bl
L]
4
Y
- e v
. 0
.
.
.
Py
2UTION
Sl et
Avprzvos 17 oul
h- L X2 § - - u- t o
LigTaaputen Sl T2 " .
8 P - ot — e e A .

DN 17y vy

L,

Radical Computing II

Saul Amarel
Curtis G. Callan, Jr.
Alvin M. Despain
Oscar S. Rothaus

June 1984

JSR-83-701

e — T T e e

N

—~

/ ~ Approved for public release: distribution unlimited.
i
AN

~

\\ — I
JASON
The MITRE Corporation

1820 Dolley Madison Boulevard
McLean. Virginia 22102

\~223i30 For
ATISHIoN O
N .

NTIS CrrA2l
DVic e

U .av ouaesd

Justiicaton

'
!
1

IINCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMSBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
JSR=~83-701
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Radical Computing II

6. PERFORMING ORG. REPORT NUMBER

T AGTROR(S) 8. CONTRACTY OR GRANT NUMBER(s)
S. Amarel, C. Callan, A. Despain,
0. Rothaus F19628-84-C-0001

3. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK
The MITRE Corporation AREA & WORK UN{T NUMBERS

1820 Dolley Madison Blvd.
McLean, VA 22102

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
July 1984

13. NUMBER OF PAGES
75

14. MONITORING AGENCY NAME & ADDRESS(!f different from Caontrolling Olfice) 15. SECURITY CLASS. (of thie report)

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

6. DISTRISBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if dillferent froam: Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necesaary and identity by dlock number)

20. ABSTRACT (Cootio:e en reverse side M neceseary and identify dy dlock number)

This report continues JASONs investigation of tgchniques that might
be used to achieve a radical improvement in digital computer per-
formance. The 1982 report investigated "residug aritpemetlc" and
"symbolic computing;" this report extends the discussion ?f
"symbolic computing” into "source program transformations" and

a new topic ".eversible computing.”

FORM
DD | :am n 1473 EDiMoON OF 1 MOV 6315 0BSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

*Acknowlsdgement”

We are grateful for discussions with Nils Nilsson of SRI and Edward Fredkin of M.LT. Dr.
Nilsson consulted with us on the artificial intelligence approaches to program transformations.
Dr. Fredkin, who pioneered the reversible logic developments, provided exteasive consultation in
that area. We are also grateful to all our colleagues in JASON for inspiring discussions and help-
ful criticism. In particular, Peter Banks, Ken Case, Freeman Dyson, Doug Eardley, Paul
Horowitz, Allen Peterson, William Press and John Vesecky all made contributions to this report.

TABLE OF CONTENTS

1.1, HIStOPY oo e e e s e be s e e
b I T - O T
1.3. Nature of Difficult Computing Problemsccoriiiiiiiiiiiinnnnn,
1.4. Limitations to High Performance ...,
1.5. Possibllities for Radical Improvementccooiiriiiiiiiiiiiiiiiiecenee
1.5.1. Smaller sized componentscocoiiiriiiiiiiiriiiiicr e
1.5.2. Transformation of Programs ...ttt mereeeeeesneeranans
2. PROGRAM TRANSFORMATIONScooiiirntnnteccceenncene e e
2.1. Motlvatlons ... e
2.1.1. Program development techniques ...,
2.1.2. Performance ...ttt e
2.1.2.1. Algorithm Improvementccccccriiiiiiiiiiiiiiiiiiiiniceceneee e,
2.1.2.2. Algorithm cOnCUPPENCYc.ccciviiviiieeniiiiiieeiircereereernenseteresnanaens
2.2. Requirements for Transformation ...,
2.2.1. LAN@UARE ... e cereenr e s e e e s br e e e s sesaeeranaa e e ans
2.3. PROLOG ..ottt ctrt et st e e a e e sbe s saas asa s e s as s n e ans
2.3.1. HIBLOPY oottt terere et rtee e e seetese st seaasseessaaeesass sessnssn sarasrnnnsnns
2.3.2. ADALYsIs ...t rer e e an e s e s as s s nene e s s s s s e n e saees
2.3.3. PROLOG Structure ...
2.4. PROLOG Transformation Rules

R TR T A TY 3 L VL RN

[-]

[

8. APPENDIXES

..

1. INTRODUCTION

e I~)
1.1. History ‘ S :

During the 1983 JASON summer study weé continued oar investigation of techniques that

I

might be used to achieve a radical improvement in digital computer performance. In o#r previous

study we investigated “residue arithmetic” and “symbolic computing”{1]. “In this report we-will
discuss an extension of our "symbolic computing” into “source program transformations” and a

new topic, "reversible computing”. —

1.2. Scope

The general goal of our earlier study was to iden?ify new approaches for computer system
development. The goal of this report is the same. We will try to identify critical mathematical
and computer concepts that could lead to a radical increase in future computer performance, in

calculating important, and currently difficult, problems. "y ; T

1.3. Nature of Difficult Computing Problems

There is a set of difficult computing problems that have great economic importance. This
domain is characterized by massive numerical calculations, symbolic calculations and search. For
example, the design of a modern VLSI circuit involves symbolic calculations (calculus, etc.),
numeric simulation of analog circuit properties, and search over a design space to find a near-
optimal (or even sometimes just a feasible) solution. Today such problems are solved by a combi-
nation of human labor and machine calculations. Symbolic calculations are either done by hand
or by use of a symbolic system such as MACSYMA[2]. Then these results are hand converted
into 3 FORTRAN program, or parameters for a SPICE program|3] run. The results from the
above analysis would then be examined by hand, and new computer runs would be made. Slowly,
a design for a VLSI chip would evolve. A single design for a VLSI can cost tens of million of dol-
lars for the human labor alone. The greatest difficulty in improving this process is the difficulty
of implementing an automatic search that is efficient, i.e., not exhaustive. As we shall see, sym-

bolic manipulation will aid the solution of this problem.

1.4. Limitations to High Performance

The primary factors that limit the performance of today’s computers are:
(1) The speed of light limits how fast signals can be propagated throughout a computer.
(2) The serial nature of computer calculations limits parallel execution.

In the past, computer performance has been improved by improving the speed of the logic
gates; this approach is becoming more difficult every year as integrated circuit techniques are
maturing. Currently, the heat dissipation of logic circuits prevents them from being packed closer
together, and the resulting separation causes, due to the finite speed of light, an inherent propaga-
tion delay that limits the performance of serial machines. To break this limitation, either a
totally new technology of radically smaller dimensions and efficiency in power dissipation is
required; and/or new organizational principles for parallel execution of computer algorithms are

necessary.

1.5. Possiblilities for Radlical Improvement

1.5.1. Smaller sized components

To achieve a radical improvement then, we can seek radically smaller logical components
with radically improved efliciencies. A speculative approach to this problem will be considered
later in this report. If these components are sufficiently fast, then our current, serial designs for
computers will suffice. If not, then concurrent execution techniques will be needed to achieve a

radical improvement.

1.5.2. Transformation of programs

Since humans are not always good at expressing tasks in either eflicient or concurrent form,
we will need to develop techniques to transform source programs. This will require symbolic

manipulation of source program fragments.

2. PROGRAM TRANSFORMATIONS

The main task of a compiler is to transform a source language into an object language.
Improving the efliciency of the resulting program is the purpose of compiler optimizations. The
ideas for this stem from compiler theory, structured programming[4], and artificial intelli-
gence{5,6|. Cocke and Allen|7] discuss about twenty transformations for compilers. The transfor-
mation of source programs into new source programs is not a new idea. It has been widely advo-
cated as a method of developing programs, of improving the efficiency of programs and of discov-

ering concurrency|8].

In the past, such efforts have only been partly successful. First, classic methods of optimiza-
tion in compilers have been very successful and have relieved some of the pressure for source-to-
source transformations. Second, classic source languages (such as FORTRAN) were ad-hoc
designs and the corresponding algebra of the programs was extraordinarily difficult. Backus, the
father of FORTRAN, has examined this problem and suggested some new directions[9]. The
computer language 'fp’ was a result of this effort. Finally, it has been only recently that an
increasingly powerful drive to use parallel computers has existed. As a result, transformations to

convert serial constructs into concurrent ones are becoming increasingly important.

2.1. Motivations

2.1.1. Program development techniques

The ”Operational Program Development” technique[10] is a good example of a new method
for developing software. The basic idea is to begin with a specification of a program that can be
executed, at least at a high level. Then this specification is transformed into a complete, detailed,
and efficient source-program. The proponents of this method claim it is a fast, inexpensive, and

relatively error-free method of software engineering.

2.1.2. Performance

in this report, our primary focus is on performance. Techniques that could lead to a radical

improvement are of especial interest. There are two approaches to this that we discuss next.

2.1.2.1. Algorithm Improvement

It is difficult (perhaps impossible) to prove that source-to-source transformations can always
provide a radical improvement, even to programs that are very large and highly structured. How-
ever, some examples can provide evidence that such transformations have potential for a radical
improvement on very large and difficult computing problems. For example, consider the discrete
Fourier transform (DFT) of size N. It has a computational complexity of O(N?) . This transform
can be transformed {by humans) into the fast Fourier transform (FFT) of complexity
0(.Vlogn){11]. A typical value of N might be N = 1000, so that a hundred-fold improvement
results. Such a transformation is currently beyond the capabilities of any automatic system, but

as we shall see, such systems might be developed in the future.

2.1.2.2. Algorithm concurrency

Sometimes it is easy for a programmer to envision the potential concurrency in a program
he is writing. The concurrency in a large matrix multiply is easy to see, for example. At other
times it is very difficult to envision and express concurrency even when the programmer knows it
must exist. For example, consider the addition of two very big numbers. We all have learned a
serial algorithm to perform such additions. It is universally known among programmers that
modern digital computers have parallel hardware to perform addition, yet almost no programmer
could describe in detail the highly-concurrent algorithm that is embedded in the machine
hardware. The serial carry operation for a 32-bit adder requires approximately 64 time steps,
while the parallel {carry-lookahead) algorithm requires only about 10 time steps. Humans some-
times can articulate only the serial form of a calculation to be performed. Thus the need for

automatic transformation of programs from serial to concurrent form.

2.2. Requirements for Transformation

There are a number of requirements of a language so that it will facilitate source-to-source
transformations. The language should be at a high enough level that important structures of the

original problem have not been lost. There needs to be a clean algebra of the language that

describes permissible transformations|9].

2.2.1. Language

In the past, the programming languages employed in the programs that were transformed
generally included both popular languages such as FORTRAN where the need was great, and
languages with special features that made them attractive for transformation, for example,
LISP[12], APL[13], and SETL[14]. More recently, it has been suggested that program languages
should be designed with transformation in miad. John Backus has been the main proponent of
this and has proposed the language 'fp’{9]. The recently developed languages LUCID|15},
KRC[16], and PROLOG]17| all show a regard for the "algebra” of the language. In addition,
there have been attempts to improve the algebraic properties of popular languages; for example,
Loveman's work with a FORTRAN-like language{12,. We will choose PROLOG for our work in

this report.

2.3. PROLOG

2.3.1. History

Interest in the PROLOG language is growing very rapidly, roughly doubling every year.
Recenily, in Japan, it was adopted as the primary Janguage for the "Fifth-Generation Computer
project. It is not yet very popular in the United States, probably due to the very mature pro-
gramming environment surrounding the LISP language and also to "NIH” ! factors. In the dis-
cussion that follows, it is assumed that the reader has some familiarity with the PROLOG
language. A good tutorial on PROLOG by Clocksin and Mellish[19] is recommended for those
readers not familiar with PROLOG. The basic idea for employing Predicate Calculus as a basis
for a programming language can be credited to Kowalski[20] (England). Since the algebra of
Predicate Calculus is especially well defined, the algebra of programming languages based on it
are likely to also have an especially well defined algebra. Colmerauer, in France, adapted the

theoretical ideas of Kowalski to a practical programming language, PROLOG|17].

