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Two separate sensing arrays track the same underwater vehicle. The two

versions of track are different, but roughly parallel. One possible explanation

is the presence of a timing synchronization error. The report provides a

model for describing and correcting such errors, estimation algorithms for

quantifying the model parameters, and statistical methodology for testing the

validity of the effects. The techniques are applied to real data, and the rEsults
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1. INTRODUCTION

This report deals with some calibration problems of monitoring a

multiple array underwater tracking range. The arrays in the system are of the

short baseline type; each contains four sonar transducers placed rigidly at the

corners of a cube in a manner that describes a Cartesian coordinate system in

three dimensions. Figure 1 contains a diagram showing the structure for

these arrays and indicating the numerous signals they may receive. It is

slightly deceptive in that real ray paths are not straight lines.

An array receives a distinctive signal from a synchronously timed pinger

attached to the target vehicle. The differentials of the sound wavefront's

times of arrival at the four hydrophones allow the computation of the

azimuth and elevation angles (spherical coordinate longitude and latitude) of

the normal to the wavefront at the origin of the local coordinate system.

Then, assuming direct path propagation, one can ray trace using Snell's law,

[11, starting with the aforementioned elevation angle and utilizing a velocity-

versus-depth profile for the speed of sound in the water. Finally, the time

differential between the source pulse at the target vehicle and its arrival at the

array is used to stop the ray-tracing algorithm and determine the location of

the target relative to the array. The local track is the sequential set of these

estimated positions.

Each array in the system operates over a limited radius. As the target

sojourns through the range, it is tracked by a number of these arrays. See

Figure 2 for a plan view of the Nanoose range. (The zero level in the vertical

is taken as mean sea level.) The overall path is constructed by transforming

each piece of local track to the coordinates of the range based upon the
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assumed location and orientation of the various local coordinate systems.

Discontinuities, or mismatches occur because the track produced by one array

does not mesh well with that produced by a neighboring array in the overlap

regions. Such mismatches can be seen in Appendix B.

It appears that there are several sources of systematic error in the

operation of this system. The question of individual array location and

orientation has been treated previously [2]. The present report addresses the

timing synchronization problem, from a statistical point of view. That is, the

pulses received at the arrays are timed to the range clock with great precision.

The timing information must be transmitted to the pinger prior to the release

of the target vehicle. Although there is no engineering reason to suspect

noticeable error in this transfer, some data exhibit behavior consonant with

such an interpretation. Thus we build a mathematical model to account for

such a source of systematic error, and develop statistical methodology for

interpreting the data in the light of the model. Indeed, if the method

provided a way to eliminate mismatches for an entire run for a single

vehicle, there would be great temptation to use it as a smoothing filter.

Generally there are several sequences of time points, called point count

sets, for which two arrays simultaneously produce track. These occur for

tracking in the overlap regions indicated in Figure 2. The paired tracking data

of these point counts are called "crossover data." It is the crossover data

generated as a result of the target vehicle's entire trip that provide the

evidence suggesting timing synchronization problems and the data base for

evaluating the use of such a model. Each version of track in a crossover data

set is assumed to have been converted to the (common) range coordinate

system. The components of this system are called "downrange, crossrange,

vertical," or sometimes "centerline, crossline, vertical."
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The model is developed in Section 2. It allows for both a timing offset

and a drift. Estimation methods and statistical properties are developed.

Section 3 contains applications to real data. It is shown that the offsets are

significant and the drifts are negligible. The issue of the reality of the effects is

also treated. I.e., is it the timing offset constant for all crossover regions used

in a given run? To answer this question, some modeling of the components

of variance is required and when done, a statistical analysis is performed. It

appears that the true cause of these effects is something other than a timing

synchronization bias. The analyses are supported by some characteristics of

the noise process, and these are presented in Section 4. Conclusions are

summarized in Section 5. A number of appendices are included that contain

supporting data and information, including source codes for computations.

2. MODEL DEVELOPMENT AND STATISTICAL PROPERTIES

Figure 3 contains a mockup illustrating conditions that support the

consideration of a timing synchronization correction. It shows a plan view

which includes the radial lines from the arrays to the estimated track points

in adjacent overlap regions. Between these regions, much data is supplied

only by array A 2 . The analyst does not see the radial lines on his screen, nor

does he see the black dots. He sees only the X's and 0's (no distinction

between the two) and no mismatch is apparent. (Mismatches would be

apparent however for track pointing in a different direction.) But when one

pairs up the radial lines by common time points, then one sees that the two

versions of track lack coherence and can be improved by stretching the

estimated points to the black dot positicns. This can be achieved by a single

constant adjustment to the transit time values in the ray tracing algorithm.
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The figure iio helps one to imagine the distinction between the effects of

an array location error model and a timing adjustment model. If the former

were applied to the situation in Figure 3, at least two arrays would have to be

moved. But any such decisions caniot be made in isolation. The ultimate

goal is the simultaneous improvement of coherence in all overlap areas and,

of course, discontinuities must not be created at other places.

A crossover data set is a set of matched pairs of three vectors

tX1t W Y1(t)

representing two versions of the same vehicle track for a common set of time

values (point counts), T in number. The array that produced X(t) is located at

(x and the one that produced Y(t' is located at 03. Thus these two versions of

track can be represented in their local coordinate systems as

W(t) = X(t)--a T(t) = Y(t)-P3 (2)

Timing synchronization error corrections may be viewed as either stretching

or contracting the vectors W(t) and rT(t) by the same (time) amount. The effect

of such corrections is not constant, but depends upon (i) the speed of sound in

water at the depths X3(t) and Y3(t); (i) the elevation angles of the ray traces at

these times and depths.

The magnitudes of the time adjustments are small and the effects can be

described using first order terms

(t,g(t)) W ( + g~ta(t)
(3)

rI(t,g(t)) = r(t) + g(t)b(t)

where g(t) is a scalar function of time representing the total adjustment for

timing offset (6) and drift (i)



g(t) = + m(t-to) (4)

for a conveniently chosen central time, to; and a(t), b(t) are the scaled

directions of stretch

COS(Ot)COS(O(t)) 1

a(t) = v(t) cos(O(t))sin(O(t)) (5)

sin(O(t))

i.e., v(t) is the speed of sound at depth 3(t), 0(t) is the elevation angle of the

ray trace from ax at 3(t), and 0(t) is the azimuth of t(t) from ax. The vector b(t)

is defined similarly for the track 71(t) and its origin P.

It is easily seen that, for given 5, m and to, the corrected versions of track

in the (common) range coordinate system are

X(t,g(t)) = X(t) + g(t)a(t)

Y(t,g(t)) = Y(t) + g(t)b(t) (6)

The statstical estimation problem is to chose 8 and m so that the two

versions of track agree as well as possible. The least squares approach is

adopted. Using the notation

AveW(t)112 = V'(t) W (t) (7)

t T1

we set up the objective function

9



Q = Avejix(t, (t))- Y(t,g(t)
t

= AvelIX(t) _ Y(t)112 + Avqe[g(t)]2Ila(t) - b (t A2  (8)
fI

+2Ave g(t[a(t)-b(t)] [X(t)- Y(t)]
f

and find the values of 8 and m that minimize Q. When the two partial

derivatives are set equal to zero it is seen that there is convenience in

choosing to so that

Ave(t - to)I a(t ) - b(t)1j2 = 0 (9)
t

That is

tj = Ave tIja(t) - b(t) 2 / Ave la(t) - b(t)112
t t

This done, the normal equations may be expressed as

6Avella(t)- b(t) 2 = -Ave(a(t)- b(t))'[X(t)- Y(t)]
t t

(10)

m Ave(t- to) 21a(t)-b(t)112 = -Ave(t-to)[a(t)- b(t)]'[X(t)- Y(t)]
t t

and one can readily solve explicitly for the minimizing values S and fiz.

Positive values of 6 are associated with stretching, negative with contracting.

If we let Q be the minimizing value of Q, it is useful to establish the

decomposition

Q= + ( _-5)2 Avela(t)-_ b(t)12+ M)2Ave(t-to)a(t)-b(t)12  (11)

10



Before justifying (11) it is convenient to shorten the writing: let W(t,6(t))

= X(t,g(t))-Y(t,g(t)); c(t)=a(t)-b(t);§(t)=S+rh(t-to). Then the statement

says

=Avej(tj(t))11 + 6)2 Avek(t)112 + (?-n - M)2 Ave(t - to)Ic(t)112  (12)
tt t

and the result is justified by use of the three orthogonality relationships

Ave[W(t,0) + &(t)+ th(t- to)C(t)] c(t) = 0

Ave[W(t,0) + &(t)+ ?r(t-to)C(t)] (t-to)c(t) = 0

Ave(t - to )c'(t)c(t) = 0 (13)
t

which in turn are established using the normal equations (10), and (9).

The significance of the offset and drift parameters can be judged if we

develop the means and variances of S, rn. Letting E denote the mathematical

expectation operator, we begin with the assumption

E[W(t,g(t)] = 0 (14)

which embraces the idea that the two corrected versions of track produce

common track without systematic error.

Further, let

Kb= Xc'(t)c(t) ; Km = (t -to)2C(t)c(t) (15)

and use (13) and (14) to show that the estimators 3 and ?h are unbiased.

11



E(S) = -Ki c'(t)E[ W(t)I I K c'(t[ +m(t-to)Ic(t) = 8
t t

E(?h) = -Km IX(t- to)C'(t)E[W(t,O)] = Km I,(t- to)c'(t)45 + m(t - to)}(t) = m
t t

To develop variances, we assume that the positive lag covariances are

zero; support for this appears in the section on noise characteristics. Let M

represent the (zero lag) covariance matrix. (See Appendix C for estimates).

M = E[W(tg(t))W'(tg(t)] (16)

Then one easily represents

var(S) = K6~'t)ct (17)
t

var(rh) = Kn 1 (t - to) 2 C'(t)Mc'(t) (18)

t

cov(Sri) = KKm_, (t - t0 )c'(t)Mc(t) (19)
t

If M is proportional to the identity matrix then this last term is zero; the other

two terms simplify immensely; and a standard regression development can

be used. But the study of noise characteristics does not support this. On the

other hand the vectors {c(t)) do not change much with t and this has the

tendency to render (19) to be small. The reason for this stability is that

crossover data occurs only at the greater distances from the sensing arrays; the

azimuth and elevation angles and the layer sound speeds do not change

much.

12



It appears that the matrix M changes with the crossover data set.

Methodology for estimating it appears in Section 4. Estimates of the M

matrices appear in Appendix C.

3. DATA ANALYSIS

The data consists of S, A , and supporting values for 69 segments of

crossover track collected over four separate days with two (temporally serial,

not concurrent) target vehicles (runs) per day. The information is

summarized in Table 1. Missing variance estimates indicate either a data

shortage or outlier problems. In a few cases the tracks were curved, and the

straight line model is not adequate. The units are milliseconds for S, and

milliseconds per point count for Ah. One millisecond translates to about 4.5 to

5 feet of distance. The ratios of means to standard deviations are used to

judge whether the effects are significantly different from zero. Virtually all of

the offsets and some of the drifts are significant although the latter are not

strongly so. The "r" column contains the correlations between S and 7h .

They are insignificant. A further search for large scale drift was made by

plotting 6 against the crossover central time to for each run. They appear in

Figure 4. If a smooth signal were discernible then we would have a way to

connect the 5 values that appear in each column of Table 2. But they are

chaotic and provide no incentive to continue any concern about drift. It is

concluded that the offsets are significant and the drifts are not. The latter will

be dropped from further consideration. Some graphical examples of the effect

our timing corrections have been selected and appear in Appendix B.

