
1I IE COPY
Productivity Engineering in the UNIXt Environment (

(v 1 "'

00

rPan 1: An Introduction for Users

TL C Technical Report

JELECTE flM%
NOV 29 1990 S. L. Graham

W) Principal Investigator

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

-S cMTr .ZC A Contract No. N00039-84-.0089

Apptoved tat pltl "ee8So
D.lt=UUezo UU=19mtd # August 7, 1984 - August 6, 1987

Arpa Order No. 4871

tUNIX is a trademark of AT&T Bell Laboratories

>-

s

/

Pan I
An Introduction For Users'

Robert A. Ballance
Michael L. Van De Vanter

(;6

Computer Science Division Acce 3 ion For

Department of Electrical Engineering and Computer Science NTIS CVR&I
University of California DT;C TAB 7_

Berkeley, California 94720 U,:j-noL-ccd D
J :stjficat D-

September, 1986
Revised Septem ber, 1987 By

Av:ity Co

PIPER Working Paper 87-5 Dist o rclul

Abstract
Ii.

Pan is a prototype and testbed for language-based editors and viewers. Its design addresses
the needs of experienced users who manage complex objects such as large software systems. All of
Pan's components are multi-lingual, incremental, description-driven, customizable, and extensible.
Viewing is facilitated by semantics-based browsing and an object model which integrates text and
structure. Pan is intended to share information with other tools, allowing integration into a larger
language, program, and document development environment.

This document, a users manual, describes the basic operational facilities of Pan I, the current
implementation. It explains the concepts behind Pan's editing environment, introduces editing
commands, and discusses techniques for customization. Appendices list command bindings (to
both keystrokes and menus), buffer options, buffer flags, and a compatibility guide for GNU Emacs
users.(

'Sponsored by the Defense Advanced Research Projects Agency (DoD), Arpa Order No. 4871 (monitored by
Space and Naval Warfare Systems Command under Contract No. N00039-84-C-0089), by IBM under IBM Research
Contract No. 564516. and by the State of California MICRO program. Robert A. Ballance and Michael L. Van De
Vanter were supported in part by MICRO fellowships.

APPROVe-[" FQ F :-L!C r-ELEASE

. U .L L D

Contents

I Introduction

2 Concepts 1
2.1 Buffers 1
2.2 Viewers 2

2.2.1 Frames 3
2.2.2 The Information Panel 4
2.2.3 The Editing Area .. 5
2.2.4 Font Maps 5

2.3 Bindings 5
2.3.1 Key Bindings ... 5
2.3.2 Menu Bindings ... 6
2.3.3 Operand Level Bindings 7

2.4 The Edit Clirsor 7
2.5 Regions and The Selection 7
2.6 Rings 8

2.6.1 The Clipboard 8
2.6.2 Kill Rings 8

2.7 Marks and the Mark Stack 8
2.8 Syntax Classes 9
2.9 Options, Flags, and Variables 9
2.10 Communication with Other SUNVIEW Clients 9
2.11 What's Where? 9

3 Editing with Pan 10
3.1 Getting Started 10
3.2 Quitting Pan 10
3.3 Suppling Arguments to Commands 11

3.3.1 Numeric Prefix Arguments 11
3.3.2 Prompts and Pop-Ups 11

3.4 Aborting Commands .. 11
3.5 Undoing Actions 12
3.6 Getting Help 12
3.7 Buffers and Viewers 13

3.7.1 Visiting Files and Buffers 13
3.7.2 Saving and Writing Files 14
3.7.3 Manipulating Viewers 14

3.8 Scrolling 15
3.9 Cursor Motion 16

3.9.1 Mark Commands .. 16
3.10 Editing Text 17

3.10.1 Setting the Operand Level 17

Pan I: An Introduction For Users ii

3.10.2 Setting the Selection 17
3.10.3 Inserting Text .. 18
3.10.4 Filling Text 19
3.10.5 Deleting Text 19
3.10.6 Killing Text ... 20
3.10.7 The Clipboard 20
3.10.8 Copying and Moving Text 21
3.10.9 Commands for Changing Case 21
3.10.10 Transposing ... 22

3.11 Searching Text 22
3.11.1 Regular Expressions 22
3.11.2 Balanced Bracket Commands 22

3.12 Editing Programs .. 23
3.12.1 Language-Oriented Viewers 23
3.12.2 Selection 23
3.12.3 Navigation 25
3.12.4 Parsing and Syntactic Errors 26
3.12.5 Editing 27
3.12.6 Displaying Trees using Ptree 28

3.13 When Things Go Wrong 28

4 Simple Customization 28
4.1 Start-Up Processing 29
4.2 Bindings 29
4.3 Getting and Setting Option Values 30
4.4 Lisp-Oriented Commands 31

5 Acknowledgments 31

References 31

6 Glossary 32

A Default Key Bindings 34
A.1 Bindings By Command Name 34
A.2 Bindings By Key 36

B Default Menu Bindings in a Text Buffer 38
B.1 Bindings by Command Name 38
B.2 Bindings by Menu 38

C Default Menu Bindings in the Base Buffer 39
C.1 Bindings by Command Name 39
C.2 Bindings by Menu 40

Pan I: An Introduction For Users iii

D Default Menu Bindings in the Help Buffer 40
D.1 Bindings by Command Name 40
D.2 Bindings by M enu 41

E Options Defined in Pan 41

F Flags Defined in Pan 46

G Pan for GNU Emacs Users 48
G .1 K ey Bindings 48
G .2 M enus . 53
G .3 U ndo . 53
G.4 Operand Level 54
G.5 Cut/Paste/Kill/Yank 54
G .6 O ptions . 5S
G .7 H elp . 58
G.8 Special Editing M odes 59

Pan I: An Introduction For Users

1 Introduction

Pan is an editor for text- and tree-structured documents that uses the mouse, menus, and multiple
windows to provide "cut and paste" editing. The system runs on Sun Workstations 2 under under
UNIX 3 and Release 3.2 (and later) of SUNVIEW.

The text-oriented facilities of Pan are modeled on the Emacs family of text editors. Users
familiar with an Emacs-style editor will have little trouble learning Pan. Pan is extensible and
customizable in the spirit of Emacs[6].

Pan also provides for manipulating and editing programs using the syntax and semantics of the
language being edited. The current version of Pan uses only information about the syntax of the
language; the component that uses semantic information is now under development.

This document is an informal introduction to Pan I. It contains essential information for editing
with Pan. To extend the system, though, you'll want the information in The Pan Extension Man-
ual[2]. Until that manual is available, you may want to contact the Pan group (panpipes@sequoia)
directly. For more general background on Pan, consult The Architecture of Pan I[3].

Throughout this document, "Pan" refers to Pan I, the prototype implementation. Pan II, a
major revision of Pan I, is being designed. Your constructive comments on Pan I will help us to
provide a better environment with Pan II. Let us know what you think!

2 Concepts

This section is a brief introduction to the terminology and notation of Pan. Since many of the
concepts differ in meaningful ways from similar notions in Emacs, it bears careful attention. Ap-
pendix G compares the text-oriented concepts and facilities of Pan with those supported by GNU
Emacs[7]

2.1 Buffers

A buffer is the focus of editing attention for a single object. (A single object is a text file in the
current version.) During editing, Pan manages several buffers.

Along with the object being edited, each buffer has

* one or more viewers,

" a single visible selection,

" key, menu, and operand-level bindings,

" an operand-level setting,

* option values,

" flag values,

'Sun Workstation, and SunView are registered trademarks of Sun Microsystems, Inc.
"UNIX is a registered trademark of AT&T Bell Laboratories.

Pan I: An Introduction For Users 2

e a mark stack,

* a kill ring, and

e definitions of character syntax classes.

The viewers associated with a buffer share the selection, bindings, options, and other values owned
by that buffer.

All buffers in Pan are named. The name of a buffer is the name of the object being edited in
that buffer. In the current release, the name is the name of the nle being edited.

The base buffer and the help buffer are special buffers maintained by the system. The base
buffer is your doorway to Pan: within its edit window are the names of the buffers being edited.
As new buffers are created, their names are added to this list.

The base buffer differs from other buffers in two ways: only the base buffer contains Quit in its
frame menu and only the base buffer can be made iconic. The base buffer is always visible on the
screen, perhaps as an icon.

The help buffer is used for displaying help and other information. See Section 3.6 for more about
help facilities.

Most commands act on the active viewer of the active buffer. The active viewer is the viewer
in which the most recent keystroke or mouse action occurred. The active buffer is usually the buffer
that owns the active viewer.

Figure 1 shows the screen of a workstation running Pan. The base buffer appears in the upper
left corner; it lists two other buffers, the help buffer and a buffer named "manual. tex". Buffer
manual. tex (containing a file of the same name) is currently active and has two separate viewers
open onto it. The help buffer, visible in the upper right corner, currently shows the bindings in
effect for the active buffer.

2.2 Viewers

Each buffer has one or more viewers-independent windows onto the contents of the buffer. A
viewer provides a display mechanism, scroll bars, a message line, and an edit cursor.

Viewers exist independently from the SUNVIEW frames (see below) in which they are displayed.
Thus there can be buffers and viewers that are not visible on the screen. When visible on the
screen, viewers can be manipulated like any SUNVIEW window.

A buffer retains its viewers even when the viewers are not visible on the screen. All of the viewers
opened onto a single buffer share that buffer's contents: its bindings, its option and flag values,
and its selection. However, each viewer has its own independent edit cursor.

Viewers onto textual objects (the only kind supported in the current version) display text as
if it were an infinite quarter-plane of characters, with newlines separating each line. Rather than
wrapping lines when they reach the right-hand edge of the viewport, the lines appear truncated.
The horizontal scroll bar, and horizontal scrolling commands allow you to see text to the right (or
left) of the current edit window.

A viewer is partitioned into three areas: the frame, the information panel, and the editing area.

Pan I: An Introduction For Users 3

ILE ~ ~ ~ .. 4 e ai'0 .i1,a& s

r Lep Into 5~kj~e

If-e.L rMd-aatIt.1n

.,.. . S 3dra,-

Wert -Line
Opor-Ll1o -C

PA. a) (B Level character- ,s
NL6 jsag@: textWW AtCiaa rSachIkd

Re-Smai-ch-Poroard .

Trarspast-Cra.-ters
'IC. f is a V.r load - Prix-Argiw~s
C'. e motl ,,ca. ie~ riate oearxis m', accwev d.Fr.r-~r~1-

'he a:"-.* e.-ra- is eas'l IN# Oi e b , teat ovill tie acii, viewe. 9111-S.etod-Ro.ct

s-~ t& acre&,' a' a rprortiol rv"-% n \Par.~o:-A*-r1

\C:11or' -08:. image C I\aaift-g. bast. hgl;. n t .8g86 Le~el. Miaotta

ol bast tl~'fe loptars tIr eq P~ r -t tiCt le" *o~~ I
11Pc ti l. 0,r'

4
t ant ; bofe' no&*: ~~t~ar

.*r .qa QC t r ,. riair' a '"9It of the * 'som e 71,j~e -a! orf3 r' -- hilP'T- nderirdei
rt . e *'i o icC NtI.: sepset Sil~e-1 etr On ic! . . ~ic t.cI lol!V CCi i r

a ii t,e., ' crIt It, tie uppi igri co-arrir
c-*-,1, i'i0.6 IS bii~Ngs1 i 0-'i-1 301 IS ct,"c I., A vlm prc.106C a display sotrai sl, scroll pars, a w~sags.

~~-3-zro. a dis.'ay *saist, scrc'' ba's. a S.et~ r n' l r lssrg' :ev a e ar'atitl

ar., \sjii'ee' prnac.

ce I *r~ ratppoirO"IL Irs In* A 0iaflr retdinm its v'eve-s evren alt tree viewers~-eie I~~i ae SC &,*raiS Y, r:t ve5,'# or PIn sce.
_.e~ ill at, I xc arc r'ees: b5t, thre '(0el)s optlea oti a sirg'e -{Sjt~er) shar tieD" t-fle-
i, 5' all lo isbe of hescvi rat ~ ~ ~ ~ ~ ~ ~ ~ I a';o rateo h ce.:rats.as riie ncrs, its optinstiSc Cog ivaacs, a" itS Wctiit.

11 $-.,.a hs tsa. irle;1t -0;:Cr soat).

I:'s K- as if it ar-e or tnlnte quptam-paie o 'lco
Ih ail eri a i rt'ig owacit . Ital'ieritse. ,rs;o in eses

Icrh nr ' c@&-h a t-*) edeC h 40prthe c-,* *opt linace. 51

Figure 1: ScreeL image of Pan sljowing base, help. and text buffers

2.2.1 Frames

The frame surrounding a viewer responds to the normal SUNVIEW prtWoco1ls]J. Those protocols
can be used to independently position and size the viewer. Figure 2 shows a .-ieWer with its frame
menu exposed.

The frame associated with the base buffer is the only one containing thc items Close and Quit
inj its frame menu. INhen Close is chosen. all of the visible viewe-crs disappear from the screen. and
an icon for Pan appears. Opening the icon reopenls the other viewers. When Quit is chosen, you
Iwill be offered the chance to save any modified buffers before exiting. This is the normal way to
terminate an editing session.

Frame,; other thati the frame associated with the base buffer have the Done menu itemn in their
frame menu. Selecting this item causes its viewer to disappear from the screen. Internal state of
the viewer is retained even when the viewer is not visible.

Pan I: An Introduction For Users 4

h.lP 11310

IAO

PDAN LO06:101Lvl CP"a..cto'

161ndow do~te Ing 8er~ f the, VIII , ~ laf0 V c~ Or

r vi de a*3 r'gt-*b' tig scfa19 Ilr 'CO t 1''1 age' P'C t1 Rsz

. 1 V. 33, ,b"o

F- iurle :Pan withcrer aO' ~r E m8aenu lisibl

a ~~ o viwrwe h iwri pned ands ae dealca ;^t-fed Snhena the iwriscoe

2.2.2to The itoraso Paneln-CO & Aa, o n

Inside the frame, at the tope of theOc viewe, hsis a0 pane# otannVifrato botte beten
viewe. Thi incldes tebufer on oae othet languag k~e bD ein eIed th prn eecinlvl

messae lie, ad th value of e arous fg atieer onto11 the help bufferr conta#.Rein nyatilen
azol mesag tooine.ic

Pan I: An Introduction For Users 5

2.2.3 The Editing Area

Below the information panel is the editing area. This area includes horizontal and vertical scroll
bars, and the actual edit window. Pressing the right button of the mouse over the edit window of
the viewer activates the Pan menus for that buffer. Selecting an item from those menus executes
the command bound to that selection.