L NIH signifies *Not Invented Here”

2.3.2. Analysis

An analysis of the PROLOG ianguage will reveal several important features. First, the
language is based on Predicate Calculus and inherits much of its formal structure. Second, any
useful computer language must deal with 'side-effects’, particularly data input and output. These
'side-effects’ disturb the otherwise clean algebra of the language. Third, PROLOG generally sub-
sumes the LISP language without any particular difficulty and without muck violence to desirable
algebraic properties. Fourth, the 'cut’ operator of PROLOG, a difficult construct te handle in
algebraic transformations. is used in several very distinct ways. The 'cut’ does not modify the
semantic of the constructs it appears in, prot ided they coatain no 'side-effect’ operators. Its most
pervasive use is in situations where only one of several possible choices are to be made. This is
the 'CASE’ statement of more familiar languages. Unfortunately, 'cut’ is also used for much less
transparent constructs. The main use of the 'cut’ is to improve the efficiency of the program by
preventing useless calculations. The ’cut’ operator, in general, causes grave problems during

transformation of program fragments that contain it.

We have two reasons to employ transformations: First, we want to improve program
efficiency, and second we want to increase program concurrency. Since "side-effects” generally
inhibit concurrency, it is natural for us to partition a PROLNG program into parts that are
separated by “side-eflect” operations. Within the "side-eflect”-less parts, we can freely apply a
large repertoire of methods to achieve efficiency and concurrency. Unfortunately, we cannot use
many of our transformation methods on those parts that contain i/o and other "side-effect” opera-

tions.

2.3.3. PROLOG Structure

The structure of a PROLOG program is illustrated in Figure i. At the top level is the data
base and the query. The data base is a collection of procedures. Procedures are collections of
clauses, all of which have the same name. Clauses are Horn clauses from the predicate calculus,
sometimes augmented with 'cut’ operators. There are two kinds of clauses, 'facis' and 'rules’. A

fact has only a head conmsisting of a predicate name and any arguments surrounded by

Prolog Program

Query
f (3. F)?
Data Base
Procedure
Fact
£{0. 0).
Clause
Body
Head Goal Goal
f(N.F) g (N. X) h(X. F}

Figure 1. Prolog program structure.

parentheses. For example, 'f(0,0).’, is a fact. A rule is a 'head’, as described above, connected to
a 'body’ by the IF operator :-’. The body is a collection of 'goals’, each of which has the syntax

of a 'head’. Thus, for example,

f(A,B) - g(A,X), h(X,B).

is a rule that is read as "Function f with argument A and B will be true IF function g of argu-
ments A and X is true AND if function b with arguments X and B is true .” The variable argu-
ments, indicated by an initial letter that is upper case, are all assumed to be universally

quantified.

Rules can be recursive as in the following function to sum the positive integers up to N.

(0,0).

s{N,S) - M is N-1, s(M,G), S is N+ G.

PROLOG constructs can be related to concepts of conventional programming languages as

follows in Table 1.

Table 1. Comparison of Programming Languages.
PROLOG CONVENTIONAL LANGUAGES
cut if-then-else; case
goal procedure call
clause entry point of a procedure
naification assignment, data selector and constructor
recursion iteration and recursion

The special form of PROLOG constructs are especially helpful in the program transformations to

be discussed below.

2.4. PROLOG Transformation Rules

PROLOG supports several forms of mathematics. We have previously mentioned that
predicate calculus is the basic form of the language. Table 2 illustrates the basic definition of the

predicate functions and the corresponding PROLOG functions.

Table 2. Definition of Predicate Functions.

Predicate | y Y |xYvl|xvy|[xov|-x

Calculus

PROLOG || x y X,¥ X;y y:-X not(x)
falses | false | false | false true true

Values false true | false | true true true

true false | false | true false false
true true true true true false

*In PROLOG, 'false’ is replaced by 'fail’.

In predicate calculus there are a large set of transformation rules that can be directly

adapted to transform PROLOG fragments. Table 3 summarizes all these transformations,

Table 3. Summary of PROLOG Transformations.
Type Classification Components
Definitions not, and, or, implies
Propositional association, commutation,
. Calculus distribution, contraposition,
Basic L .
DeMorganization, negation
Resolvents modus ponens, merge, tautology,
chaining, equivalence
Recurrences head, tail. mixed, multiple
Derivations chaining
Derived In-lin.e expansions, contractions
Caching
Partial
Compilation

and Table 4

10
Table 4. Basic Transformations.
NAME Predicate Calculus PROLOG (no side-effects)
XDY <=> -XvY y:-X. <=>
Definition . _ t:-not{z). _)
(-Z) <=> Z w:-not(t). <=> Wiz,
(X-Y)-2Z <=> X-(Y-2) wi-X,Y,2. <=> wi-y,2.X.
Association VX vey.
(XVY)vZ <=> Xv(YvZ) viy. <=> vi-z.
vi-2. Vi-X,
wiy. r-X.y.
. — . . wi-Z. _ 8:-X, 2.
X-(Yv2) <=> (X-Y)(X-2) u-X,w. <=> u:-r.
u:-s,
Distribution r-X.
u:-x ey,
Xv(Y-Z) <=> (XvY)-{XvZ) <=> s:-X.
o s:-2.
u-y,z. u:-r,S.
X-Y <=> Y-X u:-X.y. <=> -y X.
Commutation XvY <=> YvX uf-x. <=> uf-y.
u-y. ui-X.
v _ s u-X,y. _ u:-not(x).
(X-Y) <=> Xv-y y:-not{u). <= v:-not(y).
DeMorganization u:-x.
-(XvY) <=> -X--Y u-y. <=> v:-pot(x},not{y).
v:-not(u).
¥ieX. y-X.
Contrapositive XDY <=> YDOX us-not(x). <=> z:-:?tz(y).
u:-not(p).
Modus Ponens P-(-PvQ) <=> Q u:-q. <=> vi-q.
v:-p,u.
u:-p.
u-q.
Merge (P¥Q)-(-P vQ) <=> Q v-pot(p). <=> r-q.
vi-q.
r-u,v.
e _ . u:-p,q.
(PvQ)-(-PvQ) <=> (Q7-Q) v:-not(p),not(q). <=> r.
Tautology reu
(PvQ)-(Pv-Q) <=> (Pv-P) i
Nil ~P-P <=> nil r.-p,not(p). <=> r:-fail.
Chaining PDOQ-QDR <=> PDR q:-p- <=> r-p.

r:-q.

11

and Table 5 provide more detail.

Table 5. PROLOG Derived Transformations (Examples).
NAME Transformation
Chaining X:-ax.
y:-ay. <=> u:-ax,ay.
u-x,y.
RECURRENCES
r(0). _ 1(0).
head HA)-r(B)f(AB)g(AB). | <> | A):-f(AB), f{B). g(AB).
. r(0) _ r{0).
mixed r(A)-(A.B). B), gAB). | <= | r(A)-H(AB), g(AB). r(B).
tail r(0). <=> r{0).
r{A):-f(A B), g(A,B), r(B). r(A):-¢{B),1(A,B),2(A,B).
1(0). s(0,1).
multiple <=>> single r(1). <=> s(A,B):-f(A,B), s(A,B).
r{A):-f{A.B,), r(A), r(B). r(A):-s{A,B).
f.
In-line r-afz. <=> r-az.
Expansion & Contraction r:-a,s,t,z. <=> rf-:;s}t.z
a(0). a(0).
Caching a(1). a(1).
b(x):-a(y), x is 2%y. <=> b(0).
b(0)? b(1):-fail.
b(1)? b{x):-a(y), x is 2+y.
a(0). a(0).
Partial Compilation b(x)- a(;gl)); is 20y, <=> Z}(l);:
b(2).

For example, in Predicate calculus if a D b (read this as a implies b) and b D ¢ , then it can be

concluded that a D c¢. Similarly, the PROLOG fragment

b :- a.

¢ :-b.

can be transformed (if there is no other use of b) into the simplified fragment:

PROLOG also supports the algebra (and arithmetic) of the reals (both integer and floating point)

within a goal. Thus a goal can be an arithmetic construction such as "Sum is A + 3 * B”. In

12

the usual algebraic way, fragments such as

..,BisA+ 1l,sumisA+ 3sB, ..

can be simplified (if there is no other use of B) into

..,sumis4* A+ 3, ..

2.5. Recurrences

Recurrences can appear in three forms, as in the following function to sum the positive

integers up to N. This is a mixed recurrence.

s(0,0).

s(N,S) = Mis N-1, s(M,G), S is N+ G.

Tail recursion is an especially desirable form because it is very efficient in terms of use for
memory. It is equivalent w a 'DO’ loop in FORTRAN. An example of tail recursion for the

same sum-the-positive-integers task is;

s(N,S) - s(N,0,S).
s{(0,S,S).

s(N,A,S) :- Mis N-1, B is A+ N, s(M,B,S).

Both of these recursions have roughly the same number of execution steps; however, the tail
recursion has need for much less memory (space) and so is, all other factors being equal, more
desirable than the first form. Note however the cost. The first form is a bit more compact and is

easier to comprehend.

2.5.1.1. Head Recursion

Above we discussed general (or 'mixed’) recursion and tail-recursion. A form we will name

'head-recursion’ will .lso be important for our transformations. Consider our previous mixed-

13

recursion example of summing the possible integers up to N. By transforming the first goal, (an
arithmetic statement) into N is M + 1, and re-arranging the goals according to the predicate cal-

culus commutative rule we obtain our 'head-recursion’ form.

5(0,0).

s(N,S) - S(M,G), NisM + 1,SisN + G.

Because of the default computation rule employed by the PROLOG evaluator, this is not an
efficient form but does, of course, have the same semantics as the original form. This 'head-

recursion’ form will be important in later transformation examples.

2.6. Comments

These three forms illustrate the goal of our transformation method. We seek transformation

algorithms to convert at will between these forms.

14

3. EXAMPLES

In this chapter we will examine five different transformation problems. Each represents an

important process for achieving efficiencies and for concurrency.

3.1. Triple Append

This problem, in a LISP environment, has been examined by Wegbreit{21]. Because of the
differences between LISP and PROLOG, it is instructive to see how the PROLOG version differs
from the LISP one. The problem is to join together three lists, using the usual algorithm for join-
ing two lists. Then the result is transformed into a more eflicient form. The definition for

appending one list to another is;
append ([|,Z,Z). append ([Xz|X7].Y,[Xy|Zz)) - append (X7,Y,27) . 2

In order to more easily manipulate our programs, we will use an abbreviated form as follows.

o(1.2,2).0(|Xu | X7}, Y [Xy | Z1]):-0(X1,v,2,,

The result is that list Z is the list Y appended to list X. To join three lists A,B,C into the single

list D, we employ the above PROLOG procedure and define our three list append as:

b{A,B,C,D):-a(A,B,E),s(E,C,D).

Now this is a perfectly acceptable program. It can be improved however. Notice that first list A
must be traversed in order to append list B. Then in the next goal, list E, composed of lists A
and B must be traversed to append list C. The cost is then 2/, + [g procedure calls to a, where
I, is the length of list X. This cost might be reduced to [, + Ig by program transformation. To

do this consider two cases:

Casel A=].