13



Table 1: Offsets, Drifts, Signal to Noise Ratios

Dat Vehicle 8 a7 6 06 m a m /am r t o T

3/23/89 MK 30 1.37 .0461 29.82 .00168 .001627 1.03 -. 00 405.13 42

1.74 .0431 40.28 -. 00831 .002217 3.75 .00 422.72 33
1.69 .0925 18.29 -. 01559 .007024 2.22 .06 4171 09 19

.78 .0464 16 87 .00245 .001588 1.54 .02 439.71 45

-. 15 .0504 2.97 .01304 .001438 9.07 .02 2012.80 57
.10 .0802 1.23 .00150 .005509 .27 .01 3080.16 22

-1.24 .0480 25.96 -. 00119 .001645 .72 .01 2531.21 49

3/23/89 MK 30 3.54 .0479 73.85 -. 00395 .00211t 1.86 .06 422.64 37

2.52 .0584 43.17 -. 00224 .002136 1.05 .11 1605.22 47

5/10/89 MK 27 3.04 .0283 107.40 .00993 .001142 8.70 -. 02 3107.58 43

3.44 .0192 178 88 -. 00250 .000866 2.89 -. 06 3120.22 38
3.24 .0401 80.68 -. 00007 .002747 .02 .05 6936.70 25

2 43 .0270 90.18 .00187 .001375 1.36 .00 3116.86 34

1.86 .0266 69.80 .00029 .000825 .35 -. 00 3781.03 56

1.24 .0228 54.56 .00408 .000630 6.48 -. 05 5471.41 59

2.06 .0197 104.59 .00437 .000662 6.60 .02 4720.56 50

1.99 .0104 190.86 -.00067 .000364 1.84 .02 8060.02 50

2.27 .0180 126.16 -. 00196 .000770 2.54 -. 03 5992.35 40
1.89 .0868 21.72 -.00001 .000567 .01 -.01 9615.69 50

5/10/89 MK 27 3.49 .0194 180.11 .01062 .000746 14.23 -.03 1733.39 45

366 .0270 135.56 -.00044 .001268 .35 .00 1751.02 37

4,90 .0189 259.57 .00443 .000689 6.43 .01 10196.44 45

2 93 .0258 113.27 -.00545 .001358 4.02 .00 1747.85 33

2 09 .0406 51.50 .00038 .001887 .20 -.01 2366.96 37

2.85 .0243 117.13 -.00094 .000845 1.11 .07 298001 50

3.87 , -.. ... .-- -.00050 ...... . - - .-- 12354 91 50

2 37 .--... ---. -- -.01074 .----- . -- .-- 531680 15

3 38 .0131 257.71 .00257 .000458 5.62 .00 12215.15 50

1.36 .0209 64.92 .00276 .000662 4.17 -.06 3585.00 55

2 18 .0181 120.55 -.00195 .000628 3.11 .07 447800 50

2 18 .0149 146 48 .00192 .000479 4.02 -.03 5873 92 54

4 91 .0096 51080 .00022 .000337 .64 .02 11235.86 50

3.15 .0281 111,97 -.00202 .001001 2 02 -.05 6480.62 46

6/689 MK 27 2 68 .0336 79.78 .01680 .003073 5.47 .02 1952.64 19

4,31 .0116 371.65 -.00189 .000377 5.02 .08 10562.53 50

4 95 .0269 184.19 .00144 .001136 1.27 -.04 14411.90 41

2 72 .0125 217 40 .00343 .000434 7.91 .02 2124.12 50

4.03 .0136 297 47 .00242 .000464 5.22 -.02 12709 75 50

1 14 0376 30 32 -.00197 .001555 1.27 - 01 4979 22 40

1 91 .0251 76.25 .00401 .001141 3 52 .07 6197 42 35

2 69 0151 178.04 -.00143 .000486 2.93 -.05 12044 01 51

6;6.89 MK 27 2 11 .0232 91.30 00091 .000783 1.17 .03 357 26 50

3 09 0434 71.15 .00596 .003137 1 90 -.02 421.96 24

2 90 0195 148 86 -.00231 .000677 3 42 - 03 4135 53 50

2 48 .0233 106.78 -.00211 .000692 3.06 .04 487 61 50

1 99 .0156 127 36 -.00192 .000541 3.55 - 02 1781 82 50

1,04 .0202 51 69 -.00075 .000681 1.10 .04 2505 37 50

1 32 0181 72 74 .00003 .000631 .05 .01 1991 06 50

7,.21/88 MK 27 2 07 0217 95.45 .00060 .000725 .83 - 02 352 15 52

2 75 .0300 91.58 .00020 .001845 .11 -.00 377 91 28

2 24 .0115 195 77 -.00160 .000398 4 01 -.00 4440 01 50

1 90 .0147 129.27 .00244 .000510 4.79 .03 469 17 50

1 47 .- ...-- -.00746 .- - --.. . . .-- 1062 61 15
1 16 0128 90 47 -.00287 .001310 2 19 .01 1772 98 1 7

.29 0144 19 86 .00232 .000501 4 64 - 01 2068 58 50

2 45 0112 2;7.86 .00069 .000392 1 76 .00 3137 66 50

7/21/88 MK 30 1 37 0245 55 85 .01149 .000853 13 46 02 1108 15 50

2 15 0308 69 77 .00069 .002324 .30 - 02 1152 98 23

.96 .0192 50 18 .00019 .000662 .29 -.03 6658 19 50

1 10 .0171 63 97 .00206 .000595 346 .02 217 45 50

69 .0189 36.48 -.00233 .000656 3 54 -.02 4360 14 50
- 02 .0099 2 07 .00190 .000346 5 49 - 06 11498 22 50

80 .0209 38 31 .00147 .000730 2 01 - 00 4667 48 50

- 42 0337 12 35 00355 001173 302 - 03 10430 20 50

27 0176 15 46 00035 .000611 .57 - 07 3793 99 50

17 0251 6 69 00024 000952 26 03 5141 88 27
54 0496 1088 -00171 003582 48 03 12031 94 24

61 0259 23 51 00509 000897 5 67 02 3011 04 50

47 02c 15 94 . 23 001380 2 34 • 04 5697 10 37
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Table 2: Estimates of the Timing Offset

5.0- 4.91 (i) 4.95 (k)

4.89 (k)

4.5-
4.31 (k)

4.0- 4.03 (e)
3.86 (e)

3.66 (b)
3.5- 3.53 (b) (b) 3.48 (a)

3.243 (k) 3,38 (h)
3.23 (k) 3.14 (g) 3.08 (b)

3.0 2.92 (c) 2.89 (k)

2.85 (e) 2.71 fc) 2.74 (b)

2.69 (f)

2.5 2.52 (e) 2.43 (c) 2.68 (a) 2.48 (c) 2.44 (i)
2.37 (h)

2.27 (g) 2.17 (f) 2.24 (k) 2.14 (b)

2.05 (h) 2.17 (f) 2.11 (a) 2.07 (a)
2.0- 1.98 () 2.08 (d) 1.91 (f) 1.99 (e) 1.90 (c)

1.88 (g)
1.73 (b) 1.85 (d)
1.69 (k)1.51- 1.47 (d)

1.37 (a) 1.24 (f) 1 .35 (f) 1.31 (h) 1.36 (a)

1.14 (f) 1.16 (e) 1.09 (C)

1.0- 1.04 (f) 0.96 (k)

0.78 (c) 068 (e)

0.60 (j)0.5- 0.46 
(g)

0.28 (h) 0.27 Mfi

0.09 (g) 0.16 (f)
0 - -0.14 (h) -0.02 (e)

-05- -0.41 (h)-0.53 (f)

-0.80 (h)

-1.24 (f)

3'23'89 5 0189 15 6/89 7!21 /88



3/23/89 - MK 30 3/23/89 - MK 30

2 3.6

1.5 34

1 3.2
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0.5

2.3
-0.5

.1 2.6
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5/10/89 - MK 27 5/10/89 - MK 27

3.5 5

* 4.3
3 .

2.. 3.5

S •3

2.5

2
1.5

3 4 5 6 7 8 10 0 2 4 6 a 1o 12 14
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6/6/89 - MK 27 6/6/89 - MK 27
5 3.5

4.5-
3

3.5 2.53 t

2.5 2

2 
1.5

1.5
) •______________________ ______________________

0 2 4 6 8 10 12 0.3 1.5 2 .5 3 3.5 4 4.5

t0 x10 -1 to x10 -1

7/21/88 - MK 27 7/21/88 - MK 30

3 2.5

2.52

2 
1.5

•I

0.5 •

0 *

05 -0,5

. 0.5 1 .5 2 - 5 . - 4 0 2 6 6 1 4 3 , 4

to xl0 -1 to x10 5

Figure 4. Offset vs. Central Point Count for the eight runs
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Since the S values are significant, it is important to discover what they

really represent. They have been labeled timing synchronization offset errors

and, if that labeling is a valid physical description, then each run (vehicle) on

each day should have its own unique value and this common value could be

used to correct all track, not just crossover track. What follows is an analysis

of this point.

Table 2 contains a graphical positioning of the sixty-nine 5 values

according to the eight runs. There were eleven array pairs involved in this

process and they are marked with the letters a, b, ..., k. (The correspondence

with the overlap regions marked in Figure 2 is given in Table 3.) Study of

Table 2 shows considerable "within run" variability, and one is inclined to

doubt the reality of the constant offset interpretation.

TABLE 3. IDENTIFICATION OF ARRAY PAIRS TO RECONCILE TABLE 2

WITH FIGURE 2

a (1,11) e (3,4) i (5,56)

b (1,2) f (4,5) j (5,14)

c (2,11) g (5,6) k (15,16)

d (2,3) h (4,55)

In passing we also note that the S values for each array pair appear to

have some temporal coherence, and hence the assignable causes may be

related to this, but that is an issue for another time.

We proceed to model the components of random error variance and

develop a test statistic for examining whether or not all S for the same run

can be viewed as constant. The (,) are modeled as being affected by the day

(water depth velocity profiles change from day to day), the run (the second

run is a different vehicle operating later in the day), and the array pairs

generating the crossover data. The array pairs are assumed to produce fixed
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effects, with values caj for j=1, ..., 11; and the day and run effects are assumed
2 2

to be random with zero means and variances c 2 and Y2 respectively. There is

2
also an experimental (residual) error having zero mean and variance a .

The result is the mixed model

3= Xa + ZO + e (20)

where 3 is the 69 component column vector of 8 estimates; X is a 69 x 11

matrix of zeros and ones (incidence matrix) relating the 3 component to the

array pair; c is the 11 component vector of array pair fixed effects; Z is a 69

rowed partitioned incidence matrix

Z = (Z1, Z2) (21)

with Z1 having 4 columns relating the 8 component to its day and Z2 having

8 columns relating the S component to its run. The vector V = (P1 P2)

represents the random variables

P1 = (11, .. P, 14) independent N(0, )

(O(2P2 = (P21, ... , P28) independent N(0, 2 )

and the residuals are

e' = (el, ... , e69) independent N(0,a 2)

Further the vectors PI, P2, e are assumed to be mutually independent.

We will be applying the model (20) separately to each of the eight runs for

purposes of estimating the fixed effects (a) for each of those runs. Such
2 2

estimates will require values for the variance components (y2, a0 , a2). We

prefer to estimate them but once, by pooling all of the data. This can be
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accomplished separately from the estimation of fixed effects by using the

restricted maximum likelihood method: the unequal block size version has

been treated by Patterson and Thompson, Ref. [4] and is used here. (See

Appendix A for a description of the algorithm.) The results are

-2 =2 2
a= 0.3571 02 = 0.7207 G 0.2430 (22)

and the units are seconds squared. It is noted that the run-to-run variance is

double that of the day-to-day variance, which in turn is larger than the error

variance by a ratio of about seven to five. But the degrees of freedom for the

first two variances are small and the estimates may not be very reliable.

Using the model (20) one sees that the covariance matrix of the

observables is

H = a2In + ZFZ' (23)

where In is the identity matrix of order n, F is diagonal, the first four values
2 2

being aI and the next eight (Y2; and Z is partitioned (Z1, Z2) as before. For the

full data set n = 69, but recall that our goal is to check whether the fixed effects

(offset estimates) can be viewed as constant within each run. The plan is to

estimate the fixed effects for each run and test whether they can be viewed as

constant (over the array pairs).

To do this we proceed as follows. The S values for the kth run can be

identified by the ones in the kth column of Z 2, k = 1, ..., 8. The array pairs

involved (not necessarily all eleven) are identified by ones in the X matrix

restricted to the kth run. The Z matrix is restricted in a like fashion and the

covariance matrix (of order n, the number of crossover data sets in the kth

run) has the same structure as (23) with the reinterpretation of inputs. Of

course the estimates (22) must also be input.
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Let K be the number of array pairs involved in the kth run. Use the

Aitken estimator [3)

ak = (X'xk) 1 XkH" (24)

and its covariance matrix

var(6k) = [Xk-k'Xk 1 =- (25)

and the subscript k modifies the previous definitions of symbols so that only

the kth run is involved. If the null hypothesis is true (i.e., the czk all fall on

the main diagonal of the K dimensional space), then the maximum

likelihood estimate of the common value is

KK KK

ii = VviJ&kj)/,_V ij  (26)
i=1j=1 i j

It also follows from the normality assumptions that the quadratic

(&k - ii) V~k - "U)  - ChiSquare(K-1) (27)

and this statistic is the weighted distance of the components of 6 from the

main diagonal (i.e., the constant fixed effect that is the same for all array

pairs). Thus the null hypothesis should be rejected when this distance is too

large.

The numerical results for the eight runs are contained in Table 4. The

column marked p* contains the p values (empirical significance level)

corresponding to the test statistics listed under the "distance" column. Seven

of the eight values indicate rather rare events and the eighth, p* = 0.14, is

associated with one degree of freedom. Low degrees of freedom tend to
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dampen the chances of finding significant results. The final column is the

ratio of the distance (27) to its standard deviation under the null hypothesis.

We assert that the array pair effects are not constant and that there are

other sources of systematic error that dominate this process.

TABLE 4. TESTING THE EIGHT RUNS FOR CONSTANT FIXED EFFECTS

K-1 Distance p* distance/SD

0.61 6 30.17 3.6x10-5  8.71

3.03 1 2.12 0.14 1.51

2.35 8 17.71 0.06 4.43

3.09 9 51.67 5.2x10 -- 12.18

3.05 4 41.48 2.1x10 -8  14.67

2.13 6 14.16 0.03 4.09

1.79 7 18.13 0.01 4.85

0.46 8 30.44 1.8x10 -4  7.61

4. CHARACTERISTICS OF NOISE

In order to study the stochastic nature of the tracking errors we fit straight

lines to the track. (This was done even for track that did not appear linear via

a visual scan of graphical output. The exceptional cases are marked in

Appendix C.) It is assumed that the target vehicles speed is constant. The

result is a set of deterministically spaced points that fall on a straight line in

three space. From these we can produce residuals and, assuming local

stationarity, study the noise structure.
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The basic (unadjusted for constant speed) straight line is found by

principal components. Let X(t) be used for X(t,0), eq. (6) and

x = X(t) (28)
T t

We seek a projection (direction) p = (p1, p2, p3)'

3

Z(t) = ,piXi(t) = p'X(t) (29)
1

that will maximize the variance of {Z(t)}

U2 = Z] = p'Cxp (30)

where

C, T T (X (t) -  ) (X (t- X) p31)

t

is the covariance matrix of the track data, X(t).

