1 KeyBindings i i it e e e e e e e e e
G2 Menus e
G3 Undo. e e e
G4 Operand Level e e
G.5 Cut/Paste/Kill/Yank. e e
G.6 OPLions i i e e e e e e e e e e
G.7 Help e e e e e e e e e
G.8 Special Editing Modes e

it

Pan I: An Introduction For Users 1

1 Introduction

Pan is an editor for text- and tree-structured documents that uses the mouse, menus, and multiple
windows to provide “cut and paste” editing. The system runs on Sun Workstations? under under
UNIX3 and Release 3.2 (and later) of SUNVIEW.

The text-oriented facilities of Pan are modeled on the EFmacs family of text editors. Users
familiar with an Emacs-style editor will have little trouble learning Pan. Pan is extensible and
customizable in the spirit of Emacs|6).

Pan also provides for manipulating and editing programs using the syntax and semantics of the
language being edited. The current version of Pan uses only information about the syntax of the
language; the component that uses semantic information is now under development.

This document is an informal introduction to Pan I. It contains essential information for editing
with Pan. To extend the system, though, you'll want the information in The Pan Extension Man-
ual[2]. Until that manual is available, you may want to contact the Pan group (panpipes@sequoia)
directly. For more general background on Pan, consult The Architecture of Pan I[3].

Throughout this document, “Pan” refers to Pan I, the prototype implementation. Pan II, a
ma jor revision of Pan I, is being designed. Your constructive comments on Pan I will help us to
provide a better environment with Pan II. Let us know what you think!

2 Concepts

This section is a brief introduction to the terminology and notation of Pan. Since many of the
concepts differ in meaningful ways from similar notions in Emacs, it bears careful attention. Ap-
pendix G compares the text-oriented concepts and facilities of Pan with those supported by GNU
Emacs|7)

2.1 Buffers

A buffer is the focus of editing attention for a single object. (A single object is a text file in the
current version.) During editing, Pan manages several buffers.
Along with the object being edited, each buffer has

® one or more viewers,
e a single visible selection,
¢ key, menu, and operand-level bindings,

o an operand-level setting,

option values,

o flag values,

2Sun Workstation, and SunView are registered trademarks of Sun Microsystems, Inc.
3UNIX is a registered trademark of AT& T Bell Laboratories.

Pan I: An Introduction For Users 2

e a mark stack,
e a kill ring, and
e definitions of character syntax classes.

The viewers associated with a buffer share the selection, bindings, options, and other values owned
by that buffer.

All buffers in Pan are named. The name of a buffer is the name of the object being edited in
that buffer. In the current release, the name is the name of the nle being edited.

The base buffer and the help buffer are special buffers maintained by the system. The base
buffer is your doorway to Pan: within its edit window are the names of the buffers being edited.
As new buffers are created, their names are added to this list.

The base buffer differs from other buffers in two ways: only the base buffer contains Quit in its
frame menu and only the base buffer can be made iconic. The base buffer is always visible on the
screen, perhaps as an icon.

The help buffer is used for displaying help and other information. See Section 3.6 for more about
help facilities.

Most commands act on the active viewer of the active buffer. The active viewer is the viewer
in which the most recent keystroke or mouse action occurred. The active buffer is usually the buffer
that owns the active viewer.

Figure 1 shows the screen of a workstation running Pan. The base buffer appears in the upper
left corner; it lists two other buffers, the help buffer and a buffer named “manual.tex”. Buffer
manual.tex (containing a file of the same name) is currently active and has two separate viewers
open onto it. The help buffer, visible in the upper right corner, currently shows the bindings in
effect for the active buffer.

2.2 Viewers

Each buffer has one or more viewers—independent windows onto the contents of the buffer. A
viewer provides a display mechanism, scroll bars, a message line, and an edit cursor.

Viewers exist independently from the SUNVIEW frames (see below) in which they are displayed.
Thus there can be buffers and viewers that are not visible on the screen. When visible on the
screen, viewers can be manipulated like any SUNVIEW window.

A buffer retains its viewers even when the viewers are not visible on the screen. All of the viewers
opened onto a single buffer share that buffer’s contents: its bindings, its option and flag values,
and its selection. However, each viewer has its own independent edit cursor.

Viewers onto textual objects (the only kind supported in the current version) display text as
if it were an infinite quarter-plane of characters, with newlines separating each line. Rather than
wrapping lines when they reach the right-hand edge of the viewport, the lines appear truncated.
The horizontal scroll bar, and horizontal scrolling commands allow you to see text to the right (or
left) of the current edit window.

A viewer is partitioned into three areas: the frame, the information panel, and the editing area.

Pan I: An Introduction For Users 3

o Lt X A T I e Fraoinad pdomdedaat sz rmrm iz 1
» . N (A SRR AN N ¢ T ? PAN Actave kev bapdings for Bbulier maoual.tex :
SIPAN ’ § T
: b H e
" Help Info ; T it ! De.ete-Frev.ous-Character Backspace
¢t wmanual.tex L, Self-1nsert Tat
' co - Newl:ne-And-lodert Newline
i Ki11-To-EOL K
. Redraw L
i Insert-sewline Reture e
e Nert-line -~ &
Oper-Line “c 8
“ Previous-Line P i
. Fle. man.a .tlex o Quete-Insert ~¢ 3,
PAN Lergasge: Text @ @ Lovel: character F . Re-Search-Backward “R [
i Re-Search-Forward s :
o . ’ Tracspose-Characters T
DE B2 vE v evE 1% e voenE” o Reac-Prefix-Arguments e V1
TTh o wMICr the #0rt recert Aeystrone 0 BOUSE RCTIOF OCCUNTed. L Forward-vscroll v
e “NE B2 ve DUCte” 18 USLE'ly the Duffer 3t ownt the SCT1ive Visss”. Kill-Selected-Reg:on -
E Togg e-auto-Fill XA
2 Frp{base.rpe 570w thi BCrepen 04 3 workstation runntng \Parn.
b Deztr stgute-Irinl
3 H 25 truen NERACH
% \ceztro - teage ¢t \Par\ Show" "y Dase, Meip, #nd te PA\ ~ang 8 Level. Charscter
H Fizoce DasEview)
(L PTA M- 3] >
- The Dase Lutien BDPEITE YN tre appe” TSI COTnar; 11 Nist \Butteit ON{eI10wer} ,
7 bustens, the melr bu‘te” ang § butfer namel “\'He(nnuaJ Pl s
: Batfer Nfytelaar.at .t} Leortaintng 2 ¢- e 0f the a8 Nl St on p dder mac pre or mrcp ~fviewprbEe--1nderendert -
s currert’s 1ve Onc "oy te> seps-ate viewess cper ortFT ST TUTORT the conte te of <fe
2 TThe melp tatder, vis LYe Y the wppet rogrt cormer, du‘ter .
é Tewrtentl; snows The DINZINgE 10 84103t “0r The active Dufl {4 vigeer prevides 8 Gisplay sectaniem, scroll bars, 3 Pessage
kK _ . ‘vne, ena er #0°T cunsor.
& “aiseinien{v-seers
Y ewET§ OX161 1nderecently ‘reg the ’
3.0 bo<fe nar ane o ware *{viewer}c--mirdspeneent \SURYew' fraaes fees beligl 'f wnCh They gre @' Splayes.
AT wlo (Tt the DTNt e the Thus 1787@ Ca” be DJ4Ceri anc viewert
3 [£5A1ad . the? 8-e MOt VIS“Lie OF toe screen.
s 4 viewe- [-Ov 00 3 0V6L'dy BEInamIEe, SCTCTT Bars, 3 #6i] {when wigtble on the screec, viewe-s car De martpulated ke
i Nre, anc 90 ed1t cursce. Iny \Sunvies\ ¥'ndce.
e JYieedrs sx18t 1n08pencetiy 1row the 4 butfer retzins 115 viewe-s even wher the viewers
‘ NSLeviey: frames (see BETOy In wPICT they Be @YD eYeC] {a-e rot vogiz'e or the screen.
2 L, hes there tar ce butfes arc voesets 811 ¢f tne “{viewer}s opeen ortn 8 s1r3’e ~{tyfer} share tha= t.ster s
i LT3t are Aot visitle or the screen, tontests: 1ts Doncings, 1t Option enc fhg va'ues, and 1tf Ggiection.
: wTEC vTelipTe OF Yhe Errfes, ylogere I3n bF 837 pLlated 1E {uoueve-, st v ewe” has 11s owr indefendent *{ea t cursor).
S e . . * d - Iv-ewess ontc textia® objests (the only RING Supported YA the current
AL S B P L oo B ’ vers el @'er’ay text as 14 11 wee 87 1n¢:nite quarter~plane of Cnaractets,
xe ¢ ' . ’ 5 o' th npwl nes seaparat-ng eack 1aa. Rathar tras wrapping lineg when
*. (ine, “each t=e rogri-Aanc edge ¢4 The viewpDrt, The “ines 8dpes” t-unceted
o . L N O "ne ri-izonte” scro”t bar, and Pa-2orta’ <*{szrolting, hc-1zentsl}
| K B) L oy L) fserotling ecemanas
3 .q,_.‘ Lo !lHo- YOu tc g#é text te the right (or Ye4t) ¢ TRE Curtert 21 windos.
o\ . ! :
' ‘ - 't VUEeST TS ZETHITNONET 1700 SHopr RRERE T ThE $egmE . The 17dorRRtior pyre’, S
' A d <
e OOt A e e 2R R a5 S0 D0 a0 e ont ae duar 1T LU fh 20 b e s ond 3T B oRabo-ing

Figure 1: Screer image of Pan showing base, help. and text buffers

2.2.1 Frames

The frame surrounding a viewer responds to the normal SUNVIEW protocols[1]. Those protocols
can be used to independently position and size the viewer. Figure 2 shows a viewer with its frame
menu exposed.

The frame associated with the base buffer is the only one containing the items Close and Quit
in its frame menu. When Close is chosen. all of the visible viewers disappear from the screen. and
an icon for Pan appears. Opening the icon reopens the other viewers. When Quit is chosen, you
will be offered the chance to save any modified buffers before exiting. This is the normal way to
terminate an editing session.

Frames other than the frame associated with the base buffer have the Done menu item in their
frame menu. Selecting this item causes its viewer to disappear from the screen. Internal state of
the viewer is retained even when the viewer is not visible.

Pan I: An Introduction For Users

4

TR IR NG

*->1"

,,3 V’f wr‘m 1 qmw; ngnmj nrr{"'ﬂm W"’WW}T"?}PT }"’F’

help Info
, manual . tex

-8 .

File: aznual.tex
PAN Longuage: Text

o \uhsi.llon\nuﬂbi

Lacn buffer has one o~ sore “{viewer}s---indepengent
ndows _Ontc the ccrients of the

B @ Leve: Character

. sey- proviows 2 d16p)sy becha~ise, 527011 tars, & fescage
S ‘ine, end en 3T cutsor.

Yiowers 8x° 6t inoependently fros the

\Sumvier 4rases (see Delce. 'R ¥ ICH They Bre 21splovec

L, 1Thus tre-e cat be tutdeny ans viewes

ThaT are not vigthle on tre sCree”.

wher visible DN The screer, viewe s COr 3¢ 8aripulates e
25y \Sunv:ee™ windcs.

P 14 buffe- reteins 1te viewe s ever esher the vigeers

2°% ACT v erC e on the SCTEeN.

41 of the ~{\taver}s opered ontc 2 s‘rg'e ~“{t_tfe-} snare tha® bLffer’s
carterts: S DIngirpi, 1t opthict ant (ag vilses, 372 *ts telection.
Hiwever, @8C’ viewe' Nas 113 Owr 1ngeperde~: “{e2 < cu~sor}.

ERLEE

P {v1owens ONTO tex2us) OL)BCTE (he Of Ty K10 §uiDortes W the turtent

Sprstrr) @ aplsy Tt 88 11 1T wete 87 IA1Tnvie Quattec-plare o¢ creractecs =4l Dore
vith res’ nes Bpacating eath Nirs, Ratre- e wrapping lines whes Move =
they Tedch the rogri-nasnc B3ge Ot the viswport, the 1vnes spoear truncsted. Resize @
Toe horizonts) screlY bar, snd he-izonta” “={s:z~ollirg, korizontal} Expose
siroiling consends Hige

£ 10w you T0 See text 10 the rigrt (or 187%) cf the cusrent ¢3°% vindow.
Recrsoias

0 il vigwe: Y8 PRTT 0TS 1010 TAFEE TRt Trt{y-aaticn pare’,

he 1-ase, the

7 ! . .
sl chadlas sar

T N S T R B g S N T T T EL Y I TPR PN TORU SORAR T SO

P TN ST

Figure 2: Pan with a frame menu visible

Due to limitations of SUNVIEW, only six frames are available to Pan. This means that you can
only bave six Pan viewers (including the base buffer) visible at any time. Frames are allocated to
a viewer when the viewer is opened. and are deallocated when the viewer is closed.

2.2.2 The Information Panel

Inside the frame, at the top of the viewer, is a panel containing information about the object being
viewed. This includes the buffer name, the language being edited, the operand selection level, a
message line, and the values of various flags. Viewers onto the help buffer contain only a title and
a message line.

Pan I: An Introduction For Users 5

2.2.3 The Editing Area

Below the information panel is the editing area. This area includes horizontal and vertical scroll
bars, and the actual edit window. Pressing the right button of the mouse over the edit window of
the viewer activates the Pan menus for that buffer. Selecting an item from those menus executes
the command bound to that selection.

2.2.4 Font Maps

Every character in Pan’s internal text representation contains a font code. Each viewer has an
associated font map, which associates font codes with internal font descriptors. A font map
contains from 1 to 16 entries.

Internally, fonts are referred to as “font 0”, “font 1", etc. The first elemen. of the list (for:t G} is
the default font; unspecified font codes revert to the default font.

Pan maintains three default font maps: one for normal viewer:. one for the base buffer. and
one for the help buffer. You can alter these defaults by setting tL< options :text-font-map, :base-
frame-font-map, and :help-frame-font-map respectively. The standard specification for a font map is
a zero-indexed list of font names containing from 1 to 16 names. For example, the default value of
the option :text-font-map is

("screen.r.12" "screen.b.12" "serif.r.12" "cour.r.12" "cour.b.12")

Currently, Pan offers only limited support for manipulating font codes in the text representation.
Standard text viewers use only the default font. Section 3.12.4 describes a more elaborate use of
font maps in conjunction with tree-structured documents.

2.3 Bindings

A binding associates a sequence of keyboard or mouse actions with a command. Key bindings
associate keystroke sequences with commands; menu bindings associate menu item selections with
commands. Operand level bindings associate generic operations, such as “next™ or “delete” with
operands designated by the current operand level (section 2.3.3).

Key and menu bindings are either local to a buffer or are global to all buffers. Every buffer may
have its own set of key bindings, and even its own menus and menu selections. Naturally. local
bindings take precedence over global bindings. Operand level bindings are local to each buffer:
there are no global defaults for them.

2.3.1 Key Bindings

Pan, like Emacs, provides a live keyboard. Keystrokes (including mouse buttons) are read until a
valid binding is detected. When a binding is detected, the associated command is executed.

A key binding associates a 1- or 2-character keystroke sequence with a command. The keys
Escape, “X, °C, and “Z are reserved to be prefix keys in two-keystroke bindings. The Shift and
Control keys are modifier keys rather than prefix keys.

