
TASK: UR40

CDRL: 012• 0

UR40 - Repository Integrationh
AdaKNET Software
User's Manual
Informal Technical Data

UNISYS

Lfl

Cv~
(0

N I

0 Softw~0are Tecnoy 1o0 Adpa0 Ribe Sstm

STARS-RC-0 121 0/002/00
24 October 1990

I L-E T
9 1N.9 v I i19

/75,ý

REPORT DOCUM'ENTATIOiN PAG E__. 1J05oI00-01

,,,~q WW outa e sun ti. o M. on tau Pa to0W'110 an@6 elpsof*014 t dI" 11= 1 f l opW, OOMa V 101111 Cm0t1"0101 1414"1111`1 1011% s..taOq o111otV Of AN~ 0"t~f 4b144- 01 IN
b mo"1sn:f Ifloorm poo9. III 'Othto Ioslulupig Mel bowrolVf to .tWSINI9101 on *gguartgn lwyotel. ost~ototo e top informatvcn ovgeratoE, one1 Asomems i~in *9hI soFZo* Ir. MettooS, $ Atl 1204 Dowh I* I09 *"It* of loaft~ogew on ft el 111wiforit flouan efqW 07041U). W.,A ng09 1 . DC 2V110so
1. AGNCY USE ONLY (L"eVe blank) 2. Rtt1 OAR DAE3PRY TYPE AND BAMS COVERED6

S. TITLi AND IUBTITLE 35coe 19 . FUNDING NUMBERS
A.Reusability LibraryFramework (RLF)
Ada Knkowl.edge NETwork (Ad&&NET¶) Uguar'st Manual STARS Contract

G.______________________ AFHW)119628-88-D-0031

James J, Solderitsch
Ray Mc Dowel.l1

7. P6RFORMi-N-dYORGANI9ATION NAME(S) AND ADDRESS(ES) B. PEPFORMiNG ORGANIZATION
REPORT NUMBER

Unisys Corporat~ion
12010 Sunrise Valley D~ri~ve GR-7670-1 170(NP)
Reston, VA~ 22091

*. SPONSORINGJMONITORING AGENCY NAMES AND ADDRESS(ES) 10. SPONSORING, MONITORI1NG
AGENCY REPORT NUMBER

Departmnent of the Air Force
Headquarters, Electronic Systems Division (AFSC) 01210 Volume 11
Hanscom AFS, NA 01731-5000

11. SUPPLEMENTARY NOTES
There are two other related RLF reports:

(RLF) AdaTAU (lser's Manual and (RLF) Librarian Software User's Manual

12s. DISTRIBUTION,' AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution in unlimited

13, ABSTRACT (Maximum 200 words)

k*-)AdaKNET (Ada Knowledge NETwork) is the semantic network subsystem of
the RLF. AdaKNZT enables the creation and modification of structured
inheritance networks to represent detailed patterns of information.
The manual outlines the current structure of the AdaIQNET system
and indicates how to make effective use of the available programmatic
interfaces. A sample session description is included along with
an appendix describinzg the basic information structuring primitives
within AdaKNIET. The manual also describes the specification language
used to declare semantic networks for processing by AaMT

14. UBJCT TRMS15. NUMBER OF PAGES
Ada smantc nework45

---Smanic Ntwok' DfintionLanuage(SNL)ý ll:_1I. PRICE CODE

17. SECURITY CLASSIFICATI01 I. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICAON7 20. LIMITATION OF ABSTRACT
OF WdORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR

TASK: UR40
CDRL: 01210

INFORMAL TECHNICAL REPORT

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Repository Integration
AdaKNET Software

User's Manual

STAFLS-RC-0i210/002/00
Publication No. GR-7670-1170(NP)

3 October 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division

12010 Sunrise Valley Drive
Reston, VA. 22091

1 yfti(3 be 99

TASK: U1PR40
CDRL: 01210

INFORMAL TECHNICAL REPORT

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Repository Integration
AdaKNET Software

User's Manual

STARS-RC-01210/002/00
Publication No. GR-7670-1170(NP)

3 October 1990

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division

12010 Sunrise Valley Drive
Reston, VA 22091

PREFACE

This document was prepared by Unisys Defense Systems, Valley Forge Operations, in support
of the Unisys STARS Prime contract under the Repository Integration task (UR40). This
CDRL, 01210, Volume II, is type A005 (Informal Technical Data) and is entitled "AdaKNET
Software User's Manual".

This document has been reviewed and approved by the following Unisys personnel:

UR40 Task Manager: Richard B. Creps

Reviewed by: 64 -
Richlrd E. Creps, Systet Architect (Acting)

Approved by: Aj. & n- -
Hans W. Polzer, ¶ Manager

Acoession For

NTIS GRA&I
DTIC TAB 0
Unannounced 13
Justificatlon

D tribution/

AvailabilityCodes
Avail or

Dist SpeoialIft.

Table of Contents

1. Scope ... I
I.1. Identification .. 1
1.2. Purpose ... 1
1.3. Introduction ... 1
2. Referenced Docum ents ... 3
3. AdaKN ET System Overview ... 4
3.1. AdaKNET Implementation Architecture Description 6
4. Package AdaKNETs .. 9
4.1. Mapping the Conceptual Model to the Implementation .. 9
4.2. Overview of Package AdaKNETs .. . 11
5. AdaKNET Specification Language - SNDL .. 15
6. Using AdaKNET .. . 18
6.1. Installing AdaKNET 18
6.2. Creating AdaKN ET Knowledge Bases .. 18
6.3. Sam ple. Session 20

Appendices

A. Detailed Description of AdaKNET Model Semantics A-I
B. SNDL Syntax and Sum m ary .. B-I

References

Table of Figures

Fig 1. library M odel F ag t .. 5
Figure 2. Ada ET lAyered Abs actions .. 7
Figure 3. AdaKNET Abstraction Depend-mces .. . 9
Figure 4. Conceptualfmplementation Object M apping .. 10
Figure 5. Sample SNDI.. Specification ... 19
Figure 6. AdaKNET Specialization .. A-2
Figure 7. AdaKNET Individuation .. A-3

8Ig e 8. AdaKNET Role ... A-5
Figure 9. AdaKINET I-RoleG ... A-6
Figure 10. AdaKNET M ultiple Inheritance .. A-8
Figure 11. AdaKNET Rt• triction .. A-I0

Figtu e 12. AdaKNET Differentiation ... A-i1

AdaKNET User's Manual 1

1. Scope

This document assumes that the user has a basic understanding of th. Ada language
and wishes to learn how to incorporate knowledge-based capabilities into a larger sys-
tem. This document is not tutorial in nature with regard to the Ada language, nor does it
cover basic material from the field of Artificial Intelligence (AI) whose study led to the
development of the fundamental ideas that are implemented in the system described in
tris manual. The interested reader is referred to one of the many texts on Ada or AT; in
particular, the Ada Language Reference Manual [LRM83] and The Handbook of
Artificial Intelligence, Volume 1 [Barr8 1].

1.1. Identification

This Software User's Manual provides a description of the content and basic operat-
ing procedures of AdaKNET, a subsystem level component of the Reusability Library
Framework (RLF). Other major components of the RLF include AdaTAU and the
Librarian application which are covered in separate user's manuals.

1.2. Purpose

The purpose of AdaKNET is to provide a system for representing structured domain
knowledge. AdaKNET implements a knowledge representation formalism in the struc-
tired inheritance family. As such, it provides a framework for controlled evolution of a
large body of knowledge, where the built-in constraints provided by the formalism help
prevent the expression of meaningless or inconsistent models. In this way, there is a
rough correspondence of the benefits provided by AdaKN'ET to domain modeling that
strong typing provides to software development.

AdaKNET is implemented as layered abstract data types (ADTs), although users of
AdaKNET need only "with" a single package (package AdaKNETs). That is, AdaKNET
provides a programmatic interface to a semantic network model; operations are provided
for creating, saving, restoring, manipulating, and examining the structure of AdaKNET
instances. This manual describes the semantic network model implemented by AdaK-
NET, the overall architecture of AdaKNET (layered abstractions), and provides a
detailed look at the top level AdaKNETs package. Also covered is a description of the
Semantic Network Description Language (SNDL). Finally, a discussion on the pragmat-
ics of installing and using AdaKNET and SNDL is provided.

1.3. Introduction

The remainder of this document is organized as follows. Section 2 lists a few RLF
documents that have particular relevance to this user manual; other references are
included in a bibliography. Section 3 provides an overview of the AdaKNET system.
Included in this discussion is a summary of the model formalism supported by the AdaK-
NET implementation; a brief discussion of the overall architecture of the AdaKNET
implementation is also provided, although users of AdaKNET need only be concerned
with a single package, AdaKNETs. Section 4 provides a more detailed look at the AdaK-
NETs package; a brief synopsis of the operations provided by AdaKNET is provided.
More details on each operation can be found in the actual package specification. Section
5 discusses SNDL, focusing on the language rationale, use, and major concepts. Section

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 2

6 discusses the pragmnatics of installation and use of AdaKNET and SNDL to build
knowledge-based applications in Ada; also included is a transcript of a session using the
interactive AdaKNET browser-editor application. Finally, appendix A provides a
detailed description of the AdaKNET conceptual model; users of AdaKNET should fami-
liarize themselves with this definition. Appendix B provides a detailed definition of
SNDL syntax and semantics (a syntax summary is also included).