Since the vector p is a set of direction numbers, we adopt the usual

constraint, = 1. (This will keep o 2 finite.) It is easily shown that the

three solutions to the eigen problem

Cxp = ;'p

provide us with an orthonormal basis

P = {P 1,P2 ,P3} (32)
2

where P, is the eigen vector corresponding to ?i and k, > k- > 3. Since oz =
2

p'Cp = kp'p = ), and our goal is to maximize z , we choose the first eigen

vector for use.
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The set of values

Z1 (t) = PI(X(t)-X) (33)

represents the succession of values after the vectors {X(t)-X} are projected

onto the line of the first principal component. These projections are

orthogonal projections and may not well represent the relative positions of a

target vehicle heading in the direction P1 at constant speed. Accordingly it is

appropriate to make an adjustment in the {Zl(t)) to account for constant

speed. The collection of point counts,

t 1 < t-2 <... < tT ,  (34)

all differ by integral multiples of some base value, A, representing distance

traversed per point count. Let us perform a simple linear regression of the

ZI(t) on the times (34). The fitted values are

Z(t) = a + b(t - 0 (35)

where a= tZl(t) and b= ,,(t-i)Z1 (t)/x 1 (t-' 2. Now the successive

values of Z(t) difter by integral multiples of a converted base value, bA, and

represent the constant speed progression of the vehicle in the direction P1.

It remains to represent the distances Z(t) in the original coordinate

system. Let

R(t) = (Z(t),O,O)' (36)

be the estimated position of the vehicle in the basis P, and then

X1(t) = X + PR(t) (37)
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will be the straight line in the original coordinates. Similarly, when (Y(t)) is

put into this algorithm, we produce Y,(t).

Now we are positioned to estimate the covariance matrices of the noise

processes

1

DX =T X[X(t) - Xs(t)][X(t ) - Xsl(t)]t

Dy= I [Y(t)- Ys,(01[(t)] - Ys1 (t)] (38)
Tt

Dxy 1 Ty[X(t)- Xs(t)][Y(t)-Ts1 (t)
Tt

Computational work shows considerable variability in these matrices as one

changes the day, the run, and the array pair. Also the cross correlations are

mostly different from zero. The matrix M, eq. (16), is estimated by

=D X +D -Dy - D' (39)

and used in (17), (18), and (19). The quantities (38) and (39) appear in

Appendix C, and illustrate their variable nature.

Another immediate use of the noise processes is to look at the

autocorrelations. In addition to the three individual components we define a

"noise displacement" process

4() (X (t) - xW)2  (40)

(Of course the same is done for (Y(t)j.)

The autocovariances
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1T-hR(h)- Y (t) - W(t+h)-d)(41)

for {d(t)) and for the individual components {Xi(t)-Xsli(t)) are computed and

normalized. Plots of R(h)/R(O) vs h appear in Appendix D. It is typical that

they become and remain in a general level of "static" for h > 1.

5. SUMMARY

The paper contains methodology for estimating the presence of timing

synchronization error and judging its significance in the framework of our

short baseline array underwater test range. The methodology was applied to

real data. Some plots illustrating the effects appear in Appendix B. One must

view them with care because the coordinate scales are so different. It is rather

typical that some unresolved systematic error is exposed in the side view.

Analysis of the results does not support the timing synchronization error

model as accounting for the discrepancies. Other sources of systematic e-ro.

must be unmasked first. Possibilities include the orientation of the arrays [2],

biases in the raytracing inputs [31, and perhaps a temporal or spatial gradient

in the depth velocity profile.

Appendices C and D contain information about the second order

properties of the three dimensional noise process and about time lag

correlations.
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APPENDIX A. PATTERSON AND THOMPSON ALGORITHM

The purpose of this appendix is to document the computational method

for estimating variance components that is but implicitly described in the

Patterson and Thompson paper [4]. We use the notation of that paper.

Specifically

y = Xa + e (A.1)

where the observeable y is an n component column vector, X is an n by t

matrix of rank t determined by the allocation of treatments to units, (x is a t

vector of fixed effects, and E is a mean zero n vector of normal random

variables with covariance matrix

V = 0 2H H = ZFZ'+ 1. (A.2)

The matrix I is the identity of order n, Z is the n by b design matrix for c block

factors, and I is a diagonal matrix containing the variance components

relative to the basic error variance a2. I.e.,

C

H = I + YZpZp,'yp (A.3)
P=1

and each block design matrix, Zp, is n by bp; each plot having exactly one level

in each Zp, p = 1, ..., c, the variance of the pth block is

2ap = yp0 2  for p = 1, 2, ... , c (A.4)

and Z in (A.2) has the partitioned form

Z = (ZI, Z2, ..., Zd). (A.5)
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The diagonal elements of r are b] consecutive y1's, b 2 consecutive y2'S, ..., and
C

b, consecutive y's, with Ybp = b.
p=1

Out goal is the estimation of yT, y2, ..., $o 2 by the restricted maximum

likelihood method for the unbalanced case. The steps follow. Let

S = I - X(X'X)-'X' (A.6)

W = Z'SZ+F- 1  (A.7)

The algorithm is an iterative one, and initial values for the Ti, .. y, ' are

needed to develop W in (A.7). The b by b matrix W and its inverse can be

partitioned according to bl, b2, ..., bc. So doing allows both

= W-1 Z'Sy (A.8)

U =F-1-F-1 W-1Fr- 1  (A.9)

to be viewed as partitioned. I.e.,

P, = 11 P, .. ' Ac(A.10)

U = {uij) i, j = 1,..., c

and Uii is a b, b, b, matrix.

Now we are positioned to define

R = y'Sy-y'SZP3

PP = ]P [P/ 2(A.11)

and Ep = trace (Upp) for p = 1, ..., c. Then define the modified information

matrix {fij), of order c+1,
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fij = trace (UijUji) for i, j = 1, ..., c

fP'C+1 = fc+l,p = Ep for p =1..,C (A.12)

fc+l,c+l = n-t

and let {fii) be its inverse.

Finally, the estimator update equations are, using k = c+1

k-1

6- j+ fS'k(iiji=1 k 1(A .13)

5i = -')+" L B +.fi R for i = 1,...,c

and the new I(%} can be placed in (A.7) to start the next iteration. No initial

value for T2 is required, but it must be updated at each iteration. The

algorithm should be stopped when (A.13) is stable. The variance components

are computed from (A.4)

The application in the present report has c=2, with b, = 4 and b 2 = 8. It is

helpful to record the partitioning and inversion of W, (A.7).

Z' zsz 21Ir z 21
Z= z 4z, sz 2 LO 12 /y2 (A.14)

kW1 N2] symmetric.

W [w 1  w12 (A15)

can be computed from
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-2 [W22 - W21WiJlW12]-

w 2=- WfiW 12 W2 2  (A.16)

w 11 =111' -W'W21 jwIi

29



APPENDIX B. EFFECTS OF CORRECTIONS

Some selected results of applying the method are given in Figures B1

through B4; two solutions for each of the four days, top and side views for

each. Original track from the first member of the array pair is marked with a

cross, and from the second member with a small circle. The (timing)

corrected tracks are marked with connected solid lines for the former and

dashed lines for the latter.

The first set in Figure BI shows no noticeable corrections, S is small. The

second set in that figure has S = 3.54 and is a real data version of the situation

depicted by Figure 3. The first set of Figure B2 appears as if one track is

corrected more than the other. But this can be explained because the

"stretching angles" are different. The second set of this figure shows a rather

common condition in that the corrected track is at a shallower depth than the

original.

The first set in Figure B3 has something of a "showcase" flavor; the top

view has corrected track with desirable coherence. (But a systematic

separation in the vertical remains.) The second set also shows tantalizing

improvement. The first set in Figure B4 has S = -0.8, and provides an

example of modest "contracting" of points. The second set is an extreme case

of curved track. The top view has an excellent correction displayed, but the

side shows that the vertical is still separated.
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APPENDIX C. COVARIANCE MATRICES

The covariances of the residual processes, eq. (38), are recorded here along

with M, eq (39), which estimates M, eq. (16). The cross covariances Dxy are

converted to correlations, Rxy, by

Rxy(i,j) = Dy(i,j)/[Dx(i,i)Dy(j,j)]-2; i,j= 1,2,1.

The order of presentation is that of Table 1. The number of points used, T, is

occasionally smaller than its Table 1 counterpart. This is due to outlier

rejection based upon a visual view of the track. In three instances these

values are zero and then, the covariances are not computed.

In a number of instances the covariances are marked with a "c" or "cc" in

the identifying column. This means the track was curved (c) or excessively

cu-ved (cc) so that the straight line filter could not reasonably be assumed tc

provide a valid representation of the path. It is a curiosity that, in many of

these instances, the cross correlations are strong and their use produces, via

eq. (16), compensatory values. That is, the M matrices do not appear to be

especially large. Some large cross correlations also appear in cases that pass

the visual test for straight line track.
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Table C.1. Covariances and Cross Correlations of Residuals

Date T Dx Dy Rxy M

NK-30 F12.91 1.46 -5.27 I 5.47 4.01 -4.69 .39 .85 -. 12 11.54 2.65 -7.931
3/23/89 42 11

1.46 1.24 -5.06 4.01 6.43 -.46 .07 .12 .0 2.65 6.97 -3.88
-5.27 -5,6 23.17 -4.69 -.46 22.77 -.04 -.13 .21 -7.93 -3.88 36.51

33 4.6 -4.82 6.59 4.06 4.42 -7.29 47 .31 -. 49 4.43 -. 50 .42
-4.82 7.50 -4.08 4.42 7.06 -3.50 -. 29 -. 25 .23 -. 50 18.26 -12.38
6.59 -4.08 16.36 -7.29 -3.50 23.17 .37 .18 -.48 -.42 -12.38 58.27

1 9 1 1 1 2 1

-24.55 49.68 -11.93 4.60 14.02 4.31 -.17 -.33 -.16 22.53 81.28 -8.68
13.39 -11.93 29.00 -1.62 4.31 14.98 .11 .16 -.10 9.19 -8.68 47.95

151 .3 .4 3 6 4.17 -5.00 4.84 .32 -.82 .53 r 11.46 -3.24 -2.481
.49 .71 -2.89 - .0 .8 2.83 .0 0 0 3.24 8.47 -6.21

-3.60 -2.89 13.00 4.84 -2.83 12.36 -.01 -.14 -.20 -2.48 -6.2! 30.39

41 T 2.37 3.36 -1.75 1 16.93 1.77 2. r .06 .01 .07 iF18.56 6.17 .093.36 11.96 10.21 1.7 1.37 -4.09 -.61 -.I0 .'2 6.17 14.13 3.65
-1.75 10.21 26.59 I 2.34 -4.09 19.65 -.15 -.04 .11 .09 3.65 41.39

22 .
r Fr

4.10 6.89 3.70 I 5.40 -10.92 -1.90 - -.23 .43 -.26 11.63 -5.77 4.49
6.89 14.24 '.59 (-10.92 28.52 -7.00 ;-.18 .33 -. 18 I -5.77 29.41 -5.05
3.70 1.59 1 .71 [-1.90 -7.00 19.49 -.07 .17 -. 18 I 4.49 -5.05 36.67

21 -15.17 -11.92 8.60 5.38 2.38 -17.76 .08 -.00 -.07 9.70 -8.10 -7.91
c-11.92 30.49 -18.51 2.38 14.14 -1.35 -.16 -.02 .33 -8.10 45.39 -25.45

8.60 -18.51 16.16 '-17.76 -1.35 68.60 -.03 .01 .09 -7.91 -25.45 78.93

3/23/89 37 1 F [
MK-30 2.56 -2.78 4.49 5.52 5.26 -13.34 .25 -.12 -.48 6.22 4.57 -4.C8

-2.78 6.39 .62 5.26 12.43 -1.50 -.25 -.11 .27 4.57 20.70 -,.C7
4.49 .62 18.37 -13.34 -1.50 49.73 .O -.22 -.22 -4.08 -1.07 81.51J J L L

47r 1rr
.92 -1.52 1.18 10.33 17.40 -14.20 -.14 -.10 .11 12,1 ! 15.42 -13.82

-1.52 4.53 .98 17.40 32.04 -2C.33 .21 .19 -.11 15.42 3'.92-1..
1.18 .98 6.06 -14.20 -20.33 25.14 -.02 .08 .09 13.82 -18.6 29.04

5/10/89 43 - -
MK-27 3.77 .50 -.38 2.30 .96 -.13 1 .31 -.35 .02 4.25 1.00 -.11

.5C .89 -1.57 I .96 1.82 .16 .36 .03 .09 1.00 2.6 -2.13
-.38 -1.57 4.86 -.13 .16 1.82 I -.18 .34 -.29 .11 -2.13 8.39

L J L L14
38 11 *[ r

1.14 -1.25 1.38 1.09 .87 -1.08 .53 .29 -.36 1.04 -1.07 .30
1.25 3.21 .. .87 1.46 -. 17 .12 -.08 .11 -1.07 5.03 -2.13
1.38 3.11 -1.8 -.17 2.40 .40 .31 -.22 I .30 -2.13 6.74

