
(0
(hO

Z. "'

Radical Computing II

Saul Amarel
Curtis G. Callan, Jr. -.
Alvin M. Despain
Oscar S. Rothaus

A:ces6'i, For
NTIS CA&I

U .a': 8'.te .

J,,s~ iic~ ~oL.............

By

..

June 1984 Dist SP,

JSR-83-701 __

Approved for public release; distribution unlimited.

JASON

The MITRE Corporation
1820 Dolley Madison Boulevard

McLean. Virginia 22102

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ('hen Data EnteredO

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMB3ER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

.TAR-R3-701 - I _

4. TITLE (and Subttie) S. TYPE OF REPORT & PERIOD COVERED

Radical Computing II

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(,) S. CONTRACT OR GRANT NUMBER(a)

S. Amarel, C. Callan, A. Despain, F19628-84-C-OO1
0. Rothaus

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

The MITRE Corporation AREA & WORK UNIT NUMBERS

1820 Dolley Madison Blvd.
McLean, VA 22102

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

July 1984
13. NUMBER OF PAGES

75
14. MONITORING AGENCY NAME & AOORESS(If diffent treat Congtrolng Office) 15. SECURITY CLASS. (of this report)

iSe. OECL ASSI FICATION/DOWNGRADING
SCHEDULE

I6. OISTRIBUTION STATEMENT (o' ihle Report)

17. DISTRIBUTION STATEMENT (o the abetrct mtered In Block 20, It different rew Report)

I8. SUPPLEMENTARY NOTES

IS. KEY wORDS (Continue on reverse side it necessary mid identify by block number)

20. ABSTRACT (Camthw so reverse dif if mtcedte m* identify by block mber)

This report continues JASONs investigation of
techniques that might

be used to achieve a radical improvement in digital computer per-

formance. The 1982 report investigated "residue arithemetic" and
"symbolic computing;" this report extends the discussion of
"symbolic computing" into "source program transformations" and

a new topic ".eersible Computing."

FORK
DDIJAw 147n ETON Of INOV G IS OBSOLETE UNCLASSIFIED

SECUITY CLASSIFICATION OF THIS PAGE (When Dote Entered)

•Acknowledgement'
We are grateful for discussions with Nils Nilson of SRI and Edward Fredkin of M.I.T. Dr.Nilsson consulted with us on the artificial intelligence approaches to program transformations.

Dr. Fredkin, who pioneered the reversible logic developments, provided extensive consultation inthat area. We are also grateful to all our colleagues in JASON for inspiring discussions and help-
ful criticism. In particular, Peter Banks, Ken Case, Freeman Dyson, Doug Eardley, PaulHorowitz, Allen Peterson, William Pres and John Vesecky all made contributions to this report.

TABLE OF CONTENTS

1. IN T R O D U CT IO N .. 1

1.1. HItistory ... 1

1.2. Scope .. 1

1.3. Nature of Difficult Computing Problems ... 1

1.4. Lim itations to High Perform ance .. 2

1.5. Possibilities for R adical Im provem ent .. 2

1.5.1. Sm aller sized com ponents ... 2

1.5.2. T ransform ation of program s ... 2

2. PROGRAM TRANSFORMATIONS .. 3

2.1. M otivations ... 3

2.1.1. Program developm ent techniques ... 3

2.1.2. Perform ance ... 3

2.1.2.1. A lgorithm im provem ent .. 4

2.1.2.2. A lgorithm concurrency .. 4

2.2. R equirem ents for T ransform ation .. 4

2.2.1. Language ... 5

2.3. PR O LO G .. 5

2.3.1. History .. 5

2.3.2. A nalysis ... 6

2.3.3. PR O LO G Structure .. 6

2.4. PROLOG Transformation Rules 8

2.5. R ecurrences ... 12

III

v

8. AP PEN DIX ES .. 59

1. INTRODUCTION

1.1. History

During the 1983 JASON summer study w continued or investigation of techniques that

might be used to achieve a radical improvement in digital computer performance. In odr previous

study we investigated "residue arithmetic' and "symbolic computing"[lj. In this report we-will

discuss an extension of our "symbolic computing' into "source program transformations and a

new topic, "reversible computing".

1.2. Scope

The general goal of o4r earlier study was to iden ify new approaches for computer system

development. The goal of this report is the same. Wwill try to identify critical mathematical

and computer concepts that could lead to a radical increase in future computer performance, in

calculating important, and currently difficult, problems. --

1.3. Nature of Difficult Computing Problems

There is a set of difficult computing problems that have great economic importance. This

domain is characterized by massive numerical calculations, symbolic calculations and search. For

example, the design of a modern VLSI circuit involves symbolic calculations (calculus, etc.),

numeric simulation of analog circuit properties, and search over a design space to find a near-

optimal (or even sometimes just a feasible) solution. Today such problems are solved by a combi-

nation of human labor and machine calculations. Symbolic calculations are either done by hand

or by use of a symbolic system such as MACSYMA[21. Then these results are hand converted

into a FORTRAN program, or parameters for a SPICE program[3] run. The results from the

above analysis would then be examined by hand, and new computer runs would be made. Slowly,

a design for a VLSI chip would evolve. A single design for a VLSI can cost tens of million of dol-

lars for the human labor alone. The greatest difficulty in improving this process is the difficulty

of implementing an automatic search that is efficient, i.e., not exhaustive. As we shall see, sym-

bolic manipulation will aid the solution of this problem.

2

1.4. L~! tatlons to High Performance

The primary factors that limit the performance of today's computers are:

(1) The speed of light limits how fast signals can be propagated throughout a computer.

(2) The serial nature of computer calculations limits parallel execution.

In the past, computer performance has been improved by improving the speed of the logic

gates; this approach is becoming more difficult every year as integrated circuit techniques are

maturing. Currently, the heat dissipation of logic circuits prevents them from being packed closer

together, and the resulting separation causes, due to the finite speed of light, an inherent propaga-

tion delay that limits the performance of serial machines. To break this limitation, either a

totally new technology of radically smaller dimensions and efficiency in power dissipation is

required; and/or new organizational principles for parallel execution of computer algorithms are

necessary.

1.5. Possibilities for Radical Improvement

1.5.1. Smaller sized components

To achieve a radical improvement then, we can seek radically smaller logical components

with radically improved efficiencies. A speculative approach to this problem will be considered

later in this report. If these components are sufficiently fast, then our current, serial designs for

computers will suffice. If not, then concurrent execution techniques will be needed to achieve a

radical improvement.

1.5.2. Transformation of programs

Since humans are not always good at expressing tasks in either efficient or concurrent form,

we will need to develop techniques to transform source programs. This will require symbolic

manipulation of source program fragments.

3

2. PROGRAM TRANSFORMATIONS

The main task of a compiler is to transform a source language into an object language.

Improving the efficiency of the resulting program is the purpose of compiler optimizations. The

ideas for this stem from compiler theory, structured programming[4], and artificial intelli-

gence[5,61. Cocke and Allenl7I discuss about twenty transformations for compilers. The transfor-

mation of source programs into new source programs is not a new idea. It has been widely advo-

cated as a method of developing programs, of improving the efficiency of programs and of discov-

ering concurrency[8].

In the past, such efforts have only been partly successful. First, classic methods of optimiza-

tion in compilers have been very successful and have relieved some of the pressure for source-to-

source transformations. Second, classic source languages (such as FORTRAN) were ad-hoc

designs and the corresponding algebra of the programs was extraordinarily difficult. Backus, the

father of FORTRAN, has examined this problem and suggested some new directions[9]. The

computer language 'fp' was a result of this effort. Finally, it has been only recently that an

increasingly powerful drive to use parallel computers has existed. As a result, transformations to

convert serial constructs into concurrent ones are becoming increasingly important.

2.1. Motivations

2.1.1. Program development techniques

The "Operational Program Development" technique[10] is a good example of a new method

for developing software. The basic idea is to begin with a specification of a program that can be

executed, at least at a high level. Then this specification is transformed into a complete, detailed,

and efficient source-program. The proponents of this method claim it is a fast, inexpensive, and

relatively error-free method of software engineering.

2.1.2. Performance

In this report, our primary focus is on performance. Techniques that could lead to a radical

improvement are of especial interest. There are two approaches to this that we discuss next.

4

2.1.2.1. Algorithm Improvement

It is difficult (perhaps impossible) to prove that source-to-source transformations can always

provide a radical improvement, even to programs that are very large and highly structured. How-

ever, some examples can provide evidence that such transformations have potential for a radical

improvement on very large and difficult computing problems. For example, consider the discrete

Fourier transform (DFT) of size N. It has a computational complexity of 0(N) . This transform

can be transformed (by humans) into the fast Fourier transform (FFT) of complexity

O(Nlogn)111. A typical value of N might be N = 1000, so that a hundred-fold improvement

results. Such a transformation is currently beyond the capabilities of any automatic system, but

as we shall see, such systems might be developed in the future.

2.1.2.2. Algorithm concurrency

Sometimes it is easy for a programmer to envision the potential concurrency in a program

he is writing. The concurrency in a large matrix multiply is easy to see, for example. At other

times it is very difficult to envision and express concurrency even when the programner knows it

must exist. For example, consider the addition of two very big numbers. We all have learned a

serial algorithm to perform such additions. It is universally known among programmers that

modern digital computers have parallel hardware to perform addition, yet almost no programmer

could describe in detail the highly-concurrent algorithm that is embedded in the machine

hardware. The serial carry operation for a 32-bit adder requires approximately 64 time steps,

while the parallel (carry-lookahead) algorithm requires only about 10 time steps. Humans some-

times can articulate only the serial form of a calculation to be performed. Thus the need for

automatic transformation of programs from serial to concurrent form.

2.2. Requirements for Transformation

There are a number of requirements of a language so that it will facilitate source-to-source

transformations. The language should be at a high enough level that important structures of the

original problem have not been lost. There needs to be a clean algebra of the language that

describes permissible transformations[91.

2.2.1. Language

In the past, the programming languages employed in the programs that were transformed

generally included both popular languages such as FORTRAN where the need was great, and

languages with special features that made them attractive for transformation, for example,

LISP[12], APL[131, and SETL[14]. More recently, it has been suggested that program languages

should be designed with transformation in mind. John Backus has been the main proponent of

this and has proposed the language 'fp'19]. The recently developed languages LUCIDl15],

KRC[16], and PROLOG[17] all show a regard for the "algebra" of the language. In addition,

there have been attempts to improve the algebraic properties of popular languages; for example,

Loveman's work with a FORTRAN-like language[18. We will choose PROLOG for our work in

this report.

2.3. PROLOG

2.3.1. History

Interest in the PROLOG language is growing very rapidly, roughly doubling every year.

Recendy, in Japan, it was adopted as the primary language for the "Fifth-Generation Computer"

project. It is not yet very popular in the United States, probably due to the very mature pro-

gramming environment surrounding the LISP language and also to "NIH" factors. In the dis-

cussion that follows, it is assumed that the reader has some familiarity with the PROLOG

language. A good tutorial on PROLOG by Clocksin and Mellish[191 is recommended for those

readers not familiar with PROLOG. The basic idea for employing Predicate Calculus as a basis

for a programming language can be credited to Kowalski[201 (England). Since the algebra of

Predicate Calculus is especially well defined, the algebra of programming languages based on it

are likely to also have an especially well defined algebra. Colmerauer, in France, adapted the

theoretical ideas of Kowalski to a practical programming language, PROLOG[17].

NIH signifies 'Not Invented Here'

6

2.3.2. Analyals

An analysis of the PROLOG ianguage will reveal several important features. First, the

language is b-,ed on Predicate Calculus and inherits much of its formal structure. Second, any

useful computer language must deal with 'side-effects', particularly data input and output. These

'side-effects' disturb the otherwise clean algebra of the language. Third, PROLOG generally sub-

sumes the LISP language without any particular difficulty and without mucl violence to desirable

algebraic properties. Fourth, the 'cut' operator of PROLOG, a difficult construct to handle in

algebraic transformations, is used in several very distinct ways. The 'cut' does not modify the

semantic of the constructs it appears in, pro', ided they contain no 'side-effect' operators. Its most

pervasive use is in situations where only one of several possible choices are to be made. This is

the 'CASE' statement of more familiar languages. Unfortunately, 'cut' is also used for much less

transparent constructs. The main use of the 'cut' is to improve the efficiency uf the program by

preventing useless calculations. The 'cut' operator, in general, causes grave problems during

transformation of program fragments that contain it.

We have two reasons to employ transformations: First, we want to improve program

efficiency, and second we want to increase program concurrency. Since "side-effects" generally

inhibit concurrency, it is natural for us to partition a PROLOG program into parts that are

separated by "side-effect" operations. Within the "side-effect"-less parts, we can freely apply a

large repertoire of methods to achieve efficiency and concurrency. Unfortunately, we cannot use

many of our transformation methods on those parts that contain i/o and other "side-effect" opera-

tions.

2.3.3. PROLOG Structure

The structure of a PROLOG program is illustrated in Figure I. At the top level is the data

base and the query. The data base is a collection of procedures. Procedures are collections of

clauses, all of which have the same name. Clauses are Horn clauses from the predicate calculus,

sometimes augmented with 'cut' operators. There are two kinds of clauses, 'faczi' and 'rules'. A

fact has only a head consisting of a predicate name and any arguments surrounded by

Prolog Program

Query

Data Base

Procedure

Fact

Clause

Body

Head Goal Goal

Figure 1. Prolog program structure.

8

parentheses. For example, 'f(0,0).', is a fact. A rule is a 'head', as described above, connected to

a 'body' by the IF operator ':-'. The body is a collection of 'goals', each of which has the syntax

of a 'head'. Thus, for example,

f(A,B) :- g(A,X), h(X,B).

is a rule that is read as "Function f with argument A and B will be true IF function g of argu-

ments A and X is true AND if function h with arguments X and B is true ." The variable argu-

ments, indicated by an initial letter that is upper case, are all assumed to be universally

quantilied.

Rules can be recursive as in the following function to sum the positive integers up to N.

f(0,0).

s(N,S) :- M is N-1, s(M,G), S is N+ G.

PROLOG constructs can be related to concepts of conventional programming languages as

follows in Table 1.

Table 1. Comparison of Programming Languages.
PROLOG CONVENTIONAL LANGUAGES

cut if-then-else: case
goal procedure call

clause entry point of a procedure
,!nification assignment, data selector and constructor
recursion iteration and recursion

The special form of PROLOG constructs are especially helpful in the program transformations to

be discussed below.

