TASK: UR40
CDRL: 012 0

UR40 — Repository Integration™
AdaKNET Software

User's Manual

Informal Technical Data

UNISYS

AD-A229 635

STARS-RC-01210/002/0C

24 October 1990
Yy ,
g "mlv‘ﬁmm‘ﬂ,

-

i fﬂ m.bm" il G !
t
B

3
‘,"in-'.““ H
BT Ualtial -,
»--»o'—..h....

s g,

ferm Approved

REPORT DOCUNMENTATION PAGE . oo

PL0HC RO AE BYPERA TOP TR TLITION OF ‘NOMBLIDN 1 SLIMALER 10 a¢8rRJE | AOU DEY “PLDIPIE, INCIMIP § TRE (MG 167 TOVIEWNG INTEFUCUONT, MOAICN NG $I1IA3 OATE LOUICEs

Dae gt wpy, Suite 1204, Acty 4302, mc 10 the Ofice OF Management sng Buoget PaDewars AeduCtion Project (07040 188), Washington, DS 29503

QUINEreg and FMRIRLAINNY the G418 MENOED. INE LOTMDIEING NG reviCwing the COLIECTION O iInfurhatinh SeNY COMMANTY nr'dlno TR B, 2G50 SAUMBTE DF ARG JEHPT XBOCT OF thy
CONRCLION 2f INFOIMAnAn, 1RCivg n'n‘%w”n' "”m rOGUCING Thik DUTGUR 10 WELMAQIUN Mesauarten lervices, Directorste 1or informaucn Qoerations ang Repory, 1213 Jetienon

1. 1. AGENCY Y USE a:lLV (Leave blonk) 2. llSGﬂ DATE 3. REPOR T TYPE ANDlDAFES COVERED
3 October 1990 Final

3. THLE AND SUSTITLE S. FUNDING NUMBERS
Reusakility Library PFramework (RLF)
Ada Knowledge NETwork (AdaKNE?) Usar's Manual STARS Contract

6. AUTHOR(S) .
James J, Solderitach
Ray McDowell

{ 7. PERFORMING: ORGANIZATION NAME(S) AND ADDRESSIES) S. PCFfORMING ORGANIZATION

REPORT NUMBER
Unisys Corporaticn
12010 Sunrise valley Drive

GR~-7670-1170 (N
Reston, VA 22091 ()

wlm
9. SPONSORING..MONITORING AGERCY NAME(S) AND ADDRESS(ES) 10. SPONSORING ' MONITORING
AGENCY REPORT NUMBER

Department of the Air Force
Headquarters, Electronic Systems Division (AFSC) 01210 Volume II
Hanscom AFB, MA 01731.5000

11. SUPPLEMENTARY NOTES
There are two other related RLF reports:
(RLF) AdaTAU User's Manual and (RLF) Librarian Software User's Manual

ety Y P SO
122. DISTRIBUTICN / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited

13. ABSTRACT (Maximum 200 wordss)

EéAdaKNET (Ada Knowledge NETwork) is the semantic network subsystem of
the RLF. AdaKNET enables the creation and modification of structured
inheritance networks to represent detailed patterns of information.
The manual outlines the current structure of the AdaKNET system

and indicates how to make effective use of the available programmatic
interfaces. A sample session description is included along with

an appendix describicg the basic information structuring primitives
within AdaKNET. The manual also describes the specification Janguage
used to declare semantic networks for processing by AdaKNET.

Spes (Sfpen Dy o g

ﬁiv Ila 3 { o D
15. NUMBER OF PAGES

14, SUBJECT TERMS

Ada semantic network P 45
~~Semantic Networlk Definition Language (SNDL), /(ﬁ) 18. PRICE CODE
. .
17. SECURITY CLASSIFICATION J 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF RéPORY OF THIS PAGE OF ABSTRACT
Onclassified Unclassified Unclassified SAR

Lo o AA0 B . Y 84

TASK: UR40

CDRL: 01210
INFORMAL TECHNICAL REPORT
For The
SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Repository Integration
AdaKNET Software

User’s Manual

STARS-RC-0i210/002/0¢
Publication No. GR-7670-1170(NP)
3 October 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5C00

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12019 Sunrise Valley Drive

Reston, VA 22091

TASK: UR40
CDRL: 01210

INFORMAL TECHNICAL REPORT
For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Repository Integration
AdeKNET Software
User’s Manual

STARS-RC-01210/002/00
Publication No. GR-7670-1170(NP)
3 October 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091

‘ PREFACE

This document was Krepared by Unisys Defense Systems, Valley Forge Operations, in support
of the Unisys STARS Prime contract under the Repository Integration task (UR40). This
CDRL, 01210, Volume II, is type A0O5 (Informal Technical Data) and is entitled "AdaKNET
Software User’s Manual”.

This document has been reviewed and approved by the following Unisys personnel;

URA40 Task Manager: Richard E. Creps

Reviewed by: /);c/ww(j 7. é/f?o’

Richard E. Creps, Systerh Architect (Acting)

Approved by: / ‘\j
. Hans W. Polzer, Manager

Accession For

\ .
NTIS GRA&IL li

DTIC TAB |
Unannounced a
Justification 2

BYEiELEEZ:ZQEEZZEzz;z:
Distribution/

Availability ques
Availi and/or
Dist Speoial

i

Table of Contents

L SCOPE oievescreisnscenmsmsesssmsssessasersessenrassssssssssssssssessastssssssesesssssssessssssnsnsssnssanssssessssssssstrenssasess 1
1.1, Identificationcceeeenrinisnin reeeserensenteseRseraseLaT NNt Lt L IR EL REIEE0EOEIET HEORERIEN IR N TRO RO OSSR RO SR ORSS 1
1.2, PUIPOSE ovciirisninssssnsssrssssnssssssssnssssssssesssssassssisssaarsassses sastssssssssssnsassesssasassssines vesserssassanes 1
1.3, INOGUCLION ..cuiveeiniaernseinessnansnsnessnesnssssssisssssssnsesssnsssssssnssnesssnsssssnssasasssssnensisssasssnseseassns 1
2. REfErenCed DOCUMECIUSccveeiennenssssessisssessonssssrnsssnsserssssssssrenssssssasressssssessssssssassssssssssnssese 3
3. AdaXNET System Ovcrview ... 4
3.1. AdaKNET Implementation Architecture Descnption ... 6
4, Package AJAKINETSccccnmmisimnnomisinsesossmesssssssasssasionsatssrorisssassansasss 9
4.1. Mapping the Conceptual Model to the Implementationcuuuminuieniniisesnnes 9
4.2. Overview of Package AJAKNETSccimnsnmsnimn s ssssasssissasessiass i1
5. AdaKNET Specification Language — SNDLcncanmnmmismisisms 15
6. Using AdaKNETc.cconneeesirsnssssissusenes veeaereresneneasetesattaR e et et saR R bR SRa b SRS SR LR R0 18
6.1. INStAlling AJAKNETcccccevimsuemsasnsrsssasssssisasssissessssessssssassessnssssssesssssasasnsssnssossessssanisens 18
6.2. Creating AAaKNET Knowledge Basesccovununninsinsnsnicncnimcnmininsssssisins 18
6.3. SAMPIE SESSION ..ovvirireroriersnnsnssersnssssiossasmrissressissssssssssarssssssssnsnsssssssssusmsssssssssassssss sosssns 20
Appendices

A. Detailed Description of AJAKNET Model Semanticsccoueerveresesusesssesssssasssnssersnens A-1
B. SNDL Syntax and Summary resrsansesssenesrsassnstsanesnsaenes essasssas s eshnst st s st sasress B-1

References

Table of Figures

Figure 1, Library Model FIagMENLeieciceisinssninnssenssssissssesssssarestasssssassasssesrossssossnsonsannosassasasass 5
Figure 2. AJAKNET Layered ABSIBCUONS ...voucriveesessisasresessssvarsssssrsasssssnnssssssassases vessrasrnesins vensae 7
Figure 3. AJAKNET Abstraction Dependanciescusiisnarmimesninssessissnsssssssssssssssnsnssssnsssssss 9
Figure 4. Conceptual/Implementation Object MADPINGcuveeriisssessiseniesessisussesmsnssssnsasessssesssasss 10
Figure 5. Sample SNDL Specificationcccousmssicecsrinsusmnirseisssnsinensisisssnssnnsassmsissssssssssssasasses 19
Figure 6. AJAKNET Specializ8tion ..o enininessisnnisnnssnsinsnisnssenssnnies ereesentsnsnssssitsaessnns w A2
Figure 7. AAAKNET Individuationuceciscinisissssninssnssnsessasansassssessasass sasasaressssiresens A-3
Figure 8. AAAKNET Rolescouueee ehereebesstte s e ese bt eR eSSt L ShasRseR RSN SRS SR LR RSB RO SESORT SRS A-§
Figure 9. AJaKNET I-Roles revetsonasorsebssaeatstastssantabene rtreeset et srae e e at st stsavEs st snate A-6
Figwre 10. AdaKNET Multiple INWOritlnCec.cceuussiisionsssssssrsissnsnsssssnssnsassssasssssssssssssisasssassasns A-8
Figure 11. AJBKNET ROSICUON o..cvverucervassesesrssesssssssessosssssnarasonsassnsassans retssrsesansrnsesasssasaase A-10
Figuze 12. AAaKNET Differentitionc.cccrssnsuisssaesassissssssnsrscs sesssssssassssssssassas A-11

AdaKNET User’s Manual 1

1. Scope

This document assumes that the user has a basic understanding of the Ada language
and wishes to lcarn how to incorporate knowledge-based capabilities into a larger sys-
tem. This document is not tutorial in nature with regard to the Ada language, nor does it
cover hasic material from the field of Artificial Intelligence (AI) whose study led to the
development of the fundamental ideas that are implemented in the system described in
this manual. The interested reader is referred to one of the many texts on Ada or Al; in
particular, the Ada Language Reference Manual [LRM83] and The Handbook of
Aviificial Intelligence, Volume 1{Barr81].