2.05 -3.96 .96 .48 .68 -.45 1 ..26 -.31 .14 3.06 -2.90 1.04
-3.96 9.36 1. 4 .68 3.02 1.87 .11 .26 .05 -2.90 9.66 3.40

.96 1.44 7.37 -.45 1.87 4.08 -. 27 -. 05 .32 1.04 3.40 7.98
! L

2.93 -.16 .32 1.11 -1.48 1.31 1 - 07 .36 .11 4.31 -1.7 .59
i -.16 .45 -1.15 { -1.48 3.33 -1.09 [ -.04 .43 -.G8 -1.77 2.73 9

.32 -1.15 4.75 1.31 -1.09 3.13 .26 -.79 .38 .59 -.96 4.99
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Date T Dx Dy Rxy m
56

-3.61 6.23 -1.96 1.84 5.70 -2.40 -.15 .18 -.11 -.06 9. -2.85
1.94 -1.96 4.08 -1.72 -2.40 3.09 -.01 -.22 .01 .09 -2.85 7.07

59 2.29 -2.16 _3.26 II1.35 .28 .-.81 I .33 -.40 '.31 2.49 -.95 _1.48
-2.16 4.59 -1.95 .28 2.78 -1.14 .03 .21 -.01 -.95 5.86 -1.81
3.26 -1.95 7.30 -.81 -1.14 4.27 -.01 -.28 .40 1.48 -1.81 7.06

50 132.12 52%.44 -7.14 109.42 465.46 9. 12 if .96 .79 .59 i 10.21 5.64 -4.121

CC 525.44 3906.70 -7.16 465.46 827.65 47.43 .66 1.00 .40 5.64 5.19 -1.34
-7.44 -7.16 4.25 9.12 47.43 4.47 -.29 -.07 -.15 -4.12 -1.34 9.99

501r rr
50 2.04 - .72 -.62 6.07 -2.69 2.32 II .31 -.16 .05 II 5.92 -2.69 _1.66

-.- .70 -.91 2.69 1.52 -.44 -.22 .23 -.01 -2.69 1.75 -1.36
-.62 -.91 4.18 2.32 -.44 3.03 -.08 .02 -.08 1.66 -1.3.6 7.74

40 68 1.32 1.78 .58-1.05-1.58 11 .27 -. 06 1.12 -.75

1.32 4.55 2.41 -1.05 12.35 -1.59 .20 -.07 -.13  -. 75 17.94 .67
1.78 2.41 5.36 -1.58 -1.59 6.87 05 .22 .11 .42 .67 10.8

MK-27 23.19 22.18 16.56 1 9.27 -.90 .62 .38 .07 -.02 21.40 20.37 20.41

22.18 33.81 15.26 -.90 7.03 -1.82 -.03 .27 -.01 20.37 32.48 14.03
16.56 15.26 27.68 .62 -1.82 3.29 -.32 -.04 -.00 20.41 14.03 31.01

J

2.93 .38 -.86 .83 .73 -1.86 .19 .07 -.51 3.17 1.00 -1.55

38 .63 -1.82 .73 1.35 -.69 .03 .27 .00 1.00 1.48 -2.47
-.86 -1.82 7.55 -1.86 -.69 5.81 .03 -.03 -.11 -1.55 -2.47 14.79

37 1.00 -1.27 1.11 1r .99 1.06 -2.03 .00 .11 .10 1.99 -. 69 -1.19
-1.27 2.91 .18 1.)6 1.77 -1.38 .22 .13 -.35 -.69 4.10 -1.36
1.11 -.18 2.81 -2.03 -1.38 5.54 J 04 .14 .06 1.19 -1.36 7.84

45 r r
.74 1.71 .93 .69 .05 -2.72 .08 -. 08 .01 1.31 2.16 -2.12

1.71 8.30 -2.18 .05 2.17 -2.77 - .17 -.06 .40 2.16 10.97 -5.73

.93 -2.18 6.07 -2.72 -2.T 14 07 -.0 -2.12 -5.93 21.89

3 1.94 .24 -.80 1 1 .91 -1.33 .92 -. 09 .66 .09 3.10 -1.37 -1.18
I .24 .50 -1.60 J -1.33 2.91 -:31 -.07 .40 -.01 -1.37 2.45 -.30

-.80 -1.60 7.16 .92 -.31 2.46 .49 -1.39 .25 -1.18 -.30 7.49L

37 2.17 -3.28 2.44 1.56 2.19 -2.19 -21 -. 19 .24 4.52 -1.28 .11
-3.28 5.61 -296 2.19 3.79 -2.00 .26 .23 -.32 -1.28 7.32 -3.01
2.4. -2.96 4.85 i -2.19 -2.00 4.79 -.16 -.11 .19 .11 -3.01 7.81 J

.41 -.69 .52 1.49 2.06 -2.61 -.25 -.07 .19 2.29 1.38 -2.10
-.69 2.87 1.15 7 '-6 3.90 -2.37 .12 .10 -. 03 1.38 6.12 -1.31 i
.52 1.15 3.68 -2.61 -2.37 6.33 -.27 .05 .34 -2.0 -1.31 6.74 1

.j L L

0-I- - -- - q - --- --- I

c- ---- I ...ii ... -- -- ----- -
2 L -J L J L

0 ... ... ..- I r . . . .-- .... . ... - - - ... ... ..

c ---. ... ... ... ..-
J LI

" "J L . .3 L
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Date T Dx Dy Rxy
39r

_.6 1 5 r0f1
1.11 1.14 1.39 2.21 3.08 -1.51 .22 .22 .11 2.75 3.39 -.81

.17 1.39 3.87 -.60 -1.51 1.96 .23 .22 .20 -1.26 -.81 4.73

55 3.17 -1.58 .2.08 2.74 1.09 -1.15 I .68 -.02 -.10 1.93 -.82 .1.35
-1.58 4.42 -2.51 1.09 2.82 .09 .13 .12 .37 -.82 6.37 -3.56
2.08 -2.51 4.36 -1.15 .09 4.54 -.01 -.03 -.03 1.35 -3.56 9.16

50

1.04 -1.43 3.91 .45 -.05 -1.64 .03 .03 -.05 1.45 -1.31 .2.40-1.43 12.39 -4.40 -.05 1.96 -.06 -.16 .11 .10 -1.31 13.26 -5.50

3.91 -4.40 15.02 -1.64 -.06 6.26 .00 .06 -.05 2.40 -5.50 22.23

54 r1rr1L4 .59 .76 .92 II .56 -.47 -.76 .19 .05 -.'02 II .94 .02 *.54
.76 4.47 -2.17 -.47 2.03 .15 .17 -.07 -.07 .02 6.92 -2.15
.92 -2.17 6.72 -.76 .15 2.03 -.31 .12 .05 .54 -2.15 8.38

211 r11[1 8.84 25.18 -1.76 j10.11 28.52 .14 .75 .84 .00 1F4.84 -3.15 -1.18
25.18 107.44 .08 28.52 111.27 -2.10 .93 .99 -.08 -3.15 2.49 1.54
-1.76 .08 4.53 .14 -2.10 1.66 -.11 -.13 -.36 -1.18 1.54 8.15

46 1.80 2.60 2.80 .76 -1.62 _-.26 1 -. 01 -. 24 .35 1 2.58 1.37 .1.991
2.60 5.00 2.22 -1.62 5.79 -2.58 .02 -.20 .21 1.37 12.90 -1.62

2.80 2.22 7.20 -.26 -2.58 4.46 -.09 -.01 .22 I1.99 -1.62 9.19

6/6/89 19

c 2.34 1.20 2.35 2.78 2.26 7.06 .16 .48 .25 J .91 1.88 .81
44.62 2.35 108.62 [43.31 7.06 108.13i [ 92 .41 9 4.02 .81 11.69

50 .59 -.42 1.83 .27 -.01 71 .34 -.10 -.14 .59 -.26 1.05!

-.42 4.12 -1.34 -.01 2.32 19 -.06 .08 .13 -.26 5.94 -1.41
1.83 -1.34 6.30 3 -.71 .19 2.42 .21 -.07 .13 1.05 -1.41 9.75

411 1 r1 r
41 2.14 -2.12 2.08 .69 1.37 .37 I .35 .47 -.07 1.97 -1.12 2.09

-2.12 3.03 -1.37 1.37 3.39 1.97 -.12 -.09 .16 -1.12 6.99 -1.20
2.08 -1.37 4.6 .37 1.97 2.81 .19 .39 .09 2.09 -1.20 6.84

50 1.92 -1.31 -.15 1.50 -.79 .96 F .12 -.36 -.15 3.00 -1.04 .29

C -1.31 1.57 -1.49 -.79 .76 -.04 -.42 .60 -.07 -1.04 1.03 -.98
.15 -1.49 5.17 .96 -.04 1,80 .50 -25 31-

51 . 5L .29 .98 5.09

33 814.12 -28.74 -10.84 1 822.25 -23.79 1.99 1.00 -. 28 *.09 .73 .96 -1.071
C -28.74 9.11 1.42 -23.79 7.32 -.89 -.38 .73 .14 .96 4.53 -.74

-10.94 1.42 1.63 1.99 -.89 4.39 -.19 .12 -.08 -1.07 -.74 6.45
[L L --

35 1.70 -2.22 2.57 1 1.83 3.08 -1.64 1 -16 -.27 .01 1F4.12 1.26 _1.251
7222 3.77 3.08 6.71 -1.07 .09 -. 16 -.00 1.26 8.85 2.25

2.57 -1.75 7.55 -1.64 -1.07 5.50 -,12 -.13 -.07 1.25 -2.25 13.99

54 -.71 1.51 1.14 -.06 -4.60 -,08 .13 .18 1.81 -1.20 -3.35F
-.71 3.71 -1.40 -.06 5.61 1.32 10 .08 .1 -1.20 8.60 -.40
1.51 -1.40 4.38 -4.60 1 18.32 -.05 .12 .12 1 -3.35 -. 40 21.08

U5 .2 1.25 1.04 -. 80 -1.73 .39 -. 09 - 03 .5 4 -.551

.02 2.50 -1.64 -. 80 2.09 .52 -.09 .01 -.03 j -.54 4.53 -1.10
1.25 -1.64 5.59 -1.73 .52 4.55 .09 .03 .14 .55 -1.10 8.74

18 - - .
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Date T Dx Dy Rxy
6/6/89 50rr
MK-27 5.6.4 1.24 -.54 1.87 1.04 -2.32 .18 -.29 .05 6.32 2.39 -2.57

1.24 .56 -1.15 1.04 2.89 2.46 .05 -.02 -.04 2.39 3.50 1.85
-.54 -1.15 5.18 -2.32 2.46 12.77 -.05 -.15 .08 -2.57 1.85 16.59

24
2.11 -3.07 .1.33 .96 .77 -2.12 01 -.16 -.60 3.11 -2.01 .03
-3.07 4.83 -1.40 .77 1.70 .46 .03 .22 .80 -2.01 5.29 -2.59
1.33 -1.40 2.33 -2.12 .46 9.15 .02 .01 -. 09 .03 -2.59 12.28

41 .94 -1.28 1.88 1 1.16 .07 -3.08 [ .24 .40 .10 1r1.60 -2.39 -1.00
C -1.28 4.44 -3.49 .07 5.25 4.12 .13 -.12 -.09 -2.39 10.89 -.41

1.88 -3.49 6.17 -3.08 4.12 14.24 -.13 .19 .17 -1.00 -.41 17.31

50 1r1[ 5.12 -.37 -3.60 5.36 -4.96 3.52 -.8 .43 .07 12.33 -6.79 _-.61
-.37 .92 -1.39 -4.96 5.34 -3.31 .10 -.03 -.08 -6.79 6.39 -4.00

-3.60 -1.39 9.36 3.52 -3.31 5.96 .01 -.07 -.11 -.61 -4.00 16.90

50 r1r1L0 1.08 .23 2.28 1.18 1.03 -1.971 .56 -.08 -.08 II .99 1.35 _1
.23 6.23 1.96 1.03 8.48 -5.15 .04 .27 -.11 1.35 10.73 -1.80

2.28 1.96 9.27 -1.97 -5.15 6.93 .03 -.06 .05 .49 -1.80 15.45

32 .75 1.08 .64 1f1.06 -.70 -1.98 1~ .14 .19 .12 1F1.57 .06 -1.651

c 1.08 3.68 -1.80 -.70 2.14 .89 -.04 .26 .23 .06 4.37 -1.68
.64 -1.80 4.79 -1.98 .89 5.98 .02 .01 -.03 -1.65 -1.68 11.09

27 50.78 -108.04 2.47 59.74 119.72 4.42 .96 -. 86 .12 5.24 3.51 2.24

CC 108.04 270.28 89 119.72 26.70 -11.00 1.06 .99 -.21 3.51 4.18 3.47
2.47 .89 9.99 4.42 -11.00 2.25 .15 -:12 .11 2.24 3.47 11.23