2.4. PROLOG Transformation Rules

PROLOG supports several forms of mathematics. We have previously mentioned that

predicate calculus is the basic form of the language. Table 2 illustrates the basic definition of the

predicate functions and the corresponding PROLOG functions.

g

Table 2. Definition of Predicate Functions.
Predicate X Y X Y X v y X D Y -X
Calculus I

PROLOG x y x,y ; :-x not(x)
false* false false false true true
false true false true true true
true false false true false false
true true true true true false

*In PROLOG, 'false' is replaced by 'fail'.

In predicate calculus there are a large set of transformation rules that can be directly

adapted to transform PROLOG fragments. Table 3 summarizes all these transformations,

Table 3. Summary of PROLOG Transformations.
Type Classification Components

Definitions not, and, or, implies
Propositional association, commutation,

Basic Calculus distribution, contraposition,
DeMorganization, negation

Resolvents modus ponens, merge, tautology,
chaining, equivalence

Recurrences head, tail, mixed, multiple

Derivations chaining

Derived In-line expansions, contractions
Caching
Partial
Compilation

and Table 4

10

____________Table 4. Basic Transformations.
NAME Predicate Calculus -PROLOG (no side-effects)

X DY <=> -Xy y:-x. < >
Definition -(Z) < > z t:-not(z). <-> :Z

_______________ _________________________________ w:-not t).-

(X-Yhz <=> x -(Y -Z) w:-x,y,z. <=> w:-y,z,x.

Association V:-X. v:-y.
(XvY)vZ <=> Xv(YvZ) v:-y. < > V:-z.

V:-z. v:-x.
w:-y. r:-x~y.

u:-x,w. u:-r.

Distribution r:-x.u:-x.
r:-y.

xv (Y-Z) <=> (XVY)-(XVZ) < > s:-x.
s:-z.

u:-y,z. u:-r,s.
X'Y <=> Y-X u:-x.y. < > u:-y,x.

Commutation x < > Y u:-x. <=> u:-y.
u:-v. u:-x.

-(X.Y) <:=> -X "-Y U:*-xly. < > u:-not(x).
________________________ :.not(u). -v:-not(y).

DeMorganization U :-x.
-(XVY) <=> -X- -Y u:-y. <=> v:-not(x),nol~y).

V :.not U).
y:-x. y:-x.

Contrapositive X D Y <=> -Y D -X u:-not(x). <=> z:-not(y).
____ ___ ___ ___ ____ ___ ___ ___u:-z.

u:-not(p).
Modus~onens P-(-PvQ) <=> Qu:-q. < > v:-q.

____ ___ ____ __ ___ ____ ___ ___ ____ ___ ___ v:-p,u.

U :-p.
u:-q.

Merge (PVQ)- P VQ) < => Q v:-not(p). <=> r:-q.
v:-q.

____ ___ ____ __ ___ ____ ___ ___ ____ ___ ___ r:-u,v

(PVQ).(-PvQ) <=> (Q v-Q) u:-p,q.

Tautology v:-not(p),not(q). <=> r.

(PvQ).(P V-Q) <=> (P v-P) r:-v.

Nil -P,.P <= nil r:-p,not(p). <=> r:-fail.

Chaining PDQ-QDR <=> PD q:-p. <= :-p.

11

and Table 5 provide more detail.

Table 5. PROLOG Derived Transformations (Examples).
NAME Transformation

Chaining x:-ax.
y:-ay. <-> u:-ax,ay.
u:-x,y.

RECURRENCES

head r(O). r(O).
r(A):-r(B),f(A,B),g(AB). <> r(A):-OA.B), r(B), g(A,B).

mxdr() < >r().r(A):-f(A,B), r(B), g(A,B). <> r(A):-f(AB), g(AB), r(B).

mi r(O). <=> r(0).

r(A):-f(A,B), g(A,B), r(B). r(A):-r(B),f(A,B),g(A,B).
r(O). s(0,1).

multiple <=> single r(l). <=> s(A,B):-f(A,B), s(A,B).
r(A):-f(A.B,), r(A), r(B). r(A):-s(A,B).

<---> r:-a,z.In-line r:-a.r,z.

f:-s,t.
Expansion & Contraction r:-a,s,t,z. <> r:-a,f,z.

a(O). a(O).
Caching a(1). a(1).

b(x):-a(y), x is 2*y. <=> b(O).
b(0)? b(1):-fail.
b(1)? b(x):-a(), x is 2*y.
a(O). a(O).
aM1. _ a(1).

Partial Compilation b(x):-a(y), x is 2*y. 1b().
b(2).

For example, in Predicate calculus if a D b (read this as a implies b) and b D c , then it can be

concluded that a D c. Similarly, the PROLOG fragment

b :-a.

c b.

can be transformed (if there is no other use of b) into the simplified fragment:

c :- a.

PROLOG also supports the algebra (and arithmetic) of the reals (both integer and floating point)

within a goal. Thus a goal can be an arithmetic construction such as "Sum is A + 3 * B". In

12

the usual algebraic way, fragments such as

... ,BisA+ 1, sumisA+ 3*B,...

can be simplified (if there is no other use of B) into

... ,sum is4*A+ 3,...

2.5. Recurrences

Recurrences can appear in three forms, as in the following function to sum the positive

integers up to N. This is a mixed recurrence.

s(O,O).

s(N,S) :- M is N-1, s(M,G), S is N+ G.

Tail recursion is an especially desirable form because it is very efficient in terms of use for

memory. It is equivalent to a 'DO' loop in FORTRAN. An example of tail recursion for the

same sum-the-positive-integers task is;

s(N,S) :- s(N,O,S).

s(O,S,S).

s(N,A,S) :- M is N-i, B is A+ N, s(M,B,S).

Both of these recursions have roughly the same number of execution steps; however, the tail

recursion has need for much less memory (space) and so is, all other factors being equal, more

desirable than the first form. Note however the cost. The first form is a bit more compact and is

easier to comprehend.

2.5.1.1. Head Recursion

Above we discussed general (or 'mixed') recursion and tail-recursion. A form we will name

'head-recursion' will .Iso be important for our transformations. Consider our previous mixed-

13

recursion example of summing the possible integers up to N. By transforming the first goal, (an

arithmetic statement) into N is M + 1, and re-arranging the goals according to the predicate cal-

culus commutative rule we obtain our 'head-recursion' form.

s(O,O).

s(N,S) :- S(M,G), N is M + 1, S is N + G.

Because of the default computation rule employed by the PROLOG evaluator, this is not an

efficient form but does, of course, have the same semantics as the original form. This 'head-

recursion' form will be important in later transformation examples.

2.8. Comments

These three forms illustrate the goal of our transformation method. We seek transformation

algorithms to convert at will between these forms.

14

3. EXAMPLES

In this chapter we will examine five different transformation problems. Each represents an

important process for achieving efficiencies and/or concurrency.

3.1. Triple Append

This problem, in a LISP environment, has been examined by Wegbreit[21]. Because of the

differences between LISP and PROLOG, it is instructive to see how the PROLOG version differs

from the LISP one. The problem is to join together three lists, using the usual algorithm for join-

ing two lists. Then the result is transformed into a more efficient form. The definition for

appending one list to another is:

append ([],Z,Z). append (IXH I XTI, YXH I Zr) :- append (XT, Y,ZT). 2

In order to more easily manipulate our programs, we will use an abbreviated form as follows.

a([l,Z,Z).a(IX I Xr!, Y,fXH I ZTl):-a(XTyz1

The result is that list Z is the list Y appended to list X. To join three lists A,B,C into the single

list D, we employ the above PROLOG procedure and define our three list append as:

b(A ,B, C,D):-a(A ,B,E),a(E, C,D).

Now this is a perfectly acceptable program. It can be improved however. Notice that first list A

must be traversed in order to append list B. Then in the next goal, list E, composed of lists A

and B must be traversed to append list C. The cost is then 21A + 1B procedure calls to a, where

1, is the length of list X. This cost might be reduced to 1A + 1B by program transformation. To

do this consider two cases:

Case1 A =[-].

List A is null.

2 In PROLOG, given a list, the notation [HIT) indicates that H is the first item of the list and T is the remainder.

15

b([],B,C,D):- a([,B,E), a(E,C,D).

but a([],B,E) :- true if E + B. (by partial evaluation)

Thus

b([],B,C,D) :- a(B,C,D).

Case 2 A [J

b([A I ATI,B,CjLD I DrTl):-aQ(A. I ArI,B,(E.I Er),a([EH I ETr,C,IDn D]T)

but a

([AH I A TI,BIEH I ETI):-a (A T,B,Er)IFEH = AH

(by partial evaluation). Thus

b([AH I AT] ,B,C,IAH I AH I DTI):-a(Ar,E,ET),a(ET,C,DT).

Now by the derived-chaining rule, the r.h.s. is defined by the original definition of b;

b([AH I ar],B,C,IAH I DI):-b(Ar,B,C,Dr).

This new procedure is thus

b(I,B,C,D):-a(B,D ,D).

b([AH I A ,B,C,[AH I D7rI):-b(Ar,B, C,Dr).

This is more efficient. It calls itself 1A times and calls a, 'B times, a saving of 'A calls.

3.2. Flbonacci Recurrence

In the next example, we define a procedure to calculate the Nth value of the Fibonacci

sequence. The Fibonacci sequence is

1,1,2,3,5,8,....

when f,"-f,- + f,-2-

In PROLOG this is

fib(O, 1).

fib(l, 1).

18

fib(N,F) :- M is N-i, fib(M,G), L is N-2, fib(L,H), F is G+ H.

This is very inefficient. The separate calculations of fib on the r.h.s. often calculate the same

values. It has a complexity of 0(2N. We will transform it to a more efficient form. For nota-

tional purposes we will compress the above procedure as follows.

f(O, 1).

f(1,1).

f(N,G+ H) :- f(N-1,G), f(N-2,H).

Now let us define a new clause to represent the r.h.s.

g(N-1,G,N-2,H) :- f(N-1,G,), f(N-2,H).

thus

g(N,F,N-1,G) :- f(N,F), f(N-1,G).

f(N,G+ H) :- g(N-1,G N-2,H).

and

S(1,,H ,1 :-f(1,j), f(0,1).

now since

f(N-1,G) :- f(N-1,G).

f(N-1,F) :- f(N-1,G),f(N-2,H) F is G+ H,

then by the derived-chaining rule,

f(N,F), f(N-1,G) :- f(N-1, G), f(N-2,H) F is G+H

thus

g(N,F,N-1,G) :- g(N-1,G,N-2,H), F is G+ H.

In canonical form:

g(1, 1, 0,1).

g(N,F,M,G) :- M is N-i, L is M-I, g(M,G,L,H), F is G+ H.

Note that L now has no particular function.

Thus

17

g(l,1,1).

g(N,F,G) :- M is N-i, g(M,G,H), F is G+ H.

This is a much improved algorithm, with a complexity of 0(N). Thus it has only about N calls,

far fewer than the number of calls of the original algorithm. It is possible to find an algorithm

that is of only 0(1o9 2N) complexity as opposed to the 0(N) complexity of our present algorithm.

It turns out that for large N (approximately N = 50) this new algorithm is an improvement. The

basic idea of the new algorithm is to turn the 'mixed-recurrence' into a 'head-recurrence' and

solve it using matrix techniques. The improved recurrence derived above is:

g(M,F,G) :- L is M-1, g(L,G,H), F is G+ H.

This is equivalent to:

g(I,M,F,G) :- L is M-1, g(I,L,G,H), F is G+ H.

g(1,M,F,G) :- g(l,L,G,H), M is L+ 1, F is G+ H.

g(I,M,F,E) :- g(I,L,G,H), M is L+ 1, F is G+ H, E is G.

g(1,M,F,E) :- g(l,L,G,H),

1 is 1,

M is L+ 1,

F is G+ H,

E is G.

We now solve for the initial condition:

1, 1, 1,1).

Now, converting to matrix form:

18

g(1111i~)M = 10001100111 Il

The matrix can be expanded by calculating successive squarings with only (log M) complexity.

3.3. Arithmetic Series

This example illustrates the power that transform techniques can sometimes achieve. Con-

sider a general arithmetic series involving polynomials. Such a form often appears in the 'do'

loops of FORTRAN programs. An example as it would appear in a language similar to FOR-

TRAN is:

f(O) = 0.

do (n <- 1,N)

(f(n)<-f(n-1)+ n**4-4*n**3+ 3*n**2-2*n+ 1).

This can be expressed in PROLOG as:

f(0,0).

f(N,F) :- M is N - 1,

f(M, F1),

F is FI + N*N*N*N - 4*N*N*N + 3*N*N - 2*N + i.

Note that the complexity of this program is 15N arithmetic operations.

It is possible to automatically transform any such arithmetic series by means of a PROLOG

program written by Peter Van Roy (unpublished). This program is provided in Appendix A-1.

The improved form for f as automatically generated by Van Roy's program is:

f.3, }:-_.6 is

((((-6_3+ 15)*.3+ 20)',3+ 15)*3+ -14)*3/-30.

In more readable form this is:

f(N,F):- F is

((((-6*N+ 15)*N+ 20)*N+ 15)*N-14)*N/-30.

Now note that this solution is much simplified. Its complexity is only 10 arithmetic operations,

independent of the value of N.

3.4. Head Caching

In a simple PROLOG interpreter, once a goal fails, all the context of its sub-goals, both

those that failed and those that succeeded, is destroyed by popping both the environment and the

value stacks.

Later, if these same sub-goals are encountered, all the work of proving them must be

repeated. This work could be avoided by storing the heads of the clauses and the result of the

evaluation. In effect we wish to add a new clause to the data base.

It can be seen that this technique enhances performance at the cost of memory space (to

store the cache entries). The modern trend seems to be ever decreasing costs for memory, so this

may be an attractive method to improve performance for some applications that are more titme-

bound than space-bound.

This technique is not a general one that should be universally applied. For example if a

procedure is being used as a generator of values, it is not appropriate to cache its intermediate

results because they could be scrambled (in order of appearance) by caching. Also, if side-effect

operations occur, such as assert or read, then caching can change the expected behavior of the

executing program. It is also true that some cached values are much more valuable than others,

so some selectivity in caching is desirable to optimally utilize memory space.