1.1. Identification

This Software Usei’s Manual provides a description of the content and basic operat-
ing procedures of AdaKNET, a subsystem level component of the Reusability Library
Framework (RLF). Other major components of the RLF include AdaTAU and the
Librarian application which are covered in separate user’s manuals.

1.2. Purpose

The purpose of AdaKNET is to provide a system for representing structured domain
knowledge. AdaKNET implements a knowledge representation formalisin in the struc-
tured inheritance family. As such, it provides a framework for controlled evolution of a
large body of knowledge, where the built-in constraints provided by the formalism help
prevent the expression of meaningless or inconsistent models. In this way, there is a
rough correspondence of the benefits provided by AdaKNET to domain modeling that
strong typing provides to software development.

AdaKNET is implemented as layered abstract data types (ADTs), although users of
AdaKNET need only "with" a single package (package AdaKNETSs). That is, AdaKNET
provides a programmatic interface to a semantic network model; operations are provided
for creating, saving, restoring, manipulating, and examining the structure of AdaKNET
instances. This manual describes the semantic neiwork model implemented by AdakK-
NET, the overall architecture of AdaKNET (layered abstractions), and provides a
detailed look at the top level AdaKNETSs package. Also covered is a description of the
Semantic Network Description Language (SNDL). Finally, a discussion on the pragn:at-
ics of installing and using AdaKNET and SNDL is provided.

1.3. Introduction

The remainder of this document is organized as follows. Section 2 lists a few RLF
documents that have particular relevance to this user manual; other references are
included in a bibliography. Section 3 provides an overview of the AdaKNET system.
Included in this discussion is a summary of the model formalism supported by the AdaK-
NET implementation; a brief discussion of the overall architecture of the AdaKNET
implementation is also provided, although users of AJaKNET need only be concerned
with a single package, AdaKNETS. Section 4 provides a more detailed look at the AdaK-
NETs package; a brief synopsis of the operations provided by AdaKNET is provided.
More details on each operation can be found in the actual package specification. Section
5 discusses SNDL, focusing on the language rationale, use, and major concepts. Section

Reusability Library Framework AdaXNET 22 May 1990

AdaKNET User’s Manual 2

6 discusses the pragmatics of installation and use of AdaKNET and SNDL to build
knowledge-based applications in Ada; also included is a transcript of a session using the
interactive AdaKNET browser-editor application. Finally, appendix A provides a
detailed description of the AdaKNET conceptuai model; users of AdaKNET should fami-
liarize themselves with this definition. Appendix B provides a detailed definition of
SNDL syntax and semantics (a syntax summary is also included).

Reusability Library Framework AdakKNET 22 My 1950

AdaKNET User’s Manual 3

2. Referenced Documents

In addition to the Ada LRM, and the AI Handbook referenced earlier, the following
RLF documents are useful as references in conjunction with this document. Documents
marked with an asterisk (*) were delivered to the Naval Research Laboratory as part of
the original STARS Foundation contract (number N00014-88-C-2052) that supported the
initial development of the RLF.

(*) Reusability Library Framework AdaKNET/AdaTAU Design Report.
(*) Gadfly User’s Manual.

AdaTAU User’s Manual.

Librarian User’s Manual.

The RLF Librarian: A Reusability Librarian Based on Cooperating Knowledge-
Based Sysiems [McDowell89].

The Growing of an Organon: A Hybrid Knowledge-Based Technology and Metho-
dology for Software Reuse [Simos88].

Construction of Knowledge-Based Components and Applications in Ada
[Wallnau88].

Constructing Domain-Specific Ada Reuse Libraries [Solderitsch89].

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User’s Manual 4

3. AdaKNET System Overview

AdaKNET is based partly on KL-ONE [Brachman85], and partly on K-NET, a
Unisys-proprietary structured inheritance system. Although we provide a brief summary
of the semantics of the underlying conceptual model implemented by AdaKNET, use of
the AdaKNET ADT will require a2 more thorough understanding of the sometimes com-
plex semantics of structured inheritance networks; appendix A of this manual provides an
in-depth description of the AdaKNET conceptual model.

The AdeKNET implementation described here supports strict specialization (sub-
sumption) semantics, range/value constraints on object attributes (Roles), single and mul-
tiple inheritance of attributes, and the subdivision of attributes (Subroles); the implemen-
tation also distinguishes generic classes of objects (Concepts) from instances of these
classes (Individuals). These features provide sufficient modeling generality to describe a
broad category of domain models for building knowledge-based applications (e.g.
Gadfly, Librarian).

Instances of AdaKNET can be thought of as complex graphs (hence the term
“semantic network"). AdaKNET views such graphs from an abstract data type (ADT)
perspective. More specifically, AJaKNET implements an ADT for a class of data struc-
tures known as heterogeneous, polylithic structures [Booch87]; AdaKNET instances are
composed of collections of component ADTs (heterogeneous), and instances of these
component ADTs can be referenced from various access paths (polylithic).

Although the details of the underlying model may differ among various semantic
network formalisms, they all share some common properties. A semantic network is a
forin of knowledge representation; it provides a means of denoting objects and describing
relations that hold among them. The form of the representation can be thought of as a
directed graph: a collection of vertices and edges. Each vertex in the semantic network
denotes an object or a class of objects, and each edge describes a relation between objects
and/or object classes. Typically, such networks support at least two forms of relation-
ships between semantic objects: the specialization relation ("IS-A") and the aggregation
relation ("IS-PART-OF"). A discussion of the need and use of these relations in domain
modeling is extensive in database as well as artificial intelligence literature [Smith77].

The specialization relation indicates that one object class is a subset of another. For
example, the class of objects consisting of all humans is a subset of the class composed
of mammals. In semantic networks, all objects participate in a hierarchy (actually a
semi-lattice, or DAG) of specialization relations between objects; this hierarchv is some-
times referred to as a taxonomy.

The aggregation relation indicates that one object can be considered a coinponent or
part-of another object. For example, a car consists of wheels, doors, and engine, ctc.
That is, a ca~ is an aggregation of wheels, doors, and engine. The set of aggregation rela-
tions within 1 semantic network constitutes a subnetwork of the semantic network; not all
objects need participate in this subnetwork. Sometimes the aggregation and specializa-
tion relations are thought of as separate, orthogonal representations of a semantic net-
work. For example, it is common to have applications "walk the specialization hierar-
chy”, or "walk the aggregation network."

Specialization and aggregation interact through inheritance. A specialization of an
object which has aggregate parts will inherii those aggregate parts. Since the

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 5

specialization relation is transitive, inheritance is also transitive. For example, if Ford-
Cars is a specialization of cars, then all Ford-Cars will have wheel, door, and engine
parts. Ford-Cars can, in addition, have parts defined on them that are specific only to
Ford-Cars (and specializations of Ford-Cars).

The vertices of AdaKNET networks are called Concepts. AdaKNET has two kinds
of concepts: Individual Concepts and Generic Concepts. Generic Concepts denote
classes of objects, such as the Generic Concept "REUSABLE-COMPONENT" (see
figure 1). Individual Concepts denote instances of these classes, such as actual code
bodies stored in a library of software paris (none shown in figure 1).

Generic Concepts are arranged in the generic taxonomy i.e. the specialization
hierarchy. All Generic Concepts participate in the specialization hierarchy. The term

REUSABLE>
MONOLITHIC-
RUCTUR

Figure 1. Library Model Fragment

Reusability Library Framework AdakKNET 22 May 1990

AdaKNET User’s Manual 6

"hierarchy" is used to emphasize the fact that the subnetwork induced by the specializa-
tion relations is acyclic.

Individuation is a relation which relates generic concepts to instances of generic
concepts, called /ndividual Concepts. Individual Concepts may individuate one¢ or more
generic concepts. All Individual Concepts individuate at least one Generic Concept.

Aggregation is represented in AJaKNET by Roles. For example, in figure 1 the
Generic Concept "REUSABLE-STRUCTURE" has Roles denoting properties, such as
whether the reusable structure has manipulable subparts (i.e. is a polylithic data struc-
ture). Roles are inherited through specialization.

Roles convey what aggregation relations exist on Concepts; Rolesets describe the
Role_Range and Role_Type conditions of Roles. Role_Range describes how many parts
are described by an aggregate; for example, a REUSABLE-COMPONENT may perform
zero or more actions of some kind. Role_Type describes what kind of part is described
by an aggregate; for example, the Role_Type for the above mentioned role would be
ACTIONS. AdaKNET has two kinds of Rolesets: Generic_Rolesets and
Particular_Rolesets; the former describes Roles of Generic Concepts, the latter describes
Roles of Individual Concepts.

Specializations of Generic Concepts inherit Roles; the properties of these inherited
Roles (Role_Range, Role_Type) can be further constrained. For example, the Generic
Concept REUSABLE-MONO-STRUCTURE constrains the Role_Type of the inherited
Role "HasManipulableSubparts" to be FALSE. Role_Ranges can likewise be con-
strained. For example, the Generic Concept REUSABLE-STRUCTURE constrains the
Role_Range of the inherited Role "PerformsActions” to be zero (i.e. structures do not
perforin actions).

Finally, Roles can be divided into Subroles through Roleset differentiation. Each

Subrole then represents a specialized form of the Superrole; for example, a role "Chil-
dren" might have two subroles "Sons" and "Daughters”.

These features of AdaKNET are discussed more thoroughly in Appendix A.

3.1. AdaKNET Implementation Architecture Description

This section describes the overali AdaKNET architecture. Although from the user’s
perspective AdaKNET will be viewed as a single abstract data type, in reality this ADT
is designed and implemented as a succession of lavered abstractions, with each layer pro-
viding specialized services. This layering is illustrated in figure 2.