Function keys and mouse buttons can be mapped just like the standard keyboard kevs. In fact.
it is the standard binding of the right-most mouse button to Execute-From-Menu that implements
Pan’s menu selection service.

Pan I: An Introduction For Users

The default bindings for the left-hand function keys (L1-L10) reflect standard SUNVIEW usage
when appropriate. The default bindings for mouse buttons are similar to the SUNVIZWw bindings.

Appendix A lists Pan’s default set of key bindings.

2.3.2 Menu Bindings

A menu binding consists of a a menu, a menu item, and a command name. Like key bindings, menus
and menu bindings may be either local or global. The menus associated with a buffer appear when
right button of the mouse is pressed while the mouse is positioned over the edit window. Figure 3

shows a menu selection being made.

(il iad A 422 ST LA KL Ak b0

Pan AP : . LA .
b
B e 51006 - . . .
§ manual tex N : : RN S L i
4 [
’ N
LEVE BENLe Lles
PA\ Jaguagt Teet
i '
; I CE .'-.nL.e.Ucm Y
: . : I , .
B LoLnt . J?g;[betfer Fa. one D mOTE “{v'ewerro---indefendent
197 N00sg Oric 10 CCTleTig T the
E o « - o j““'r'
[N .

1 . s L vigue” Prov1oes @ 0165 sy BEChi 1ee, 6701 tars, 3 .'ssa(:l
., : 1 ine, a3 or emt cutsor.
El {
3 11\“.'! X" 81 1ndesendenti, tros tae
4 1 Sunvies. dreses (see bDelce P owtIzr trey gre G'sgleyed
‘; 1"'1.:5 trece ca- be tiffemy anc voewe's

£1727 3re NOT vis°DlE OF tre EIee”

lvﬂe' 151008 O~ The SZreer, v ewr"S £a' be @ari1dulatel VRE
ir_» \Sua¥"0s wINdle !
‘ ’
1o Dudtes rete.nt 1t viesios Bvrt wner 1no vikeets ‘
AT AT Vst or the eltee”

TATU 0t tag “{ciewp)T DPe£T OFT: 5 $°FC £ o{L_tee7] ghace 1ra RN
Toanterte. “te BONC rgs, Yt 0FTC ANC fTap values, 812 % sateztior

THONEVES, B8CT viewe’ Nes 113 Owr Iaaerst e~ “{eC T cuc80r).
L

Save
Vistt File
Trsery from

Pra:wrate ...
Append Selectien To ...
Wite Selection To ...
Yrrectory Vst

s
Tviowe s 9n7c 1e>tusl OEIOCE 1The OF 'y B1ng 6LIa37%eC 1T e Currett
CNRtSICrT @ RPN, TErt B Yt 1T wete @7 M-encte

. tert Mire Ratter tra weaiiong re et
(1hey repir tre Togetongns #8378 04 ThE vieeratt, the lines
TThe Mrerzortet setc) bat, BAC MCI20T. T At Virg, hortiartel)
182r0ll1ag coRsanct

1870w y5. 1€ see et ¢ the rogre (or 1047 ¢

the (utrert 23" window

16 vieul” § CATT TICNRC 1Pt TATEe 9edc

QuNTte--piers 07 cmETACIETS,

opzeat truncatel

the f-a8e, thE Tri3teatits pace’,

i

hy
coemnct S s ok es bt bhomme B B bk A8 5008 Dne s oo 5 es wnie saed e bal s r 54 Baes

Figure 3: Pan with a buffer menu visible

Sedazd b i ot oo BHoEs wensibiad

A menu binding is designated by a menu title and a selection name. denoted typographically by
MenuTitle: SelectionName. It is not necessary for the selection name to be identical to the si.ame

of the command bound to the selection.

Pan I: An Introduction For Users 7

Default menu binding: are best discovered by mousing acround. Appendices B-D list the default
menu bir lings for a text buffer, for the base buffer, and for the help bufer.

2.3.3 Operand Level Bindings

A keystroke sequence or menu item can be bound to a command that implewuents a generic opera-
tion. The generic operation, in turn, consults the operand-level bindings and the current operand
level of the active viewer to determine the actual editor command to execute.

Each viewer has a current operand level which can be used to control the actions of operand-
generic operations. The generic operations are: :next, :previous, :select, :mouse-select,
:mouse-extend, :cut, :copy, :paste, and :delete.

For example, the key "~N" is bound to the command Next-@Level. If the current operand level is
“Character”, and the binding of the generic command :next at the level “Character” is the command
Next-Character, then Next-@Level will execute Next-Character.

Setting the operand level is a bit like changing modes in a moded editor. The current operand
level persists across operations. In pure text editing, the operand level is of limited usefulness.
When editing objects that have a richer operand domain, such as computer programs, the ability
to select and navigate using the operand level bindings is a bonus. For instance, a programming
language might define operand levels such as “Expression”, “Statament”, and “Declaration”. Figure 5
on page 25 shows the operand-level choices for a language-based viewer.

The current operand level affects only those commands that consult it. These commands are
syntactically distinguished by containing the phrase “@Level” in their name.

2.4 The Edit Cursor

Each viewer has a single edit cursor; buffers have as many cursors as they have viewers. The edit
cursors are independent from each other. An edit cursor appears on the screen as an inverse-video
or outlined box highlighting the character selected by that cursor.

All insertions and deletions occur at the position to the left of the character selected by the
cursor. If a command alters text not located at the edit cursor (for instance, by deleting the
current selection). the cursor is mov~d to the point of change. Operations that modify the object
being edited move the edit window so raat the change (and therefore the cursor) is visible.

A viewer’s edit cursor may not be visible on the screen due to scrolling or other motion. The
command Frame-Edit-Cursor in the Window menu moves the edit window so that the cursor is
visible.

2.5 Regions and The Selection

Many of the text-oriented commands in Pan operate on a contiguous sequence of characters called
a region of text.

Every buffer can bave a specially designated region of text called the the selected region or
simply the selection. When the selection is set, it is highlighted in all of the viewers in which i’
is visible. Figure 1 on page 3 shows a selection shared by two viewers. The value of the option
:region-highlight-op determines whether the current selection is highlighted using underlining or
inverse-video. Commands that alter the contents of the buffer deselect the current selection.

Pan I: An Introduction For Users 8

Pan also has an implicit selection, namely the region between the edit cursor and the top mark
of the mark stack. This selection is different for each viewer, since each viewer has a different edit
cursor. In Emacs, the implicit selection is the only region available, while in Pan, 1t is secondary
to the visible selection. Commands that operaie on the implicit selection are provided mostly for
Emacs compatibility.

Pan’s style of selection is similar to, but not the same as, SUNViIEW’s. Clicking the middle button
of the mouse selects and highlights the region between the cursor and the mouse, but placing or
dragging the cursor does not affect the selection. The selection, the position of the mouse, and the
position of the edit cursor are all independent.

2.6 Rings

A ring is a circular bounded stack. Adding an item to a ring pushes the other items just like a
bounded stack. The oldest value in the stack may be discarded to preserve the boundedness.
Rings can also be “cycled”, where the top value is moved to the position of the oldest value, and
all of the other values move up—the second youngest becoming the top. Cycling a ring by n values
moves the nth element (modulo the size of the ring) to the top. The top value in a ring is called
the “contents™ of the ring.
Both the clipboard and the kill rings are implemented as rings.

2.6.1 The Clipboard

The clipboard—a holder for regions of text—is shared among buffers. A selection can be copied
(or cut) to the clipboard and then pasted into another buffer. These operations are modeled on the
Macintosh? user interface. Unlike the Macintosh clipboard, Pan’s clipboard is a ring that contains
several items. The size of the clipboard is determined by the value of the option :clipboard-max-size.

2.6.2 Kill Rings

The kill ring is a a repository for deleted text. Commands that “kill” text place the killed text
into the kill ring. This text can be retrieved at a later time.

The kill ring facility is less powerful than Emacs’. In Pan, the kill ring is local to a buffer rather
than global to all buffers. We are still experimenting with this aspect of the user interface. The
size of the kill ring is determined by the value of the option :killring-max-size.

Cutting text to the clipboard does not affect the entry in the kill ring; killing text does not affect
the clipboard.

2.7 Marks and the Mark Stack

A mark is a character position in a textual object. Marks associate with the character to the left
of the position; when text is deleted, affected marks migrate to the beginning of the deletion.

Each buffer has a stack of marks called the mark stack. Marks in Pan are used for two
purposes: to remember a cursor position, and to construct regions. The top mark on the stack is
usually referred to as “the mark™.

*Macintosh is a registered trademark of Apple Computer, Inc.

Pan I: An Introduction For Users 9

2.8 Syntax Classes

Every buffer has a set of syntax class definitions. Within a buffer, each ascil character is a member
of exactly one syntax class. The possible classes are: :space-char, :word-char, :punct-char, :lbracket,
:rbracket, or :other. Every character in the classes :lbracket or :rbracket must have a matching
bracket specified.

2.9 Options, Flags, and Variables

Options, flags, and variables are provided for controlling and extending the system. The following
paragraphs provide a brief summary of their properties and use.

Options are used to control user-configurable settings. They are strongly-typed, scoped vari-
ables. The value of an option local to a buffer generally hides the value of that option in the global
space. Appendix E lists the basic options, their types, and their default values. The value of an
option is obtained using the command Option-Value (see section 4.3).

A flag is strongly-typed, scoped variable capable of holding only a single bit of information. Like
options, flags are scoped relative to buffers. Unlike options, flag values can be displayed on the
information panel. For instance, if the :text-modified flag is set (meaning that the text of an object
has been modified since its last save), a “*” appears on the information panel. Appendix F lists
the default set of flags, together with their display properties.

A Pan variable is a Lisp global variable that is known to the help system.

2.10 Communication with Other SUNVIEW Clients

Communication with other workstation client programs using the SUNVIEW selection mechanism
is not yet implemented.

2.11 What’s Where?

Just as a buffer ties several viewers together, there is some global state shared by all buffers. This
state includes default bindings, default option values, the list of buffers appearing in the base buffer,
and the clipboard.

The following table provides a synopsis of which objects have custody of various other objects.
In general, local values override more global values when there is a choice.

Pan I: An Introduction For Users 10

Viewer | Buffer | Global

Buffer List Vv
Clipboard v
Edit Cursor V4

Flags

Key Bindings
Kill Ring
Mark Stack
Menu Bindings
Operand Level Vv
Option Values
Selection
Syntax Classes
Viewers

NG N U NG N
<

3 Editing with Pan

This section is an introduction simple editing using Pan. At the beginning of each subsection is a
list of the commands discussed, together with their default bindings. Control keys are represented
by prepending the character "~" in front of the key, e.g., Control-X is shown as “X, and the
keystroke sequence Control-X Control~F is shown as “X-"F where the hyphen separates the keys
in the sequence. The prefix Escape is denoted Esc-.

Menu bindings are denoted by MenuTitle: SelectionName where MenuTitle is the title of the
menu and SelectionName is the name appearing in the menu. Operand-level bindings are denoted
by (Command, “level”).

3.1 Getting Started

Pan for Sun Model 3 workstations resides in “piper/bin/pan3. Pan can be run from a shell tool,
a command tool], or a menu under SUNVIEW,

When Pan is started, the files named on the command line are read into edit buffers and prepared
for editing. Once initialization is complete, the base frame will appear. Section 4.1 provides more
information about Pan’s start-up processing.

3.2 Quitting Pan

Write-Files-Exit “X-=C
Write-Files-Exit Base Buffer: Quit
Exit! Not bound

Wirite-Files-Exit is the normal method for terminating an editing session. When modified buffers
exist you will be asked whether they should be saved. The command Exit! terminates an editing
session without saving any modified buffers.

Pan I: An Introduction For Users 11

3.3 Suppling Arguments to Commands

There are three ways to provide arguments to Pan commands: by a numeric prefix argument, by
setting the current selection, or by responding to a prompt. The actual method used depends
on the particular command. Commands that can use a numeric argument normally check for the
presence of a numeric prefix, while commands that require textual arguments must use prompting.
A few, like Visit-Selection, check for a selection before prompting.

3.3.1 Numeric Prefix Arguments

Read-Prefix-Arguments “U

The behavior of many commands can be altered by suppling numeric prefix arguments. In most
cases, the argument is interpreted as a repetition factor, and the effect of the command is simply
repeated. Read-Prefix-Arguments reads the prefix arguments from the keyboard. There are two
ways to type such arguments: by typing zero or more minus signs (hyphens) followed by a sequence
of digits, or by repeating a keystroke sequence bound to Read-Prefix-Arguments. In the latter case,
each repetition corresponds to addition by 4.

3.3.2 Prompts and Pop-Ups

Pan prompts for input by making a small pop-up window appear on the screen. The pop-up
remains on the screen until you complete the input. When a pop-up is present it seizes all window
input and output on your workstation.

Pop-ups have one or more “buttons” on their lower edge; clicking the left button of the mouse
over one of those areas completes and confirms the prompt. When typing a textual argument into
a pop-up, your standard UNIX editing characters serve to edit the input. Pop-ups for textual
arguments are confirmed by selecting a button or by hitting the Return key.

3.4 Aborting Commands

Abort-Command ~G
Abort-Command ~C--G
Abort-Command Esc-~G
Abort-Command “X--G
Abort-Command ~Z-"G
Cancel-Command “Cancel” on Popups

To abort a keystroke sequence, type "G with any prefix. To abort a menu selection, move the
mouse cursor outside (away from) the menu, and release the mouse button. When responding to a
prompt, selecting the Cancel button aborts the command.

Once a command is initiated, there is little you can do to stop it. If the command takes more
than an instant to complete, the mouse cursor image, normally an arrow, may be replaced by a
light bulb.

Pan I: An Introduction For Users 12

3.5 Undoing Actions

Undo “X-u
Undo L4 (Undo)
Undo Pan: Undo

The undo facilities of Pan allow you to undo the most recent action or series of similar actions.
For instance, typing a series of characters and then invoking Undo will remove the entire series of
characters just typed. Undoing a second time restores the text removed by the first Undo.

3.6 Getting Help
Reset-Help-Buffer Help: Reset

Pan is largely self-documenting. Each viewer has an associated Help menu that provides access
to the help information supplied by the system. This information will be displayed in the help
buffer—a special buffer known to the system. Figure 1 on page 3 shows the help buffer in the
upper right-hand rorner of the screen. The help buffer acts like a normal text viewer, except that
it is altered only by the help commands.

Most help commands delete the text in the help buffer before adding their contribution. Others,
such as Describe-Selection and Apropos-Selection add additional information to the buffer. The
information in the help buffer can be saved to a text file at any time. The command Reset-Help-
Buffer empties the help buffer.

Apropos-Selection Help: Apropos
Apropos-All-Symbols Help: Apropos All
Apropos-Symbol Not bound

The “Apropos” family of commands associate a keyword with a list of command names. For
instance, invoking the command Apropos-Symbol and supplying the argument “clipboard™ lists,
in the help buffer, all of the commands that use the clipboard. In another example, if the text
“command” is selected, then invoking Apropos-Selection will list all of the editor commands defined
in Pan. Both Apropos-Symbol and Apropos-Selection operate identically after their argument has
been specified.