Our method of overcoming these drawbacks is to add a new mode declaration to the PRO-

LOG interpreter language. Warren[221 used this method when he introduced his operator

"mode'. Clark and McCabe 1231 elaborated on this and introduced several more mode operators.

We propose a "cache" mode operator to declare the desirability of caching a named procedure.

Thus if we wished to cache the results of the "ancestor" procedure, we would include 'cache

(ancestors)." in the program.

20

As a result, the programmer can select only those procedures for caching, that are likely to

be greatly improved by caching. Procedures at too low a level to benefit from caching, generator

procedures or procedures with side-effects can be avoided (in the most natural way) for caching

purposes.

In order to illustrate the potential of this method, we will examine expand an example pro-

gram, a procedure to determine if two people are related. It is:

related (X,Y):- ancestor (X,Y).

related (X,Y):- ancestor (Y,X).

related (X,Y):- ancestor (X,Z), ancestor (Y,Z).

Thus two people, X and Y are related i'" one is the ancestor of the other or if they have a common

ancestor, Z. In order to compress the bulk of the programs to follow, we will reduce all the names

in our example to simple letters, the first letter of the name. The compressed program follows

where m represents male, c represents child, and f represents father. The letters t,j,g,b,v, all

represent individual people.

m(t).

m(j).

m(g).

m(b).

c(v.g).

c(g,b).

c(j,g).

c(tj).

f(X.D):-m(D),c(X.D).

a(A,X):-f(A,X).

21

a(A,X):-f(Y,X),a(A,Y).

r(X,Y):-a(X,Y).

r(X,Y):-a(Y,X).

r(X,Y):-a4X,Z),a(Y,Z).

As a measure of performance we will count calls to clauses. This is roughly proportioned to

the number of logical inferences (LI)3 since for our example there are about two logical inferences

(LI) per clause.

For purposes of illustration, we will be interested in a compound luery: 'Is t related to v?'

followed by: 'Is v related to t?'. We wish to know the number of calls required to answer this

query.

It is a simple matter to instrument our example program and count each call. We define a

count procedure 'cnt (x)' and call it just as we start the execution of the body of the clause (See

Appendix A-2). A much more elaborate version of this will be discussed later. When the query is

then executed, the first half of the query 'r(t,v)?' requires 59 calls and the second, 'r(v,t)?', 35 calls

for 94 total.

How much could caching reduce this figure? One way to find out would be to re-write a

PROLOG interpreter to include the "cache" operator as discussed above. In this study however,

we re-wrote the example program to call a -imulated cache system. One might imagine that each

of the statements was specified to be cached, and the 'logical' consequence is the re-written pro-

gram.

This system was implemented to produce the measurements of the numbers of calls and a

trace during execution of queries. The simulated cache was written in PROLOG and our meas-

urements were made with a conventional PROLOG interpreter. The re-written example is:

LI for Logical Inferences seems to have become the accepted measure of work in executing logic programs. The
more common form is 'LIPS* for 'Logical Inferences per Second'. We assume an LI is the unification of a simple vari-
able.

22

m(t):- cnt(m).

m(j):- cnt(m).

m(g):- cnt(m).

m(b):- cnt(m).

c(v,g):- cnt(c).

c(g,b):- cnt(c).

c(t,j):- cnt(c).

f(X,D):- hf(f,X,.XP ,D,DP), m(D),c(X,D), tf(f,X,)P,D,DP).

a(A,X):- hs(a,A,AP,X,XP), f(A,X), ts(a,A,AP,X,XP).

a(A,X):- ht(a,A,AP,X,.XP), f(Y,X),a(A,Y), tt(a,A,AP ,X,XP).

r(X,Y):- hs(r,X,XP ,Y,YP), a(X,Y), ts(r,X,XP,Y,YP).

r(X,Y):- hs(r,X,XP ,Y,YP), a(Y,X), ts(r,X,XP,Y,YP).

r(X,Y):- hf(r,X,)P,Y,YP), a(X,Z),a(Y,Z), tf(r,X,XP,Y,YP).

cache(f).

cache(a).

cache(r).

The cache simulation program can be found in Appendix A-2.

There are four kinds of calls to the cache system. These are hs,hf,ts,tf. For a procedure with

on;) a simple clause such as Tf, we employ 'hf' and 'tf'. The first, 'hf', creates a cache entry that

represents the failure of this clause with the variable bound as the original clause was called. If

the clause indeed fails, then nothing further happens and the cache entry remains. On the other

hand, if the clause should succeed, then this clause entry must be replaced by a entry representing

success, but with the new binding determined by the body of the clause. This is the function of

23

'tf' which appears at the end of each clause. If backtracking within the clause occurs, then each

successful result must also be entered into the cache.

For multiple clause procedures, only the last clause can indicate a failure, so there is no

caching at the head of any clause except the last clause of a procedure. The call 'hs' is just used

for instrumentation.

The call 'ts' is similar to 'tf' but since no "fail" was entered into the cache for this clause

none should be extracted.

The 'primed' variables (XP,ZP) that appear in the cache calls are needed because the vari-

able bindings cached by the "fail" at the beginning of a clause are not the same as those cached

by the "succeed" at the end. Thus to remove a previously cached "fail", those bindings must be

propagated from 'hf' to 'tf'.

In inserting a new entry to the cache, duplicates (if any) should be removed. Also if a more

general result is cached, and subservient ones should be deleted. For example if a(i,t):-fail. is ini-

tially in the cache when a(X,t):-fail is to be cached, a(i,t):-fail should be removed as it is dom-

inated by a(X,t):-fail.

The cache program that accomplishes the above objections is shown in Appendix A-2.

The performance results of our example with the cache system, are shown in Table 6.

Table 6. Summary of Results.
INITIAL CALL TOTAL CALLS

No Cache CACHE

r(t, v), v t) rv t), rt, v)
r(v, t) 35 5 32
r(t. v) 59 47 5
Both 94 52 37

Only 37 total calls are required in the cached system as compared to the 94 required in the

uncached system. It is interesting to note that if r(v,t) is called before r(t,v), then 52 calls are

needed. The cache scheme clearly saves calls in this simple example.

24

The state of the program after the query is shown below.

EXECUTED PROGRAM LISTING

m(t) :

cnt(m).

cnt(m).

mn(g) :

cnt(m).

m(b) :

cnt(m).

c(v,g) :

ec)

c(g,b) :

cnti)

c(j,g) :

cu t(c).

c(t,j) :

cnt(c).

f(j,g) :

cnt(f).

f(v,g) :

cnt(f).

f(t,j)

25

cnt(f).

f(1512,1513)

eq(_1512,t),

eq(-1513,v),

fail.

f1512,_1513)

eq(-1512,-1522),

eq(_1513,t),

fail.

f(1512,_513)

eq(_1512,v),

eq(_1513,j),

tail.

f(_..1512,_1513)

eq(_l52,..1522),

eq(_1513,v),

fail.

f(_1512,_1513)

ht(,-l51 2,-l522,15 13.-1523),

M(-1513),

c(_1512,513),

tf(t,_1512,_1522,_1513_1523).

a(v,g)

26

cut(a).

a(t,g) :-

cnt(a).

a(t,j) "-

cut(a).

a(1516,_1517)

eq(_1516,t),

eq(_1517,v),

fail.

a(1516,_1517)

eq(_1516,v),

eq(_1517,j),

fail.

a(1516,_1517)

eq(_5 16,v),

eq(_517,t),

fail.

a(_1516,_1517)

hsa_1516_1526,_1517,_1527),

fL_1516,_1517),

ts(a, 1516,_1526,_517,_527).

a{_1516,_..1517) :

h f(a,_1516__1526,_1517,_1527),

f_1528,_1517),

a(_1516,1528),

27

cnt(r).

r(t,v) :

cnt(r).

r(-1520,j5S21)

hs(r,_1520,_1530,_1521,_1531),

a(1520,_1521),

ts(r,_1520,_1530,_1521,_1531).

r(1520,1521) :

hs(r,_152.0,_1530,_1521,_1531),

a(521,_.1520),

ts(r,_1520,_530,_152.1,_1531).

rL-1520,-152)):

hf(r,1520,j530,521 ,j531),

a(..1520,1532),

a(1521,.1532),

tf(r,_1520,_1530,_1521,_1531).

count(Ievel ,2).

count(a,2).

count(r,3).

count(_1522-,0).

CALL COUNTS

Total calls = 5

28

Notice how it has been transformed. Both 'success-goals' and 'failure-goals', are evident, as

are the original clauses. This idea of transforming a PROLOG program leads us to another

related technique.

3.5. Partial Compilation

If all possible results of executing a procedure, called with all of its argument unbound, are

cached, then in some sense we have transformed a procedure into a 'partially-compiled' form that

executes particular queries very quickly. It may, of course, use enormous memory space. Again,

selective programmer control of such a facility could be effective. Thus we propose the mode

pcompile(Procedure-name)."

To illustrate the potential of this technique, we will include the statement "compile (a)"

with the example program, and the following procedures with the cache program.

% Partial-compiler for PROLOG Example.

% head(X,Y,Z) :- X(Y,Z).

% compensation for the principle

% functor not being a variable

head(f,Y,Z) :- f(Y,Z).

head(a,Y,Z) :- a(Y,Z).

head(r,Y,Z) :- r(Y,Z).

bead(fp,Y,Z) :- fp(Y,Z).

head(ap,Y,Z) :- ap(Y,Z).

head(rp,Y,Z) :- rp(Y,Z).

% compiler

p...compile(all) :- pcompile(X),

p.ompile(X),tail.

2

p....ompile(X): head(X,Y,Z), pexec(X,Y,Z),fail.

p_..ompile(X) abalish(X, 2),restore(X),!.

pexec(X,Y,Z) trans(X,XP),

ycache(XP ,Y,Z),!.

restore(X):-trans(X,XP),rts(XP,Y,Z),

ass(X,Y,Z),restore(X).

restore(X).

trans(f,fp).

trans(a,ap).

trans(r,rp).

a&,(fp ,YQ,ZQ):- asserta((fp(YQ,ZQ))).

ass(ap,YQ,ZQ):- asserta((ap(YQ,ZQ))).

ass(rp,YQ,ZQ):- asserta((rp(YQ,ZQ))).

rts(fp,YQ,ZQ):- retract((fp(YQ,ZQ))).

rts(ap,YQ,ZQ):- retract((ap(YQ,ZQ))).

rts(rp,YQ,ZQ):- retract((rp(YQ,ZQ))).

Execution of the compiler results in the following transformed program. Not counting the

compiler itself but only the original and program, 72 calls are required during the compilation.

EXECUTED PROGRAM LISTING

30

m(t)

cnt(m).

cnt(m).

m(g) :

cnt(ni).

m(b) :

cnt(m).

c(v,g) :

cnt(c).

c(g,b) :

ent(c).

cOj,g) :

cnt(c).

c(t,j) :

cn t(c).

f(_..41,..42)

hf(f,.41 ,.51 ,42,.52),

m(-42),

tf(f,_41, 51, 42,...52).

a(t,j) :

cnt(a).

a(v,g) :

cnt(a).

31

cn t(a).

a(g,b) :

cnt~)

a(t,g) :

cnt(a).

a(v,b) :

cnt(a).

a(j,b) :

cnt(a).

a(t,b) :

cnt(a).

r(49._50) :

hs(r, 49_-59_50,-60),

ts(r,-4g,59, 5O,..60).

r(...4,-50) :

hs(r,_49_-59, 5,60),

ts(r,..49,59__.5,60).

r(....4,..50) :

hbf(r._49__59__.50,.fiO),

aL49...6 1),

at..50,... 1),

tf(r,..49__59, 50,..60).

count(m,20).

count(Ievei,7).

count(t, 18).

32

count(a,18).

count(c, 16).

count(_51,0).

count(_51,O).

count(_51,0).

count(_.51,0).

count(51,0).

CALL COUNTS

Total calls = 72

Now the compound query requires (without further caching) 11 calls as compared to the 94

original calls. Note that even for this query, fewer total calls are needed (72 + 11 = 83).

It is a waste of effort to also compile 'r once 'a' is compiled. Some speed up (from 11 to 2

calls) could result if 'r' were compiled, but this would cost considerable space for little gain. It

can be seen that selective pseudo-compiling can sometimes be very helpful in improving perfor-

mance.

For similar reasons, employing caching after compiling 'a' would not help performance.

3.5. Comments

The above examples illustrate the potential of the transformation techniques. However, all

of the examples were quite simple and half of the examples were transformed by hand, not

automatically. The problem of automatically controlling which transformations should be applied

is a very difficult open problem.

A future goal is the automatic transformation of the DFT algorithm into the FFT algo-

rithm. Another is the development of the Strassen algorithm1241. Both of these problems have a

common background; roughly speaking, they both appear to be connected to certain questions in

33

the theory of representations of finite groups, a fairly well developed body of mathematica

knowledge. To solve these and related transformation problems, a program, similar to the Van

Roy solver program discussed above, would need to be developed. Such a program would have to

know not only all the facts about group representations but would also have to be able to sense

that this particular area held some facts and techniques which might be relevant to the problem

at hand. Such a program is likely to be very complex. It is not at all clear that it could be

developed as an expert (mathematician) system, even if massive resources could be provided. It

may even be the case that such a program could not be developed without some new break-

through in the theory of artificial intelligence, or the development of some new kind of mathemat-

ics.

On the other hand, it is ?ossible that a clever mathematician or computer scientist just

might discover a new approach. Such a discovery could have tremendous consequences for high

performance computing.

3.7. Conclusions for Transformations

The above examples achieved performance enhancements ranging from speed-ups of 1.5 to

3000, on very simple problems. However, it is true that these examples constitute plausibility

arguments. not proofs, that transformation techniques may be important for achieving a radical

improvement in performance. To have a big impact, such transformations would need to be

automatically controlled during program execution, so that as more elements of the solution are

developed, new transformations can be applied. There is currently very little theory to guide

such dynamic applications of transformations. If future research is able to accomplish this, then a

radical improvement in performance could indeed occur.