The AdaKNETs ADT packages several distinct object types: the top-level AdaK-
NLT object type, and several constituent object types. The AdaKNET object type imple-
ments instances of semantic networks; an application may create and manipulate several
semantic networks simultaneously. Each instance of AJAKNET manages collections of
constituent ADT', for example Generic Concepts, Rolesets, etc. These constituent object
types, as well as some intermediary-level types manipulated by the implementation but
not passed on to users of AdaKNETs3, are implemented at various layers in the AAARKNET
system.

The innermost layer is the set of packages which implement constituent object types
of an AdaKNET network; the object layer introduces the building blocks necessary for

Reusablility Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 7

'\

APPLICATION ~~
UNIVERSAL BROWSER

ADAKNET COMPOSITES

' Ol
wmclwl imegrity
‘ semantic iniegrity
network visiaation strategiss
domain specific functionality
v’-

Figure 2. AdaKNET Layered Abstractions

creating a network. Roughly, each object in the conceptual level definition (e.g. con-
cepts, roles, etc.) has a corresponding object in the object layer. Each object is imple-
mented as an ADT, thus encapsulating the representational details of objects. Operations
provided by these objects include creation, destruction, examination and manipulation of
object state. Additdonally, these abstractions provide primitive collection abstractions
which maintain information about which object belongs to which AdaKNET instance.

. The second layer is the Network package, which combines objects into a network.
This layer places an abstraction wrapper around the primitive objects defined at the
object layer, so that the object layer will not be visible to users of the networks layer.

Reusability Library Framework AdaKNET 22 May 199

AdaKNET User's Manual 8

Additionally, the networks layer exports the typc Network used by the AdaKNET kemnel.
The network layer provides operations to create, modify, and examine the structure of a
network. All operations at this level preserve the structural integrity of the network, e.g.,
al) concepts participate in the taxonomy. The network level maintains sets of relations
between objects in the object level, such as the specialization and aggregation relations.
* Further, the netwerk level manages the details of saving and loading network instances.

The next layer is the AdaKNET package, which provides the user interface. The
AdaKNET layer packages the structure operations of the network layer into the desired
interface, and ensures that ali AdaKNET networks maintain semantic integrity, i.e., sub-
sumption semantics. The modification operations at this level will only make changes to
a network if those changes will result in a subsumpticn preserving network.

An application that makes use of AdaKNET operations can interface to AJAKNET
at the sppropriate abstraction level (indicated by the four complete circles in figure 2).
Many applications will use AdaKNET at the AdaKNET kernal level. Some composite
operations as well as a network browser capability are also &vailable to applications.
These are indicated in the outermost concentric circle.

In addition, internal use of AJaKNET has often included the attachment of addi-
tional information (or sfate) to network nodes. Networks augmeated with such informa-
tion arc called hybrid networks. This AdaKNET_State layer (not depicted in figure 2) is
implemented as a generic package which parameterizes the AJaKNET abstraction to
allow the association of a user-defined state type with AdaKNET constituent objects. In
addition to the basic AdaKNET operations, the AdaKNET_State layer provides opera-
tions for associating and retrieving state from AdaKNET objects. For example, the
Librarian instantiation of this layer associates AdaTAU inferencers with Concepts. ‘The
interested reader should see the Librarian User Manual; hybrid inferencing techniques is
beyond the scope of this manual. A more detailed picture of the AdaKNET package
interconnections (without the hybrid layer) is illustrated in Figure 3.

Reusabllity Library Framevwork ALKNET 22 May 1990

AdaKNET User’s Manual 9

Universal Browser

AdsKNET Kemsl

etwork-Compos:
Networks Xomel

A
Restrictions bject Layr
>
\

L

‘& Rd‘:a;- o)
= \N—

Unique | | Tables
Identifiers |

iigure 3. AdaKNET Abstraction Dependencies

4. Package AdaKNETs

This section provides an overview of the AdaKNETSs package, and the relationship
between this package and the AJaKNET conceptual modcl described in the preceding
section. In the following discussion, th¢ plural AdaKWNETs will refer to the package
pane and ADT (e.g., the AdaKNETs ADT); the singular AJaKNET will refer to
instances of AdaKNETs, as well as to the conceptual model name (i.e. AdaKNET con-
ceptual model).

4.1. Mapping ihe Conceptual Model to the Implementation

One of the design goals for AAaKNET was t0 provide as close a match as possible
between the conceptual model supported by AdaKNET and the ADT definitions used to
implement AdaKNET. Our approach has been to maintain this correspoadance via map-
pings from conceptual objects, i.e., those objects defined in the conceptual model, to
implementation objects, i.c., those that appear as ADTs in the AJdaKNET implementa-
tion. Figure 4 shows the relationship between implementation objects and conceptual
objects.

Reusabiiity Library Framework AdaKNET 22 May 1990

AdaKNET User’s Manual 10

_ Conceptual Objects Implementation Objects
Generic Concept Generic_Concept
_Individual Concept Individual Concept
Role Role
Subrole Role!
Gereric Roleset Generic _Roleset
Particular Roleset Particular_Roleset
Ircle ¥

Figure 4. Conceptual/Implementation Objeci Miapping

Note that not every implementation object (ADT) corresponds to a conceptual
object; some implementation objects simply provide useful wrappers for some informa-
tion, or hide representation details of some sort. For example, the implernentation object
AdaKNET does not correspond to & conceptual object. Additionally, not every concep-
tusl object appears as an ADT to AdaKNET application programmers; for example,
Iroles are not implemented as ADTs, but rather as a relation. (See appendix A for more
information on AdaKNET's conceptual level.)

Classes of AdaKNET Operations

AdaKNETs partitions its operations into several categories, each of which is sum-
marized:

(1) Construction Operations. These operations manage the creation and destruction
of AdaKNET objects. The form of these operations differs among the different
object types, corresponding to constraints imposed by the AdaKNET implementa-
tion. For example, since AdaKNET enforces strict subsumption, each Generic Con-
cept must participate in the specialization hierarchy. Therefore, no operation is pro-
vided to create a single Generic Concept instance; rather new instances are returned
as a result of calling a composite operation which creates a Generic Concept, and
links it into the AdaKNET taxonomy.

(2) Modification Operations. Once objects have been created, various attributes may
be modified. There is a somewhat difficult distinction drawn between modification
of the AJaKNET object itself, and modifications to the state of component ADTs
managed by AJaKNET instances (¢.g., Generic Concept ADT). For example, we
view name to be an aitribute of the Generic Concept ADT — and hence view
modification of concept names as a modification of the Generic_Concept instances.

YA superrole / subrole reiation distinguishes roles from subroles in the implementation.
*Iroles are represented as 3-ary relations.

Reusability Librury Framework AdskKNET 22 May 1990

AdaKNE'T User’s Manual 11

On the other hand, the links between concepts, €.8., roles, are viewed as attributes of
the AdaKNET instance and not of the Generic Concept objects which participate in
the aggregation hierarchy. Therefore, adding new roles or restricting existing roles
are viewed as AdaKNET modification operations, not Generic_Concept
raodification operations. Describing some operations as AdaKNET modifiers, and
other operations as constituent object modifiers represents an organizational bias to
impose additional order on the somewhat complex set of AdaKNET operations;
however, other organizational schemes are possible since most operations take both
an AdaKNET and constituent object as parameters.

(3) Query Operations. Taese operations return information about the structure of
AdaKNET instances, ¢.g., "what are the superconcepts of concept X?". These are
the operations that will be used by applications which inference over AdaKNET
instances. As with modification operations, the categorization of query operations
as AdaKNET instance or constituent ADT queries reflects a package-level organiza-
tional bias. For example, although adding superconcept links to a Generic_Concept
instance is considered an AdaKNET modification operation, retrieving this informa-
tion is considered a Generic_Concept query.

(4) Predicates. These operations are boolean functions which act in two guises: as
basic comparators e.g., "are these two objects the same (EQUAL) object?", and as
probes e.g., "does object X exist in AJaKNET instance Y?". Probes can be used to
preemptively test for conditions which would raise exceptions. Comparators are
used to insulate application programs from distinctions between copy and share
semantics for assignment. For example, AdaKNET Generic_Concepts are actually
implemented as pointers to pointers to a low-level ADT implementation of
Generic_Concepts; in some cases objects may be EQUAL, but not "=" (Ada
predefined equality). User-defined equality hides such details.

4.2. Overview of Package AdaKNETs

This section presents a list of operations provided to create, manipulate, and exam-
ine instances of AdaKNET. These operations are partitioned into construction,
modification, examination, and predicate categories. For each operation, the subprogram
kind is indicated (function or procedure), with return values indicated for each function.
Actual parameter profiles can be found in the AJAKNET package specification.

NOTE #%: The operations described below are found in the AdaKNETSs package — this
package defines the kemnel operations on AdaKNET instances. An additional package,
AdaKNET_Composites, provides a set of operations which are implemented in terms of
kernel AdaKNETs. Sce section 3.1 (and the source code) for more information on these
operations.

INOTE #2: The AdaKNET code uses the AJaNET spelling; we discovered the name
"AdaNET" was copyrighted after a significant portion of the system had been imple-
mented. Not all code has been revised to change references from AdaNET to AdaKNET
at the time this manual is being written.

