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1. INTRODUCTION

Several neurocomputing paradigms, generally known as artificial

neural networks, have been proposed in recent years. Some of the most

popular are the Hopfield Net (References I and 2), the Adaptive Resonance

Theory of Grossberg and Carpenter (References 3 through 6), the Adaptive

Linear Combiner (ADALINE, MADALINE) of Widrow (References 7 and 8),

Rumelhart's Multilayered Neural Networks (References 9 and 10), and

variations of these. The associative memory capacity of Hopfield-type nets

has been analyzed by several authors (References II through 15); the

capacity of multilevel threshold functions was investigated (Reference 16).

In this paper, we study the capacity of multilayered neural networks.

An upper bound on the number of patterns (input-output pairs) that a

layered neural network can learn is derived. The result is obtained by

applying some results from dimension theory to a set of equations that the

input-output pairs must satisfy for the given architecture. These equations

are interesting by themselves. They have a dual interpretation. For a given

set of interconnection weights, the equations represent the transfer function

(TF) between input and output patterns. Thus, if the net is to have a desired

TF-that is, a desired set of input-output pairs of patterns-then the

interconnection weights must satisfy the TF equations. In this sense, the

equations represent equations of learning.

In Section 2, the general architecture of our layered neural networks

(LNNs) will be presented together with the notation that we shall use to

represent the general TF in closed form. In Section 3, we shall interpret these

equations as defining a mapping from weight-space to output-space, at which

5
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point the result on the capacity of layered networks will follow by a simple

application of a result from dimension theory. In order to make accessible

the results from dimension theory that we shall use, an introduction is given

in Section 4 that is geared to give the reader a feeling for the concepts

involved. A technical definition is needed to be able to state the results

precisely. Two simple examples that attempt to illustrate the concepts

introduced in Section 3 and the theoretical results of Section 4 are also

included. They show some of the limitations of the theory and also lead to the

discovery of certain features of the sigmoid function that may affect the

performance of an LNN. These features of the sigmoid functions are stated in

the form of Propositions whose proofs, being highly technical, are relegated

to the Appendix. In Section 5, we point out some of the interesting

conclusions that follow from the results of Section 4. For instance, it will

become clear that reducing the dimensionality of the output patterns

increases the capacity of the net. A couple of theorems on architectures with

maximal capacity are also included in Section 5. The summary and a few

conclusions are the content of Section 6.

2. LAYERED NEURAL NETWORKS AND THEIR TRANSFER FUNCTION

An LNN is a network consisting of layers of neurons (processing

elements) connected to each other through weighted connections. The output

O i of the ith-neuron is equal to S(li), where Ii denotes its input [assumed to be

a real number (Ie e R)] and S is a nonlinear function called a sigmoid function

or squashing function. In some cases, S is a threshold function. The

squashing function S is monotonically increasing, bounded above and below,

and usually is differentiable; thus, its graph looks like that in Figure 1. It also

could be piecewise linear. Figure 2 shows the graph of a threshold function.

Throughout this paper, we shall assume that S is a continuous function
mapping R into the interval I =(x : -1 s x<_ 1). Let In a {(xl, x2 ... , Xn) : xi E

, i = 1,2, ..... n).
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The input to a neuron is the weighted sum of the outputs of the neurons

in the preceding layer. Thus, between two layers of neurons, layer 1 of size
m1 (a layer with ml neurons) and layer 2 of size m 2 , we have an m 2 x m -

matrix of weights W 1 . The input to the ith-neuron of layer 2 equals
mi

Ii= 1 wij(c, where 0. denotes the output of the jth-neuron of layer 1, and W1
j=1

= (wij), (i = 1, 2,3 .... m 2; - 1, 2, 3, ...,i mi).

Let I = (I1 , 12, ... Im2) E Rm2 denote the vector of inputs to layer 2 and 0

= (01, 02 .... Om)TI.m I denote the vector of outputs from layer I [(.)T means

transpose of (-)]. Then, " W 10 and the output vector of layer 2 is Sm2(1

where the notation Sn(x) means that x = (x1 , x2, .... x)Tr Rn and Sn(x) = (S(xl),
T

S(x 2 ), ... , S(xn)) . Thus,

Sm2 (W1 0) (2.1)

rcpresents the output vector of layer 2 in terms of (a) the output vector 0 of
layer 1, (b) the weighting matrix W1 between layers 1 and 2, and (c) the
sigmoid function Sim2'

Formula 2.1 is the basic building block for the general formula

(Formula 2.2 below) for multilayered networks. One can think of Formula 2.1

7
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as representing the Transfer Function from output of layer I to output of

layer 2.

Before presenting the general formula for a network with L layers of

weights, note that the first layer of neurons (layer 1) has an input that will

be the input to the whole network. Denote this input by I.. Then, the output

of the first layer is simply 0 = Sm (I.). Now, the general formula for the

TF from input Ie Rml to output QW1 m L+ l of a neural network with (L + 1)

layers of neurons (L layers of weights) of sizes m i, (i = 1, 2, .... L + 1) is given

by

0 = SmL+ (WLSmL(WL 1SmL.(.Sm2(WiSmI('))')) (2.2)

Clearly, the above mapping is a series of compositions of two bisic operations:
multiplication by a weighting matrix Wk (a linear transformation) followed
by the sigmoid function S nk+ 1. So, one can say that each SMoWm.1 represents

a layer of m neurons.

The notation in Equation 2.2 means the following:

(1) W k is the kth matrix of weights. These are the weights between layer k

of size mk and layer k+1 of size mk+1, (k = 1, 2, ..., L).

(2) Wk Sink (.)eR m k+ l represents the input to layer k+l, (k = 1, 2, ..., L).

(3) Smk+l (Wk Sink())- mk+l represents the output of layer k+I, (k = 1, 2,

.... L).