34

4. REVERSIBLE COMPUTING

4.1. Introduction

Reversible computing was investigated in an attempt to determine if radically smaller and

more efficient logical circuits might be possible. As we shall see, density and heat dissipation

improvements up to -106 may someday be possible. We consulted one of the pioneers in this

subject, Dr. Edward Fredkin of MIT, at some length and brought ourselves up to date on the (not

very extensive) literature. Our basic conclusion is that the importance of reversible logic depends

crucially on the physical architecture of the computer: It is irrelevant to the current scheme in

which packets of charge are stored on, and moved between, structures of order one light

wavelength in size, but might be relevant and even essential if the basic information-handling

units were of molecular or atomic size (a distant but not necessarily unattainable goal). The ques-

tion of physical realization of reversible logic elements has been almost completely neglected ' in

favor of the abstract questions of how, given the existence of reversible logic elements, one could

wire them up to make a useful computer and how one would program it. We think that the prob-

lem of how to physically realize reversible computation at something like the atomic scale should

be the next question to be attacked in this area. We also think that the very framework of rever-

sible logic suggests some interesting new approaches to the problem of ultra-small-size computing

elements which might be worth exploring for their own sake. Although practical payoff on any of

these ideas is surely far off, the computer science and physics issues raised are fascinating and of

fundamental importance.

4.2. Energy Dissipation In Computing

Contemporary computers dissipate at least 10-12 joules (about 108 kT if T equals room tem-

perature) per logical operation. The reason is that bits are stored as charges on capacitors

charged to about one volt (the typical operating voltage of solid state electronic devices). Since

there is a lower limit to the size and capacitance of circuit elements that can be fabricated on a

4 apart from some interesting 'existence proof* work of Fredkin et. al.

35

chip using optical techniques, there is a lower limit to the energy associated with storing one bit.

That limit turns out to be the above mentioned 10-12 joules, and the current style of computer

logic causes that entire energy to be dissipated each time the state of a bit is changed 1251. The

resulting heat load is a major barrier to high speed computation. A major question is the extent

to which this dissipation is an inescapable concomitance of computation and to what extent it is

due to "inefficient" physical or logical design of the computer['26]. Information theoretic/thermo-

dynamic arguments have been used to suggest that there is a fundamental dissipation limit of kT

per operation for computers designed on current principles.

In thermodynamics there is a well-known connection between dissipation and the reversible

operation of heat engines. Standard computer logic elements, the NAND gate in particular, are

not even reversible as abstract logical operations, let alone as physical devices. It has been sug-

gested that if reversible logic functions are used, it is in principle possible to do computing with

zero dissipation[27, 281! In this scenario, the entire computing operation would have to be carried

out reversibly in analogy with the dissipationless operation of a reversible heat engine. It is hard

to evaluate the relative merits of two schemes which promise to reduce dissipation to O*kT (the

de-And limit for reversible logic) and l*kT (the demand limit for standard logic) per operation,

respectively, when the best dissipation achieved to date is 108 kT! We think it is worthwhile to

pursue the reversible logic scenario, not so much because it promises superior practical benefits,

but rather because it raises unfamiliar questions about the nature of computing and suggests some

interesting new approaches to the physical realization of computation.

There are two types of questions which arise when you pursue this line. First, there is the

question of what are useful reversible-logic functions, how they might be tied together to make a

useful computer and how such a computer might be programmed. These questions are all answer-

able in the abstract, without any reference to the physical realization of the system. This sort of

question is the major subject of the work of Fredkin and other pioneers in reversible logic and the

results are that manageable reversible-logic computers can be designed although they are in many

interesting ways different from conventienal computers. The second question has to do with phy-

sical realization of reversible computation: What sort of physical system ran be used, what

36

calculation speeds can be achieved, etc? Here very little is known, although many interesting

questions arise. We think this is the most important aspect of the reversible computation prob-

lem and have attempted to construct a framework for a serious exploration of these questions.

4.3. Physical Realizations of Computers

To establish a useful framework for our discussion it is helpful to remark that there are at

least two broad classes of physical realizations of computing machines. The most important dis-

tinction is between open (dissipative) systems and closed (conservative) systems. The distinction

is between systems in which the computational degrees of freedom are coupled to a "heat bath"

with which energy can be exchanged and systems in which the computational degrees of freedom

are effectively isolated from the rest of the world. The other essential distinction is between sys-

tems in which the computational degrees of freedom can be described classically versus those in

which they must be described quantum mechanically.

A dissipative system will behave in many respects like a heat engine. In particular it should

be possible to design it so that it is more and more reversible and less and less dissipative the

slower it runs. This suggests an interesting tradeoff between dissipation and speed of operation

about which we will be more quantitative in the next section. (The logical architecture of such a

machine could be either reversible or not.)

A conservative system is necessarily reversible because any closed Hamiltonian system is

reversible. In fact, it is physically reversible whatever its speed of operation and it would hardly

make sense for the logical architecture of such a machine to be anything other than reversible!

Any device in which the computational degrees of freedom are realized on a scale much

larger than atomic size will inevitably be dissipative: the total number of physical degrees of free-

dom vastly outnumber those directly involved in computation, and it is impossible to prevent

leakage of energy between the computer and the "heat bath". This is the case with all present-

day machines.

37

On the other hand, if the computational system were realized at the atomic scale, as some

kind of cleverly constructed lattice, for instance, then the computational degrees of freedom

would be a major fraction of the total number of degrees of freedom. In that case, the system

might function as a good approximation to a closed reversible Hami!tcnian system and the

choice of reversible logic structure would be essential. Needless to say, no one has any practical

ideas on how to realize such a computing system, though of course, the entire thrust of the

development of faster computation is toward physically smaller computing elements. The point is

that if atomic scale computing elements are ever achieved, reversible logic ideas may be most

appropriate for doing computation. The other important dichotomy in thinking about physical

realizations of computers is that between classical and quantum mechanical systems. This leads

to a two-by-two classification scheme which is shown in Table 7.

Table 7. "Two-By-Two" Classification Scheme.
OPEN CLOSED

Conventional Fredkin's Billiard
Classical Machines Ball Machine

Quantum Josephson Future Atomic
Mechanical Junction Scale Machines ?

IMACROSCOPIC MICROSCOPIC

Current computers are macroscopic and therefore classical and dissipative. Computers con-

structed at the atomic scale are surely quantum-mechanical and might well, for the reasons dis-

cussed earlier, be effectively closed, reversible systems.

Non-dissipative classical systems are consistent with Newtonian mechanics and represent

internally consistent idealized systems which turn out to be a useful framework for demonstrating

general features of reversible computation. We will be discussing Fredkin's billiard ball model in

that light. Finally, there exist macroscopic (i.e., dissipative) but quantum-mechanical logic dev-

ices based on the Josephson junction which we will use to illustrate more precisely the theoretical

limits on dissipative devices.

38

S. Theoretical Limits For Dissipative Machines

The single junction superconductor interferometer provides an example of a dissipative logic

device whose properties can be quantitatively analyzed in some detail. In this section we sum-

marize the results of Likharev[291 on the devic: 5chematized in Figure 2. It consists of a super-

conducting ring, broken by a Josephson junction (the cross in the figure), with provision for con-

trolling the maximum current, lm that can flow through the junction by varying an external

current, Ic . The superconducting ring is subject to an external magnetic field with a flux, 0

due to the combined effects of I and 4, through it. The ring carries a current, I, and has a net

flux, 4 , due to the combined effects of I and 4, through it. If the self-inductance of the ring is

L, the net flux satisfies

4'-4-LI.

The net flux, 4, is proportional to 6 the difference across the junction of the superconducting

order parameter phase and can be thought of as the variable describing the "state" of this system.

To be precise, b=2ff4/(O0), where

h
2e

is the magnetic flux quantum. The system is made to function as a logic device by manipulating

C

Figure 2. Josephson Junction Logic Device.

39

the state variable through changes in the external parameters I, and •

The energy of this system is the sum of the magnetic field energy.

11

2 2

and the energy of a junction with a phase difference 6 across it

U, = + 'M -cos6

?r

/ 2 ?r cos [2 r ' 0o]

IM is the maximum junction current, which, as we have said can be manipulated from the out-

side). The total energy functional,

uIT_'=-L__-,)2 + __
L27r 080

generically has two minima. The situation when 0,= 0 and IM>O is shown in Figure 3. This

two-told degeneracy of the lowest energy state can be used in principle to store one binary bit of

information.

Better yet, we can, by changing the external parameters, IM and € , manipulate the shape

of the potential in such a way as to smoothly switch the system point from one degenerate

U

Figure 3. Two-fold Degeneracy.

40

ground-state to the other. This gives an explicit way of switching our bit-storage device, or car-

rying out as an elementary logical operation. A possible switching sequence is shown in Figure 4.

where the system point (the heavy dot) starts in the right-hand well and finishes in the left-hand

well. In this sequence, the system point always sits at a local potential minimum and the rate of

change of the system coordinate is always completely controlled by the external parameters and

can be made as small as we like at the price of dragging the switching event out over a longer and

longer time. In Figure 5. we display a switching sequence where this is not true. In the third step

of the sequence when the barrier finally disappears, the system point is at a large positive energy

with respect to the left-hand minimum. It will roll down the hill and eventually settle down in

the left-hand minimum only after dissipating its extra energy. The rate of this motion and the

energy dissipated in it are not controllable from the outside, and to minimize dissipation in

switching we must avoid this sort of sequence.

uke
, M> 0>O 41 + 0 4A>O 0Ob > 0 IM =0

*< 0 I, O 6, < 0 Iu>O , f= 0 lM>O

Figure 4. Switching Sequence.

41

610=0 IOA>O 6 <0 IM>O b<0 IM > 0

60'<0 IM = 0 6,<O IM>
0

6, = 0 IM>0

Figure 5. Dissipative Switching Sequence.

We finally come to the quantitative evaluation of dissipation in the switching event. This

device has many more co-ordinates than the single flux co-ordinate 0, in which we are primarily

interested. The effect of these degrees of freedom can be summarized by a viscous force

F, =f -KO

which leads to damping of motions of the system co-ordinate (and dissipation of energy from the

0 degree of freedom) at a rate determined by K. The total energy loss in some time evolution of

0 is just

W =-fdt F, + Kf dt 2> 0.

It is particularly convenient to characterize the damping by the time r, it takes small amplitude

oscillations about a minimum to decay by e-1 instead of by K. In either of the switching

scenarios described above, necessarily is non-zero and there is necessarily some dissipation. The

shape of the potential during the switching event is constrained by the requirement that spon-

taneous switching into the wrong well due to classical thermal fluctuations must be negligible (this

means that the energy harriet between the two local minima must always be much greater than

42

kT).

Given this information, it is a straightforward matter to calculate the minimum energy dis-

sipation (corresponding to the sequence of figure 5) in a switching event carried out in a time

.e
interval r. The result is, roughly W--kT- so long as rc. In other words, the total energy1*

dissipated in a switching cycle can be made as small as we like by making the switching time

arbitrarily long compared to the basic dissipation time scale. This is analogous to the situation

with heat engines: dissipation or entropy production can be made arbitrarily small by running the

engine arbitrarily slowly. We can also determine the energy dissipated in a switching cycle like

that of figure 6. In that case it turns out that W-kT no matter how slowly we carry out the

transition (at some stage the system executes free fall down a potential hill whose height is scaled

by kT so that the system must dissipate energy of order kT to come into equilibrium). When this

sort of device is used to make a computer, the question of overall logic5J organization inevitably

arises. It turns out that if we use the conventional organization based on (logically irreversible)

NAND gates (which can be simulated by appropriately connecting together several of the above-

described switches), then switching cycles of the type of are inescapable and dissipation at the

rate of roughly kT per operation is the theoretical limit. However, if a logically re'-ersible organi-

zation is used, it turns out that only switching sequences of the type of need be encountered and

the dissipation per operation can be reduced arbitrarily below kT, at the price of reducing the

rate of computation. Since the motivation for reducing dissipation was to increase the rate of

computation, this seems rather self-defeating. Later on we will discuss possibilities in which, at

least in principle, dissipationless reversible computation can be carried out at arbitrary speed. In

the next section we will finally make explicit what we mean by reversible logical architecture and

devices.

5.1. Abstract Issues

It known that a computer can be built entirely out of a Boolean logic device called a NAND

gate. The action of such a device is symbolized in Figure 6. The inputs a and b take on the

values 0 or I as does the output. The output is computed by the function (ab) where the bar

43

Figure 6. NAND Gate.

means logical "not" (0 =1, 1=0). This logical function is clearly not reversible or invertible since

several input states produce the same output state. For this reason, a conventional computer

cannot be run backwards. The previous section implies that the operation of a physical NAND

gate entails a dissipation of at least kT per operation.

The discussion of the logical organization of strictly reversible computers was initiated by

Bennett in 19731271. In pursuing this subject, Fredkin[28] developed a simple abstract reversible

logical function which gave promise of being a universal building block for reversible computers.

The structure and action of this function, called the Fredkin gate, is shown in Figure 7. As in the

case of the NAND gates, the input and output lines take on the values 0 or 1. An examination of

the truth table for this device shows that it is invertible: the correspondence between input and

a a

b ab+ c

C ib + ac

Figure 7. Fredkin Gate.

44

output states is one-to-one.

By ignoring some outputs and fixing some inputs the Fredkin gate can be made to perform

any standard logical function. For instance, the AND of a,b, can be obtained by sitting c = 0

and keeping only the middle output line, as in Figure 8. This procedure requires a supply of

input constants and a way of disposing of the unwanted outputs, known as "garbage". The brute

force method of carrying out reversible computation is to record every one of the garbage con-

stants which is produced during a computation. This is not a very satisfactory proceeding since

the number of elementary logical operations required to carry out even a simple arithmetic opera-

tion, let alone a complicated program, is enormous and memory resources would be swamped.

Fredkin, Toffoli and students[30, 31] have shown how to get round this problem by really

making use of the reversibility of the system. The point is that if one is doing some machine

instruction such as computing the sum of two numbers which involves a large number of logical

operations, one may: a) do the calculation, producing a large quantity of garbage, b) record the

result, producing a very small amount of garbage c) run the computation backwards, eating un

the garbage produced in a). If the machine instruction itself is logically reversible, as in

(AB)- J -B- , one doesn't even have to accumulate garbage in step b). The only true

a

a

aa
aabb ab

0 ib

Figure 8. AND (a,b).