0
Reuuability Library Framework AdaKNET 22 Mt2' 1990

AdaKNET User's Manual 3

2. Referenced Documents

In addition to the Ada LRM, and the Al Handbook referenced earlier, the following
RLF documents are useful as references in conjunction with this document. Documents
marked with an asterisk (*) were delivered to the Naval Research Laboratory as part of
the original STARS Foundation contract (number N00014-88-C-2052) that supported the
initial development of the RLF.

(*) Reusability Library Framework AdaKNET/AdaTAU Design Report.

(*) Gadfly User's Manual.
AdaTAU User's Manual.

Librarian User's Manual.

The RLF Librarian: A Reusability Librarian Based on Cooperating Knowledge-
Based Systems [McDowel189].

The Growing of an Organon: A Hybrid Knowledge-Based Technology and Metho-
dology for Software Reuse [Simos88].
Construction of Knowledge-Based Components and Applications in Ada
[Wallnau88].

Constructing Domain-Specific Ada Reuse Libraries [Solderitsch89].

0

ReumbiUty Library Framework AcdaKNET 22 May 199

AdaKNET User's Manual 4

3. AdaKNET System Overview

AdaKN'E is based partly on KL-ONE [Brachman85], and partly on K-NET, a
Unisys-proprietary structured inheritance system. Although we provide a brief summary
of the semantics of the underlying conceptual model implemented by AdaKNET, use of
the AdaKNET ADT will require a more thorough understanding of the sometimes com-
plex semantics of structured inheritance networks; appendix A of this manual provides an
in-depth description of the AdaKNET conceptual model.

The AdKNET implementation described here supports strict specialization (sub-
sumption) semantics, range/value constraints on object attributes (Roles), single and mul-
tiple inheritance of attributes, and the subdivision of attributes (Subroles); the implemen-
tation also distinguishes generic classes of objects (Concepts) from instances of these
classes (Individuals). These features provide sufficient modeling generality to describe a
broad category of domain models for building knowledge-based applications (e.g.
Gadfly, Librarian).

Instances of AdaKNET can be thought of as complex graphs (hence the term
"semantic network"). AdaKNET views such graphs from an abstract data type (ADT)
perspective. More specifically, AdaKNET implements an ADT for a class of data struc-
tures known as heterogeneous, polylithic structures [Booch87]; AdaKNET instances are
composed of collections of component ADTs (heterogeneous), and instances of these
component ADTs can be referenced from various access paths (polylithic).

Although the details of the underlying model may differ among various semantic
network formalisms, they all share some common properties. A semantic network is a
form of knowledge representation; it provides a means of denoting objects and describing
relations that hold among them. The form of the representation can be thought of as a
directed graph: a collection of vertices and edges. Each vertex in the semantic network
denotes an object or a class of objects, and each edge describes a relation between objects
and/or object classes. Typically, such networks support at least two forms of relation-
ships between semantic objects: the specialization relation ("IS-A") and the aggregation
relation ("IS-PART-OF"). A discussion of the need and use of these relations in domain
modeling is extensive in database as well as artificial intelligence literature [Smith77].

The specialization relation indicates that one object class is a subset of another. For
example, the class of objects consisting of all humans is a subset of the class composed
of mammals. In semantic networks, all objects participate in a hierarchy (actually a
semi-lattice, or DAG) of specialization relations between objects; this hierarchy is some-
times referred to as a taxonomy.

The aggregation relation indicates that one object can be considered a component or
part-of another object. For example, a car consists of wheels, doors, and engine, etc.
That is, a ca- is an aggregation of wheels, doors, and engine. The set of aggregation rela-
tions within a semantic network constitutes a subnetwork of the semantic network; not all
objects need participate in this subnetwork. Sometimes the aggregation and specializa-
tion relations are thought of as separate, orthogonal representations of a semantic net-
work. For example, it is common to have applications "walk the specialization hierar-
chy", or "walk the aggregation network."

Specialization and aggregation interact through Inheritance. A specialization of an
object which has aggregate parts will inherit those aggregate parts. Since the

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 5

specialization relation is transitive, inheritance is also transitive. For example, if Ford-
Cars is a specialization of cars, then all Ford-Cars will have wheel, door, and engine
parts. Ford-Cars can, in addition, have parts defined on them that are specific only to
Ford-Cars (and specializations of Ford-Cars).

The vertices of AdaKNET networks are called Concepts. AdaKNET has two kinds
of concepts: Individual Concepts and Generic Concepts. Generic Concepts denote
classes of objects, such as the Generic Concept "REUSABLE-COMPONENT" (see
figure 1). Individual Coricepts denote instances of these classes, such as actual code
bodies stored in a library of software parts (none shown in figure 1).

Generic Concepts are arranged in the generic taxonomy i.e. the specialization
hierarchy. All Generic Concepts participate in the specialization hierarchy. The term

S/ f resctrict

s n lableSubpar restict

.O USA (0

retrct '•,IRUCTURj

Figure 1. Library Model Fragment

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 6

"hierarchy" is used to emphasize the fact that the subnetwork induced by the soecializa-
tion relations is acyclic.

Individuation is a relation which relates generic conceptF to instances of generic
concepts, called Individual Concepts. Individual Concepts may individuate one or more
generic concepts. All Individual Concepts individuate at least one Generic Concept.

Aggregation is represented in AdaKNET by Roles. For example, in figure 1 the
Generic Concept "REUSABLE-STRUCTURE" has Roles denoting properties, such as
whether the reusable structure has manipulable subparts (i.e. is a polylithic data struc-
ture). Roles are inherited through specialization.

Roles convey what aggregation relations exist on Concepts; Rolesets describe the
Role-Range and Role-Type conditions of Roles. Role-Range describes how many parts
are described by an aggregate; for example, a REUSABLE-COMPONENT may perform
zero or more actions of some kind. Role-Type describes what kind of part is described
by an aggregate; for example, the Role-Type for the above mentioned role would be
ACTIONS. AdaKNET has two kinds of Rolesets: Generic Rolesets and
PartcularRolesets; the former describes Roles of Generic Concepts, the latter describes
Roles of Individual Concepts.

Specializations of Generic Concepts inherit Roles; the properties of these inherited
Roles (Role-Range, Role-Type) can be further constrained. For example, the Generic
Concept REUSABLE-MONO-STRUCTURE constrains the Role-Type of the inherited
Role "HasManipulableSubparts" to be FALSE. RoleRanges can likewise be con-
strained. For example, the Generic Concept REUSABLE-STRUCTURE constrains the
Role-Range of the inherited Role "PerformsActions" to be zero (i.e. structures do not
perform actions).

Finally, Roles can be divided into Subroles through Roleset differentiation. Each
Subrole then represents a specialized form of the Superrole; for example, a role "Chil-
dren" might have two subroles "Sons" and "Daughters".

These features of AdaKNET are discussed more thoroughly in Appendix A.

3.1. AdaKNET Implementation Architecture Description

This section describes the overall AdaKNET architecture. Although from the user's
perspective AdaKNET will be viewed as a single abstract data type, in reality this ADT
is designed and implemented as a succession of layered abstractions, with each layer pro-
viding specialized services. This layering is illustrated in figure 2.

The AdaKNETs ADT packages several distinct object types: the top-level AdaK-
NET object type, and several constituent object types. The AdaKNET object type imple-
ments instances of semantic networks; an application may create and manipulate several
semantic networks simultaneously. Each instance of AdaKNET manages collections of
constituent ADTs, for example Generic Concepts, Rolesets, etc. These constituent object
types, as well as some intermediary-level types manipulated by the implementation but
not passed on to users of AdaKNETs, are implemented at various layers in the AdaKNET
system.

The innermost layer is the set of phckages which implement constituent object types
of an AdaKNET network; the object layer introduces the building blocks necessary for

Remblilty Library Frarework AdaKNET 22 May 1990

AdaKNET User's Manual 7

UNIVw SAk vuiatOWSMtqi

ADANBT COMPIOSITES

Figure 2. AdaKNET Layered Abstractions

creating a network. Roughly, each object in the conceptual level definition (e.g. con-
cepts, roles, etc.) has a corresponding object in the object layer. Each object is imple-
mented as an ADT, thus encapsulating the representational details of objects. Operations
provided by these objects include creation, destruction, examination and manipulation of
object statc. Additionally, these abstractions provide primitive collection abstractions
which maintain infoariaion about which object belongs to which AdaKNET instance.

S~The second layer is the Network package, which combines objects into a network.
This layer places an abstraction wrapper around the primitive objects defined at the
object layer, so that the object layer will not be visible to users of the networks layer.

Reuuability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 8

Additionally, the networks layer exports the type Network used by the AdaKNET kernel.
The network layer provides operations to create, modify, and examine the structure of a
network. All operations at this level preserve the structural integrity of the network, e.g.,
al) concepts participate in the taxonomy. The network level maintains sets of relations
between oojects in the object level, such as the specialization and aggregation relations.
Further, the netwcrk level manages the details of saving and loading network instances.

The next layer is the AdaKNET package, which provides the user interface. The
AdaKNET layer packages the structure operations of the network layer into the desired
interface, and ensures that all AdaKNET networks maintain semantic integrity, i.e., sub-
sumption semantics. The modification operations at this level will only make changes to
a network if those changes will result in a subsumption preserving network.