Reusability Library Framework AdakKNET 22 May 1990

AdaKNET User’s Manual 12

‘ Construction Operations

The "major" objects manipulated by the AdaKNETs ADT are: AdaKNET,
Generic_Concept, Individual_Concept, and Role. Construction operations are provided
for each of these object types. Other objects, such as Particular_Roleset,
Generic_Roleset, Roleset_Range, etc., are essentially "wrappers" for some useful infor-
mation. For example, rolesets are records which pair roles and concepts, although this
implementation decision is transparent to the interface. These ancillary objects are
created as results of examination operations, but can be thought to have lifetimes only

during exccution of the program.
-~ the following operations provide for AdaKNET persistence:
function Create_ AdaNET return AdaNET
function Open_AdaNET return AdaNET

procedure Save_AdaNET
procedure Destroy AdaNET
procedure Clese_AdaNET

-- the following operations add information to AdaKNET instances, and
-- return constituent objects created by the operation:

procedure Add Generic_Concept
procedure Add Individual_Concept
procedure Add_Role

procedure Add_Partitions
procedure Add_Subsets

. -~ the following operations remove information from AdaKNET instances, and
-=- also destroy constituent objects:

procedure Remove_Generic_Concept
procedure Remove_Individual Concept
procedure Remove_Role

procedure Remove_Partitions
procedure Remove_Subsets

Modification Operations

The modification operations permit changes to object attributes, such as the name
attribute of concepts and roles. Other attributes conceptually belong to the AdaKNET
object itself, such as the relationships that exist between constituent objects, ¢.g., the set
of specialization relations is an atiribute of AdaKNET.

~~ the following oparations add semantic relations to AdaKNET instances:

procedure Add_Specialization_Link
procedure Add_Individuation_Link
procedure Add_Filler

~=- the following operations remove semantic relations from AdJaKNET
-- instances:

procedure Remove_ Specialization_Link

. procedure Remove_lIndividuation_Link
procedure Remove_Filler

Reusability Library Framework AdsKNET 22 May 1990

AdaKNET User’s Manual 13

-= the following operations modify attributes of constituent objects;
~-=- Rename is overloaded for concepts and roles.

procedure Rename

procedure Change_ Ranges

procedure Remove_ Range_ Restrictions
procedure Change_Types

procedure Remove_Type_ Restrictions

Examination Operations

Examination operations are side-effect free queries on the structure of the network.
This set of operations is sufficient to support efficient inferencing on AdaKNET
instances. Two flavors of examination are supported: examination of AdaKNET attri-
butes, which yields random access to constituent objects (e.g., "return the generic con-
cept object whose name is 'foo’"), and navigational access (e.g., "return the generic con-
cept Y which is the superconcept of concept X").

-=- the following operations examine attributes of RdaKNET instances, and
-~ perform global queries.

function Name return AdaNET_Object_Name_ Type
function Root_Concept return Generic_Concept
function Generic_Concept_by_Name return Generic_Concept
function Individual_Concept_by Name return Individual_Concept
function Roles_by_Name return Role_Sets.Set

-=- the following operations examine attributes of AJaKNET generic and
-~ individual concepts:

function Name return AdaNET_Object_Name_ Type
function Superconcepts return Generic_Concept_Sets.Set
function Generic_Subconcepts return Generic_Concept_Sets.Set
function Individual_Subconcepts return Generic_Concept_Sets.Set
function Rolesets return Generic_Roleset_Sets.Set
function Rolesets return Particular_Roleset_Sets.Set
function Generic_Filler Type_of return Generic_Roleset_Sets.Set
function Particular_Filler Type of return Particular_Roleset_Sets.Set
function Filler_of return Particular_ Roleset_Sets.Set

-=- the following operaticns examine attributes of Roles:

function Name raturn AdaNET_Object_Name Type
function Generic_Originator return Generic_Concept
function Individual_Originator return Individual_Concept
function Associated_Roleset return Generic_Concept
function Associated Roleset return Individual_Concept
function Superrole return Role

function Partition_Subroles return Role_Sets.Set;

function Subset_Subroles return Role_Sets.Set;

-- the following operations examine attributes of Rolesets:

function Owner return Generic_Concept
function Owner return Individual_Concept
function Associated_Role return Role

Reusability Library Framework AdaKNET 22 May 1990

AdrKNET User’s Manual 14

function Range_Restricticn return Ronleset_Range

function Filler_Type return Generic_Concept

function Fillers return Individual_Concept_Sets.Set
Predicate Operations

Predicates are boolean functions used as probes, i.e., to preempt the role of excep-
tions as a means of directing program control fiow, and as simple comparators i.e.,
"Equal”.
-~ the following operations return Boolean results; Equal is overloaded for
-- all object types.

function Equal return Boolean
function Network_ Exists return Boolean
function Concept_gxists return Boolean
function Role_Exists return Boolean
function Roleset_Exists return Boolean
function Is_Range_Restricting return Boolean
function Is_Type Restricting return Boolean
function Is_Range_Restricted return Boolean
function Is_Type_ Restricted return Boolean

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User’s Manual 15

5. AdaKNET Specification Language — SNDL

SNDL is the mechanism of choice for instantiating AdaKNET knowledge bases.
Although it is possible to simply write a program which instantiates AdaKNET via a
sequence of calls to the AdaKNET ADT package, this mechanism is not always the most
convenient (or the most descriptive, in a declarative sense) approach. We have defined a
Semantic Network Description Language (SNDL) for describing AdaKNET instances in
a high-level ron-procedural manner.

Besides providing a convenient and readily modifiabie medium for defining models,
SNDL. also provides services supportive of the reuse of knowledge bases as ccmponents
in their own right. Since SNDL descriptions are ASCII text, AdaKNET instances
described via SNDL can be transported "as is" to any site, regardless of compiler. Also,
as will be seen, the language design of SNDL contains features for modularization of
knowledge bases; this will be important in the reuse of knowledge bases via amalgama-
tion of small, special-purpose knowledge bases. For exampie, a fragment of the Gadfly
knowledge base describing Ada data types could be usefully integrated in knowledge
bases of tools sensitive to Ada type semantics.

Language Goals

First and foremost, SNDL must facilitate description of AdaKNET instances. Addi-
tionally, such specifications must be easily maintainable. The former argues for a terse,
concise syntax for specifying AdaKNET objects and relationships. The latter argues for
sufficient "syntax" for spotlighting potentially subtle interdependencies between AdaK-
NET objects and relations.

The solution we have chosen attempts to make use of some of the features of Ada
syntax, applied in a parallel fashion to semantic networks. The hope is that the syntax
added for enhanced maintainability will not render networks difficult or clumsy to
specify or examine. The following subsections describe the network structure-forming
syntax. A more thorough exposition, including a complete description of the abstract
syntax of SNDL, along with semantic annotations, is located in appendix B of this report.

Basic Concepts

SNDL is a language which supports definition of AdaKNET instances, and has syn-
tactic constructs designed to highlight the mapping of the language to the AdaKNET
conceptual level defi.iition.

One important feature of SNDL which greatly augments the convenience of writing
and reading SNDL specifications is that there is no need to define network structures
before they are referred to. For example, a generic concept can appear as the filler rype
for a roleset before the generic concept is defined in the specification. In previous experi-
ence with construction of semantic network models by interactive editors, the required
order of creation has proved somewhat non-intuitive (e.g., the specialization hierarchy
must be built top-down, but roles and fillers must be added bottom-up). Relaxing the
requirement of definition before use in the SNDL language definition should provide
several advantages. Knowledge base definitions can be organized in the most easily
comprehensible way for the modeler. Specifications can be modularized more easily,
while preserving the overall integrity checking on the model. For example, a concept

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User’s Mannal 16

definition can include contiguous definition of the local and restricted roles of the con-
cept; this would not be possible with a definition-before-use scheme. Later extensions to
language processing tools could provide "pretty-printed” transformations of the models
in various orders of presentation (e.g., depth-first, breadth-first).

The chosen form of the SNDL language provided some interesting implementation
challenges. It requires a fairly complex translator implementation, since a single-pass
translation will not be able to do adequate consistency checkiiig. Here, our use of
SSAGS, a Unisys-proprietary meta-generation system based on ordered attribute gram-
mars [Payton82], is a key element to the feasibility of our approach. SNDL will evolve
as experience shows what organizing schemes are most appropriate for specifying
knowledge bases. A major advantage of our approach is that we are not committing to a
particular organizational approach, but rather implementing a flexibie specification
language. Modelers will be able to use this language, not only to rapidly prototype
knowledge bases, but to explore different definitional strategies as well. This methodo-
logical work is an essential prerequisite to the use of knowledge base specifications as
reusable components in their own right.

Networks

AdaKNET supports the simultancous existence of many individual knowledge
bases (AdaKNET instantiations). Thus, SNDL provides a linguistic mechanism, Net-
work, for encapsulating the description of an AdaKNET instance within a single
language construct. The general form of AdaKNET descriptions is:

network Sample is
<Semantic Object/Relation Definitions>
end Sample;

The SNDL Network construct roughly parallels the Ada Package construct. Both
describe a named unit which encapsulates r7lated information. SNDL also includes an
Amalgamation construct which roughly parallels the Ada with construct; SNDL amalga-
mation supports (a limited form of) sharing of knowledge base partitions among several
AdaKNET instances.

Note: Amalgamation is not implemented in the current release.

Concepts and Roles

The principal objects of AdaKNET are Concepts, which come in two flavors: Gen-
eric Concepts and Individual Concepts. These classes of objects are described via con-
cept and individual structures, respectively, which are syntactic analogs of Ada record
types. The concept and individual syntax indicates the position of a concept in the net-
work via its superconcepts and provides a mechanism for encapsulating any local roles
and constraints on inherited roles at the concept. The gencral form of object definitions
is:

Reusabllity Library Framework AdasKNET 22 May 1990

AdaKNET User’s Manusl 17

concept Sample_Concept (<superconcepts>) is
<local roles and restrictions>
end concept ;

individual Sample_Individual (<superconcepts>) is
<local roles and restrictions>
end individual ;

A concept may be distinguished from its superconcepts by restrictions on inherited
roles and by local roles introduced at the concept. Such local information, as well as
roleset fillers for individuals, are described as sub-structures of AdaKNET objects. A
oracketing syntax is also used for these sub-structures in SNDL:

® Aggregation via local roles...end local.

e Restriction via restricted roles...end restricted.

e Differcntiation via differentiated roles...end differentiated.
e Satisfaction via fillers...end fillers

SNDL Summary

SNDL provides a textual description of AdaKNET instances. A two-way transla-
tion system is provided to generate in-memory AdaKNET instances from SNDL descrip-
tions, and to generate SNDL descriptions from in-memory AdaKNET instances. This
alternative route to AdaKNET persistence (to the data structure level representation of
AdaKNET instances resulting from "save" operations) provides a level of freedom for
knowledge engincers to devise their own network configuration management policies,
and explore rease and amalgamation of network instances.