List A is null.

21n PROLOG, given a list, the notation [H|T] indicates that H is the first item of the list and T is the remainder.

b([],B,C.D) - a({],B,E), a(E,C,D).

but a([],B,E) :- true if E + B. (by partial evaluation)
Thus

b({],B,C,D) - a(B,C,D).

Case 2 A #|

b({An| A1],B,C |Dy | Drl|):-a({An | Ar|,B,|Ey | E1]),a(|Ex| E1|,C,[Dy | Dr])
but a

([AH l Ar],B,lEH I ET])Z—G(AT,B,ET)IFEH = AH
{(by partial evaluation). Thus

b([AH I Ar],B,C,[AH l AH | Dr]):—d(AT,E,ET),G(ET,C,DT).
Now by the derived-chaining rule, the r.h.s. is defined by the original definition of b;

b([AH I ar],B,C,[AH l DT])Z—b(Ar,B,C,Dr).

This new procedure is thus

5(|,B.C,D):~s(B,D D).

b([AH l ATI,B,C,[AHI DTI)Z—b(AT,B,C,DT).

This is more efficient. It calls itself I, times and calls a, [z times, a saving of I, calls.

3.2. Fibonaccl Recurrence

15

In the next example, we define a procedure to calculate the N* value of the Fibonacci

sequence. The Fibonacci sequence is
1,1,2,3,5,8,...

when fi—f+ [,

In PROLOG this is

fib(0,1).

fib(1,1).

fib(N,F) :- M is N-1, fib(M,G), L is N-2, fib(L,H), F is G+ H.

16

This is very inefficient. The separate calculations of fib on the r.h.s. often calculate the same

values. It has a complexity of 0(2N). We will transform it to a more eflicient form. For nota-

tional purposes we will compress the above procedure as follows.

£(0,1).
f(1,1).

f(N,G+ H) :- f(N-1,G), f(N-2,H).

Now let us define a new clause to represent the r.h.s.

g(N-1,G,N-2 H) :- f(N-1,G,), f(N-2,H).

thus

g(N,F,N-1,G) :- f(N,F), f{(N-1,G).

f(N,G+ H) :- g(N-1,G N-2,H).

and

g(1,1,1-1,1) =~ f(1,1), £(0,1).

now since

f(N-1,G) :- [(N-1,G).

f(N-1,F) - f{N-1,G),f(N-2 H) F is G+ H,
then by the derived-chaining rule,

f(N,F), f(N-1,G) :- f{(N-1, G), f(N-2H) F is G+ H
thus

g(N,F,N-1,G) :- g(N-1,G,N-2,H), F is G+ H.
In canonical form:

g(1,1,0,1).

g(N.F.M,G) :- Mis N-1, L is M-1, g(M,G,L H), F is G+ H.

Note that L now has no particular function.

Thus

17

g(1,1,1).

g(NF,G) - Mis N-1, g(M,G H), F is G+ H.

This is 3 much improved algorithm, with a complexity of O(N). Thus it has only about N calls,
far fewer than the number of calls of the original algorithm. It is possible to find an algorithm
that is of only O(log,N) complexity as opposed to the O{ V) complexity of our present algorithm.
It turns out that for large N (approximately N = 50) this new algorithm is an improvement. The
basic idea of the new algorithm is to turn the 'mixed-recurrence’ into a 'head-recurrence’ and

solve it using matrix techniques. The improved recurrence derived above is:

g(M,F,G) - L is M-1, g(L,G,H), F is G+ H.

This is equivalent to:

g(1L,MF,G) .- L is M-1, g(1,L,G,H), F is G+ H.

g(1,MF,G) - g(1L,GH), MisL+1, F is G+ H.

g(LMFE):-g(1L,GH),MisL+1,FisG+HE is G.

g(L,M,FE) - g(1,L,G,H),
lis 1,
MisL+1,
Fis G+ H,
Eis G.

We now solve for the initial condition:

g(1,1,1,1).

Now, converting to matrix form:

18

1000 1
M __ N 10O 1
0 010 1

The matrix can be expanded by calculating successive squarings with only (log M) complexity.

3.3. Arithmetic Serles

This example illustrates the power that transform techniques can sometimes achieve. Con-
sider a general arithmetic series involving polynomials. Such a form often appears in the 'do’
loops of FORTRAN programs. An example as it would appear in a language similar to FOR-

TRAN is:

f{0) = 0.
do{n <-1N)

{f(n)<-f(n-1)+ n**4-4sn**3+ 3sn**2.2¢n+ 1}.

This can be expressed in PROLOG as:
£(0,0).
f(NJF):-MisN-1,

(M, F1),

Fis F1 + NsN*NsN - 4sN«NsN + 3#N+*N . 2sN + 1.

Note that the complexity of this program is 15N arithmetic operations.

It is possible to automatically transform any such arithmetic series by means of a PROLOG

program written by Peter Van Roy (unpublished). This program is provided in Appendix A-1.

The improved form for { as automatically generated by Van Roy’s program is:
f(_3,_6):-_6 is

((((-6%_3+ 15)*_3+ 20)s_3+ 15)*_3+ -14)_3/-30.

In more readable form this is:

f((NF)-F is

19

((((-6*N+ 15)*N+ 20)*N+ 15)*N-14)*N/-30.

Now note that this solution is much simplified. Its complexity is only 10 arithmetic operations,

independent of the value of N.

3.4. Head Caching

In a simple PROLOG interpreter, once a goal fails, all the context of its sub-goals, both
those that failed and those that succeeded, is destroyed by popping both the environment and the

value stacks.

Later, if these same sub-goals are encountered, all the work of proving them must be
repeated. This work could be avoided by storing the heads of the clauses and the result of the

evaluation. In effect we wish to add 3 new clause to the data base.

It can be seen that this technique enhances performance at the cost of memory space (to
store the cache entries). The modern trend seems to be ever decreasing costs for memory, so this
may be an attractive method to improve performance for some applications that are more time-

bound than space-bound.

This techpique is not a general one that should be universally applied. For example if a
procedure is being used as a generator of values, it is not appropriate to cache its intermediate
results because they could be scrambled {in order of appearance) by caching. Also, if side-effect
operations occur, such as assert or read, then caching can change the expected behavior of the
executing program. [t is also true that some cached values are much more valuable than others,

so some selectivity in caching is desirable to optimally utilize memory space.

Our method of overcoming these drawbacks is to add a new mode declaration to the PRO-
LOG interpreter language. Warren|{22] used this method when he introduced his operator
"mode”. Clark and McCabe [23] elaborated on this and introduced several more mode operators.
We propose a "cache” mode operator to declare the desirability of caching a named procedure.
Thus if we wished to cache the results of the "ancestor” procedure, we would include “cache

(ancestors).” in the program.

20

As a result, the programmer can select only those procedures for caching, that are likely to
be greatly improved by caching. Procedures at too low a level to benefit from caching, generator
procedures or procedures with side-eflects can be avoided (in the most natural way) for caching

purposes.

In order to illustrate the potential of this method, we will examine expand an example pro-

gram, a procedure to determine if two people are related. It is:

related (X,Y):- ancestor (X.Y).
related (X,Y):- ancestor (Y,X).

related (X Y):- ancestor (X,Z), ancestor (Y,Z).

Thus two people, X and Y are related if one is the ancestor of the other or if they have a common
ancestor, Z. In order to compress the bulk of the programs to follow, we will reduce all the names
in our example to simple letters, the first letter of the name. The compressed program follows
where m represents male, ¢ represents child, and f represents father. The letters ¢,j,g,b,v, all

represent individual people.

m(t).

m(}).

m(g).

m(b).

c(v.g).

c(g.b).

c(j.g)-

eft.j)-
{(X.D):-m(D),c(X.D).

(A X):-f(AX).

21

a(A.X)-f(Y,X),3(A,Y).
r(X,Y):-a(X,Y).
r(X,Y):-a(Y, X).

r(X,Y):-a(X,2),a(Y,Z).

As a measure of performance we will count calls to clauses. This is roughly proportioned to

the number of logical inferences (LI)® since for our example there are about two logical inferences

(LY) per clause.

For purposes of illustration, we will be interested in a compound juery: ‘Is t related to v?
followed by: ‘Is v related to t?. We wish to know the number of calls required to answer this
query.

It is a simple matter to instrument our example program and count each call. We define a
count procedure ‘cnt (x)’ and call it just as we start the execution of the body of the clause (See
Appendix A-2). A much more elaborate version of this will be discussed later. When the query is
then executed, the first half of the query 'r(t,v)?’ requires 59 calls and the second, 'r(v,t)?’, 35 calls

for 94 total.

How much could caching reduce this figure? One way to find out would be to re-write a
PROLOG interpreter to include the “cache” operator as discussed above. In this study however,
we re-wrote the example program to call a s<imulated cache system. One might imagine that each
of the statements was specified to be cached, and the ‘logical’ consequence is the re-written pro-
gram.

This system was implemented to produce the measurements of the numbers of calls and a

trace during execution of queries. The simulated cache was written in PROLOG and our meas-

urements were made with a conventional PROIL.OG interpreter. The re-written example is:

LI for Logical Inferences seems to have become the accepted measure of work in executing logic programs. The
more common form 15 "LIPS” for "Logical [nferences per Second”. We assume an LI is the unification of a simple van-
able.

mt):- cnt{m).

m(j):- cnt(m).

m(g)- cat(m).

m(b):- cnt(m).

c{v,g):- cnt(c).

c¢(g,b):- cnt(c).

2(j,g):- entfc).

c(t,j):- ent(c).

f(X,D):- bf(f.X,XP,D DP), m(D),c(X,D), tf{f,X,XP.D,DP).
a(A,X)- hs(a,A,AP,X.XP), f(A,X), ts(a,A,AP,X,XP).
a(A,X):- hf(a,A,AP X, XP), {(Y,X),a(A,Y), tf(a,A,AP X, XP).
t(X,Y):- bs(r,X,XP,Y,YP), a(X.Y), ts(r,X,XP,Y,YP).
£(X,Y):- hs(r,X,XP,Y,YP), a(Y.X), ts(r,X,XP,Y,YP).

H(X,Y):- bf(r, X,XP.Y,YP), a(X,Z),a(Y,Z), tf(r.X,XP,Y,YP).

cache(f).
cache(a).

cache(r).

The cache simulation program can be found in Appendix A-2.

There are four kinds of calls to the cache system. These are hs,hfts,tf. For a procedure with
oniy a simple clause such as ‘', we employ ‘hf’ and ‘tf’. The first, ‘hf’, creates a cache entry that
represents the failure of this clause with the variable bound as the original clause was called. If
the clause indeed fails, then nothing further happens and the cache entry remains. On the other
band, if the clause should succeed, then this clause entry must be replaced by a entry representing

success, but with the new binding determined by the body of the clause. This is the function of

23

‘tf” which appears at the end of each clause. If backtracking within the clause occurs, then each

successful result must also be entered into the cache.

For multiple clause procedures, only the last clause can indicate a failure, so there is no
caching at the head of any clause except the last clause of a procedure. The call ‘hs’ is just used

for instrumentation.

The call ‘ts’ is similar to ‘tf’ but since no "fail” was entered into the cache for this clause

none should be extracted.

The ‘primed’ variables (XP,ZP) that appear in the cache calls are needed because the vari-
able bindings cached by the "fail” at the beginning of a clause are not the same as those cached
by the “succeed” at the end. Thus to remove a previously cached ”fail”, those bindings must be

propagated from ‘h{’ to ‘tf".