An application that makes use of AdaKNET operations can interface to AdaKNET
at the appropriate abstraction level (indicated by the four complete circles in figure 2).
Many applicationi will use AdaKNET at the AdaKNET kernal level. Some composite
operations as well as a network browser capability are also available to applications.
These are indicated in the outermost concentric circle.

In addition, internal use of AdaKNET has often included the attachment of addi-
tional information (or snat) to network nodes. Networks augmented with such informa-
tion at,; called hybrid networks. This AdaKNET .Stae layer (not depicted in figure 2) is
implemented as a generic package which parameterizes the AdaKNET abstraction to
allow the association of a user-defined state type with AdaKNET constituent objects. In
addition to the basic AdaLNET operations, the AdaKNET_State laycr prov;des opera-
tions for associating and retrieving state from AdaKNET objects. For example, the
Librarian instantiation of this layer associates AdaTAU inferencers with Concepts, The
interested reader should see the Librarian User Manual; hybrid inferencing techniques is
beyond the scope of this manual. A more detailed picture of the AdaKNET package
interconnections (without the hybrid layer) is illustrated in Figure 3.

0
Reusbillty Library Framework ALKNET 22 May 1990

AdaKNET Usr's Manual 9

0
lUniversal Browser.. ..

-ca

•igure 3. AdaKNET Abstraction Dependencies

4. Package AdaKNETs

This section provides an overview of the AdaKNETs package, and the relationship
between this package and the AdaKNET conceptual model dscribed in 'he preceding
section. In the following discussion, tht• plural AdaKN•ETs will reter to the package
name• and ADT (e.g., the AdaKNETs ADT); the singular AdaKNET will refer to
instances of AdaKNETs, as well as to the conceptual model name (i.e. AdaKNET con-
ceptual model).

4.1. Mapping the Conceptual Model to the Implementation

One of the design goals for AdaKNET was to provide as close a match as possible
between the conceptual model supported by AiaKNET and the ADT definitions used to
implement AdaKntell. Our approach has been to malntain this correspofdance via map-
pings from concepdual objects, i.e., those objects defined in the conceptual model, to
implementation objects, i.e., t aose that appear as ADTs in the AdaKNET implementa-
tion. Figure 4 shows the relationship between implementation objects and conceptual

objects.

Resaobflity Library Framework AdaKNET 22 May 1990

AdaKNET Usr's Manual 10

Concentual Objects Implementation Obiects
Generic Concept Generic-Concept
Individual Conept Individualocept
Role Role

Subrole Rolet
Generic Roleset Generic Roleset
Partloular Roleset ParticularRaleset

Irdle _______

Figure 4. Conceptual/lmplementation Object Mapping

Note that not every implementation object (ADT) corresponds to a conceptual
object; some implementation objects simply provide useful wrappers for some informa-
tdon, or hide representation details of some sort. For example, the implementation object
AdaKNET does not correspond to a conceptual object. Additionally, not every concep-
tu.iI object appears as an ADT to AdaKNET application progrmmers; for example,
Iroles are not implemented as ADTs, but rather as a relation. (See appendix A for more
information on AdaKNET's conceptual level.)

Classes of AdaKNET Operations

AdaKNETs partitions its operations into several categories, each of which is sum-
marized:

(1) Construction Operations. These operations manage the creation and destruction
of AdaKNET objects. The form of these operations differs among the different
object types, corresponding to constraints imposed by the AdaKNET implementa-
tion. For example, since AdaKNET enforces strict subsumption, each Generic Con-
cept must participate in the specialization hierarchy. Therefore, no operation is pro-
vided to creae a single Generic Concept instance; rather new instances are returned
as a result of calling a composite operation which creates a Generic Concept, and
links it into the AdKNET taxonomy.

(2) Modification Operations. Once objects have been created, various attributes may
be modified. There is a somewhat difficult distinction drawn between modification
of the AdaKNET object itself, and modifications to the state of component ADTs
managed by AdaKCNET instances (e.g., Generic Concept ADT). For example, we
view name to be an attribute of the Generic Concept ADT - and hence view
modification of concept names as a modification of the GenericConcept instances.

tA superrole I subrole relation disthnguehdes roies from subroln In the Implementation.
$Iroles are represented as 3-ary relations.

Reumbility Library Framework AdaKNET 22 May 1990

AdaKNE7 User's Manual 11

On the other hand, the links between concepts, e.g., roles, are viewed as attributes of
the AdaKNEr instance and not of the Generic Concept objects which participate in
the aggregation hierarchy. Therefore, adding new roles or restricting existing roles
are viewed as AdaKNET modification operations, not GenericConcept
modification operations. Describing some operations as AdaKNET modifiers, and
other operations as constituent object modifiers represents an organizational bias to
impose additional order on the somewhat complex set of AdaKNET operations;
however, other organizational schemes are possible since most operations take both
an AdaKNET and constituent object as parameters.

(3) Query Operations. These operations return information about the structure of
AdaKNET instances, e.g., "what are the superconcepts of concept X?". These are
the operations that will be used by applications which inference over AdaKNET
instances. As with modification operations, the categorization of query operations
as AdaKNET instance or constituent ADT queries reflects a package-level organiza-
tional bias. For example, although adding superconcept links to a GenericConcept
instance is considered an AdaKNET modification operation, retrieving this informa-
tion is considered a GenericConcept query.

(4) Predicates. These operations are boolean functions which act in two guises: as
basic comparators e.g., "are these two objects the same (EQUAL) object?", and as
probes e.g., "does object X exist in AdaKNET instance Y?". Probes can be used to
preemptively test for conditions which would raise exceptions. Comparators are
used to insulate application programs from distinctions between copy and share
semantics for assignment. For example, AdaKNET Generic-Concepts are actually
implemented as pointers to pointers to a low-level ADT implementation of
GenericConcepts; in some cases objects may be EQUAL, but not "=" (Ada
predefined equality). User-defined equality hides such details.

4.2. Overview of Package AdaKNETs

This section presents a list of operations provided to create, manipulate, and exam-
ine instances of AdaKNET. These operations are partitioned into construction,
modification, examination, and predicate categories. For each operation, the subprogram
kind is indicated (function or procedure), with return values indicated for each function.
Actual parameter profiles can be found in the AdaKNET package specification.
NOTE #1: The operations described below are found in the AdaKNETs package - this
package defines the kernel operations on AdaKNET instances. An additional package,
AdaKNETComposites, provides a set of operations which are implemented in terms of
kernel AdaKNETs. See section 3.1 (and the source code) for more information on these
operations.

NOTE #2: The AdaKNET code uses the AdaNET spelling; we discovered the name
"AdaNET" was copyrighted after a significant portion of the system had been imple-
mented. Not all code has been revised to change references from AdaNET to AdaKNET
at the time this manual is being written.

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 12

Construction Operations
The "major" objects manipulated by the AdaKNETs ADT are: Ada T,

GenericConcept, IndividualConcept, and Role. Construction operations are provided
for each of these object types. Other objects, such as Particular_.Roleset,
GenericRoleset, RolesetRange, etc., are essentially "wrappers" for some useful infor-
mation. For example, rolesets are records which pair roles and concepts, although this
implementation decision is transparent to the interface. These ancillary objects are
created as results of examination operations, but can be thought to have lifetimes only
during execution of the program.

-- the following operations provide for AdaKNET persistence:
function CreateAdaNET return AdaNET
function OpenAdaNET return AdaNET
procedure SaveAdaNET
procedure Dest royAdaNET
procedure Close_AdaNET

-- the following operations add information to AdaKNET instances, and
-- return constituent objects created by the operation:

procedure AddGenericConcept
procedure AddIndividualConcept
procedure Add-Role
procedure Add-Partitions
procedure AddSubsets

-- the following operations remove information from AdaKNET instances, and
-- also destroy constituent objects:

procedure RemoveGenericConcept
procedure RemoveIndividualConcept
procedure RemoveRole
procedure Remove_Partitions
procedure RemoveSubsets

Modification Operations

The modification operations permit changes to object attributes, such as the name
attribute of concepts and roles. Other attributes conceptually belong to the AdaKNET
object itself, such as the relationships that exist between constituent objects, e.g., the set
of specialization relations is an attribute of AdaKNET.

-- the following operations add semantic relations to AdaKNET instances:

procedure AddSpecializationLink
procedure AddIndividuationLink
procedure AddFiller

-- the following operations remove semantic relations from AdaKNET
-- instances:

procedure RemoveSpecializationLink
procedure Remove_IndividuationLink
procedure RemoveFiller

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET Ur's Manual 13

-- the following operations modify attributes of constituent objects;
-- Rename is overloaded for concepts and roles.

procedure Rename
procedure Change_Ranges
procedure RemoveRangeRestrictions
procedure ChangeTypes
procedure RemoveTypeRestrictions

Examinadon Operations
Examination operations are side-effect free queries on the structure of the network.

This set of operations is sufficient to support efficient inferencing on AdaKNET
instances. Two flavors of examination are supported: examination of AdaKNET attri-
butes, which yields random access to constituent objects (e.g., "return the generic con-
cept object whose name is 'foo"'), and navigational access (e.g., "return the generic con-
cept Y which is the superconcept of concept X").

