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ABSTRACT

- - A large-eddy simulation (LES) of transition in plane channel flow has been carried out.
The LES results have been compared with those of a fine direct numerical simulation (DNS),
and with those of a coarse DNS that uses the same mesh as the LES, but no residual stress
model. While at the early stages of transition LES and coarse DNS give the same results,
the presence of the residual stress model was found to be necessary to predict accurately
mean velocity and Reynolds stress profiles during the late stages of transition (after the
second spike stage). The evolution of single Fourier modes is also predicted more accurately
by the LES than by the DNS. As small scales are generated, the dissipative character of
the residual stress starts to reproduce correctly the energy cascade; as transition progresses,
then, and the flow approaches its fully developed turbulent state, the subgrid scales tend
towards equilibrium and the model becomes more accurate.
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1. Introduction

In large-eddy simulations (LES) of the Navier-Stokes equations the large, energy-carrying
scales of motion are accurately captured, while the effect of the small scales is modeled.
The models used to parameterize the effect of the subgrid scales (known as residual stress
models or subgrid-scale stress models) are simpler and more universal than the turbulence
models used for the Reynolds-averaged Navier-Stokes equations, given that the subgrid scales
tend to be more isotropic and homogeneous than the large ones, and less affected by the
boundary conditions. Since only the large structures are accurately resolved by the grid, LES
requires less computational effort than the direct numerical simulation (DNS) of the Navier-
Stokes equations, in which all scales of motion are accurately resolved, at the expense of
the empiricism introduced by the modeling assumptions. Thus, one can perform large-eddy
simulations of a given flow at a fraction of the expense required by the DNS, or, conversely,
one can study higher Reynolds number flows by LES than one can by DNS.

Large-eddy simulations have been successfully applied to a variety of turbulent, wall-
bounded flows such as plane channel flow [1, 2, 3], boundary layers [4] and channel flow with
transpiration [5], but only recently efforts have been made to study transition to turbulence
using LES [6, 7, 8, 9]. While earlier work [6, 7] was characterized by the application of well-
established residual stress models to the simurlation of laminar-turbulent transition, Piomelli
and co-workers (8] were the first to use the databases generated by the direct simulation
of transition in a plane channel to study the behavior of the residual stress tensor during
transition. They observed that during the nonlinear stages, and in particular during the
second-spike stage, the subgrid scale dissipation (i.e., the energy transfer from large to small
scales) is significantly smaller than in turbulent flow. They devised a modification of the
Smagorinsky [101 model which allowed accurate prediction of the early stages of transition
in a flat-plate boundary layer. Subsequently, in [9], they again calculated a transitional
boundary layer flow using a residual stress model based on the Renormalization Group
(RNG) Theory [11] which predicts zero eddy-viscosity as long as the magnitude of the strain
rate tensor is less than some threshold value.

The latter results [8, 9], however, indicate that, up to the early stages of the laminar
breakdown, the effect of the small scales on the resolved ones is negligible; a coarse direct
simulation, then, appears to be sufficient to give results in satisfactory agreement with
those of finely resolved direct simulations [12], as far as engineering statistics are concerned
(Reynolds stresses and mean velocity profiles, for example). For this reason the present
article will focus on the late stages of transition, and apply the modified Smagorinsky model
[8] to the study of transition in a plane channel. The present calculation will extend through
the entire transition regime and into turbulent flow. Large-eddy simulation results will be
compared with those of a finely resolved direct simulation and with those of a coarse direct
simulation to distinguish modeling from resolution errors, and ascertain whether or not the
presence of a residual stress model is required for accuracy. El

In Section 2 the governing equations will be shown. In Section 3, the results of the El
large-eddy simulation of transitional channel flow will be discussed. Conclusions and recom-
mendations for future work will be made in the last section.
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2. Numerical formulation

In large-eddy simulations we decompose the flow variables into a large scale (or resolved)
component, denoted by an overbar, and a subgrid scale component. The large scale compo-
nent is defined by the filtering operation:

f(xlx 2,x 3 ) X I Gi(xi, x')f(x',4', 3)dx'dx'dx3  (1)
i= 1

where the integral is extended over the entire domain D and Gi is the filter function in the
ith direction [in the present work x, or x is the streamwise direction, X2 or y is the direction
normal to the walls, which are located at y = ±1, and X3 or z is the spanwise direction; u,
v and w (or ul, u2 and u3) are the velocity components in the coordinate directions].