Describe-Selection Help: Describe
Describe-Symbol Not bound
List-All-Commands Help: Commands
List-All-Flags Not bound
List-All-Options Not bound
List-Al-Variables Not bound
Show-Buffers “X-"B
Show-Buffers Help: Buffers

Show-Flag-Values Help: Flag Values

Pan I: An Introduction For Users 13

Show-Option-Values Help: Option Values
Show-Key-Bindings Help: Key Bindings
Show-Menu-Bindings Help: Menu Bindings
Show-Operand-Bindings Help: Operand Bindings
Describe-Operand-Hierarchy Help: Operand Hierarchy

Commands beginning with “Describe-” provide detailed information about a Pan object. Com-
mands beginning with “List-” simply list the names of all objects of a given type (e.g., all commands
or all options). The “Show-" commands provide the detailed information of a “Describe-” command
for all objects of a given type.

3.7 Buffers and Viewers

The commands presented in this section describe basic buffer and viewer handling.

3.7.1 Visiting Files and Buffers

Visit-Selection Base Buffer: Visit
Visit-Selection File: Visit File
Visit-File “X-"F
Visit-File Base Buffer: Visit File
Visit-File File: Visit File
Visit-Buffer “X-b
Remove-Buffer “X-k
Remove-Selected-Buffer Base Buffer: Remove Selected Buffer
List-Files ~X-"D
List-Files Base Buffer: Directory Listing
Show-Status-Line “X-=

To edit an object, one must first have opened a viewer onto it. The Visit-Selection command is
one way to open a viewer. This command normally appears as Visit in either the top-level or the
File menus. It is used by first selecting a buffer name in the base buffer.

Visit-File prompts for a file name. If that file is not already in a buffer, a new buffer is allocated
and the file is read and prepared for editing.

The “Remove-” commands remove a given buffer from the set of buffers. If the object has been
modified since it was last saved, you will be offered the chance to save the buffer. Once Remove-
Buffer or Remove-Selected-Buffer Lhas been executed, all of the state associated with the removed
buffer is lost.

List-Files prompts for a directory or file name expression, and lists those files, using the Is com-
mand, in the help buffer. Flags to the Is command are determined by the value of the option
:Is-flags.

The command Show-Status-Line can be used to display status information about the active buffer
in the information panel. The option :mode-line-fmt specifies which status information is displayed.

Pan I: An Introduction For Users 14

3.7.2 Saving and Writing Files

Save-Buffer-File “X--S
Save-Buffer-File File: Save
Save-All-Buffers ~X-Return
Write-Files-Exit ~“X--C
Write-To-File “X-"W
Write-To-File File: Write To ...
Overwrite-File! File: Overwrite ...
Wirite-Selection-To-File File: Write Selection To ...
Append-Selection-To-File File: Append Selection To ...
Toggle-Read-Only “X-"Q

Save-Buffer-File saves the contents of the current buffer in its associated file; Save-All-Buffers
saves all of the modified buffers being edited. Write-Files-Exit performs the standard termination
sequence of saving modified buffers and exiting. Both Save-All-Buffers and Write-Files-Exit prompt
for whether a particular buffer is to be written to file.

Al of the commands Write-To-File, Write-Selection-To-File, Overwrite-File!, and Append-Selection-
To-File prompt for the name of a file to write.

Toggle-Read-Only toggles the :read-only flag on the buffer. When this flag is set, a “§”appears
on the information panel and you will be prevented from modifying or writing that file. This flag
is set by default when you commence editing a file for which you do not have permission to write.
Toggling the :read-only flag does not affect the permissions on the file.

3.7.3 Manipulating Viewers

Open-Another-Viewer °X-2
Open-Another-Viewer Window: Open Another Viewer
Close-Active-Viewer “X%-0
Close-Active-Viewer L7 (Open)
Close-Active-Viewer Window: Close
Close-Active-Viewer SunView Frame: Done
Redraw "L

When you visit a buffer that has no visible viewers, Pan will reopen the buffer’s most recently
closed viewer. If the buffer has no viewers, a new viewer is created. To open a second (or third, or
fourth, ...) viewer onto a buffer, execute the command Open-Another-Viewer.

Closing a viewer causes it to disappear from the screen. Its internal state is retained so that
the viewer can be reopened later. To close a viewer, execute Close-Active-Viewer in the viewer that
you wish to close. Alternatively, press the key L7 (Open) when the viewer that you wish to close
has the input focus. Closing the viewer associated with the base buffer causes the base buffer to
become iconic, and closes all other visible viewers.

Pan I: An Introduction For Users 15

Viewers are reopened using the same commands as are used for opening new viewers. They are
reopened in last-in, first-out order relative to the order in which they were closed. Closing a viewer
frees its associated viewport for use by other viewers.

Redraw redraws the active edit window.

3.8 Scrolling

Pan’s scrolling behavior is a simplified version of the SUNVIEW scrolling protocols. The scroll bars
in a viewer respond to simple scrolling commands. For vertical scrolling, pressing the left button
in the vertical scroll bar moves the edit window toward the end of the file, the right button moves
the edit window towards the beginning of the file, and the middle button thumbs the edit window
to the point in the object indicated by the scroll cursor.

When scrolling horizontally, pressing the left button in the horizontal scroll bar moves the edit
window toward the end of the line, the right button moves the edit window towards the beginning
of the line, and the middle button thumbs the edit window to the point in the line indicated by the
scroll cursor.

Mouse-Forward-Vscroll (Scrollbar) Mouse left
Mouse-Backward-Vscroll (Scrollbar) Mouse Right
Mouse-Abs-Vscroll (Scrollbar) Mouse_Middle
Forward-Vscroll v
Backward-Vscroll Esc-v
Left-Hscroll ~X-<
Right-Hscroll “X->
Frame-Edit-Cursor Window: Frame Edit Cursor

The commands Mouse-Forward-Vscroll, Mouse-Backward-Vscroll, and Mouse-Abs-Vscroll are bound
to the left-, right-, and middle mouse buttons when the mouse is over the vertical scroll bar.

During vertical scrolling. when the option :proportional-scroll is set to be true (in Lisp, *t), the
amount that the edit window is scrolled depends upon the distance between the mouse cursor and
the top of the scroll bar. For small movements, place the cursor near the top of the scroll bar. For
larger movements, place the mouse cursor near the bottom of the scroll bar. To scroll an entire
screen, place the mouse cursor opposite to the last line of text visible in the edit window.

When the option :proportional-scroll is set to be false (in Lisp, *nil), the vertical scrolling com-
mands move the edit window by a full screen at a time.

To “thumb” the viewer to an absolute position in the file, place the mouse cursor into the scroll
bar and press Mouse Middle. The viewer will be moved to the line in the file corresponding relative
distance between the top of the scroll bar and the position of the mouse cursor.

Scrolling the screen by a full screen at a time can also be achieved by using Forward-Vscroll and
Backward-Vscroll. Both of those commands consult the numeric prefix argument to determine the
number of screens to move.

Left-Hscroll and Right-Hscroll are keyboard variants of the horizontal scrolling commands.

The command Frame-Edit-Cursor shifts the edit window so that the edit cursor will be visible.

Pan I: An Introduction For Users 16

3.9 Cursor Motion

Mouse-Select-@Level Mouse Left
Cursor-To-Mouse (Select,"Character”)
Next-QLevel °F
Next-Character (Next,"Character”)
Next-Word Esc-f
Next-Word (Next,“Word™)
Next-Line “N
Next-Line (Next,“Line")
Previous-QLeve! “B
Previous-Character (Previous,“Character”)
Previous-Character “H (Backspace)
Previous-Word Esc-b
Previous-Word (Previous,“Word")
Previous-Line °P
Previous-Line (Previous,“Line”)
Move-To-BOL ~A
Move-To-EOL “E
Move-To-BOB Esc~<
Move-To-EOB Esc->
End-Of-Word Not bound
First-Non-Blank Esc-m
Goto-Line “X-1

The left button of the mouse is bound to the command Mouse-Select-@Level. When the operand
level is set to “Character”, it sets the edit cursor to the character selected by the mouse icon. The
cursor can also be moved using cursor motion commands shown above. The “Next-" and “Previous-"
commands use the numeric prefix argument to determine the number of units to move.

Move-To-BOL moves the edit cursor to the first position on the current line; Move-To-EOL moves
the edit cursor last position on the current line. To move to the beginning or end of the object
being edited, use Move-To-BOB or Move-To-EOB, respectively

End-Of-Word moves the cursor to the end of the word that encloses the cursor. Finally, First-
Non-Blank moves the cursor to the first character (that is not white space) on the current line.

The command Goto-Line moves the cursor to the line specified by the numeric prefix argument.
If there is no prefix argument, Goto-Line prompts for a line number. Internally, Pan treats the first
line of a file as line number 0. If the option :zero-index-lines is false, the argument to Goto-Line is
treated as a 1-indexed line number and is converted appropriately.

3.9.1 Mark Commands

Set-Mark ~Q
Pop-Mark Not bound

Pan I: An Introduction For Users 17

Swap-Dot-And-Mark %=X
Dot-To-Mark Not bound

Set-Mark and Push-Mark push and pop the mark stack of the active buffer. The commands
Swap-Dot-And-Mark and Dot-To-Mark move the edit cursor to the position indicated by the top of
the mark stack. They differ in that the first exchanges the cursor’s position with the top mark,
while the second pops stack.

3.10 Editing Text

This section describes the commands for text manipulation.

3.10.1 Setting the Operand Level

Up-QLevel F2
Up-QLevel Panel Item
Down-@Level F3
Down-QLevel Panel Item
Set-QLevel Panel Menu Item
Set-QlLevel-To-Character F1

You can ignore the operand level settings, and Pan will operate pretty much like Emacs. If you
want to experiment, however, you will notice that each viewer panel contains a sequence of items
labeled “Level:”. The small button containing an upward-pointing arrow is bound to Up-@Level.
Clicking on this button raises the operand level. Similarly, clicking the button labeled with a
downward-pointing arrow lowers the operand level by calling Down-@Level. Both Up-@Level and
Down-@Level consult the numeric prefix argument to determine the number of levels to move (the
default is 1). If the option :wrap-@level is true, then the level will wrap around from top to bottom
or bottom to top as necessary.

The current level is displayed on the panel. Depressing Mouse Right over the displayed level
causes a menu containing all of the levels to appear. The levels in the menu appear in order, with
the highest level at the top of the menu.

To select a new level, continue to hold down Mouse Right, move the mouse until the level that
you desire is highlighted, and then release Mouse Right. If no change is desired, move the mouse
cursor away from the menu and release Mouse Right.

The command Set-@Level-To-Character can be used to set the operand level to “Character™.

3.10.2 Setting the Selection

Mouse-Select-QLevel Mouse Left
Mouse-Extend-@Level Mouse_Middle
Select-Region-Dot-To-Mark Esc-"W
Select-Word Esc-@Q
Select-Buffer ~X-h

Pan I: An Introduction For Users 18
Mouse-Select-Line (Select,"Line”)
Mouse-Select-Word (Select,“Word")
Mouse-Select-Fullword Esc-Mouse Left
Mouse-Extend-Selection-Fullword Esc-Mouse Middle
Deselect-Region Esc-"D

The current selection is set by the commands Mouse-Select-@Level, Mouse-Extend-@Level, and
Select-Region-Dot-To-Mark. Mouse-Extend-@Level is normally bound to the middle button of the
mouse. When the level is “Character”, this command selects the region between the edit cursor
and the mouse. At other levels, it selects the region that includes both the current selection and
the operand (relative to the current operand level) beneath the mouse cursor. Select-Region-Dot-
To-Mark selects the implicit region between the top mark on the mark stack and the edit cursor.

The command Select-Word sets the current selection to be the region from the edit cursor to the
end of the word surrounding the edit cursor, while Mouse-Select-Fullword sets the current selection
to be the full word beneath the mouse cursor. Mouse-Extend-Selection-Fullword extends the current
selection to include the full word beneath the mouse cursor. Select-Buffer selects the entire buffer.

The current selection can be cleared using Deselect-Region.

3.10.3 Inserting Text

Self-Insert most printable characters
Quote-Insert -qQ
Newline-And-Indent ~J
Insert-Newline Return
Indent-Like-Previous-Line Esc-Tab
Open-Line =0
Split-Line Esc-"0
Insert-Parentheses (
Insert-Rparen-And-Match)
Insert-Rbrace-And-Match }
Insert-Rbracket-And-Match 1
Insert-File “X-Tab
Insert-File File: Insert from...

Typing a printable character generally causes that character to be inserted into the text at the
position of the edit cursor. Quote-Insert inserts the next AscCIi character typed.

Newline-And-Indent is bound to the newline character “J; if the option :autoindent is true, the
next line will be indented to the level of the previous line by inserting tabs and blanks. Indent-Like-
Previous-Line simply reindents the current line to the level of the previous line. Open-Line inserts
newlines after the cursor; the number of newlines inserted is determined by the value of the numeric
prefix argument (default 1). Split-Line does the same thing, but also indents any text following the
cursor to its original horizontal position.

Pan I: An Introduction For Users 19

The command Insert-Parentheses inserts a pair of matching parentheses at the cursor, and posi-
tions the cursor between them. The command Insert-Rparen-And-Match inserts a right parenthesis
and briefly shows the matching left parenthesis by moving the cursor if the match is visible in
the viewer or by displaying the line containing the match as a message on the panel otherwise.
Insert-Rbrace-And-Match and Insert-Rbracket-And-Match perform the same action for braces and
brackets.

Insert-File prompts for a file name and copies the contents that file into the active buffer at the
position of the edit cursor.

3.10.4 Filling Text

Set-Auto-Fill-Column ~X-f
Toggle-Auto-Fill ~x-1

Pan has a rudimentary mechanism for filling text lines as you type them. When auto-filling is
on, the keys Space and Return are bound to special procedures. These procedures compare the
current horizontal position of the cursor with the value of :auto-fill-column. If the line is too long.
it will be broken where appropriate; if not, the procedures act like Self-Insert.

Use Toggle-Auto-Fill to turn on autofilling and again to turn it back off. When filling is on, vou
can type text continuously without worrying about line length. Use Set-Auto-Fill-Column (with a
numeric prefix argument) to set the maximum line length used by auto-filling.

3.10.5 Deleting Text

Delete-QLevel D
Delete-Character (Delete,“Character™)
Delete-Previous-Character Delete
Delete-Word (Delete,"Word")
Delete-Fullword Not bound
Delete-Previous-Word Not bound
Delete-Line (Delete,"Line”)
Delete-Selected-Region Edit: Delete
Delete-Region-Dot-To-Mark Not bound
Delete-Blank-Lines “X--0
Delete-Horizontal-Space Esc-\
Just-One-Space Esc-Space
Delete-Indentation Esc--

Deleted text can be recovered by issuing the Undo command immediately after the deletions, but
in no other way. Killed text is retained in the kill ring. The standard bindings reflect this limitation
by using kill commands when removing large regions. Pan merges deletions that are contiguous in
space and time into a single undoable action.

Delete-Character deletes the character selected by the active cursor; Delete-Previous-Character
deletes the character before the cursor. The pair of commands Delete-Word and Delete-Previous-

Pan I: An Introduction For Users 20

Word delete from the cursor to the end (beginning) of the word enclosing the cursor, while Delete-
Fullword deletes the entire word enclosing the cursor. The commands Delete-Selected-Region and
Delete-Region-Dot-To-Mark operate on the selection and the implicit selection, respectively.