-- the following operations examine attributes of P.daKNET instances, and
-- perform global queries.

function Name return AdaNET ObjectNameType
function Root_Concept return GenericConcept
function Generic_Concept_byName return Generic-Concept
function Individual_ConceptbyName return IndividualConcept
function RolesbyName return RoleSets.Set

-- the following operations examine attributes of AdaKNET generic and
-- individual concepts:

function Name return AdaNET ObjectNameType
function Superconcepts return Generic_ConceptSets.Set
function Generic Subconcepts return Generic ConceptSets.Set
function IndividualSubconcepts return GenericConceptSets.Set
function Rolesets return Generic RolesetSets.Set
function Rolesets return ParticularRolesetSets.Set
function GenericFillerTypeof return Generic Roleset Sets.Set
function Particular FillerTypeof return ParticularRolesetSets.Set
function Filler-of return ParticularRolesetSets.Set

-- the following operations examine attributes of Roles:

function Name return AdaNET ObjectNameType
function Generic Originator return GenericConcept
function Individual Originator return IndividualConcept
function AssociatedRoleset return Generic Concept
function AssociatedRoleset return IndividualConcept
function Superrole return Role
function PartitionSubroles return RoleSets.Set;
function Subset Subroles return RoleSets.Set;

-- the following operations examine attributes of Rolesets:

function Owner return GenericConcept
function Owner return IndividualConcept
function AssociatedRole return Role

Reusability Library Framework AdaKNET 22 May 1990

AdevKNET User's Manual 14

function Range Restriction return RolesetRange
function Filler Type return Generic_Concept
function Fillers return Individual Concept_Sets.Set

Predicate Operations

Predicates are boolean functions used as probes, i.e., to preempt the role of excep-
tions as a means of directing program control flow, and as simple comparators i.e.,
"Equal".

-- the followLng operations return Boolean results; Equal is overloaded for
-- all object types.

function Equal return Boolean
function Network-Exists return Boolean
function Concept-Exists return Boolean
function Role Exists return Boolean
function RolesetExists return Boolean
function Is Range Restricting return Boolean
function Is TypeRestricting return Boolean
function Is Range Restricted return Boolean
function Is TypeRestricted return Boolean

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 15

5. AdaKNET Specification ianguage - SNDL
SNDL is the mechanism of choice for instantiating AdaKNET knowledge bases.

Although it is possible to simply write a program which instantiates AdaKNET via a
sequence of calls to the AdaKNET ADT package, this mechanism is not always the most
conveniernt (or the most descriptive, in a declarative sense) approach. We have defined a
Semantic Network Description Language (SNDL) for describing AdaKNET instances in
a high-level ron-procedurral manner.

Besides providing a convenient and readily modifiabie medium for defining models,
SNDL also provides services supportive of the reuse of knowledge bases as components
in their own right. Since SNDL descriptions are ASCH text, AdaKNET instances
described via SNDL can be transported "as is" to any site, regardless of compiler. Also,
as will be seen, the language design of SNDL contains features for modularization of
knowledge bases; this will be important in the reuse of knowledge bases via amalgama-
tion of small, special-ptupose knowledge bases. For example, a fragment of the Gadfly
knowledge base describing Ada data types could be usefully integrated in knowledge
bases of tools sensitive to Ada type semantics.

Language Goals
First and foremost, SNDL must facilitate description of AdaKNET instances. Addi-

tionally, such specifications must be easily maintainable. The former argues for a terse,
concise syntax for specifying AdaKNET objects and relationships. The latter argues for
sufficient "syntax" for spotlighting potentially subtle interdependencies between AdaK-
NET objects and relations.

The solution we have chosen attempts to make use of some of the features of Ada
syntax, applied in a parallel fashion to semantic networks. The hope is that the syntax
added for enhanced maintainability will not render networks difficult or clumsy to
specify or examine. The following subsections describe the network structure-forming
syntax. A more thorough exposition, including a complete description of the abstract
syntax of SNDL, along with semantic annotations, is located in appendix B of this report.

Basic Concepts
SNDL is a language which supports definition of AdaKNET instances, and has syn-

tactic constructs designed to highlight the mapping of the language to the AdaKNET
conceptual level deidltion.

One important feature of SNDL which greatly augments the convenience of writing
and reading SNDL specifications is that there is no need to define network structures
before they are referred to. For example, a generic concept can appear as the filler ype
for a roleset before the generic concept is defined in the specification. In previous experi-
ence with construction of semantic network models by interactive editors, the required
order of creation has proved somewhat non-intuitive (e.g., the specialization hierarchy
must be built top-down, but roles and fillers must be added bottom-up). Relaxing the
requirement of definition before use in the SNDL language definition should provide
several advantages. Knowledge base definitions can be organized in the most easily
comprehensible way for the modeler. Specifications can be modularized more easily,
while preserving the overall integrity checking on the model. For example, a concept

Reumbilty Library Framework AdaKNET 22 May 1990

AdaKNET User's Mannal 16

definition can include contiguous definition of the local and restricted roles of the con-
cept; this would not be possible with a definition-before-use scheme. Later extensions to
language processing tools could provide "pretty-printed" transformations of the models
in various orders of presentation (e.g., depth-first, breadth-first).

The chosen form of the SNDL language provided some interesting implementation
challenges. It requires a fairly complex translator implementation, since a single-pass
translation will not be able to do adequate consistency checkbig. Here, our use of
SSAGS, a Unisys-proprietary meta-generation system based on ordered attribute gram-
mars [Payton82], is a key element to the feasibility of our approach. SNDL will evolve
as experience shows what organizing schemes are most appropriate for specifying
knowledge bases. A major advantage of our approach is that we are not committing to a
particular organizational approach, but rather implementing a flexible specification
language. Modelers will be able to use this language, not only to rapidly prototype
knowledge bases, but to explore different definitional strategies as well. This methodo-
logical work is an essential prerequisite to the use of knowledge base specifications as
reusable components in their own right.

Networks

AdaKNET supports the simultaneous existence of many individual knovledge
bases (AdaKNET instantiations). Thus, SNDL provides a linguistic mechanism, Net-
work, for encapsulating the description of an AdaKNET instance within a single
language construct. The general form of AdaKNET descriptions is:

network Sample is
<Semantic Object/Relation Definitions>

end Sample;

The SNDL Network construct roughly parallels the Ada Package construct. Both
describe a named unit which encapsulates mlated information. SNDL also includes an
Amalgamation construct which roughly parallels the Ada with construct; SNDL amalga-
mation supports (a limited form of) sharing of knowledge base partitions among several
AdaKNET instances.

Note: Amalgamation is not implemented in the current release.

Concepts and Roles
The principal objects of AdaKNET are Concepts, which come in two flavors: Gen-

eric Concepts and Individual Concepts. These classes of objects are described via con-
cept and individual structures, respectivelIy, which are syntactic analogs of Ada record
types. The concept and individial syntax indicates the position of a concept in the net-
work via its superconcepts and provides a mechanism for encapsulating any local roles
and constraints on inherited roles at the concept. The general form of object definitions
is:

Rembility Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 17

concept Sample-Concept (<superconcepts>) is
<local roles and restrictions>

end concept ;

individual SampleIndividual (<superconcepts>) is
<local roles and restrictions>

end Individual ;

A concept may be distinguished from its superconcepts by restrictions on inherited
roles and by local roles introduced at the concept. Such local information, as well as
roleset fillers for individuals, are described as sub-structures of AdaKNET objects. A
bracketing syntax is also used for these sub-structures in SNDL:

"* Aggregation via local roles...end local.

"* Restriction via restricted roles.. .end restricted.

"* Differentiation via dferentiated roles...end differentiated.

"* Satisfaction via fillers ...endfillers

SNDL Summary

SNDL provides a textual description of AdaKNET instances. A two-way transla-
tion system is provided to generate in-memory AdaKNET instances from SNDL descrip-
tions, and to generate SNDL descriptions from in-memory AdaKNET instances. This
alternative route to AdaKNET persistence (to the data structure level representation of
AdaKNET instances resulting from "save" operations) provides a level of freedom for
knowledge engineers to devise their own network configuration management policies,
and explore rease and amalgamation of network instances.

SNDL is designed to provide an intuitive mapping to the AdaILNET conceptual
definition, and to highlight potentially subtle network semantics (e.g. roleset restriction
and inheritance). This, we hope, will facilitate easier maintenance of potentially large
and complex semantic networks descriptions.

A more complete definition of SNDL syntax and semantics is included in appendix
B of tWis report.

Reuabilty Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 18

6. Using AdaKNET
This section describes special steps that must be taken to install AdaKNET on a new

host, how to create an AdaKNET knowledge base, and how to use the browser-editor
application to examine and manipulate the knowledge base. Readers interested in a more
in-depth discussion of semantic network inferencing (AdaKNET inferencing in particu-
lar) should consult the Gadfly user's manual, the Gadfly design report, and the
AdaKNET/AdaTAU design report.

6.1. Installing AdaKNET

Detailed installation instructions are included in the Version Description Document
(VDD) accompanying the source delivery of the Reusability Library Framework (RLF),
including compilation order and identification of host installation dependencies. Host
installation dependencies have been isolated to the NetworkConstants package. The
AdaKNET data storage model hides storage and retrieval of data files in an effort to ease
later migration to relational database technology; the Network-Constants package
defines the location where AdaKNET will store its data files. In the current version of
AdaKNET, UNIX environment variables enable the user to specify the file system loca-
tions of RLF knowledge bases. The VDD discusses how to make use of this RLF
feature.