The filtered Navier-Stokes and continuity equations, which describe the evolution of the
large, energy-carrying eddies. can he obtained by applying the filtering operation to the
incompressible Navier-Stokes and continuity equations to yield

au1 a ap aF 1 a2U,(2+~ yihii = +(2)a-t + xjai axj +RWe -67jaxj

a-i = 1 o(3)

in which a reference length and velocity scale are used to make ui,, , xi and t dimensionless.
The effect of the subgrid scales appears in the residual stress, rij = Uuj - uu, which, in
the present work, was parameterized by the modified Smagorinsky model [8]:

9= 2 VTSij + 6,,q 2 /3 (4)

where 6ij is Kronecker delta, and q = Tkk is the subrid scale energy (which is added to
the pressure), 3Sj = (Oai/8xj + O--j/ax,)/2 is the large-scale strain-rate tensor, and vT is an
eddy viscosity given by

vT = HCs (AxAyL~z) 3 ( - e1/+/2) 2 2,53 5

where a superscript + indicates a quantity made dimensionless by the kinematic vibLusity
v and the shear velocity u,- = (.. /p) 1/2, where r,. is the wall shear stress and p the fluid
density. The scaling factor -y = (Hi - H)/(H - Ht) (in which H = 8*/0 is the shape factor,
6 is the displacement thickness, 0 the momentum thickness, and the subscripts I and t refer
respectively to laminar and fully developed turbulent flow) was introduced to decrease the
dissipation by the subgrid scales during the early stages of transition [8].

The scaled Smagorinsky model described above was applied to the simulation of transition
in a plane channel at Re = 8, 000 (based on the channel half-width 6 and on the centerline
velocity in laminar flow, U,). Initial conditions consisted of the parabolic mean flow, on
which a 2D Tollmien-Schlichting (TS) mode of 2% amplitude and a 3D TS mode of 0.02%
amplitude were superimposed. The initial conditions and Reynolds number matched those
of the direct simulation described in [12]. The governing equations (2-3) were integrated
in time using a Fourier-Chebyshev collocation method [13]. The sharp Fourier cutoff filter
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was employed [8]. The model constant Co was set equal to 0.1, and the values 5/2 and 1.7
were used for H and Ht. The numerical results, at least in the fully developed turbulent
regime, are not expected to depend much on the values of H and Ht: turbulent statistics
are insensitive to changes in C, of the order of 20% [2]. A mesh using up to 48 x 64 x 48 grid
points was used. The large-eddy simulation results will be compared with those of a coarse
DNS which used the same number of points as the LES, but no model, and with the finely
resolved DNS [12], which used 216x216x192 grid points. Although the LES and the DNS
codes were essentially the same, and thus the CPU time per point and per step was equal,
the smaller number of points used in the LES resulted in savings, in terms of CPU time
required to calculate the full transition, of over 90%.