MK-27 5 5.46 .27 1.33 2.42 1.17 -.51 .54 .34 -.03 1 3.93 .76 _-.88

.27 .59 -1.27 1.17 1.30 .33 .10 .07 -.10 .76 1.7 -1.12
1.33 -1.27 11.53 -.51 .33 8.84 .27 .25 .51 -.88 -1.12 10.15 J

28 1.17 -1.54 1.25 95 .92 -2.17 .17 .25 - .10 1 .7 -.9-11

-1.54 2.42 -.81 .92 1.66 -.59 -.15 -.33 -.11 -.79 5.42 -1.311.25 -.81 3.27 -2.17 -.59 8.41 .13 .04 -.35 1.15 -1.31 15.38

1r .25 - .3 1 63 - 1 0 . 8.1 .6 - .157 -1.31 1 3

-1.23 6.29 -4.26 .01 2.7 .73 -.04 -.20 -.16 -1.32 10.68 -3.03

1.63 -4.26 5.06 -.32 .73 2.80 .16 .02 .26 .51 -3.03 5.8

50

-.50 .36 -.78 -1.81 1.82 -1.27 .03 -.06 -.01 -2.67 2.29 -1.77
-.58 -.78 4.50 1.83 -1.27 2.28 .27 -.28 .26 .99 -1.77 5.13

0

17- 1 r
.715 -.27 .73 1 .26 -.05 -.75 .46 -.10 -.22 1 .22 .44 -.36i
-.27 7.16 2.43 .05 2.92 -.24 -.94 .33 .41 .44 7.03 -3.21
. -2.43 4.14 -.75 -.24 2.28 .99 -.22 -.51 -.36 -3.21 9.57

20 .8 20 -.63 F 7 1 101 -651F .18 .53 -. 27 1 .3 .73 -7
C .20 .78 .95 1.01 2.61 -1.97 .05 .58 -.16 .7 1.7 .62

-. 63 .95 3.95 -.65 -1.97 2.87 -.02 .07 -.121 -.78 -.62 7.66
2 LJ L
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Date T Dx Dy Rxy
50 4.19 -2.29 -2.04 2.66 -1.69 .901 . .23 o 4.61 -3.26 -1.081

-2.29 1.66 2.19 -1.69 1.49 -1.46 -. 09 .06 .09 -3.26 2.97 .46
-2.04 2.19 4.80 .90 -1.46 2.85 -. 02  .01 .14 -1.08 .46 6.60

7o/21/8 40r1
MK-30 117.59 -5.91 8.41 114.89 -1.28 -12.84 .98 -.34 -.01 5.55 2.32 -1.02

-5.91 .67 2.50 -1.28 3.71 -2.8 -.31 .17 .15 2.32 3.85 .9
8.41 2.50 212.64 -12.84 -2.8 233.43 -.02 -." . -1.02 .95 14.6

23 r 4.27 -3.88 5.53i 41.15 4.05 4.591 .98 .2^w .50 iF 1.51 -.90 -.35
-3.88 3.57 -.96 4.05 3.76 2.17 -.19 -.36 .14 -.90 9.96 -. 77
5.53 -.96 3.29 4.59 2.17 10.53 .22 .24 .22 -.35 -.77 11.23

25I "1 1[°t 1"[5 1.21 -2.57 .1.781 .27 .53 -. 39f .03 -.04 -.14 If 1.45 -1.96 _1.64
C -2.57 6.27 -3.16 .53 2.30 .54 -.01 -.06 -.03 -1.96 9.02 -1.86

1.78 -3.16 3.51 -.39 .54 2.18 -.07 -.18 -.20 1.64 -1.86 6.83

50[ 2.29 -.21 -1.13 1.99 -2.02 1.361 -.19 .40 -.07 5.09 -2.73 .12

-.21 .42 -1.06 -2.02 2.63 -.78 .06 .04 -.02 -2.73 2.96 -1.19
-1.13 -1.06 4.76 1.36 -.78 2.46 .13 -.57 .17 .12 -1.19 6.05

30 119 .29 216.18 5.06 111.95 216.93 16.56 j.99 1.03 .32 1.54 .44 --.19
cc 216.18 418.89 1.31 |216.93 439.23 16.56 .92 .99 .36 .44 9.76 -5.47

5.06 1.31 6.37 6.56 16.56 6.16 .12 .09 -.03 -.19 -5.47 12.94[ .32 .17 93 .23 .01 -.62 .25 -.16 .03 .41 .06 .4350I iF if[ o i1
.17 6.96 -3.21 .01 4.05 -1.89 .28 -.08 -.20 .06 11.88 -3.28
.93 -3.21 5.91 -.62 -1.89 3.45 -.15 -.17 .14 .43 -3.28 8.08

50 r1rr[ 1.76 .77 *.34 .49 1.05 _-.35 j .11 .03 .07 2.04 1.66 -.18
.77 .90 2.02 1.05 3.50 -2.20 .05 .07 .00 1.66 4.16 -.28
.34 2.02 8.61 -.35 -2.20 2.29 .01 .05 .06 -.18 -.28 10.36I

50[ "i o oi
50 .88 .97 -1 11 5.41 1.21 -1.95 I.13 .00 .00 H 5.71 2.82 -2.01

.97 5.98 3.29 1.21 .58 -1.61 -.93 -.16 .59 2.82 7.15 .86
-1.11 3.29 7.03 -1.95 -1.61 6.03 -.47 -.06 .17 -2.01 .86 10.89

50 1
50 .48 -1.29 _1.13 II .90 2.00 -2.65 I.03 -.03 -.01 1.34 .45 -1.65

-1.29 6.55 -1.58 2.00 7.22 -4.99 .18 .05 -.17 .45 13.08 -5.32
1.13 -1.58 3.87 -2.65 -4.99 8.85 .07 -.04 -.11 -1.65 -5.32 14.01

2 .72 .53 73 .88 -1.18 -1.05 .18 -.30 .3 r 1.30 7 -1.8
.53 4.13 -4.00 -1.18 9.74 -11.81 -.25 .00 .27 .57 13.83 -17.34
.73 -4.00 7.96 -1.05 -11.81 23.56 .14 -.08 -.04 -1.80 -17.34 32.58

24 1.02 -1.68 2.18 iF 3.70 5.55 -5.68 1 - .08 .09 .16 1 5.03 3.31 -3.861

-1.68 3.92 -1.97 5.55 11.56 -4.41 .06 .02 -.05 3.31 15.25 -7.42
2.18 -1.97 7.12 -5.68 -4.41 14.07 -.13 .20 .30 -3.86 -7.42 15.10

50 i
50 7.31 -1.41 -4.27 II 3.59 -2.61 1.15 I .03 - .03 .11 II10.64 -3.53 -3.19

-1.41 1.19 1.02 -2.61 2.49 -.79 -.10 -.13 .08 -3.53 4.15 -.21
-4.27 1.02 5.58 1.15 -.79 2.42 -.10 .08 .21 -3.19 -.21 6.50

37

2:26 2.51 2.26 1.31 -3.38 1.14 .25 -.54 .27 2.31 - .16 2.362.51 4.16 2.20 -3.38 9.70 -4.71 ,14 -.29 .15 ; -16 17.52 -2.20

L 2.26 2.20 4.83 1.14 -4.71 4.80 .12 -.29 16 2.36 -2.20 8.09
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APPENDIX D. AUTOCORRELATIONS

Examples of autocorrelation functions of residuals R(h)/R(O), (see eq. (41))

are presented in Figure D1 through D6. The first two are for the displacement

process, eq. (40). The latter four are for the three components of displacement.
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Array 2

1,

0.8

0.6

0.4

0.2

0 A pj.......\.......... ......... ................V7V...v .....
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-0.41
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Array 11

0.8

0 .6 :. .. .. . . .. . . . . . . . . .. .... . . . . .. . .. . . . . .. . . .... . .. . . . . .. . . . . .. . . . .. .... . ... . .
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0.2

-0.4

0 10 20 30 40 50

Figure D1. Autocorrelation of noise displacement

3/23/89 = .15
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Array 4

1. ................... ..... . ..

0.8 ................................... 
...........

0 .4 .... . ....

0 5 10 15 20 25 30 35 40

Array 54

0. 8!

0.4
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0

-0.4
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Figure D2. Autocorrelation of noise displacement

7/4/88 5=1.10



Array 4 Array 5

Downrange Downrange

0.6 0.6

0.4 .. ...... 024-02.. .. .0. ....J
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Figure D3. Autocorrelation of noise components

5/10/89 =1.24
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Array 3 Array 4

Downrange Downrange

0.62

0.4
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0 10 20 30 40 50 0 10 2D 30 40 so
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04

0.2

-01~ IN

.04 - 0.0 10 2C 30 4Q 50 0 10 2D 30 40 50

Figure D4. Autocorrelation of noise components

5/10/89 2.85
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Array 2 Array 11

Downrange Downrange

0 .8 . . .. . . . . .. . . . . .. . . . .. . . . . .. ... . .. . . . . .... . . .. . . .

0121 0
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Figure D5. Autocorrelation of noise components

6/06/89 8 = 2.48
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Array 1 Array 2

Downrange Downrange

. . . . 0.8

0 .6 .. ..... .... .... .... .... . .... .. .... .. ... .. .... 0.6

0.4

1 0 .. .. . 0 ..... . ).. .
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Figure D6. Autocorrelation of noise components

7/21/89 5=2.75
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APPENDIX E. COMPUTER SOURCE CODES

The major programs needed to produce Table 1 are documented here.

Basically there are three steps:

(i) Extract pertinent crossover data from T-files

(ii) Produce the covariance matrices of residuals; Dx, Dy, Dxy and M. See
equations (38) and (39)

(iii) Develop the estimates, eq. (9) and (10). Develop supporting

statistics, eq (17), (18), (19)

Also the user needs access to Table E.1, the coordinates of the various

arrays at the Nanoose range.

Step (i) is managed by the program KEYGATE, written in FORTRAN 77,

Miscosoft optimizing compiler 4.01. This program reads the NUWES T-files

and performs a series of gating operations in order to produce crossover data

in the required seven column format. It will prompt the user for

(a) name of the range (e.g., Nanoose)

(b) Number of records to ignore (e.g., 31 for bypassing the DVT
information)

(c) The target vehicle mode (e.g. 7)

First, it will strip out all data other than mode 2 or mode 7. Second, it

identifies all point counts for which a position vector is available for two or

more arrays. Third, it reads an array location file and removes data that

cannot be reasonably identified with an overlap region. Next, it organizes the

data by pairs of arrays. Finally, it prompts the user for his array pair and

output filename; it selects and records all the data of the desired type.
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Step (ii) is contained in the program PRINCOM3.M. This is a

PCMATLAB program that performs the eigen analysis, eq. (32); develops the

smoothed fit, eq. (37); and the covariance matrices (38) and (39). The latter is

placed on an output file to be used in Step (iii). It also develops the

autocorrelation sequence, e.g. (41) of the displacement process.

A slight modification of this program can be made to develop

autocorrelations for the three components of residuals instead of for the

displacement process.

Step (iii) is performed by the program TIMECOR, a FORTRAN 77 code.

The Microsoft FORTRAN optimizing compiler 4.01 is used. The user should

note that requirements of the three input files:

VELOCITY.DAT is a two-column data set containing the water laver

boundaries and the sound speeds in 25 ft increments

TRPDOTRX.DAT is the seven-column crossover data output of KEYGATE

to which has been appended the locations of the two arrays as the 'ast

record.

MMATRIX.M is the covariance matrix, M, produced by PRINCOM.M in

Step (ii).

Since the ray tracing exit layer elevation angles are not contained in

T-files it is necessary to reconstruct them in order to compute Equation (5).

This is accomplished by the subroutine TGEN. The methodology of TGEN is

explained in [31 under the heading of ray fitting.

There are two output files which, taken together, contain all of the

information indicated in Table 1.
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TABLE E.1. COORDINATES OF THE NANOOSE ARRAYS

Array Number Date of Survey jDownrange jCrossrange Depth

0 6/20/85 12188.01 -131.52 -1295.33
1 6/20/85 19463.16 -174.99 -1308.76
2 7/12/85 26991.39 -109.83 -1323.25
3 1/07/88 34505.10 -80.76 -1323.32
4 10/24/88 42005.19 -55.17 -1318.28
5 6/20/85 49497.00 -25.23 -1315.58
6 6/20/85 56972.28 -21.21 -1308.50
7 7/30/85 64680.66 15.33 -1353.39
8 11/16/88 71969.73 -29.28 -1300.89
9 5/07/84 3.00 3.00 1.00

10 3/12/84 47100.00 -3600.00 -1300.00
11 7/18/85 23173.89 -6488.40 -1312.09
12 6/20/85 30731.25 -6553.05 -1312.90
13 6/20/85 38213.61 -6640.77 -1323.05
14 6/20/85 45647.07 -6513.18 -1324.78
15 6/19/85 53249.43 -6354.60 -1316.66
16 9/13/85 60859.74 -6356.07 -1313.42
17 6/16/87 68217.93 -6524.10 -1313.43
54 2/02/88 38029.95 5401.98 -1212.69
55 6/20/85 45645.75 6369.66 -1188.12
56 7/30/85 53180.13 6417.96 -1218.84
57 7/30/85 60745.71 6419.40 -1088.24
23 6/20/85 41605.14 -12150.18 -1268.23
24 4/17/89 49572.00 -12966.00 -1300.00
25 10/24/88 56993.79 -12999.317 -1205.48
26 8/08/88 64442.94 -12971.04 -1255.35
27 7/15/80 22119.60 -15908.70 83.00
28 5/04/83 45000.00 1500.00 -1350.00
29 2/02/79 .00 .00 .00



KEYGATIE
PROGRAM KEYGATE

Program to read in raw data from Keyport hydrophone arrays, segregate it by mode, and throw out
unusable records. The output of this program is to be read in by the program KEYMAIN.