In inserting a new entry to the cache, duplicates (if any) should be removed. Also if 2 more
general result is cached, and subservient ones should be deleted. For example if afi,t):-fail. is ini-
tially in the cache when a(X,t):-fail is to be cached, a(i,t):-fail should be removed as it is dom-

inated by a(X,t):-fail.
The cache program that accomplishes the above objections is shown in Appendix A-2.

The performance results of our example with the cache system, are shown in Table 6.

Table 6. Summary of Results.
INITIAL CALL TOTAL CALLS
No Cache CACHE
rit, v), rlv, t) (v, t}, r(t, v)
t(v, t) 35 5 32
r(t. v) 59 47 5
Both 94 52 37

Only 37 total calls are required in the cached system as compared to the 94 required in the
uncached system. It is interesting to note that if r(v,t) is called before r(t,v), then 52 calls are

needed. The cache scheme clearly saves calls in this simple example.

The state of the program after the query is shown below.

24

EXECUTED PROGRAM LISTING

m(t) :-
cot(m).
m{j) :-
cnt(m).
m(g) -
cnt(m).
m(b) :-

cnt(m).

cfv.g) -
cnt(c).
c(g,b) -
ent(c).
c(j.g) -
cat(c).
c(t.j) =

cnt(c).

1(.8) -
cnt(f).
f(v.g) :-
cnt(f).

f(t.j) -

cot(f).
f(_1512,_1513) :-
eq(_1512,t),

eq(_1513,v),

!
fail.
f(_1512,_1513) :-
eq{_1512,_1522),
eq(_1513,t),
!
fail.
f(_1512,_1513) :-
eq(_1512,v),

eq(_1513,j),

!

fail.
f(_1512,_1513) :-

eq(_1512,_1522),

eq(_1513,v),

'

fail.
f(_1512,_1513) :-

bf(f._1512,_1522,_1513._1523),

m(_1513),

c(_1512,_1513),

tf(f,_1512,_1522,_1513,_1523).

a(v.g) -

25

cnt(a).
a(t.g) =
cnt(a).
a(t,j) -
cnt{a).
a(_1516,_1517) :-
eq(_1516,t),

eq(_1517,v),

!
b

fail.
a(_1516,_1517) =-
eq(_1516,v),

eq(_1517,j),

'

fail.
a(_1516,_1517) -

eq{_1516,v),

eq(_1517,t),
1
fail.

a(_1516,_1517) -
hs(a,_1516,_1526,_1517,_1527),
f(_1516,_1517),
ts(a,_1516,_1526,_1517,_1527).

a(_1516,_1517) -
hf(a, _1516,_1526,_1517,_1527),
f(_1528,_1517),

a(_1516,_1528),

tf(a,_1516,_1526,_1517,_1527).

r(v,t) -
ent(r).

r(t,v) -
cat(r).

r(_1520,_1521) :-
hs(r,_1520,_1530,_1521,_1531),
a(_1520,_1521),
ts(r,_1520,_1530,_1521,_1531).

r(_1520,_1521) :-
bs(r,_1520,_1530,_1521,_1531),
a(_1521,_1520),
ts(r,_1520,_1530,_1521,_1531).

r(_1520,_1521) :-
hf(r,_1520,_1530,_1521,_1531),
a(_1520,_1532),
a(_1521,_1532),

tf(r,_1520,_1530,_1521,_1531).

count(level,2).
count(a,2).
count(r,3).
count{_1522,0).

CALL COUNTS

Total calls = 5

27

28

Notice how it has been transformed. Both ‘success-goals’ and ‘failure-goals’, are evident, as
are the original clauses. This idea of transforming a PROLOG program leads us to another

related technique.

3.5. Partial Compllation

If all possible results of executing a procedure, called with all of its argument unbound, are
cached, then in some sense we have transformed a procedure into a ‘partially-compiled’ form that
executes particular queries very quickly. It may, of course, use enormous memory space. Again,
selective programmer control of such a facility could be effective. Thus we propose the mode

”pcompile(Procedure-name).”

To illustrate the potential of this technique, we will include the statement "compile (a)”

with the example program, and the following procedures with the cache program.

% Partial-compiler for PROLOG Example.

% bead(X,Y,Z) :- X(Y,2Z).
C% compensation for the principle

%% functor not being a variable

head(f,Y,Z) - f(Y,2).
head(a,Y,Z) :- a(Y,Z).

head(r,Y,Z) :- r(Y,Z).

head(fp,Y,Z) :- fp(Y,Z).
head(ap,Y,Z) - ap(Y,Z).
head(rp,Y,2) - rp(Y,Z).

% compiler

p_compile(all) :- pcompile(X),

p_compile(X),fail.

p_compile(X) :- head(X,Y,Z), pexec(X,Y,Z),fail.

p_compile(X) :- abolish(X,2),restore(X),!.

pexec(X,Y,Z) :- trans(X,XP),

ycache(XP,Y,Z2),!.

restore(X):-trans(X,XP),rts(XP,Y,2),
ass(X,Y,Z),restore(X).

restore(X).

trans(f,fp).
trans(a,ap).

trans(r,rp).

ass(fp,YQ,ZQ):- asserta({fp(YQ,ZQ))).
ass(ap,YQ,ZQ):- asserta((ap(YQ,ZQ))).

ass(rp,YQ,ZQ):- asserta((rp(YQ,ZQ))).

rts(fp,YQ,ZQ):- retract({fp(YQ,ZQ))).
rts(ap,YQ,ZQ):- retract((ap(YQ,ZQ))).

rts(rp, YQ,ZQ):- retract({rp(YQ,ZQ))).

Execution of the compiler results in the following transformed program. Not counting the

compiler itself but only the original and program, 72 calls are required during the compilation.

EXECUTED PROGRAM LISTING

m(t) :-
cot(m).
m(j) -
cot(m).
m(g) -
cnt(m).
m(b) :-

cnt(m).

c(v.g) =
cnt(c).
c(g.b) -
cat(c).
c(j.g) -
cnt(c).
c(t.j) -

cnt(c).

f(_41,_42) -
hf(f,_41,_51,_42,_52),
m(_42),
cf_41,_42),

t(r._41,_51,_42,_52).

a(t,j) -
cat(a).

a(v,g) -
cnt(a).

aj.g) -

30

ent(a).
a(g,b) -
cnt(a).
a(t,g) -
cnt(a).
a(v,b) :-
cnt(a).
a(j,b) -
cnt(a).
a(t,b) :-

cnt(a).

r(_49,_50) :
hs(r,_49,_59,_50,_60),
a(_49,_50),
ts(r,_49,_59,_50,_60).

r(_49,_50) :-
hs(r,_49,_59,_50,_60),
a(_50,_49),
ts(r,_49,_59,_50,_60).

r(_49,_50) :-
hf{r,_49,_59,_50,_60),
a(_49._61),
a(_50,_61),

tf(r,_49,_59,_50,_60).

count(m,20).
count(level,7).

count(f,18).

31

32

count(a,18).

count(c,16).

count(_51,0).
count(_51,0).
count(_51,0).
count(_51,0).
count(_51,0).

CALL COUNTS

Total calls = 72

Now the compound query requires (without further caching) 11 calls as compared to the 94

original calls. Note that even for this query, fewer total calls are needed (72 + 11 = 83).

It is a waste of effort to also compile ‘I’ once ‘a’ is compiled. Some speed up (from 11 to 2
calls) could result if ‘r’" were compiled, but this would cost considerable space for little gain. It
can be seen that selective pseudo-compiling can sometimes be very helpful in improving perfor-

mance.

For similar reasons, employing caching after compiling ‘a’ would not help performance.

3.6. Comments

The above examples illustrate the potential of the transformation techniques. However, all
of the examples were quite simple and half of the examples were transformed by hand, not
automatically. The problem of automatically controlling which transformations should be applied

is a very difficult open problem.

A future goal is the automatic transformation of the DFT algorithm into the FFT algo-
rithm. Another is the development of the Strassen algorithm[24]. Both of these problems have a

common background; roughly speaking, they both appear to be connected to certain questions in

33

the theory of representations of finite groups, a fairly well developed body of mathematical
knowledge. To solve these and related transformation problems, a program, similar to the Van
Roy solver program discussed above, would need to be developed. Such a program would have to
koow not only all the facts about group representations but would also have to be able to sense
that this particular area held some facts and techniques which might be relevant to the problem
at hand. Such a program is likely to be very complex. It is not at all clear that it could be
developed as an expert (mathematician) system, even if massive resources could be provided. It
may even be the case that such a program could not be developed without some new break-
through in the theory of artificial intelligence, or the development of some new kind of mathemat-
ics.

On the other hand, it is possible that a clever mathematician or computer scientist just
might discover a new approach. Such a discovery could have tremendous consequences for high

performance computing.

3.7. Conclusions for Transformations

The above examples achieved performance enbancements ranging from speed-ups of 1.5 to
3000, on very simple problems. However, it is true that these examples constitute plausibility
arguments, not proofs, that transformation techniques may be important for achieving a radical
improvement in performance. To have a big impact, such transformations would need to be
automatically controlled during program execution, so that as more elements of the solution are
developed, new transformations can be applied. There is currently very little theory to guide
such dynamic applications of transformations. If future research is able to accomplish this, then a

radical improvement in performance could indeed occur.

34

4. REVERSIBLE COMPUTING

4.1. Introduction

Reversible computing was investigated in an attempt to determine if radically smaller and
more efficient logical circuits might be possible. As we shall see, density and heat dissipation
improvements up to ~10% may someday be possible. We consulted one of the pioneers in this
subject, Dr. Edward Fredkin of MIT, at some length and brought ourselves up to date on the (not
very extensive) literature. Our basic conclusion is that the importance of reversible logic depends
crucially on the physical architecture of the computer: It is irrelevant to the current scheme in
which packets of charge are stored on, and moved between, structures of order ome light
wavelength in size, but might be relevant and even essential if the basic izformation-handling
units were of molecular or atomic size (a distant but not necessarily unattainable goal). The ques-
tion of physical realization of reversible logic elements has been almost completely neglected * in
favor of the abstract questions of how, given the existence of reversible logic elements, one could
wire them up to make a useful computer and how one would program it. We think that the prob-
lem of how to physically realize reversible computation at something like the atomic scale should
be the next question to be attacked in this area. We also think that the very framework of rever-
sible logic suggests some interesting new approaches to the problem of ultra-small-size computing
elements which might be worth exploring for their own sake. Although practical payofl on any of
these ideas is surely far off, the computer science and physics issues raised are fascinating and of

fundamental importance.

4.2. Energy Dissipation in Computing

Contemporary computers dissipate at least 107'2 joules (about 108 kT if T equals room tem-
perature) per logical operation. The reason is that bits are stored as charges on capacitors
charged to about one volt (the typical operating voltage of solid state electronic devices). Since

there is a lower limit to the size and capacitance of circuit elements that can be fabricated on a

4 apart from some interesting "existence proof® work of Fredkin et. al.

35

chip using optical techniques, there is a lower limit to the energy associated with storing one bit.
That limit turns out to be the above mentioned 107!? joules, and the current style of computer
logic causes that entire energy to be dissipated each time the state of a bit is changed [25]. The
resulting heat load is 2 major barrier to high speed computation. A major question is the extent
to which this dissipation is an inescapable concomitance of computation and to what extent it is
due to "ineflicient™ physical or logical design of the computer[26]. Information theoretic/thermo-
dynamic arguments have been used to suggest that there is a fundamental dissipation limit of kT

per operation for computers designed on current principles.