Note that the subindices of the Ss specify the sizes of the different layers and

the dimensions of the matrices in between. Equation 2.2 defines precisely the

architecture of the multilayered network.

Remark 2.1 - Each matrix of weights W i has mi+l x m i entries (i = 1, 2.

L), and each of these entries can be adjusted independently of the entries

8
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of all the other matrices. Thus, the number M of independent parameters

needed to uniquely specify the mapping defined by th, right-hand side (RHS)

of Equation 2.2 is given by

L

M = mi. x Mi. (2.3)
i=1

Let us form an M-dimensional vector out of the M weights needed to uniquely

specify the RHS of Equation 2.2. call this vector W, and let Tw: R ml_.+ I m L+ 1

represent the mapping I, O defined by the RHS of Equation 2.2. We have

included the vector W in the abova notation to remind us that the mapping

1*,- 0. depends on We R With this notation, we can now write Equation 2.2

as

= Tw( I , ) (I',R m l).

Remark 2.2 - Since the sigmoid function S that we are using maps

zero into zero (Figure 1), the function Sn also will map the zero vector in Rn

into itself, and consequently so will T w .*T'.at is, if On represents the zero

vector in Rn, then Tw(em 1 ) = 0mL+ no matter what W might be. In some

applications, we might want to map 0 ml to a nonzero vector in R mL+1 Then it

makes sense to introduce a "shift" in the functions Sn. So, instead of using Sn

as defined previously, we could define Sn:R nl n by

T T n
Sn(X)= (S(xI + 31), S(x 2 + P2)....S(xn + 3d)) , Vx = (x1, x2, .... Xn) ER , (2.4)

where P = P [2 .. Pn) T is a vector of shifts. Now, if the sigmoid functions

in Equation 2.2 are shifted as in Equation 2.4, then the mapping so defined

has more free parameters. The increase in free parameters is N, where

The symbol 4'/ indicates the end of a proof, a remark, or an example.

9
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L+1

N=Y mi. (2.5)
i-l

Let us form an N-dimensional vector out of the N-shift pa-ameters (call this

vector B) and let Tw,B: R 1n'4 ImL+I represent the mapping defined by the
RHS of Equation 2.2 when the sigmoid functions Smi are shifted by a vector

ERmi, (i = 1, 2, 3 .... L+I). Now, the mapping 0, depends on W ER Mand

N
also on Be R ; we can write Equation 2.2 as

,= Tw.B,) (I*,=R mI

Note that if B = ON , then TW.B = TW. We shall refer to W as the weight vector and

B as the shift vector.

Remark 2.3 - We did not specify exactly how to form the vector W
from the entries of the matrices Wi , ki = 1, 2 .... L), because this will not be

relevant for the analysis in Section 4. Only the dimension of W will be

relevant. Similarly, we shall not specify how to form the vector 13; only its

dimension will be of relevance. However, once we decide on a specific way of
forming the weight vector W and the shift vector B, then the integer

L, the (L + 1)-tuple of indices m a (m1 , m2, ... mL+l), and the vectors W and B

uniquely describe a particular layered network. So, we may refer to a

particular layered network as the layered network (L, m , W, B) with

Transfer Function TWB: R ml-- mL+l/

3. INTERPRETATION OF TwB

For a fixed wcight-vector W and a fixed shift-vector B, TW.B defines the

relation between the inputs and outputs of the layered net. Thus, in this
sense, Tw. B is a transfer function. In this section, we shall interpret Tw. B a bit

differently, however. We shall think of the input pattern I% as a pattern to be

10
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learned or recognized; the output O, will be the desired response to pattern

I '. If the weight and shift vectors are such that Equation 2.2 holds, we will

say that the network has learned pattern I *. So, we will have a collection of

input patterns J- T',:, = 1, 2, .... k) to be learned and a corresponding

collection of desired responses 0,: * - 1, 2, .... k). The goal is to determine a

set of weights (the learning process) so that Equation 2.2 will hold, at least

approximately, for * = 1, 2, 3, .... k. In case the sigmoid functions are shifted,

then the goal is to determine a weight-vector W and a shift-vector B so that

Tw.B  0_) = , for • =1,2,3 ... , k. (3.1)

M NIf we think of (W,B) as a point in R x R , then we can interpret the

learning process as a process of finding a point in R M x R N that satisfies

(perhaps approximately) the set of nonlinear equations defined by Equation

3.1.

Thus, for a given set of input patterns J and a given set of desired

responses {O,: * = 1, 2, ... , k), Equation 3.1 represents a set of nonlinear

M N
equations in the variable (W,B) e R x R . We shall call these equations the

Equations of Learning, because these are the equations that need to be

satisfied by (WB) if the network is to learn the set of patterns J.

Definition 3.1 - The layered network (L. m , W, B) with TF function
TW.B (see Remark 2.3) is said to have learned a set of patterns J perfectly if

Equation 3.1 is satisfied exactly for = , 2, .... k.

In the next section, we derive an upper bound on the number of

patterns that a layered neural network can learn perfectly.

To conclude this section. we will introduce the last set of symbols and

notation that will be needed in Section 4. This is done mainly for two reasons:

to emphasize (1) the fact that in the equations of learning the variable is the

11
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M N

point (WB) in R x R , so the notation will explicitly indicate this, and (2) that

we are dealing with a mapping F from "(weight x shift)-space" R M x R into
"output-space" Ik 'mL+l

For a fixed set of input patterns J I,: *= 1, 2, 3. k), define F:

R xR N-1 1k'm L+ l by

TwBl)"-

F(W, B) Tw.B(I2), V (W, B) e RM x RN. (3.2)

- Tw B(1k.