Modified by Colin R. Cooper 11/15/89

INTEGER4 CRT, KBD
CHARACTER*25 DSNAME, SITNAM
CHARACTER*9 TEMPI, TEMP2, TEMP3, TEMP4

PARAMETER (KBD=S, CRT=6)

WRITE(CRT,*) ' Please enter the name of your input file:*
READ(KBD,'(A)') DSNAME

WRITE(CRT,*) ' Please enter the name of the range configuration file:',
READ(KBD,'(A)') SITNAM

TEMPI = 7EMPI.TMP'
TEMP2 = TEMP2.TMP'
TEMP3 = TEMP3.TMP'
TEMP4 = TEMP4.TMP'

CALL STRMOD(CRT,KBD,TEMP1,DSNAME)

CALL PAIR(CRT,KBD,TENPLTEMP2)

CALL RANGE(CRT,KBD,SITNAM,TEMP2,TEMP3)

CALL PAIR2(CRT,KBD,TEMP3,TEMP4)

CALL REC(CRT,KBD,TEMP4)

WRITE(CRT,*)' Operation complete. KEYGATE terminating...

STOP
END

SUBROUTINE STRMOD(CRT,KBD,TEMPI,DSNAME)

Program to strip all modes except 2's and 7's from the KeyporL data. (2 indicates target ship, 7
indicates torpedo).

CHARACTER DO2, DSNAME*25, TEMPI*9
INTEGER PC, ARRAY, CRT, NHEAD

OPEN (1,FILE=DSNAME,STATU t='OLD')

WRITEcCRT,)' How many records of header do you want to strip off the file",
READ(KBD,*) NHEAD
DO 11 1 = I,NHEAD

READ(,*)
11 CONTINUE
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WRITE(CRT,)' Input mode to be kept?'
READ(KBD,*) NUM

OPEN(2,FILE=TEMP1,STATUS='NEW')

10 READ(1 ,100,END=50,ERR=40)PC,DO,X,YZARRAY,MODE
IF(DO .NE.*' )GOTO 20
IF(MODE .NE. NUM) COTO 20
WRITE(2J I 0)PC,X,Y,Z,ARRAY,MODE

20 CONTINUE
COTO 10

40 WRITE(CRT,) THERE WAS AN ERROR IN THE FILE'
S0 CONTINUE

100 FORMAT(15,A2,1 X,F7.1 ,2X,F7. 1,2X,F7.1 ,30X,12,2X,I1)
110 FORMAT(lX,15,2X,3F0.1,2X,12,2X,12)

CLOSE (UNIT =1)
CLOSE(UMT=2)
RETURN
END

SUBROUTINE PAIR(CRT,KBD,TEMPI ,TEMP2)

Program to pair point counst after the data has ben gated by STRMOD. Second pass.

DIMENSION X(200), Y(20), Z(200)
INTEGER4 PC(200), ARRAY(200), MODE(200), CRT, HOLD
CHARACTER-9 TEMP1, TEMP2

OPEN (1, ,'LE =TEM P1,STATUS='OLD')
OPEN (2,171LE =TE MP2,STATUS-'NEW')

HOLD = 0
IREC= 0
NREC = 0

Read records by two's to compare point counts.

READ(l,,END=40,ERR=30) PC(I), X(I), Y(I), Z(I),
+ ARRAY(I), MODEMI

+ ARRAY(1-.1), MODE(1.-I)
NREC = NREC + 1

IF(PC(I+1) .EQ HOLD) THEN
WRITE(2,100' PC(I-.1), X(1+1), Y(1-'1), Z(1+.1),

+ ARRAY(I-.-IX MOE)E(1+1)
HOLD = PC(I+1)
GO TO 20

END IF

IF(PC(I) -EQ PC(I.KI)) THEN
WRITE(2,100) P01), X(I), Ydl), Z(I). ARRAYIl), MODEMI
WRITE(2,I00) PCd1+1), X(1-.1), Y(I-.1), ZU-1.1),



+ ARRAY(l+1), MODE(I+1)
HOLD = PC(I+1)
IREC = IREC + 1
GOTO 20

END IF

IF(PC(I) .NE. PC(I+1)) THEN
PC() = PC(I1)
X(1) = X(I+1)
Y(l) = Y(I+1)
Z(1) = Z(1+1)
ARRAY(l) = ARRAY(I+1)
MODE(U) = MODE(I+1)
1=1

END IF

GOTO 10
20 1=1+1

GO TO 10

30 WRITE(CRT,-) ' THERE IS AN ERROR IN THE DATA FILE IN REC.',NRE
WRITE(CRT,*) ' ... OPERATION TERMINATING DUE TO ERROR.'
STOP

40 CONTINUE

CLOSE(UNIT=l)
CLOSE{UNIT=2)

100 FORMAT( IX,I5,2X,F7. 1,2X,2F9.1,2X,12,2X,12)

RETURN
END

SUBROUTINE RANG E(CRT,KBD,SITNA M,TEMP2,TEMP3)

This program completes the third gating of Keyport range data. It reads array location da- from a site
specific configuration file and tests to see if the data is in the valid overlap area.

INTEGER*4 ARRAY, CARRAY, CRT, P
REAL4 CONTIG(200,4), LX, LY, LZ, MAXVAL
CHARACTER SITNAM'25, TEMP2-9, TEMP3-9

Open input and output files:

OPEN(,FI LE=TEMP2,STATUS='OLD')
OPEN(2,R LE=SITNAM,STATUS='OLD')
OPEN(3,FILE=TEMP3,STATUS='NEW)

Read site configuration into CONFIG array:

NREC = 0
1=1

10 READ(2,*,END=40,ERR=30) CONFIGI,H), CONFIG(I,2), CONFIG(I,3),
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+ CONFIG(I,4)
NREC = NREC + 1

GOTO 10
30 WRITE(CRT,*)' There was an error reading the config file in record',NRB
40 CONTINUE

CLOSE(UNIT=2)

NDREC = 0

Read X, Y, Z, and ARRAY from input data file:

45 READ(U,*,ERR=70,END=80) PC, X, Y, Z, ARRAY, MODE
DO 50 1 = 1,NRE

LX = CONFIG(l,1)
LY = CONFIG(I,2)
LZ = CONFIG(I,3)
CARRAY INT(CONFIG(I,4))
MAXVAL = 4700.

Match array number in data file with that in config. file. If they are equal compute slant range
distance (SRDIST):

IF(ARRAY .EQ. CARRAY) THEN
SRDIST = SQRT( (X - LX)"2 + (Y - LY)**2 + (Z - LZ)*2)
IF(MAXVAL .GE. SRDIST) THEN

WRTE(3,100) PC, X, Y, Z, ARRAY, MODE, SRDIST
NDREC = NDREC + 1

END IF
END IF

50 CONTINUE
GOTO 45

70 WRITE(CRT,*)' There is an error in the data file.'
80 CONTINUE

CLOSE(UNIT=1)
CLOSE(UNIT=3)

100 FORMAT(3X,15,3(3X,F10 .),2(3X,12),3X,F8.2)

RETURN
END

SUBROUTINE PAIR2(CRT,KBD,TEMP3,TEMP4)

I Program to pair point counts after the data has been tested by RANGE. Fourth pass. I
DIMENSION X(200), Y(200), Z(200), SRDIST(200)
INTEGER*4 PC(200), ARRAY(200), MODE(200), CRT, HOLD
CHARACTER9 TEMP3, TEMP4
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OPEN(I ,FILE=TEMP3,STATUS=&OLD')
OPEN (2,FILE=TEMP4,STATUS= NEW')

HOLD = 0
IREC = 0
NREC=0
1=1

Read records by two's to compare point counts.

READ(1,,END=40,ERR=30) PC(I), X(I), Y(I), Z(I),
+ ARRAY(I, MODEMX SRDIST(I

10 READ(1,,END=40,ERR=3Q) PC(I-t-), X(1+1), Y(1+1), Z(1+1),
+ ARRAY(1+1), MODE(1+1), SRDST(I-,-l)

NREC = NEEC + 1

IF(PC(1+1) .EQ. HOLD) THEN

+ ARRAY(I+1), MODE(I+1), SRDIST(1s-1)
HOLD = PC(I+1)
GO TO 20

END IF

lF(PC(l) .EQ. PC(1+1)) THEN
W'RITE(2,100) PC(I), X(I), Y(I), Z(I), ARRAY(I, MODEM,)

+ RDIST(I)
WRITE(2,100) PC(I-.-), X(1+1), Y(1+1), Z(1+1),

+ ARRAY(I+1), MODEd..IX, SFDIST(I+1)
HOLD = PC(I+1)
IREC = IREC +I
GO TO 20

END IF

IF(PC(I) -NE. PC(I-I)) THEN
PC(I) =PC(I-.-)
XOl) =X(I-+I)

Y(I) =Y(I-+4)

=( Z(I-+i)
ARRAY(l) =ARRAY(I-t.)
MODEl = MODE(I+1)
SRDISTcI) =SRDIST(1-1)
1=1

END IF

GOTO 10
20 1=1+1

GOTO1O

30 WRITE(CRT,*)' THERE IS AN ERROR IN THE DATA FILE IN REC.-,RE
WRITE(CRT,)'.. OPERATION TERMINATING DUE TO ERROR.'
STOP

40 CONTINUE

CLOSE(UNIT=l)
CLOSE(UNIT=2)

100 FORM ATUI X,IS,2X,F7 .12X,2F'9.,2-X,12,2X,I2,2X,F8.2)

55



RETURN
END

SUBROUTINE REC(CRT,KBD,TEMP4) ___________

Program to produce the final gating of Keyport hydrophone array test data.

INTEGER PC, ARRAY, PCI, PC2, Al, A2, ARRAY1, ARRAY2, CRT
INTEGER PCA(1O), ARRAYA(10), HOLD
DIMENSION XA(10), YA(l0), ZA(10), SRDISTA(10)
CHARACTER OUTFIL-25, ANSI1, TEMP4-9, TEMPl-9,RANGE-7

RANGE=&NANOOSE'

99 WRITE(CRT,*)' What is the name you wish to give to',
+ .your output file?*

READ(CRT,(A)') OUTFIL

WRITE(CRT,*) Enter the nu-ibers of the arrays to be paired:
READ(KBD,*) Al, A2

OPEN (1,FILE=TEMP4,STATUS=OLD')
OPEN(2,FILE='TEMPI .DAT',STATUS='OLD')

5 READ(1, END=8,ERR=8) PC, X, Y, Z, ARRAY, MODE, SRDIST
IF((ARRAY .EQ. Al).OR.(ARRAY .EQ. A2)) THEN

WRITE(2,100) PC, X, Y, Z, ARRAY,SRDIST
END IF
GOT0 5

8 CONTINUE
CLOSE (UNIT=l)

Routine to pair data again:

REWIND 2
OPEN(4,FILE='TEMP2.DAT',STATUS='OLD')

1=1
[FLAG =0
FIRST1I
HOLD =0
M=O

9 READ(2,l00,END=40) PCA(I, XAMI, YAMI, ZACI),
+ ARRAYA(I), SRDISTA(I

IF(FIRST .EQ. 1) THEN
FIRST =0

HOLD =PCA(I

END IF

IF(PCA(J) .EQ. HOLD) THEN

GO TO 9



ELSE

In cases where there are three or more reports for a given point count, segregate by comparing
SRDIST. if there are more than 3 reports, discard all.

IF (M .EQ. 3) THEN
IF(ARRAYA(M) .EQ. ARRAYA(M-1)) THEN

IF (ARRAYA(M) .EQ. ARRAYA(M-2)) THEN
cOToso

ELSE
IF (ABS(SRDISTA(M-2)-SRDISTA(M)) .LT.

+ ABS(SRDISTA(M-2)-SRDISTA(M-1))) THEN
WRITE(4,100) PCA(M), XAM, YA(M), ZA(M),

+ ARRAYA(M), SRDISTA(M)
WRITE(4,100) PCA(M-2), XA(M-2), YA(M-2), ZA(M-2),

+ ARRAYA(M-2), SRDISTA(M-2)
IFLAG =I

ELSE
WRITE(4,l00) PCA(M-1), XA(M-1), YA(M-1), ZA(M-1),

+ ARRAYA(M-1), SRDISTA(M-1)
WRITE(4,I 00) PCA(M-2), XA(M-2), YA(M-2), ZA(M-2),

+ ARRAYA(M-2), SRDISTA(M-2)
IFLAG = 1

END IF
END IF

ELSE
IF (ARRAYA(M) .EQ. ARRAYA(M-2)) THEN

IF (ABS(SRDISTA(M-I )-SRDISTA(M)) .LT.
+ ABS(SRDISTA(M-1)-SRDISTA(M-2))) THEN

WRITE(4,100) PCA(M). XA(M, YA(M), ZA(M),
+ ARRAYA(M), SRDISTA(M)

WRTTE(4,l00) PCA(M-1), XA(M-1), YA(M-I), ZA(M-1),
+ ARRAYA(M-1), SRDISTA(M-I)

IFLAG =I
ELSE

WRITE(4,100) PCA(M-1), XA(M-1), YA(M-1), ZA(M-1),
+ ARRAYA(M-1), SRDISTA(M-1)

WRJTE(4,100) PCA(M-2), XA(M-2), YA(M-2), ZA(M-2),
+ ARRAYA(M-2), SRDISTA(M-2)

IFLAG =1
END IF

ELSE
IF (ABS(SRDISTA(M)-SRDISTA(M-1)) 1LT.