3. Results and discussion

The time-development of the wall shear is shown in Figure la (in the following, time is
normalized by 8/U, velocities by U., and lengths by 6; moreover, < . > denotes plane
averaging, U. =< Ui >, and the resolved fluctuations are defined as u' = U - U). During the
linear stages of the growth of the perturbation (t < 160) all simulations agree very well. The
two coarse simulations, however, predict an earlier occurrence of the second spike stage than
the direct simulation. Little difference can be observed between the coarse simulations for
t < 180, since up to that time the mean velocity has been affected little by the perturbation.
It should be remarked here that up to t = 165, 16x16x48 grid points or fewer are necessary
to resolve the velocity field. For t > 165, however, the mesh is refined in stages, as increased
resolution is required, to its final value. During laminar breakdown, moreover, very large
velocity fluctuations are observed; to satisfy the CFL condition, therefore, the timestep
must be significantly decreased. As a result of these two constraints, the first 165 time units
required only a small fraction of the CPU time required for the entire simulation: on a Cray
YMP, 3600 CPU seconds were used to integrate the Navier-Stokes equations from t = 0 to
t = 165, while 26,500 CPU seconds were expended to advance the solution from t = 165 to
t = 250.

Although up to t = 175 the perturbation energy level is small enough that the interaction
of the perturbations with the mean flow is negligible, so that the shape factor (Figure ib) is
close to its laminar value and the eddy viscosity VT is essentially zero (Figure 2), after that
time they start affecting the mean flow, as indicated by the rapid rise in the wall shear and
in the decrease in the shape factor. As the shape factor is altered, the eddy viscosity begins
to increase; at t = 220 it is approximately 40% larger than in fully-developed turbulent
flow. This is due to the large velocity fluctuations that occur during laminar breakdown
(see below), which cause oscillations of the large-scale strain rate tensor of greater amplitude
than in fully-developed turbulent flow. The discrepancy observed around t = 170 between
coarse and fine simulations appears to be caused mostly by insufficient energy transfer to
the small scales and viscous dissipation. Although in this flow the scaling factor -Y causes
underprediction of the energy transfer from large to small scales, for the flat-plate boundary
layer the opposite effect was observed [8], perhaps because of deficiencies in the form of 'Y
chosen in the present work.

As the flow undergoes laminar breakdown, more small scales are generated, and the
dissipation provided by the increased eddy viscosity becomes significant, and the LES results
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become more accurate. The coarse DNS, on the other hand, further loses accuracy because
the viscous stresses cannot provide sufficient dissipation. In particular, the overshoot in
the wall shear is captured accurately by the LES, the shape factor development is well
predicted, and the mean velocity profiles agree well with the fine DNS results (Figure 3).
The peak wall shear computed with the LES is within 3% of the DNS prediction, while that
calculated with the coarse DNS is in error by approximately 12%. While at t = 176 the
Reynolds stresses are overpredicted by the LES because of the accelerated development of
the disturbance (Figures 4 and 5), during laminar breakdown (t > 185) better agreement
between LES and DNS is observed; in those cases also the LES results are more accurate than
those obtained from the coarse DNS. Time-averaged velocity and Reynolds stress profiles in
fully-developed turbulent flow (obtained from the large-eddy simulation) are also shown for
comparison. During the late stages of transition the Reynolds stresses can be several times
larger than their counterparts in turbulent flow, perhaps due to the highly intermittent
character of the late stages of the transition process, which results in large velocity gradients
and increased turbulent kinetic energy production. The evolution of the energy content of
selected harmonics, shown in Figure 6, exhibits similar trends to those described above: for
t > 165 the presence of the subgrid scale model gives improved results. The large-eddy
simulation was carried out into the turbulent regime, and its results were found to compare
well experimental and numerical results [14, 15].

4. Conclusions

The present study indicates that, although a coarse direct simulation is capable of repro-
ducing the entire transition process from laminar to turbulent flow, during the late stages
of laminar-turbulent transition the presence of a residual stress model is beneficial, and
yields more accurate evolution of the perturbations, as evidenced by the comparison of var-
ious quantities of engineering interest such as mean velocity profiles, Reynolds stresses, wall
shear and shape factor. The evolution of single harmonics is also predicted more accurately
when a residual stress model is used than when none is employed.