2.2.4 Font Maps

Every character in Pan's internal text representation contains a font code. Each viewer has an
associated font map, which associates font codes with internal font descriptors. A font map
contains from 1 to 16 entries.

Internally, fonts are referred to as "font 0", "font 1", etc. The first elemen of the list (foi 0) is
the default font; unspecified font codes revert to the default font.

Pan maintains three default font maps: one for normal viewer, one for the base buffer, and
one for the help buffer. You can alter these defaults by setting th options :text-font-map, :base-
frame-font-map, and :help-frame-font-map respectively. The standard specification for a font map is
a zero-indexed list of font names containing from 1 to 16 names. For example, the default value of
the option :text-font-map is

("screen. r. 12" "screen.b.12" "serif.r.12" "cour.r.12" "cour.b.12")

Currently, Pan offers only limited support for manipulating font codes in the text representation.
Standard text viewers use only the default font. Section 3.12.4 describes a more elaborate use of
font maps in conjunction with tree-structured documents.

2.3 Bindings

A binding associates a sequence of keyboard or mouse actions with a command. Key bindings
associate keystroke sequences with commands; menu bindings associate menu item selections with
commands. Operand level bindings associate generic operations, such as "next" or "delete" with
operands designated by the current operand level (section 2.3.3).

Key and menu bindings are either local to a buffer or are global to all buffers. Every buffer may
have its own set of key bindings, and even its own menus and menu selections. Naturally, local
bindings take precedence over global bindings. Operand level bindings are local to each buffer:
there are no global defaults for them.

2.3.1 Key Bindings

Pan, like Emacs, provides a live keyboard. Keystrokes (including mouse buttons) are read until a
valid binding is detected. When a binding is detected, the associated command is executed.

A key binding associates a 1- or 2-character keystroke sequence with a command. The keys
Escape, -X, -C, and -Z are reserved to be prefix keys in two-keystroke bindings. The Shift and
Control keys are modifier keys rather than prefix keys.

Function keys and mouse buttons can be mapped just like the standard keyboard keys. In fact,
it is the standard binding of the right-most mouse button to Execute-From-Menu that implements
Pan's menu selection service.

Pan I: An Introduction For Users 6

The default bindings for the left-hand function keys (LI-L10) reflect standard SUNVIEw usage
when appropriate. The default bindings for mouse buttons are similar to the SUNVIzW bindings.
Appendix A lists Pan's default set of key bindings.

2.3.2 Menu Bindings

A menu binding consists of a a menu, a menu item, and a command name. Like key bindings, menus
and menu bindings may be either local or global. The menus associated with a buffer appear when
right button of the mouse is pressed while the mouse is positioned over the edit window. Figure 3
shows a menu selection beine made.

i.naal toLa

.,__ -. ~ ~

ff0 05 ' 0.

@'ll lo t -. . It. sVf d loo

" ti - iie fle 1$ aC -ell

its' rt I D' F 1 . h1 &C. OV
.rc, Vi' nortv vist rile

+l' L131" T-V' 14, 1€tI :' t

"i. 141 A 1 .' e.-l - . I v- ,. 0

n' I' lIlli'e -o ' 1 1: ;' %'IC F 'f a- Appenld Sle~ction Is..1" •. a , ,I ,T o 'C1- 411C a; oho 1 4
t
, V.- 1 101111 V oi i". 1@ 1 . ""

I1f yvf% 4 .: Crt e {s *1 Iets n+-: O r f'f;. eiqC c,$ g0'.1y'OtO "1

-din ! hff. V "- .1. Q. rip. D, -hrip-S,
.f':l-.n+ i sb- ... ln;& 1, * e'' 4, "- I _ e',
A* menu rinin isl dsi-gnatsed.b m fe f it ar a seleci e.

d
eIoteh

:,-o m, 'ff,, oICfeO.f-,,- ,r .,-h"t'")o"

]1' + *, {.e."}+ ~e++ O? C .'P { . ~ , $ *ln $ - fA;+ . 1,, ...fC .. fIA

A mnubidig s esgnte.b at menu'r
.

itle and1c a se"+ lection name+, i'l.
r

denotedl $ltiograph..Ic~ b

MenuTetle: SelectionName. It is not necessary for the selection name to be identical to the dme

of the command bound to the selection.

Pan I: An Introduction For Users 7

Default menu binding, are best discovered by mousing around. Appendices B-D list the default
menu bi. Tlings for a text buffer, for the base buffer, and for the help buffer.

2.3.3 Operand Level Bindings

A keystroke sequence or menu item can be bound to a command that implelnents a generic opera-
tion. The generic operation, in turn, consults the operand-level bindings and the current operand
level of the active viewer to determine the actual editor command to execute.

Each viewer has a current operand level which can be used to control the actions of operand-
generic operations. The generic operations are: :next, :previous, :select, :mouse-select,
:mouse-extend, :cut, :copy, :paste, and :delete.

For examp],e, the key "-N" is bound to the command Next-@Level. If the current operand level is
"Character", and the binding of the generic command :next at the level "Character" is the command
Next-Character, then Next-@Level will execute Next-Character.

Setting the operand level is a bit like changing modes in a moded editor. The current operand
level persists across operations. In pure text editing, the operand level is of limited usefulness.
WNhen editing objects that have a richer operand domain, such as computer programs, the ability
to select and navigate using the operand level bindings is a bonus. For instance, a programming
language might define operand levels such as "Expression", "Statement", and "Declaration". Figure 5
on page 25 shows the operand-level choices for a language-based viewer.

The current operand level affects only those commands that consult it. These commands are
syntactically distinguished by containing the phrase "@Level" in their name.

2.4 The Edit Cursor

Each viewer has a single edit cursor; buffers have as many cursors as they have viewers. The edit
cursors are independent from each other. An edit cursor appears on the screen as an inverse-video
or outlined box highlighting the character selected by that cursor.

All insertions and deletions occur at the position to the left of the ctaracter selected by the
cursor. If a command alters text not located at the edit cursor (for instance, by deleting the
current selection). the cursor is mov"d to the point of change. Operations that modify the object
being edited move the edit window so KIat the change (and therefore the cursor) is visible.

A viewer's edit cursor may not be visible on the screen due to scrolling or other motion. The
command Frame-Edit-Cursor in the Window menu moves the edit window so that the cursor is
visible.

2.5 Regions and The Selection

Many of the text-oriented commands in Pan operate on a contiguous sequence of characters called
a region of text.

Every buffer can lave a specially designated region of text called the the selected region or
simply the selection. When the selection is set, it is highlighted in all of the viewers in which A
is visible. Figure 1 on page 3 shows a selection shared by two viwers. The value of the option
:region-highlight-op determines whether the current selection is highlighted using underlining or
inverse-video. Commands that alter the contents of the buffer deselect the current selection.

Pan I: An Introduction For Users 8

Pan also has an implicit selection, namely the region between the edit cursor and the top mark
of the mark stack. This selection is different for each viewer, since each viewer has a different edit
cursor. In Emacs, the implicit selection is the only region available, while in Pan, it is secondary
to the visible selection Commands that operate on the implicit selection are provided mostly for
Emacs compatibility.

Pan's style of selection is similar to, but not the same as, S U N VIEW's. Clicking the middle button
of the mouse selects and highlights the region between the cursor and the mouse, but placing or
dragging the cursor does not affect the selection. The selection, the position of the mouse, and the
position of the edit cursor Are all independent.

2.6 Rings

A ring is a circular bounded stack. Adding an item to a ring pushes the other items just like a
bounded stack. The oldest value in the stack may be discarded to preserve the boundedness.

Rings can also be "cycled", where the top value is moved to the position of the oldest value, and
all of the other values move up-the second youngest becoming the top. Cycling a ring by n values
moves the nth element (modulo the size of the ring) to the top. The top value in a ring is called
the "contents" of the ring

Both the clipboard and the kill rings are implemented as rings.

2.6.1 The Clipboard

The clipboard-a holder for regions of text-is shared among buffers. A selection can be copied
(or cut) to the clipboard and then pasted into another buffer. These operations are modeled on the
Macintosh 4 user interface. Unlike the Macintosh clipboard, Pan's clipboard is a ring that contains
several items. The size of the clipboard is determined by the value of the option :clipboard-max-size.

2.6.2 Kill Rings

The kill ring is a a repository for deleted text. Commands that "kill" text place the killed text
into the kill ring. This text can be retrieved at a later time.

The kill ring facility is less powerful than Emacs'. In Pan, the kill ring is local to a buffer rather
than global to all buffers. We are still experimenting with this aspect of the user interface. The
size of the kill ring is determined by the value of the option :killring-max-size.

Cutting text to the clipboard does not affect the entry in the kill ring; killing text does not affect
the clipboard.

2.7 Marks and the Mark Stack

A mark is a character position in a textual object. Marks associate with the character to the left
of the position; when text is deleted, affected marks migrate to the beginning of the deletion.

Each buffer has a stack of marks called the mark stack. Marks in Pan are used for two
purposes: to remember a cursor position, and to construct regions. The top mark on the stack is
usually referred to as "the mark".

4Macintosh is a iegistered trademark of Apple Computer, Inc.

Pan I: An Introduction For Users

2.8 Syntax Classes

Every buffer has a set of syntax class definitions. Within a buffer, each ASCII character is a member
of exactly one syntax class The possible classes are: :space-char, :word-char, :punct-char, :lbracket,
:rbracket, or :other. Every character in the classes :lbracket or :rbracket must have a matching
bracket specified.

2.9 Options, Flags, and Variables

Options, flags, and variables are provided for controlling and extending the system. The following
paragraphs provide a brief summary of their properties and use.

Options are used to control user-configurable settings. They are strongly-typed, scoped vari-
ables. The value of an option local to a buffer generally hides the value of that option in the global
space. Appendix E lists the basic options, their types, and their default values. The value of an
option is obtained using the command Option-Value (see section 4.3).

A flag is strongly-typed, scoped variable capable of holding only a single bit of information. Like
options, flags are scoped relative to buffers. Unlike options, flag values can be displayed on the
information panel. For instance, if the :text-modified flag is set (meaning that the text of an object
has been modified since its last save), a "*" appears on the information panel. Appendix F lists
the default set of flags, together with their display properties.

A Pan variable is a Lisp global variable that is known to the help system.

2.10 Communication with Other SUNVIEW Clients

Communication with other workstation client programs using the SUNVIEw selection mechanism
is not yet implemented.

2.11 What's Where?

Just as a buffer ties several viewers together, there is some global state shared by all buffers. This
state includes default bindings, default option values, the list of buffers appearing in the base buffer,
and the clipboard.

The following table provides a synopsis of which objects have custody of various other objects.
In general, local values override more global values when there is a choice.

Pan I: An Introduction For Users 10

Viewer Buffer Global
Buffer List V
Clipboard V
Edit Cursor v
Flags V
Key Bindings V /
Kill Ring N/
Mark Stack V
Menu Bindings V V
Operand Level V
Option Values V V
Selection V
Syntax Classes N/
Viewers

3 Editing with Pan

This section is an introduction simple editing using Pan. At the beginning of each subsection is a
list of the commands discussed, together with their default bindings. Control keys are represented
by prepending the character "-" in front of the key, e.g., Control-X is shown as -X, and the
keystroke sequence Control-X Control-F is shown as -X--F where the hyphen separates the keys
in the sequence. The prefix Escape is denoted Esc-.

Menu bindings are denoted by MenuTitle: SelectionraTame where MenuTitle is the title of the
menu and SelectionName is the name appearing in the menu. Operand-level bindings are denoted
by (Command, "level").

3.1 Getting Started

Pan for Sun Model 3 workstations resides in "piper/bin/pan3. Pan can be run from a shell tool,
a command tool, or a menu under SUNVIEW.

When Pan is started, the files named on the command line are read into edit buffers and prepared
for editing. Once initialization is complete, the base frame will appear. Section 4.1 provides more
information about Pan's start-up processing.

3.2 Quitting Pan

Write- Files- Exit "X-'C
Write-Files-Exit Base Buffer: Quit

Exit! Not bound
Write-Files-Exit is the normal method for terminating an editing session. When modified buffers

exist you will be asked whether they should be saved. The command Exit! terminates an editing
session without saving any modified buffers.

Pan I: An Introduction For Users 11

3.3 Suppling Arguments to Commands

There are three ways to provide arguments to Pan commands: by a numeric prefix argument, by
setting the current selection, or by responding to a prompt. The actual method used depends
on the particular command. Commands that can use a numeric argument normally check for the
presence of a numeric prefix, while commands that require textual arguments must use prompting.
A few, like Visit-Selection, check for a selection before prompting.

3.3.1 Numeric Prefix Arguments

Read- Prefix-Arguments _U

The behavior of many commands can be altered by suppling numeric prefix arguments. In most
cases, the argument is interpreted as a repetition factor, and the effect of the command is simply
repeated. Read-Prefix-Arguments reads the prefix arguments from the keyboard. There are two
ways to type such arguments: by typing zero or more minus signs (hyphens) followed by a sequence
of digits, or by repeating a keystroke sequence bound to Read-Prefix-Arguments. In the latter case,
each repetition corresponds to addition by 4.

3.3.2 Prompts and Pop-Ups

Pan prompts for input by making a small pop-up window appear on the screen. The pop-up
remains on the screen until you complete the input. When a pop-up is present it seizes all window
input and output on your workstation.

Pop-ups have one or more "buttons" on their lower edge; clicking the left button of the mouse
over one of those areas completes and confirms the prompt. When typing a textual argument into
a pop-up, your standard UNIX editing characters serve to edit the input. Pop-ups for textual
arguments are confirmed by selecting a button or by hitting the Return key.

3.4 Aborting Commands

Abort-Command -G
Abort-Command -C--G
Abort-Command Esc--G
Abort-Command -X--G
Abort-Command -Z--G

Cancel-Command "Cancel" on Popups

To abort a keystroke sequence, type ^G with any prefix. To abort a menu selection, move the
mouse cursor outside (away from) the menu, and release the mouse button. When responding to a
prompt, selecting the Cancel button aborts the command.

Once a command is initiated, there is little you can do to stop it. If the command takes more
than an instant to complete, the mouse cursor image, normally an arrow, may be replaced by a
light bulb.

Pan I: An Introduction For Users 12

3.5 Undoing Actions

Undo "X-u
Undo L4 (Undo)
Undo Pan: Undo

The undo facilities of Pan allow you to undo the most recent action or series of similar actions.
For instance, typing a series of characters and then invoking Undo will remove the entire series of
characters just typed. Undoing a second time restores the text removed by the first Undo.