45

garbage which needs special memory allocation and has to be kept to the end of the program is

that associated with truly non-invertible machine instructions. By careful design of the machine

instruction set and programming practices, it appears possible to reduce the garbage accumulated

in a typical program to a manageable size. We are not aware of a quantitative answer to the

question, if a program requires a total of N steps to execute, what is the minimum number of gar-

bage bits that must be accumulated? We suspect that the answer is logN, which would mean

that only a trivial amount of memory has to be devoted to true garbage accumulation, but we

don't have a proof.

Finally, as a result of this experience, Fredkin and students have been able to produce

sketchy but credible designs for real computers. These designs are explicit two-dimensional wir-

ing diagram layouts of Fredkin gates, and have been demonstrated in computer simulation exer-

cises to work as expected.

To summarize, although computers based on reversible logic elements have some unfamiliar

features, machines whose effective operation is nearly a carbon copy of conventional computers

can be laid out as explicit two-dimensional hook-ups of the logically reversible Fredkin gate. In

the next section we will take up the question whether the Fredkin gate is physically realizable.

5.2. Physical Realization of the FredkIn Gate

In order to give an existence proof for reversible computation, Fredkin has introduced a

stylized model based on perfectly elastic collisions of billiard balls moving on a frictionless

plane[28I. Consider a two dimensional square grid as laid out in. Figure 9 with unit spacing

between the grid points and identical hard spheres of radius I moving at one lattice spacing

per time step along the principal directions of this lattice as shown in At time t = 0, the center

of every ball lies on a grid point and that will again be true at every integer-valued time. Balls

will occasionally undergo right-angle elastic collisions at integer-valued times (see b). The balls

emerging from the collision will again move along the principal lattice directions and their centers

will coincide with lattice points at integer-valued times. At some lattice points a billiard ball will

46

"*1 "
0

9a 9b

Figure 9. Square Grid.

be nailed down to function as a perfect reflector of anything that comes by. The presence or

absence of a billiard ball at a lattice site at an integer time can be taken as a binary bit of infor-

mation and the Newtonian evolution of such a system of billiard balls amounts to a "calculation"

involving those bits.

The construction of the Fredkin gate goes in two steps. First construct the gate shown in

Figure 10 where the bar represents a fixed reflector. This device lets a ball on the x path go

through undeflected if no ball is on the c path, but awitches it onto a different path if a ball is

simultaneously present on the c path (and lets the c ball through undeflected). The information

processing here amounts to switching bits between two output paths, depending on the context of

a control path. If these interaction gates are strung together according to Figure 11 (where the

connecting paths have appropriate delays in them to maintain proper synchronization), it is possi-

ble to verify that the overall system functions exactly like the Fredkin gate.

According to the previous section a useful reversible computer can be made by wiring

together enough Fredkin gates. The same computer can therefore be realized as a two-

dimensional arrangement of appropriately aimed and placed billiard balls and reflectors. The exe-

cution of a program on such a computer is just the carrying out of the Newtonian time evolution

47

'dx

C -.0 a -01 C

cx

cx

x

c

Figure 10. Interaction Gate.

p cp+q

q p +ICq

Figure 11. Gate Connections.

of the mechanical system.

By construction, this system is dissipation-free and since the billiard ball velocity is arbi-

trary, it can operate at any speed we like. This amounts to an existence proof for dissipation-

free, fast computing via a classical conservative system.

5.3. EBird Bali Machine as CelluluW Automaton

The defects of the billiard ball model as a practical physical realization of ieversible com-

puting are fairly obvious. It does, however, have the virtue of suggesting a different abstract

framework within which some interesting new possibilities for physical realization suggest them-

selves.

48

The essence of the billiard ball model is that at integer time steps billiard balls are located

at lattice points only and the pattern of occupied lattice sites changes from one time step to the

next according to some rule. The rule is not made explicit, but is the result of evolving the previ-

ous configuration according to Newtonian mechanics. The step by step evolution of the state of a

lattice according to a local rule is the subject of cellular automaton theory, a parti-ularly active

branch of fundamental computer science. It is natural to ask whether the essence of the billiard

ball model can be captured in some cellular automaton rule. For the moment, this is just an idle

question. but in the next section we will see that the cellular automaton framework is one into

which it might be possible to fit real atomic physics.

There is indeed a cellular automaton version of the billiard ball machine which we have

reconstructed from remarks of Fredkin (the precise rule to be used is, we believe, due to Mar-

golus). Consider a lattice divided up into individual cells by solid and dotted lines in the manner

of Figure 12. Some of the cells are occupied and we want to devise a transitional rule t' cause

the pattern of occupation to change. If we look at the unit cells defined by the solid lines alone or

the dotted lines alone, we see that they each contain four of the unit cells of the full lattice. The

transition rule will be defined for such groups of four cells and applied alternately to the groups

I g 1 o I.

I I -I

-4-- 4 .. --.. 4

I I I

I _I _ I
I I I

Figure 12. Dotted lines.

49

defined by the solid lines and dotted lines. The transition rules we will use are defined in Figure

13. Rotations of the rules presented are also valid. The transformation effected by these rules is

obviously one-to-one within the group of four cells on which they act. By extension, the action of

these rules on the lattice as a whole is one-to-one and reversible.

A bit of playing with the rules shows that single occupied cells propagate like billiard balls

in the manner indicated in Figure 14. Single occupied cells however, do not collide with each

other in the manner of billiard balls. In order for this to work out properly, it is necessary to con-

sider a train of two similar occupied cells, as in Figure 15 and the three other versions,

corresponding to the other possible directions of motion, propagate and collide exactly in the

manner of billiard balls. One can also construct a configuration which does not propagate and

reflects any billiard ball configuration incident on it. Figure 16

F 0 0 0

0 0 0 0

•0 0

•0 0

• •0 0

0 o od o o

Figure 13. Transition Rules.

s0

Figure 14. Propagation.

V 'I

Figure 15. Cell Train.

Figure 16. Non-Propagating Configuration.

51

As the previous sections have shown, an explicit reversible computer design is available once

we have "billiard balls" and "mirrors". Now that we know that our cellular automaton rules pro-

duce these two types of object it is possible, in a perfectly explicit way, to construct a reversible

cellular automaton computer. This is interesting because, as we shall argue in the next section,

the cellular automaton framework seems particularly well-suited to realization at the atomic lat-

tice scale.

5.4. Notional Atomic Scale Realizations

We have argued that reversible computing ideas are likely to be of most interest in the

study of computers realized at the atomic scale, where the computational degrees of freedom are

not vastly outnumbered by all the rest and a computer might function as a good approximation

to a conservative Hamiltonian system. We would now like to explore a framework which suggests

that cellular automaton rules of the type just discussed might actually be realizable at the atomic

scale. We don't have a specific practical proposal, but rather some general notions about the sort

of physical systems which it might be profitable to explore.

Under the right conditions, atoms or molecules will arrange themselves in a regular lattice.

For a bulk material, this lattice will be three dimensional, while for material adsorbed on a con-

venient substrate the lattice will be two dimensional. Let us consider a two-layer (i.e. essentially

two-dimensional) lattice of the type displayed in Figure 17.

, I / / I 0 Foreplace sites

I I II l I I 0 backplane sites

__.__ - - /

Figure 17. Two Layer Lattice.

52

The lattice sites in the the layers, (foreplane and backplane) are distinguished by open and

filled circles. The basic idea is that the sites harbor some two-fold quantum mechanical degree of

freedom (such as a spin, the presence of an atomic excitation, etc.) which can be manipulated and

used as a token for computing. For convenience, we will refer to this degree of freedom as a spin,

although it need not actually be one.

There are interactions between "spins" at neighboring sites, and we have indicated the

desired pattern of interactions by dashed and wavy lines. They will cause the "spins" on the

sites to change with time and our goal is to cause this time evolution to occur in a way which car-

ries out the cellular automaton rules discussed in the previous section. The simplest way to do

this is to imagine that all the wavy line interactions can be turned on or off simultaneously from

outside by some macroscopically controllable agency such as a laser pulse. Suppose that the wavy

line interactions can be turned on and then off in just such a way as to exchange spins between

the foreplane and backplane sites (each wavy line connects just one foreplane and one backplane

site). Suppose further that the dashed line interactions, which connect up cells of four sites, either

all in the foreplane or all in the backplane, can be turned on and then off in such a way as to

effect the transformation on spins corresponding to the cellular automaton rules of the previous

section. Then by alternately activating the dashed and wavy bonds one would effect the cellular

automaton rules as transformations on the "spins". Then by the discussion of all the previous

systems, this microscopic device could be made to function as a reversible computer.

If we think of the site variables as really being elementary spins, it is easy to see what is

involved in obtaining exchange. The most general interaction between two spins is

H, =a(Oal' a

The bond strength, a, depends on t, since we must imagine being able to manipulate from out-

side. If we turn this bond on and then off in such a way that

00

f dt a(t) =i
0

(a matter of properly tailoring the laser pulse, or whatever it actually is, that manipulates the

bond) then it is easy to show that the net effect is simply to exchange the spins between the two

53

sites. Although we have not done it explicitly, we believe it should be possible to construct a set

of bonds for four spins which can be manipulated in such a way as to carry out the desired cellu-

lar automaton transformation.

If a scheme of the above type can be found, it suggests that a reversible atomic scale (and,

therefore, one might hope, very fast) computer could be built. The obvious challenge is to find

semi-realistic choices for sites, bonds and the extended driver of the bonds. We don't have any

concrete response to this challenge, but we think that materials questions of the kind raised here

are a rather natural sort of outcome of thinking about where reversible logic fits in the overall

scheme of computing concerns. W ! have been struck by the extent to which previous work on

reversible computing has focused on abstract questions and would strongly recommend that future

work begin to focus on physics questions. The framework we have presented is not necessarily

the best one, but does give a way of focusing on an interesting set of materials and physics ques-

tions, and might have the virtue of stimulating thought.

5.5. Quantum Mechanlc Issues

The previous discussions have not made much of the fact that physics at the atomic scale is

necessarily quantum mechanical. Indeed, the whole question of the role of quantum mechanical

effects in small-scale computing devices has been only very sketchily explored in the literature.

The scheme we have been discussing has one illumin ig and bizarre quantum mechanical

featuie which we will explain, just to give an idea of the sort of issues involved.

The bonds of our lattice cellular automaton are alternately switched on and off by some

external system which acts as a clock and driver for the whole system. This driver is itself some

mechanical system executing periodic motion; let us for definiteness take it it be a rotator of some

kind, rotating in some angular coordinate, e, such that every time 9 passes through some

marker angle, 0 0 , the bonds responsible for switching spins on the lattice are activated.

We can write down a fairly explicit Lagrangian for this system:

54

L= T162 + 49('Jr6 - e0) +

The first term is just the rotator kinetic energy and says that, in the absence of other terms, the

system just executes uniform rotational motion. The next term describes the interaction with the

"wavy" bonds of the previous section: the spins are divided up into N pairs and the interaction of

each pair with 0 is such as to effect the exchange transition every time 0 passes through 0O.

The 0 factor ensures the same action on the spins no matter how fast 0 is moving. The dots

indicate the terms, not yet specified but similar in nature, responsible for the spin transformations

on four spins at a time (needed to complete the cellular automaton rules).

In the classical approximation to the motion of 0, the rotator proceeds at constant velocity

and one cellular automaton transformation is executed per cycle. The quantum-mechanical ver-

sion of the motion of E is somewhat different. The rotator interacts with the computer coordi-

nates through the sum

+...

and, as the calculation proceeds, this sum takes on an essentially random sequence of values.

This is roughly equivalent to saying that E is moving in a one dimensional random potential.

In a random potential, there are no propagating states and all wave functions decay

exponentially with distance. If a computation takes N steps, we prepare the system in a state

localized around E = 0 and the computation is completed when 8 is finally observed at 2rN.

The exponential decay of wave functions probably means that the time to complete long calcula-

tions increases exponentially with N ! To know under what circumstances this would be a practi-

cal problem, we would have to have a much more concrete model to work with. This observation

could be elaborated further, but is meant to give an example of the peculiar phenomena that

must be understood when we try to think about computing at the quantum mechanical level.

65

6. CONCLUSIONS

6.1. Transformations

The idea of employing source program transformations is not new, but has received renewed

interest with the development of functional programming (the 'fp' language) and logic program-

ming (the 'PROLOG' language). As discussed above, this technique has an interesting, if as yet

unproved, potential.

Transformation techniques may be the path of choice for Soviet scientists. The Soviets

have well-known problems in computer hardware, but have immense talent in mathematics. It

just may be that the break-through needed in transformation techniques will be mathematical in

nature. In addition, the Soviets have concentrated their software efforts in this area. There are

really only two major language/compiler systems that have been developed by the Soviets. The

rest are derivative of western software systems. The first unique Soviet software system is a

language for program development and is not of particular interest here. The second is called

'ANALYTIK'[321 and has gone through at least three major revisions since 1970. Some of these

can be traced in the bibliography of Appendix A-2. An example of output from ANALYTIK can

be found in Appendix A-3. A brief reading of a very restricted sample of the open Soviet litera-

ture in this area did not reveal anything of especial interest, however.

In general, the development of transformation techniques should be closely followed. Rapid

progress could occur once the right good idea is discovered. There is, of course, no guarantee that

this will occur any time soon.

6.2. Reversible Computing

The ideas in reversible computing are very immature at present. The potential side-benefits

from developments in this area could be very important however, even if the main ideas are not

found to be feasible. The important areas to watch are technological. The key is some new

molecular-scale technology[33,341. While there are developments in this area, they seem to be a

very long way from any practical system.

58

6.3. Final Remarks

We have discussed two ideas about how a radical improvement in computer performance

might come about. There are of course many other possibilities as well. The most important

would be methods of organizing parallel calculations. This is an old, but very critical problem.

The development of computer system ideas is proceeding at a rapid pace. It will take consider-

able effort to try to predict the likely direction of new developments.

67

7. REFERENCES

1. A. M. Despain, G. J. MacDonald, A. M. Peterson, 0. S. Rothaus, and J. F. Vesecky, Radi-
cal Computing, Jason, McLean, Va (April, 1983). Tech. Rep. JSR-82-701

2. Richard J. Fateman and W.A. Martin, "The MACSYMA System," SYMSAM-II, pp.59-75..

3. L. Nagel, SPICE: A Computer Program to Simulate Semiconductor Curcuits, May 1975.

4. E. W. Dijkstra, "Notes on Structured Programming," TH. Rep., Technische Hogeschool,
Eindhoven, The Netherlands (1970). 2nd ed.