In thermodynamics there is a well-known connection between dissipation and the reversible
operation of heat engines. Standard computer logic elements, the NAND gate in particular, are
not even reversible as abstract logical operations, let alone as physical devices. It has been sug-
gested that if reversible logic functions are used, it is in principle possible to do computing with
zero dissipation|[27, 28]! In this scenario, the entire computing operation would have to be carried
out reversibly in analogy with the dissipationless operation of a reversible heat engine. It is hard
to evaluate the relative merits of two schemes which promise to reduce dissipation to 0#kT (the
demand limit for reversible logic) and 1#7T (the demand limit for standard logic) per operation,
respectively, when the best dissipation achieved to date is 10® kT! We think it is worthwhile to
pursue the reversible logic scenario, not so much because it promises superior practical benefits,
but rather because it raises unfamiliar questions about the nature of computing and suggests some

interesting new approaches to the physical realization of computatioa.

There are two types of questions which arise when you pursue this line. First, there is the
question of what are useful reversible-logic functions, how they might be tied together to make a
useful computer and how such a computer might be programmed. These questions are all answer-
able in the abstract, without any reference to the physical realization of the system. This sort of
question is the major subject of the work of Fredkin and other pioneers in reversible logic and the
results are that manageable reversible-logic computers can be designed although they are in many
interesting ways different from conventicnal computers. The second question has to do with phy-

sical realization of reversible computation: Whay sort of physical system rcan be used, what

36

calculation speeds can be achieved, etc? Here very little is known, although many interesting
questions arise. We think this is the most important aspect of the reversible computation prob-

lem and have attempted to construct a framework for a serious exploration of these questions.

4.3. Physical Realizations of Computers

To establish a useful framework for our discussion it is helpful to remark that there are at
least two broad classes of physical realizations of computing machines. The most important dis-
tinction is between open (dissipative) systems and closed (conservative) systems. The distinction
is between systems in which the computational degrees of freedom are coupled to a "heat bath”
with which energy can be exchanged and systems in which the computational degrees of freedom
are effectively isolated from the rest of the world. The other essential distinction is between sys-
tems in which the computational degrees of freedom can be described classically versus those in

which they must be described quantum mechanically.

A dissipative system will behave in many respects like a heat engine. In particular it should
be possible to design it so that it is more and more reversible and less and less dissipative the
slower it runs. This suggests an interesting tradeoff between dissipation and speed of operation
about which we will be more quantitative in the next section. (The logical architecture of such a

machine could be either reversible or not.)

A conservative system is necessarily reversible because any closed Hamiltonian system is
reversible. In fact, it is physically reversible whatever its speed of operation and it would hardly

make sense for the logical architecture of such a2 machine to be anything other than reversible!

Any device in which the computational degrees of freedom are realized on a scale much
larger than atomic size will inevitably be dissipative: the total number of physical degrees of free-
dom vastly outnumber those directly involved in computation, and it is impossible to prevent
leakage of energy between the computer and the "heat bath”. This is the case with all present-

day machines.

37

On the other hand, if the computational system were realized at the atomic scale, as some
kind of clevetly constructed lattice, for instance, then the computational degrees of freedom
would be a major fraction of the total number of degrees of freedom. In that case, the system
might function as a good approximation to a closed reversible Hamiltcnian system and the
choice of reversible logic structure would be essential. Needless to say, no one has any practical
ideas on how to realize such a computing system, though of course, the entire thrust of the
development of faster computation is toward physically smaller computing elements. The point is
that if atomic scale computing elements are ever achieved, reversible logic ideas may be most
appropriate for doing computation. The other important dichotomy in thinking about physical
realizations of computers is that between classical and quantum mechanical systems. This leads

to a two-by-two classification scheme which is shown in Table 7.

Table 7. "Two-Bv-Two” Classification Scheme.

OPEN CLOSED
Classical Conventional Fredkin’s Billiard
Machines Ball Machine
Quantum Josephson Future Atomic
Mechanical Junction Scale Machines ?
) e e —— e ———
MACROSCOPIC MICROSCOPIC

Current computers are macroscopic and therefore classical and dissipative. Computers con-
structed at the atomic scale are surely quantum-mechanical and might well, for the reasons dis-

cussed earlier, be effectively closed, reversible systems.

Non-dissipative classical systems are consistent with Newtonian mechanics and represent
internally consistent idealized systems which turn out to be a useful framework for demonstrating
general features of reversible computation. We will be discussing Fredkin's billiard ball model in
that light. Finally, there exist macroscopic (i.e., dissipative) but quantum-mechanical logic dev-
ices based on the Josephson junction which we will use to illustrate more precisely the theoretical

limits on dissipative devices.

38

5. Theoretical Limits For Dissipative Machines

The single junction superconductor interferometer provides an example of a dissipative logic
device whose properties can be quantitatively analyzed in some detail. In this section we sum-
marize the results of Likharev[29] on the devic: schematized in Figure 2. It consists of a super-
conducting ring, broken by a Josephson junction (the cross in the figure), with provision for con-
trolling the maximum current, Iy, that can flow through the junction by varying an external
current, /o . The superconducting ring is subject to an external magnetic field with a flux, ¢
due to the combined effects of 1 and ¢, through it. The ﬁng carries a current, I, and has a net
flux, ¢ , due to the combined effects of | and ¢, through it. If the self-inductance of the ring is
L, the net flux satisfies

¢=¢.-LI
The net flux, ¢, is proportional to § the difference across the junction of the superconducting
order parameter phase and can be thought of as the variable describing the "state™ of this system.

To be precise, é=27¢/(#,), where

A -
¢o"2—e

is the magnetic flux quantum. The system is made to function as a logic device by manipulating

7z

4\

Figure 2. Josephson Junction Logic Device.

the state variable through changes in the external parameters I, and ¢, .
The energy of this system is the sum of the magnetic field energy.

=l,p_ 1 2

and the energy of a junction with a phase difference & across it

U= + Iy ¢—oc065
2r

Iy%,/ 2 xcos [2 n ¢/¢o]

(Ip is the maximum junction current, which, as we have said can be manipulated from the out-

side). The total energy functional,

1,
1 2 M 2ne
U(¢)=—2L (0-0.)° + —55co8 Y

generically has two minima. The situation when ¢#,= 0 and />0 is shown in Figure 3. This
two-fold degeneracy of the lowest energy state can be used in principle to store one binary bit of
information.

Better yet, we can, by changing the external parameters, [y, and ¢, , manipulate the shape

of the potential in such a way as to smoothly switch the system point from one degenerate

» C

Figure 3. Two-fold Degeneracy.

40

ground-state to the other. This gives an explicit way of switching our bit-storage device, or car-
tying out as an elementary logical operation. A possible switching sequence is shown in Figure 4.
where the system point (the heavy dot) starts in the right-hand well and finishes in the left-hand
well. In this sequence, the system point always sits at a local potential minimum and the rate of
change of the system coordinate is always completely controlled by the external parameters and
can be made as small as we like at the price of dragging the switching event out over a longer and
longer time. In Figure 5. we display a switching sequence where this is not true. In the third step
of the sequence when the barrier finally disappears, the system point is at a large positive energy
with respect to the left-hand minimum. It will roll down the hill and eventually settle dowa in
the left-hand minimum only after dissipating its extra energy. The rate of this motion and the
energy dissipated in it are not controllable from the outside, and to minimize dissipation in

switching we must avoid this sort of sequence.

@ [L]
b =0 >0 de + 0 >0 b >0 =0
® ® ®
!
by < 0 lM’O by < 0 >0 by = 0 x>0

Figure 4. Switching Sequence.

41

CAVERV SR X

e=0 Iu>0 be<0 Iu>0 e <0 Iu>0

be<0 Iw =0 be <0 In>0 b =0 >0

Figure 5. Dissipative Switching Sequence.

We finally come to the quantitative evaluation of dissipation in the switching event. This
device has many more co-ordinates than the single flux co-ordinate ¢ , in which we are primarily
interested. The effect of these degrees of freedom can be summarized by a viscous force

F,=-K¢
which leads to damping of motions of the system co-ordinate (and dissipation of energy from the
¢ degree of freedom) at a rate determined by K. The total energy loss in some time evolution of

¢ is just
W=_[dtF, ¢+ K[dt >0

It is particularly convenient to characterize the damping by the time r, it takes small amplitude
oscillations about a minimum to decay by e~! instead of by K. In either of the switching
scenarios described above, ¢ necessarily is non-zero and there is necessarily some dissipation. The
shape of the potential during the switching event is constrained by the requirement that spon-
taneous switching into the wrong well due to classical thermal fluctuations must be negligible (this

means that the energy barrier between the two local minima must always be much greater than

42

kT).
Given this information, it is a straightforward matter to calculate the minimum energy dis-

sipation (corresponding to the sequence of figure 5) in a switching event carried out in a time
T
interval 7. The result is, roughly Wzl:TTC so long as r=r,. In other words, the total energy

dissipated in a switching cycle can be made as small as we like by making the switching time
arbitrarily long compared to the basic dissipation time scale. This is analogous to the situation
with heat engines: dissipation or entropy production can be made arbitrarily small by running the
engine arbitrarily slowly. We can also determine the energy dissipated in a switching cycle like
that of figure 6. In that case it turns out that W=kT no matter how slowly we carry out the
transition (at some stage the system executes free fall down a potential hill whose height is scaled
by kT so that the system must dissipate energy of order kT to come into equilibrium). When this
sort of device is used to make a computer, the question of overall logical organization inevitably
arises. It turns out that if we use the conventional organization based on (logically irreversible)
NAND gates (which can be simulated by appropriately connecting together several of the above-
described switches), then switching cycles of the type of are inescapable and dissipation at the
rate of roughly kT per operation is the theoretical limit. However, if a logically reversible organi-
zation is used, it turns out that only switching sequences of the type of need be encountered and
the dissipation per operation can be reduced arbitrarily below kT, at the price of reducing the
rate of computation. Since the motivation for reducing dissipation was to increase the rate of
computation, this seems rather self-defeating. Later on we will discuss possibilities in which, at
least in principle, dissipationless reversible computation can be carried out at arbitrary speed. In
the next section we will finally make explicit what we mean by reversible logical architecture and

devices.

5.1. Abstract Issues

It known that a computer can be built entirely out of a Boolean logic device called a NAND
gate. The action of such a device is symbolized in Figure 6. The inputs a and b take on the

values 0 or 1 as does the output. The output is computed by the function (ab) where the bar

43

Figure 6. NAND Gate.

means logical "not” (0=1, 1=0). This logical function is clearly not reversible or invertible since
several input states produce the same output state. For this reason, a conventional computer
cannot be run backwards. The previous section implies that the operation of a physical NAND

gate entails a dissipation of at least kT per operation.

The discussion of the logical organization of strictly reversible computers was initiated by
Bennett in 1973[27]. In pursuing this subject, Fredkin|28] developed a simple abstract reversible
logical function which gave promise of being a universal building block for reversible computers.
The structure and action of this function, called the Fredkin gate, is shown in Figure 7. As in the
case of the NAND gates, the input and output lines take on the values 0 or 1. An examination of

the truth table for this device shows that it is invertible: the correspondence between input and

3 ese———— pr———— 3
b —— b 3 + AC
C ————— _3b+8c

Figure 7. Fredkin Gate.

44

output states is one-to-one.