3.6 Getting Help

Reset-Help- Buffer Help: Reset

Pan is largely self-documenting. Each viewer has an associated Help menu that provides access
to the help information supplied by the system. This information will be displayed in the help
buffer-a special buffer known to the system. Figure 1 on page 3 shows the help buffer in the
upper right-hand rorner of the screen. The help buffer acts like a normal text viewer, except that
it is altered only by the help commands.

Most help commands delete the text in the help buffer before adding their contribution. Others,
such as Describe-Selection and Apropos-Selection add additional information to the buffer. The
information in the help buffer can be saved to a text file at any time. The command Reset-Help-
Buffer empties the help buffer.

Apropos-Selection Help: Apropos
Apropos-All-Symbols Help: Apropos All
Apropos-Symbol Not bound

The "Apropos" family of commands associate a keyword with a list of command names. For
instance, invoking the command Apropos-Symbol and supplying the argument "clipboard" lists,
in the help buffer, all of the commands that use the clipboard. In another example, if the text
"command" is selected, then invoking Apropos-Selection will list all of the editor commands defined
in Pan. Both Apropos-Symbol and Apropos-Selection operate identically after their argument has
been specified.

Describe-Selection Help: Describe
Describe-Symbol Not bound

List-All-Commands Help: Commands
List-All- Flags Not bound
List-All-Options Not bound
List-All-Variables Not bound

Show-Buffers -X--B
Show-Buffers Help: Buffers

Show-Flag-Values Help: Flag Values

Pan I: An Introduction For Users 13

Show-Option-Values Help: Option Values

Show-Key-Bindings Help: Key Bindings
Show-Menu-Bindings Help: Menu Bindings
Show-Operand-Bindings Help: Operand Bindings
Describe-Operand-Hierarchy Help: Operand Hierarchy

Commands beginning with "Describe-" provide detailed information about a Pan object. Com-
mands beginning with "List-" simply list the names of all objects of a given type (e.g., all commands
or all options). The "Show-" commands provide the detailed information of a "Describe-" command
for all objects of a given type.

3.7 Buffers and Viewers

The commands presented in this section describe basic buffer and viewer handling.

3.7.1 Visiting Files and Buffers

Visit-Selection Base Buffer: Visit
Visit-Selection File: Visit File

Visit-File "X--F

Visit-File Base Buffer: Visit File
Visit-File File: Visit File

Visit-Buffer -X-b

Remove-Buffer -X-k
Remove-Selected-Buffer Base Buffer: Remove Selected Buffer

List-Files "X--D

List-Files Base Buffer: Directory Listing
Show-Status-Line "X-=

To edit an object, one must first have opened a viewer onto it. The Visit-Selection command is
one way to open a viewer. This command normally appears as Visit in either the top-level or the
File menus. It is used by first selecting a buffer name in the base buffer.

Visit-File prompts for a file name. If that file is not already in a buffer, a new buffer is allocated

and the file is read and prepared for editing.
The "Remove-" commands remove a given buffer from the set of buffers. If the object has been

modified since it was last saved, you will be offered the chance to save the buffer. Once Remove-
Buffer or Remove-Selected-Buffer has been executed, all of the state associated with the removed
buffer is lost.

List-Files prompts for a directory or file name expression, and lists those files, using the Is com-
mand, in the help buffer. Flags to the Is command are determined by the value of the option
:Is-flags.

The command Show-Status-Line can be used to display status information about the active buffer
in the information panel. The option :mode-line-fmt specifies which status information is displayed.

Pan I: An Introduction For Users 14

3.7.2 Saving and Writing Files

Save-Buffer-File _X-'S
Save-Buffer- File File: Save
Save-All- Buffers -X-Return

Write- Files- Exit _X-'C
Write-To- File _X-W
Write-To-File File: Write To ...
Overwrite-File! File: Overwrite ...

Write-Selection-To- File File: Write Selection To ...
Append-Selection-To-File File: Append Selection To ...

Toggle-Read-Only "X-'Q

Save-Buffer-File saves the contents of the current buffer in its associated file; Save-All-Buffers
saves all of the modified buffers being edited. Write-Files-Exit performs the standard termination
sequence of saving modified buffers and exiting. Both Save-All-Buffers and Write-Files-Exit prompt
for whether a particular buffer is to be written to file.

All of the commands Write-To-File, Write-Selection-To-File, Overwrite-File!, and Append-Selection-
To-File prompt for the name of a file to write.

Toggle-Read-Only toggles the :read-only flag on the buffer. When this flag is set, a "$"appears
on the information panel and you will be prevented from modifying or writing that file. This flag
is set by default when you commence editing a file for which you do not have permission to write.
Toggling the :read-only flag does not affect the permissions on the file.

3.7.3 Manipulating Viewers

Open-Another-Viewer -X-2
Open-Another-Viewer Window: Open Another Viewer

Close-Active-Viewer _X-0
Close-Active-Viewer L7 (Open)
Close-Active-Viewer Window: Close
Close-Active-Viewer SunView Frame: Done

Redraw -L

When you visit a buffer that has no visible viewers, Pan will reopen the buffer's most recently
closed viewer. If the buffer has no viewers, a new viewer is created. To open a second (or third, or
fourth, ...) viewer onto a buffer, execute the command Open-Another-Viewer.

Closing a viewer causes it to disappear from the screen. Its internal state is retained so that
the viewer can be reopened later. To close a viewer, execute Close-Active-Viewer in the viewer that
you wish to close. Alternatively, press the key L7 (Open) when the viewer that you wish to close
has the input focus. Closing the viewer associated with the base buffer causes the base buffer to
become iconic, and closes all other visible viewers.

Pan I: An Introduction For Users 15

Viewers are reopened using the same commands as are used for opening new viewers. They are
reopened in last-in, first-out order relative to the order in which they were closed. Closing a viewer
frees its associated viewport for use by other viewers.

Redraw redraws the active edit window.

3.8 Scrolling

Pan's scrolling behavior is a simplified version of the SUNVIEW scrolling protocols. The scroll bars
in a viewer respond to simple scrolling commands. For vertical scrolling, pressing the left button
in the vertical scroll bar moves the edit window toward the end of the file, the right button moves
the edit window towards the beginning of the file, and the middle button thumbs the edit window
to the point in the object indicated by the scroll cursor.

When scrolling horizontally, pressing the left button in the horizontal scroll bar moves the edit
window toward the end of the line, the right button moves the edit window towards the beginning
of the line, and the middle button thumbs the edit window to the point in the line indicated by the
scroll cursor.

Mouse- Forward-Vscroll (Scrollbar) MouseLeft
Mouse-Backward-Vscroll (Scrollbar) Mouse-Right
Mouse-Abs-Vscroll (Scrollbar) Mouse-Middle

Forward-Vscroll _V
Backward-Vscroll Esc-v

Left-Hscroll _X-<
Right-Hscroll _X->

Frame-Edit-Cursor Window: Frame Edit Cursor

The commands Mouse- Forward-Vscroll, Mouse- Backward-Vscroll, and Mouse-Abs-Vscroll are bound
to the left-, right-, and middle mouse buttons when the mouse is over the vertical scroll bar.

During vertical scrolling, when the option :proportional-scroll is set to be true (in Lisp, 't), the
amount that the edit window is scrolled depends upon the distance between the mouse cursor and
the top of the scroll bar. For small movements, place the cursor near the top of the scroll bar. For
larger movements, place the mouse cursor near the bottom of the scroll bar. To scroll an entire
screen, place the mouse cursor opposite to the last line of text visible in the edit window.

When the option :proportional-scroll is set to be false (in Lisp, 'nil), the vertical scrolling com-
mands move the edit window by a full screen at a time.

To "thumb" the viewer to an absolute position in the file, place the mouse cursor into the scroll
bar and press Mouse-Middle. The viewer will be moved to the line in the file corresponding relative
distance between the top of the scroll bar and the position of the mouse cursor.

Scrolling the screen by a full screen at a time can also be achieved by using Forward-Vscroll and
Backward-Vscroll. Both of those commands consult the numeric prefix argument to determine the
number of screens to move.

Left-Hscroll and Right-Hscroll are keyboard variants of the horizontal scrolling commands.
The command Frame-Edit-Cursor shifts the edit window so that the edit cursor will be visible.

Pan I: An Introduction For Users 16

3.9 Cursor Motion

Mouse-Select-QLevel Mouse-Left
Cursor-To-Mouse (Select, "Character")

Next-@ Level -F
Next-Character (Next, "Character")
Next-Word Esc-f
Next-Word (Next,"Word")
Next-Line -N
Next-Line (Next, "Line")

Previous-@ Level -B
Previous-Character (Previous, "Character")
Previous-Character -H (Backspace)
Previous-Word Esc-b
Previous-Word (Previous, "Word")
Previous-Line _P
Previous-Line (Previous, "Line")

Move-To-BOL -A
Move-To-EOL -E

Move-To-BOB Esc-<
Move-To-EOB Esc->

End-Of-Word Not bound
First-Non-Blank Esc-m

Goto-Line _X-i

The left button of the mouse is bound to the command Mouse-Select-@ Level. When the operand
level is set to "Character", it sets the edit cursor to the character selected by the mouse icon. The
cursor can also be moved using cursor motion commands shown above. The "Next-" and "Previous-"
commands use the numeric prefix argument to determine the number of units to move.

Move-To-BOL moves the edit cursor to the first position on the current line; Move-To-EOL moves
the edit cursor last position on the current line. To move to the beginning or end of the object
being edited, use Move-To-BOB or Move-To-EO B, respectively

End-Of-Word moves the cursor to the end of the word that encloses the cursor. Finally, First-
Non-Blank moves the cursor to the first character (that is not white space) on the current line.

The command Goto-Line moves the cursor to the line specified by the numeric prefix argument.
If there is no prefix argument, Goto-Line prompts for a line number. Internally, Pan treats the first
line of a file as line number 0. If the option :zero-index-lines is false, the argument to Goto-Line is
treated as a 1-indexed line number and is converted appropriately.

3.9.1 Mark Commands

Set-Mark
Pop-Mark Not bound

Pan I: An Introduction For Users 17

Swap-Dot-And- Mark
Dot-To-Mark Not bound

Set-Mark and Push-Mark push and pop the mark stack of the active buffer. The commands
Swap-Dot-And-Mark and Dot-To-Mark move the edit cursor to the position indicated by the top of
the mark stack. They differ in that the first exchanges the cursor's position with the top mark,
while the second pops stack.

3.10 Editing Text

This section describes the commands for text manipulation.

3.10.1 Setting the Operand Level

Up-QLevel F2
Up-@Level Panel Item
Down-@Level F3
Down-@ Level Panel Item
Set-@Level Panel Menu Item
Set-@ Level-To-Character F1

You can ignore the operand level settings, and Pan will operate pretty much like Emacs. If you
want to experiment, however, you will notice that each viewer panel contains a sequence of items
labeled "Level:". The small button containing an upward-pointing arrow is bound to Up-@Level.
Clicking on this button raises the operand level. Similarly, clicking the button labeled with a
downward-pointing arrow lowers the operand level by calling Down-@Level. Both Up-@Level and
Down-@ Level consult the numeric prefix argument to determine the number of levels to move (the
default is 1). If the option :wrap-@level is true, then the level will wrap around from top to bottom
or bottom to top as necessary.

The current level is displayed on the panel. Depressing Mouse.Right over the displayed level
causes a menu containing all of the levels to appear. The levels in the menu appear in order, with
the highest level at the top of the menu.

To select a new level, continue to hold down Mouse-Right, move the mouse until the level that
you desire is highlighted, and then release Mouse-Right. If no change is desired, move the mouse
cursor away from the menu and release Mouse-Right.

The command Set-@ Level-To-Character can be used to set the operand level to "Character".

3.10.2 Setting the Selection

Mouse-Select-0 Level Mouse-Left
Mouse-Extend-@ Level Mouse-Middle
Select- Region- Dot-To- Mark Esc--W

Select-Word Esc-Q
Select-Buffer -X-h

Pan I: An Introduction For Users 18

Mouse-Select-Line (Select, "Line")
Mouse-Select-Word (Select,"Word")
Mouse-Select-Fullword Esc-Mouse-Left
M ouse-Extend-Selection- Fullword Esc-MouseMiddle

Deselect-Region Esc--D

The current selection is set by the commands Mouse-Select-@Level, Mouse-Extend-@ Level, and
Select-Region-Dot-To-Mark. Mouse-Extend-@Level is normally bound to the middle button of the
mouse. When the level is "Character", this command selects the region between the edit cursor
and the mouse. At other levels, it selects the region that includes both the current selection and
the operand (relative to the current operand level) beneath the mouse cursor. Select-Region-Dot-
To-Mark selects the implicit region between the top mark on the mark stack and the edit cursor.

The command Select-Word sets the current selection to be the region from the edit cursor to the
end of the word surrounding the edit cursor, while Mouse-Select-Fullword sets the current selection
to be the full word beneath the mouse cursor. Mouse-Extend-Selection-Fullword extends the current
selection to include the full word beneath the mouse cursor. Select-Buffer selects the entire buffer.

The current selection can be cleared using Deselect-Region.

3.10.3 Inserting Text

Self-Insert most printable characters
Quote-Insert _q

Newline-And-Indent _J
Insert-Newline Return
Indent-Like-Previous-Line Esc-Tab
Open-Line -0
Split-Line Esc-0O
Insert-Parentheses (
Insert- Rparen-And-Match)
Insert- Rbrace-And-M atch }
Insert-Rbracket-And-Match)

Insert-File -X-Tab
Insert-File File: Insert from...

Typing a printable character generally causes that character to be inserted into the text at the
position of the edit cursor. Quote-Insert inserts the next ASCII character typed.

Newline-And-lndent is bound to the newline character ^3; if the option :autoindent is true, the
next line will be indented to the level of the previous line by inserting tabs and blanks. Indent-Like-
Previous-Line simply reindents the current line to the level of the previous line. Open-Line inserts
newlines after the cursor; the number of newlines inserted is determined by the value of the numeric
prefix argument (default 1). Split-Line does the same thing, but also indents any text following the
cursor to its original horizontal position.

Pan I: An Introduction For Users 19

The command Insert-Parentheses inserts a pair of matching parentheses at the cursor, and posi-
tions the cursor between them. The command Insert-Rparen-And-Match inserts a right parenthesis
and briefly shows the matching left parenthesis by moving the cursor if the match is visible in
the viewer or by displaying the line containing the match as a message on the panel otherwise.
Insert-Rbrace-And-Match and Insert-Rbracket-And-Match perform the same action for braces and
brackets.