+ ABS(SRDlSTA(M')-SRDISTA(M-2))) THEN
WRITE(4,100) PCA(M), XAM, YA(M), ZA(M),

+ ARRAYA(M), SRDISTA(M)
WRITE(4,100) PCA(M-1), XA(M-1), YA(M-1), ZA(M-1),

+ ARRAYA(M-1), SRDISTA(M-1)
IFLAG =1

ELSE
WRITE(4,100) PCA(M), XA(M, YA(M), ZA(M),

+ ARRAYA(M), SRDISTA(M)
WRITE(4,100) PCA(M-2), XA(M-2X, YA(M-2), ZA(M-2),

+ ARRA'YA(M-2), SRDISTA(M-2)
IFLAG = I

END IF
END IF



END IF

ELSE
IF ((M .EQ. 2) .AND. (ARRAYA(M) .NE. ARRAYA(M-1))) THEN

WRITE(4,100) PCA(M, XA(M, YA(M, ZA(M),ARRAYA(M),
+ SRDISTA(M)

WRITE(4,100) PCA(M-1), XA(M-1), YA(M-I), ZA(M-1),
+ ARRAYA(M-1), SRDlSTA(M-1)

END IF
END IF

50 CONTINUE

25 CONTINUE

IFLAG =0
PCA(1M PCA(I
XAM =) XAM1
YAM YAMI
ZA(1 = ZAMl
ARRAYAM1 ARRAYA(1
SRDISTAU) SRDISTA(I
1=2
M=l
HOLD = PCA(1

DO 45L =2,10
PCA('L) = 0
XA(L)= 0
YA(L = 0
ZA(L)=O0
ARRAYA(L = 0
SRDISTA(L) = 0

45 CONTINUE

END IF

COTO 9
40 CONTINUE

NREC = 0

CLOSE (UNlT=4)

OPEN(7,YILE=TrEMP2.DAThSTATUS=&OLD')
OPEN (9,F] LE=OUTFI L,STATUS=NEW')

WRTTE(9,300) RANGE, Al, A2

Read in array data in two record pairs:

10 READ(7,1OO,END=60,ERR=7O) PCI, X), Yl, Z1, ARRAY], SRDISTI
REAEX7,100,END=60,ERR=70) PC2, X2, Y2, Z2, ARRAY2, SRDIST2

IF(ARRAY1 .EQ. Al .AND. ARRAY2.EQ. A2) THEN



If arrays are in specified order (e.g. 4,5):

WRITE(9,200) PC1, X1, Y1, Z1, X2, Y2, Z2
END IF

IF(ARRAY1 .EQ. A2 .AND. ARRAY2 .EQ. AI) THEN

If arrays are in reverse order (eg. 5,4):

WRITE(9,200) PC1, X2, Y2, Z2, X1, Y1, Z1

END IF

Increment record counter:

NREC = NREC + 1

GOTO 10

70 WRITE(CRT,*)' There is a bad record in the file.'
60 CONTINUE

CLOSE(UNIT=2)
CLOSE(UNIT=7)
CLOSE(UNIT=9)

100 FORMAT(15,3(2X,F8.1),2X,12,2X,F8.2)
200 FORMAT(2X,15,1X,6(2X,FI 1.1))
300 FORMAT(16X,A 10,2X,2,3X,12)

WRITE(CRT,*) ' Do you want to try another array pair? (YIN)
READ(KBD,'(A)') ANS
IF(ANS .EQ. Y .OR. ANS .EQ. 'y') GO TO 99

RETURN
END

1PRICM3

function[ Autocorx,Autocorvl=princom3(fname)

3/13/90
PRINCOM3.M will evaluate the princip3l components of the passed data file. Computes the

autocorrelation of the displacement process. H

iname = r'd:\mdataV fname '.out'];

eval(j'load 'iname 1),
eval(['kevout =' fname '.');
cval([ clear' fname]);
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X=lceyout(:,5:7);
Y=keyo~ut(:,2:4);

[len,nJ=size(keyout);

Compute averages and covariance matices for the tracks produced by each of the ar-rays.
Xav=ones(len,l)*sum(X)/Ien
Yavuones(let,l)*sum(Y) /ien

XX(=X-Xav;
YY=Y-Yav;.

ipc=keyout(:,1);

CX~covOOO0;
CY=cov(YY);

Develop the eigen analysis. Choose largest eigen value.

[WX,DXI=eig(CX)
IWY,DY]=eig(CY)

if DX(I ,1 )>DX(2,2)
if DX(1,1 )>DX(3,3)

1xxl;
end

elseif DX(Z.2)>DX(3,3)
lx=2

end
if DX(3,3)>DX(lU)

if DX(3,3)>DX(2,2)
lx--3;

end
end
if DYcIA1)>DY(2,2)

if DY(1,1)>DY(3,3)
ly=1 ;

end
elseif DY(Z,2)>DY(3,3)

ly= 2

end
if DY(3,3>DY(1,1)

if DY(3,3)>DY(2,2)

end-3
end

PX=XX*WX;
PY=YY*WY,

Modify data projection onto the first principal component to account for constant speed.

i pca %= sum(i pc) /length (i pc);
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mx=(sum(ux.(ipc-ipcav)))/(sum((ipc-ipcav).(ipc-ipcav)));
my=(sum(uy.*(ipc-ipcav)))/(sum((ipc-ipcav).(ipc-ipcav)));

ax=(suni(ux)/length(ux)) - (mxipcav);
ay=(sum(uy)/length(uy)) - (my~ipcav);

uhx=(mxipc)+ax;
uhy=(mripc)+ay;

PPX=zeros(len,3);
PPY=zeros(len,3);

PPX(:,lx)=uhx;
PPY(:,ly)=uhy;

Compute the straight line tracks in the original coordinate system.

XSL=(PPX*WX')+Xav;
YSL=(PPY*WY')+Yav;

Develop the displacement process of residuals.

distx = s4qrt((X(-:A) - XSL(:,l)).^2 + (X(:,2) - XSL(:,2)).^2 + (X(:,3) - XL:3)^)
disty = sqrt((Y(:,'l) - YSL(:,l)).A2 + (Y(:,2) - YSL(:,2)).A2 +~ (Y(:,3) - YSU~:,3)).AI2);

davx = sum(distx)/length(distx);
davy = sum(disty)/length(disty);

vx =distx - davx;
vy =disty - davy;

Compute the auto correlations.

Autocorx zeros(length(vxY 1);
Autocory = zeros(length(-y),)

for k = :length(vy)
for i = U:ength(vy) - k + 1

Autocorx(k) = Autocorx(k) + vx(i)*vx(i + k-I
Autocory~k) = Autocoryck) + vy(i)*vy(i + k-1);

end
Autocorx(k) Autocorx(k) /SUM(%vX.A2);
Autocory(k) =Autocory(k)/surn(Vy. A2);

end

dg
subplot(21 1)
plot (Y(:, 1)Y(:,2),'or,YSL(:,l),YSL(;,2),'-r,X(:, 1),X (:,2),'xg,XSL(:,A),XSL(:,2),'-g')
title(Ifname ' - Corrected Tracks with Principal Components'l)
xlabel('Down Ran geyl abel('Cross Range')
subplot(21 2)
plot (Y(:;, l),Y( :,3),'or',YSL(: :1),YSL( :,3),'-r',X(:,l),X(:,3), xg', XSL( :,l),XSL(:,3),-g')
titlef'Corrected Tracks with Principal Components')
xlabecWDown Range'), ylabel('Depth*)
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pause
dg
h = 0:length(Autocorx)-l;
subplot(211 ),plot(h,Autocory,'or',h,Autocory,'-r')
title(ffname ' - Autocorrelation of Distance, Y Array'}),grid
subplot(21 2),plot(h,Autocorx,'or',h,Autocorx,'-r')
title('Autocorrelation of Distance, X Array'),grid
c1l
plot(h(1:27),Autocorx(1:27),'or',h(1:27),Autocorx(l:27),'-r')
title('Autocorrelation of Residual Distance'),grid
xlabel('Point Count Lag')

TIMCOR

PROGRAM TIMECOR

06/06/90
This program estimates the timing synchronization offset and drift parameters based upon cross-over

data from T-files. Since exit angles and transit times are not recorded to these files they must be re-
estimated. Location information for each of the involved arrays is also required.

This program was compiled using:
Microsoft FORTRAN OPTIMIZING COMPILER ver. 4.01

This files must be able to access the following files
VELOCITY.DAT - Sound velocity vs. depth data.
TRPDOTRX.DAT - Torpedo tracking data.
MMATRIX.M - Correlation matrices for data.
OUTPUT.COV - Output file containing delta and tnot
OUTPUT2.COV - Output file containing cross correlation and M matrices.

Users Notes:
- VELOCITY.DAT file contains layer boundaries and sound velocities for 25 ft. depth increments.
- TRPDOTRX.DAT file contains point counts and three position components for each of the two

contributing arrays. The position data from the lower numbered array is columns two through
four. The last record contains the coordinate position of the two arrays..

- MMATRIX.M file contains the set of covariance matrices produced by AUTOCOR3.M.
- The two output files contain all the information appearing in Table 1.

DIMENSION IPC(150)
CHARACTER*30 LINE
REA L8 YI ( 50,2),Y2(150,2),Y3(I50,2),YC1 (I 50,2),YC2(150,2)
REAL*8 LL(55),G(55),VV(55),A2,PlP2,VO,VIJTIME(150,2)
REAL8 THETA(1 50,2),DEPTH(55),PHI(150,2),V(1 50,2),DZ
REAL*8 BI (I50,2),B2(150,2),B3(150,2),YC3(150,2)
REAL*8 DEN,GG,SSB,SSR,TD,TM,SIG,DD,TEMP
REAL-8 MEQGEQ(150),DELTA,T1,TNOT,D1,D2,MSR,MSB
REAL*8 DUMI ,DUM2,DUM3,DUM4,DUM5,DUM6,DUM7
REAL*8 M(3,3),C(150,3),VDEL,SDEL,VM,SDVM,COVDM
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REAL-8 DELTAN,MEQN,R,CX(3,3),CY(3,3),CXY(3,3),RXY(3,3),T
INTEGER*4 TEE

Read in the data from the data files.

OPEN(UIT=2,RLE=WVELOCITY.DAT',STATUS-='OLD')
OPEN(UNTT=7,FILE=&TRPDOTRX.DAT',STATUS-=OLD')
OPEN(UN1T=10,FILE='MMATRIX.M',STATUS='OLD')
OPEN(UNIT=1 1,FILE='OUTPUTI .COV',STATUS='OLD')
OPEN(UNIT=1 2,FILE=*OUTPUT2.COVW,STATUS=0OLD')

(cX(3,2),cX(1,3),CX(2,3),Cx(3,3)
READ(10,120)CY(lIA),C-Y(21),CY(3,1),CY(1,2),CY(2,2),

CY(3,2),CY(l ,3),CY(2,3),CY(3,3)
READ(10,1 20)CXY(1 A ),CXY(2,1 ),CXY(3,1 ),CXY(1 ,2),CXY(2,2),

CXY(3,2),CXY(1,3),CXCY(2,3),CXY(3,3)
READ(10,124)T
TEE = IDINT(T

IF (TEE.EQ.0) THEN
DO021 =1,3

RXY(l,I) = 0.010
RXY(2,1) = 0.010
RXY(3,1) =0.010

2 CONTINUE
ELSE

DO041 =1,3
Do03j = 1,3

RXY(J,1)=CXYJ,l) /DSQRT(CX(1,l)'CYJ,J))
M(J,I) = CX(J,1) ,. CY(J~l) - CXY(l,J) - CXY(J,l)

3 CONTINUE
4 CONTINUE

ENDIF

5 READ(12, (A) ,END=7)LINE
COTO 5

7 BACKSPACE 12
WRITE(12,122)TEE
DO081 = 1,3

8 WRITE(1 2.121 )CX(1,1 ),CX(1,2),CX(I,3),CY(I,l),CY(l,2),
CY(l,3XRXY(l,1 ),RXY(I,2),RXY(I,3),M(l,l ),M(1,2),M(1,3)

WRITE(I 2,123)

1=1
10 READ(I,*)IPC(I,,Yl (1,1 ),Y2(I,1 ),Y3(l,1),

IF(IPC(Il.EQ.999) G~rrO 15
1=1+1
GOTO 10

15 LEN=I-l

12D FORM AT(l X,9(E 15.4,1 X))
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121 FORM AT(5X, I2,5Xj',2SX,' ,2Xi *,25X,1 ,2Xj',25Xjt
2XA ,2SXA I')

122 FORM ATO 2X,f , I X,3(F7.2,1 X), '1',2X,'TYI X,3(F7.2, IX),
0 2X,IX,3(F7.2,1X),'1,2Xjf ,1 X,3(F7.2,1 X),1')

123 FORM AT( 2x,tL,25X,'J,2x,t',25xJ,2x,V,25x,'J'
* 2x,,2sx,)

124 FORMAT(IX,E15.4)

Read the VELOCITY.DAT file and prepare for isogradient raytracing.