Now we can write the system of Equations 3.1 equivalently as

F(W B)-

Let Dj e IkmL+l denote the vector of desired responses for the set of input

patterns J. That is, let

[i
Dj .

Then the equations of learning can succinctly be written as

F(W,B) = D1 . (3.3)

Remark 3.1 As the point (WB) varies through the (weight x shift)-
space RMx RN, F(W,B) traces the achievable responses. If Di is an achievable

12
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response, then, of course, Equation 3.3 has a solution. The preimage F'I(DJ)

represents the set of all combinations of weight vectors and shift vectors that
will solve Equation 3.3. Thus, Equation 3.3 has a solution if-and only if-
FI(Dj) is not empty. (Recall that F-I(Di) = ((W, B) eRM xRN: F(W, B) = Dj}.) ////

Remark 3.2 - The learning process may be interpreted as a process of
finding (numerically) approximate solutions to the system of Equation 3.3.
Numerical algorithms for solving systems of nonlinear equations such as

Newton's Method, Conjugate Gradient, Steepest Descent and others (References

17 and 18) can be used as 'learning algorithms' when applied to Equation 3.3.
Thus, a host of new learning algorithms are now at our disposal. Some of

these may prove to be faster and/or more efficient than the currently applied
learning algorithms such as the Delta-Rule or Back-Propagation-Error

(Reference 9). //

4. CAPACITY OF A LAYERED NEURAL NETWORK

Assume that a set of input patterns J and a vector Dj of desired

responses are given and consider the system of Equation 3.3, the equations of

learning. If k (the number of patterns to be learned) is too large, then the set

of Equation 3.3 will be overdctermined and we may not be able to find a
solution (W,B) in RMx RN. On the other hand, if k is small enough, there may

be an infinite number of solutions to Equation 3.3. Exactly how large k may

be and still hope to be able to solve Equation 3.3 is the result we seek. We shall

use results fom dimension theory to obtain an upper bound on k. Before

stating the result formally, we would like to quote a paragraph from the

Introduction in Reference 19, p. 7, which expresses the main idea in simple

terms:

"Let fi(x1 ..., x.), i = 1, .... m be m continuous real valued

functions of n real unknowns, or what is the same, m continuous

real-valued functions of a point in Euclidean n-space. It is one

of the basic facts of analysis that the system of m equations in n

unknowns,

13
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Ji(x1, ..... x,,) = 0, i = 1, 2, ..... m

has, in general, no solution if m>n. The words "in general" may
be made precise as follows: by modifying the functions fi very

little one can obtain new continuous functions gi such that the

new system
gi(xl, ..... x.)=O0, i = 1,2, ..... in

has no solution. On the other hand, there do exist sets of n

equations in n unknowns which are solvable, and which remain

solvable after any sufficiently small modification of their left

members. This property of Euclidean n-space can be made the

basis of a general concept of dimension."

Thus, all we need to do is to count the number of scalar equations that we have

in Equation 3.3 and compare that number with the number of unknowns.

Recall that the dimension of the output vectors 0. is mL+l; hence, the

dimension of Dj is k-mL+1 and, therefore, Equation 3.3 is a system of k-mL+l

scalar equations. The number of unknowns in Equation 3.3 equals the

dimension of W plus the dimension of B; that is, M + N. So, "in general," the
system of Equation 3.3 has no solution unless k-mL+1 S M + N, or

k s 1- (M + N),
mL+1 (4.1)

where M is given by Equation 2.3 and N is given by Equation 2.5.

Inequality 4.1 is the main result of this work. Interesting

consequences that follow from Inequality 4.1 will be discussed in Section 5.

The theory needed to give a rigorous justification of Inequality 4.1 is highly

technical and it can be found in Reference 19. Here we shall include the

minimum amount of theory needed to make this work complete and self-

contained.

We should point out that the source of the technical complications is in

the statement "the system of m equations in n unknowns fi(x 1 .... xn) = 0, (i =

14
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1, ..., m) has, in general, no solution if m > n." This statement is false without

the words "in general." Without these words, the resulting statement has

many exceptions, some of which are very profound. Therefore, in order to

report a correct statement with some degree of generality, one must be very

careful of the wording. The following definition will describe precisely what

we mean by the words "in general" in the above statement.

Definition 4.1 (Reference 19, p. 74) - Suppose f is a mapping from a

space X into a space Y. A point y of f(X) is called an unstable value of f if for

every positive 8 there is a mapping g from X into Y satisfying

(i) d(f(x), g(x)) < 8, for every xE X,

(ii) g(X) cY- (y).

Other points of f(X) are called stable values of f.

Comments. It is assumed that Y is a metric space and d(.,') in (i) is the

distance function. The notation f(X) represents the image of X under f; that is,

f(X) = (f(x) : x e X}. If A and B are two sets, then A -B = (a e A : ais not an

element of B). The symbols "c" and "e " have the standard set theoretic

meaning.

To see the relevance of Definition 4.1 to our problem, consider the

equation

f(x) = y. (4.2)

If y e f(X), then Equation 4.2 has a solution x e X. However, if y is an

unstable value of f, then there are arbitrarily small perturbations of f, like

the function g, such that the perturbed equation g(x) = y has no solution since

yi g(X). On the other hand, if y is a stable value of f, then g(x) = y has a

solution for all sufficiently small perturbations g of f. Clearly, we want to

avoid having unstable values on the RHS of Equation 3.3. The next theorem

describes cases in which all the values of a function are unstable.

15
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Theorem 4.1 (Reference 19, p. 75) - Let X be a space of dimension less

than n and f a mapping (continuous function) of X into I". Then, all values of

f are unstable.

Fact 4.1 (Reference 19, p. 41) - The dimension of Euclidean n-space Rn

is n.

Theorem 4.2 - Let F :RMx RN ik'mL+l be the mapping defined by

Equation 3.2. If Inequality 4.1 is violated, then every value of F is unstable.