Insert-File prompts for a file name and copies the contents that file into the active buffer at the
position of the edit cursor.

3.10.4 Filling Text

Set-Auto-Fill-Column _X-f
Toggle-Auto- Fill -X--A

Pan has a rudimentary mechanism for filling text lines as you type them. When auto-filling is
on, the keys Space and Return are bound to special procedures. These procedures compare the
current horizontal position of the cursor with the value of :auto-fill-column. If the line is too long.
it will be broken where appropriate; if not, the procedures act like Self-Insert.

Use Toggle-Auto-Fill to turn on autofilling and again to turn it back off. When filling is on, you
can type text continuously without worrying about line length. Use Set-Auto-Fill-Column (with a
numeric prefix argument) to set the maximum line length used by auto-filling.

3.10.5 Deleting Text

Delete-@ Level -D
Delete-Character (Delete, "Character")
Delete-Previous-Character Delete

Delete-Word (Delete, "Word")
Delete-Fullword Not bound
Delete- Previous-Word Not bound

Delete-Line (Delete, "Line")
Delete-Selected-Region Edit: Delete
Delete- Region- Dot-To- Mark Not bound

Delete-Blank-Lines _X-_0
Delete- Horizontal-S pace Esc-\
Just-One-Space Esc-Space
Delete-Indentation Esc--

Deleted text can be recovered by issuing the Undo command immediately after the deletions, but
in no other way. Killed text is retained in the kill ring. The standard bindings reflect this limitation
by using kill commands when removing large regions. Pan merges deletions that are contiguous in
space and time into a single undoable action.

Delete-Character deletes the character selected by the active cursor; Delete-Previous-Character
deletes the character before the cursor. The pair of commands Delete-Word and Delete-Previous-

Pan I: An Introduction For Useis 20

Word delete from the cursor to the end (beginning) of the word enclosing the cursor, while Delete-
Fullword deletes the entire word enclosing the cursor. The commands Delete-Selected-Region and
Delete-Region-Dot-To-Mark operate on the selection and the implicit selection, respectively.

There are several ways to delete white space around the cursor. Delete-Blank-Lines deletes vertical
and horizontal white space, leaving exactly one blank line at the cursor. Delete-Horizontal-Space
deletes white space surrounding the cursor on the same line as the cursor; Just-One-Space does
the same thing, but leaves exactly one space at the cursor. Delete-Indentation removes any leading
white space on the line containing the cursor.

3.10.6 Killing Text

Kill-Word Esc-d
Kill- Previous-Word Esc-Del
Kill-To-EO L K

Kill-Selected- Region _W
Kill-Selected-Region Edit: Kill
Kill-Region-Dot-To-Mark Not bound

Copy-Selection-As- Kill Esc-w
Yank- From- Kill- Ring _y
Cycle-Yank Esc-Y

Cycle-Kill Not bound
Show-Kill "X-?
Cycle-Show-Kill _X-!

Like the deletion commands of the previous section. commands that kill text remove the text from
an object. Unlike deletion commands, however, commands that kill text also place the removed
text into the kill-ring.

The pair of commands Kill-Word and Kill-Previous-Word kill from the cursor to the end (beginning)
of the word enclosing the cursor. The commands Kill-Selected-Region and Kill-Region-Dot-To-Mark
kill the selection and the implicit selection, respectively. Kill-To-EOL kills all characters up to the
end of the line.

Text in the kill ring can be recovered using the command Yank-From-Kill-Ring which inserts
the contents of the top of the kill-ring into the buffer at the current cursor position. Cycle-Yank
cycles the kill ring before yanking the top of thee kill-ring. Cop y-Selection-As-Kill copies the current
selection to the kill-ring.

The commands Show-Kill. Cycle-Kill, and Cycle-Show-Kill can be used to view the contents of the
kill ring, and to cycle the ring.

3.10.7 The Clipboard

Cut-To-Clipboard L1O (Deletp)
Cut-To-Clipboard Edit: Cut

Copy-To-Clipboard L6 (Put)

Pan I: An Introduction For Users 21

Copy-To-Clipboard Edit: Copy

Paste-From-Clipboard L8 (Get)
Paste-From-Clipboard Edit: Paste

Replace-From-Clipboard Esc-L8

Cycle-Clipboard Not bound
Show-Clipboard Edit: Show Clipboard
Show-Clipboard Esc-?
Cycle-Show-Clipboard Esc-!

These commands manipulate the contents of the clipboard. Cut-To-Clipboard deletes the current
selection and places it onto the clipboard. Copy-To-Clipboard places a copy of the current selection
onto the clipboard. Paste-From-Clipboard inserts a copy of the clipboard's contents at the edit cursor.
Finally, Replace-From-Clipboard replaces the selected region with the contents of the clipboard.

The command Show-Clipboard displays the contents of the clipboard in the help buffer. Cycle-
Clipboard cycles the clipboard using the prefix argument to determine the number of entries to
move, while Cycle-Show-Clipboard combines the two actions.

3.10.8 Copying and Moving Text

Copy-Selection -To-Cursor Esc--Y
Copy- Selection -To- Cursor Edit: Copy To Cursor

Move-Selection-To-Cursor Esc--M
Move-Selection-To-Cursor Edit: Move To Cursor

Text can copied or moved within a buffer by using either the clipboard or the local kill ring.
However, the above commands are useful short cuts. Both use the current selection as the source
to copy" or move, and the edit cursor to mark the destination. These commands operate only within
a buffer; copying and moving between buffers requires the clipboard

3.10.9 Commands for Changing Case

Capitalize-Word Esc-c
Lowercase-Word Esc-l
Uppercase-Word Esc-u

Capitalize-S election Esc--C
Lowercase-Selection Esc--L
Uppercase-Selection Esc--U

These commands arc use to change cases within a word or region. The word-oriented commands
operate on the region from the cursor to the end of the word. They leave the cursor at the end of
the region when done.

Pan I: An Introduction For Users 22

3.10.10 Transposing

Transpose-Characters -T
Transpose- Previous-Characters Not bound
Transpose-Lines -X--T

Transpose-Characters exchanges the character at the cursor and the character before the cursor.
Transpose- Previous- Characters exchanges the two characters to the left of the cursor. Transpose-Lines
exchanges the line containing the cursor with line before it.

3.11 Searching Text

Pan provides commands for searching for regular expressions and for matching balanced brackets.

3.11.1 Regular Expressions

Re-Search-Backward -R
Re-Search-Forward -S

These commands search for text matching the standard UNIX regular expressions. For a de-
scription of those expressions, see the ED(1) manual page of the UNIX Programmer's Manuals.

Pan is unable to search for patterns which contain embedded newline characters. The most recently
specified regular expression is shared by all buffers.

When text matching a pattern is found, the active cursor is moved to the first character in the

match, and the matched text is selected.
Both Re-Search-Forward and Re-Search-Backward process the numeric prefix argument idiosyn-

cratically: the presence of a prefix argument causes the command to search using the last regular
expression specified. For instance, -U--S invokes Re-Search-Forward using the most recent search
pattern-and the command will match the next occurrence of the pattern. Alternatively, supplying
an empty string as the regular expression causes the previously specified expression to be used.

When the option :autowrap-search is true, searches wrap from one end of the buffer to the o' .er;

if that option is false, searches terminate when finding the beginn'ng or end of the buffer.
While a Query-Replace command has not yet been implemented, one can rapidly perform that

action by putting the replacement text into the clipboard, and then alternating searches with
Replace- From-Clipboard.

3.11.2 Balanced Bracket Commands

Backward- Expr Esc--B
Forward- Expr Esc--F

Select-Expr Esc--©
Kill-Expr Esc--K

Show-Match Esc-7.

Pan I: An Introduction For Users 23

These commands use syntax class definitions to operate on balanced brackets. Both Forward-
Expr and Backward-Expr move the cursor. The Select-Expr command selects the balanced bracket
expression surrounding the cursor, and the command KilI-Expr kills it.

If the cursor character is a bracket, Show-Match moves the cursor to the matching bracket, pauses
for the value of the option :pause-ticks internal ticks, and returns the cursor to its original position.

3.12 Editing Programs

Pan provides facilities for editing tree-structured objects described by a formal language. These
objects include programs, which are described by a programming language. To take advantage of
those facilities, the language being edited must be described to Pan using the Iann-uage-definition
language Ladle[4]. Language descriptions are beyond the scope of this manual. In - as section, the
basic language-oriented editing features of Pan are described.
Pan currently supports two languages: Modula-2[8] and ASPLE[5]. ASPLE is a simple example

language used for demonstrations and for learning Pan. Other language descriptions, including C,
are under development.

Full text editing is always available when editing structures. In fact, the actual operations that
alter a structure are reduced to textual operations. Incremental syntactic analysis (parsing) then
updates the internal tree structure. Most of the time, this transformation is hidden from the
user-it occurs automatically as operations like "delete the selected subtree" are invoked. The
next sections describe language-oriented editing with Pan in more detail.

3.12.1 Language-Oriented Viewers

Structures are displayed using the same kind of viewer used to display text. A future version of
Pan will provide a pretty-printing viewer that keeps the displayed structure consistent with its
internal form. Right now, the re-indentation must be performed manually. Language-oriented
viewers support the same scrolling operations as viewers onto textual objects.

Figure 4 shows a language-oriented viewer for a buffer containing an ASPLE program. Note that
the "Language:" field in the information panel now reads "ASPLE", and that the root menu has been
customized to contain the submenus Tree and Syntax. The Tree menu provides access to the basic
tree navigation commands, while the Syntax menu provides language-oriented editing commands.
As with text viewers, however, those commands are also available from the keyboard.

A language-oriented viewer has three new flags in the information panel. The "L" (:Iex-ok) flag
will be grey when there are changes in the buffer that have not yet been lexically analyzed (the first
phase of parsing). The "T" (:tree-ok) flag will be visible, but grey, when there are changes that
have not yet been incorporated into the tree by the parser. Both "L" and "T'" flags are displayed in
solid tones when the buffer's internal structures are consistent. The "!" (:parse-errors) flag appears
when there are lexical or syntactic errors in the program being edited. Section 3.12.4 discusses this
topic in more detail.

3.12.2 Selection

Selection during language-oriented editing relies on the notion of operand levels (section 2.3.3). In
a language-oriented viewer, the set of operand levels is much richer than in the text world. The

Pan 1: An Introduction For Users 24

ru-frtrn'l1 ~ ,wnrnn.1nnr~ flfrfir . 1~ ~ TIN

5 55'IT5: Mr-*, 77-7 M M7!

N. p Inf

F,~~'e IsIP0.1.'

D(.t~~LOW Cht ~,e'o
AN~~~ ~ ~ Ll'4le as-sS~

tc~~ fs*to
555 ~ ~ ~ ~ ~ ~ ASL ___________________9-_______ a~ - ~ut

th lanuag bein edied Firesosea se of oprn eel eie frAPETh Err
levelis ofspecil sigificace: t isue1 olct;ror nasnatcsrutr n om ' h

seecio frmonarortlnohr
Aswih exderesig h lftbuto f hemosesletsth ojctbeeah h mus crsr

Th bjc atafycosnisdtemnd yth etig fte pradlee.Thsifte os
curso is ver he chractr " in ir 5s when the def buton scikdwh eetdojc

hat happen if the obect beneat theacoufecuro Pisntaelm tofhecssfobcs

cases ~ ~ ~ ~ ~ Mta itladaocnosetslctos

Pan P: An Introduction For Users 25

I5, PA
,7

L.~9)I sp'. W ~gcM~tp.,

ASPI Info1 io~~ u-oa~p~~ witxi .lp yi.* ~[j~ ;~
ta Wr K, I.1p. ia1

09* .siai *

U; /*lttrtaorcousir 4

1J1

w 2

VW&I: spl Dcaation
AN'1 ED (1 .1

the~~taemn tetakersnain

PrevioEgresLeve
TreU R614p1ctos1frto

Tree Lef R9u.wodA i

Tree- ineut Tree Left

Pan I: An Introduction For Users 26

Tree-Right R11
Tree-Right Tree: Right

Pan provides two sets of language-oriented navigation operations. The most useful set involves
the operations Next-@Level and Previous-@ Level. They perform preorder and inverse-preorder tree
walking operations relative to the current operand level. For example, if the operand level setting
is "Error", the command Next-@Level moves the cursor to the "next" error node in the tree.

A se.ond set of navigation commands includes Tree-Up, Tree-Down, Tree-Left, and Tree-Right.
These are the usual tree-oriented commands. Tree-Up moves the cursor to the parent, Tree-Down
moves it to the leftmost child of the current node, Tree-Left and Tree-Right move the cursor to the
appropriate sibling in the tree. These commands can be used to explore the actual tree structure,
as opposed to the tree structure imposed by the operand hierarchy mechanism. Use them carefully!

3.12.4 Parsing and Syntactic Errors

Parse-Buffer Syntax: Parse Buffer
Rectify-Tree Not bound

Parsing incorporates changes in a buffer's contents into the tree that represents a program. The
parsing method used is incremental-only the areas affected by the changes are reparsed. Parsing
occurs whenever a language-oriented operation takes place, such as when the operand level is
changed to be a non-textual level or when a tree-oriented navigation command is invoked. Parsing
can also be invoked manually, using the command Parse-Buffer. The command Rectify-Tree is used
internally to invoke parsing if there have been any changes in the contents of the buffer.

Parsing is a two-stage process. In the first stage, the text stream is broken into larger fragments
called lexemes. Lexemes are the basic symbols in the language being edited, e.g., keywords, identi-
fiers, constants, and comments. When a buffer is lexically analyzed, various classes of lexemes are
given different visual images using fonts. The following table defines the relationship between font
codes and characters in lexemes:

Class Example Font
Unanalyzed characters inserted text 0
Ignored by the lexical analyzer 1

Fixed-length lexemes keywords 2
Recognized but not parsed comments 3
Variable-length lexemes identifiers 4

Unanalyzed characters are always displayed using the default font 0.
After lexing, provided that there are no lexical errors, the parser updates the internal structured

representation. If the parser encounters syntactic errors, the number of errors discovered during
the parse is displayed on the annunciator line, and the :parse-errors flag is set. This flag appears as

a "!" on the information panel.
When the parser detects an error, the subtrees involved in the error are gathered into an "error

subtree". Selecting the subtree rooted at an error node causes the error message from the parser
to be displayed on the annunciator line. Figure 6 shows the display of an error.