SNDL is designed to provide an intuitive mapping to the AdaKNET conceptual
definition, and to highlight potentially subtle network semantics (e.g. roleset restriction
and inheritance). This, we hope, will facilitate easier maintenance of potentially large
and complex semantic networks descriptions.

A more complete definidon of SNDL syntax and semantics is included in appendix
B of tais report.

Reusability Library Framework AdakKNET 22 May 1990

AdaKNET User’s Manual 18

6. Using AdaKNET

This section describes special steps that must be taken to install AdaKNET on a new
host, how to create an AdaKNET knowledge base, and how to use the browser-editor
application to examine and manipulate the knowledge base. Readers interested in a more
in-depth discussion of semantic network inferencing (AdaKNET inferencing in particu-
lar) should consult the Gadfly user’s manual, the Gadfly dcsign report, and the
AdaKNET/AdaTAU design report.

6.1. Installing AdaKNET

Detailed installation instructions are included in the Version Description Document
(VDD) accompanying the source delivery of the Reusability Library Framework (RLF),
including compilation order and identification of host installation dependencies. Host
installation dependencies have been isolated to the Network_Constants package. The
AdaKNET data storage model hides storage and retrieval of data files in an effort to ease
later migration to relational database technology; the Network_Constants package
defines the location where AdaKNET will store its data files. In the current version of
AdaKNET, UNIX environment variables enable the user to specify the file system loca-
tions of RLF knowledge bases. The VDD discusses how to make use of this RLF
feature.

6.2. Creating AJAKNET Knowledge Bases

AdaKNET applications require the exisience of knowledge bases. These
knowledge bases can be created interactively using the browser editor, they may be
created programmatically as sequences of calls to the AdaKNET package, or they may be
created using the SNDL processor. This section describes how to use the SNDL proces-
SOT.

Use a text editor to prepare a SNDL specification. A complete syntax for SNDL is
included in appendix B; however, the model illustrated in figure 5 will be used in the
sample session later in this manual. Naturally, the purpose of this model is simply to
familiarize you with the SNDL processor; more elaborate examples are included with the
RLF delivery.

Once the specification has been prepured, it is used as input to the SNDL program
generator. The output of SNDL will be a program which, when executed, will initialize
an instance of AdaKNET as described in the SNDL specification. To execute SNDL on
UNIX systems (assuming the file edited is called "messages.txt", and the SNDL proces-
sor is built and called "sndl") enter the following command:

sndl < messages.txt
You should get as a result the following messages:

Parsing input.

Parsing completed successfully.
Entering attribute evaluation phase.
Exiting attribute evaluation phase.
Entering program generation phase.

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User’s Manual 19

network MESSACGES is
root concept THING is end root concept;

concept MESSAGE (THING) is
local roles
SEND_DATE (1.. 1) of DATE;
RECEIVE_DATE (1 .. 1) of DATE,;
SENDER (1 .. 1) of PERSON;
RECIPIENT (1 .. infinity) of PERSON;
BODY (1..1) of TEXT;
end local;
end concept;

concept STARFLEET _MESSAGE (MESSAGE) is
restricted roles
SENDER (1 .. 1) of STARFLEET_COMMANDER;
end restricted ;
end concept;

-- the following concepts are “stubs”.

concept DATE (THING) is end concept;

concept PERSON (THING) is end concept;

concept STARFLEET_COMMANDER (PERSON) is end concept;
concept TEXT (THING) is end concept;

end MESSAGES;
Figure 5. Sample SNDL Specification

The result of this successful execution will be the generation of an Ada program
named "sndlprog.a”. Examination of this program will reveal that the SNDL translator
has produced an AdaKNET application program to instantiate the network defined by
messages.txt. Compile, link, and execute this program {o instantiate the network. Note
that before executing the program, the UNIX environment variable RLF_LIBRARIES
must be set to the pathname of the direciory that is to contain the network knowledge
base (cf. the RLF Version Description Document for additional information on RLF use
of environment variables). AJaKNET will initialize an AdaKNET instance, and save the
instance in a directory that was established when AdaKNET was installed. The created

Reusability Library Framework AdaKNET 22 May 1990

Reusability Library Framework AdaKNET 22 May 1996

AdakNET User's Manual 20

instance can be retrieved by executing an "Open_AdaNET" operation in the AdaKNETs
package; the name of the network to be opened is the name specificed in the SNDL
descriptions network name. In the next section instructions on using the browser-editor
to examine and manipulate the messages network will be provided.

SNDL Diagnostics

There are various ways SNDL specification errors can be detected. First, there are
SNDL-time errors (errors caught by the SNDL processor). For example, in the messages
description, remove the concept definition for starfleer_commander. Executing the
SNDL command as above will produce:

Parsing input.

Parsing completed successfully.

Entering attribute evaluation phase.

Error: Value Restrictior: starfleet_commander Undefinecl
Exiting attribute evaluation phase.

Entering program generation phase.

SNDL Specification errors -- no code generated

Other errors may not be derected by SNDL, in particular errors which deal with the
subtleties of range restriction semantics. These errors will be caught at run-time when
the SNDL-generated program is executed. Although SNDL will detect simple errors, it
will not detect all errors. However, AdaKNET will guarantee that only subsumption-
preserving networks will be instantiated.

6.3. Sample Session

In this section we provide an annotated transcript from a session using the interac-
tive AdaKNET browser-editor. The browser-editor is an AdaKNET application
delivered with AdaKNET; the Version Description Document provides instructions on
building the browser-editor. In this session, we examine and modify the knowledge base
created from the "message.txt” SNDL file illustrated, above. Annotations will appear in
italics, on lines beginning with Ada-style "--" comments.

% browser_editor

What do you want the network name to be called?
(To abort, type "*abort*’).

> MESSAGES

Positioned at--> Thing
Parents: *none*
Children:

MESSAGE

DATE

PERSON

TEXT
Individuations: *none*

AdaKNET User’s Manual 21

Generic Rolesets: *none*

-- We wish to create a new concept to capture the notion of secret
-- communication between starflect captains only, using specially
-- encrypted messages.

What kind of command do you want?

1. Aggregation Network Display Commands

2. Specialization Hierarchy Display Commands
3. Editing Commands

4., Move within Structure

5. Exit the Browser

Enter number of desired command <CR>: 4

-- Commands may present a menu of other commands. In the following
-- dialogue, we wiil display entire menus when they are first presented,
-- thereafier we will only dislay options of interest, with ellipses ..."

-- used to show where other commands have been suppressed.

concept> STARFLEET_MESSAGE

-- The concept the browser is "focused"” on is displayed after
-~ each command:

Positioned at--> STARFLEET _MESSAGE

Parents:
MESSAGE

Children: *none*

Individuztions: *nonc*

Gencric Rolesets:
BODY(1..1) of TEXT;
RECEIVE_DATE(1..1) of DATE;
RECIPIENT(1..infinity) of PERSON;
SENDER(1..1) of STARFLEET_ COMMANDER;
SEND_DATEC(1..1) of DATE;

What kind of command do you want?

3. Editing Commands

Enter number of desired command <CR>: 3

-- First we create a specialization of TEXT to capture ENCRYPTION idea:

Reusability Library Framework AdaKNET 22 May 1990

AdeKNET User’s Mauual 22

‘ What do you want to do?
-- The following is a list of interactive editing commands:

add generic concept
add individual concept
add child

add individuation

add role

add subrole

restrict role

remove child

. remove individuation
10. remove role

11. rename current concept
12. rename role of this concept

VPENAUNR LN

Enter nuinber of desired command <CR>: 1

What do you went the new concept tu be called?
(To abort, type "*abort*’).
‘ > ENCRYPTED_TEXT
° parent name> TEXT

ENCRYPTED_TEXT has been installed in the network.

Positioned at--> STARFLEET_MESSAGE

Parents:
MESSAGE

Children: *none*

Individuations: ¥none*

Ger:eric Rolesets:
BODY(1..2) of TEXT;
RECEIVE_DATE(L..1) of DATE;
RECIPIENT(1..infinity) of PERSON;
SENDER(1..1) of STARFLEET COMMANDER;
SEND_DATE(1..1) of DATE,;

What kind of cornmand do you want?

3. E&iting Commands

Enter number of desired command <CR>: 3

ll -- Now we create the speciaiization of STARFLEET MESSAGE dcsired:

Reusability Library Framework AdaKNET 22 Mey 1930

AdaKNET User’s Manual

What do you want to do?

3. add child
Enter number of desired command <CR>: 3
What do you want the new child (o be called?

(To abort, type '*abort*’).
> SECRET_STARFLEET_MESSAGE

SECRET_STARFLEET_MESSAGE has been installed in the network.

Positioned at--> STARFLEET_MESSAGE

Parents:
MESSAGE

Children:
SECRET_STARFLEET_MESSAGE

Individuations: *none®

Generic Rolesets:
BODY(1..1) of TEXT;
RECEIVE_DATE(1..1) of DATE;
RECIPIENT(]..infinity) of PERSON;
SENDER(1..1) of STARFLEET_COMMANDER;
SEND_DATEC(1..1) of DATE,;

What kind of command do you want?
-- Now we move to the new concept and restrict some inherited roles:

4, M&e within Structure

Enter number of desired command <CR>: 4
concept> SECRET_STARFLEET_MESSAGE

Positioned at--> SECRET_STARFLEET MESSAGE
Parents:
STARFLEET_MESSAGE
Children: *none*
Individuations: *none*
Generic Rolesets:
BODY:1..1) of TEXT;
RECEIVE_DATE(1..1) of DATE;
RECIPIENT(1..infinity) of PERSON;
SENDER!(1..1) of STARFLETT_COMMANDER;

Reusability Librgy Framework AdaKNET

22 May 1990

AdaKNET User’s Manual 24

SEND_DATE(1..1) of DATE;

What kind of command do you want?