Proof - Let X = RMx RN; then the dimension of X is M + N, since it is
homeomorphic to RM+N (Reference 19). If k exceeds the bound in Inequality
4.1, then the dimension of X is less than k'mL+1 . Since F is continuous, every

value of F is unstable by Theorem 4.1. //I

Theorem 4.2 describes the extreme situation in which all the values of
F are unstable. This is certainly an undesirable situation. In this sense, the

RHS of Inequality 4.1 is indeed an upper bound on the number k of patterns

that the layered net can be expected to learn. Note that it does not guarantee
that Equation 3.3 has a solution when k satisfies Inequality 4.1; there may be
other conditions to be satisfied by the input-output pairs other than the
restriction on the number of pairs imposed by Inequality 4.1. Examples 4.1
and 4.2 below illustrate this point. Because of the architecture of the network,

there are certain input-output pairs that are not achievable regardless of the
values of the weights or shifts.

Example 4.1 - Consider, for example, the simplest possible case in
which L = 1, ml = 1 = m2 , so that the weight-vector W is a scalar and the shift

vector B = (1' 132) is a 2-vector. The TF is given by

Tw.B (I) = S(WS(I + 1) + 02), (I eRI).

Since N = 2. M = 1, and mL+ 1 = m 2 = 1, k must be less than or equal to 3. We

cannot expect to learn more than three patterns, in general. We shall show

16
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by a simple argument that there are sets of three input-output pairs that are

not achievable by this network; hence, they cannot be learned.

Note that TWB is a monotone function of the input 1. This is because it is

a composition of two sigmoids which are monotone functions. Thus, if we

order the input patterns in an increasing order, say 11 ' 12 < 13, then only

output patterns that are either increasing 01 < 02 < 03 or decreasing O1 > 02 > 03

are achievable by this network. We can see from this simple example that

there may be restrictions on the input-output pairs other than their

cardinality. In this case, if the monotonicity condition is not satisfied by the

three output patterns, then they are not realizable.

We are going to go a step further and show that for this network and

certain sigmoids there are sets of three input-output pairs ((Ii, Oi): i = 1, 2, 3)

that satisfy the monotonicity condition and are not realizable. This also will

serve to illustrate the ideas developed in Section 3 by going through the steps

involved in solving the equations of learning for this simple case. For larger

networks, of course, one would use numerical methods as pointed out in

Remark 3.2.

Suppose then that the pairs to be learned satisfy the monotonicity
condition; say I < 12 <13 and 01 < 02 < 03. We want to find out if there exist a

weight W and two shift parameters A3I and P2 in R such that the equations of

learning are satisfied. That is, so that

S(WS(Ii + 01) + 02) = Oi. for i = 1, 2, 3. (4.3)

We have three equations and three free parameters. Since S is invertible, the

first thing we might do to solve this system of equations is to take S-1 (the

inverse of S) on both sides of Equation 4.3 to obtain

WS (Ii+ 1)+032 = S 'S(0), (i= 1,2,3).

Next, let i = 1, solve for W, and substitute the expression for W in the other two

equations. This leads to

17
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W=S-1(01 ) -0 (4.4
S(Ii + r31

and

S7-1 (01) hS(li+ P31)+ +[2= S-'(o), (i= 2, 3).

S(I1 +0 1)

Now eliminate 02 from these two equations and obtain

S-1(02) S(II + [3i) - S-'(O1) S(12 + 1)(4.5)
= S(I + 31) - S(12 + 31)

and

S-I(02) S( 1 + [1) - S-1(01) S(I 2 + 3I) S-1 (03) S(1 1 + [1 ) - S-1(01) S(13 + P ) (4.6)

S(II + [1) - S(12 + 01) S(1 1 + 01) - S(13+ 131)

After eliminating the denominators and simplifying, Equation 4.6 gives

a S(Ij + 31) + b S(12 + 1 1) + c S(13 + 31) = 0, (4.7)

where a = S- 1(0 3) - S- 1(0 2), b = S-1(01) - S'1(03), c = S-1(02) - S-1(o1)

Since b = -(a + c). we can write Equation 4.7 as

S(13 + 31) - S(12 + 11) a (4.8)

S(1 2 + 31) - S(I1 + 31) c

Note that since S is monotonically increasing and 01 < 02 < 03, a > 0, and c > 0, so

the ratio a/c > 0. Now the question of whether the system of Equations 4.3 has

a solution reduces to the question of whether there is a shift parameter 131 that

will solve Equation 4.8. If 01 exists, then Equation 4.5 gives 12 and W is given

by Equation 4.4 provided S(Ij + 31) * 0. Whether or not Equation 4.8 has a
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solution depends on the specific sigmoid function S. Up to this point, for the

sake of generality, the sigmoid function S has been left unspecified. The

analysis of the previous section holds independently of the particular details

of the specific sigmoid function employed as long as it is continuous. Thus,

the results we have so far are valid for all sigmoids, which form a large class

of functions. In fact, they are valid for any continuous function S. However,

the question of whether Equation 4.8 has a solution clearly depends on the

specific sigmoid used. If the sigmoid has compact range-that is, if it saturates

above and below so that the sigmoid is a constant for large and small values of

its argument-then Equation 4.8 always has a solution (Proposition 4.1).

Otherwise, it may not have a solution (Proposition 4.2). Thus, the shape of the

sigmoid is indeed relevant at this point. //I

Definition 4.2 - By a sigmoid that saturates we shall mean a

continuous, nondecreasing function S: R -- [-I, 1] that is onto and is strictly

increasing on S-I((-I, 1)). (Recall that S-I((-I, 1)) = (x ER 1 : S(x) e (-1, 1)).)