There are several ways to delete white space around the cursor. Delete-Blank-Lines deletes vertical
and horizontal white space, leaving exactly one blank line at the cursor. Delete-Horizontal-Space
deletes white space surrounding the cursor on the same line as the cursor; Just-One-Space does
the same thing, but leaves exactly one space at the cursor. Delete-Indentation removes any leading
white space on the line containing the cursor.

3.10.6 Killing Text

Kill-Word Esc-d
Kill-Previous-Word Esc-Del
Kill-To-EOL “K
Kill-Selected-Region W
Kill-Selected-Region Edit: Kill
Kill-Region-Dot-To-Mark Not bound
Copy-Selection-As-Kill Esc-w
Yank-From-Kill-Ring Y
Cycle-Yank Esc-Y
Cycle-Kill Not bound
Show-Kill ~x-?
Cycle-Show-Kill “X-1!

Like the deletion commands of the previous section. commands that kill text remove the text from
an object. Unlike deletion commands, however, commands that kill text also place the removed
text into the kill-ring.

The pair of commands Kill-Word and Kill-Previous-Word kill from the cursor to the end (beginning)
of the word enclosing the cursor. The commands Kill-Selected-Region and Kill-Region-Dot-To-Mark
kill the selection and the implicit selection, respectively. Kill-To-EOL kills all characters up to the
end of the line.

Text in the kill ring can be recovered using the command Yank-From-Kill-Ring which inserts
the contents of the top of the kill-ring into the buffer at the current cursor position. Cycle-Yank
cycles the kill ring before yanking the top of thee kill-ring. Copy-Selection-As-Kill copies the current
selection to the kill-ring.

The commands Show-Kill. Cycle-Kill, and Cycle-Show-Kill can be used to view the contents of the
kill ring. and to cycle the ring.

3.10.7 The Clipboard

Cut-To-Clipboard L10 (Delete)
Cut-To-Clipboard Edit: Cut

Copy-To-Clipboard L6 (Put)

Pan I: An Introduction For Users 21
Copy-To-Clipboard Edit: Copy
Paste-From-Clipboard L8 (Get)
Paste-From-Clipboard Edit: Paste
Replace-From-Clipboard Esc-18
Cycle-Clipboard Not bound
Show-Clipboard Edit: Show Clipboard
Show-Clipboard Esc-7
Cycle-Show-Clipboard Esc-!

These commands manipulate the contents of the clipboard. Cut-To-Clipboard deletes the current
selection and places it onto the clipboard. Copy-To-Clipboard places a copy of the current selection
ontothe clipboard. Paste-From-Clipboard inserts a copy of the clipboard’s contents at the edit cursor.
Finally, Replace-From-Clipboard replaces the selected region with the contents of the clipboard.

The command Show-Clipboard displays the contents of the clipboard in the help buffer. Cycle-
Clipboard cycles the clipboard using the prefix argument to determine the number of entries to
move, while Cycle-Show-Clipboard combines the two actions.

3.10.8 Copying and Moving Text

Copy-Selection-To-Cursor Esc~-"Y
Copy-Selection-To-Cursor Edit: Copy To Cursor
Move-Selection-To-Cursor Esc-"M
Move-Selection-To-Cursor Edit: Move To Cursor

Text can copied or moved within a buffer by using either the clipboard or the local kill ring.
However, the above commands are useful short cuts. Both use the current selection as the source
to copy or move, and the edit cursor to mark the destination. These commands operate only within
a buffer; copying and moving between buffers requires the clipboard.

3.10.9 Commands for Changing Case

Capitalize-Word Esc-c
Lowercase-Word Esc-1
Uppercase-Word Esc-u
Capitalize-Selection Esc-"C
Lowercase-Selection Esc~"L
Uppercase-Selection Esc-"U

These commands are use to change cases within a word or region. The word-oriented commands
operate on the region from the cursor to the end of the word. They leave the cursor at the end of
the region when done.

Pan I: An Introduction For Users 22

3.10.10 Transposing

Transpose-Characters “T
Transpose-Previous-Characters Not bound
Transpose-Lines “X-°T

Transpose-Characters exchanges the character at the cursor and the character before the cursor.
Transpose-Previous-Characters exchanges the two characters to the left of the cursor. Transpose-Lines
exchanges the line containing the cursor with line before it.

3.11 Searching Text

Pan provides commands for searching for regular expressions and for matching balanced brackets.

3.11.1 Regular Expressions

Re-Search-Backward “R
Re-Search-Forward ~S

These commands search for text matching the standard UNIX regular expressions. For a de-
scription of those expressions, see the ED(1) manual page of the UNIX Programmer’s Manuals.
Pan is unable to search for patterns which contain embedded newline characters. The most recently
specified regular expression is shared by all buffers.

When text matching a pattern is found, the active cursor is moved to the first character in the
match, and the matched text is selected.

Both Re-Search-Forward and Re-Search-Backward process the numeric prefix argument idiosyn-
cratically: the presence of a prefix argument causes the command to search using the last regular
expression specified. For instance, “U-"S invokes Re-Search-Forward using the most recent search
pattern—and the command will match the next occurrence of the pattern. Alternatively, supplying
an empty string as the regular expression causes the previously specified expression to be used.

When the option :autowrap-search is true, searches wrap from one end of the buffer to the o’ .er;
if that option is false, searches terminate when finding the beginning or end of the buffer.

While a Query-Replace command has not yet been implemented, one can rapidly perform that
action by putting the replacement text into the clipboard, and then alternating searches with
Replace-From-Clipboard.

3.11.2 Balanced Bracket Commands

Backward-Expr Esc-"B
Forward-Expr Esc-"F
Select-Expr Esc-"@Q
Kill-Expr Esc-"K
Show-Match Esc-/

Pan I: An Introduction For Users 23

These commands use syntax class definitions to operate on balanced brackets. Both Forward-
Expr and Backward-Expr move the cursor. The Select-Expr command selects the balanced bracket
expression surrounding the cursor, and the command Kill-Expr kills it.

If the cursor character is a bracket, Show-Match moves the cursor to the matching bracket, pauses
for the value of the option :pause-ticks internal ticks, and returans the cursor to its original position.

3.12 Editing Programs

Pan provides facilities for editing tree-structured objects described by a formal language. These
objects include programs, which are described by a programming language. To take advantage of
those facilities, the language being edited must be described to Pan using the lan~uage-definition
language Ladle[4). Language descriptions are beyond the scope of this manual. In “uis section, the
basic language-oriented editing features of Pan are described.

Pan currently supports two languages: Modula-2{8] and ASPLE[5]. ASPLE is a simple example
language used for demonstrations and for learning Pan. Other language descriptions, including C,
are under development.

Full text editing is always available when editing structures. In fact, the actual operations that
alter a structure are reduced to textual operations. Incremental syntactic analysis (parsing) then
updates the internal tree structure. Most of the time, this transformation is hidden from the
user—it occurs automatically as operations like “delete the selected subtree” are invoked. The
next sections describe language-oriented editing with Pan in more detail.

3.12.1 Language-Oriented Viewers

Structures are displayed using the same kind of viewer used to display text. A future version of
Pan will provide a pretty-printing viewer that keeps the displayed structure consistent with its
internal form. Right now, the re-indentation must be performed manually. Language-oriented
viewers support the same scrolling operations as viewers onto textual ob jects.

Figure 4 shows a language-oriented viewer for a buffer containing an ASPLE program. Note that
the “Language:” field in the information panel now reads “ASPLE”, and that the root menu has been
customized to contain the submenus Tree and Syntax. The Tree menu provides access to the basic
tree navigation commands, while the Syntax menu provides language-oriented editing commands.
As with text viewers, however, those commands are also available from the kevboard.

A language-oriented viewer has three new flags in the information panel. The “L” (:lex-ok) flag
will be grey when there are changes in the buffer that have not yet been lexically analyzed (the first
phase of parsing). The “T” (:tree-ok) flag will be visible, but grey, when there are changes that
have not yet been incorporated into the tree by the parser. Both “L” and “T" flags are displayed in
solid tones when the buffer’s internal structures are consistent. The “!” (:parse-errors) flag appears
when there are lexical or syntactic errors in the program being edited. Section 3.12.4 discusses this
topic in more detail.

3.12.2 Selection

Selection during language-oriented editing relies on the notion of operand levels (section 2.3.3). In
a language-oriented viewer, the set of operand levels is much richer than in the text world. The

]

B manual . tex
~/prog .asple

welp Info :

Pan I: An Introduction For Users

T T

>

TR,

ﬁ!ﬂmmm??pgﬂrmy‘y}m?m
3 3t i H

24

13y H

i File: “/prog.asple
¥PAN Language: aside

teog r /e factorial »/

Ly
B @ Leve: tharacter

input X; /% read I »/

S L X, /* foput */
. Fact, /% result &/
" /% {terati1orn counter =/

Fact :z 1; =
L IS f a1t -
X (X2 D) } F\!Q -
% ther Heip -
[while (N 'z X} do l w1 ndow -
¥t [t KR tounde
A Fact := Fect * N Lo
ony Potree -
1 ’ -+ Apple Mode--

mi;u‘. Fact Syatax -

B IR O S E IR DU P IR RO OLF R

[ETEN DO E I R RN SR

Figure 4: A viewer with a language other than “Text”

operand levels for text editing are included, as well as levels corresponding to basic abstractions in
the language being edited. Figure 5 shows the set of operand levels defined for ASPLE. The “Error”
level is of special significance: it is used to locate errors in a syntactic structure and to move the
selection from one error to another.

As with text. depressing the left buttor of the mouse selects the object beneath the mouse cursor.
The object actually chosen is determined by the setting of the operand level. Thus if the mouse
cursor is over the character “*” in Figure 5 when the left button is clicked. the selected object
might be the underlying lexeme. expression, or statement depending on whether the operand level
is “Lexeme”, “Expression”, or “Statement” respectively.

What happens if the object beneath the mouse cursor is not an element of the class of objects
specified by the current operand level? Then Pan uses a heuristic to find an object close to the
mouse cursor that is an element of that class. This behavior is fairly predictable, although in some
cases it leads to unforseen selections.

An Introduction For Users

.
.

Pan I

vy1¥;,”¥

FIPT

Ty
3

Statesent

Exproestion
W Error

Loxont

Line
wvorg

© “r/peog.wsple
»nple

file
Language:

PAN

* Kelp Info
. sanual . tex
s ~/prog.asple

proQram to compute faciorial furcijon w/

‘e Computes and prinis X' where X is ar imput value /|

/® iterstion counter o/

/* ipput */
/* result o/

wrt X,
Fact,

begir /e fectorial o/
LB

input X; /% read T o/

ii-(X'

= 8)
ther

while (N 'z X} do
[} :7! 3:
Fact := Fact * N

ABLbups G O

ks

Lder G00bh0s Gyt bend $5rauiied €320 i LAAE ahad e, dmaase s s bar $h RS HRGAR ik oltike €

ik

Figure 5: The operand levels for ASPLE

and operate on

Character”

a

s of a structure, set the operand level to

To select arbitrary portion
xtual representation.

the te

tion

aviga

@Level

3.123 N

°F

Next

ious-QLevel

Prev

R6

Up

Tree

538
~
TR
v ..
-
Tl
3z :
a O O
S00
v O e
L v e
-

R9
Tree: Left

Tree-Left

Tree-Left

Pan I: An Introduction For Users 26

Tree-Right Ri1
Tree-Right Tree: Right

Pan provides two sets of language-oriented navigation operations. The most useful set involves
the operations Next-@Level and Previous-@lLevel. They perform preorder and inverse-preorder tree
walking operations relative to the current operand level. For example, if the operand level setting
is “Error”, the command Next-@Level moves the cursor to the “next” error node in the tree.

A second set of navigation commands includes Tree-Up, Tree-Down, Tree-Left, and Tree-Right.
These are the usual tree-oriented commands. Tree-Up moves the cursor to the parent, Tree-Down
moves it to the leftmost child of the current node, Tree-Left and Tree-Right move the cursor to the
appropriate sibling in the tree. These commands can be used to explore the actual tree structure,
as opposed to the tree structure imposed by the operand hierarchy mechanism. Use them carefully!

3.12.4 Parsing and Syntactic Errors

Parse-Buffer Syntax: Parse Buffer
Rectify-Tree) Not bound

Parsing incorporates changes in a buffer’s contents into the tree that represents a program. The
parsing method used is incremental—only the areas affected by the changes are reparsed. Parsing
occurs whenever a language-oriented operation takes place, such as when the operand level is
changed to be a non-textual level or when a tree-oriented navigation command is invoked. Parsing
can also be invoked manually, using the command Parse-Buffer. The command Rectify-Tree is used
internally to invoke parsing if there have been any changes in the contents of the buffer.

Parsing is a two-stage process. In the first stage, the text stream is broken into larger fragments
called lexemes. Lexemes are the basic symbols in the language being edited, e.g., keywords, identi-
fiers, constants, and comments. When a buffer is lexically analyzed, various classes of lexemes are
given different visual images using fonts. The following table defines the relationship between font
codes and characters in lexemes:

Class Example Font
TUnanalyzed characters inserted text 0
Ignored by the lexical analyzer 1
Fixed-length lexemes keywords 2
Recognized but not parsed comments 3
Variable-length lexemes identifiers 4

Unanalyzed characters are always displayed using the default font 0.

After lexing, provided that there are no lexical errors, the parser updates the internal structured
representation. If the parser encounters syntactic errors, the number of errors discovered during
the parse is displayed on the annunciator line, and the :parse-errors flag is set. This flag appears as
a “!” on the information panel.

When the parser detects an error, the subtrees involved in the error are gathered into an “error
subtree”. Selecting the subtree rooted at an error node causes the error message from the parser
to be displayed on the annunciator line. Figure 6 shows the display of an error.

Pan I: An Introduction For Users 27

Sipatt, Mothlc” Yar Qe varte-

e

pregraw

L

Iy YO ! : (R
—— « File: Tiprog.asple . LT
STats PAN Language: ssple D @ tover: trror
“L “Maléorscd expression”
£ w—— - -
ReT_tquate 00 T it % (= ASPLE program te compute factcraal funcliop w7
R S T g 5 rw Computes ard prints X' whene I 18 an izput valve v/
ﬂm?nwm-m FocT : : pegin /» factorial w/
of\ int X, /e input w/ :
Fact, /= result =/ L
N; /= 1teracion coupter %/ i
inEut X; /* read I o/ B
Fact := §;
LIRS 1
if(XK1'=8)
then

wnhile (N 'z X) dc

Fect 'z Fact * N
enc \
£9;
output Fact

A‘.l _,L'Ul

v ine : YIS S .
.t Fantiatad el araaen Lheo i

O O R T X TR TTY LTV PIPTT IR OTEE NS IO P IR T SRT S R STT AT I

Figure 6: Displaying an error in a program

As noted previously, the operand level can be set to “Error” in order to find and select errors ia
the tree. Figure 6 also shows a tool displaying the internal tree structure for the error. Generating
such displays using Ptree is discussed in Section 3.12.6.

3.12.5 Editing
Delete-QLevel °D
Editing structured objects is quite simple in this version of Pan. All insertions use the text-
level commands used for text editing. Top-down tree elaboration, being designed for the next
major release, is not yet available. Deletions are accomplished using either text-level commands. or
using the Delete-@Level command. Undoing edit actions restores the buffer without restoring the
structured representation. Thus undoing currently requires reparsing.