6.2. Creating AdaKNET Knowledge Bases

AdaKNET applications require the existence of knowledge bases. These
knowledge bases can be created interactively using the browser editor, they may be
created programnmatically as sequences of calls to the AdaKNET package, or they may be
created using the SNDL processor. This section describes how to use the SNDL proces-
sor.

Use a text editor to prepare a SNDL specification. A complete syntax for SNDL is
included in appendix B; however, the model illustrated in figure 5 will be used in the
sample session later in this manual. Naturally, the purpose of this model is simply to
familiarize you with the SNDL processor, more elaborate examples are included with the
RLF delivery.

Once the specification has been prepared, it is used as input to the SNDL program
generator. The output of SNDL will be a program which, when executed, will initialize
an instance of AdaKNET as described in the SNDL specification. To execute SNDL on
UNIX systems (assuming the file edited is called "messages.txt", and the SNDL proces-
sor is built and called "sndl") enter the following command:

sndl < messages.txt

You should get as a result the following messages:

Parsing input.
Parsing completed successfully.
Entering attribute evaluation phase.
Exiting attribute evaluation phase.
Entering program generation phase.

Reuambility Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 19

network MESSAGES is

root concept THING is end root concept;

concept MESSAGE (ThING) is
local roles

SENDDATE (1 .. 1) of DATE;
RECEIVE-DATE (1.. 1) of DATE;
SENDER (1 .. 1) of PERSON;
RECIPIENT (1 .. infinity) of PERSON;
BODY (1.. 1) of TEXT;

end local;
end concept;

concept STARFLEETMESSAGE (MESSAGE) is
restricted roles

SENDER (1.. 1) of STARFLEET_COMMANDER;
end restricted;

* end concept;

-- the following concepts are "stubs".

concept DATE (THING) is end concept;
concept PERSON (THING) is end concept;
concept STARFLEETCOMMANDER (PERSON) is end concept;
concept TEXT (THING) is end concept;

end MESSAGES;

Figure 5. Sample SNDL Specification

The result of this successful execution will be the generation of an Ada program
named "sndlprog.a". Examination of this program will reveal that the SNDL translator
has produced an AdaKNET application program to instantiate the network defined by
messages.txt. Compile, link, and execute this program to instantiate the network. Note
that before executing the program, the UNIX environment variable RLFLIBRARIES
must be set to the pathname of the directory that is to contain the network knowledge
base (cf. the RLF Version Description Document for additional information on RLF use
of environment variables). AdaKNET will initialize an AdaKNET instance, and save the
instance in a directory that was established when AdaKNET was installed. The created

Rembmty Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 20

instance can be retrieved by executing an "OpenAdaNET" operation in the AdaKNETs
package; the name of the network to be opened is the name specificed in the SNDL
descriptions network name. In the next section instructions on using the browser-editor
to examine and manipulate the messages network will be provided.

SNDL Diagnostics
There are various ways SNDL specification errors can be detected. First, there are

SNDL-time errors (errors caught by the SNDL processor). For example, in the messages
description, remove the concept definition for starfleetcommander. Executing the
SNDL command as above will produce:

Parsing input.
Parsing completed successfully.
Entering attribute evaluation phase.
Error: Value Restriction: starfleetcommander Undefined
Exiting attribute evaluation phase.
Entering program generation phase.
SNDL Specification errors -- no code generated

Other errors may not be detected by SNDL, in particular errors which deal with the
subtleties of range restriction semantics. These errors will be caught at run-time when
the SNDL-generated program is executed. Although SNDL will detect simple errors, it
will not detect all errors. However, AdaKNET will guarantee that only subsumption-
preserving networks will be instantiated.

6.3. Sample Session
In this section we provide an annotated transcript from a session using the interac-

tive AdaKNET browser-editor. The browser-editor is an AdaKNET application
delivered with AdaKNET; the Version Description Document provides instructions on
building the browser-editor. In this session, we examine arid modify the knowledge base
created from the "message.txt" SNDL file illustrated, above. Annotations will appear in
italics, on lines beginning with Ada-style "--" comments.

% browsereditor
What do you want the network name to be called?
(To abort, type '*abort*').
> MESSAGES

Positioned at--> Thing
Parents: *none*
Children:

MESSAGE
DATE
PERSON
TEXT

Individuations: *none*

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 21

40 Generic Rolesets: *none*

-- We wish to create a new concept to capture the notion of secret
-. communication between starflect captains only, using specially
-- encrypted messages.

What kind of command do you want?

1. Aggregation Network Display Commands
2. Specialization Hierarchy Display Commands
3. Editing Commands
4. Move within Structure
5. Exit the Browser

Enter number of desired command <CR>: 4

-- Commands may present a menu of other commands. In the following
-- dialogue, we will display entire menus when they are first presented;
-- thereafter we will only dislay options of interest, with ellipses "..."

-- used to show where other commands have been suppressed.

concept> STARFLEET_MESSAGE

-- The concept the browser is 'focuved" on is displayed after
-- each command:

Positioned at--> STARFLEET_MESSAGE
Parents:

MESSAGE
Children: *none*
Individuations: *none*
Genaric Rolesets:

BODY(L.. 1) of TEXT;
RECEIVEDATE(1.. 1) of DATE;
RECIPIENT(1..infinity) of PERSON;
SENDER(1.. l) of STARFLEET-COMMANDER;
SEND_DATE(1.. 1) of DATE;

What kind of command do you want?

3. Editing Commands

Enter number of desired command <CR>: 3

-- First we create a specialization of TEXT to capture ENCRYPTION idea:

Reumblilty Library Framework AdaKNET 22 May 1990

AdeKNET Uer's Mauual 22

What do you want to do?

-- The following is a list of interactive editing comwnands:

1. add generic concept
2. add individual concept
3. add child
4. add individuation
5. add role
6. add subrole
7. restrict ro!e
8. remove child
9. remove individuation
10. remove role
11. rename current concept
12. rename role of this concept

Enter number of desired command <CR>: 1

What do you went the new concept to be called?
(To abort, type '*abort*').
> ENCRYPTEDTEXT
parent name> TEXT

ENCRYPIED. TEXT has been installed in the network.

Positioned at--> STARFLEETMESSAGE
Parents:

WE•SSAGE
Children: *none*
Indviduations: lononc*
Generic Roleses:

BODY(!. ') of TEXT;
RECEIVEDATE(I.. 1) of DATE;
RECIPIENT(1..infinity) of PERSON;
SENDER(.• 1 of STARFLEETCOMMANDER;
SENDDATE(1.. 1) nf DATE;

What kind of comm~and do you want?

3. Editing Commands

Enter number of desired command <CR>: 3

-- Now we create the specialization of S7IARFLEETMESSAGE dcsired:

Reusablilty Library Framework AdaKNET 73 Mey 1990

AdaKNET User's Manual 23

What do you want to do?

3. add child

Enter number of desired command <CR>: 3

What do you want the new child to be called?
(To abort, type '*abot*').
> SECRETSTAR.LEEF_..MESSAGE
SECRETSTARF _EET-MESSAGE has been installed in the network.

Positioned at--> STARFLEETMIESSAGE
Parents:

MESSAGE
CMildren:

SECRETSTARFLEETr MESSAGE
Individuations: *none*
Generic Rolesets"

BODY(1..1) of TEXT;
RECEIVEDATE(1.. 1) of DATE;
RECIPIENT(1.oinfinity) of PERSON;
SENDER(I.. 1) of STARFLEETCOMMANDER;
SEND_DATE(I..l) of DATE;

What kind of command do you want?

-- Now we move to the new concept and restrict some inherited roles:

4. Move within Structure

Enter number of desired command <CR>: 4

concept> SECRETSTARFLEET-MESSAGE

Positioned at--> SECRETSTARFLEET.MESSAGE
Parents:

STARFLEETMESSAGE
Children: *none*
Individuations: *none*
Generic Rolesets:

BODY(1..l) of TEXT;
RECEWEDATE(1..1) of DATE;
RECIPIENT(Linflnity) of PERSON;
SENDERi. I.. 1) of STARPLEETCOMMANDER;

Reumsbility Llbrzry Framework AdaKNET 22 May 1990

AdaKNET User's Manual 24

SEND_ DATE(1..1) of DATE;

What kind of command do you want?

3. Editing Commands

Enter number of desired command <CR>: 3

What do you want to do?

7. rcs'rict role

Enter number of desired command <CR>: 7

Which rolesec?

-- All of SECRET STARFLEET MESSAGE's rolesets are displayed:

1. SENDDATE
2. RECEIVE-DATE
3. SENDER
4. RECIPIENT
5. BODY
6. *** Abort This Menu ***

Entr number of desired command <CR>: 5

Do you want to restrict the range? n

Do you want to restrict the filler type? y

current type: TEXT
new type> ENCRYPTEDTEXT

BODY has been rstricted.

Positioned at--> SECRETSTARFLEET._MESSAGE
Parents:

STARFLEETMESSAGE
Children: *none*
Individuations: *none*
Generic Rolesets:

BODY(I..1) of ENCRYPTFD_TEXT;
RE(CWE..DATE(1..l) of DATE;

Re-sablifty Librdry Framework AdaKNET 22 May 1990

AdaKNET User's Manual 25

RECIPIENT(L..infinity) of PERSON;
SENDER(1.. l) of STARFLEETCOMMANDER;
SENDDATE(L..1) of DATE;

-- Note the change to the BODY role (above)

What kind of command do you want?