By ignoring some outputs and fixing some inputs the Fredkin gate can be made to perform
any standard logical function. For instance, the AND of a,b, can be obtained by sitting ¢ = 0
and keeping only the middle output line, as in Figure 8. This procedure requires a supply of
input constants and a way of disposing of the unwanted outputs, known as "garbage”. The brute
force method of carrying out reversible computation is to record every one of the garbage con-
stants which is produced during a computation. This is not a very satisfactory proceeding since
the number of elementary logical operations required to carry out even a simple arithmetic opera-

tion, let alone a complicated program, is enormous and memory resources would be swamped.

Fredkin, Toffoli and students|30,31] have shown how to get round this problem by really
making use of the reversibility of the system. The point is that if one is doing some machine
instruction such as computing the sum of two numbers which involves a large number of logical
operations, ope may: a) do the calculation, producing a large quantity of garbage, b) record the
result, producing a very small amount of garbage ¢) run the computation backwards, eating uvo

the garbage produced in a). If the machine instruction itself is logically reversible, as in

(A,B)-»[A+B][A

3 _B] , one doesn’t even have to accumulate garbage in step b). The only true

2

a
a S—
ab
b emumm— ab
1 b
0 ab

Figure 8. AND (a,b).

45

garbage which needs special memory allocation and has to be kept to the end of the program is
that associated with truly non-invertible machine instructions. By careful design of the machine
instruction set and programming practices, it appears possible to reduce the garbage accumulated
in a typical program to a manageable size. We are not aware of a quantitative answer to the
question, if a program requires a total of N steps to execute, what is the minimum number of gar-
bage bits that must be accumulated? We suspect that the answer is logN, which would mean
that only a trivial amount of memory has to be devoted to true garbage accumulation, but we

don’t have a proof.

Finally, as a result of this experience, Fredkin and students have been able to produce
sketchy but credible designs for real computers. These designs are explicit two-dimensional wir-
ing diagram layouts of Fredkin gates, and have been demonstrated in computer simulation exer-

cises to work as expected.

To summarize, although computers based on reversible logic elements have some unfamiliar
features, machines whose effective operation is nearly a carbon copy of conventional computers
can be laid out as explicit two-dimensional hook-ups of the logically reversible Fredkin gate. In

the next section we will take up the question whether the Fredkin gate is physically realizable.

5.2. Physical Realization of the Fredkin Gate

In order to give an existence proof for reversible computation, Fredkin has introduced a
stylized model based on perfectly elastic collisions of billiard balls moving on a frictionless

plane[28]. Consider a two dimensional square grid as laid out in.Figure 9 with unit spacing
between the grid points and identical hard spheres of radius % moving at one lattice spacing

per time step along the principal directions of this lattice as shown in At time t = 0, the center
of every ball lies on a grid point and that will again be true at every integer-valued time. Balls
will occasionally undergo right-angle elastic collisions at integer-valued times (see b). The balls
emerging from the collision will again move along the principal lattice directions and their centers

will coincide with lattice points at integer-valued times. At some lattice points a billiard ball will

40

® o o
™
1//. ° ° ° o
° ® ® o ¢
® ® o ® ® o ® b
® o
9a gb

Figure 9. Square Grid.

be nailed down to function as a perfect reflector of anything that comes by. The presence or
absence of a billiard ball at a lattice site at an integer time can be taken as a binary bit of infor-
mation and the Newtonian evolution of such a system of billiard balls amounts to a "calculation”

involving those bits.

The construction of the Fredkin gate goes in two steps. First construct the gate shown in
Figure 10 where the bar represents a fixed reflector. This device lets a ball on the x path go
through undeflected if no ball is on the ¢ path, but switches it onto a different path if a ball is
simultaneously present on the ¢ path (and lets the ¢ ball through undeflected). The information
processing here amounts to switching bits between two output paths, depending on the context of
a control path. If these interaction gates are strung together according to Figure 11 (where the
connecting paths have appropriate delays in them to maintain proper synchronization), it is possi-

ble to verify that the overall system functions exactly like the Fredkin gate.

According to the previous section a useful reversible computer can be made by wiring
together enough Fredkin gates. The same computer can therefore be realized as a two-
dimensional arrangement of appropriately aimed and placed billiard balls and reflectors. The exe-

cution of a program on such a computer is just the carrying out of the Newtonian time evolution

47

Tx
c
Cofpd oo wwohely C
ex
- > CX
x —’t:~
x =~ Ex
c
Figure 10. Interaction Gate.
c A \‘ c
P —cp + &q
q T+ cq

Figure 11. Gate Connections.

of the mechanical system.

By construction, this system is dissipation-free and since the billiard ball velocity is arbi-
trary, it can operate at any speed we like. This amounts to an existence proof for dissipation-

free, fast computing via a classical conservative system.

§.3. Bllllard Ball Machine as Cellular Automaton

The defects of the billiard ball model a8 a practical physical realization of reversible com-
puting are fairly obvious. It does, however, have the virtue of suggesting a different abstract
framework within which some interesting new possibilities for physical realization suggest them-

selves.

48

The essence of the billiard ball model is that at integer time steps billiard balls are located
at lattice points only and the pattern of occupied lattice sites changes from one time step to the
next according to some rule. The rule is not made explicit, but is the result of evolving the previ-
ous configuration according to Newtonian mechanics. The step by step evolution of the state of a
lattice according to a local rule is the subject of cellular automaton theory, a parti~ularly active
branch of fundamental computer science. It is natural to ask whether the essence of the billiard
ball model can be captured in some cellular automaton rule. For the moment, this is just an idle
question, but in the next section we will see that the cellular automaton framework is cne into

which it might be possible to fit real atomic physics.

There is indeed a cellular automaton version of the billiard ball machine which we have
reconstructed from remarks of Fredkin (the precise rule to be used is, we believe, due to Mar-
golus). Consider a lattice divided up into individual cells by solid and dotted lines in the manner
of Figure 12. Some of the cells are occupied and we want to devise a transitional rule t~ cause
the pattern of occupation to change. If we look at the unit cells defined by the solid lines alone or
the dotted lines alone, we see that they each contain four of the unit cells of the full lattice. The

transition rule will be defined for such groups of four celis and applied alternately to the groups

! ! I
—+-c‘b-L--b— —

B o | @ e

T ' |
-—-L—-db—-—'——‘——'—

| | @

I % '

| [!
p——-+—-—i——’——qh—4—~

1 i |

] L L
~-L—-d —-—‘———.—-——-—1

1 |

1 1 1

Figure 12. Dotted lines.

49

defined by the solid lines and dotted lines. The transition rules we will use are defined in Figure
13. Rotations of the rules presented are also valid. The transformation eflected by these rules is
obviously one-to-one within the group of four cells on which they act. By extension, the action of

these rules on the lattice as a whole is one-to-one and reversible.

A bit of playing with the rules shows that single occupied cells propagate like billiard balls
in the manner indicated in Figure 14. Single occupied cells however, do not collide with each
other in the manner of billiard balls. In order for this to work out properly, it is necessary to con-
sider a train of two similar occupied cells, as in Figure 15 and the three other versions,
corresponding to the other possible directions of motion, propagate and collide exactly in the
manner of billiard balls. One can also construct a configuration which does not propagate and

reflects any billiard ball configuration incident on it. Figure 16

olo o|o
> >
olo oo
° o (o}
> —
) o o]
° ° o o)
- >
° ° olo o)

Figure 13. Transition Rules.

S&

ile

5

Figure 14. Propagation.

Figure 16. Non-Propagating Configuration.

®
[]
Figure 15. Cell Train.
o
: : ® ®
® ®
®

51

As the previous sections have shown, an explicit reversible computer design is available once
we have ”billiard balls® and "mirrors”. Now that we know that our cellular automaton rules pro-
duce these two types of object it is possible, in a perfectly explicit way, to construct a reversible
cellular automaton computer. This is interesting because, as we shall argue in the next section,
the cellular automaton framework seems particularly well-suited to realization at the atomic lat-

tice scale.

5.4. Notional Atomlic Scale Realizations

We have argued that reversible computing ideas are likely to be of most interest in the
study of computers realized at the atomic scale, where the computational degrees of freedom are
not vastly outnumbered by all the rest and a computer might function as a good approximation
to a conservative Hamiltonian system. We would now like to explore a framework which suggests
that cellular automaton rules of the type just discussed might actually be realizable at the atomic
scale. We don't have a specific practical proposal, but rather some general notions about the sort

of physical systems which it might be profitable to explore.

Under the right conditions, atoms or molecules will arrange themselves in a regular lattice.
For a bulk material, this lattice will be three dimensional, while for material adsorbed on a con-
venient substrate the lattice will be two dimensional. Let us consider a two-layer (i.e. essentially

two-dimensional) lattice of the type displayed in Figure 17.

PR R R
s | ,0 7 : i :— P : @ Foreplace sites
T-T-T--:--T { r_l -T | O backplane sites
: ,6--:- ! 15--:"-55 : b

/ // ', /I V4
PP A & - —-&

o---—-0 o-=—=--0 o}
Figure 17. Two Layer Lattice.

The lattice sites in the the layers, (foreplane and backplane) are distinguished by open and
filled circles. The basic idea is that the sites harbor some two-fold quantum mechanical degree of
freedom (such as a spin, the presence of an atomic excitation, etc.) which can be manipulated and
used as a token for computing. For convenience, we will refer to this degree of freedom as a spin,

although it need not actually be one.

There are interactions between “spins” at neighboring sites, and we have indicated the
desired pattern of interactions by dashed and wavy lines. They will cause the "spins” om the
sites to change with time and our goal is to cause this time evolution to occur in a way which car-
ries out the cellular automaton rules discussed in the previous section. The simplest way to do
this is to imagine that all the wavy line interactions can be turned on or off simultaneously from
outside by some macroscopically controllable agency such as a laser pulse. Suppose that the wavy
line interactions can be turned on and then off in just such a way as to exchange spins between
the foreplane and backplane sites (each wavy line connects just one foreplane and one backplane
site). Suppose further that the dashed line interactions, which connect up cells of four sites, either
all in the foreplane or all in the backplane, can be turned on and then off in such a way as to
effect the transformation on spins corresponding to the cellular automaton rules of the previous
section. Then by alternately activating the dashed and wavy bonds one would effect the cellular
automaton rules as transformations on the "spins”. Then by the discussion of all the previous

systems, this microscopic device could be made to function as a reversible computer.
If we think of the site variables as really being elementary spins, it is easy to see what is

involved in obtaining exchange. The most general interaction between two spins is

Hy = a(t)o, - o2

The bond strength, a, depends on t, since we must imagine being able to manipulate from out-

side. If we turn this bond on and then off in such a way that

x
[dta(t)=n
0
(2 matter of properly tailoring the laser pulse, or whatever it actually is, that manipulates the

bond) then it is easy to show that the net eflect is simply to exchange the spins between the two

53

sites. Although we have not done it explicitly, we believe it should be possible to construct a set
of bonds for four spins which can be manipulated in such a way as to carry out the desired cellu-

lar automaton transformation.

If 3 scheme of the above type can be found, it suggests that a reversible atomic scale (and,
therefore, one might hope, very fast) computer could be built. The obvious challenge is to find
semi-realistic choices for sites, bonds and the extended driver of the bonds. We don’t have any
concrete response to this challenge, but we think that materials questions of the kind raised here
are a rather natural sort of outcome of thinking about where reversible logic fits in the overall
scheme of computing concerns. W: have been struck by the extent to which previous work on
reversible computing has focused on abstract questions and would strongly recommend that future
work begin to focus on physics questions. The framework we have presented is not necessarily
the best one, but does give a way of focusing on an interesting set of materials and physics ques-

tions, and might have the virtue of stimulating thought.