5. Marvin Minsky, "Form and Content in Computer Science," ACM (1970 Turing Lecture)
Vol. 17(2), pp. 19 7 -2 1 5 (1970).

6. H. A. Simon, "The Heuristic Compiler," in Representation and Meaning, ed. L. Siklossy,
Prentice Hall, New Jersey (1972).

7. Frances E. Allen and John Cocke, "A Catalogue of Optimizing Transformations," in Design
and Optimization of Compilers, ed. R. Rustin, Prentice-Hall (1972).

8. H. Partsch and R. Steinbruggen, "Program Transformation Systems," ACM Computing Sur-
veys Vol. 15N 3, pp.199-237 (sept. 1983).

9. John Backus, "Can Programming be Liberated From the von Neumann Style?," CACM Vol.
21(8), pp.614-641, Tenth Turing Lecture (Aug. 1978).

10. Pamela Zave, "The Operational Versus the Conventional Approach to Software Develop-
ment," CACM Vol. 27, pp.104-118 (Feb. 1984).

11. J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calculation of Complex
Fourier Series," Math. Comput. Vol. 19, pp.297-301 (Apr. 1965).

12. J. McCarthy and et. al., LISP 1.5 Programmer's Manual, MIT Press, Cambridge, MA
(1962).

13. K. Iverson, A Programming Language, John Wiley and Sons, New York, N.Y. (1962).

14. J. Schwarz, "Using Annotations to Make Recursion Equations Behave," Res. Memo, Dept.
Artif. Intell. U. Edinburgh (1977).

15. E. A. Ashcroft and W. W. Wadge, "Lucid, A Nonprocedural Language with Iteration,"
Communications of the ACM Vol. 20(7), pp.519-526 (July 1977).

16. David A. Turner, "Recursion Equations as a Programming Language," in Functional Pro-
gramming and its Applications, ed. David A. Turner, Cambridge University Press, Cam-
bridge (1982).

17. A. Colmerauer, H. Kanoui, and M. van Caneghem, Etude et Realization d'un System Prolog,
Groupe de Researche en Intelligence Artificielle, Univ. d'Aix-Marseille, Luminy (1979).

18. David B. Loveman, "Program Improvement by Source to Source Transformation," JACM
Vol. 24(1), pp.121-145 (Nov. 1975).

19. W. F. Clocksin and C. S. Mellish, in Programming in Prolog, Springer-Verlag, New York
(1981).

20. Robert A. Kowalski, "Predicate Logic as a Programming Language," Proc. IFIPS 74, IFIPS
(1974).

21. Ben Wegbreit, "Goal Directed Program Transformation," IEEE Trans. Soft. Eng. Vol. SE-
2(2), pp.69-80 (1976).

22. D. H. D. Warren, "Applied Logic - Its Use and Implementation as Programming Tool,"
Ph.D. Thesis, Univ. Edinburgh, Scotland (1977). Available as Tech. Note 290, Al Center,
SRI International

58

23. Keith L. Clark and Frank G. McCabe, "The Control Facilities of IC-Prolog," in Expert Sys-
tems in the Micro Electronic Age, ed. D. Michie, Edinburgh Univ. Press (1979).

24. Volker Strassen, "Gaussian Elimination is not Optimal," Numerische Mathematk Vol. 13,
p.3 5 4 (1969).

25. Robert W. Keyes, "Fundamental Limits in Digital Information Processing," Proc. IEEE
Vol. 69(2), pp.267-278 (Feb. 1981).

26. R. Landauer, IBM J. Res. Dev. Vol. 3, p.183 (1961).

27. C. H. Bennett, IBM. J. Res. Dev., p.525 (1973).

28. Edward Fredkin and Tommaso Toffoli, "Conservative Logic," International J. Theoretical
Physics Vol. 21(3 & 4), pp.219-253 (1982).

29. K. K. Likharev, "Classical and Quantum Limitations on Energy Consumption in Computa-
tion," Intl J. Theor. Physics Vol. 21, p.3 1 1 (1982).

30. E. Barton, "A Reversible Computer Using Conservative Logic," 6.895 term paper, MIT
(1978).

31. Andrew Lewis Ressler, The Design of a Conservative Logic Computer and a Graphical Editor
simulator, MIT (Jan. 1981). MS thesis

32. V. M. Glushkov, V. G. Bodarchuk, T. A. Grinchenko, A. A. Dorodnitsyna, V. P. Klimenko,
A. A. Letichevskii, S. B. Pogrebinskii, A. A. Stognii, and Yu. S. Fishman, "ANALYTIK
(Algorithmic Language for the Descroption of Computing Processes Using Analytical
Transformations," Kibernetika, pp.102-134 (May-June 1971).

33. Forrest L. Carter, "Prospects for Computation at the Molecular Size Level," COMCON 84
Digest of Papers, pp.110-119, Computer Society Press (Feb. 27-Mar.1, 1984).

34. M. Keith DeArmond and Kenneth W. Hanck, "Switching and Charge Storage in Metal
Complexes- Smart Molecules?," COMCON 84 Digest of Papers Vol. 28, p.Computer Society
Press, IEEE (Feb. 27-Mar.1, 1984).

59

8. APPENDIES

so

APPENDIX A-I

RECURRENCE SOLVER

61

% Solving Recurrences:
% Assignment 3, CS257
% Peter Van Roy
% Converts all functions that can be expressed as a polynomial
% to an efficient Horner form.
% The new form replaces the old in the PROLOG data base.
rgo :-

solve(Func), % Get function to be solved.
retract(solve(Func)), % Remove it from data base.
funclist(Func, 20, FuncList), % Get first 20 function values.
get.succjdiff(FuncList, DiffList), % Calculate successive differences.
conv to_poly(DiffList, Poly/D), % Convert to polynomial representation.
horner(Poly, N, Horner), % Convert polynomial to efficient Homer form.
abolish(Func,2), % Remove old definition from data base.
NewFunc=..lIFunc,N,Fj, % Arrange the result to its final form.
(D=1 -> Expr=Horner; Expr=Horner/D),
NewClause=(NewFunc :- F is Expr),
ni, write('The improved form for '), write(Func),
write(' is: '), ni, write(NewClause), ni,
assert(NewClause), % Insert the new form in the PROLOG data base.
fail. % Continue with other functions.

rgo.

% Generate a list of values Func(i) for i=0, 1, ..., N-i.
funclist(Func, N, FuncList) :-

funclist(Func, 0, N, FuncList).

funclist(Func, N, N, []) :- !.
funclist(Func, I, N, [F(FuncListi)

Term=..[[Func,I,F],
call(Term), !,
I1 is 1+ 1,
funclist(Func, I1, N, FuncList).

% Get the first elements of all rows of successive differences
down to the row of zeroes. This is enough to characterize
the function completely.

get -succ.diff(Row, [1) :- zero(Row), !.

getsuccdiff([AIRowl, [AlDiffListi)
nextrow([AIRowI, NextRow),
getsuccdiff(NextRow, DiffList).

next-row([A,BIRowlI, [DIRow2I)
D is B-A,
nextjrow([BIRowl], Row2).

next-row([.1, I).

zero([OIList[) :- zero(List).
zero(fl).

62

0 Convert a representation of a function as a list of successive
% differences to a polynomial:
% Uses the recurrence: Poly = Ai + (N-i)/(i+ 1)*NextPoly.
conv-topoly(DiffList, Poly/D):-

conv, topoly(DiffList, 0, Poly/D).

convto.poly([AmI, _, [Am]/1) :- !.
conv_.topoly(AiDiffList, I, Poly/D):

II is 1+ 1,
conv-topolyDiffList, I, NextPoly/DN),
minus(NextPoly/DN, NegPoly/DN),
mult(NegPoly/DN, I, Tempi/Tl),
add([OINextPoly]/DN, Temp/Ti, Temp2/T2),
div(Temp2/T2, II, Temp3/T3),
add(AiI/1, Temp3/T3, Poly/D).

% Convert a polynomial in list form to a Horner's formula
% structure, using N as the variable:
% (The second, third, and fourth clauses are optimizations).
horner[A0, N, AO) :- 1.
horner([Ar.1J, N, N+ An) :-!.
horner([OlPoly], N, Horner*N) :-

horner(Poly, N, Horner).
horner([AiIPolyi, N, Ai)

zero(Poly), !.
horner([AiIPoly], N, Horner*N+ Ai)

horner(Poly, N, Horner).

Polynomial arithmetic:
% Polynomials are represented as lists of integers divided by an
% integer. This avoids (1) round-off error in C-PROLOG, ind
% (2) truncation on UNSW PROLOG.

Addition of two polynomials:
add(Polyl/Di, Poly2/D2, Poly/D)

gcd(D1, D2, G),
D is (DI/G)*D2, % D is lcm(DI,D2)
Ft is D2/G, % multiplying factor for Polyl's terms.
F2 is DI/G, % multiplying factor for Poly2's terms.
addx(Polyl, Poly2, Poly, Fl, F2).

addx([AllPolyl, [A21Poly2j, [SIPoly], Fl, F2):-
S is AI*FI+ A2*F2,
addx(Polyl, Poly2, Poly, Fl, F21.

addx([j], Poly2, Poly2, -, -):- !.
addx(Polyl, [], Polyl, , .

% Change sign:
minus(Poly/D, Res/D) :- minusx(P .y, Res).

minusx([AlPoly], [RIResl)
R is -A,
minusx(Poly, Res).

63

minusx([J, [1).

04

% Multiplication by a scalar:
mult(Poly/D, Scalar, Res/R)

gcd(D, Scalar, G),
R is D/G,
S is Scalar/G,
multx(Poly, S, Res).

multx([AfPolyj, S, [PIResi)
P is S*A,
multx(Poly, S, Res).

multx([J, S, LI).

% Division by a scalar:
div(Poly/D, Scalar, Res/R)

DI is Scalar*D,

(G==1 -> divlist(Poly, G, Res), R is DI/G;
Res=Poly, R=DI).

divlist(IAIPolyi, S, [RiResi)
R is A/S,
divlist(Poly, S, Res).

% gcd calculation:
gcd(X, 0, Y) :!,X=Y.

gcd(U, V, X)
W is U mod V,
gcd(V, W, X).

% gcd of a list:
gcd([Aj, A) --.

gcd(A, B, 1), !
gcd([A,BIListI, Ans):

gcd(A, B, G),
gcd([GIList], Ans).

65

APPENDIX A-2

CACHING SYSTEM

66

% CACHE:

% Generic program to cache heads of non-unit clauses,
% FORM: X(Y,Z):-..

?70 Must fix up correct number of variables "Y,Z,..

'?%o The following compensate for principle functor
% not being a variable.
asf(f,Y, Z):-asserta((f(A, B):-eq(A,Y),eq(B, Z),!, fail)).
asf(a,Y, Z):-asserta((a(A,B):-eq(A,Y),eq(B, Z),!, fail)).
asf(r,Y,Z):-asserta((r(A,B):-eq(A,Y),eq(B,Z),! ,fail)).

rtf(f,Y, Z):-retract((f(A,B):-eq(A,Y),eq(B,Z),! ,fail)).
rtf(a,Y,Z):-retract((a(A,B):-eq(A,Y),eq(B,Z),! ,fail)).
rtf(r, Y, Z):-retrac t((r(A,B):-eq(A,Y),eq(B, Z),!, fail)).

ass(f,YQ,ZQ):- asserta((f(YQ ,ZQ):-cnt(f))).
ass(a,YQ,ZQ):- asserta((a(YQ,ZQ):-cnt(a))).
ass(r,YQ, ZQ):- asserta((r(YQ,ZQ):-cnt(r))).

rts(f,YQ,ZQ):- retract((f(YQ,ZQ):-cnt(f))).
rts(a,YQ, ZQ):. retract((a(YQ,ZQ):-cnt(a))).
rts(r,YQ,ZQ):- retract((r(YQ,ZQ):-cnt(r))).

% FAIL CACHING.
% oasf(X,Y, Z):-asserta((X(A,B):-eq(A,Y),eq(B,Z),! ,fail)).
%7rtf(X,Y,Z):-retract((X(A,B):-eq(A,Y),eq(B,Z),!,fail)).

17 Cache a fail.
fcache(X,Y,YP,Z,ZP):- nvbind(Y,YP,Z,ZP),

clean up(X),asf(X,Y, Z),!.

% Cleanup last cache insertion.
cleanup(X):- rtf(X,Y,Z), fremove(X,Y,YQ,Z,ZQ),asf(X,YQ,ZQ).
cleanup(X).

% Eliminate duplicates and submissive entries.
fremove(X,YYQ,Z ,ZQ):-rtf(X,YP,ZP),

switch(Y,Y'P,YR ,Z ,ZP,ZR),
fremove(X,YR,YQ,ZR,ZQ),
fconassert(X,YQ,YP,ZQ,ZP).

fremove(X,Y.Y,Z.Z).

fconassert(X,Y,YP ,Z,ZP):- dominate(Y,YP),dominate(Z, ZP),!.
fconassert(X,Y,YP,Z,ZP):- asf(X,YP,ZP).

67

% CACHE SUCCESS.
%ass(X,YQ,ZQ):- asserta((X(YQ,ZQ))).
%rts(X,YQ,ZQ):- retract((X(YQ,ZQ))).

% Remove failed head from the cache.
scache(X,Y,YP ,Z,ZP):- fremv(X,YP,ZP), ycache(X,Y,Z),!.

% Remove exact tail head.
fremv(X,Y,Z):- rtf(X,YP,ZP),

fremv(X,Y,Z), fcassert(X,Y,YP,Z,ZP).
fremv(X,Y,Z).

fcassert(X,Y,YP ,Z,ZP):- eq(Y,YP),eq(Z ,ZP),!.
fcassert(X,Y,YP,Z,ZP):- asf(X,YP,ZP).

% Success caching
ycache(X,Y,Z):- sremove(X,Y,YQ,Z,ZQ),ass(X,YQ,ZQ),!.

% Elim Dups.
sremove(X,Y,YQ,Z,ZQ):- rts(X,YP,ZP),

switch(Y,YP,YR,Z,ZP,ZR),
sremove(X,YR ,YQ,ZR ,ZQ),

sconassert(X,YQ,YP,ZQ,ZP).
sremove(X,Y,Y,Z, Z).