-- Restrict the RECIPIENT role to be for captains eyes only

3. Editing Commands

Enter number of desired command <CR>: 3

What do you want to do?

7. restrict role

Enter number of desired command <CR>: 7

Which roleset?

1. SENDDATE
2. RECEIVEDATE
3. SENDER
4. RECIPIENT
5. BODY
6. *** Abort This Menu *

Enter number of desired command <CR>: 4

Do you want to restrict the range? n

Do you want to restrict the filler type? y

current type: PERSON
new type> STARLEELCOMMANDER

RECIPIENT has been restricted.

Positioned at--> SECRETSTARFLEETMESSAGE
Parents:

STARFLEET-_ESSAGE
Children: *none*
Individuations: *none*

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual 26

Generic Rolesets:
BODY(1.. 1) of ENCRYPTED-TEXT;
RECEIVE_.DATE(1.. 1) of DATE;
RECIPIENT(1..infinity) of STARFLEETCOMMANDER;
SENDER(1.. 1) of STARFLEETCOMMANDER;
SENDDATE(l..1) of DATE;

What kind of command do you want?

5. Exit the Browser

Enter number of desired command <CR>: 5

What do you want to do?

1. Destroy this network.
2. Exit - ignore changes from this session.
3. Exit - save changes.
4. Resume editing.

Enter number of desired command <CR>: 3

Exiting...

The above session shows how existing networks may be modified interactively. In
general, it is far easier to use SNDL to create large, complex models, while the browser-
editor is sufficient for small models like the one illustrated here.

Finally, note that a reverse translator is also provided which allows AdaKNET
instances to be modified interactively, and then returned to SNDL form for archiving,
revision control, etc.

Reuability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual A-1

APPENDIX A: Detailed Description of AdaKNET Model Semantics

AdaKNET is a knowledge representation formalism based on KL-ONE [Brach-
man85]. Other examples of representation systems in this family are NIKL
(Kaczmarek86] and KNET [Freeman83, Searls90]. AdaKNET provides its user the abil-
ity to describe a domain by creating a model of that domain in AdaKNET, while
AdaKNET's structure enforces certain consistencies between the components of that
model.

Generic Concepts

In AdaKNET, the principal objects are structured conceptual objects, or concepts.
AdaKNET supports two types of concepts: generic concepts and individual concepts. A
generic concept models a category of things, such as the class of all humans or the class
of all messages. An individual concept represents one particular thing; for instance, John
Doe represents a specific human, and "my message of December 11" represents a specific
message. Thus, generic concepts are roughly equivalent to "classes" in object-oriented
systems, while individual concepts are roughly equivalent to "instances". For the sake of
simplicity, no two concepts may have the same name.

Specialization

Generic concepts in AdaKNET are organized into a specialization hierarchy. One
concept specializes another if the first concept represents a subset of the category
described by the second concept. A sample specialization hierarchy is shown in figure 6.
We see that the concept MAMMAL is defined in terms of ANIMAL, that is, MAMMAL
specializes ANIMAL Conversely, we say the concept ANIMAL subwumes the concept
MAMMAL. The subsuming concepts are called superconcepts of the subsumed con-
cepts, and the subsumed concepts are called subconcepts of the subsuming concepts.
Because MAMMAL is directly linked to ANIMAL, we further say that ANIMAL and
MAMMAL are in a parent/child relationship.

Specialization and subsumption are acyclic and transitive relations. So, in figure 6,
HUMANs are a kind of ANIMAL, as well as a kind of MAMMAL. Specialization and
subsumption are also many-to-many relations, that is, a concept may have multiple
parents and children.

Individuation

Each individual concept in AdaKNET is an instance of some generic concept(s),
that is, it individuates one or more generic concepts. Figure 7 illustrates individuation.
Here JOHN-DOE individuates MAN. Individuation is preserved by subsumption, so that
JOHN-DOE implicitiy individuates HUMAN. In cases where it is important to distin-
guish between explicit and implicit individuation, we will add the term direct or indirect
to the description; e.g., JOHN-DOE directly individuates MAN and indirectly individu-
ates HUMAN.

Individuation is also a many-to-many relation; a generic concept may be directly
individuated by several individual concepts, and an individual may directly individuate
several generic concepts.

Reumablilty Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual A-2

THING

PLANT ANIMAL R

•NMALE AL AM FISH

MAN WOMAN"

Figure 6. AdaKNET Specialization

S
Reumblilty Library Frameswork AdaKNET 22 May 1990

AdsKN•T Usr's Manual A-3

ANIMAL

MALE- MMA
ANIMAL

HUMAN

MAN

JOHN-
DOE

Figure 7. AdaKNET lndividuafion

Roles

Roles define the structure and attributes of concepts. For instance, a human has
components such as a head, a torso, arms, and legs, and has attributes such as height,
weight, and gender. Such attributes are represented in AdaKNET by associating roles

Reumbllity Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual A.4

with a concept. For example, a concept representing humans might include roles for
height, weight, eye-color, etc.

Roles in AdaKNET serve either of two purposes: to indicate the general types of
things that satisfy a given attribute or to specify the exact thing (the "filler", as described
later) that instantiates ("satisfies", as described later) a given attribute for an individual
concept. The distinction between these two is discussed in the following excerpt from
[Brachman85]:

This difference Is motivated essentially by the "attributive/referential" distinction in
the philosophy of language. Imagine a situation in which an alligapor's tail has fal-
len off. We might remark, "The alligator's tail lay wriggling on the ground." Or,
we might say something like, "Don't worry, the alligator's tail will grow back
again." The "tails" talked about must be different in the two cases -- in the first, we
are referring to the previous filler, the actual piece of protoplasm that used to be the
alligator's tail. In the second, because the alligator's tail will not reattach itself to
the alligator, we must mean something else by "alligator's tail." We are in fact talk-
ing in a general way about anything that will eventually play the role of "tail" for
the alligator.

Rolesers =re used to indicate the general, attributive flavor of roles; Iroles are used to
indicate the specific, referential flavor of roles.

Rolesets

Rolesets are templates that identify and describe what type of thing the role's fillers
should be (e.g. the height of a human is a length) and how many fillers it should have
"(e.g. a human has two legs). Figure 8 illustrates the notion of roleset and the associated
graphical conventions. Ila this figure, the concept MESSAGE has five rolesets which
describe the attributes all messages share. For example, every message has a date on
which it was sent (corresponding to the roleset Send-Date) and a date on which it was
received (corresponding to the roleset Receive-Date).

The type or value restriction of a role's fillers is specified by a generic concept asso-
ciated with the roleset. In figure 8, the roleset Sender has type PERSON, indicating that
senders of messages must be persons. Individuals which fill the sender roleset must
therefore be individuals of type person, or be individuals of some subconcepts (directly
or indirectly) of type person.

The cardinality of role fillers is specified by a roleset's range restriction (or, simply
range). A range restriction consists of a lower and an upper bound on the number of
fillers the role is allowed. If the lower and upper bounds of a roleset range are equal, we
say the role has been converged. INFINITY as an upper bound indicates that an unlim-
ited number of fillers are possible. A message, as defined in figure 8, has exactly one
"send date" (the Send-Date role has been converged to "1"), while a message may have
one or more recipients.

SdaKNET distinguishes between two kinds of rolesets: generic rolesets and partic-

ular rolesets. Generic rolesets are owned by generic concepts, while particular rolesets
are owned by individual concepts.

RmabWty Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual A.5

Because daReTcnyalospriculare roeest eflebt we i llrms

beiniidalcnp s

holes ardeitdbsoiboewtlikcoetigheo ininidulth
floler, andte usaifed paticular hle speifi asillutaeds in Figues9. Ino thirsen textample John-

Dioean ipsbtendiduaione ofwPerso, stishoefies ,an the Ripientiur roleo tet bindividual,
Becas AdGK-ET InlyaN~ anlw individualmayrifymn rolesob ild (it owe. cand patiipater ins
moe thivdat one roept.

MESS A TE-I MESAG TdKEa niiulmystsymn oEXTie a ariiae

mor tht oe roe). vea

The filler of an individual's role must adhere to the roleset's restrictions; the irole
specifying this filler is then said to sad il the roleset. The satisfaction criteria are:
(1) The hrole's filler must be an individual concept that individuates the type of the

roleset (either directly or indirectly).

Remblity Library Framework AdaKNET 22 Ray 1990

AdaKNET User's Manual A-6

(2) For any individual concept, the number of iroles which satisfy a roleset cannot
exceed the upper bound of the roleset's range.

S~~Send~ate Bd

S(11 1)

Ro.ceiveDate iSne

I in

satisfies

Figure 9. AdaKNET I-Roles

Reuability Library Fratmework AdzKNET 22 May 1990

AdaKNET User's Manual A-7

Inheritance

In AdaKNET, a subsumed concept inherits the roles of its superconcepts; that is,
each role of the superconcept is also a role of the subconcept. Herein lies the power of
specialization: to define a generic concept, one only needs to specify a concept's parents
and that information which distinguishes the concept from its parents. Such distinguish-
ing information may be new roles introduced at the subconcept (locally-defined roles), or
further restrictions or differentiations on roles that are inherited. (Differentiations and
restrictions are discussed in a later section.) The semantics of the subsumption relation is,
essentially, that any individual of the subsumed concept is also an individual of the sub-
suming concept. For this to be true, subsuming concepts can only strengthen the restric-
tions of inherited roles. This Potion of subunmption preserving semantics is central to
understanding what constitutts legal AdaKNET models.