Pan !: An Introduction For Users 27

VAN 'M - ' 3

n. ... ,, 1 , l: '

PANQ)(DLeel tro

1 1
FutX; ~'rad .

aFact 1,n

dT begin /. faloccial *I

J/ 'I- Fuct X; read' I/

N 1=
if XR IT a

1nile (1 K) dc

I i Fect YFact

41;+

O'J put Fact

Figure 6: Displaying an error in a program

As noted previously, the operand level can be set to "Error" in order to find and select errors in

the tree. Figure 6 also shows a tool displaying the internal tree structure for the error. Generating

such displays using Ptree is discussed in Section 3.12.6.

3.12.5 Editing

Delete-@DLevel -D

Editing structured objects is quite simple in this version of Pan. All insertions use the text-

level commands used for text editing. Top-down tree elaboration, being designed for the next

major release, is not yet availabic. Deletions are accomplished using either text-level commands. or

using the Delete-@Level command. Undoing edit actions restores the buffer without restoring the

structured representation. Thus undoing currently requires reparsing.

Pan I: An Introduction For Users 28

3.12.6 Displaying Trees using Ptree

Print-Parse-Tree Syntax: Print Parse Tree

Ptree is a separate program that displays tree structures. A Ptree window appears in Figure 6.
Ptree is not an integral part of Pan at present, although a Ptree-like viewer for Pan is planned.
Ptree runs as a separate tool in the SUNVIEW environment. The manual page PTREE(1) provides
more details on its operation. Ptree displays are primarily a debugging tool for the authors of Ladle
language descriptions.

Pan can be used to create Ptree input. The command Print-Parse-Tree formats the internal tree
structure of the active buffer into a file called ptree. out in the working directory. This file can
then be displayed using Ptree.

3.13 When Things Go Wrong

Oops Not bound
Rats! Not bound

Pan has been remarkably (well, reasonably) robust throughout its long development period.
Most problems are routinely handled by printing a message on the message line of the active viewer.
However, during early-release, provisions have been made for recovering from major catastrophes.

We'd probably all agree that a catastrophe has occurred if Pan failed either by returning to
the underlying Lisp system or by dying altogether. Fortunately, the first rarely happens, and the
second won't occur without returning to Lisp.

If the option :break-to-lisp is true and an unanticipated error occurs, Pan enters a Lisp break
loop. When Pan encounters an internal error and the option :save-on-system-error is true, Pan
attempts to save all of the modified buffers. These two options are currently configured so that a
break loop is entered, and saving is turned off. The break loop is entered before any saving of files
is attempted.

If you do somehow end up in a Lisp break loop, a prompt will appear in the tool window in
which the system is running. (If Pan is running from a menu, the prompt will appear in the console
tool.). The prompt will look like "{nn)" or "nn " where "nn" is a small integer. In the first case
("{nn}"), the system is in a Lisp break loop. You can recover from the error by typing the Lisp
expression (Cops). This returns the system to the normal command evaluation loop. Naturally,
the circumstances of such an error should be noted and passed on to the developers of Pan. (Mail
to panpipes~renoir.)

The second case ("un ") is more serious. In fact, the session is almost over. All that you can
do is to type (Rats!). This command executes the normal code for saving the modified buffers
and then exits the system.

4 Simple Customization

Pan can be customized by altering option values and bindings, extended by defining new options,
flags, and commands, and broadened by defining new, formal languages by using the language

Pan I: An Introduction For Users 29

definition language Ladle. This section provides a brief introduction to the facilities for tailoring
and extending the system.

4.1 Start-Up Processing

Auto- Load file-name regular-expression
Auto-Exec function-name regular-expression
Load-File -X--L

At start-up, a run-command file named .panrc is loaded into Pan. The .panrc file should be a
file of Lisp and Pan commands located either in your working or your home directory.

The .panrc file is loaded using the command Load-File. All commands that load files use the
search path specified by the option :pan-load-search-path. The default value of the option :pan-load-
search-path is set to (. - "piper/lib/pan).

Pan can be instructed to automatically load files other than .panrc. One way is to include
Load-File directives in the .panrc file. Such files will be loaded once at start-up. This method can
be used to ensure that a certain selection of libraries will always be loaded. A second way is to use
the Auto-Load command.

The Auto-Load command instructs Pan to ensure that a file has been loaded whenever a buffer
whose name matches a given UNIX file expression is created. The file is loaded at most once as a
result of Auto-Load.

For instance, (Auto-Load "c-lib" "*. [hc)") tells the system to load the file "c-lib" the first
time that a file whose name matches "*. [hc]" is edited. The file c-lib can be either lisp code
or compiled lisp code; if both c-lib.1 and a c-lib.o are found in the same directory, the most
recently modified version is chosen.

Similar to Auto-Load, the command Auto-Execute instructs Pan to execute a given bindable
function whenever a buffer having a name that matches a given pattern is created. Taken together,
Auto-Load and Auto-Execute can be used to create minor modes.

A minor mode is a collection of commands and bindings useful while editing objects of a given
type. For instance

(Auto-Load "tex-mode" "*. tex")
(Auto-Execute 'tex-mode "*.tex")

can be used to create a minor mode for TEX input. The parameterless function tex-mode is defined
in the library file tex-mode.1 to set up a specialized collection of bindings. The file tex-mode.1
also defines a number of commands useful for manipulating TDXnical text.

4.2 Bindings

Bind-To-Key command key-sequence flocation]
Bind-To-Menu command menu-name flabel location]
Add-Menu-To-Menu menu-being-added to-menu [location]

Define-Operand-Levels levels
Add-Operand-Levels levels

Pan I: An Introduction For Users 30

Bindings are established or altered using the functions Bind-To-Key, Bind-To-Menu, and Add-
Menu-To-Menu. The default location of the change is in the local buffer; specifying :global makes
the change in the global environment. The commands Add-Menu-To-Menu, Define-Operand-Levels,
and Add-Operand-Levels are described in The Pan Extension Manual.

The syntax for Bind-To-Key is

(Bind-To-Key 'function "key sequence" location])

where 'function is a quoted function name, "key sequence" is a Lisp string specifying a keystroke
sequence, and location is either :local or :global. The default value for location is :local.

When specifying a keystroke sequence, control characters such as "Control-?" are denoted by
the two-character sequence "?"; the Escape prefix is denoted by Esc-. In multiple keystroke
sequences, the keystrokes must be separated by hyphens. For example,

(Bind-To-Key 'Delete-Character "-D" :global)

establishes the default binding for Delete-Character.
To establish a binding to a menu item, use

(Bind-To-Menu 'function "Menu Name" ["Selection Name' location])

Both parts of the menu item must be Lisp strings. If "Selection Name" is omitted, the name of
the command is used. The argument location is identical to the argument of the same name for
the Bind-To-Key command. For example,

(Bind-To-Menu 'Describe-Selection "Help" "Describe" :global)

sets up the default binding for Describe-Selection in the Help menu.

Show-Key- Bindings Help: Key Bindings
Show-Menu-Bindings Help: Menu Bindings
Show-Operand-Bindings Help: Operand Bindings

Show-Key-Bindings, Show-Menu-Bindings, and Show-Operand-Bindings print the appropriate bind-
ings visible in the current buffer into the help buffer.

It is possible to invoke a command without binding it by using the commands Execute-Lisp-Line
or Execute-Named-Command. (The next section provides more details.)

4.3 Getting and Setting Option Values

Option-Value option-name [lookup buffer]

The command Option-Value is used to retrieve (and set) option values. Its syntax is

(Option-Value option-name [lookup buffer])

Pan I: An Introduction For Users 31

where option-name is the name of the option, and lookup and buffer are optional arguments. The
argument lookup, if specified, must be one of :local, :global, or :default. When lookup is left
unspecified, the value :default (look first for a definition in the active buffer; if none is found,
look for a global definition) is used. Buffer defaults to the active buffer.

To set an option's value to value, use the lisp form

(setf (Option-Value option-name [lookup buffer]) value)

In this case, lookup must specify either :local or :global; it defaults to :local. For instance,
the expression

(setf (Option-Value :minor-mode :local) "TeX Mode")

sets the value of the option :minor-mode in the active buffer to be "TeX Mode".

4.4 Lisp-Oriented Commands

These commands are for the use of people extending Pan, although sometimes you'll want to use
one to see what a command does. They are included here for completeness.

Execute- Lisp- Line Esc-Esc
Execute-Named-Command Esc-x
Load-File -X--L

Execute-Lisp-Line prompts for a Lisp expression to evaluate; the result is printed on the message
line. If you want to execute a bindable Pan command, there are two methods. The simplest is to
invoke Execute-Named-Command and respond to the prompt with the name of the command, e.g.
Next-Character. Alternatively, one can invoke Execute-Lisp-Line and res'ond to the prompt with
the expression (Next-Character). The parentheses are required in the latter case.

Load-File loads a file of lisp and Pan commands into the system.

5 Acknowledgments

Many have helped with the creation of Pan. Thanks especially to Jacob Butcher and Christina
Black. Jacob implemented the language-description processor Ladle and the tree data structures.
Christina is developing the pretty-printing viewer and helped with the preparation of these reports.
Eduardo Pelegri-Llopart and Phillip Garrison have also made many valuable suggestions.

References

[1] Windows and Window Based Tools: Beginner's Guide. Sun Microsystems, Inc., 1986.

[2] Robert A. Ballance and Michael L. Van De Vanter. The Pan extension manual. In preparation.

[3] Robert A. Ballance, Michael L. Van De Vanter, and Susan L. Graham. The Architecture of Pan
L Technical Report 88/409, Computer Science Division, UC Berkeley, March 1988.

Pan I: An Introduction For Users 32

[41 Jacob Butcher. Ladle. In preparation.

[5] J. C. Cleaveland and R. C. Uzgalis. Grammars for Programming Languages. Elsevier Holland,
1977.

[6] R. M. Stallman. EMACS, the extensible, customizable, self-documenting display editor. In
Proc. of the A CM SIGPLAN SIGOA Symposium on Text Manipulation, pages 147-156, 1981.

(7] Richard Stailman. GNU Emacs Manual: Fifth Edition, Emacs Version 18 for Unix Users.
October 1986.

t8] Nicklaus Wirth. Programming in Modula-2. Springer-Verlag, third, corrected edition, 1985.

6 Glossary

Apropos A Help command for information gathered during command, flag. and option definition.
For instance, (Apropos 'Cursor) lists all of the commands dealing with the cursor.

Base Buffer The base buffer is a special buffer that is the root for all Pan buffers. The base
buffer has is the only frame that can be made iconic. Quitting the base buffer terminates Pan. All
currently editable objects are listed in the base buffer.

Buffer A buffer is the locus of editing attention for a single editable object (currently a text file).
Buffers contain a copy of the object being edited, key and menu bindings, a selection, viewers, and
other objects.

Clipboard The clipboard is an area, shared by all buffers, that contains a region of text. It is
used to implement cut and paste between buffers, or between Pan and other processes.

Command A command is a user-level procedure for effecting edit operations. Commands are
defined using Define-Command.

Dot The dot is another name for the edit cursor. In effect, it is the integer offset (in characters)
of the edit cursor from the beginning of the file.

Edit Cursor A cursor is an object marking the location where alterations of the edit object can
occur. In particular, characters are inserted or deleted at the character position to the left of the
character designated by the cursor.

Edit Window The area of a viewer in which the object being edited is displayed.

Flag A flag is a user-definable object that stores a single bit of information. Flags can be defined
having a user-visible representation on the information panel.

Pan I: An Introduction For Users 33

Frame The outer surrounding edge of a viewer that responds to SUNVIEW window protocols.

Help Buffer A special buffer used for displaying help information.

Mark A mark is a character position in a text file. Marks are generally used to remember
positions for later processing. Pan provides for a stack of marks. The top mark in the stack is
known as "the mark".

Operand Level The operand level of a viewer designates the type of operand to be used by
generic operations. For instance, if the operand level is "Word", then the Next-@Levet command
moves the cursor to the next word in the object being edited.

Option An option is a user-definable typed variable. Many of the customizations available to a
user are provide via predefined options. Unlike a flag, an option does not have a visible presentation.
However, options can have special "notifier" functions that are called whenever the option value is
changed.

Region A region is a contiguous sequence of characters. Most text operations involve regions
either as source, destination, or both.

Selection A specially designated region. There is one selection per buffer.

Viewer The counterpart to a window in Emacs, a viewer displays an object. Each viewer has its
own edit cursor and display state.