Proposition 4.1 - If S is a sigmoid that saturates, then Equation 4.8

always has a solution.

We can show (Proposition 4.2 below) that if S is an inverse tangent, S(t)2
=f- tan- I(t), then there are inputs I1, 12, 13 so close to each other that the

ratio in the LHS of Equation 4.8 is greater than some positive number 1 for all
0 1 R. Thus, if the outputs Oi are such that a/c < qj, then Equation 4.8 has no

solution.

Proposition 4.2 - Let S(t) = 2 tan "1 (t), (t ER). Let Ik = k- I fork = 1,

2, 3, and let

S(1 3 + 0) - S(12+ 3)
7(p) "§(12 -70) - S(I + 80) (3 eR).

There exists a positive number 11 such that y(p) ' i for all 3 E R.
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These two propositions are proved in the Appendix.

Remark 4.1 - The significance of Proposition 4.2 is only theoretical,

since any hardware implementation of the sigmoid would result in a sigmoid

that saturates above and below, achieving a maximum constant value for

large arguments and a minimum constant value for large negative

arguments. Proposition 4.1 says that this saturation is a desirable feature of

the sigmoid. //

Example 4.2 - Consider the layered network defined by (L, m, W, B)n

(2, (1, 2, 1), w ,04) with TF TW(1) = S w3w4 411 I =

W2= [w3w4] -'~

S(w 3 S(w 11) + w4 S(w 2 l)), (I eR) (see Remark 2.3).

Note that the shift vector B is zero in this example and, since the

sigmoid is an odd function (i.e., S(-I) = -S(I) for all I), it is easy to see that TW is

also an odd function. Thus, the input-output pairs of this network cannot be

all that arbitrary. Regardless of what the weights may be, there are two

constraints that must be satisfied by the input-output pairs of this system due
to the fact that TW is an odd function:

(i) Tw(O) = 0 and

(ii) Tw(I) = -Tw(O).

For this network, Inequality 4.1 gives k < 4. Hence we cannot expect this

network to learn more than four arbitrary input-output pairs; moreover, if

some pair violates (i) or (ii), then the network will not learn it. So, again we

see that Inequality 4.1 gives an upper bound on k; however, there is no

guarantee that Equation 3.3 has a solution when k satisfies Inequality 4.1.

20



NWC TP 7013

We can use this example to illustrate how the opposite situation also can

occur. This is the fortuitous situation in which k exceeds the bound in

Inequality 4.1 yet a solution to Equation 3.3 exists.

Suppose that the network of Example 4.2 has learned the four input-

output pairs (Ii, Oi), i = 1, 2, 3, 4, where none of the inputs Ii is zero and no two

of them satisfy Ii = -Ij for i * j. Then, under these conditions, we could "add"

five more input-output pairs to the list of pairs to be learned. These are the

negatives of the four pairs above, (-Ii, -Oi), i = 1, 2, 3, 4, and the pair (0, 0). All

nine pairs are realizable, so it would seem that we have violated Inequality

4.1, since now k = 9 > 4. However, this is just a fortuitous situation; the extra

four pairs (-Ii, -0i), i = 1, 2, 3, 4, do not impose any new conditions on the

weights. They are "learned" as a by-product of learning the first four pairs

(Ii, Oi), i = 1, 2, 3, 4. The pair (0,0) results from not having shifts in the

sigmoids (see Remark 2.2). //

S. APPLICATIONS

Inequality 4.1 together with Theorem 4.2 represent the main result of

this work. An attempt was made to illustrate the meaning of this result. This

was the purpose of Examples 4.1 and 4.2. It is hoped that the comments,

remarks, and examples in Section 4 are sufficient to justify calling the

quantity on the RHS of Inequality 4.1 "the capacity" of the layered net.

By Equations 2.3 and 2.5, Inequality 4.1 says

rL L1 1
k 5 1Mi+l × Mi + mi]• (5.1)mL+lI i1I

Definition 5.1 - If a LNN has L layers of weights (L > 1) and (L + 1)

layers of neurons with mi neurons in the ith-layer, mi >- 1, i = 1, 2, 3, ..., (L +
1), then the (L + 1)-tuple m-i - (m1 , m2 , ...- mL+I) will be called the architecture

of the LNN.
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Definition 5.2 - If a LNN has architecture ifi u (m1 , m2, ... mL+), then

the RHS of Inequality 5.1 will be called the capacity of the LNN and will be

denoted by C(ifi). Thus,

C(rn) L m+ mi+i+ nif, (Mi r: NL+l ). (5.2)ML+I i=Il it, I

Here, NL + I represents the collection of (L + l)-tuples of positive integers.

In this terminology, Theorem 4.2 says that if the number of input

patterns exceeds the capacity of the LNN, then every value of the mapping F

defined by Equation 3.2 is unstable.

Now that the notions of "architecture" and "capacity" of an LNN have

been defined, we shall derive a few simple results that follow from Definition

5.2. The first one, which is perhaps counterintuitive, is the fact that the

capacity of an LNN decreases as the number of output neurons increases. This

becomes evident after we rearrange terms and write C(rii) as

i)= 1 + ML Mi+l × Mi+ mi. (5.3)
L. i ] i-1

Clearly, C(uii) is a decreasing function of the number of output neurons mL+1.

Thus, increasing mL+1 can only decrease C(mi). In fact, if the total number of

neurons is fixed, then mL+l can increase only at the expense of decreasing

some of the mj (j < L), which clearly would reduce C(iix) even further. So, we

have discovered the following practical result.

Theorem 5.1 - (a) Reducing the number of output neurons while

keeping the total number of neurons fixed increases the capacity of the 4

layered network. (b) Reducing the number of output neurons while keeping

the number of neurons in all the other layers fixed increases the capacity of

the layered network.
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Note that in part (b) the total number of neurons actually decreases by

decreasing the number of output neurons, yet the capacity still increases.