Pan I: An Introduction For Users 28

3.12.6 Displaying Trees using Ptree

Print-Parse-Tree Syntax: Print Parse Tree

Ptree is a separate program that displays tree structures. A Ptree window appears in Figure 6.
Ptree is not an integral part of Pan at presert, although a Ptree-like viewer for Pan is planned.
Ptree runs as a separate tool in the SUNVIEW environment. The manual page PTREE(1) provides
more details on its operation. Ptree displays are primarily a debugging tool for the authors of Ladle
language descriptions.

Pan can be used to create Ptree input. The command Print-Parse-Tree formats the internal tree
structure of the active buffer into a file called ptree.out in the working directory. This file can
then be displayed using Ptree.

3.13 When Things Go Wrong

Oops Not bound
Rats! Not bound

Pan has been remarkably (well, reasonably) robust throughout its long development period.
Most problems are routinely handled by printing a message on the message line of the active viewer.
However, during early-release, provisions have been made for recovering from ma jor catastrophes.

We'd probably all agree that a catastrophe has occurred if Pan failed either by returning to
the underlying Lisp system or by dying altogether. Fortunatelv, the first rarely happens, and the
second won’t occur without returning to Lisp.

If the option :break-to-lisp is true and an unanticipated error occurs, Pan enters a Lisp break
loop. When Pan encounters an internal error and the option :save-on-system-error is true, Pan
attempts to save all of the modified buffers. These two options are currently configured so that a
break loop is entered, and saving is turned off. The break loop is entered before any saving of files
is attempted.

If you do somehow end up in a Lisp break loop, a prompt will appear in the tool window in
which the system is running. (If Pan is running from a menu, the prompt will appear in the console
tool.). The prompt will look like “{nn}” or “nn =" where “nn” is a small integer. In the first case
(“{nn}"), the system is in a Lisp break loop. You can recover from the error by typing the Lisp
expression (Qops). This returns the system to the normal command evaluation loop. Naturally,
the circumstances of such an error should be noted and passed on to the developers of Pan. (Mail
to panpipes@renoir.)

The second case (“nn =") is more serious. In fact, the session is almost over. All that you can
do is to type (Rats!). This command executes the normal code for saving the modified buffers
and then exits the system.

4 Simple Customization

Pan can be customized by altering option values and bindings, extended by defining new options,
flags, and commands, and broadened by defining new, formal languages by using the language

Pan I: An Introduction For Users 29

definition language Ladle. This section provides a brief introduction to the facilities for tailoring
and extending the system.

4.1 Start-Up Processing

Auto-Load file-name regular-ezpression
Auto-Exec function-name regular-ezpression
Load-File “X-"L

At start-up, 2 run-command file named .panrc is loaded into Pan. The .panrc file should be a
file of Lisp and Pan commands located either in your working or your home directory.

The .panrc file is loaded using the command lLoad-File. All commands that load files use the
search path specified by the option :pan-load-search-path. The default value of the option :pan-load-
search-path is set to (. = “piper/lib/pan).

Pan can be instructed to automatically load files other than .panrc. One way is to include
Load-File directives in the .panrc file. Such files will be loaded once at start-up. This method can
be used to ensure that a certain selection of libraries will always be loaded. A second way is to use
the Auto-Load command.

The Auto-Load command instructs Pan to ensure that a file has been loaded whenever a buffer
whose name matches a given UNIX file expression is created. The file is loaded at most once as a
result of Auto-Load.

For instance, (Auto-Load "c-1ib" "#.[hc]") tells the system to load the file “c~1ib” the first
time that 2 file whose name matches “*.[hc]” is edited. The file ¢~1ib can be either lisp code
or compiled lisp code; if both ¢-1ib.1 and a ¢-1ib.o are found in the same directory, the most
recently modified version is chosen.

Similar to Auto-Load, the command Auto-Execute instructs Pan to execute a given bindable
function whenever a buffer having a name that matches a given pattern is created. Taken together,
Auto-Load and Auto-Execute can be used to create minor modes.

A minor mode is a collection of commands and bindings useful while editing objects of a given
type. For instance

(Auto-Load '"tex-mode" ''*x.tex")
(Auto-Execute ’tex-mode "*.tex")

can be used to create a minor mode for TEX input. The parameterless function tex-mode is defined
in the library file tex~mode.1 to set up a specialized collection of bindings. The file tex-mode.1
also defines a number of commands useful for manipulating TEXnical text.

4.2 Bindings

Bind-To-Key command key-sequence [location]
Bind-To-Menu command menu-name [label location]
Add-Menu-To-Menu menu-being-added to-menu flocation]

Define-Operand-Levels levels
Add-Operand-Levels levels

Pan I: An Introduction For Users 30

Bindings are established or altered using the functions Bind-To-Key, Bind-To-Menu, and Add-
Menu-To-Menu. The default location of the change is in the local buffer; specifying : global makes
the change in the global environment. The commands Add-Menu-To-Menu, Define-Operand-Levels,
and Add-Operand-Levels are described in The Pan Extension Manual.

The syntax for Bind-To-Key is

(Bind-To-Key ’function “key sequence” [location])
where ’function is a quoted function name, “key sequence” is a Lisp string specifying a keystroke
sequence, and location is either :1ocal or :global. The default value for location is :1local.
When specifying a keystroke sequence, control characters such as “Control~?" are denoted by

the two-character sequence “~?”; the Escape prefix is denoted by Esc-. In multiple keystroke
sequences, the kevstrokes must be separated by hyphens. For example,

(Bind-To-Key ’Delete-Character "“D" :global)

establishes the default binding for Delete-Character.
To establish a binding to a menu item, use

(Bind-To-Menu ’function “Menu Name” [“Selection Name™ location])

Both parts of the menu item must be Lisp strings. If “Selection Name” is omitted, the name of
the command is used. The argument location is identical to the argument of the same name for
the Bind-To-Key command. For example,

(Bind-To-Menu ’Describe-Selection "Help" "Describe" :global)

sets up the default binding for Describe-Selection in the Help menu.

Show-Key-Bindings Help: Key Bindings
Show-Menu-Bindings Help: Menu Bindings
Show-Operand-Bindings Help: Operand Bindings

Show-Key-Bindings, Show-Menu-Bindings, and Show-Operand-Bindings print the appropriate bind-
ings visible in the current buffer into the help buffer.

It is possible to invoke a command without binding it by using the commands Execute-Lisp-Line
or Execute-Named-Command. (The next section provides more details.)

4.3 Getting and Setting Option Values
Option-Value option-name flookup buffer]
The command Option-Value is used to retrieve (and set) option values. Its syntax is

(Option-Value option-name [lookup buffer])

Pan I: An Introduction For Users 31

where option-name is the name of the option, and lookup and buffer are optional arguments. The
argument lookup, if specified, must be one of :1ocal, :global, or :default. When lookup is left
unspecified, the value :default (look first for a definition in the active buffer; if none is found,
look for a global definition) is used. Buffer defaults to the active buffer.

To set an option’s value to value, use the lisp form

(setf (Option-Value option-name [lookup buffer]) value)

In this case, lookup must specify either :local or :global; it defaults to :local. For instance,
the expression

(setf (Option-Value :minor-mode :local) "TeX Mode")

sets the value of the option :minor-mode in the active buffer to be "TeX Mode".

4.4 Lisp-Oriented Commands

These commands are for the use of people extending Pan, although sometimes you'll want to use
one to see what a command does. They are included here for completeness.

Execute-Lisp-Line Esc-Esc
Execute-Named-Command Esc-x
Load-File “X-"L

Execute-Lisp-Line prompts for a Lisp expression to evaluate; the result is printed on the message
line. If you want to execute a bindable Pan command, there are two methods. The simplest is to
invoke Execute-Named-Command and respond to the prompt with the name of the command, e.g.
Next-Character. Alternatively, one can invoke Execute-Lisp-Line and respond to the prompt with
the expression (Next-Character). The parentheses are required in the latter case.

Load-File loads a file of lisp and Pan commands into the system.

5 Acknowledgments

Many have helped with the creation of Pan. Thanks especially to Jacob Butcher and Christina
Black. Jacob implemented the language-description processor Ladle and the tree data structures.
Christina is developing the pretty-printing viewer and helped with the preparation of these reports.
Eduardo Pelegri-Llopart and Phillip Garrison have also made many valuable suggestions.

References

(1] Windows and Window Based Tools: Beginner’s Guide. Sun Microsystems, Inc., 1986.

[2] Robert A. Ballance and Michael L. Van De Vanter. The Pan extension manual. In preparation.

{3] Robert A. Ballance, Michael L. Van De Vanter, and Susan L. Graham. The Architecture of Pan
I Technical Report 88/409, Computer Science Division, UC Berkeley, March 1988.

Pan I: An Introduction For Users 32

[4] Jacob Butcher. Ladle. In preparation.

[5] J. C. Cleaveland and R. C. Uzgalis. Grammars for Programming Languages. Elsevier Holland,
1977.

[6] R. M. Stallman. EMACS, the extensible, customizable, self-documenting display editor. In
Proc. of the ACM SIGPLAN SIGOA Symposium on Tert Manipulation, pages 147-156, 1981.

(7] Richard Stallman. GNU Emacs Manual: Fifth Edition, Emacs Version 18 for Uniz Users.
October 1986.

[8) Nicklaus Wirth. Programming in Modula-2. Springer-Verlag, third, corrected edition, 1985.

6 Glossary

Apropos A Help command for information gathered during command, flag, and option definition.
For instance, (Apropos ’Cursor) lists all of the commands dealing with the cursor.

Base Buffer The base buffer is a special buffer that is the root for all Pan buffers. The base
buffer has is the only frame that can be made iconic. Quitting the base buffer terminates Pan. All
currently editable objects are listed in the base buffer.

Buffer A bufferis the locus of editing attention for a single editable object (currently a text file).
Buffers contain a copy of the object being edited, key and menu bindings, a selection, viewers, and
other objects.

Clipboard The clipboard is an area, shared by all buffers, that contains a region of text. It is
used to implement cut and paste between buffers, or between Pan and other processes.

Command A command is a user-level procedure for effecting edit operations. Commands are
defined using Define-Command.

Dot The dot is another name for the edit cursor. In effect, it is the integer offset (in characters)
of the edit cursor from the beginning of the file.

Edit Cursor A cursor is an object marking the location where alterations of the edit object can
occur. In particular, characters are inserted or deleted at the character position to the left of the
character designated by the cursor.

Edit Window The area of a viewer in which the object being edited is displayed.

Flag A flagis a user-definable object that stores a single bit of information. Flags can be defined
having a user-visible representation on the information panel.

Pan I: An Introduction For Users 33

Frame The outer surrounding edge of a viewer that responds to SUNVIEW window protocols.
Help Buffer A special buffer used for displaying help information.

Mark A mark is a character position in a text file. Marks are generally used to remember
positions for later processing. Pan provides for a stack of marks. The top mark in the stack is
known as “the mark”.

Operand Level The operand level of a viewer designates the type of operand to be used by
generic operations. For instance, if the operand level is “Word”, then the Next-@Level command
moves the cursor to the next word in the object being edited.

Option An option is a user-definable typed variable. Many of the customizations available to a
user are provide via predefined options. Unlike a flag, an option does not have a visible presentation.
However, options can have special “notifier” functions that are called whenever the option value is
changed.

Region A region is a contiguous sequence of characters. Most text operations involve regions
either as source, destination, or both.

Selection A specially designated region. There is one selection per buffer.

Viewer The counterpart to a window in Emacs, a viewer displays an object. Each viewer has its
own edit cursor and display state.

A Default Key Bindings

A.1 Bindings By Command Name

Abort-Command
Abort-Command
Abort-Command
Abort-Command
Abort-Command
Backward-Expr
Backward-Vscroll
Capitalize-Selection
Capitalize-Word
Close-Active-Viewer
Copy-Selection-As-Kill
Copy-Selection-To-Cursor
Copy-To-Clipboard
Cut-To-Clipboard
Cycle-Show-Clipboa d
Cycle-Show-Kill
Cycle-Yank

Delete-Qlevel
Delete-Blank-Lines
Delete-Horizontal-Space
Delete-Indentation
Delete-Previous-Character
Delete-Previous-Character
Deselect-Region
Down-QLevel
Execute-From-Menu
Execute-Lisp-Line
Execute-Named-Command
First-Non-Blank
Forward-Expr
Forward-Vscroll
Goto-Line
Indent-Like-Previous-Line
Insert-File

Insert-Newline
Insert-Parentheses
fnsert-Rbrace-And-Match
insert-Rbracket-And-Match
Insert-Rparen-And-Match
Interrupt-Pan
Just-One-Space

Kill-Expr
Kill-Previous-Word
Kill-Selected-Region
Kill-To-EOL

Kill-Word

Esc-"G
“C-"G
“G
“X-"G
“Z-°G
Esc-"B
Esc-v
Esc-"C
Esc-¢
“X-0
Esc-w
Esc~"Y
Le
L10
Esc-!
“X-t
Esc-y
“D
“X-"0
Esc-\
Esc-"
Backspace
Del
Esc~-"D
F3
Mouse Right
Esc-Esc
Esc-x
Esc-m
Esc-"F
'
“X-1
Esc-Tadb
“X-Tadb
Return
Esc-(
}
]
)
“X--2
Esc~Space
Esc-"K
Esc-Del
‘W
“K
Esc-d

Pan I: An Introduction For Users

Left-Hscroll

List-Files

Load-File
Lowercase-Selection
Lowercase-Word
Mouse-Extend-QLevel
Mouse-Select-QLevel

“X-<

“X-°D

“X-"L
Esc-"L
Esc-1

Mouse Middle
Mouse Left

Mouse-Extend-Selection-Fullword Esc~Mouse Middle

Mouse-Select-Fullword
Move-Selection-To-Cursor
Move-To-BOB
Move-To-BOL
Move-To-EOB
Move-To-EOL
Newline-And-Indent
Next-QLeve!

Next-1ine

Next-Word
Open-Another-Viewer
Open-Line
Paste-From-Clipboard
Previous-Qlevel
Previous-Line
Previous-Word
Quote-insert
Re-Search-Backward
Re-Search-Forward
Read-Prefix-Arguments
Redraw

Remove-Buffer
Replace-From-Clipboard
Right-Hscroll
Save-All-Buffers
Save-Buffer-File
Select-Buffer
Select-Expr
Select-Region-Dot-To-Mark
Select-Word

Self-Insert

Self-Insert

Self-Insert

Self-Insert

Self-insert
Set-Qlevel-To-Character
Set-Auto-Fill-Column
Set-Mark

Show-Buffers
Show-Clipboard
Show-Kill

Esc-Mouse Left
Esc-Return
Esc—<

“A

Esc->

“E

Newline

“F

“X

Esc-t

“X-2

-0

LS

“B

“P

Esc-b

“Q

-

o wnw

“X-k
Esc-L8
“X->
“X-Return
~“X-"s
“X-h
Esc-"0
Esc-"¥
Esc-@
-\
Space—(
Tab

F1
“X-t
e
“X-"B
Esc~7
“X~?