5.5. Quantum Mechanlics Issues

The previous discussions have not made much of the fact that physics at the atomic scale is
necessarily quantum mechanical. Indeed, the whole question of the role of quantum mechanical
effects in small-scale computing devices has been only very sketchily explored in the literature.
The scheme we have been discussing has one illumir ug and bizarre quantum mechanical

featuie which we will explain, just to give an idea of the sort of issues involved.

The bonds of our lattice cellular automaton are alternately switched on and off by some
external system which acts as a clock and driver for the whole system. This driver is itself some
mechanical system executing periodic motion; let us for definiteness take it it be a rotator of some
kind, rotating in some angular coordinate, ©, such that every time © passes through some

marker angle, 6, , the bonds responsible for switching spins on the lattice are activated.

We can write down a fairly explicit Lagrangian for this system:

54

L = —-192 [201 a(')]ﬂé 5(9 - eo) +

The first term is just the rotator kinetic energy and says that, in the absence of other terms, the
system just executes uniform rotational motion. The next term describes the interaction with the
"wavy” bonds of the previous section: the spins are divided up into N pairs and the interaction of
each pair with © is such as to eflect the exchange transition every time © passes through 6,
The © factor ensures the same action on the spins no matter how fast © is moving. The dots
indicate the terms, not yet specified but similar in nature, responsible for the spin transformations

on four spins at a time (needed to complete the cellular automaton rules).

In the classical approximation to the motion of 8, the rotator proceeds at constant velocity
and one cellular automaton transformation is executed per cycle. The quantum-mechanical ver-
sion of the motion of © is somewhat different. The rotator interacts with the computer coordi-

nates through the sum
231(') o+

and, as the calculation proceeds, this sum takes on an essentially random sequence of values.

This is roughly equivalent to saying that © is moving in a one dimensional random potential.

In a random potential, there are no propagating states and all wave functions decay
exponentially with distance. If a computation takes N steps, we prepare the system in a state
localized arournd © = 0 and the computation is completed when © is finally observed at 27N,
The exponential decay of wave functions probably means that the time to complete long calcula-
tions increases exponentially with N ! To know under what circumstances this would be a practi-
cal problem, we would have to have a much more concrete model to work with. This observation
could be elaborated further, but is meant to give an example of the peculiar phenomena that

must be understood when we try to think about computing at the quantum mechanical level.

86

6. CONCLUSIONS

6.1. Transformations

The idea of employing source program transformations is not new, but has received renewed
interest with the development of functional programming (the 'fp’ language) and logic program-
ming (the 'PROLOG’ language). As discussed above, this technique has an interesting, if as yet

unproved, potential.

Transformation techniques may be the path of choice for Soviet scientists. The Soviets
have well-known problems in computer hardware, but have immense talent in mathematics. It
just may be that the break-through needed in transformation techniques will be mathematical in
nature. In addition, the Soviets have concentrated their software efforts in this area. There are
really only two major language/compiler systems that have been developed by the Soviets. The
rest are derivative of western software systems. The first unique Soviet software system is a
language for program development and is not of particular interest here. The second is called
'ANALYTIK’[32] and has gone through at least three major revisions since 1970. Some of these
can be traced in the bibliography of Appendix A-2. An example of output from ANALYTIK can
be found in Appendix A-3. A brief reading of a very restricted sample of the open Soviet litera-

ture in this area did not reveal anything of especial interest, however.

In general, the development of transformation techmniques should be closely followed. Rapid
progress could occur once the right good idea is discovered. There is, of course, no guarantee that

this will occur any time soon.

68.2. Reversible Computing

The ideas in reversible computing are very immature at present. The potential side-benefits
from developments in this area could be very important however, even if the main ideas are not
found to be feasible. The important areas to watch are technological. The key is some new
molecular-scale technology[33, 34]. While there are developments in this area, they seem to be a

very long way from any practical system.

6.3. Final Remarks

We have discussed two ideas about how a radical improvement in computer performance
might come about. There are of course many other possibilities as well. The most important
would be methods of organizing parallel calculations. This is an old, but very critical problem.
The development of computer system ideas is proceeding at a rapid pace. It will take consider-

able effort to try to predict the likely direction of new developments.

57

7. REFERENCES

1.

10.

11.

13.
14.

15.

16.

17.

18.

A. M. Despain, G. J. MacDonald, A. M. Peterson, O. S. Rothaus, and J. F. Vesecky, Rad:-
cal Computing, Jason, McLean, Va (April, 1983). Tech. Rep. JSR-82-701

Richard J. Fateman and W.A. Martin, "The MACSYMA System,” SYMSAM-II, pp.59-75..
L. Nagel, SPICE: A Computer Program to Simulate Semsconductor Curcuits, May 1975.

E. W. Dijkstra, "Notes on Structured Programming,” TH. Rep., Technische Hogeschool,
Eindhoven, The Netherlands (1970). 2nd ed.

Marvin Minsky, "Form and Content in Computer Science,” ACM (1970 Turing Lecture)
Vol. 17(2), pp.197-215 (1970).

H. A. Simon, "The Heuristic Compiler,” in Representation and Meaning, ed. L. Siklossy,
Prentice Hall, New Jersey (1972).

Frances E. Allen and John Cocke, "A Catalogue of Optimizing Transformations,” in Design
and Optimization of Compilers, ed. R. Rustin, Prentice-Hall (1972).

H. Partsch and R. Steinbruggen, "Program Transformation Systems,” ACM Computing Sur-
veys Vol. 15N 3, pp.199-237 (sept. 1983).

John Backus, "Can Programming be Liberated From the von Neumann Style?,” CACM Vol.
21(8), pp.614-641, Tenth Turing Lecture (Aug. 1978).

Pamela Zave, "The Operational Versus the Conventional Approach to Software Develop-
ment,” CACM Vol. 27, pp.104-118 (Feb. 1984).

J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calculation of Complex
Fourier Series,” Math. Comput. Vol. 19, pp.297-301 (Apr. 1965).

J. McCarthy and et. al., LISP 1.5 Programmer’s Manual, MIT Press, Cambridge, MA
(1962).

K. Iverson, A Programming Language, John Wiley and Sons, New York, N.Y. (1962).

J. Schwarz, "Using Annotations to Make Recursion Equations Behave,” Res. Memo, Dept.
Artif. Intell. U. Edinburgh (1977).

E. A. Ashcroft and W. W. Wadge, "Lucid, A Nonprocedural Language with Iteration,”
Communications of the ACM Vol. 20(7), pp.519-526 (July 1977).

David A. Turner, "Recursion Equations as a Programming Language,” in Functional Pro-
gramming and its Applications, ed. David A. Turner, Cambridge University Press, Cam-
bridge (1982).

A. Colmerauer, H. Kanoui, and M. van Caneghem, Etude et Realization d'un System Prolog,
Groupe de Researche en Intelligence Artificielle, Univ. d’Aix-Marseille, Luminy (1979).

David B. Loveman, "Program Improvement by Source to Source Transformation,” JACM
Vol. 24(1), pp.121-145 (Nov. 1975).

W. F. Clocksin and C. S. Mellish, in Programming in Prolog, Springer-Verlag, New York
(1981).

Robert A. Kowalski, "Predicate Logic as a Programming Language,” Proc. IFIPS 74, IFIPS
(1974).

Ben Wegbreit, "Goal Directed Program Transformation,” [EEE Trans. Soft. Eng. Vol. SE-
2(2), pp.69-80 (1976).

D. H. D. Warren, "Applied Logic - Its Use and Implementation as Programming Tool,”
Ph.D. Thesis, Univ. Edinburgh, Scotland (1977). Available as Tech. Note 290, Al Center,
SRI International

23.

24.

25.

30.

31.

32.

33.

34.

68

Keith L. Clark and Frank G. McCabe, "The Control Facilities of IC-Prolog,” in Ezpert Sys-
tems in the Micro Electronic Age, ed. D. Michie, Edinburgh Univ. Press (1979).

Volker Strassen, "Gaussian Elimination is not Optimal,” Numerische Mathematk Vol. 13,
p-354 (1969).

Robert W. Keyes, "Fundamental Limits in Digital Information Processing,” Proc. IEEE
Vol. 69(2}, pp.267-278 (Feb. 1981).

R. Landauer, IBM J. Res. Dev. Vol. 3, p.183 (1961).

C. H. Bennett, IBM. J. Res. Dev., p.525 (1973).

Edward Fredkin and Tommaso Toffoli, ”Conservative Logic,” International J. Theoretical
Physics Vol. 21(3 & 4), pp.219-253 (1982).

K. K. Likharev, "Classical and Quantum Limitations on Energy Consumption in Computa-
tion,” Int'l J. Theor. Physice Vol. 21, p.311 (1982).

E. Barton, "A Reversible Computer Using Conservative Logic,” 6.895 term paper, MIT
(1978).

Andrew Lewis Ressler, The Design of a Conservalive Logic Computer and & Graphical Editor
simulator, MIT (Jan. 1981). MS thesis

V. M. Glushkov, V. G. Bodarchuk, T. A. Grinchenko, A. A. Dorodnitsyna, V. P. Klimenko,
A. A. Letichevskii, S. B. Pogrebinskii, A. A. Stognii, and Yu. S. Fishman, "ANALYTIK
(Algorithmic Language for the Descroption of Computing Processes Using Analytical
Transformations,” Kibernetiks, pp.102-134 (May-June 1971).

Forrest L. Carter, "Prospects for Computation at the Molecular Size Level,” COMCON 84
Digest of Papers, pp.110-119, Computer Society Press (Feb. 27-Mar.1, 1984).

M. Keith DeArmond and Kenneth W. Hanck, "Switching and Charge Storage in Metal
Complexes- Smart Molecules?,” COMCON 84 Digest of Papers Vol. 28, p.Computer Society
Press, IEEE (Feb. 27-Mar.1, 1984).

8. APPENDIXES

APPENDIX A-1

RECURRENCE SOLVER

61

% Solving Recurrences:

% Assignment 3, CS257

% Peter Van Roy

% Converts all functions that can be expressed as a polynomial

% to an efficient Horner form.

% The new form replaces the old in the PROLOG data base.

rgo -
solve(Func), % Get function to be solved.
retract(solve(Func)), % Remove it from data base.
funclist(Func, 20, FuncList), % Get first 20 function values.
get_succ_diff(FuncList, Dif[List), % Calculate successive differences.
conv_to_poly(DifList, Poly/D), % Convert to polynomial representation.
horner(Poly, N, Horner), % Convert polynomial to efficient Horner form.
abolish(Func,2), % Remove old definition from data base.
NewFunc=_.[[Func,N,F}, % Arrange the result to its final form.
(D=1 -> Expr=Horner; Expr=Horner/D),
NewClause=(NewF unc :- F is Expr),
ol, write(’The improved form for '), write(Func),
write(’ is: '), nl, write(NewClause), nl,
assert(NewClause), % Insert the new form in the PROLOG data base.
fail. % Continue with other functions.

rgo.

% Generate a list of values Func(i) for i=0, 1, ..., N-1.
funclist(Func, N, FuncList) :-
funclist(Func, 0, N, FuncList).

funclist(Func, N, N, [}) - 1.
funclist(Func, I, N, [F|FuncList|} :-
Term=_.[[Func,[F],
call(Term), !,
I1isl+1,
funclist(Func, I1, N, FuncList).