An individual concept also inherits the generic rolesets of the generic concepts it
individuates; these generic rolesets are inherited as particular rolesets. This is one of two
ways particular rolesets can be introduced at individual concepts (differentiation is the
other way). In fact, this is the only way that particular rolesets are created. No new roles
may be introduced at an individual concept; all roles must correspond to a role of one of
the subsuming generic concepts. As with specialization, further restrictions or differen-
tiations may be put on inherited rolesets.

Multiple Inheritance

AdaKNET allows a generic concept to specialize more than one superconcept and
an individual concept to individuate more than one generic concept. This allows a con-
cept to inherit the roles of all of its parents (specialized concepts or individuated con-
cepts). When the parents have non-overlapping sets of roles, multiple inheritance works
in the same way as single inheritance. In Figure 10, TOP-SECRI7T-MESSAGE inherits
the role Key from ENCRYPTED-MESSAGE and the role Network from NETWORK-
MESSAGE in the normal fashion. (Note that TOP-SECRET-MESSAGE fw-the" restricts
the type of the role Network.)

If some parents share a role which descends from a common ancestor (i.e. there
exists a single concept which subsumes the parents and from which the parents inherit
the role), the role is inherited with the conjunction of the parents' restrictions on the role.
The role's range must be the largest possible range that falls within all the parents'
ranges for the role. TOP-SECRET-MESSAGE's inheritance of Recipicat from all three
of its parents illustrates this; the conjunction of the parent ranges for this role is (1,1).
Similarly, the role's type must be the same as or subsumed by all of the parnts' types for
the role. Thus, Sender has SECRET-AGENT as its type in TOP-SECRET-MESSAGE.
If a range or type meeting these criteria does not exist, the inheritance is not possible
without violating subsumption, and the specialization is not allowed.

Any parent roles which have the same name but do not descend from a common
ancestor are distinct roles. In order for these roles to be inherited by a single concept, the
name conflict must be resolved by renaming. For example, if NETWORK-MESSAGE's
role NetworkMethod were named Method, its name would conflict with ENCRYPTED-
MESSAGE's role Method. In this case, TOP-SECRET-MESSAGE would not be able to
be a child of both NETWORK-MESSAGE and ENCRYPTED-MESSAGE until one of

Reuability Library Framework AdaKNET 22 May 1990

AdANET Unrus Manuial A-8

Newr0eoI

P OTC5 ~ T aleC -

Figure v0 b&aE Mutil Iertne

R o l a ec
t R e t r c t o

Retab tyLbayFmworke MBK T2 ay19

AdaKNET Uer's Manual A.9

specialization and Individuation relations. Since types and ranges constitute necessary
conditions on fillers, (e.g. each MESSAGE must have at least one Sender, and each
Sender must be a PERSON), this means that these conditions may not be weakened by
roleset restriction. Thus, one may restrict an inherited roleset's range to be a smaller
interval than the range of the parent's roleset, and/or one may restrict an inherited
roleset's type to be some specialization of the type of the parent's roleset.

Figure 11 illustrates roleset restriction. The range of the role Recipient is converged
to "1" for the concept PRIVATE-MESSAGE. A PRIVATE-MESSAGE is thus defined
as a MESSAGE with exactly one Recipient.

Roleset restriction is denoted via the restricts relation. Note that the restricts rela-
tion does not introduce a new role, but rather tightens the range or narrows the type of an
inherited role.

Roleset Differentiation

Roleset differentiation is denoted via the differentiates relation. Role-et differentia-
don .llows a role to be described in a more detailed way than is possible with a single
roleset. Consider the example in figure 12. One of the prcperties of a mail message is
that it must be received by someone. This is modeled by having a roleset Recipient with
type PERSON and owner MESSAGE. We may wish to make finer distinctions; for
example, we may want to show that a recipient can be a primary recipient or can be a
"carbon-copy" recipient. Using differentiation, we can do this by creating the subroles
Primary-Recipient and CC-Recipient. The rolesets describing these subroles may have
their own types and ranges to further restrict the kind and cardinality of fillers for the
subroles. Thus, differentiation allows one to categorize role fillers, and to apply addi-
tional restrictions on fillers in those categories.

AdaKNET supports two classes of roleset differentiation - partitioning and subset-
ting. In the first, the immediate differentiators of a roleset partition that roleset, i.e.,
every filler of the differentiated role is a filler of exactly one of the subroles indicated by
the differentiators. In our example, differentiating using partitioning implies that every
recipient is either a carbon copy recipient or a primary recipient.

The second class of roleset differentiation, subsetting, is less restrictive than parti-
tioning, allowing one to create subroles that do not fully cover al) fillers of the differen-
tiated role. If our example was created using this subsetting class of differentiation, we
could have a filler of Recipient that is not a filler of either CC-Recipient or Prin'ary-
Recipient. Note that since an individual concept can participate in many Iroles, an indi-
vidual can be used as a filler of more than one subrole (as well as the differentiated role
itself, in the case of subsetting).

Range checking differs between the two styles cf differentiation. In both schemes,
the sum of any subrole's upper range bound and the other subroles' lower range bounds
must not exceed the upper range bound of the differentiated ioleset. This is because it is
impossible to not exceed the differentiated roleset's upper range bound while having the
maximum number of fillers for such a subrole and adhering to the range restrictions of
the other subroles. Partitioning also requires that the sum of any subrole's lower range
bound and the other subroles' upper range bounds not be less than the lower range bound
of the differentiated roleset. Otherwise it is impossible to cover the differentiated roleset

Reuumblity Library Framework AdaKNET 22 May 1990

AdKNET Uar'a Manuel A.10

SendDate
•_• Body

(11)

Figure 11. AdaKNET Restriction

while having the minimum number of fillers for such a subrole and adhering to the range
restrictions of the other subroles. The subset class of differentiation does not impos-. this
last restriction, because the diffmentiated role can have fillers that axv not fillers of the
differentiating subroles.

Finally, if a role is differentiated, the entire differentiation is inherited; that is, a spe-
cialization or individuation inherits the differentiated role, the subroles, and the differen-
tiation rodlation among them. Because of this, it is not possible to differentiate a roleset
which has Ween differentiated with partitioning at a subsuming concept. In the example
of figure 12, for instance, the roleset Recipient cannot be differentiated again at a concept
subsumed by MESSAGE. if partitioning was used. Using differentiation with subsetting,
further subsetting of the differentiated role is allowed at subsumed concepts. In figure
12, this would denote differentiation of the set of those fillers that do not satisfy one of

Reusablity Library Framework AdaKNET 22 h:'! 1990

AdvKNET Usr's Maun-ai A41

the existing subroles, Primary-Recipient and CC-Recipient. With either subsetting or
partitioning, we may of course differentiate one of the subroles and, for exampie, create
subfoles of the subrole PrimL-y-Recipient.

Summary

AdaKNET is a system for representing knowledge. An AdaKNET ntwork is a
aierarchy of concepts. The concepts represent things and idnds of things and dte hieric-
chy represents a taxonomy for these things. The attributes cf concepts are modeled by
the roles of a concept. AdaKNET allows one to describe both the types of things that can
fill a role and the actual 6•llers themselves. Roles are implicitly passed down the links in
the concept hierarchy. Thus a concept is totally defined by its position in the hierarchy

THING

SendDate

DAEMSSAG TEAr !

ReceiveDate eipient

Iinf)

PrmaryRecipient ~ S PRSO

(0 inf)

CL ipien,

Figure 12. AdvKNET Differentiation

Reumability UbnmT Framework AdaKNET 22 May 1990

Ad&KNET User's Manual A-12

and the characteristics which distingtish it -from the concepts directly above it. These
"simple objects and relations combine to form a powerful knowledge representation sys-
tem.

Remablity Library Framm-ork AdaKNET 22 May 1990

AdaKNET User's Manual B-1

APPENDIX B: SNDL Syntax and Summary
This appendix contains an overview of the extended BNF variant used to describe

SNDL, followed by a description of the individual language features of SNDL. Each
language feature is presented syntactically, with the syntactic description followed by a
short summary of the semantics of the feature. Following the description of the indivi-
dual features, the appendix closes with a complete syntax summary.

Extended BNF (EBNF) Meta-Symbols
The syntax of the language is described using an extended BNF. The notation used is the
same as the notation used throughout the Ada LRM. A brief description is given below.
For a complete description see section 1.5 of the LRM.
lower case word

nontermin-al (e.g. adaknet_spec).

italicized parL lower case_word
refers to same nonterminal as the lower case word without italicized part. The itali-
cized part is used to convey some semantic information.(e.g.
generic concepti dent if ier).

bold face word
language token (e.g. begin).

(item)
braces enclose item which may be repeated zero or more times.