In practice, one may not always be able to choose mL+ I , the number of

neurons in the output layer. However, in those applications where one has
the freedom to choose mL+1, Theorem 5.1 suggests that it be chosen as small as

possible.

We conclude this section with a series of results on maximizing

architectures: that is, architectures that will maximize the capacity C(ri) of an

LNN when the total number of neurons is fixed and with a fixed number of

layers of weights.

The total number of neurons of the LNN will be denoted by N as in

Equation 2.5 and, as usual, L will denote the number of layers of weights. For

a given L, the architecture that maximizes the capacity of the net will be
denoted by fi L, and CL m C(fi_) is the maximal capacity of the net.

L+1

Theorem 5.2 - Let m1 =a, mL+1 =13, and N=Y mi be fixed positive
i-I

integers.

(a) If L = 2 and N > c +, then fi (a, N - a-33) a n d

C; [0 + a + P) N - (a + 3)2].

(b) IfL 3, N> 213, N> 2a, and N is even, then m- (a, Nf2 - 03, N/2- a, 13) and

C; [ N+N2/4_- a3].13

(c) If a > 03, L = 4, (N - 3) is even, and (N -3) > 2a, then

M;I= ot, L(N - 5) -1, -L(N - 0) -a,1, 0 and cq=*[N+(N _0)2 /4 +(P - a)].

(d) Ifa <3,L=4,(N-acz) is even, and (N - a)>23, then

a. 1, I -a)- , -(N- a) - 1,) and C;=IuN +(N -a)/4+(a- 0)].
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(e) If a=13, L = 4, (N - a) is even, and N- 3a 2, then

m = ,(N ) 4  ( -  )  4 , ,with ( I (N - a) - 1,

and c-[N + (N - a)2/4.

(f) Under the hypothesis of (b) and (c), or (d), or (e), C;>C,.

(g) C >C; if, and only if, 4a3 _ 2(a + 0) - N]2 .

Proof - See Appendix.

Remark 5.1 - If m, and m3 are required to equal a and P3, respectively,

then, when L = 2, there is only one choice for in; thus, zii is necessarily this

unique choice. In this sense, the result of part (a) is trivial. However, it is
included so that C2 can be compared with C3 and C . Part (f) suggests that L be

chosen no larger thar 3 in situations where it is important to achieve
maximal capac:.y. The results of parts (c) and (d) are interesting, for they

show that when L = 4 and a * 13, maximal capacity requires an architecture
with a layer that has only one neuron. This phenomenon persists when L > 4.

Finally, we can see from part (g) that if N is "small" compared with 2(a + 0)-
"small" being defined by the inequality in (g)--then L = 2 gives a larger

capacity than L = 3.

As Theorem 5.1 shows, in order to maximize the capacity of an LNN,
m L+ 1 should be selected as small as possible. In the next theorem, we are

going to set mL+l = 1 and let mi be free, with the total number of neurons
fixed. The results that follow will complement those of Theorem 5.2, where m1

was fixed at a given value a and mL+I was fixed at 53. This will tell us what the

optimal value of a would be when 13 = 1.
4

L.1

Theorem 5.3- Let mL+I = I and N=X mi be fixed.

i24
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(a) If L = 2 and N is even, then f ==(+N- 1N I, 1N, I) and CI=N+N2 /4.

(b) If L = 3 and N is even, then 1i1= 1,-N- 1, -N- 1, 1 and

C;=N++ N2_ 1.

(c) If L=4 and Nisodd, then i= 1,-(N- 1)-m 41-(N- 3)m 4, 1, with1 1 2

I m < j(N - 3) and C = - (N+ 1)2.

Proof - See Appendix.

Note that under the conditions of Theorem 5.3, we now have C;> C; and

the maximal capacity decreases as L increases. Also, note that maximal

capacity calls for m1 = I when L = 3 or 4. This phenomenon persists when

L >4.

6. SUMMARY AND CONCLUSIONS

The essential components and the architecture of a general (feed-

forward) LNN were defined. The equations that must be satisfied by the

weights and shifts of the network in order to learn a set of input-output pairs

were derived. Thcs form a set of nonlinear equations that were called the

equations of learning. If the set of pairs to be learned is known a priori, then

one can (in principle) write down these equations and interpret the learning

process as a process of solving (numerically) the equations of learning. Thus,

a host of new learning algorithms are now at our disposal; namely, all of the

known algorithms for solving systems of nonlinear equations (References 17

and 18), which, in this setting, can be interpreted as learning algorithms.

Some of these may prove to be faster and/or more efficient than any of the

currently applied learning algorithms, such as the Delta-Rule or Back-

Propagation-Error (Reference 9), which is one of the most popular methods.
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Whether one can exploit the special structure of the equations of

learning to improve or adapt some of the existing algorithms for solving

systems of equations, so that these algorithms become useful as learning

algorithms that might compete against existing learning algorithms, is a topic

of further research which will not be addressed here. It is left as an open

problem.

By counting the number of degrees of freedom of a layered net (which

is equal to the dimension of the (weight x shift)-space of the net) and

bounding the number of equations in the equations of learning by this

number, an upper bound on the number of distinct input-output pairs that

the net can learn was obtained. Example 4.1 together with Proposition 4.1

show that the upper limit can be achieved making the bound sharp. Two

examples to illustrate the result of Theorem 4.2 and its limitations where

included.

While analyzing Example 4.1, it was discovered that one can always

solve Equation 4.8 if the sigmoid function saturates. It was discovered also

that if the sigmoid approaches its asymptotic values too slowly (like an

arctangent for example), then Equation 4.8 may not have a solution if the

inputs are too close to each other. Thus, saturation is a desirable feature of

the sigmoid. This result is significant, because the simple net of Example 4.1

can be thought of as a building block for larger nets. Whenever a net has two

or more layers of neurons with forward connections, one has the simple net

of Example 4.1 embedded in it.