Pan I: An Introduction For Users 34

A Default Key Bindings Left-Hscroll--
List-Files X-

A.1 Bindings By Command Name Load-File X-
Lowercase-Selection Esc--L

Abort-Command Esc--G Lowercase-Word Esc-l
Abort-Command -C-(Pouse-Extend-OLeveI NouseMiddle
Abort-Command -G Mouse-Select-CLevel Mouse-.Left
Abort-Command -X-G Mouse-Extend-Selection-Fullword Esc-Mouse..Niddle
Abort-Command -Z--G Mouse-Select-Fuliword Esc-Nouse..Left
Backward-Expr Esc-EB Move-Selection-To-Cursor Esc-Returni
Backward-Vscroll Esc-v Move-To-BOB Esc-c
Capita lize-Sele cti on Esc--C Move-To-BOL -
Capitalize-Word Esc-c Move-To-EOB Esc->
Close-Active-Vewer -X-0 Move-To-EOL J
Cop y-Selection-As-Kill Esc-vw Newline-And-Indent Newline
Copy-Selection-To-Cursor Esc-- Y Next-@Leve! -F
Copy-To-Clipboard L6 Next-ti *ne _
Cut-To-Clipboard LIO Next-Word Esc-f
Cycle-Show-Clipboa d Esc-! Open-Another-Viewer _-
Cycle-Show-Kill -X-! Open-Line -0
Cycle-Yank Esc-y Paste-From-Clip board Le
Delete-OLevel -D Previous-,TLevel
Delete-Blank-Lines -X-O Previous-Line
Delete-Horizontal-Sp ace Esc--\ Previous-Word Esc-b
Delete- Indentation Esc- - Quote-insert _Q
Delete-Previous-Character Backspace Re-Search-Backward - R
Delete-Previous-Character Del Re-Search-Forward -S
Deselect-Region Esc- D Read-Prefix-Argu men ts _
Down-0L evel F3 Redraw -
Execute-From-Menu Mouse-Ridght Remove-Buffer - X-k
Exec ute-Li sp-L ine Esc-Esc Rep face-From-Clipb oa rd Esc-L8
Execute-Named -Command Esc-X Right-Hscroll -X_

First-Non-Blank Esc-m Save-All-Buffers - 1-Return
Forward-Expr Esc--F Save-B uffer- File X_
Forward-Vscroll -V Select-Buffer - I-h
Goto-Line _X-1 Select..Expr Esc--6
Indent-Like-Previous-Line Esc-Tab Select-Region-Dot-To-M ark Esc--W
Insert-File -X-Tab Select-Word Esc-Q
Insert-Newline Return Self-Insert
Insert-Paren theses Esc-(Self-insert Sp'tce-(
Insert- Rb race-An d- Match ISelf-Insert Tab
Insert-Rbracket-And-Match)Self-insert --
Insert-Rparen-And-Match)Self-insert
Interrupt-Pan -x- -Z Set-01-evel-To-Character F'i
Just-One-Space Esc-Space Set-Auto-Fill-Column - -f
Kill-Expr Esc--K Set-Mark
Kill-Previous-Word Esc-Del Show-Buffers XB
Koill-Selected -Region -W Show-Clipboard Esc-?
KiII-To,.EOL -K Show-Kill __
Kill-Word Esc-d

Pan I: An Introduction For Users 35

Show-Match Esc-%

Show-Status-Line _X=

Split-Line Esc-'D

Sun-Again L2

Sun-Expose LS

Sun-Find L9

Sun-Open L7

Sun-Props L3

Sun-Stop LI

Swap-Dot-And-Mark "X-'X

Toggle-Auto-Fill -X--A

Toggle-Read-Only "X-*Q
Transpose-Characters -T

Transpose-Lines -X--T

Undo L4

Undo -X-u

Up-CLevel F2

Uppercase-Selection Esc--U

Uppercase-Word Es c-u
Visit-Buffer -X-b

Visit-File -X--F

Write-Files-Exit "X-'C
Write-To-File "X-'W

Yank-From-Kill-Ring -Y

Pan I: An Introduction For Users 3G

A.2 Bindings By Key -XuUndo
-Y Yank-From-Kill-Ring

-QSet-Mark -Z--G Abort-Command
-AMove-To-BOL -ISelf-insert
-BPrevious-01Level }Insert-Rbrace-And-Match
-- GAbort-Command) nsert-Rparen-And-Match
-DDelete-01Level) nsert-Rbracket-And-Match
'EMove-To-EOL -Self-insert

_FNext-01-evel *\Self-Insert
-GAbor't-Command Backspace Delete-Previous-Character
-KKill-To-EOL Del Delete-Previous-Character
-LRedraw Esc-! Cycle-Show-Clipboard

-NNext-Line Esc-(Insert-Parentheses
-0 Open-Line Esc-< Move-To-BOB

_PPrevious-Line Esc-> Move-To-EOB
_qQuote-Insert Esc-? Show-Clipboard

RRe-Search-Backward Esc-C Select-Word
-S Re-Sea rc h-For ward Esc'-Dei Kill-Previous-Word
-T Transpose-Ch aracters Esc-Esc Execute-Lisp-Line
-U Read-Prefix-Arguments Esc-L8 Rep lace-From-Clipboard
-V Forward-Vscroll Esc-Mouse-Lef t Mouse-Select-Fullword
-W Kill-Selected-Region Esc-Mouse-Middle Mouse-Extend-Selection-Fuliword
_X-! Cycle-Show-Kill Esc-Return M ove-Selection-To-Cursor
_X-0 Close-Active-Viewer Esc-Space Just-One-Space
-X-2 Open-Another-Viewer Esc-Tab In den t- Like-Previous-Line

- I- Left-Hscroll Esc-%/ Show-M atch
-X=Show-Status-Line Esc-\ Delete-Horizontal-Space

X-> Right-Hscroll Esc-Q Select-Expr
- I-? Show-Kill Esc--B Backward-Expr
-X-Return Save-All-Buffers Esc--C Capitalize-Selection
-X-Tab Insert-File Esc--D Deselect-Region

-- AToggle-Auto-Fill Esc--F Forward-Expr
-- BShow-Buffers Esc--G Abort-Command
__ Write-Files-Exit Esc-i(Kill-Expr
__ List-Files Esc--L Lowercase-Selection
-- FVisit-File Esc- -o Split-Line

-- GAbort-Command Esc--U Uppercase-Selection
-- LLoad-File Esc--W Select-Region-Dot-To-M ark

-X-)Delete-Blank-Lines Esc--Y Copy-Selection-To-Cursor
__qToggle-Read-Only Esc-- Delete- Inde nta tion
__ Save-Buffer- File Esc-b Previous-Word

- X--T Transpose-Lines Es c-c Capitalize-Word
__ Write-To-File Esc-d Kill-Word

__ Swap-Dot-And-Mark Esc-f Next-Word
__ Interrupt-Pan Esc-l Lowercase-Word

-X1b Visit-Buffer Esc-m First-Non-Blank
_X1Set-Auto-Fill-Column Esc-u Uppercase-Word

^XhSelect-Buffer Eac-v Backward-Vscroll
- I-k Remove-Buffer Es c-v Cop y-Selection-As-Kill
^X-l Goto-Line

Pan I: An Introduction For Users 37

Esc-x Execute-Named -Command

Esc-y Cycle-Yank

F1 Set4D Level-To-Ch ara cte r

F2 Up-QDLevel

F3 Down-01-evel

LIO Cut-To-Clipboard

Li Sun-Stop

L2 Sun-Again

L3 Sun-Props

L4 Undo

LS Sun-Expose

L6 Copy-To-Clipboard

L7 Sun-Open

L8 Paste-From-Clipboard

L9 Sun-Find

Mouse.eft; Mouse-Select-CDLeveI
Plouse-Middle Mouse-Extend-CLeveI

Mouse-.Right Exec ute-From- Menu

Neyline Newline-And-Indent

Return Insert-Newline

Space-C Self-In sert

Tab Self-Insert

Pan 1: An Introduction For Users 38

B Default Menu Bindings in a Text Buffer

B.1 Bindings by Command Name

Append-Selection-To-File ile: Append Selection To..
Apropos-All-Symbols. He!p: Apropos All
Apropos-Selection. Help: Apropos
Close-Active-Viewer indow: Close
Copy-Selection-To-Cursor it: Copy To Cursor
Copy-To-Clipboard Edit: Copy
Cut-To-Clipboard Edit: cut
Delete-Selected-Region. Edit: Delete
Describe-Operand-Hierarchy. Help: Operand Hierarchy
Describe-Selection Help: Describe
Framne-Edit-Cursor. Window: Frame Edit Cursor
Insert-File. e: Insert fro.. .
Kil!-Selected-Region. it: Kill
List-All-Commands. Help: Commands
List-Files ile: Directory list
Move-Selection-To-Cursor t: Move To Cursor
Open-Another-Viewer. Window: Open Another Viewer
Overwrite-File!'. File: overwrite..
Paste- From-Cli pboa rd. Edit: Paste
Reset-Help-Buffer Help: Reset Help Buffer
Save-Buffer-Fife Save
Show-Buffers. Help: Buffers
Show-Clipboard. Edit: Show Clipboar-d
Show-Flag-Values Help: Flag Values
Show-Key-Bindings Help: Key Bindings
Show-Menu-Bindings. Help: Menu Bindings
Show-Opera nd-Bin din gs. Help: Operand Bindings
Show-Option-Values Help: Option Values
Undo Pan: Undo
Visit-File. : Visit File
Write-Selection-To-File. ile: Write Selection To..
Write-To-File. ie: Write To ...

B.2 Bindings by Menu

Edit: Copy To Cursor Copy-Selection-To-Cursor
Edit: Copy Copy-To-Clipboard
Edit: Cut Cut-To-Clipboard
Edit: Delete. Delete-Selected-Region
Edit: Kill. Kill-Selected-Region
Edit: Move To Cursor. Move-Selection-To-Cursor
Edit: Paste Paste-From-Clipboard
Edit: Show Clipboard. Show-Clipboard
File: Append Selection To Append-Selection-To-File
File: Directory list List-Files

Pan I: An Introduction For Users 39

File: Insert from.............Insert-File
File: Overwrite Overwrite-File!
File: SaveSave-Buffer-File
File: Visit File Visit-File
FiJe: Write Selection ToWrite-Selection-To-File
File: Write ToWrite-To-File
Help: Apropos AllApropos-All-Symbols
Help: Apropos Apropos-Selection
Help: Buffers Show-Buffers
Help: Commands List-All-Commands
Help: Describe Describe-Selection
Help: Flag ValuesShow-Flag-Values
Help: Key Bindings Show-Key-Bindings
Help: Menu BindingsShow-Menu-Bindings
Help: Operand Bindings Show-Operand-Bindings
Help: Operand HierarchyDescribe-Operand-Hierarchy
Help: Option ValuesShow-Option-Values
Help: Reset He2p Buffer Reset-Help-Buffer
Pan: Undo Undo
Window: Close Close-Active-Viewer
Window: Frame Edit CursorFrame-Edit-Cursor
Window: Open Another Viewer Open-Another-Viewer

C Default Menu Bindings in the Base Buffer

C.1 Bindings by Command Name

Apropos-All-Symbols Help: Apropos All
Apropos-Selection Help: Apropos
Copy-To-Clipboard Base Buffer: Copy
Describe-Operand-Hierarchy Help: Operand Hierarchy
Describe-Selection Help: Describe
List-All-Commands Help: Commands
List-FilesBase Buffer: Directory list
Remove-Selected-Buffer Base Buffer: Remove-Selected-Buffer
Reset-Help-BufferHelp: Reset Help Buffer
Show-Buffers Help: Buffers
Show-Flag-ValuesHelp: Flag Values
Show-Key-BindingsHelp: Key Bindings
Show-Menu-BindingsHelp: Menu Bindings
Show-Operand-Bindings Help: Operand Bindings
Show-Option-ValuesHelp: Option Values
Undo Base Buffer: Undo
Visit-FileBase Buffer: Visit File
Visit-Selection Base Buffer: Visit

Pan I: An Introduction For Users 40

C.2 Bindings by Menu

Base Buffer: Copy Copy-To-Clip board
Base Buffer: Directory list ist-Files
Base Buffer: Remove-Selected-Buffer Remove-Selected-Buffer
Base Buffer: Undo Undo
Base Buffer: Visit File Visit-File
Base Buffer: Visit. isit-Selection
Help: Apropos All. Apropos-All-Symbols
Help: Apropos. Apropos-Selection
Help: Buffers. Show-Buffers
Help: Commands ist-AII-Commands
Help: Describe Describe-Selection
Help: Flag Values Show-Flag-Values
Help: Key Bindings. Show-Key-Bindings
Help: Menu Bindings Show-M'en u- Bindings
Help: Operand Bindings Show-Operand-Bindings
Help: Operand Hierarchy Describe-Operand-Hierarchy
Help: Option Values Show-Option-Values
Help: Reset Help Buffer Reset-Help-Buffer

D Default Menu Bindings in the Help Buffer

D.1 Bindings by Command Namne

Append-Selection-To-File ile: Append Selection To..
Apropos-All-Symbols. Help: Apropos All
Apropos-Selection Help Buffer: Apropos
Apropos-Selection. Help: Apropos
Close-Active-Viewer indow: Close
Copy-To-Clipboard Help Buffer: Copy
Describe-Operand-Hierarchy. H elp: Operand Hierarchy
Describe-Selection. Help Buffer: Describe
Describe-Selection Help: Describe
Frame-Edit-Cursor. Window: Frame Edit Cursor
List-All-Commands. Help: Commands
List-Files File: Directory list
Open-Another-Viewer. Window: open Another Viewer
Overwrite-File!. File: overwrite . ..

Reset-Help-Buffer. Help Buffer: Reset Help Buffer
Reset-Help-Buffer Help: Reset Help Buffer
Show-Buffers. Help: Buffers
Show-Flag-Values Help: Flag Values
Show-Key-Bindings. Help: Key Bindings
Show-Menu-Bindings. Help: Menu Bindings
Show-Operand-Bindings. Help: Operand Bindings
Show-Option-Values Help: Option Values
Undo Help Buffer: Undo
Visit-File File: Visit File

Pan I: An Introduction For Users 41

Visit-Selection. ile: Visit
Write-Selection-To-File ile: Write Selection To ...

Write-To-File. ile: Write To..

D.2 Bindings by Menu

File: Append Selection To Append-Selection-To-File
File: Directory list List-Files
File: overwrite Overwrite-File!
File: Visit File Visit-File
File: Visit. Visit-Selection
File: Write Selection To Write-Selection-To-File
File: Write To Write-To-File
Help Buffer: Apropos Apropos-Selection
Help Buffer: Copy Copy-To-Clipboard
Help Buffer: Describe. Describe-Selection
Help Buffer: Reset Help Buffer. Reset-Help-Buffer
Help Buffer: Undo Undo
Help: Apropos All. Apropos-All-Symbols
Help: Apropos. Apropos-Selection
Help: Bufers Show-Buffers
Help: Commands. List-All-Commands
Help: Describe Describe-Selection
Help: Flag Values Show-Flag-Values
Help: Key Bindings. Show-Key-Bindings
Help: Menu Bindings. Show-Menu-Bindings
Help: Operand Bindings Show-Operand-Bindings
Help: Operand Hierarchy. Describe-Operand-Hierarchy
Help: Option Values Show-Option-Values
Help: Reset Help Buffer Reset-Help-Buffer
Window: Close. Close-Active-Viewer
Window: Frame Edit Cursor. Frame-Edit-Cursor
Window: open Another Viewer. Open-Another-Viewer

E Options Defined in Pan

:auto-fill OPTION
Type: boolean
Default Value: nil
T iff Space & Newline should cause long lines to be broken.

:auto-fill-colurnn OPTION

Type: fixp
Default Value: 65
Max line length for auto-fill.

:autoindent OPTION
Type: boolean

Pan I: An Introduction For Users 42

Default Value: t
T iff Newline-And-Indent should indent.

:autowrap-search OPTION
Type: boolean
Default Value: t
Wrap search from one end of file to other?

:backup-on-read OPTION

Type: boolean
Default Value: t
Make backup file when beginning to edit a file

:base-frame-font-map OPTION
Type: listp
Default Value: ("cour.b. 14")
Font map for base window.

:base-win-cols OPTION
Type: fixp
Default Value: 60
Default number of columns in base window.

:base-win-rows OPTION
Type: fixp
Default Value: 6
Default number of rows in base window.

:break-to-lisp OPTION
Type: boolean
Default Value: t
Break to underlying LISP on tragic error?.