Show-Match
Show-Status-Line
Split-Line
Sun-Again
Sun-Expose
Sun-Find

Sun-Open
Sun-Props
Sun-Stop
Swap-Dot-And-Mark
Toggle-Auto-Fill
Toggle-Read-Only
Transpose-Characters
Transpose-Lines
Undo

Undo

Up-QLevel
Uppercase-Selection
Uppercase-Word
Visit-Buffer
Visit-File
Write-Files-Exit
Write-To-File
Yank-From-Kill-Ring

Pan I: An Introduction For Users

Esc-%
“x-=
Esc-"0
L2

L5

L9

L7

13

L1
“X-"X
“X-"A
“X-"Q
T
“X-"T
L4
“X-u
F2
Esc-"U
Esc-u
“X-b
~“X-"F
~Xx--C
“X-"v
°Y

35

Pan I: An Introduction For Users 36

A.2 Bindings By Key “X-u Undo
Y Yank-From-Kill-Ring

-0 Set-Mark ~z--g Abort-Command
~A Move-To-BOL -~_| Self-lnsert
“B Previous-Qlevel } Insert-Rbrace-And-Match
“C~--G Abort-Command) Insert-Rparen-And-Match
“D Delete-Qlevel) Insert-Rbracket-And-Match
“E Move-To-EOL - Self-Iinsert
“F Next-Qlevel »_\ Self-Insert
-G Abort-Command Backspace Delete-Previous-Character
“K Kill-To-EOL pea Delete-Previous-Character
-1 Redraw Egc-~t Cycle-Show-Clipboard
“N Next-Line gge-(Insert-Parentheses
-0 Open-Line Egc-< Move-To-BOB
-p Previous-Line Esc-> Move-To-EOB
-qQ Quote-insert ggc-2 Show-Clipboard
“R Re-Search-Backward Esc-@ Select-Word
-s Re-Search-Forward Egc-Del Kill-Previous-Word
-T Transpose-Characters Esc-Esc Execute-Lisp-Line
“u Read-Prefix-Arguments Esc-18 Replace-From-Clipboard
-V Forward-Vscroll Esc-Mouse Left Mouse-Select-Futlword
W Kill-Selected-Region Esc-Mouse Middle Mouse-Extend-Selection-Fullword
o & Cycle-Show-Kill Esc-Return Move-Selection-To-Cursor
“X-0 Close-Active-Viewer Egc-Space Just-One-Space
“X-2 Open-Another-Viewer gsc-Tab Indent-Like-Previous-Line
“X-< Left-Hseroll Esc-Y% Show-Match
) Show-Status-Line Egc-\ Delete-Horizontal-Space
~X-> Right-Hscroll gge--0 Select-Expr
~x-7 Show-Kill pgc--B Backward-Expr
“X-Return Save-All-Buffers gge--¢C Capitalize-Selection
“X-Tad Insert-File Egec--D Deselect-Region
“X-"A Toggle-Auto-Fill gse--F Forward-Expr
~“X-"B Show-Buffers gge--g Abort-Command
“x--C Write-Files-Exit gge--k Kill-Expr
“X--D List-Files gge--L Lowercase-Selection
“X-"F Visit-File Esc--0 Split-Line
~“X--G Abort-Command Egc--U Uppercase-Selection
“X-"L Load-File Esc--w Select-Region-Dot-To-Mark
“X--0 Delete-Blank-Lines Egc--Y Copy-Selection-To-Cursor
“X--Q Toggle-Read-Only Ege-- Delete-Indentation
“X-s Save-Buffer-File Egsc-b Previous-Word
X-°T Transpose-Lines Esc-c Capitalize-Word
“X-"W Write-To-File Ege-d Kill-Word
“X-"X Swap-Dot-And-Mark Ege-2 Next-Word
“x--2 Interrupt-Pan pge-1 Lowercase-Word
“¥-b Visit-Buffer gsc-m First-Non-Blank
“X-1 Set-Auto-Fill-Column Ege-u Uppercase-Word
“X-h Select-Buffer Ege-v Backward-Vscroll
“X-k Remove-Buffer ggc-w Copy-Selection-As-Kill

Goto-Line

Esc-x
Esc-y

Fi

F2

F3

L10

L1

L2

L3

14

LS

Le

L7

L8

Lo

Mouse Left
Mouse Middle
Mouse Right
Newline
Return
Space—(
Tadb

Pan I: An Introduction For Users

Execute-Named-Command
Cycle-Yank
Set-QLevel-To-Character
Up-@Level
Down-QLevel
Cut-To-Clipboard
Sun-Stop

Sun-Again

Sun-Props

Undo

Sun-Expose
Copy-To-Clipboard
Sun-Open
Paste-From-Clipboard
Sun-Find
Mouse-Select-QLevel
Mouse-Extend-Q@Level
Execute-From-Menu
Newline-And-Indent
Insert-Newline
Self-Insert

Self-Insert

37

Pan I: An Introduction For Users 38

B Default Menu Bindings in a Text Buffer
B.1 Bindings by Command Name

Append-Selection-To-File File: Append Selection To ...
Apropos-All-Symbols L. L L L Lo s e e e Help: Apropos All
Apropos-Selection L L L L L L e e e e e e e e e e e e e e e e Help: Apropos
Close-Active-Viewer it e s e e e e e e e e e e e Window: Close
Copy-Selection-To-Cursor « . . . v v v v v b b e e e e e Edit: Copy To Cursor
Copy-To-Clipboard « . ¢ . v . 0 o i e e e e e e e Edit: Copy
Cut-To-Clipboard ¢ . i o i e e e e e e e e e e e e e e e e Edit: Cut
Delete-Selected-Region (. . . . Lo Lo e Edit: Delete
Describe-Operand-Hierarchy 0. .. Help: Operand Hierarchy
Describe-Selection L. L L L e e e e e e e e e e e e e e e e Help: Describe
Frame-Edit-Cursoro, Window: Frame Edit Cursor
Insert-File e e e e e e e File: Insert from...
Kill-Selected-Region L Lo e e e e e e e e Edit: Kill
List-All-Commands« ¢ ¢ i e e e e e e e e e e e e e e e e e Help: Commands
List-Files e e e e e e File: Directory list
Move-Selection-To-Cursor v+ v 4 v v vt e e e e e e e Edit: Move To Cursor
Open-Another-Viewer Window: Open Another Viewer
Overwrite-File!o e e e e File: Overwrite ..

Paste-From-Clipboard e s e e e e e e e Edit: Paste
Reset-Help-Buffer oL, Help: Reset Help Buffer
Save-Buffer-File L .o s e e e e e e e e e e File: Save
Show-Buffers L L L e e e e e e e e e e Help: Buffers
Show-Clipboard o000 Edit: Show Clipboard
Show-Flag-Values o oo e Help: Flag Values
Show-Key-Bindings 0000 oo Help: Key Bindings
Show-Menu-Bindings L0 o e Help: Menu Bindings
Show-Operand-Bindings, Help: Operand Bindings
Show-Option-Values o .o Help: Option Values
Undo o e Pan: Undo
VisitsFile e e e e e e e e e e e e e File: Visit File
Write-Selection-To-File« « . File: Write Selection To ...
Write-To-File e e e e e e File: Write To ...

B.2 Bindings by Menu

Edit: Copy To CUrsor« « v v v v v v v e e e e e e e Copy-Selection-To-Cursor
Edit: Copy o e e e e e s e e e Copy-To-Clipboard
Edit: Cut L L L e e e e e e e e e e e e e e e Cut-To-Clipboard
Edit: Delete Lo e e e e e e e e Delete-Selected-Region
Edit: Kill o e e e e e e e e e e e e e e e Kill-Selected-Region
Edit: Move To CUrsor « « v v v v v i et e e e e e Move-Selection-To-Cursor
Edit: Paste oo e e e e e e e e Paste-From-Clipboard
Edit: Show Clipboard v L e e e e e e e e e e Show-Clipboard
File: Append Selection To + « « v v v v v v v v v a0 Append-Selection-To-File

File: Directory 1ist v . L o e e e e e e e e e e e e e e List-Files

Pan I: An Introduction For Users 39

File: Tnsexrt from... &t v v v v it e e e e e e e e e e e e e e e Insert-File
File: Overwrite i e e e e e e e e e e e e e e e Overwrite-File!
File: Save e e e e e e e e e e e e e e e e Save-Buffer-File
File: Visit File (. i e e e e e e e e e e e e e e e e Visit-File
File: Write Selection To v v v v v v v e e e e Write-Selection-To-File
File: Write To v it i e e e e e e e e e e e e e e e e e e Write-To-File
Help: Apropos ALl v v i e e e e e e e e e e e e e e Apropos-All-Symbols
Help: APropos & . . . L L e e e e e e e e e e e e e e e Apropos-Selection
Help: Buffers 0 v i i e Show-Buffers
Help: Commands o i i e e e e e e e e e e e e e e e List-All-Commands
Help: Describeo e e e e e e e e e Describe-Selection
Help: Flag Values« v v v v v vt e et e e e e Show-Flag-Values
Help: Key Bindings v v v v v vt e e e e e e e Show-Key-Bindings
Help: Menu Bindingso 00000 e Show-Menu-Bindings
Help: Operand Bindings« ¢ v v v v v v o a e e Show-Operand-Bindings
Help: Operand Bierarchy « . v v v v v v v v v o Describe-Operand-Hierarchy
Help: Option Values o v v v v v v v v e Show-Option-Values
Help: Reset Help Buffer « . v v v v v v v it o v e e e Reset-Help-Buffer
Pan: Undo i e Undo
Window: €C1oset it e e e e e e e e e e e e e e e e Close-Active-Viewer
Window: Frame Edit CUrsor« « & v« v v v v v v e e e e e e e Frame-Edit-Cursor
Window: Open Another Viewer « . v & ¢ v v v o o o a . Open-Another-Viewer

C Default Menu Bindings in the Base Buffer

C.1 Bindings by Command Name

Apropos-All-Symbolso Lo oL s e Help: Apropos All
Apropos-Selection L L L L s e e s e e e Help: Apropos
Copy-To-Clipboard o i i e e e e Base Buffer: Copy

Describe-Operand-Hierarchyo 0oL Help: Operand Hierarchy
Describe-Selection L L L L0 L e L e e e e e e e Help: Describe
List-All-Commands Lo s e e e e e e e e e e e e e e Help: Commands
List-Files« . . o s e e e e e Base Buffer: Directory list
Remove-Selected-Buffer Base Buffer: Remove-Selected-Buffer
Reset-Help-Buffer e Help: Reset Help Buffer
Show-Buffers L L L e e e e e e e Help: Buffers
Show-Flag-Values e e e Help: Flag Values
Show-Key-Bindings e e e s e e e Help: Key Bindings
Show-Menu-Bindings 0L Help: Menu Bindings
Show-Operand-Bindings 000000 oL Help: Operand Bindings
Show-Option-Values oo Help: Option Values
Unde L e e e e s e e e e e e e e e e e e e Base Buffer: Undo
Visit-File oo e e e e e e e e e e e e Base Buffer: Visit File

Visit-Selection i e Bage Buffer: Visit

Pan I: An Introduction For Users 40

C.2 Bindings by Menu

Base Buffer: Copy e e e e e e e Copy-To-Clipboard
Base Buffer: Directory 1ist e e e e e e e e e List-Files
Base Buffer: Remove~-Selected-Buffer ¢ . . . « Remove-Selected-Buffer
BaseBuffer: Undo e e e e e e e e e e e Undo
Base Buffer: Visit File 0 e e e e e e e e Visit-File
Base Buffer: Visit 0L 0L e e e Visit-Selection
Help: Apropos A1l 0 e e e e e e e e e e e Apropos-All-Symbols
Help: Apropos L Lo o e e e e e e e e e e e e Apropos-Selection
Help: Buffers o 0 v it e e e e e e e e e e e e e e e Show-Buffers
Help: Commands v i i e e e e e e e e e e e e List-All-Commands
Help: Describe L . e e e e e e e e e Describe-Selection
Help: Flag Values 0 v . v i vt vt b i e et e e e e Show-Flag-Values
Help: Key Bindings o v i e e e e e e e e e e Show-Key-Bindings
Help: Menu Bindings L o000 e Show-Nenu-Bindings
Help: Operand Bindings Show-Operand-Bindings
Help: Operand Bierarchy ¢ v v v v v v v .. Describe-Operand-Hierarchy
Help: Option Values oo v o v v Show-Option-Values
Help: Reset Belp Buffer v v v v v v v i e e e e e e Reset-Help-Buffer

D Default Menu Bindings in the Help Buffer
D.1 Bindings by Command Name

Append-Selection-To-File File: Append Selection To ...
Apropos-Ali-Symbols L . L oL oL Help: Apropos 411
Apropos-Selection L L L Lo e o e e e e e Help Buffer: Apropos
Apropos-Selection L L L L Lo L e e e e e e e e e e e e e Help: Apropos
Close-Active-Viewer e e e e e e e e e e e e e Window: Close
Copy-To-Clipboard o o o e e e e e e e Help Buffer: Copy
Describe-Operand-Hierarchy 0.0, Help: Operand Hierarchy
Describe-Selection e e e e e e e e Help Buffer: Describe
Describe-Selection L L L e e e e e e e e e e e Help: Describe
Frame-Edit-Cursor Window: Frame Edit Cursor
List-All-Commands e e e e e e e e e e e e Help: Commands
List-Files e e e e e e e e File: Directory list
Open-Another-Viewer 000 Window: Open Another Viewer
Overwrite-File! e e e e e File: Overwrite ...
Reset-Help-Buffer Help Buffer: Reset Help Buffer
Reset-Help-Buffer Help: Reset Belp Buffer
Show-Buffers L L e e e e e e e e e e Help: Buffers
Show-Flag-Values L e e Help: Flag Values
Show-Key-Bindings e e e Help: Key Bindings
Show-Menu-Bindings oL Help: Menu Bindings
Show-Operand-Bindings 0oL Help: Operand Bindings
Show-Option-Values e e e e e e e e Help: Option Values
Undo . & . . o e Help Buffer: Undo

Visit-File e e e e e e e e e e e e e e e e e e e File: Visit File

Pan I: An Introduction For Users 41

Visit-Selection L L L e e s e e e e e e e e e e e e e e e e e File: Visit
Write-Selection-To-File File: Write Selection To ...
Write-To-File e e e e e e e e e e e e e . File: Write To ...

D.2 Bindings by Menu

File: Append Selection To « v v v v v v o v v Append-Selection-To-File
File: Directory 1ist L. i e e e e e e e e e e e e e e List-Files
File: Overwrite o . 0 i e e e e e e e e e e e Overwrite-File!
File: Visit File 0 ot i et e e e e e e e e e e e e e e e Visit-File
File: Visit L L L L e e e e e e e e e e e e e e e e e e e Visit-Selection
File: Write Selection To v & v v v v v v v v v e e e e e Write-Selection-To-File
File: Write To ... « . . & & v it i e e e e e e e e e e e e e e e e e e e Write-To-File
Help Buffer: Apropos ¢ . .« o i o e e e e e e e e e e e Apropos-Selection
Help Buffer: Copy ¢ . o v v e s e e s e s e e e e e Copy-To-Clipboard
Help Buffer: Describe L e e e e e e Describe-Selection
Help Buffer: Reset Belp Buffer« t v v v v v v v v o o o Reset-Help-Buffer
Help Buffer: Undo« o . L e e e e e e e e e e e e e Undo
Help: Apropos A11 Lo e e e e e e e e e e e Apropos-All-Symbols
Help: Apropos e e e e e e e Apropos-Selection
Help: Buffers e e e e e e e e e e e e e e e e Show-Buffers
Help: Commands e e e e e List-All-Commands
Help: Describe e e e e e s e v v v v+ . . Describe-Selection
Help: Flag Values ¢ i i v v v v v e e Show-Flag-Values
Help: Key Bindings v 0 0 v v e e e e Show-Key-Bindings
Help: Menu Bindings o v i v e e e e e e e Show-Menu-Bindings
Help: Operand Bindings+ . . . Show-Operand-Bindings
Help: Operand Rierarchy Describe-Operand-Hierarchy
Help: Option Values e Show-Option-Values
Help: Reset Belp Buffer e e e e e . + . . Reset-Help-Buffer
Window: Close v v . v i e e e e e e e e e e e e e e e e Close-Active-Viewer
Window: Frame Edit Cursor v v ¢ v v v v v v e e e e e . Frame-Edit-Cursor
Window: Open Another Viewer+ o« Open-Another-Viewer

E Options Defined in Pan

:auto-fill OPTION
Type: boolean

Default Value: nil

T iff Space & Newline should cause long lines to be broken.