DZ--25
1=1

25 READ(2,*,END-=30) TEMP,VV(I)
1= 1+1
COTO 25

30 CONTINUE
GG=(VV(l-D -VV(l-7))/6.
DO 35 J = 1,55

VV(J) =VV(J-1)+GG
3.5 CONTINUE

LL(l)=12.5
DEVTH(1)=0
DO 40 1 =2,55

LL(l)=LL(l-1)+DZ
DEPTH(I)=DEI'TH(I -1 )+DZ

40 CONTINUE
DO 43 1=2,55

G(I-1 )=(VV(I)-VV(I-1 ))/DZ
43 CONTINUE

G(55)=G(54)+GG/DZ
DO 45 1=1,52

45 CONTINUE
DO 80 J=12

N=15
IFLAG=0
DO 70 IT=1,LEN

Set variables the the call to TGEN subroutine. TGEN returns the time and elevation.

A2=Y3(LEN+1I,J)
P1 =SQRT((Yl (IT,J)-Yl (LEN+ 1 j))**2+(Y2(lTj)-Y2(LEN+1 ,j)) *2)
P2=-Y3(ITJ)
IF(IT.NE.1) THErTA(ITJ)=TH ETA (TT-1 J)
CALL TGEN(LL,G,VV,A2,Pl,P2,THETA(ITJ),TTIME(IT,J),

VO, V ],DEPTH, FLAG)
IFLAG=1

PHI (ITJ=DASIN((Y2(Tj)-Y2(LEN+1 j)) /SQRT((Y2(IT,j)-
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Y2(LEN+lJ))~2 + (Y'AJT,J)-Y(LEN+IJ)r2))
IF((YI (IT,J)-Y1(LEN&l,j)).LT.0) PHICIT,J)=3.141 59263359

* -PHI(ITJ)

Locate the layer containing the source and set it's velocity.

50 IR-Y3(J).LE.DEPTH(N).AND.-Y3(ITJ]).CT.DEITH(N-1)) GCYI'0 60
TF(-Y3(ITJ).GT.DEPTH(N)) THEN

N=N+l
ELSE

N=N-1
IF(N.LE.I) THEN

N=l
GOTO060

ENDIF
ENDIF
GOTO 50

60 V(IT,J)=VV(N)

BI (IT,J)=V(IT,J)-DCOS(THETA(ITJ))'DCOS(PHI(T,J))
B2(rr,J)=V(IT,J)'DCOS(THETA(IT,J ))'DSIN(PHI(IT,J)))
B3(IT,J)=V(IT,J)'DSIN(TH-ETA(IT,J))

70 CONTINUF
80 CONTINUE

DO090 I=I,LEN
90 CONTINUE

Calculate DELTA and TNOT.

D)2=0
T1 =0
DEN=0
DO 200 IT=1,LEN

DI =(((Bl (ITA)-BI (IT,2))*(BI (IT,I)-B1(IT,2)))+
* ((B2(IT, )-B2(IT,2))*(B2(IT,I)-B2(IT.2)))+
* ((B3(IT,I )-B3(IT,2))(B3(TT,I )-B3(IT,2))))

DEN=DEN+Dl
TI =TI --(IPC(IT)*D1)
D2=D2+(((BI (IT,I )-BI (IT,2))*(YI (IT,I )-Yl (IT,2))}+

((B2(ITA)-B2(IT,2))*(Y2(IT, )-Y2(IT,2))).
(B3(IT,I )-B3(T,2)-(Y3(IT,I )-Y3(TT,2))))

C(ITMI = Bl(IT,2) - Bl(rf,l)
C(IT,2) = B2CIT,2) - B2([T,l)
C(IT,3) = B3(IT,2) - B3(ITAl)

200 CONTINUE
TD = DSQRT DEN)



DEN=DEN/LEN
TNOT=(TI/LEN)/DEN
DELTA=-(D2/LEN)/DEN

Calculate mn and g.

Dl =O.01DO
D2=0.0130
DO 210 IT=l,LEN

DD=(((BI (ITA )-BI (IT,2))*(BI (IT,1 )-BI (TT,2)))+
(B2(ITA )-B2(IT,2))*(B2(ITTA)-B2(IT,2)))+
((B3(rr,1 ;-B3(IT,2))*(B3(I1)-B3(IT,2))))*

* (IPC(IT)-TNOT)-(IPC(IT)-TNOT))
DI = Dl+ DID
D2=D2+(((BI (IT, )-BI (IT,2))*(YI (IT,1 )-YI (IT,2)))+

((B2(ITA ).B2(JT,2))'(Y2(IT. I)-Y2(IT,2)))+
(B3(IT,I)-B3(IT,2))5 (Y3(IT,I )-Y3(IT,2))))5

* (IPC(IT)-TNOT)
210 CONTINUE

MEQ-{D2/LEN)/(Dl /LEN)
TM = DI
DO 230 J= 1,2

DO 220 IT=1,LEN
YCl (IT,J)=YI (JTJ)+(BI (IT~J)'(DELTA+(MEQ;!(IPC(M-TNOT))))
YC2(IT,J)=Y2(IT,J)+(B2(r,J)(DELTA+(MEQ*(IPC(MT-TNOT))))
YC3(IT,J)=Y3(IT,J)+(B3(ITJ)*(DELTA-4(MEQ*(IPC(IT)-TNOT))))
GEQ(IT)=DELTA+(MEQ*(IPC(IT)-TNOT))

220 CONTINUE
230 CONTINUE

Create the output files.

SSR = 0.000
SSB = 0.010
00 231 IT =ILEN

SSR = SSR + (YC1(IT,1) - YC1(IT,2))**2 +(YC2(IT,l) -

YC2(JT,2))"2 -(YC3tIT,I) - YC3(IT,2)) 5'2
Dl =(((BI (IT,D -Bl (IT,2))*(Bl (ITA )-BI (IT,2)))±

((B2(JT,1)-B2(IT,2))5 (B2flT,1 )-B2(IT,2)))+
* ((B3(IT,l )-B3(IT,2))*(B3(IT, )-B3(IT,2))))

SSB = SSB + DI*GEQ(Tr2
231 CONTINUE

MSR = SSR/(LEN - 2)
MSB = SSB/2
SIC = DSQRT(MSR)
TD TD*DELTA/SIG
TM =MEQ2DSQRT(TM)/SIG
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DUM2 = 0.ODO
DUM3 = 0.ODO
DUMS = 0.ODO
DUM6 = 0.ODO
DO 235 1=1,3

DO0233 j = 1,3
DUM1 = O.ODO
DUM4 = O.ODO
DO0232 IT =1,LEN

DUMI = DUM1 + (C(ITI)*C(ITJ))
DUM4 = DUM4+((IPC(ITh-TNOT)**2 *C(IT,I)'C(IT,J))

232 CONTINUE
DUM2 = DUM2 + (M(1,J) * DUMI)
DUM5 = DUM5 +,.M(I,J) *DUM4)

233 CONTINUE
DO 234 IT= 1,LEN

DUM3 =DUM3 + (C(IT,I)"*2)
DUM6 =DUM6 + ((IPC(IT - TNOT)2 C(IT,1)'2)

234 CONTINUE
235 CONTINUE

VDEL =DUM2/DUM3**2

SDEL =DSQRT(VDEL)

VM = DUM5/DJM6**2
SDVM =DSQRT(VM)

DUM2 0.ODO
DO 238IT = 1,LEN

DUMI = 0.0130
DO 2371 1= 1,3

DO 236 j= 1,3
DUMI = DUMI + (C(IT,I)'C(IT,J)M(Ij))

236 CONTINUE
237 CONTINUE

DUM2 = DUM2 + ((IPC(IT) -TNOT) DUMI)
238 CONTINUE

COVDM =DUM2/(DUM3 * DUM6)

270 READ(I 1(A)',END=280)LINE
GOTO 270

280 BACKSPACE 11
IF(SDEL.EQ.0.ODO) THEN

DELTAN = SDEL
MEQN = SDEL
R = SDEL
GOTO 285

ENDIF
DELTAN = DABS(DELTA)/SDEL
MEQN = DABS(MEQ)/SDVM
R = COVDM/(SDEL*SDVM)

285 DELTA = DELTA * 1000.ODO
MEQ= MEQ -000D0
SDEL =SDEL * I000,ODO
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SDVM = SDVM * 1000.ODO
WRITE(1I,350)DELTA,SDEL,DELTAN,MEQ,SDVM,MEQN,R,TNOT,LEN

350 FORMAT(F5.2,2X,F5.4,2X,F6.2,2X,F7.5,2X,I7.6,2X,2(F7.2,2X),
F8.2,2X,12)

WRITE(*,*)' PROGRAM COMPLETED!'
END

SUBROUTINE TGEN(LL,G,VV,A2,P1,P2,ANGLE,TIME,
VO,V1,DEPTH,IFLAG)

TGEN generates transit time and elevation angle at a target if given the horizontal range, the depth of
the sensor and the target, the layer boundaries and the gradients. Isogradiant raytracing is used.

Calling Arguments are as follows:
IL - An array containing the layer midpoints.
G - An array containing the gradients for each layer.
V V - An array containing the velocity at each layer.
A2 - The depth of the sensor ( positive down).
PI - Range of the target ( horizontal down).
P2 - Depth of the target ( positive down ).
Vo,V1 - The values for a straight line single layer regression of depth vs. velocity.
DEFTH - An array containing the depth of each layer.

Return arguments are as follows:
ANGLE - The final angle at the target.
TIME - The time of transit.

User Notes:
All floating point numbers are defines : REAL*8
All times are in seconds, and all angles in radians.

DIMENSION L(55),G(55),V(55),LL(55),VV(55)
DIMENSION TH(55),T(55),VZ(55)
DIMENSION C2(55),T(55),DErH(55)
REAL-8 L,G,LL,VV,TH,VZ,C2,ThT,R0,A I
REAL*8 A2,P1,P2,Cl,C22,THETA,VM
REAL*8 THETAZ,IV,R,TIM E,ANGLE,EP,DZ,DEi'TH,V0,V1,V

Initialization: Set the value for DZ, the layer thickness. The sensor is assumed to be at
RANGE 0. Determine the values for J, which is 1+Number of layers less than or equal to the
sensor depth, and 1, which is the number of layers less than or equal to the torpedo depth.
Redefine the endpoints of those layers locally to be the depths of the torpedo and sensor.
Define local values for the LL and W arrays.
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EP=O.1D-6
DZ=25.ODO
Al 4L0OD0
J=1

DO 10 K=1,55
LOO=LL(K)
1V(K)=VV(K)
IF(DEPTI-(IO.LE.A2) J=J+l

* IEF(DEPTH(K).LE.P2) 1=1+1
10 CONTINUE

IRL.LE.0) 1=1
N=l ~j-l
V(I)=V(I)+G(I)*(P2-L(l))
V(J)=V(J-l)+G(J-1I(A2-L(J-1))
L(l)=P2

LU)=A2
RO=P1 -Al
VI =(V(J)-V(I))/(A2-P2)
VO=VqJ) - V1*A2

Calculate an initial estimate for the angle and time using a single layer approximation

C22=-VO/Vl
Cl =((0.5D0)*(PI-A1))
Cl =CI +((0.5DO)*(L(I)-L(J))N(L(l)+L(J)-2.OD0*

C22)/(Pl-Al))
IF(IFLAG.GT.0) GOTFO 48
THETA=DATAN((Al -CI) )/A2-C22))
WRITE(,*)' DEFINE THETA AGAIN'
G0T0 49

48 THETA=ANGLE
49 CONTINUE

Uethe angle THETA to raytrace back through all the layers. First, use the ray invariant (RV)
and the velocity to calculate the entrance andgle at each layer..

R=AI

VMA = V(l)
DO 495 K = lIj

IF (V(K).GT.VM) VM =V(K)
495 CONTINUE

* 50 RV=DCOS(THETA)/V(JD
DO060 K =Ij

TH (K) =DACOS(RVV( K))
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T(K)=DTAN(TH(K))
VZ(K)=V(K)-L(K)*G(K)
C2(K)=-VZ(K)/G(K)

60 CONTINUE

Using the angle just calculated, iterate backwords through the layers from sensor to target to get
the horizontal range. Stop at the depth of the target.

R--0.ODO
DO 70 K=J,I+1,-l

C1 =R-T(K)*(L(K)-C2(K-1))
R--CI+T(K-1)*(L(K-1)-C2(K-1))

70 CONTINUE

Test if the value for the range is within torerance. If not, redefine THETA, the initial angle,
and raytrace again. If wthin tolerance, calculate the time of travel based on THETA, and return.

EP=0.ID-6
IF((DABS(R-P1)).LE.EP) GOTO 100
THETAZ=THETA
THETA=DATAN(DTAN(THETAZ)*(R-Al)/RO)
GCOTO 50

100 Tr(J)=DLOG((1.ODO+DSIN(THU)))/(DCOS(TH(J))))
TIME=0.0D0
DO 110 K=J-1,J,-1

TT(K)=DLOG((l.ODO+DSIN(TH(K))) /(DCOS(TH(K))))
TIME=TIME+(TT(K)-Tr(K+1))/G(K)

110 CONTINUE
ANGLE=THETA
RETURN
END
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