:camel-debug OPTION
Type: boolean
Default Value: nil
Turn on internal parser tracing.

:checkpoint-freq OPTION

Type: fixp
Default Value: 450
Maximum number of command invocations before checkpointing.

:checkpoint-min OPTION

Type: fixp
Default Value: 400
Minimum number of command invocations prior to checkpointing.

:clipboard-max-size OPTION

Type: fixp
Default Value: 8
Maximum number of clips in clipboard

Pan I: An Introduction For Users 43

:col-p opover OPTION

Type: fixp
Default Value: 16
Minumum characters to move window when scrolling left/right.

:dont-reuse-nodes OPTION
Type: boolean
Default Value: t
Turn off node reuse during incremental parsing

:empty-line-char OPTION
Type: fixp
Default Value: 46
Character prefix for empty lines.

:full-parse-tree OPTION

Type: boolean
Default Value: nil
Create full parse tree during parsing?

:help-frame-font-map OPTION

Type: listp
Default Value: ("cour.r. 12")
Font map for help windows.

:help-title OPTION

Type: stringp
Default Value: "Help window"
Title for help window

:help-win-cols OPTION
Type: fixp
Default Value: 60
Default number of columns in-help window.

:help-win-rows OPTION
Type: fixp
Default Value: 20
Default number of rows in help window.

:indent-with-tabs OPTION
Type: boolean
Default Value: nil
T means use tabs when performing computed indentations

:indentation-chars OPTION

Type: stringp
Default Value:
List of characters to skip over during autoindent.

:iparse-debug OPTION

Type: boolean
Default Value: nil

Pan I: An Introduction For Users 44

Turn on incremental parser tracing.

:killring-max-size OPTION

Type: fixp
Default Value: 16
Maximum number of kills retained in kill ring.

:kills-to-clipboard OPTION

Type: boolean
Default Value: nil
If true, the clipboard is used instead of the local kill ring in kill commands.

:Is-flags OPTION
Type: stringp
Default Value: "-IF"

Flags for /bin/Is command use in List-Files

:minor-mode OPTION

Type: stringp
Default Value: "Normal"
Name for local binding set.

:mode-line-fmt OPTION

Type: stringp
Default Value: "File %F %* %C 'W Mode: %M"

Format string for status information.

:pan-load-search-path OPTION

Type: listp
Default Value: CI I - "piper/lib/pan)
Search path used by Load-File command.

:pause-ticks OPTION

Type: fixp
Default Value: 250
Constant multiplier for Pause command.

:proportional-scroll OPTION

Type: boolean
Default Value: t
Vertical scroll proportionally, else fixed screenful at a time.

:region-highlight-op OPTION

Type: (:underline :invert)
Default Value: :underline
Operation for highlighting: :underline or :invert.

:row-popup OPTION

Type: fixp
Default Value: 4
Minimum number rows to move window when scrolling up/down.

Pan I: An Introduction For Users 45

:save-on-system-error OPTION

Type: boolean
Default Value: nil
Save all buffers when error is encountered?

:show-node-reuse OPTION

Type: boolean
Default Value: nil
Turn on tracing for incremental parsing node reuse

:syntax-classes OPTION
Type: listp
Default Value: (:word-char : space-char : punct-char :lbracket :rbracket :other)
List of valid syntax classes.

:tabwidth OPTION

Type: fixp
Default Value: 8
Number of characters per tab.

:text-font-ma p OPTION

Type: listp
Default Value: ("screen. r. 12 .screen.b.12" .. serif.r.12 .cour.r.12" .cour.b.12")
Font map for text viewers.

:verbose-Ioad OPTION

Type: boolean
Default Value: nil
T iff verbose file loading is desired.

:verbose-parse OPTION

Type: boolean
Default Value: nil
T iff verbose parsing information is desired.

:verbose-trace OPTION

Type: boolean
Default Value: nil
T iff verbose tracing mode is desired.

:visible-flags OPTION

Type: check-flags
Default Value: (:text-modified :read-only)
Flags visible on control panel.

:win-cols OPTION
Type: fixp
Default Value: 78
Default number of columns per window.

:win-cols-rnin OPTION
Type: fixp
Default Value: 10

Pan I: An Introduction For Users 46

Minimum number of columns in window; guards against user resizing.

:win-rows OPTION
Type: fixp
Default Value: 30
Default number of rows per window.

:win-rows-min OPTION

Type: fixp
Default Value: 2
Minimum number of rows in window; guards against user resizing.

:wrap-Clevel OPTION

Type: boolean
Default Value: t
Automatically wrap operand hierarchy from top to bottom, or from bottom to top.

:zero-index-lines OPTION

Type: boolean
Default Value: t
If T, then arguments to Goto-Line are interpreted as 0-indexed. Otherwise, the arguments are interpreted
as 1-indexed.

F Flags Defined in Pan

:auto-exec FLAG
Presentation: "E"
Behaviour: : invisible-when-cleared
Set when auto-execution related to file suffix has occurred.

:blankflag FLAG

Presentation:
Behaviour: : invisible-when-cleared
Dummy flag for padding flag array.

:lex-ok FLAG

Presentation: "L"
Behaviour: : gray-when-cleared
Set when language file has been scanned.

:panic FLAG

Presentation: "P"
Behaviour: : invisible-when-cleared
Set when panic-mode error recovery has been invoked.

:parse-errors FLAG

Presentation: "!"

Behaviour: : invisible-when-cleared
Set when there are errors in the parse tree.

:re-sea rch-successful FLAG

Presentation: "9"
Behaviour: : invisible-when-cleared

Pan I: An Introduction For Users 47

Set if the last regular expression search was was successful

:read-only FLAG

Presentation: 'TI
Behaviour: : invisible-when-cleared
Set when buffer file cannot be written.

:text-modified FLAG

Presentation: "*"
Behaviour: : invisible-when-cleared
Set when buffer text has been modified but not saved.

:tree-ok FLAG

Presentation: 'T"

Behaviour: : gray-when-cleared
Set when language file has been parsed.

Pan 1: An Irtxoduction For Users 48

G Pan for GNU Emacs Users

Since Pan's text-oriented facilities are modeled on the emacs family of text editors,
users familiar with emacs will find much that is familiar. This appendix will help emacs
users get started with Pan as conveniently as possible.

This appendix compares Pan version 1.9 and the emacs editor in use locally,
GNU Emacs Version 18. The comparison reveals compatibility between the two as text
editors, but does not pretend to give a comprehensive picture of the functionality of
either system. Consult the main body of this manual for a more thorough introduction to
Pan.

Pan also provides for manipulating and editing programs using the syntax and
semantics of the language being edited. This structure-based, description-driven facility
is fundamentally more powerful than the language modes supported by emacs, but is not
discussed in this appendix.

Finally, Pan is extensible and customizable in the spirit of emacs, but techniques for
doing so are beyond the scope of this appendix.

G.1 Key Bindings

Both Pan and GNU Emacs use keymaps, a dynamic mechanism for binding editor
commands to keystrokes (or keystroke sequences). A global keymap is always present
during an editing session, but may be effectively extended and altered by a local keymap
associated with each buffer being edited. Local keymaps are typically created as part of
special editing modes (see G.8, "Special Editing Modes").

This section compares only default key bindings in the global keymap; these are the
bindings normally in effect for ordinary text editing. Keymaps, both global and local,
may be easily customized in both editors; both editors support many commands that are
not bound in the default keymap.

The key bindings currently in effect for a Pan buffer may be displayed by invoking
the "Key Bindings" command from the help menu.

Columns I and 2 of this list are derived from the global default key bindings in the
local version of GNU Emacs. Column 3 identifies Pan's compatibility with one of the fol-
lowing symbols:

* some equivalent supported now
o some equivalent anticipated, but unimplemented

now bound to something else in Pan, as noted
blank no equivalent supported in Pan, contributions welcome

and column 4 lists the Pan command binding. Many potential key stroke sequences
remain unbound in both editors, and there are many commands to which no sequences
are bound. A list of all available Pan commands may be displayed by invoking the
"Commands" command from the help menu.

Fan 1: tn Introduction For Users 49

Key GNU Emacs Binding Code Pan Binding

C@set-mark-command 0 Set-Markc

C-a beginning-of-line 0 Move-To-BOL

C-b backward-char 9 Previous-@Level

C-c mode-specific-comflald-prefix 0 Command prefix

C-d delete-char * Delete-@Level

C-c end-of-line * Move-To-EOL

C-f forward-char * Next-@ Level

C-g keyboard-quit * Abort-Command

C-h help-command Delete-Previous-Character

TAB indent-for-tab-command * Self-Insert

LED newline-and-indent * Newline-And-Indent

C-k kill-line * KilI-To-EOL
C-1 recenter Redraw

RET newline * Insert-Newline

C-n next-line * Next-Line

C-o open-line * Open-Line

C-p previous-line 0 Previous-Line

C-q quoted-insert 0 Quote-Insert

C-r isearch-backward 0 Re-Search-Backward

C-s isearch-forward 0 Re-Search-Forward

C-t transpose-chars 0 Transpose- Characters

C-u universal -argument 0 Read-Prefix-Arguments

C-v scroll-up 0 Forward-Vscroll

C-w kill-region 0 Kill-Selected-Region

C-x Control-X-prefix 0 Command prefix

C-y yank 0 Yank-From-Kill-Ring

C-z suspend-emacs Command prefix

ESC ESC-prefix * Command prefix

C-I abort-recursive-edit
C-_ undo
SPC. - self-insert-command * Self-Insert

DEL delete-backward-char * Delete-Previous-Character

C-x C-a add-mode-abbrev Toggle-Auto-Fill

C-x C-b list-buffers * Show-Buffers

C-x C-c save-buffers-kill-ernacs * Write-Files-Exit

C-x C-d list-directory 0 List-Files

C-x C-c eval-last-sexp
C-x C-f find-file 0 Visit-File
C-x C-h inverse-add-mode-abbrev
C-x TAB indent-rigidly insert-File
C-x LED
C-x C-k
C-x C-i downcase-region [see Esc C-li Load-file

C-x RET Save-All-buffers
C-x C-n sct-goal-column

Pan 1: An Introduction For Users 50

Key GNU Emacs Binding Code Pan Binding_
C-x C-o delete-blank-lines 0 Delete-Blank-Lines
C-X C-p mark-page
C-x C-q toggle-read-only 0 Toggle-Read-Only
C-x C-r find-mie-read-only
C-X C-s save-buffer 0 Save-Buffer-File
C-x C-t transpose-lines 0 Transpose-Lines
C-x C-u upcase-region [see Esc C-ul
C-x C-v find-altemnate-ifie
C-x C-w write-fie 0 Write-To-File
C-x C-x exchange-point-and-mark 0 Swap-Dot-And-Mark
C-x C-y
C-x C-z suspend-emacs Interrupt-Pan
C-x ESC repeat-complex-command
C-x ! Cycle-Show-Kill
C-x $ set-selective-display
C-x (start-kbd-macro
C-x) end-kbd-macro
C-x + add-global-abbrev
C-x - inverse-add-global-abbrev
C-x. set-fill-prefix
C-x / point-to-register
C-x 0 delete-window * Close-Active-Viewer
C-x 1 delete-other-windows
C-x 2 split-window-vertically * Open-Another-Viewer
C-x 4 ctl-) 4-prefix
C-x 5 split-window-horizontally
C-X ; set-comment-column
C-x < scroll-left * Left-Hscroll
C-x = what-cursor-position * Show-Status-Line
C-x > scroll-right * Right-Hscroll
C-X ? Show-Kill
C-x [backward-page
C-X forward-page
C-X enlarge-window 0
C-x next-error
C-x a append-to-buffer
C-x b switch-to-buffer * Visit-Buffer
C-x d dired [see C-x C-d]
C-x e calI-last-kbd -macro
C-x f set-fill-column * Set-Auto-Fill-Column
C-x g insert-register
C-x h mark-whole-buffer * Select-Buffer
C-x i insert-file [see C-x C-il
C-x j register-to-point
C-x k kill-buffer * Remove-Buffer

Pan !: An Introduction For Users 51

Key GNU Emacs Binding Code Pan Binding

C-x I count-lines-page Goto-Line
C-x m mail
C-x n narrow-to-region
C-x o other-window
C-x p narrow-to-page
C-x q kbd-macro-query
C-x r copy-rectangle-to-register
C-x s save-some-buffers [see C-x C-m]
C-x u advertised-undo 0 Undo
C-x w widen
C-x x copy-to-register
C-x y
C-x { shrink-window-horizontally
C-x enlarge-window-horizontally
C-x DEL backward-kill-sentence o
ESC C-@ mark-sexp 0 Select-Expr
ESC C-a beginning-of-defun 0 (see lisp-mode]
ESC C-b backward-sexp * Backward-Expr
ESC C-c exit-recursive-edit Capitalize-Selection
ESC C-d down-list Deselect-Region
ESC C-e end-of-defun * [see lisp-model
ESC C-f forward-sexp * Forward-Expr
ESC C-h mark-defun . [see lisp-mode]
ESC TAB Indent-Like-Previous-Line
ESC LFD indent-new-comment-line
ESC C-k kill-sexp * Kill-Expr
ESC C-1 Lowercase-Selection
ESC RET Move-Selection-To-Cursor
ESC C-n forward-list
ESC C-o split-line * Split-Line
ESC C-p backward-list
ESC C-q
ESC C-r
ESC C-s isearch-forward-regexp
ESC C-t transpose-sexps
ESC C-u backward-up-list Uppercase-Selection
ESC C-v scroll-other-window
ESC C-w append-next-kill Select-Region-Dot-To-Mark
ESC C-y Copy-Selection-To-Cursor
ESC ESC eval-expression 0 Execute-Lisp-Line
ESC C-\ indent-region
ESC SPC just-one-space 0 Just-One-Space
ESC! shell-command Cycle-Show-Clipboard
ESC $ spell-word
ESC % query-replace Show-Match

Pan 1: An Introduction For Users 52

Key GNU Emacs Binding Code Pan Binding

ESC' abbrev-prefix-mark
ESC (insert-parentheses * Insert-Parentheses

ESC) move-past-close-and-reindent
ESC, tags-loop-continue
ESC - indent-for-comment
ESC. find-tag
ESC 0..9 digit-argument
ESC; indent-for-comment
ESC < beginning-of-buffer * Move-To-BOB

ESC = count-lines-region o

ESC > end-of-buffer * Move-To-EOB

ESC? Show-Clipboard

ESC @ mark-word * Select-Word

ESC I backward-paragraph o

ESC \ delete-horizontal-space 0 Delete-Horizontal-Space

ESC] forward-paragraph o

ESC delete-indentation 0 Delete-Indentation

ESC a backward-sentence o

ESC b backward-word 0 Previous-Word

ESC c capitalize-word 0 Capitalize-Word

ESC d kill-word 0 Kill-Word

ESC e forward-sentence o

ESC f forward-word 0 Next-Word

ESC g fill-region
ESC h mark-paragraph
ESC i tab-to-tab-stop
ESC j indent-new-comment-line
ESC k kill-sentence o

ESC 1 downcase-word * Lowercase-Word

ESC m back-to-indentation * First-Non-Blank

ESC q fill-paragraph
ESC r move-to-window-line
ESC t transpose-words o

ESC u upcase-word * Uppercase-Word

ESC v scroll-down * Backward-Vscroll

ESC w copy-region-as-kill * Copy-Selection-As-Kill

ESC x execute-extended-command * Execute-Named-Command

ESC y yank-pop * Cycle-Yank

ESC z zap-to-char
ESC I shell-command-on-region
ESC - not-modified
ESC DEL backward-kill-word * Kill-Previous-Word

The auxiliary table below displays Pan default bindings for keys (and key

sequences) that do not exist in a strictly keyboard based editor like GNU Emacs.