:auto-fill-column OPTION
Type: tixp

Default Value: 65

Max line length for auto-fill.

:autoindent OPTION
Type: boolean

Pan I: An Introduction For Users

Default Value: ¢
T iff Newline-And-Indent should indent.

:autowrap-search

Type: boolean

Default Value: t

Wrap search from one end of file to other?

:backup-on-read

Type: boolean

Default Value: t

Make backup file when beginning to edit a file

:base-frame-font-map

Type: 1listp

Default Value: ("cour.b.14")
Font map for base window.

:base-win-cols

Type: 2ixp

Default Value: 60

Default number of columns in base window.

:base-win-rows

Type: tixp

Default Value: 6

Default number of rows in base window.

:break-to-lisp

Type: boolean

Default Value: t

Break to underlying LISP on tragic error?.

:camel-debug

Type: boolean

Default Valuye: nil

Turn on internal parser tracing.

:checkpoint-freq

Type: fixp

Default Value: 450

Maximum number of command invocations before checkpointing.

:checkpoint-min

Type: tixp

Default Value: 400

Minimum number of command invocations prior to checkpointing.

:clipboard-max-size

Type: tixp

Default Value: 8

Maximum number of clips in clipboard

42

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

Pan I: An Introduction For Users

:col-popover

Type: fixp

Default Value: 16

Minumum characters to move window when scrolling left/right.

:dont-reuse-nodes

Type: boolean

Default Value: t

Turn off node reuse during incremental parsing

:empty-line-char

Type: tixp

Default Value: 46

Character prefix for empty lines.

full-parse-tree

Type: boolean

Default Value: nil

Create full parse tree during parsing?

:help-frame-font-map

Type: listp

Default Value: (“cour.r.12")
Font map for help windows.

thelp-title

Type: stringp

Default Value: "Help window"
Title for help window

:help-win-cols

Type: fixp

Default Value: 60

Default number of columns in-help window.

:help-win-rows

Type: tixp

Default Value: 20

Default number of rows in help window.

:indent-with-tabs

Type: boolean

Default Value: nil

T means use tabs when performing computed indentations

:indentation-chars

Type: stringp

Default Value: * *

List of characters to skip over during autoindent.

siparse-debug
Type: boolean
Default Value: nil

43

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

O®PTION

OPTION

Pan I: An Introduction For Users 44

Turn on incremental parser tracing.

:killring-max-size OPTION
Type: tixp

Default Value: 16

Maximum number of kills retained in kill ring.

:kills-to-clipboard OPTION
Type: boolean

Default Value: nil

If true, the clipboard is used instead of the local kill ring in kill commands.

HIs-flags OPTION
Type: stringp

Default Value: "-1F"

Flags for /bin/ls command use in List-Files

:minor-mode OPTION
Type: stringp

Default Value: "Normal"

Name for local binding set.

:mode-line-fmt OPTION
Type: stringp

Default Value: "File %F %* Y%C %W Mode: YM"

Format string for status information.

:pan-load-search-path OPTION
Type: 1listp

Default Value: (1.] - ~“piper/lib/pan)

Search path used by Load-File command.

:pause-ticks OPTION
Type: fixp

Default Value: 250

Constant multiplier for Pause command.

:proportional-scroll OPTION
Type: boolean

Default Value: ¢t

Vertical scroll proportionally, else fixed screenful at a time.

:region-highlight-op OPTION
Type: (:underline :invert)

Default Value: :underline

Operation for highlighting: :underline or :invert.

:row-popup OPTION
Type: tixp

Default Value: 4

Minimum number rows to move window when scrolling up/down.

Pan I: An Introduction For Users 45

:save-on-system-error OPTION
Type: boolean

Default Value: nil

Save all buffers when error is encountered?

:show-node-reuse OPTION
Type: boolean

Default Value: nil

Turn on tracing for incremental parsing node reuse

:syntax-classes OPTION
Type: listp

Defauit Value: (:word-char :space-char :punct-char :lbracket :rbracket :other)

List of valid syntax classes.

:tabwidth OPTION
Type: tixp

Default Value: 8

Number of characters per tab.

:text-font-map OPTION
Type: listp

Default Value: ("screen.r.12" "screen.b.12" "serif.r.12" "cour.r.12" "cour.b.12")

Font map for text viewers.

:verbose-load OPTION
Type: boolean

Default Value: nil

T ifl verbose file loading is desired.

:verbose-parse OPTION
Type: boolean

Default Value: nil

T iff verbose parsing information is desired.

:verbose-trace OrTION
Type: boolean

Default Value: nil

T iff verbose tracing mode is desired.

:visible-flags OrTION
Type: check-flags

Default Value: (:text-modified :read-only)

Flags visible on control panel.

:win-cols OPTION
Type: tixp

Default Value: 78

Default number of columns per window.

:win-cols-min OPTION

Type: tixp
Default Value: 10

Pan I: An Introduction For Users 46

Minimum number of columns in window; guards against user resizing.

1WIn-rows OPTION
Type: tixp

Default Value: 30

Default number of rows per window.

:Win-rTows-min OPTION
Type: tixp

Default Value: 2

Minimum number of rows in window; guards against user resizing.

:wrap-Qlevel OPTION
Type: boolean

Default Value: t

Automatically wrap operand hierarchy from top to bottom, or from bottom to top.

:zero-index-lines OPTION
Type: boolean

Default Value: t

If T, then arguments to Goto-Line are interpreted as 0-indexed. Otherwise, the arguments are interpreted
as 1-indexed.

F Flags Defined in Pan

:auto-exec FrLac
Presentation: "E"

Behavjour: :invisible-when-cleared

Set when auto-execution related to file suffix has occurred.

:blank-flag FLAG
Presentation: " *

Behaviour: :invisible-when-cleared

Dummy flag for padding flag array.

:lex-ok FLAG
Presentation: "L"

Behaviour: :gray-when-cleared

Set when language file has been scanned.

:panic FLAG
Presentation: "p"

Behaviour: :invisible-when-cleared

Set when panic-mode error recovery has been invoked.

:parse-errors FLaG
Presentation: "t"

Behaviour: :invisible-when-cleared

Set when there are errors in the parse tree.

:re-search-successful FrLac
Presentation: "9"
Behaviour: :invisible-when-cleared

Pan I: An Introduction For Users

Set if the last regular expression search was was successful

:read-only

Presentation: "$"

Behaviour: :invisible-when-cleared
Set when buffer file cannot be written.

:text-modified

Presentation: "#"

Behaviour: :invisible-when-cleared

Set when buffer text has been modified but not saved.

:tree-ok

Presentation: “T"

Behaviour: :gray-when-cleared

Set when language file has been parsed.

47

FLaG

FLAG

Frac

Pan I: An Iitroduction For Users 48

G Pan for GNU Emacs Users

Since Pan’s text-oriented facilities are modeled on the emacs family of text editors,
users familiar with emacs will find much that is familiar. This appendix will help emacs
users get started with Pan as conveniently as possible.

This appendix compares Pan version 1.9 and the emacs editor in use locally,
GNU Emacs Version 18. The comparison reveals compatibility between the two as text
editors, but does not pretend to give a comprehensive picture of the functionality of
either system. Consult the main body of this manual for a more thorough introduction to
Pan.

Pan also provides for manipulating and editing programs using the syntax and
semantics of the language being edited. This structure-based, description-driven facility
is fundamentally more powerful than the language modes supported by emacs, but is not
discussed in this appendix.

Finally, Pan is extensible and customizable in the spirit of emacs, tut techniques for
doing so are beyond the scope of this appendix.

G.1 Key Bindings

Both Pan and GNU Emacs use keymaps, a dynamic mechanism for binding editor
commands to keystrokes (or keystroke sequences). A global keymap is always present
during an editing session, but may be effectively extended and altered by a local keymap
associated with each buffer being edited. Local keymaps are typically created as part of
special editing modes (see G.8, ‘‘Special Editing Modes’’).

This section compares only default key bindings in the global keymap; these are the
bindings normally in effect for ordinary text editing. Keymaps, both global and local,
may be easily customized in both editors; both editors support many commands that are
not bound in the default keymap.

The key bindings currently in effect for a Pan buffer may be displayed by invoking
the *‘Key Bindings’’ command from the help menu.

Columns 1 and 2 of this list are derived from the global default key bindings in the
local version of GNU Emacs. Column 3 identifies Pan’s compatibility with one of the fol-
lowing symbols:

o some equivalent supported now

o some equivalent anticipated, but unimplemented

! now bound to something else in Pan, as noted

blank no equivalent supported in Pan, contributions welcome

and column 4 lists the Pan command binding. Many potential key stroke sequences
remain unbound in both editors, and there are many commands tc which no sequences
are bound. A list of all available Pan commands may be displayed by invoking the
‘‘Commands’’ command from the help menu.

Pan!l: ~n Introduction For Users

49

Key GNU Emacs Binding Code PanBinding

C@ set-mark-command . Set-Mark

C-a beginning-of-line ° Move-To-BOL

C-b backward-char ° Previous-@Level

C-c mode-specific-command-prefix) Command prefix

Cd delete-char ° Delete-@Level

C-e end-of-line) Move-To-EOL

C-f forward-char ° Next-@Level

C-g keyboard-quit ° Abort-Command

C-h help-command ! Delete-Previous-Character
TAB indent-for-tab-command) Self-Insert

LFD newline-and-indent ° Newline-And-Indent
C-k kill-line) Kill-To-EOL

C1 recenter ! Redraw

RET newline ° Insert-Newline

C-n next-line ° Next-Line

C-o open-line ° Open-Line

C-p previous-line ° Previous-Line

C-q quoted-insert ° Quote-Insert

Cr isearch-backward ° Re-Search-Backward
C-s isearch-forward ° Re-Search-Forward
C-t transpose-chars) Transpose-Characters
C-u universal-argument ° Read-Prefix-Arguments
C-v scroll-up ° Forward-Vscroll

C-w kill-region o Kill-Selected-Region
C-x Control-X-prefix ° Command prefix

C-y yank ° Yank-From-Kill-Ring
C-z suspend-emacs ! Command prefix
ESC ESC-prefix) Command prefix

C-] abort-recursive-edit

C-_ undo

SPC ..~ self-insert-command) Self-Insert

DEL delete-backward-char ° Delete-Previous-Character
C-xC-a add-mode-abbrev ! Toggle-Auto-Fill

C-x C-b list-buffers ° Show-Buffers
CxC-c save-buffers-kill-emacs) Write-Files-Exit
C-xC-d list-directory . List-Files

C-xC-e eval-last-sexp

C-x C-f find-file ® Visit-File

C-xC-h inverse-add-mode-abbrev

C-xTAB indent-rigidly ! Insert-File

C-x LFD

C-x C-k

C-x C-1 downcase-rcgion {see Esc C-1} ! Load-file

C-x RET ! Save-All-buffers

C-x C-n sct-goal-column

PanI: An Introduction For Users

50

Key GNU Emacs Binding Code PanBinding
C-xC-0 delete-blank-lines ° Delete-Blank-Lines
CxC-p mark-page

C-x C-q toggle-read-only o Toggle-Read-Only
C-xC-r find-file-read-only

C-xC-s save-buffer) Save-Buffer-File
C-x C-t transpose-lines o Transpose-Lines
C-x C-u upcase-region [see Esc C-u]

C-x C-v find-altemate-file

Cx C-w write-file) Write-To-File
C-xC-x exchange-point-and-mark o Swap-Dot-And-Mark
C-x C-y

C-xC-z suspend-emacs ! Interrupt-Pan

C-x ESC repeat-complex-command

Cx! ! Cycle-Show-Kill
Cx$ set-selective-display

C-x(start-kbd-macro

C-x) end-kbd-macro

Cx+ add-global-abbrev

Cx- inverse-add-global-abbrev

Cx. set-fill-prefix

C-x/ point-to-register

Cx0 delete-window ° Close-Active-Viewer
Cx1 delete-other-windows

Cx2 split-window-vertically ° Open-Another-Viewer
Cx4 ctl-y --i-prefix

Cx5 split-window-horizontally

C-x; set-comment-column

Cx< scroll-left ° Left-Hscroll

Cx= what-cursor-position) Show-Status-Line
C-x > scroll-right) Right-Hscroll
C-x? ! Show-Kill

Cx | backward-page

C-x] forward-page

Cx~ enlarge-window 0

C-x* next-error

Cxa append-to-buffer

Cxb switch-to-buffer ' Visit-Buffer

Cxd dired {see C-x C-d]

Cxe call-last-kbd-macro

Cxf set-fill-column) Set-Auto-Fill-Column
Cxg insert-register

Cxh mark-whole-buffer) Select-Buffer

Cxi insert-file [see C-x C-i}

C-xj register-to-point

C-xk kill-buffer) Remove-Buffer

PanI: An Introduction For Users 51
Key GNU Emacs Binding Code Pan Binding
Cx1 count-lines-page ! Goto-Line
C-xm mail
Cxn narrow-to-region
C-xo other-window
Cxp narrow-to-page
Cxq kbd-macro-query
Cxr copy-rectangle-to-register
C-xs save-some-buffers [see C-x C-m]
Cxu advertised-undo . Undo
Cxw widen
Cxx copy-to-register
Cxy
Cx { shrink-window-horizontally
Cx} enlarge-window-horizontally
C-x DEL backward-kill-sentence 0
ESCC-@ mark-sexp) Select-Expr
ESC C-a beginning-of-defun) [see lisp-mode]
ESCC-b backward-sexp ° Backward-Expr
ESCC-c exit-recursive-edit ! Capitalize-Selection
ESC C-d down-list ! Deselect-Region
ESCC-e end-of-defun ° [see lisp-mode]
ESCC-f forward-sexp ° Forward-Expr
ESCC-h mark-defun ° [see lisp-mode]
ESCTAB ! Indent-Like-Previous-Line
ESCLFD indent-new-comment-line
ESC C-k kill-sexp ° Kill-Expr
ESCC-1 ! Lowercase-Selection
ESCRET ! Move-Selection-To-Cursor
ESC C-n forward-list
ESCC-o split-line ° Split-Line
ESCC-p backward-list
ESCC-q
ESCC-r
ESCC-s isearch-forward-regexp
ESCC+t transpose-sexps
ESC C-u backward-up-list ! Uppercase-Selection
ESCC-v scroll-other-window
ESC C-w append-next-kill ! Select-Region-Dot-To-Mark
ESCC-y ! Copy-Selection-To-Cursor
ESCESC eval-expression ° Execute-Lisp-Line
ESCCA indent-region
ESCSPC just-one-space ° Just-One-Space
ESC! shell-command ! Cycle-Show-Clipboard
ESCS$ spell-word
ESC % query-replace ! Show-Match

52

PanI: An Introduction For Users
Key GNU Emacs Binding Code PanBinding
ESC’ abbrev-prefix-mark
ESC (insent-parentheses ° Insert-Parentheses
ESC) move-past-close-and-reindent
ESC, tags-loop-continue
ESC - indent-for-comment
ESC. find-tag
ESC0.9 digit-argument
ESC; indent-for-comment
ESC< beginning-of-buffer) Move-To-BOB
ESC= count-lines-region o
ESC > end-of-buffer . Move-To-EOB
ESC? ! Show-Clipboard
ESC@ mark-word ° Select-Word
ESC | backward-paragraph o
ESC\ delete-horizontal-space ° Delete-Horizontal-Space
ESC) forward-paragraph 0
ESC~ delete-indentation ° Delete-Indentation
ESCa backward-sentence o
ESCbHb backward-word ° Previous-Word
ESCc capitalize-word ° Capitalize-Word
ESCd kill-word ° Kill-Word
ESCe forward-sentence 0
ESCf forward-word . Next-Word
ESCg fill-region
ESCh mark-paragraph
ESCi tab-to-tab-stop
ESCj indent-new-comment-line
ESCk kill-sentence 0
ESC1 downcase-word ° Lowercase-Word
ESCm back-to-indentation ® First-Non-Blank
ESCq fill-paragraph
ESCr move-to-window-line
ESCt transpose-words o
ESCu upcase-word ° Uppercase-Word
ESCv scroll-down . Backward-Vscroll
ESCw copy-region-as-kill) Copy-Selection-As-Kill
ESCx execute-extended-command ° Execute-Named-Command
ESCy yank-pop ° Cycle-Yank
ESCz zap-to-char
ESCH! shell-command-on-region
ESC~ not-modified
ESCDEL backward-kill-word ' Kill-Previous-Word

The auxiliary table below displays Pan default bindings for keys (and key
sequences) that do not exist in a strictly keyboard based editor like GNU Emacs.