3, Editing Commands

Enter number of desired command <CR>: 3
What do you want to do?

7. restrict role

Enter number of desired command <CR>»: 7
Which rolesec?
-- Ali of SECRET _STARFLEET MESSAGE’s rolesets are displayed:

SEND_DATE
RECEIVE_DATE
SENDER

RECIPIENT

BODY

¥ Abort This Menu ***

QAW

Enter number of desired command <CR>: 5
Do you want to restrict the range? n
Do you want to restrict the filler type? y

current type: TEXT
new type> ENCRYPTED_TEXT

BODLY has been restricted.

Positioned at--> SECRET_STARFLEET_MESSAGE
Parents:
STARFLEET _MESSAGE
Children: *none*
Individuations: *none¢*
Generic Rolesets:
BONY(1..1) of ENCRYPTFED_TEXT;
RECEIVE_DATE(l..1) of DATE;

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User’s Manual 25

RECIPIENT(]..infinity) of PERSON;
SENDER(1..1) of STARFLEET_COMMANDER;
SEND_DATE(l..1) of DATE;

-- Note the change to the BODY role (above)

What kind of command do you want?

-- Restrict the RECIPIENT role to be for captains eyes only

3. Et.i'i.ting Commands

Enter number of desired command <CR>: 3
What do you want to do?

7. restrict role

Enter number of desired command <CR>: 7
Which roleset?

SEND_DATE
RECEIVE_DATE
SENDER

RECIPIENT

BODY

*#** Abort This Menu ***

bW

Enter number of desired command <CR>: 4
Do you want to restrict the range? n
Do you want to restrict the filler type? y

current type: PERSON
new type> STARFLEET_COMMANDER

RECIPIENT has been restricted.

Positioned at--> SECRET_STARFLEET_MESSAGE
Parents:
STARFLEET_MESSAGE
Children: *none*
Individuations: *none*

Reusability Library Framework AdaXNET 22 May 1990

AdsKNET User’s Manual

Generic Rolesets:
BODY(1..1) of ENCRYPTED_TEXT;
RECEIVE_DATE(1..1) of DATE;
RECIPIENT(l..infinity) of STARFLEET_COMMANDER;
SENDER(1..1) of STARFLEET _COMMANDER;
SEND_DATE(l..1) of DATE;

What kind of command do you want?

5. E::i.t the Browser

Enter number of desired command <CR>: §
What do you want to do?
1. Destroy this network.
2. Exit - ignore changes from this session.
3. Exit - save changes.
4. Resume editing.
Enter number of desired command <CR>: 3

Exiting...
%

26

The above session shows how existing networks may be modified interactively. In
general, it is far easier to use SNDL to create large, complex models, while the browser-

editor is sufficient for small models like the one illustrated here.

Finally, note that a reverse translator is also provided which allows AdaKNET
instances to be modified interactively, and then returned to SNDL form for archiving,

revision control, etc.

Reusability Library Fremework AdsKNET

22 May 1990

AdaKNET User’s Manual A-1

APPENDIX A: Detailed Description of AdaKNET Model Semantics

AdaKNET is a knowledge representation formalism based on KL-ONE [Brach-
man85]. Other examples of representation systems in this family are NIKL
[Kaczmarek86] and KNET [Freeman83, Searls90]). AdaKNET provides its user the abil-
ity to describe a domain by creating a model of that domain in AdaKNET, while
AdaKNET’s structure enforces certain consistencies between the components of that
model.

Generic Concepts

In AdaKNET, the principal objects are structured conceptual objects, or concepts.
AdaKNET supports two types of concepts: generic concepts and individual concepts. A
generic concept models a category of things, such as the class of all humans or the class
of all messages. An individual concept represents one particular thing; for instance, John
Doe represents a specific human, and "my message of December 11" represents a specific
message. Thus, generic concepts are roughly equivalent to "classes" in object-oriented
systems, while individual concepts are roughly equivalent to "instances". For the sake of
simplicity, no two concepts may have the same name.

Specialization

Generic concepts in AJaKNET are organized into a specialization hierarchy. One
concept specializes another if the first concept represents a subset of the category
described by the second concept. A sample specialization hierarchy is shown in figure 6.
We see that the concept MAMMAL is defined in terms of ANIMAL, that is, MAMMAL
specializes ANIMAL. Conversely, we say the concept ANIMAL subsuines the concept
MAMMAL. The subsuming concepts are called superconcepts of the subsumed con-
cepts, and the subsumed concepts are called subconcepts of the subsuming concepts.
Because MAMMAL is directly linked to ANIMAL, we further say that ANIMAL and
MAMMAL are in a parent/child relationship.

Specialization and subsumption are acyclic and transitive relations. So, in figure 6,
HUMAN:S are a kind of ANIMAL, as well as a kind of MAMMAL. Specialization and
subsumption are also many-to-many relations, that is, a concept may have multiple
parents and children.

Individuation

Each individual concept in AJaKNET is an instance of some generic concept(s),
that is, it individuates one or more generic concepts. Figure 7 illustrates individuation.
Here JOHN-DOE individuates MAN. Individuation is preserved by subsumption, so that
JOHN-DOE implicitiy individuates HUMAN. In cases where it is important to distin-
guish between explicit and implicit individuation, we will add the term direct or indirect
to the description; e.g., JOHN-DOE directly individuates MAN and indirectly individu-
ates HUMAN.

Individuation is also a many-to-many relation; a generic concept may be directly
individuated by several individual concepts, and an individual may directly individuate
several generic concepts.

Reusability Library Framework AdaKNET 22 May 1990

AdaXNET User’s Manual

A-2

N\

72"

MAN (WOM

Figure 6. AdaKNET Specialization

Reusability Library Framework AdaKNET

22 May 1990

AdaKNET User's Manual A-3

MAN

JOHN-
DOE

Figure 7. AdaKNET Individuation

Roles

Roles define the structure and atitributes of concepts. For instance, a human has
. components such as a head, a torso, arms, and legs, and has attributes such as height,
weight, and gender. Such attribuies are represented in AdaKNET by associating roles

Reusability Library Framework AdaKNET 22 May 199¢

AdaKNET User’s Manual A-4

with a concept. For example, a concept representing humans might include roles for
height, weight, eye-color, etc.

Roles in AdaKNET serve either of two purposes: to indicate the general types of
things that satisfy a given attribute or to specify the exact thing (the "filler", as described
later) that instantiates ("satisfies”, as described later) a given attribute for an individual
concept. The distinction between these two is discussed in the following excerpt from
[Brachman85]:

This difference is motivated essentially by the "attributive/referential” distinction in
the philosophy of language. Imagine a situation in which an alligator’s tail has fal-
len off. We might remark, "The alligator’s tail lay wriggling on the ground." Or,
we might say something like, "Don’'t worry, the alligator’s tail will grow back
again." The "tails” talked about must be different in the two cases -- in the first, we
are referring to the previous filler, the actual piece of protoplasm that used to be the
alligator’s tail. In the second, because the alligator's tail will not reattach itself to
the alligator, we must mean something else by "alligator’s tail." We are in fact talk-
ing in a general way about anything that wiil eventually play the role of "tail" for
the alligator.

Rolesets are used to indicate the general, attributive flavor of mles; Iroles are used to
indicate the specific, referential flavor of roles.

Rolesets

Rolesets are templates that identify and describe what type of thing the role’s fillers
should be (e.g. the height of a human is a length) and how many fillers it should have
(¢.g. a human has two legs). Figure 8 illustrates the notion of roleset and the associated
graphical conventions. Iu this figure, the concept MESSAGE has five rolesets which
describe the attributes all messages share. For example, every message has a date on
which it was sent (corresponding to the roleset Send-Date) and a date on which it was
received (corresponding to the roleset Receive-Date).

The type or value restriction of a role’s fillers is specified by a generic concept asso-
ciated with the roleset. In figure 8, the roleset Sender has type PERSON, indicating that
senders of messages must be persons. Individuals which fill the sender roleset must
therefore be individuals of type person, or be individuals of some subconcepts (directly
or indirectly) of type person.

The cardinality of role fillers is specified by a roleset’s range restriction (or, simply
range). A range restriction consists of a lower and an upper bound on the number of
fillers the role is allowed. If the lower and upper bounds of a roleset range are equal, we
say the role has been converged. INFINITY as an upper bound indicates that an unlim-
ited number of fillers are possible. A message, as defined in figure 8, has exactly one
"send date” (the Send-Date role has been converged to "1"), while a message may have
one or more recipients.

* daKNET distinguishes between two kinds of rolesets: generic rolesets and partic-
ular rolesets. Generic rolesets are owned by generic concepts, while particular rolesets
are owned by individual concepts.

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User‘s Manual A-S

Figure 8, AdaKNET Roles

Iroles

Iroles are used to show the specific fillers of a roleset. Iroles represent tertiary rela-
tionships between the irole owner, the irole filler, and the particular roleset being filled.
Because AJaKNET only allows particular rolesets to be filled, both owner and filler must
be individual concepts.

Iroles are depicted by solid boxes, with links connecting the owning individual, the
filler, and the satisfied particular roleset, as illustrated in Figure 9. In this example, John
Doe, an individuation of Person, satisfies the Recipient role of the individual,
MESSAGE-1. In AdaKNET, an individual may satisfy many roles (i.c. can participate in
more that one Irole).

The filler of an individual’s role must adhere to the roleset’s restrictions; the irole
specifying this filler is then said to sarisfy the roleset. The satisfaction criteria are;

(1) The irole’s filler must be an individual concept that individuates the type of the
roleset (either directly or indirectiy).