Finally, in Section 5, we defined the concepts of architecture and

capacity of an LNN and gave a few rcsults on architectures with maximal

capacity.
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Appendix

PROOF OF PROPOSITIONS 4.1 AND 4.2 AND THEOREMS 5.2 AND 5.3.

Observation A.1 - If S: R I [-1. 1] is a sigmoid that saturates, then
there exist two points t1 and t2 such that t1 < t2 , (- -, t1] = S''(1-1)) , It 2 , - ) =

S-I((+I}), and on It1 , t2] S is a strictly increasing function with range [-1, 11.

Proposition 4.1 - Let I1 < 12 < 13 be three real numbers and ot any

non-negative number. If S is a sigmoid that saturates, then there exists O36 R

such that

S(13+ 3) - S(12+ )
= U. (A.I)

S(12 + 03) - S(11I+ [0)

Proof - For each O3e R, let gl(p3) a S(1 3 + P) - S(12 + 13) and g2 (p3) n S(12 + 13)

- S(' 1 + 13). Since S is strictly increasing on It1 , t21 and 11 < '2 , we conclude that

2 (0) > 0 for every 13 (t1 - 12. t2 - 121.

g1 (13)
IfV = (t1 -I2' t2 -121 and f(1)=-, for every e V, then f is the ratio

of two continuous functions with a denominator that never vanishes; thus, f
is continuous on V . Next, we shall show that the range of f is the infinite

interval [0, -). Since f is continuous, this can be accomplished by
showing that f(t2 - 12) = 0 and

lim f (13)=o. (A.2)
13-*t1--12

Recall that S(3) *f 1 for 13 - t2 and, since 13 > 12, g1(t2 - 12) = 0. Hence, f(t2 - 12) =

0. To see that Equation A.2 holds, let b a g1 (tI -12). Since 13 > 12 and S is

strictly increasing on It1 , t2 ], b > 0. (Note that if 13 - 12 + > t2 , then b = 2.)
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Next, since g, is continuous, there exists e > 0 such that gj(3) > b/2 for all A (t1

- 12, t1 - 12 + e). Therefore,

f(D) > b for all PC=(t 1 - 12' t1 - 12+ E). (A.3)
2g 2(p)

Now, since g2 (tl - 12) = 0 and g2 is continuous, g2 (p) becomes arbitrarily small

as [3-(t I- 12). Consequently, Inequality A.3 implies Equation A.2.

We have shown that the I.HS of Equation A.1, represented by f(p3), can

attain any nonnegative value as 0 varies through the interval D ; thus,

whenever c a 0, Equation A. I has a solution with 3e V. //

Proposition 4.2 - Let S(t) = 2-tan- t (t), (t E R). Let Ik = k - 1 for k = I,

2, 3 and let

S(13 + 0) - S(12 + 0)
() S(12+) , (eR). (A.4)

There exists a positive number Y1 such that y(3) a q1 for all 0e R.

Proof - Let S' denote the derivative of S. The following function of two

variables will be instrumental in the proof.

+))xeR, ye[0,2]

Since S'(x) > 0 for all x, f(x, y) > 0 for all x e R and y e [0, 21. Furthermore, f is a

continuous function. Thus, if we restrict f to a compact rectangle of the form

[a, b] x [0, 2], where a < b, f will attain a minimum value X > 0. We shall use this

fact later.

By the Mean Value Theorem, for each PeR, we can find two numbers,

al(p) and a 2 (3), such that
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A<al(5)< I+03

1+ 1<ac2(3)<2+13 and (A.5)

S(2 + P3) - "'l )SW(

S(1 + 13)- S(3)= S'(a 1 (1)). (A.6)

Let T(3) u a 2 (3) - aI(3), so that a 2 (3) = a , 3) + T(3). Then, by Inequalities A.5,

T(D) (0, 2), V0 eR. (A.7)

Comparing Equations A.4 and A.6 we get

S'(al(O3) + T(3))
Y(O) = S'aj(AD , ( R ). (A.8)

Since S'(t) = 2 1 , (t e R), a quick calculation using Equation A.8 shows that

I + c4(1)
1(3) = + [al() + T(O)] 2 (. eR), which, for all T(A) e [0, 2], approaches I as

cx1(13) I. 0. Therefore, since 13 < z1(03) < 3 + 1, there exists -5 > 0 such that

Y(13) > ', for 131 > 0. (A.9)

Next, let X > 0 be the minimum value of f(x, y) for x e[- 0, 1 + 1] andy e[0, 2].

By the choice of X, Inequality A.5, Statement A.7, and Equation A.8 we conclude

y(O3)>X for 101 :go. (A.1O)

Now, if q m min(e., 11, then Inequalities A.9 and A.10 imply that ,(3) a 11 for all

6 R. //I

Proof of Theorem 5.2 - The expressions for C; C, and C* can be

obtained from Equation 5.2 and uin, tfi, and M ;, respectively, using elementary

algebra. This is also true of m- (see Remark 5.1).
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L+1

Since mI1 , mL+1, and N are fixed and N=I mi, the capacity C(n) can be
i~m

expressed as a function of L - 2 variables when L a 3. For each L > 3 and (m3 ,
L

m4 ..... mL ) e RL - 2 , let fL(m 3, i 4 , .... mL) z P-C(a, N - a - - mi mi 3, -.... mL , )

i-3
L

Note that this amounts to setting m 2 = N - a - - mi. It suffices to show that
i-3

fL achieves its global maximum when mi equals the ith-component of rn-. (i-

3,4, .... L; L = 3, 4).