Pan I: An Introduction For Users 53

Key Pan Binding
MouseLeft Mouse-Select-@Level
MouseMiddle Mouse-Extend-@Level
Mouse_Right Execute-From-Menu
Esc-Mouse_Left Mouse-Select-Fuliword
Esc-Mouse_Middle Mouse-Extend-Selection-Fuliword
L4 Undo
L6 Copy-To-Clipboard
L8 Paste-From -Clipboard
Esc-L8 Replace-From-Clipboard
L1O Cut-To-Clipboard
Fl Set-@Level-To-Character
F2 Up-@Level
F3 Down-@Level

Section 2.3.1 in the manual discusses Pan key binding more generally; section 4.2
explains how to customize key bindings.

G.2 Menus

Commands in Pan may be bound to menus as conveniently as they may be bound to
keys, both locally and globally. Menu bindings have the advantage of being visible to
the user, but the disadvantage of taking longer to invoke.

Default menu bindings include some commands that are bound to both menus (for
easy learning) and to keys (for convenience). Notable examples are the clipboard opera-
tions (see G.5, "Cut/Paste/Kill/Yank").

The base buffer and help buffer each have specialized menus. All other viewers
provide a standard menu to which special purpose items may be appended in special edit-
ing modes (see G.8, "Special Editing Modes").

The Pan menu associated with a viewer appears in response to a press on the right
mouse button when the cursor is over the viewer's text viewing area.

Section 2.3.2 in the manual discusses Pan menu binding more generally; section 4.2
explains how to customize menu bindings.

G.3 Undo

Pan has a general undo facility that behaves more like the one in vi than the one in
GNU Emacs. The command Undo (bound by default to keys L4 and ^X-u and to the main
menu) reverses the most recent editing action. Undo is itself an editing action, so two
consecutive invocations of Undo will result in no net change.

Certain classes of editing actions (notably insertions and deletions), when per-
formed consecutively, are treated by Pan's Undo as a single action that represents their
aggregate effect.

Pan I: An Introduction For Users 54

Unlike GNU Emacs, cursor motion in Pan is considered an undoable editing action.

Section 3.5 in the manual discusses Pan's undo mechanism more generally.

G.4 Operand Level

The operand level mechanism in Pan has no counterpart in GNU Emacs or any other
common editor. The operand level (or simply the level) is a persistent mode, local to
each viewer. Its current value (usually one of "character," "word," or "line") is visi-
ble on the viewer's control panel and may be set either from the control panel or by three
commands bound to keys FI, F2, and F3.

The level specifies how the operands of certain generic commands (those whose
names contain @Level) will be determined. For example, the generic command Next-
@Level moves the curs. r forward by one character when the level is "character", but
when the level is "word" it moves the cursor forward by one word. Level-sensitive
(generic) commands are bound by default so that when the level is "character," they
mimic GNU Emacs. Thus, Next-@Level is bound to ^F, the slot where the Next-
Character command would otherwise appear.

The motivation for this mechanism becomes clear in special editing modes where
tree building occurs. Extra operand levels may be defined by specifications in the Ladle
description of a programming language. For example, in asple-mode (asple is a demons-
tration programming language) possible levels are:

Declaration
Statement
Expression
Error
Lexeme
Line
Word
Character

The operand level mechanism is supported by a second level of mapping, analogous
to keymaps. Thus, for example, the key ^F is bound to Next-@Level in the keymap;
Next-@Level is bound, in turn, to the command Next-Character when the level is "char-
acter." Operand bindings are, of course, customizable too.

Section 2.3.3 in the manual discusses Pan's operand binding mechanism more gen-
erally.

G.5 Cut/Paste/Kill/Yank

The functional area of Pan most likely to confuse experienced GNU Emacs users is
the management of text that is to be deleted and/or moved among buffers. The two edi-
tors support models that are superficially alike but differ in crucial ways. The potential
for confusion is exacerbated by the inherently invisible nature of some manipulations in
this category.

Pan 1: An Introduction For Users 55

This section presents the basic model supported by each editor. It enumerates the
basic abstractions (drawing the pivotal distinction between buffer-local and editor-
global) and gives examples of commands that operate upon them. Section 3 of the
manual presents a more thorough introduction to Pan's editing model.

G.5.1 The GNU Emacs Model

Window Abstractions

" A GNU Emacs buffer may have one or more windows that provide an independently
scrollable view of the buffer.

" Exactly one GNU Emacs window is active at any time.
" The active window has a visible dot (a.k.a. cursor), at a specific point in the buffer; the

dot is constrained to be always visible in the active window.
" A visible, inactive window does not display its dot, but retains its location should it

become active again. Invisible windows do not exist, and therefore retain no state.

Buffer Abstractions

" Each buffer may have a invisible mark, independent of any dots, at a specific point in
the buffer.

" If a buffer has a mark currently set, the text interval between dot and mark in the aca-
tive window implicitly (and invisibly) defines the region.

Global Abstractions

e The editor contains a single, invisible kill ring onto which text from various buffers
may be pushed.

Operations

" Killing any text (^K, -W, etc.) pushes it onto the global kill ring.
* The command copy-region-as-kill (Esc-w) pushes the region onto the global kill ring

without killing.

" The command yank (^Y) inserts the most recently pushed text (from any buffer) at the
dot in a specific buffer.

" The command yank-pop (Esc-y) removes the result of an immediately preceding yank
operation, pops the most recently pushed text off of the kill ring, and replaces the
removed text with the new top of the kill ring.

There are, of course, more operations for manipulating the kill ring explicitly, but this
description is sufficient for comparison. GNU Emacs also supports a number of named
global registers into which text can be stored. Pan supports nothing similar, so they will
not be discussed here.

Pan 1: An Introduction For Users 56

G.5.2 The Pan Model

In Pan it is necessary to distinguish between buffers and viewers. A single file is
always edited in a single buffer. A Pan buffer may have one or more viewers visible on
the screen, or it may have none at all. Viewers are something like GNU Emacs windows,
since many of them may be attached to a buffer, but they retain more state, more per-
sistently than GNU Emacs windows.

Viewer Abstractions

* Each viewer associated with a buffer has a visible dot (a.k.a. cursor) at a specific
point in the file. Like GNU Emacs, there as many dots associated with a buffer as there
are viewers. Unlike GNU Emacs, (a) the dot is not constrained to be in the visible part
of a viewer, (b) the dot is visible even when a viewer is not active (doesn't have the
keyboard focus in SunView terminology), and (c) the location of the dot (along with
size, scroll position, and screen location) persists while a viewer is invisible.

Buffer Abstractions

" Like GNU Emacs, each buffer may have an invisible mark, independent of viewer dots,
at a specific point in the file.

" Somewhat like GNU Erriacs, the text interval between a dot (in a viewer) and mark (in
a buffer, if set) implicitly (and invisibly) defines the region. Unlike GNU Emacs, this
region is of little interest to the Pan user.

" Each buffer may have a visible selection, independent of the mark and any dots. The
selection appears highlighted wherever visible in any active viewer. The selection
appears underlined, but a user option (global or buffer local) may be changed to
request inverse highlighting instead.

" Each buffer has a kill ring that is, unlike GNU Emacs, local. The mechanisms by
which successive kills are coalesced are less well developed than in GNU Emacs.

Global Abstractions

e The editor contains a single clipboard, also a ring, onto which text from various
buffers may be pushed.

Operations

This section lists examples of Pan commands related to these abstractions. Each
command mentioned will be followed by the key to which it is bound by default, if any.

o Like GNU Emacs, deleting text removes it from a buffer, and it is not retained (except
on the undo stack):

Pan 1: An Introduction For Users 57

0

Delete-Character (^D)
Delete-Previous-Character (DEL)
Delete-Word
Delete-Region-Dot-To-Mark
Delete-Selected-Region
Delete-Blank-Lines (X-O)
Delete-Horizontal-Space (Esc-)
etc.

" Killing any text pushes it onto the buffer's local kill ring:

Kill-Word (Esc-d)
Kill-To-EOL (-K)
Kill-Selected-Region (CW)
Kill-Region-Dot-To-Mark
etc.

" Like GNU Emacs, text can be pushed onto the buffer's local kill ring without removing
it:

Copy-Selection-As-Kill (Esc-w)

" Like GNU Emacs, text may be retrieved from the top of a buffer's local kill ring by
yanking, causing it to be inserted at the dot; Cycle-Yank specifies that the kill ring be
cycled before the yank and insertion. However, unlike GNU Emacs, both yank opera-
tions may be modified by a prefix argument, in which case yanked text replaces the
current selection instead of being inserted at the dot. Thus, Pan's Yank-From-Kill-
Ring with no prefix arguments (key sequence "'Y") is similar to the GNU Emacs
"yank" command, and Pan's Cycle-Yank with prefix arguments (key sequence "^U
Esc-y") has an effect similar to the GNU Emacs "yank-pop" command.

Yank-From-Kill-Ring (^Y)
Cycle-Yank (Esc-y)

" A buffer's local kill ring may be cycled, bringing successive entries to the top, and the
text currently at the top may be viewed in the Help buffer.

Cycle-Y-i!
Show-Kill (^X-?)
Cycle-Show-Kill (^X-!)

* Some operations use the buffer's current selection as an operand (see also clipboard
operations below):

Append-Selection-To-File
Apropos-Selection
Write-Selection-To-File
Kill-Selected-Region (CW)

Lowercase-Selection (X-^U)
etc.

Pan I: An Introduction For Users 58

* One can create a selection either with the mouse or from the dot and mark; the latter
option is included only for compatibility with emacs.

Select-Region-Dot-To-Mouse (Mouse-Right)
Select-Region-Dot-To-Mark (Esc-^W)
Deselect-Region (Esc-^D)

" Some commands operate on both the selection and the dot. GNU Emacs has no
equivalents because it supports no abstraction corresponding to a selection that is
independent of the dot.

Copy-Selection-To-Cursor (Esc-^Y)
Move-Selection-To-Cursor (Esc-^M)

* Text may be pushed onto the clipboard from the current selection (Copy or Cut). Text
may be retrieved from the top of the clipboard, and it may be either inserted at the dot
(Paste) or used to replace the current selection (Replace).

Copy-To-Clipboard (L6)
Cut-To-Clipboard (LIO)
Paste-From-Clipboard (L8)
Replace-From-Clipboard (Esc-L8)

" The clipboard may be cycled, bringing successive entries to the top, and the text
currently at the top may be viewed in the Help buffer.

Cycle-Clipboard
Show-Clipboard (Esc-?)
Cycle-Show-Clipboard (Esc-!)

G.6 Options

Many aspects of Pan's operation may be controlled by the settings of options,
somewhat analogous to GNU Emacs variables (although Pan also has variables). As with
bindings, options may have both global and buffer-local values. The help command
List-All-Options lists the option values currently in effect for the active buffer. Some
user-level commands are available for setting options dynamically, for example Set-
Auto-Fill-Column and Toggle-Read-Only. Section 4.3 of the manual explains in more
detail how to manage Pan options.

G.7 Help

Pan has a help mechanism that is somewhat different from the one in GNU Emacs.
All output from help commands appears in the distinguished buffer nImed "Help Info."
Output from some commands (for example the command Describe that provides addi-
tional information about a selected Pan symbol) is inserted among existing text in the
help buffer. The command Reset clears the contents of the help buffer; some help com-
mands do this automatically before responding.

* . Pan 1: An Introduction For Users 59

Section 3.6 in the manual presents a more detailed explanation of Pan's help
mechanism.

G.8 Special Editing Modes

Both editors support specialized editing modes that are optimized for editing certain
classes of files, C programs or TeX documents for example. A mode is typically invoked
by pattern matching against file extensions.

In its simplest form, a mode contains alternate key bindings and special purpose
commands.

Pan modes can operate like GNU Emacs modes, but have additional flexibility. For
example, Pan modes may also add special purpose submenus. Language editing modes
load Ladle tables for parsing and tree building and provide extra commands for tree navi-
gation and manipulation.

The short tables below describe two textual modes supported by GNU Emacs, along
with such textual Pan equivalents as currently exist. These modes are experimental and
incomplete. Full structure- and semantic-based Pan support for these languages is under
development. For a discussion of Pan's true language editing modes, see section 3.12 of
the manual.

Lisp Mode Bindings

Pan contains a small set of text-oriented functions for operating on LISP expres-
sions. More powerful functions await true language-based editing on LISP.

Key GNU Emacs Binding Code Pan Binding
TAB lisp-indent-line
DEL backward-delete-char-untabify
ESC Prefix Command
ESC C-a beginning-of-defun [std.] 0 Previous-Function
ESC C-e end-of-defun [std.] 0 End-Of-Function
ESC C-h mark-defun [std.] 0 Select-Function
ESC C-q indent-sexp
ESC C-x lisp-send-defun
ESC [backward-paragraph [std.] Previous-Function
ESC] forward-paragraph [std.] Next-Function

C Mode Bindings

There is no special mode yet for C in Pan, either text-oriented or language-based.

Pan 1: An Introduction For Users 60

Key GNU Emacs Binding Code Pan Binding
TAB c-indent-command
DEL backward-delete-char-untabify
ESC Prefix Command

electric-c-terminator
electric-c-semi
electric-c-brace

(electric-c-brace
ESC C-q indent-c-exp
ESC C-h mark-c-function