The predictions of the scaled Smagorinsky model [8] are not very accurate at the early
nonlinear stages of transition, but the model becomes more accurate as small scales evolve
towards local equilibrium (in which they receive energy from the large scales and transfer it
entirely to smaller scales until viscous dissipation becomes significant). Since the Smagorin-
sky model is based on the local equilibrium assumption for the small scales, it is not surprising
that the model fares better at the late stages of transition than at the early nonlinear ones.
Presumably, for engineering flows in which a high level of disturbances is present, this type of
model could give satisfactory results. It appears, however, desirable to develop better ways
to relate the length and velocity scales present in (5) to the energy content of the unresolved
scales.

The fact that in the boundary layer case the scaling factor -Y produced a slowed down
perturbation growth, while in this flow accelerated growth is observed, indicates that the
present formulation cannot fully account for the very complex flow physics. More accurate
scaling or intermittency factors must be developed, which depend strongly on the local state
of the flow. This local character would facilitate large-eddy simulation of natural transition,
which usually takes place through the development of localized regions of turbulence (spots),
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in which the velocity statistics resemble turbulent ones, surrounded by relatively quiescent
areas. A model which exhibits this behavior is the RNG model used in [9]; this model is
still, however, based on local equilibrium assumptions; its results, moreover, were found to
be very grid-dependent, indicating that a more accurate length scale than that employed
in [9] is necessary. Alternatively, use of a transport equation for the velocity scale valid
during transition could also result in more accurate prediction of the residual stresses during
transition. These approaches are presently under investigation.

5



References

[1] J.W. Deardorff. J. Fluid Mech. 41, 453 (1970).

[2] P. Moin and J. Kim. J. Fluid Mech. 118, 341 (1982).

[3] U. Piomelli, J.H. Ferziger, P. Moin and J. Kim. Phys. Fluids A 1(6), (189).

[4] L. Schmitt, K. Richter and R. Friedrich. Finite Approx. in Fluid Mech. (E.H. Hirschel,
ed.). Vieweg, 232 (1985).

[5] U. Piomelli, P. Moin and J.H. Ferziger. AIAA Paper No. 89-0375, (1989).

[6] K. Horiuti. J. Phys. Soc. Japan 55, No. 5, 1528 (1986).

[7] K. Dang and V. Deschamps. In Numerical Methods in Laminar and Turbulent Flows,
(C. Taylor, W.G. Habashi and M.M. Hafez, eds.), Pine Ridge, p. 423 (1987).

[8] U. Piomelli, T.A. Zang, C.G. Speziale and M.Y. Hussaini. Phys. Fluids A 2(2), 257(1990).

[9] U. Piomelli, T.A. Zang, C.G. Speziale and T.S. Lund. In Instability and Transition,
(M.Y. Hussaini and R.G. Voigt, eds.), vol. II, Springer-Verlag, p. 480 (1990).

[10] J. Smagorinsky. Monthly Weather Review 91, 99 (1963).

[11] V. Yakhot and S.A. Orszag. J. Sci. Computing, 1(1), 3 (1986).

[12] T.A. Zang, N. Gilbert and L. Kleiser. In Instability and Transition, (M.Y. Hussaini and
R.G. Voigt, eds.), vol. II, Springer-Verlag, p. 283 (1990).

[13] T.A. Zang and M.Y. Hussaini. In Nonlinear wave interactions in fluids, (R.W. Miksad,
T.R. Akylas and T. Herbert, eds.), ASME, p. 131 (1987).

[14] R.B. Dean. Jour. Fluids Engng. 100, 215 (1979).

[15] J. Kim, P. Moin and R.D. Moser. J. Fluid Mech. 177, 133 (1987).

6



16 -

S12

-S 8

4-

0 I

0 100 200 300

2.4

2.0-

1.6

1.2 - (b)
I I 1

0 100 200 300

t

Figure 1: Time evolution of the wall shear and shape factor. ....... Coarse direct simulation;
large-eddy simulation; A fine direct simulation [12]. (a) Wall shear; (b) shape factor.
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(b) t = 200; (c) t = 220.
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