If L=3, then f3 (m3)=N+[a+m 3 ] [N-a-f -m 3] + Pm3, (in 3 eR). Let
m;---= - a, then a simple calculation gives f3(m +x)= C - Vx ER. Thus,

f3(m; + x) s f3(m )=PC3 , Vx e R. This implies that f3 (m) is the global maximum

of f3 and (b) has been established.

If L = 4, then f 4(m 3, m4)=N+[a + m 3 [N-a-A-m 3 - m4]+ m 3 m4 +PM 4 ,

(Mi3 , m4)rR 2 . Let m; = 2 (N -A) - a, m4 = I and assume a > 3. A simple

calculation gives

f4(m3+ x, m;+y)= C;- [x2 + (a- )y], V(x, y) ER 2 .

Since x2 + (a - P)y a0 for all x ER and ally a 0, we have

f4(m; + x, m;+ y):5 f4(m;, m )-- PC4, Vx eR,y>? 0. (A. 11)

Note that since m44 = 1, it cannot be perturbed by y < 0 in our setting. It follows

from Inequality A.11 that f4 (m*, m ) is the global maximum of f4 , which

establishes (c).

Since m5 C(m 1 , m2 , m3 , M4 , m5 ) = mtC(m 5 , m4 , m3 , m2 , rot), (d) follows

from (c) by interchanging the roles of a and .
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If a -and m 3 = !(N -3a), then

f4(m+ x, y) =N+ (N -a)2/4 -x 2 -=3 C 4 - x 2, V(x, y) eR 2.

This shows that f4 achieves its global maximum on the set of points (m;, y)

ye R). However, in our setting y must be restricted to the allowable values of
1

in4 , which are 1 mn4 < (N - a) - 1. The lower bound on m4 is clear. The

upper bound is determined by the requirement that m 2 > 1. Since m 2 = N - 2a
I

m3  M4 , when m3 =mwe have m2 = (N- a)-m 4 . Hence, m 2 > 1

I
implies M 4 < -(N - a) - 1. Now (e) has been established.

ra 1
Under the hypothesis of part (c), we have 2  - 1 >0 and (N - 2a) -

> 0, which imply the following series of inequalities:

0 < -d3[N-+I3-2a +2- -21
I 2

ON+-O2-a+5 < -a3
2 4

S-L[N 2 - 20N+ 2] +(-a) < ±N 2- a,
4 4

N N+(N -0)2/4 +(P-a) < N+ -N2 -a .
4

Thus, when a > f3, 4 < C3.

Under the hypothesis of part (d), we have 2 - I) >0 and (N- 23)-
I

> 0. These give (as above, by interchanging a and 15)

N + (N-a)2/4 + (a- )< N + -N2- ap.
4
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Thus, when a < C; < C;.

Under the hypothesis of part (e), we have 2N - 6a > 4; hence,

2N-5aa4+a>O =, -4ac>-2N+a - 44 2 > -2aN + a 2

SN 2 - 4x 2 > (N - a) 2 N+-1N2- 2 > N + (N - a)2/4.
4

Thus, when a = 3, C <C. This establishes (f).

Finally, we have

4ap > [2(a+o)-N] 2

2 N 2
ao _> (a +0) 2 -_(a + ON +,N

44
2N 2

4* - (a + 3) 2 + (a + O)Na -p

N+(a+p)N-(a+o)2 > N+-c-aO
4

This completes the proof of Theorem 5.2. ///

Proof of Theorem 5.3 - We shall use the same technique used in the
proof of Theorem 5.2. The expressions for C, C, and C4 can be obtained from

Equation 5.2 and rfi, ri, and zfi;, respectively, using elementary algebra.

For each L > 2 and (m 2 , m3 , ... , mL)rRL ' 1, let

L

fL(m 2  3 , .... ML) a C(N - I - I mi m2, m3, .... , ML , 1).
i-2

Note that this amounts to setting
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L
m I = N - I- 2 mi , (L> !2). (A. 12)

i=2

It will be shown that fL achieves its global maximum when mi equals

the ith-component of miij (i = 2, 3, ..., L; L = 2, 3, 4).

If L = 2, then f2 (m2)= N + [N - 1 -m2] m2 + m2 = N + (N -m2] m2 . Let mj=
1 N2
-N, then f2 (m* +x) =N+± - x 2 = f2 (m;) - x2 (x e R). Thus, f2 (m2 + x) s

f2 (m) = C, Vx e R. This gives (a).

1

IfL=3, then f3(m2, m3)=N + [N-I -n 2]m2 +m 3 . Letm 2 =-N- =m,

then f 3 (mI + x, m + y)=C;-x 2 + (x + y). Since m1 2! 1, Equation A.12 implies

that x + y < 0. Therefore, f3 (m + x, m + y) < f3 (m, m,) = C whenever x + y < 0.

This shows that C; is the global maximum of C3 under the constraints of

Equation A.12 and m1 ? 1. This gives (b).

I 1
If L = 4, m =j'(N - 1) - M4 , m3 = -j(N - 3), and N4 is arbitrary for the

moment, then

+ X, m3 + y, m4 ) = -4N+ 1]2_ x2 + m 4(x+y)= Ci- x2 + m4(x +
4

As in case (b), m1 > 1 and Equation A.12 implies x + y < 0. Therefore,

f4(m;+ x, m + y, m4 ) : f4 (m2, m, m4) = C4 whenever (x + y) < 0, and for all

m4e R. This shows that C4 is the global maximum of C4 under the constraints

of Equation A.12 and m1 > 1, independently of the value of N4 . However, in

our setting, we must have I - m4 < L(N - 3). The lower bound on m4 is clear.

The upper bound is obtained by noticing that ml = 2(N - 1) - M 4 > 1. This

completes the proof of Theorem 5.3. //i
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