% Replace head in cache.
sconassert(X,Y,YP,Z,ZP):- dominate(Y,YP),

dominate(Z, ZP),!.
sconassert(X,Y,YP,Z, ZP):- ass(X,YP,ZP).

8

% CACHE UTILITIES.

% True if Y & YP are the same.
eq(Y,YP):-v ar(Y),var(YP),!.
eq(Y,YP):- Y==Yp.

% True if Y is more general than YP.
dominate(Y,YP):-var(Y),!.
dominate(Y,YP). Y==YP.

% Selects most general set of terms.
switcb(Y,YP,YP,Z,ZP,ZP):- dominate(YP ,Y),

dominate(ZP ,Z),!.
switch(Y,YP ,Y,Z ,ZP,Z).

% Binds only non-variables.
nvbind(Y,Y,Z ,Z):-nonvar(Y),nonvar(Z),!.
nvbind(Y,Y,Z ,V):-nonvar(Y),!.
nvbind(Y,U,Z ,Z):-nonvar(Z),!.
nvbind(Y,U,Z,V).

% Call functions for monitoring and caching.
%' Head.
b(X,Y,Z):-cnt(X),inc(level),nl,

count(level ,N) ,tab(N),
write(X),write('('),
write(Y),write(','),
write(Z),write(')'),!.

hs 1X,Y,YP,Z,ZP):- h(X,Y,Z).
hf(X,Y,YP,Z,ZP):- h(X,Y,Z), con fcache(X,Y,YP, Z, ZP),!.

% Tail.

write(' , success:)
write(X),write('('),
writ V),write(',),
write(Z),write(')'),nI,!.

ts(X,Y,YP,Z,ZP):- t(X,Y,Z), conycache(X,Y,Z).
ftf(X,Y,YPZ,ZP):- t(X,Y,Z), conscache(X,Y,YP,Z,ZP),!.

0' Cache control.
conycache(X,Y,Z):-cache(on),cache(X), ycache(X,Y, Z),!.
conycache(X,Y,Z).

conscache(X,Y,YP , Z,ZP):-cache(on),cache(X), scache(X,Y,YP, Z, ZP),!.
conscache(X,Y,YP ,Z ,ZP).

confcache(X,Y,YP,Z ,ZP):-cache(on),cache(X), fcache(X,Y,YP, Z,ZP),!.
confcache(X,Y,YP,Z,ZP).

cache-on :- assert((cache(on))).

89

cache -off :-retract((c ac he(on))),!.
cache-.off.

70

%Program commands.
go:- cacheopff, w('orig.p'),

pcSompile(all), w('compiled.p'),
reset,
rvt, w('vt.p'), reset,
rtv, w('tv.p').

gol:-cache.on, w('orig.p'),
rtv ,w('tv.p'),reset,
rvt,w('vt.p').

go2:-cacbe..on, w('orig.p'),
rv t,w('vt. p'), reset,
rtv,w('tv.p').

w(N):- tell(N),phead,lp,chead,
te, told, close(N).

rvt:- tell(tracevt),thead,rqv,t),
nl,nl,nl,nl,chead,
lc,tc,told,close(tracevt).

rtv :- tell (tracetv),thead ,r(t,v),
olmnl,nlinl,chead,
lc,tc,told,close(tracetv).

tc:-count(m,M),count(c ,C),count(f,F),
count(a,A),count(r,R),
T is M+ C + F + A + R,
write('Total calls=
write(T),nl.

%Input/output.
phead:-write(' EXECUTED PROGRAM LISTING '),nI,nl.
tbead:-write(' TRACE OF PROGRAM EXECUTION '),nl,nI.
chead:-write(' CALL COUNTS '),nI,nI.

%General purpose counters.
count(X,O).
cnt(X):-inc(X).
gencnt(O):-assertz((count(X,O))),!.
gencnt(_..j
inc(X):-retract(count(X,N)),M is N + 1,

asserta(c i.un t(X, M)), genecnt(N),!.
dec(X):-retract(count(X,N)),M is N - 1,

asserta(count(X,M)),gencnt(N),!.
zero(X):-retract((count(X,M))).
reset:- zero_),reset.
reset:-assert((count(X,O))).

%Program listings.
lc:-listing(count).
It-listing(r).

71

IrA:isting(a).
Ir:-Iisting(r).f arcunt)

APPENDIX A-3

REPRINT OF "A BIBLIOGRAPHY OF SOVIET WORKS
IN ALGEBRAIC MANIPULATIONS"

by

Alfonso M. Miola

!SIGSAM Bull., 15 (1), February 19811

A RBIBLZOGRAMt OF SOVIET WORKS
IN ALEBRAIC WAIULATIONS

Alfouso M. 1OLA
Istituco di Analisi doi Sistemi a Informiatica

Via Suo, arroti 12
0o18S 19WA (ITALY)

In the Jun. 1979 a Sumer School an Programing has been organized by the Bulgarian Academy of Sciences in
Primosko (Bulgaria). Among other topics Symbolic and Algebraic Manipulations yas covered vith a few lec-
tures by me and vith some panel discussions. The lecturarsvere Professors LavTov, Arato, Ravel, ?octosin.
auer, Pasula, Zrshow, Andru njco. Kiola.

Recently Prof. Pottosin sent ma a bibliography of the works done in Russia in Computer Algebra. I do think
that this bibliography could be of interest of our comunity. Prof. Pottosin address is:
- 630090 Novosibirsk 90 - CAmputer Center - 1.7. Pottosiu.--USSL

1. S.A.Jbrmov. On Rational Functions Suming. 12. .A.Arays, G.V.Sibiriskov. The AVTO-ANALTZE
J. Comput. Math. and Mth. Phys., v. 11, N.4, Progrn eg System. J. Comput. Math. and Cinpur.
1971, pp. 1071-1075. Mach., No.3, Kharkov, 1972.

2. S.A.Abhrmov. On Sam Algorithms for Algebraic 13. Z.A.Arays, C.V.Sibiriakov. AVTO-AALM.K. Novo-
Transformstions of Functional Expressions. sibirsk University. 1973.
J. Comput. ath. and Conput. Mach., No.3, 14. Z.A.Arays, A.Shutankov. The Relization of
Kharkov, 1972, pp. 5-37. External Form vith Cartan atahod. Dokl. Akad.

3. I.l Akselrod, L.r.slous. Input Language for Mack SSSZ, 1974, 214, No.4. pp. 737-738.
Automatic Programing System 5/o.Z$. In: "Au. _5. I.O.Babsev. Some Eltention of FORMT. for Sol-
matizacion of Programino. No.3, Kiev. 1967.-r ing Celestial Mchanics Problems. Proc. 5-th

4. I.L.Akselrod, L..Balous. Input Language for Conf. on Mach. and Mach., Tomsk, v.2, pp.1 4 S-
Automatic Programi g System SZ21TS. -iarkov 146.
Universit 1969. •16. . 3ezhanove. On Some Aspects of Symbolic

5. I.I.Akselrod, L.F.3elous. On Reprocessing Manipulations. J. Cmput. Mach. and Comput.
Litsral-Aalytical Information by CAputer. Mach., No.3, Kharkov, 1972. p. 60.
J. Kibernetika, Ni.6, 1966. 17. M.L.ezbanova, I..Poctosin. Purpose of Dif-

6. I.l.ikselrod. L.F.3elous. On Symbolic Ianip- processor and its Input Language. Report of
lation in Conversational Programing Systes Progrn-ug Depart. of the Computing Center,
SlRIS. In: "roc. 2-nd All Union Conference Siberian Branch, USSR, Novosibirsk, 1966.
on ProgTraming", Section I, ovsibirsk,1970. 18. N.M.ezhanaova, S.1.Zosciukova, C.A.Plothikova,

7. I.zI.Akolrod. Computation of Zxpressions in I.V.?ottosin. Outline of Difprocessor Algori-
SZIUS-S7stm. In: "Autoaomai-taion of Pro- ths. import of Programing Department of the
graming'. Mo.2, Kiev, .1969. . Computing Center, Siberian Iranch. USSR, Nova-

3. 1.LAksalrod. L.F.Selous. Recursive Progra sibirsk, 1966.

Organization in SZUUS-Syst.m. In: "LAutoma i- 19. X.K.Rezhanova, V.L.Lackov, I.V.Pottosin. Re-
lation of Progrmminx", go.3. iev, 19. searchs on Symbolic Manipulacion in the Cam-

9. I.LRAkselrod. On Synu= Analysis in SIIS- puting Center. Siberian Branch, Academy of
Sciences. USSR. J. Comput. math. and Comput.

System. Ins 'Automtinto. of ?rogrinS", ach., 3o.3, Iharkov, 972, p. 21.No.1, Kiev. 15969.

10. E.A.Arsys, A.Shutenkay. Solution of Linear 20. L.F.Selous. I.Z.Aksolvod. On Realization of
A r .S Automatic Programing System. In: "Auto-Algebra roblems n A OiALin-Sy.T m of atization of Progrmang'. No.3. Kiev, 1967.

programing and Antomacie Design. Tomak,

Tomak University, 1971, pp. 191-1%6. 21. L.T.eious. Analytical Differentiation in
SIXIUS-Systm. In: "Automatization of Program-11:. T.A A ras, .5h tn ko , G. . M itz.ri a . Is- N' o. 2 . Kev .1969.

terpretation System for Solution of Largo
Problems. Issues of programing and Automatic 22. L.r.Zelous. Dynamic Storage Allocation in
Design, Tomsk, Tomak University, 1971. SIRIUS-System. In: "Automasciation of Program-

ming". No. 2, Kiev, 1969.

z3. Yu.V.Ilagovesbchensky, .G.kondarchuk, 37. T.A.Crinchanko, A.A.Dorodnicsyua, V.P.Klioenko,
yu.S.Fishman. On Efficiency of Problem Solving Yu.S.Yisbman. Symbolic xacipulation Computer
Analycical Methods by Computer. Zns "%scuas of System for Engineering Calculations, xZR-2.
Accuracy and Efficiency of Cosput. Algorithms", J. Coput. Math. and Coput. Mach., No. 3,
Proc. of Symposium, v. 5, iev., 1969. Kharkov, 1972, p. 26.

24. Tu.V.Blagovesbchenasky, Tu.S.Yishmam, V.A. 38. T.A.Crinchenko. Construction Principles and
Shcherbakov. The Program for Analytical Sol- Computer Realization of APPLY-Operacor. Zn:
ving of Nonlinear Ascillation Equations on "Theory of Automata", so. 2, Kiev, 1968.
MZIR-2 Computer vLth ANALITIK Input Lanueg. 39. T.A.Grinchanko. Computer Realization Principles
J. Ribermecika. io.6, Kiev, 1971. of Symbol Manipulao n. J. Libernc ika, No. 1.

25. V.G.oadarchuk. S.V.Pogrebaiky. On Basic 1968.
?rinciples of A ALITIC-Language rmplemeucacion. £0. S.A.Zvanova. Language and Translator for Al-
In: "Theory of Automaca" No.2, Kiev. 1968. gebraic Kanipulations with Polynomial from

26. V.GOBandarchuk, Iu.S.Fishiasa. tegration Al- several Variables. Latvia annual, 1974, 17,
gocithms on A ALUZ-LaUguage. J. ibersetika, pp. 230-237.
Mo. 4, 1968. 41. N.A.alWinina. Same Algorithm and Methods in

27. V.A.Brumberg. Celestial Mechanics Mechods for Symbol Manipulation Systeu. leport of Ptogram-

Literal Mipula ions. Tonak Univerairy. 1974. ming Dept. of the Comput. Cancer, Siberian.

Z8. V.A.3runborg, L.A.Isakovich. MA6-Systm for USSR. Novosibiask. 1972.

Analytical Manipulations of Poissn Series on 42. N.A.Zalinua. The AMALITIK System Program.
Computer. Celestial M chanics Algorithms , No.1. J. Comput. Mach. and Cput. Mach., No. 3,
Theorecical Latronomy Institute. Lesingrad. Kharkov. 1972, p. 33.
197£. 43. W.A.CalininA. Symbol Manipulation Systems

29. A..Vasil eva. ALTA-System for Analytical Ma- (Re iev). Report of Computing Canctr, Siberian
nipulacions of Poisso Series on Computar. Branch, USSR, Novosibirsk, 1972.
Celestial Machanics Algorithms, No.7, Theare- 4. N..alinina. On lierarchy in Symbol 1anivula-
tical Astronomy Institute. Leningrad. 1973. tion Systems. J. Coput. Math. and Couput.

30. L.IZ.oncharova. A Contributiom Tovard the Mach., No. 3. Kharkov, 1972. p. 70.
Problem of Ceneral Organization of Symbolic 45. W.A.Winina. Some Aspects of Design of Symbol
Manipulation Systems. J. Compuc. Math. and Manipulatioa Systems. Zn: "System and Theare-
Comput. Mach., No.3 Kharkov. 1972. p. 62. tical Programing". Computing Canter, Siberian

n1. V.P.Cardt. On Application of Symbol Manipula- Branch, MhS, Novosibirak, 1973, pp. 103-123.
tion Systems for reinnas Integrals Computation £6. I.A.Zaliaina. The Structure ad Somantic Fea-
(Review). In Proe. "International Conference cures of Symbol Manipulation Language. In:
on Prograeming and Mathemastical Methods for "Programing Problems", Computing Caener. Si-
Solving Physical'Probless", Dubas, 20-23.Sept. barian Branch. URS .uvosibirsk. 1976, pp.8-
1977, II•I, DI, It-1164 bubna, 1978. r,

32. V.P.Gerdt, 0.T.Tarasov, D.Y.Shirkov. Analy- &7. . Z.ouOsin. Arch ctt re of
tical Computations in Physics and Mathematics. C7 neraliPrpse Symol an iatn of
?reprint ZZ X1 ?2-11547. Dube&. 1978. C4nera$ Purpose Symbol Manipulation Systems:

Adaptabili y to Salved Problems and Interface

fl. V.X.Glushkov., V.4.Sondarchuk. T.A.Cri.nchenko, with Prograing System. In: "Theory and Pra-
A.A.Dorodnitsyna, V.P.Klia nko, A.A.Lti- tics of System Programing". Computing Center.
chevsky, S.S.?ogrebinsky, A.Staglny, Siberian Branch. URRS, Novosibirsk, 1977,
Yu.S.Fisalan. A ALTIR (Algorithmic Language pp. 5-12.
for Description of Computation Processes vich 48. .A.Lalinina. LUAWJ-Cplax Analytical Evalua-
algebraic manipuLarion). J. LibornetikaNo.3,

"Theory and Practice of System Programing' .