Reusabdility Library Framework AdaKNET 22 May 1990

AdaKNET Usar’s Manual A6

(2) For any individual concept, the number of ircles which satisfy a roleset cannot
exceed the upper bound of the roleset’s range.

THING

SendDate

Qa
Body
iy

DATE SSAG TEXT
1
ReceiveDate

Sender
(1i

ecipient

ERSON

Recinient
ESSAGE-

JOHN-
DOE

satisfies

Figure 9. AdaKNET I-Roies

Reusability Library Framework AdeKNET 22 May 1990

AdaKNET User’s Manual A-7

Inheritance

In AdaKNET, a subsumed concept inherits the roles of its superconcepts; that is,
cach role of the superconcept is also a role of the subconcept. Herein lies the power of
specialization: to define a generic concept, one only needs to specify a concept’s parents
and that information which distinguishes the concept from its parents. Such distinguish-
ing information may be new roles introduced at the subconcept (locally-defined roles), or
further restrictions or differentiations on roles that are inherited. (Differentiations and
restrictions are discussed in a later section.) The semantics of the subsumption relation is,
essentially, that any individual of the subsumed concept is also an individual of the sub-
suming concept. For this to be true, subsuming concepts can only strengthen the restric-
tions of inherited roles. This notion of subsumption preserving semantics is central to
understanding what constitutzs legal AJaKNET models.

An individual concept also inherits the generic rolesets of the generic concepts it
individuates; these generic rolesets are inherited as particular rolesets. This is one of two
ways particular rolesets can be introduced at individual concepts (differentiation is the
other way). In fact, this is the only way that particular rolesets are created. No new roles
may be introduced at an individual concept; ali roles must correspond to a role of one of
the subsuming generic concepts. As with specialization, further restrictions or differen-
tiations may be put on inherited rolesets.

Multiple Inkeritance

AdaKNET allows a generic concept to specialize more than one superconcept and
an individual concept to individuate more than one generic concept. This allows a con-
cept to inherit the roles of all of its parents (specialized concepts or individuated con-
cepts). When the parents have non-overlapping sets of roles, multiple inheritance works
in the same way as single inheritance. In Figure 10, TOP-SECRET-MESSAGE inherits
the role Key from ENCRYPTED-MESSAGE and the role Network from NETWORK-
MESSAGE in the normal fashion. (Note that TOP-SECRET-MESSAGE furthe; restricts
the type of the role Network.)

If some parents share a role which descends from a common ancestor (i.e. there
exists a single concept which subsumes the parents and from which the parents inherit
the role), the role is inherited with the conjunction of the parents’ restrictions on the role.
The role’s range must be the largest possible range that falls within all the parents’
ranges for the role. TOP-SECRET-MESSAGE's inheritance of Recipiciit from all three
of its parents illustrates this; the conjunction of the parent ranges for this role is (1,1).
Similarly, the role’s type must be the same as or subsumed by all of the parcnts’ types for
the role. Thus, Sender has SECRET-AGENT as its type in TOP-SECRET-MESSAGE.
If a range or type meeting these criteria does not exist, the inheritance is not possible
without violating subsumption, and the specialization is not allowed.

Any parent roles which have the same name but do not descend from a common
ancestor are distinct roles. In order for these roles to be inherited by a single concept, the
name conflict must be resolved by renaming. For example, if NETWORK-MESSAGE's
role NetworkMethod were named Method, its name would conflict with ENCRYPTED-
MESSAGE's role Method. In this case, TOP-SECRET-MESSAGE would not be able to
be a child of both NETWORK-MESSAGE and ENCRYPTED-MESSAGE until one of

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User’s Munual A-8

(ATE)

Receivébl?e

~——Yegfricts
o'«‘" .

‘*-"!E a!ii.

Figure 10. AdaKNET Multiple Inheritance

these roles was given a different name.

Q Rolese: Restriction

Roleset restriction is a mechanism whereby 2 cencept constrains the range and/or
type of inherited roiesets. All roleset restiictions must preserve the semantics of the

Reusabllity Library Framework AdgKNET 22 May 1990

AdaKNET User’s Manual A9

specialization and individuation relations. Since types and ranges constitute necessary
conditions on fillers, (c.g. each MESSAGE must have at least one Sender, and each
Sender must be a PERSON), this means that these conditions may not be weakened by
roleset restriction. Thus, one may restrict an inherited roleset’s range to be a smaller
interval than the range of the parent’s roleset, and/or one may restrict an inherited
roleset’s type to be some specialization of the type of the parent’s roleset.

Figure 11 illustrates roleset restriction. The range of the role Recipient is converged
to "1" for the concept PRIVATE-MESSAGE. A PRIVATE-MESSAGE is thus defined
as a MESSAGE with exactly one Recipient.

Roleset restriction is denoted via the restricts reiation. Note that the restricts rela-
tion does not introduce a new role, but rather tightens the range or narrows the type of an
inherited role.

Roleset Differentiation

Roleset differentiation is denoted via the differentiates relation. Roleset differentia-
tion ellows a role to be described in a more detailed way than is possible with a single
roleset. Consider the example in figure 12. One of the properties of a mail message is
that it must be received by someone. This is modeled by having a roleset Recipient with
type PERSON and owner MESSAGE. We may wish to make finer distinctions; for
example, we may want to show that a recipient can be a primary recipient or can be a
"carbon-copy" recipient. Using differentiation, we can do this by creating the subroles
Primary-Recipient and CC-Recipient. The rolesets describing these subroles may have
their own types and ranges to further restrict the kind and cardinality of fillers for the
subroles. Thus, differentiation allows one to categorize role fillers, and to apply addi-
tional restrictions on fillers in those categories.

AdaKNET supports two classes of roleset differentiation - partitioning and subse-
ting. In the first, the immediate differentiators of a roleset partition that roleset, i.c.,
every filler of the differentiated role is a filler of exactly one of the subroles indicated by
the differentiators. In our example, differentiating using partitioning implies that every
recipient is either a carbon copy recipient or a primary recipient,

The second class of roleset differentiation, subsetting, is less restrictive than parti-
tioning, allowing one to create subroles that do not fully cover al! fillers of the differen-
tiated role. If our example was created using this subsetting class of differentiation, we
could have a filler of Recipient that is not a filler of either CC-Recipient or Primary-
Recipient. Note that since an individual concept can participate in manry Iroles, an indi-
vidual can be used as a filler of more than one subrole (as well as the differentiated role
itself, in the case of subsetting).

Range checking differs between the two styles of differentiation. In both schemes,
the sum of any subrole’s upper range bound and the other subroles’ lower range bounds
must not exceed the upper range bound of the differentiated roleset. This is because it is
impossible to not exceed the differentiated roleset’s upper range bound while having the
maximum number of fillers for such a subrole and adhering to the range restrictions of
the other subroles. Partitioning also requires that the sum of any subrole’s lower range
bound and the other subroles’ upper range bounds not be less than iie lower range bound
of the differentiated roleset. Otherwise it is impossible to cover the differentiatec roleset

Reussbility Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual A-10

PERSON

PRIVATE-
MESSAGE

Figure 11. AdaKNET Restriction

while having the minimum number of fillers for such a subrole and adhering to the range
restrictions of the other subroles. The subsst class of differentiation does not imposs this
last restriction, because the differentiated role can have fillers tha: are not fillers of the
differentiating subroles.

Finally, if a role is differentiated, the entire differentiation is inherited; that is, a spe-
cialization or individuation inherits the differentiated role, the subroles, and the differen-
tiation r:lation among them. Because of this, it is not possible to differentiate a roleset
which has Leen differentiated with partitioning at a subsuming concept. In the example
of figure 12, for instance, the roleset Recipient cannot be differentiated again at a concept
subsumed by MESSAGE if partitioning was used. Using differentiation with subsetting,

. further subsetting of the differentiated role is allowed at subsumed concepts. In figure
12, this would denoie differentiation of the set of those fillers that do not satisty one of

Reusability Library Framework AdakKNET 22 May 1990

AQuKNET User’'s Manual A-ll

the existing subroles, Primary-Recipient and CC-Recipient. With either subsetting or
partitioning, we may of course differentiate one of the subroles and, for exampie, create
subioles of the subrole Primsry-Recipient.

Summary

AdaRNMET is a system for representing knowledge. An AdaKNET nmwwork is a
aiererchy of concepts. The concepts represent things and kinds of things and the hierac-
chy represents a taxonomy for these things. The attributes of concepts are modeled by
the roles of & concept. AdaKNET allows one to describe both the types of things that can
fill a role and the acrual fillers themselves. Roles are implicitdy passed down the links in
the concept hierarchy. Thas a concept is totally defined by itz position in the hierarchy

THING -
SendDate
(_
Body
) -
DATE (MESSAGE}X()
(111) [ender
ReceiveDate
Recipient /
1 inf) /
“PER {
PrimaryRecipient . diffs PERSON
(O'inf) o
4.:
(€ 1nf)
CCrecipicnt

Figure 12. AdaKNET Differentiation

Reusablility Librni'y Framework AdsKNET 22 May 1990

AdeKNET User's Mangel A-12

and the characteristics which distinguish it from the concepts directly above it. These
simple objects and relations combine to form a powerful knowledge representation sys-
tem.

Revuability Library Framework AdsKNET 22 May 1990

AdaKNET User’s Manual B-1

APPENDIX B: SNDL Syntax and Summary

This appendix contains an overview of the extended BNF variant used to describe
SNDL, followed by a description of the individual language features of SNDL. Each
language feature is presented syntactically, with the syntactic description followed by a
short summary of the semantics of the feature. Following the description of the indivi-
dual features, the appendix closes with a complete syntax summary.

Extended BNF (EBNF) Meta-Symbols

The syntax of the language is described using an extended BNF. The notation used is the
same as the notation used throughout the Ada LRM. A brief description is given below.
For a complete description see section 1.5 of the LRM.

lower_case word
nonterminal (e.g. adaknet_spec).

italicized_part_lower_ case_word
refers to same nonterminal as the lower case word without italicized part. The itali-
cized part is used to convey some semantic information.(e.g.
generic_concept_identifier).

bold face_word
language token (c.g. begin).