[item]
brackets enclose optional item.

iteml I item2
alternation; either item 1 or item2

SNDL EBNF and Semantics
AdaKNET Specifications

adaknetspec ::=
[amalgamations]
network network identifier is

root:_concept
concept (concept)

end network identifier;

amalgamations ::- with network-identifier , netork identifier);

An AdaKNET specification consists of exactly one network definition; the identifier
denoting this network must match at the end keyword.
The networks identified as amalgamations must have as their root concept a generic con-
cept which exists in the current network specification. The interpretation of amalgama-
tons is that the imported network rooted at concept C replaces the concept of the same
name in the current network.

Reumbility Library Framwork AdaKNET 22 May 1990

AdaKNET User's Manual B-2

Root Concept
rootconcept ::-

root concept generic.conceptidentifier is
(localroles]
(differentiatedroles]

end root concept;

Each network must have one distinguishing generic concept which subsumes all concepts
in the network, and is itself subsumed by no concepts. Since this root concept does not
inherit roles, only local roles can be specified (via local role definition and differentiation
of these local roles).

Concept Definitions
concept ::= generic-concept I individualconcept

Network definitions consist of definitions of concepts, and the relationship between con-
cepts. There are two types of concepts in AdaKNET: individual concepts, and generic
concepts (see Appendix A).

Generic Concept
genericconcept ::=

concept generic conceptidentifier (specializes) is
[local_roles]
[restrictedroles]
(different iatedroles]

end concept;

specializes ::=
generic concept_ident ifier {, generic concept_ident ifier)

All generic concepts, except the root concept, must specialize at least one other generic
concept.
Individual Concept

individualconcept ::=
individual individual concept_identifier (individuates) is

[restricted-roles]
(differentiatedroles]
[satisfied-roles]

end individual;

individuates ::-
generic concept_identifier {, generic concept_i dent if i e r)

All individual concepts must individuate at least one generic concept.

Rembility Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual D.3

Roles
This syntax defines how roles are introduced, and how inter-role relationships (i.e.

restriction, differentiation, satisfaction) are specified.
Local Roles

local roles ::-
local roles

role {role)
end local;

role ::=
roleidentifier (number .. numberorinfinity)

of generIc~concept_identi f.e r;

Roles intrduced in the local roles ... end local section are considered to introduce new
roles into the network (not constrain existing roles).
Restricted Roles

restricted roles ::f
restRicted roles

restriction {restriction}
end restricted;

restriction ::= rangerestriction I valuerestriction I
rangeandvaluerestriction

range-restriction ::= roleidentifier (number .. numberorinfini

valuerestriction ::- role-identifier of generic concept identifier;

rangeand value restriction ::=
role-_identifier (number .. numberorinfinity)

of generic.concept_ident ifier;

Restrictions in the restricted roles .. end restricted section are considered to restrict the
satisfaction conditions on inherited roles. Therefore, the roleidentifier must correspond
to an inherited role. The restrictions must be consistent with the inherited conditions as
discussed in Appendix A.
Differentiated Roles

differentiated roles
differentiated roles

differentiation (differentiation)
end differentiated;

differentiation ::= subset I partition

Reusability Library Framework AdaKNET 22 May 1990

AdaKNET User's Manual D.4

subset ::-
subset roleidentifier into

role (role)
end subset;

partition ::-
partition role_identifier into

role (role)
end partition;

Differentiators may only differentiate existing roles; these roles may be local or inher-
ited. Each differentiation consists of a declaration of a set of roles. These roles are con-
sidered to be local roles of the concept where the differentiation is introduced. The
semantics of subset and partition differentiation is discussed in Appendix A.
Satisfied koles

satisfied roles ::f
fillers

filler (filler)
end tillers;

filler ::= individual¢concept identifier satisfies role_identifier;

For cach filler, the individual-concept identifier must refer to an individual defined in
the network, and the role-identifier must correspond to a particular role that is either
inherited or locally introduced via differentiation. Fillers must adhere to the restrictions
of the roleset they satisfy, as discussed in Appendix A.
Lexical Elements

identifier ::= letter ([underline] letter or digit)

letter ::= uppercaseletter I lowercaseletter

number ::= digit (digit)

numberorinfinity ::= number I infinity

string ::= "(graphic_character)"

SNDL EBNF Syntax Summary
The following is the EBNF desceiption of the SNDL syntax. Terms are introduced

in depth-first fashion.

Reumbllity Library Frmework AdaKNET 22 May 1990

AdaKNET Uur's Manual B.5

adaknetspec ::-
(amalgamations]

network network identifier is
rootconcept
concept (concept)

end [networkidentifier];

amalgamations :: with ,etworkidentifier {, networkidentifier);

rootconcept ::-
root concept genedriconcept_identifier is

(localroles]
(differentiatedroles]

end root concept;

concept ::= genericconcept I individualconcept

generic_concept :z=
concept generic concept identifier (specializes) is

(local roles]
(restrictedroles]
(differentiatedroles]

end concept;

specializes ::=
genericconcept_identifier (, generic-concept_identifier);

individualconcept ::=
individual indivi"al concept identifier (individuates is

(restrictedroles]
(differentiatedrol3s]
(satisfied roles]

end individual;

individuates ::-
generic.concept_ident2.fier (, genericconcept_identifier);

local roles ::=
local roles

role (role)
end local;

role ::-
roleidentifier (number .. number or infinity)

of genericconcept_identifier;

restricted roles ::=
restrioted roles

restriction (restriction)
end restricted;

Ramabllty Library Framework AdaNET 22 May 1990

Ada&KET User's Manual B.6

restriction ::=
range_restriction I value restriction I
range_and valuerestriction

rangerestriction ::= roleidentifier (number .. numberorinf in:

valuerestriction ::- rolidentifier of genericconcept identifier;

rangeandvaluerestriction ::=
roleidentifier (number .. number or infinity)

of generic concept identi fier;

differentiated roles ::=
differentiated roles

differentiation (differentiation)
end differentiated;

differentiation ::= subset I partition

subset ::=
subset role identifier into

role (role)
end subset;

partition ::=
partition roleIdentifier into

role (role)
end partition;

satisfied roles ::=
fillers :

filler (filler)
end fillers;

filler ::- individual concept_identifier satisfies role_-.dentifier;

identifier ::= letter ([underline] letter or_digit)

letter :'= uppercaseletter I lowercase letter

number ::- digit (digit)

numberorinfinity ::= number I infinity

string ::- "(graphic_character)"

Reusablity Library Framework AdaKNET 22 May 1990

References

[Barr81] A. Barr and E. A. Feigenbaum, The Handbook of Artificial Intelligence,
Volume 1, William Kaufmann, Inc., 1981.

[Booch87] 0. Booch, Software Components with Ada, Benjamin/Cummings Publishing
Company Inc, Menlo Park, California, 1987.

[Brachman85] R. J. Brachman and J. Schmolze, "An Overview of the KL-ONE Knowledge
Representation System," Cognitive Science, 9(2) (Spring 1985), pp. 171-216.

(Freeman83J M. W. Freeman, L. Hirschman, D. P. McKay, F. L. Miller, and D. P. Sidhu,
"Logic Programming Applied to Knowledge-Based Systems, Modelling, and
Simulation," Proceedings of the Conference on Artificial Intelligence, April
1983, pp. 177-193.

[Kaczmarek86] T. S. Kacmarek, R. Bates, and G. Robins, "Recent Developments in NIKL,"
Proceedings AAAI-86, Philadelphia, PA, August 1986, pp. 978-985. Fifth
National Conference on Artificial Intelligence.

[LRM83] Reference Manual for the Ada Programming Language, United States
Department of Defense, February 1983. (American National Standards
Institute/MIL-STD- 1815A-1983).

[McDoweil89] R. McDowell and K. Cassell, "The RLF Librarian: A Reusability Librarian
Based on Cooperating Knowledge-Based Systems," Proceedings of RADC 4th
Annual Knowledge-Based Software Assistant Conference, Utica, NY,
September 1989.

[Payton82] T. F. Payton, S. E. Keller, J. A. Perkins, S. Rowan, and S. P. Mardinly,
"SSAGS: A Syntax and Semantics Analysis and Generation System,"
Proceedings of COMPSAC '82, 1982, pp. 424-433.

[Searls90] D. B. Searls and L. M. Norton, "Logic-Based Configuration with a Semantic
Network," Journal ofLogic Progranuming, 8(1,2) (1990), pp. 53-73.

[Simos88] M. Simos, "The Growing of an Organon: A Hybrid Knowledge-Based
Technology and Methodology for Software Reuse," Proceedings of 1988
National Institute for Software Quality and Productivity (NISQP) Conference
on Software Reusability, April 1988, pp. E-I through E-25.

[Smith77] J. M. Smith and D. C. P. Smith, "Data Abstraction: Aggregation and
Generalization," ACM Transactions on Database Systems, 2(2) (June 1977),
pp. 105-133.

[Solderitsch89J J. Solderitsch, K. Wallzau, and J. Thalhamer, "Constructing Domain-Specific
Ada Reuse Libraries," Proceedings of Seventh Annual National Conference
on Ada Technology, March 1989.

[Wallnau88] K. Wallnau, J. Solderitsch, M. Simos, R. McDowell, K. Cassell, and D.
Campbell, "Constnzctin of Knowledge-Based Components and Applications
in Ada," Proceedings of AIDA-88, Fourth Annual Conference on Art#cial
Intelligence & Ada, November 1988, pp. 3-1 through 3-21.