34. Y.M.Clushkow, T.A.Ginchenko, A.A.Dorodni- Computing Center, Siberian %ranch. USSR, Novo-
tsyna, A.M. rakh. Yu.V..epXit*o2va, V.P.Zli- sibirak, 1977, pp. 13-21.
manko, L.K.ress, A.A.Lacich4vsky, S.S.Progro- 49. LT.V.antorovich. On Numeral and An LTical I
binsky. A.A.Stogny. Tu.S.Fishfam, N.P.Tsariuk. Computations on Computer. News of Academy
ANALXTZX-7, Algorithmic Language (Uaforma- Science of Armenia SS. Section Th7,. Mach.
tional Part) Preprint 77/27, Institute of S97,so. 2 .
Cybernetics. Liev, 1977. 557 No. 2. i

35. VT.Clushkov, T.A.Crinchanka, A.A.Dorodai- SO. L..Zaftorov ch. On a Mathmcatica S mbolism
tryna, A..Drah, Yu.V.Xapitonava, V.P. - Sutaba for Carrn out Calclations on
-mako, L.I.ress, A.A.Latichewsky, S.S.Iogre- Cpu~are. Dekl. Akad. Nauk 5S51, 1957, n.ll3, -
binsky, A.A.Scogny, Yu.S.rishman, U.P.Tsariuk. Me. 4.

AZ4ALTIK-74, J. Cibernseika, to. S, 1978, 51. L.V.Latkov, N.Z.Zosciukova. The Processor ZINO.
pp. 114-147. In: "Dynamic of Continuous Medium", Novosibirsk.

36. ?.A.Crincheuko. Internal Reprosentatian and 1969. v. I.
Analytical Ezpression Computations :.heory of 52. V.L.Katkov, N.I.Zosciukova. The -O System

Automata", No. 2, Kiev, .968. for Construction of Analytical Solutions of
differential Equations an Computer. Proc. 1sc
All Union Conference on Programimg. Lev.1968.

A-11- 2

V.L.Katkov. N.I.Kostiukova. Calculations of 66. E.N.Paskbin. Analytical Differentiation on
Group on Com=uteT. "Same Problems of Coaputing Computer. in: "Computing Me:hods and ?rogram-
and Applied Machexatics", lovosibirsk, 1975, sing", v. 9, Moscov State Univ., 1967.
pp. 257-267. 67. V.IoSkripuichbnko. Operations ich Literal De-

V.L.Ka.kov, M.Z.Popov. Using Computer B.-6 compositions on Computer URsults of Science
fzr Ca1culations of Group Admitted by Dif- and Tech. Astronomy, v. 11, p. 131, All Ucion
ferential Equations System. Intern. Symposi= Inst. Sci. and Tech. Znforma ion, Mascaw,1975.
"Theorecical-Croup Methods in Mechanics",1978, 6. ?.N.Sirnova. Polynomial PROUA and CarryC'gP. 17.68T..=no. o =1 O n r':

out Analytical Transfor sa ion; on Conpucea.
v.?.Xlimenko, S.B.Pograbinsky, !u.S.Fisbman. ft. D. Thesis, Leningrad, 1963.
A Contribution Tovard the Problem Reconition 69. T.N.Sairnova. Carrying out Analytical Transfor-
of Functional Properties of Analytical rx maions for on (-20 Computer with RORAI-Pro
pressions on MZI-2 Computer. J. Xiberneatka, gram. Leningrad, Nuka. 1967.
::o. 2, 1973, pp. 43-53.

:4.1.Xostiukova. The Processor PASSIV. J.Camput. 70. Y.V.Tmasomis. The System of Equivalent Tran-

math. and Coupuc. Mach., No. 3, 32tkov, 1972, sformatious .pressions. J. Comput. Math. and

p. 38. Math. Phys., v. 11, No. S, 1971, pp. 1272-1281.

G.P.Koxhenvikova. On Efficiant l ealization of 71. t.V.Tu.asonis. ALDA-Conersacio al System of

Algorithmic Languages for Analyt.cal Trawfor- quivalent Transformations on Expressions.
mations. Proceedings of Symposium "Language J. Comput. Math. and Comput. Mach., No. 3.

Theory and Methods of Constructing ProSraming ZZakww, 1972. pp. 52-54.

System", Liev-Alushta,; 1972, pp. 338-345. 72. V.F.Turchin, V.V.Serdobolsky. -- AL Languages

C.P.Eozhenvikova. Computacional Camplex2cy of nd its Application for Algebraic Expressions

the Procedure "Compare" and "Differantiate" Transformations. J. Ziberneika, o.3, Kiev.

with Zespect to the Languages of LUtashevicz 1969.

and Katarovich. J. Comput. Math. and Compuc. 73. Tu.S.Fishman. integration of Functions by
Mach., No. 3, Kharkov, 1972, pp. 64-65. Computer Pe ornug Analytical Transformations.

a.P.Zozhevnikova. O the Estimation of Effi- Zn: "Theory of Automascon", v. 2, Kiev, 1968.
ciency of Symbol Manipulations. J. Cost. 74. Yu.S.flshman, A.T.Kotsiuba. The Realization of
Systems and Machines, Tiev, No. 1, 1974. General-Purpose Symbol Integration Program on

.?.1ozhevaikova, A.A.Stogny. lepresencacio Computer. Zn: "Zssue of Accuracy and E-ficiency
of An&17 ical Expressions under Algebraic Ma- of Cu :pu. Algorithms", v. 5, Liev, 1969.

sipulac ons Perfor-ing on Computer. 'J. Kibe- 75. M.A.€hubarov. Polynomial Assembler. J. Comput.
ruerika, No. A, Kiev, 1975. Math. and Comput. Mach., No. 3, 32Ls:kov, 1972.

L.T.Pecrova. On Execution of Algebraic anipu- pp. 42-44.

lations on Compute:. Righ School Reports. 76. M.A.Owubarov. The ISP Interpretatina System
Matzaatics, No.. t. 1954, pp. 95-104. for Polynomaial Manipulations. In: "Digital and
L.T.Pecrova. Some ApplicaZias of Scheme Sym Comput. Tech.", v. 5, Moscow, 1969.
bolisa. J. Canpuc. Math. and Ccmput. Phys., 77. V.A.Shurygin, N.N.Taneuka. On Realization of
v. 1, No. 3, M. 1961, pp. 313-5=2. Algebraic Differential Algoritch by Computer.

L.T.Pe:rova, I.A.Placunaova. Realizacion of Problems of Cibernecics, v. 6, 1961.

Calculations in Source Lists Class on Computer
Proc. Mach. Inst. Ac. Sci. LSSR. v.66, 1962. 78. U..rdukha-occtoskal, (trans. by Boris
C.A.Plocnikovs. Analytical Transformations in Ea:enblm and Myra Pz'el.e), "A General

alytalas R D f Inwestgatlon of Tntepatlan n Fnite Tars
Diproceaso . Ceport o P:o i anc. Dept. of Di fferentil Equcms of the First Order";
th. Com-puting Ceter, Siberian Iran.ch, USS. r In AQ1 S C.SAM Bullectl. v. 15, No. 2.
Novosibirsk, 1966. pp. 20-32. May 1981.

S.B.Pogrebinsky, Yu.S.Yishm=. Dialog System
for Analytical Solutiou of Some Problems of
Algebra. Proc. of Symposium an "Language
Theory and Methods of Constructing Progran-
ing System", Liev-Alushta. 1972, pp.329-

337.

A-II-3

APPENDIX A-4

AN EXAMPLE OF SOVIET WORK IN MACHINE
SYMfBOLiC MANIPULATION

mwPNIXOv,?d~m'r DIVID07ICH
POSE RMIAJ(TE
!IOVOSIBM3K 90

DOCTOR 3.3)AVI SA=MS
OSZOSAU 3S LE=IH ITOR

DEPARZ=I OF MATENATCAL SCIlLZ

THOY, 13 YOUE L21ft ML

DEAR DAVID,
'IC IIC=? is mic ME TEEW OF GERMALIZ UPYOMLE2IC RImCIOHS
IN C012UER AWOU~ AWORIT.W IS INC~rU.IHC. I 0FY1M A 2REM IM V
CCH4SDZAOll BY R.EAMS OF YOLM RU=AMZ BULLTIX.

Ifl.6 13 A MW(BUL = OF IDEHTITIES IPPLICATICI OF WIH FA=PoIZZ
SAM OF THE OLIWMG T22 1KC= OHS I11TO ME PRZLXT OF 'A"10 EYPzM-
GClzC MICTIOUS WITS LU=S 1flM OF PIAJ0LT=RS

F LF

LF L (i~&l. 3 ,

F. CLEEI ~L3 ~YI~~% O~~
Lwau Nf~E2 LCIL H'4-± ~OH O-Z~

L~flUAC I~OCO;a),ZL 7YUVI!ISALfLLI~ ~J OPa.F MI AZ~-±t W
EATZ~~~~~~~ FO,~~L~L ?JLUR

WiTH 4L~ aas

PROCW N INA~ilA-iWlYOU

F--

-446

go, qr w

A s .4

ve *a

do I,.-

of t2 r4

04 A

- A, Lx a
Oft 14 -

qd 4b. .-

L.p 4'. tf*S. f

_~~- 61. Is Ax - . J~
-I i .4 0, .4.0

%. dr Ar -0t

-. * Y 'r Sq Z
%.. *W 1

0.. do...d a

ANI-

DISTRIBUTION LIST

Dr. Mary Atkins Dr. S. William Gouse, W300
Deputy Director, Science & Tech. Vice President and General
Defense Nuclear Agency Manager
Washington, D.C. 20305 The MITRE Corporation

1820 Dolley Madison Blvd.
Dr. Robert Cooper [21 McLean, VA 22102
Director, DARPA
1400 Wilson Boulevard Dr. Edward Harper
Arlington, VA 22209 SSBN, Security Director

OP-021T
Defense Technical Information [2] The Pentagon, Room 4V534

Center Washington, D.C. 20350
Cameron Station
Alexandria, VA 22314 Mr. R. Evan Hineman

Deputy Director for Science
The Honorable Richard DeLauer & Technology
Under Secretary of Defense (R&E) P.O. Box 1925
Office of the Secretary of Washington, D.C 20505

Defense
The Pentagon, Room 3EI006 Mr. Ben Hunter [2]
Washington, D.C. 20301 CIA/DDS&T

P.O. Box 1925
Director (21 Washington, D.C. 20505
National Security Agency
Fort Meade, MD 20755 The MITRE Corporation [25]
ATTN: Mr. Richard Foss, A05 1820 Dolley Madison Blvd.

McLean, VA 22102
CAPT Craig E. Dorman ATTN: JASON Library, W002
Department of the Navy, OP-095T
The Pentagon, Room 5D576 Mr. Jack Kalish
Washington, D.C. 20350 Deputy Program Manager

The Pentagon
CDR Timothy Dugan Washington, D.C. 20301
NFOIO Detachment, Suitland
4301 Suitland Road Mr. John F. Kaufmann
Washington, D.C. 20390 Dep. Dir. for Program Analysis

Office of Energy Research, ER-31
Dr. Larry Gershwin Room F326
NIO for Strategic Programs U.S. Department of Energy
P.O. Box 1925 Washington, D.C. 20545
Washington, D.C. 20505

D-1

Dr. George A. Keyworth Dr. Julian Nall [2]
Director P.O. Box 1925
Office of Science & Tech. Policy Washington, D.C. 20505
Old Executive Office Building
17th & Pennsylvania, N.W. Director
Washington, D.C. 20500 National Security Agency

Fort Meade, MD 20755
MAJ GEN Donald L. Lamberson ATTN: Mr. Edward P. Neuburg
Assistant Deputy Chief of Staff DDR-FANX 3
(RD&A) HQ USAF/RD
Washington, D.C. 20330 Prof. William A. Nierenberg

Scripps Institution of
Dr. Donald M. LeVine, W385 [3] Oceanography
The MITRE Corporation University of California, S.D.
1820 Dolley Madison Blvd. La Jolla, CA 92093
McLean, VA 22102

Mr. Alan J. Roberts
Mr. V. Larry Lynn Vice President & General Manager
Deputy Director, DARPA Washington C Operations
1400 Wilson Boulevard The MITRE Corporation
Arlington, VA 22209 1820 Dolley Madison Boulevard

Box 208
Dr. Joseph Mangano [2] McLean, VA 22102
DARPA/DEO
9th floor, Directed Energy Office Los Alamos Scientific Laboratory
1400 Wilson Boulevard ATTN: C. Paul Robinson
Arlington, VA 22209 P.O. Box 1000

Los Alamos, NM 87545
Mr. John McMahon
Dep. Dir. Cen. Intelligence Mr. Richard Ross [2]
P.O. Box 1925 P.O. Box 1925
Washington, D.C. 20505 Washington, D.C. 20505

Director Dr. Phil Selwyn
National Security Agency Technical Director
Fort Meade, MD 20755 Office of Naval Technology
ATTN: William Mehuron, DDR 800 N. Quincy Street

Arlington, VA 22217
Dr. Marvin Moss
Technical Director Dr. Eugene Sevin [2]
Office of Naval Research Defense Nuclear Agt..cy
800 N. Quincy Street Washington, D.C. 20305
Arlington, VA 22217

D-2

Dr. Joel A. Snow [2]
Senior Technical Advi.qor
Office of Energy Research
U.S. DOE, M.S. E084
Washington, D.C. 20585

Mr. Alexander J. Tachmindji
Senior Vice President & General
Manager

The MITRE Corporation
P.O. Box 208
Bedford, MA 01730

Dr. Vigdor Teplitz
ACDA
320 21st Street, N.W.
Room 4484
Washington, D.C. 20451

Dr. Al Trivelpiece
Director, Office of Energy

Research, U.S. DOE
M.S. 6E084
Washington, D.C. 20585

Mr. James P. Wade, Jr.
Prin. Dep. Under Secretary of

Defense for R&E
The Pentagon, Room 3EI014
Washington, D.C. 20301

Mr. Leo Young
OUSDRE (R&AT)
The Pentagon, Room 3D1067
Washington, D.C. 20301

D-3