PanI: An Introduction For Users 53

Key Pan Binding

Mouse_Left Mouse-Select-@Level
Mouse_Middle Mouse-Extend-@Level
Mouse_Right Execute-From-Menu
Esc-Mouse_Left Mouse-Select-Fullword
Esc-Mouse_Middle = Mouse-Extend-Selection-Fullword
14 Undo

Lé Copy-To-Clipboard

L8 Paste-From-Clipboard
Esc-L8 Replace-From-Clipboard
L10 Cut-To-Clipboard

F1 Set-@Level-To-Character
F2 Up-@Level

F3 Down-@Level

Section 2.3.1 in the manual discusses Pan key binding more generally; section 4.2
explains how to customize key bindings.

G.2 Menus

Commands in Pan may be bound to menus as conveniently as they may be bound to
keys, both locally and globally. Menu bindings have the advantage of being visible to
the user, but the disadvantage of taking longer to invoke.

Default menu bindings include some commands that are bound to both menus (for
easy learning) and to keys (for convenience). Notable examples are the clipboard opera-
tions (see G.5, ‘‘Cut/Paste/Kill/Yank’’).

The base buffer and help buffer each have specialized menus. All other viewers
provide a standard menu to which special purpose items may be appended in special edit-
ing modes (see G.8, ‘‘Special Editing Modes’’).

The Pan menu associated with a viewer appears in response to a press on the right
mouse button when the cursor is over the viewer’s text viewing area.

Section 2.3.2 in the manual discusses Pan menu binding more generally; section 4.2
explains how to customize menu bindings.

G.3 Undo

Pan has a general undo facility that behaves more like the one in vi than the one in
GNU Emacs. The command Undo (bound by default to keys L4 and “X-u and to the main
menu) reverses the most recent editing action. Undo is itself an editing action, so two
consecutive invocations of Undo will result in no net change.

Certain classes of editing actions (notably insertions and deletions), when per-
formed consecutively, are treated by Pan’s Undo as a single action that represents their
aggregate effect.

PanI. An Introduction For Users 54

Unlike GNU Emacs, cursor motion in Pan is considered an undoable editing action.
Section 3.5 in the manual discusses Pan’s undo mechanism more generally.

G.4 Operand Level

The operand level mechanism in Pan has no counterpart in GNU Emacs or any other
common editor. The operand level (or simply the level) is a persistent mode, local to
each viewer. Its current value (usually one of ‘‘character,”” ‘‘word,’’ or ‘‘line’’) is visi-
ble on the viewer’s control panel and may be set either from the control panel or by three
commands bound to keys F1, F2, and F3.

The level specifies how the operands of certain generic commands (those whose
names contain @Level) will be determined. For example, the generic command Next-
@Level moves the curs.r forward by one character when the level is ‘‘character’’, but
when the level is ‘‘word”’ it moves the cursor forward by one word. Level-sensitive
(generic) commands are bound by default so that when the level is ‘‘character,”” they
mimic GNU Emacs. Thus, Next-@Level is bound to °F, the slot where the Next-
Character command would otherwise appear.

The motivation for this mechanism becomes clear in special editing modes where
tree building occurs. Extra operand levels may be defined by specifications in the Ladle
description of a programming language. For example, in asple-mode (asple is a demons-
tration programming language) possible levels are:

Declaration
Statement
Expression
Ermror
Lexeme
Line

Word
Character

The operand level mechanism is supported by a second level of mapping, analogous
to keymaps. Thus, for example, the key “F is bound to Next-@Level in the keymap;
Next-@Level is bound, in turn, to the command Next-Character when the level is *‘char-
acter.”” Operand bindings are, of course, customizable too.

Section 2.3.3 in the manual discusses Pan’s operand binding mechanism more gen-
erally.

G.5 Cut/Paste/Kill/Yank

The functional area of Pan most likely to confuse experienced GNU Emacs users is
the management of text that is to be deleted and/or moved among buffers. The two edi-
tors support models that are superficially alike but differ in crucial ways. The potential
for confusion is exacerbated by the inherently invisible nature of some manipulations in
this category.

—>

-

* PanI: An Introduction For Users 55

This section presents the basic model supported by each editor. It enumerates the
basic abstractions (drawing the pivotal distinction between buffer-local and editor-
global) and gives examples of commands that operate upon them. Section 3 of the
manual presents a more thorough introduction to Pan’s editing model.

G.5.1 The GNU Emacs Model

Window Abstractions

e A GNU Emacs buffer may have one or more windows that provide an independently
scrollable view of the buffer.

e Exactly one GNU Emacs window is active at any time.

e The acrive window has a visible dot (a.k.a. cursor), at a specific point in the buffer; the
dot is constrained to be always visible in the active window.

e A visible, inactive window does not display its dot, but retains its location should it
become active again. Invisible windows do not exist, and therefore retain no state.

Buffer Abstractions
e Each buffer may have a invisible mark, independent of any dots, at a specific point in
the buffer.

e If a buffer has a mark currently set, the text interval between dot and mark in the aca-
tive window implicitly (and invisibly) defines the region.

Global Abstractions

e The editor contains a single, invisible kill ring onto which text from various buffers
may be pushed.

Operations

e Killing any text ('K, "W, etc.) pushes it onto the global kill ring.

o The command copy-region-as-kill (Esc-w) pushes the region onto the global kill ring
without killing.

e The command yank ("Y) inserts the most recently pushed text (from any buffer) at the
dot in a specific buffer.

e The command yank-pop (Esc-y) removes the result of an immediately preceding yank
operation, pops the most recently pushed text off of the kill ring, and replaces the
removed text with the new top of the kill ring.

There are, of course, more operations for manipulating the kill ring explicitly, but this
description is sufficient for comparison. GNU Emacs also supports a number of named
global registers into which text can be stored. Pan supports nothing similar, so they will
not be discussed here.

Pan I: An Introduction For Users 56

G.5.2 The Pan Model

In Pan it is necessary to distinguish between buffers and viewers. A single file is
always edited in a single buffer. A Pan buffer may have one or more viewers visible on
the screen, or it may have none at all. Viewers are something like GNU Emacs windows,
since many of them may be attached to a buffer, but they retain more state, more per-
sistently than GNU Emacs windows.

Viewer Abstractions

e Each viewer associated with a buffer has a visible dor (a.k.a. cursor) at a specific
point in the file. Like GNU Emacs, there as many dots associated with a buffer as there
are viewers. Unlike GNU Emacs, (a) the dot is not consirained to be in the visible part
of a viewer, (b) the dot is visible even when a viewer is not active (doesn’t have the
keyboard focus in SunView terminology), and (c) the location of the dot (along with
size, scroll position, and screen location) persists while a viewer is invisible.

Buffer Abstractions

e Like GNU Emacs, each buffer may have an invisible mark, independent of viewer dots,
at a specific point in the file.

e Somewhat like GNU Emacs, the text interval between a dot (in a viewer) and mark (in
a buffer, if set) implicitly (and invisibly) defines the region. Unlike GNU Emacs, this
region is of little interest to the Pan user.

e Each buffer may have a visible selection, independent of the mark and any dots. The
selection appears highlighted wherever visible in any active viewer. The selection
appears underlined, but a user option (global or buffer local) may be changed to
request inverse highlighting instead.

e Each buffer has a kill ring that is, unlike GNU Emacs, local. The mechanisms by
which successive kills are coalesced are less well developed than in GNU Emacs.

Global Abstractions

e The editor contains a single clipboard, also a ring, onto which text from various
buffers may be pushed.

Operations
This section lists examples of Pan commands related to these abstractions. Each
command mentioned will be followed by the key to which it is bound by default, if any.

e Like GNU Emacs, deleting text removes it from a buffer, and it is not retained (except
on the undo stack):

PanI: An Introduction For Users 57

Delete-Character ("D)
Delete-Previous-Character (DEL)
Delete-Word
Delete-Region-Dot-To-Mark
Delete-Selected-Region
Delete-Blank-Lines ("X-"0)
Delete-Horizontal-Space (Esc-)
etc.

Killing any text pushes it onto the buffer’s local kill ring:

Kill-Word (Esc-d)
Kill-To-EOL ('K)
Kill-Selected-Region ("W)
Kill-Region-Dot-To-Mark
etc.

Like GNU Emacs, text can be pushed onto the buffer’s local kill ring without removing
it:

Copy-Selection-As-Kill (Esc-w)

Like GNU Emacs, text may be retrieved from the top of a buffer’s local kill ring by
yanking, causing it to be inserted at the dot; Cycle-Yank specifies that the kill ring be
cycled before the yank and insertion. However, unlike GNU Emacs, both yank opera-
tions may be modified by a prefix argument, in which case yanked text replaces the
current selection instead of being inserted at the dot. Thus, Pan’s Yank-From-Kill-
Ring with no prefix arguments (key sequence ""Y") is similar to the GNU Emacs
‘“‘yank’’ command, and Pan’s Cycle-Yank with prefix arguments (key sequence "“U
Esc-y") has an effect similar to the GNU Emacs ‘‘yank-pop’’ command.

Yank-From-Kill-Ring ("Y)
Cycle-Yank (Esc-y)

A buffer’s local kill ring may be cycled, bringing successive entries to the top, and the
text currently at the top may be viewed in the Help buffer.

Cycle-Kil!
Show-Kill ("X-?)
Cycle-Show-Kill ("X-!)

Some operations use the buffer’s current selection as an operand (see also clipboard
operations below):

Append-Selection-To-File
Apropos-Selection
Write-Selection-To-File
Kill-Selected-Region ("W)
Lowercase-Selection ("X-"U)
etc.

vy

PanI: An Introduction For Users 58

o One can create a selection either with the mouse or from the dot and mark; the latter
option is included only for compatibility with emacs.

Select-Region-Dot-To-Mouse (Mouse-Right)
Select-Region-Dot-To-Mark (Esc-"W)
Deselect-Region (Esc-"D)

e Some commands operate on both the selection and the dot. GNU Emacs has no
equivalents because it supports no abstraction corresponding to a selection that is
independent of the dot.

Copy-Selection-To-Cursor (Esc-"Y)
Move-Selection-To-Cursor (Esc-"M)

e Text may be pushed onto the clipboard from the current selection (Copy or Cut). Text
may be retrieved from the top of the clipboard, and it may be either inserted at the dot
(Paste) or used to replace the current selection (Replace).

Copy-To-Clipboard (L6)
Cut-To-Clipboard (L10)
Paste-From-Clipboard (L8)
Replace-From-Clipboard (Esc-L8)

e The clipboard may be cycled, bringing successive entries to the top, and the text
currently at the top may be viewed in the Help buffer.

Cycle-Clipboard
Show-Clipboard (Esc-?)
Cycle-Show-Clipboard (Esc-!)

G.6 Options

Many aspects of Pan’s operation may be controlled by the settings of options,
somewhat analogous to GNU Emacs variables (although Pan also has variables). As with
bindings, options may have both global and buffer-local values. The help command
List-All-Options lists the option values currently in effect for the active buffer. Some
user-level commands are available for setting options dynamically, for example Set-
Auto-Fill-Column and Toggle-Read-Only. Section 4.3 of the manual explains in more
detail how to manage Pan options.

G.7 Help

Pan has a help mechanism that is somewhat different from the one in GNU Emacs.
All output from help commands appears in the distinguished buffer named ‘‘Help Info.”
Output from some commands (for example the command Describe that provides addi-
tional information about a selected Pan symbol) is inserted among existing text in the
help buffer. The command Reset clears the contents of the help buffer; some help com-
mands do this automatically before responding.

P

Pan I: An Introduction For Users 59

Section 3.6 in the manual presents a more detailed explanation of Pan’s help
mechanism.

G.8 Special Editing Modes

Both editors support specialized editing modes that are optimized for editing certain
classes of files, C programs or TeX documents for example. A mode is typically invoked
by pattern matching against file extensions.

In its simplest form, a mode contains alternate key bindings and special purpose
commands.

Pan modes can operate like GNU Emacs modes, but have additional flexibility. For
example, Pan modes may also add special purpose submenus. Language editing modes
load Ladle tables for parsing and tree building and provide extra commands for tree navi-
gation and manipulation.

The short tables below describe two textual modes supported by GNU Emacs, along
with such textual Pan equivalents as currently exist. These modes are experimental and
incomplete. Full structure- and semantic-based Pan support for these languages is under
development. For a discussion of Pan’s true language editing modes, see section 3.12 of
the manual.

Lisp Mode Bindings

Pan contains a small set of text-oriented functions for operating on LISP expres-
sions. More powerful functions await true language-based editing on LISP.

Key GNU Emacs Binding Code Pan Binding

TAB lisp-indent-line

DEL backward-delete-char-untabify

ESC Prefix Command

ESCC-a beginning-of-defun {std.] ° Previous-Function
ESCC-e end-of-defun [std.] ° End-Of-Function

ESCC-h mark-defun [std.] ° Select-Function
ESCC-q indent-sexp

ESCC-x lisp-send-defun

ESC| backward-paragraph {std.]
ESC] forward-paragraph [std.]

——

Previous-Function
Next-Function

o

C Mode Bindings

There is no special mode yet for C in Pan, either text-oriented or language-based.

Pan I: An Introduction For Users

Key GNU Emacs Binding Code Pan Binding
TAB c-indent-command

DEL backward-delete-char-untabify

ESC Prefix Command

: electric-c-terminator

; electric-c-semi

} electric-c-brace

{ electric-c-brace

ESCC-q indent-c-exp
ESCC-h mark-c-function