{item}
braces enclose item which may be repeated zero or more times.

[item]
brackets enclose optional item.

iteml | item2
alternation; either item1 or item2

SNDL EBNF and Semantics
AdaKNET Specifications

adaknet_spec ::=
(amalgamations]
network network_identifier is
root_concept
concept {concept}
end network_identifier;

amalgamations ::= with network_identifier {, network_identifier};

An AdaKNET specification consists of exactly one network definition; the identifier
denoting this network must match at the end keyword.

The networks identified as amalgamations must have as their root concept a generic con-
cept which exists in the current network specification. The interpretation of amalgama-
tions is that the imported network rooted at concept C replaces the concept of the same
name in the current network.

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User’s Manual B-2

. Root Concept

root_concept ::=
root concept generic_concept_identifler is
(local_roles])
[differentiated roles]
end root concept:;

Each network must have one distinguishing generic concept which subsumes all concepts
in the network, and is itself subsumed by no concepts. Since this root concept does not
inherit roles, only local roles can be specified (via local role definition and differentiation
of these local roles).

Concept Definitions
concept ::= generic_concept | individual_concept

Network definitions consist of definitions of concepts, and the relationship between con-
cepts. There are two types of concepts in AdaKNET: individual concepts, and generic

concepts (see Appendix A).
Generic Concept .
generic_concept ::=
. concept generic_concept_identifier (specializes) is
[local_roles])

[restricted_roles]
{differentiated roles]
end concept;

specializes ::=
generic_concept_identifier {, generic_concept_identifier}

All generic concepts, except the root concept, must specialize at least one other generic
concept.

Individual Concept

individual_concept ::=
individual individual concept identifier (individuates) is
[restricted_roles]
[differentiated_roles]
[satisfied_roles]
end individual;

individuates ::=
generic_concept_lidentifier {(, generic_concept_identifier}

. All individual concepts must individuate at least one generic concept.

Reusability Library Framework AdakKNET 22 May 1990

AdaKNET User’s Manual B-3

Roles
This syntax defines how roles are introduced, and how inter-role relationships (i.e.
restriction, differentiation, satisfaction) are specified.
Local Roles
local_roles ::=
local roles

role {role}
end local:;

role ::=
role_identifier (number .. number_or_infinity)

of generic_concept_identifier;

Roles introduced in the local roles ... end local section are considered to introduce new
roles into the network (not constrain existing roles).

Restricted Roles

restricted_roles ::=
restricted roles
restriction (restriction}
end restricted;

restriction ::= range restriction | value_restriction |
range_and_value_restriction

range_restriction ::= role_identifier (number .. number or_ infini

value_restriction ::= role_identifier of generic_concept_identifier;

range_and_value_restriction ::=
role_identifier (number .. number_or_infinity)
of generic_concept_identifier;

Restrictions in the restricted roles ... end restricted section are considered to restrict the
satisfaction conditions on inherited roles. Therefore, the role_identifier must correspond
to an inherited role. The restrictions must be consistent with the inherited conditions as
discussed in Appendix A.

Differentiated Roles

differentiated_roles ::=
differentiatad roles
differentiation {(differentiation}

end differentiated;
differentiation ::= subset | partition

Reusabliity Library Framework AdakKNET 22 May 1990

AdaKNET User’s Manual B-4

subset ::=
subset role_identifier into
role {role}
end subset:;

partition ::=
paxtition role_identifier into
role {role}
end partition;

Differentiators may only differentiate existing roles; these roles may be local or inher-
ited. Each differentiation consists of a declaration of a set of roles. These roles are con-
sidered to be local roles of the concept where the differentiation is introduced. The
semantics of subset and partition differentiation is discussed in Appendix A.

Satisfied Koles

satisfied_roles ::=
fillers
filler {filler}
end fillers;

filler ::= individual concept_identifier satisfies role_identifier;

For cach filler, the individual_concept_identifier must refer to an individual defined in
the network, and the role_identifier must correspond to a particular role that is either
inherited or locally introduced via differentiation. Fillers must adhere to the restrictions
of the roieset they satisfy, as discussed in Appendix A.

Lexical Elements
identifier ::= letter {[underline] letter_or_digit}

letter ::= upper_case_letter | lower_case_letter
number ::= digit {digit}
number_or_infinity ::= number | infinity

string ::= "{graphic_character}"

SNDL EBNF Syntax Summary

The following is the EBNF description of the SNDL syntax. Terms are introduced
in depth-first fashion.

Reusability Library Framework AJdaKNET 22 May 1990

AdakKNET User’s Manual B.S

‘ adaknet_spec ::=

[amalgamations]

network network_identifier is
root_concept
concept {concept}

end [(network_identifier];

amalgamations ::= with neiwork_identifier {, network_identifier};

root_concept ::=
root concept generic_concept_identifier is
[local_roles]
(differentiated roles]
end root concept;

concept ::= generic_concept | individual_concept

generic_concept ::=
concept generic_concept_identifier (specializes) is
(local_roles]
[restricted_roles])
(differentiated roles]
end concept;

. specializes ::=
generic_concept_identifier {, generic_concept_identifier};

individual_concept ::=
individual individual concept_identifier (individuates) is
[restricted_roles]
(differentiated_rol=s]
[satisfied_roles]
end individual;

individuates ::=
generic_concept_ident:fier {, generic_concept_identifier};

local_roles ::=
local roles
role {role}
end loccal:;

role ::=
role_identifier (number .. number_or_infinity)
of generic_concept_identifier;

restricted roles ::=
restricted roles
restriction {restriction}
. end restricted;

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User’s Manual B-§

‘ restriction ::=

range_restriction | value_restriction |
range_and_value_restriction

range_restriction ::= role_identifier (number .. number_or_infini
value_restriction ::= role_identifier of generic_concept_identifier;

range_and_value_restriction ::=
role_identifier (number .. number_or_infinity)
of generic_concept_identifier;

differentiated roles ::=
differentiated roles
differentiation {differentiation}
end differentiated;

differentiation ::= subset | partition

subset ::=
subset role_identifier into
role {role}
end subset;

partition ::=
“ partition role identifier into
role {(role}
end partition;

satisfied_roles ::=
fillers :
filler {filler}
end fiilers;

filler ::= individual concept_identifier satisfies role_identifier;
identifier ::= letter {[underline] letter_or_digit}

letter ::= upper_case_letter | lower_case_letter

number ::= digit {digit}

number_or_ infinity ::= number | infinity

string ::= "{graphic_character}"

Reusability Library Framework AdaKNET 22 May 1990

[Barr81]

[Booch87]

(Brachman85]

{Freeman83)

[Kaczmarek86]

(LRM83]

[McDowell89]

[Payton82]

[Searls90]

[Simos88]

[Smith77])

[Solderitsch89]

[Wallnau8$]

References

A. Barr and E. A. Feigenbaum, The Handbook of Ariificial Intelligence,
Volume 1, William Kaufmann, Inc., 1981.

G. Booch, Software Components with Ada, Benjamin/Cummings Publishing
Company Inc, Menlo Park, California, 1987.

R. J. Brachman and J. Schmolze, ‘‘An Overview of the KL-ONE Knowledge
Representation System,'’ Cognitive Science, 9(2) (Spring 1985), pp. 171-216.

M. W. Freeman, L. Hirschman, D. P. McKay, F. L. Miller, and D. P. Sidhu,
‘‘Logic Programming Applied to Knowledge-Based Systems, Modelling, and
Simulation,’* Praceedings of the Conference on Artificial Intelligence, April
1983, pp. 177-193,

T. S. Kaczmarek, R. Bates, and G. Robins, ‘‘Recent Developments in NIKL,"’
Proceedings AAAI-86, Philadelphia, PA, August 1986, pp. 978-985. Fifth
National Conference on Artificial Intelligence.

Reference Manual for the Ada Programming Language, United States
Department of Defense, February 1983. (American National Standards
Institute/MIL-STD-1815A-1983).

R. McDowell and K. Cassell, ‘‘The RLF Librarian: A Reusability Librarian
Based on Cooperating Knowledge-Based Systems,’* Proceedings of RADC 4th
Annual Knowledge-Based Software Assistant Conference, Utica, NY,
September 1989.

T. F. Payton, S. E. Keller, J. A. Perkins, S. Rowan, and S. P. Mardinly,
““SSAGS: A Syntax and Semantics Analysis and Generation System,’’
Proceedings of COMPSAC '82, 1982, pp. 424-433.

D. B. Searls and L. M. Norton, ‘‘Logic-Based Configuration with a Semantic
Network,"’ Journal of Logic Programming, 8(1,2) (1990), pp. 53-73.

M. Simos, ‘“The Growing of an Organon: A Hybrid Knowledge-Based
Technology and Methodology for Software Reuse,’’ Proceedings of 1988
National Institute for Software Quality and Productivity (NISQP) Conference
on Software Reusability, April 1988, pp. E-1 through E-25,

J. M. Smith and D. C. P. Smith, “‘Data Abstraction: Aggregation and
Generalization,’” ACM Transactions on Database Systems, 2(2) (June 1977),
pp. 105-133.

J. Solderitsch, K. Wallnau, and J. Thalhamer, *‘Constructing Domain-Specific
Ada Reuse Libraries,”’ Proceedings of Seventh Annual Nationa! Conference
on Ada Technology, March 1989,

K. Wallnau, J. Solderitsch, M. Simos, R. McDowell, K. Cassell, and D.
Campbell, ‘‘Constructin of Knowledge-Based Components and Applications
in Ada,'" Proceedings of AIDA-88, Fourth Annual Conference on Artificial
Intelligence & Ada, November 1988, pp. 3-1 through 3-21.