%6 Get the first elements of all rows of successive differences
% down to the row of zeroes. This is enough to characterize
% the function completely.
get_succ_diff(Row, []) :- zero(Row), !.
get_succ_diff([A|Row|, [A|DiffList]) :-
next_row(|A|Row], NextRow),
get_succ_diff(NextRow, DiflList).

next_row([A,B|Rowl], [D|Row?2]) :- !,
D is B-A,
next_row([B|Rowl], Row2).

pext_row([_], []).

zero([0[List]) :- zero(List).
zero([]).

9% Convert a representation of a function as a list of successive
% differences to a polynomial:
% Uses the recurrence: Poly = Ai + (N-i)/(i+ 1)*NextPoly.
conv_to_poly(DiffList, Poly/D) :-

conv_to_poly(DiffList, 0, Poly /D).

conv_to_poly(|Am], _, [Am]/1) :- .
conv_to_poly([Ai|DiffList], I, Poly /D) :-
IlisI+1,
conv_to_poly(DifiList, I1, NextPoly /DN),
minus(NextPoly /DN, NegPoly /DN),
mult(NegPoly /DN, I, Templ1/T1),
add([0|NextPoly] /DN, Temp1/T1, Temp2/T2),
div(Temp2/T2, 11, Temp3/T3),
add(|Ai]/1, Temp3/T3, Poly/D).

% Convert a polynomial in list form to a Horner’s formula
% structure, using N as the variable:
% (The second, third, and fourth clauses are optimizations).
horner({A0], N, A0) :- .
horner([An.1}, N, N+ An) :- !
horner([0|Poly|, N, Horner*N) :- !,
horner(Poly, N, Horner).
horner([Ai|Poly|, N, Ai) :-
zero(Poly), !.
horner({Ai|Poly], N, HornersN+ Ai) :-
horner(Poly, N, Horner).

%% Polynomial arithmetic:

% Polynomials are represented as lists of integers divided by an
€% integer. This avoids (1) round-off error in C-PROLOG, ind
% (2) truncation on UNSW PROLOG.

% Addition of two polynomials:

add(Poly1/D1, Poly2/D2, Poly /D) :-
ged(D1, D2, G),
D is (D1/G)*D2, % D is lem(D1,D2)
F1is D2/G, % multiplying factor for Polyl's terms.
F2is D1/G, % multiplying factor for Poly2’s terms.
addx(Poly1, Poly2, Poly, F1, F2).

addx([A1]|Poly1], [A2[Poly2], [S|Poly], F1, F2) :- !,
S is AI*F 14+ A2¢F 2,
addx(Polyl. Poly2, Poly, F1, F2).
addx([], Poly2, Poly2, _ _) - .
addx(Polyl, [], Polyl, _, _).

% Change sign:
minus(Poly /D, Res/D) :- minusx(P .y, Res).

minusx([A[Poly|, [R|Res}) :-
R is -A,
minusx{Poly, Res).

minusx({], [])-

63

%% Multiplication by a scalar:
muit(Poly/D, Scalar, Res/R) :-
ged(D, Scalar, G),
R is D/G,
S is Scalar/G,
multx(Poly, S, Res).

multx([A[Poly], S, [P|Res]) :-
P is S*A,
multx(Poly, S, Res).
multx([], S, {}).

% Division by a scalar:
div(Poly /D, Scalar, Res/R) :-
DI is Scalar*D,
ged([DI[Poly], G),
(G==1 -> divlist(Poly, G, Res), R is DI/G;
Res=Poly, R=DI).

divlist([A|Poly}, S, [R]|Res}) :-
R is A/S,
divlist(Poly, S, Res).
divlist([], _ [])-

% gcd calculation:
ged(X, 0, Y) - !, X=Y.
ged(U, V, X) -
Wis Umod V,
ged(V, W, X).

% gcd of a list:

ged([A], A) - .

ged([A,BlList], 1) -
ged(A, B, 1), L.

ged([A,B|List], Ans) :-
ged(A, B, G),
ged([G|List], Ans).

04

APPENDIX A.2

CACHING SYSTEM

% CACHE:

% Generic program to cache heads of non-unit clauses,
% FORM: X(Y,Z)- ...
% Must fix up correct number of variables ”Y,Z,...”.

% The following compensate for principle functor
% not being a variable.

asf(f,Y,Z):-asserta({(f(A,B):-eq(A,Y),eq(B,2),!,fail})).
asf(a,Y,Z):-asserta((a(A,B):-eq(A,Y),eq(B,2),! fail)).
asf(r,Y,Z):-asserta((r(A,B):-eq(A,Y),eq(B,2),! fail)).

rtf(f,Y,Z):-retract({f(A,B):-eq(A,Y),eq(B,2),! fail)).
rtf(a,Y,Z):-retract((a(A,B):-eq(A,Y),eq(B,2),! fail)).
rtf(r,Y,Z):-retract((r(A,B):-eq(A, Y),eq(B,2),!,fail)).

ass(f,YQ,ZQ):- asserta((f(YQ,ZQ):-cnt(f))).
ass(a,YQ,ZQ):- asserta((a(YQ,Z2Q):-cnt(a))).
ass(r,YQ,ZQ):- asserta((r(YQ,Z2Q):-cnt(r))).

rts(f,YQ,ZQ):- retract((f(YQ,ZQ):-cnt(f))).
rts(a,YQ,ZQ):- retract((a(YQ,ZQ):-cnt(a))).
rts(r,YQ,ZQ):- retract{(r(YQ,ZQ):-cnt(r))).

% FAIL CACHING.
%asf(X,Y,Z):-asserta((X(A,B):-eq(A,Y),eq(B,Z),! fail)).
%ortf(X,Y,Z):-retract((X(A,B):-eq(A,Y),eq(B,Z),! fail)).

% Cache a fail.
fcache(X,Y,YP,Z,ZP):- nvbind(Y,YP,Z,ZP),
cleanup(X),asf(X,Y,2),!.

% Cleanup last cache insertion.

cleanup(X):- rtf(X,Y,2), fremove(X,Y,YQ,Z,2Q),asf(X,YQ,ZQ).

cleanup(X).

% Eliminate duplicates and submissive entries.
fremove(X,Y.YQ,Z,2Q):-rtf(X,YP,ZP),
switch{Y,YP YR,Z,ZP,ZR),
fremove(X,YR,YQ,ZR,ZQ),
fconassert(X,YQ,YP,2Q,ZP).
fremove(X,Y,Y,Z2.2).

fconassert(X,Y,YP,Z,2P):- dominate(Y,YP),dominate(Z,ZP),!.
fconassert(X,Y,YP,Z,ZP):- asf(X,YP,ZP).

% CACHE SUCCESS.
%ass(X,YQ,ZQ):- asserta((X(YQ,ZQ))).
%rts(X,YQ,2Q):- retract({X(YQ,2Q))).

% Remove failed head from the cache.

scache(X,Y,YP,Z,ZP):- fremv(X,YP,ZP), ycache(X,Y,Z),!.

% Remove exact fail head.
fremv(X,Y,Z):- etf(X,YP,ZP),

fremv(X,Y,2), fcassert(X,Y,YP,Z2,ZP).
fremv(X,Y,2).

fcassert(X,Y,YP,Z,ZP):- eq(Y,YP),eq(Z,ZP),!.
fcassert(X,Y,YP,Z,ZP):- asf(X,YP,ZP).

% Success caching
ycache(X,Y,Z):- sremove(X,Y,YQ,Z,2Q),ass(X,YQ,ZQ),.

% Elim Dups.

sremove(X,Y,YQ,Z,2Q):- rts(X,YP,ZP),
switch(Y,YP,YR,Z,ZP,ZR),
sremove(X,YR,YQ,ZR,2Q),
sconassert(X,YQ,YP,ZQ,ZP).

sremove(X,Y,Y,Z,Z).

% Replace head in cache.

sconassert(X,Y,YP,Z,ZP):- dominate(Y,YP),
dominate(Z,ZP}),.

sconassert(X,Y,YP,Z,ZP):- ass(X,YP,ZP).

87

% CACHE UTLLITIES.

% Trueif Y & YP are the same.
eq(Y,YP):-var(Y),var(YP),!.
eq(Y,YP):- Y==YP.

% True if Y is more general than YP.
dominate(Y,YP):-var(Y),!.
dominate(Y,YP):-Y==YP.

% Selects most general set of terms.

switch(Y,YP,YP,Z,ZP,ZP):- dominate(YP,Y),
dominate(ZP,2),!.

switch(Y,YP,Y,Z,ZP,Z).

% Binds only non-variables.
nvbind(Y,Y,2,Z):-nonvar(Y),nonvar(Z),!.
nvbind(Y,Y,2,V):-nonvar(Y),!.
nvbind(Y,U,Z,Z}):--nonvar(Z),!.
avbind(Y,U,Z2,V).

% Call functions for monitoring and caching.

0% Heau.

h(X,Y,Z):-cnt(X),inc(level),nl,
count(level,N),tab(N),
write(X),write('(’),
write(Y),write(’,’),
write(Z), write(')'},!.

bsiX,Y,YP.Z,ZP):- h(X,Y.Z).
bf(X,Y,YP,Z,ZP):- h(X,Y,Z), confcache(X,Y,YP,Z,ZP),!.

% Tail.

t(X,Y,Z):-count(level, N),tab(N),dec(level),
write(’ , success: '),
write(X),write('("),
wrii V) write(’,’),
write(Z),write(')'),al,..

ts(X,Y,YP,Z,ZP}:- t(X,Y,2), conycache(X,Y,Z).
(XY, YP,Z2,ZP):- ¢(X,Y,2), conscache(X,Y,YP,Z,ZP),..

0% Cache control.
conycache(X,Y,Z):-cache(on),cache(X), ycache(X,Y,2),!.
conycache(X,Y,2).

conscache(X,Y,YP,Z,ZP):-cache(on),cache(X), scache(X,Y,YP,2,2ZP),!.
conscache(X,Y,YP,Z,ZP).

confcache(X,Y,YP,Z,ZP):-cache(on),cache(X), fcache(X,Y,YP,2,ZP),!.
confcache(X,Y,YP,Z,ZP).

cache_on :- assert((cache(on))).

cache_off:-retract((cache(on))),!.
cache_off.

70

%%Program commands.
go:- cache_off, w(’orig.p’),
_compile(all), w(’compiled.p’),
reset,
rvt, w('vt.p’), reset,
rtv, w('tv.p’).

gol:-cache_on, w(’orig.p’),
rtv,w(’'tv.p’),reset,
rvt,w('vt.p').

go2:-cache_on, w(’orig.p’),
rvt,w('vt.p'),reset,
rtv,w('tv.p’).

w(N):- tell(N),phead,lp,chead,
te,told,close(N).

rvt:- tell(tracevt),thead,r(v,t),
nl,nl,nl,nl,chead,
le,tc,told,close(tracevt).

rtv:- tell(tracetv),thead,r{t,v),
nl,nl,nl nl,chead,
le,te,told,close(tracetv).

tc:-count(m,M},count(c,C),count(f,F),
count(a,A),count(r,R),
TisM+ C+ F+ A+ R,
write('Total calls = '),
write(T),nl.

%Input/output.

phead:-write(’ EXECUTED PROGRAM LISTING ’),nl,anl.
thead:-write(’ TRACE OF PROGRAM EXECUTION ’)nl,nl.
chead:-write(’ CALL COUNTS ’'),nl,nl.

% General purpose counters.
count(X,0).
ent{X):-ine(X).
gencnt(0):-assertz((count(X,0))),!.
gencnt(_).
inc{X):-retract(count(X,N)),Mis N + 1,
asserta{count(X,M)),gencnt(N),!.
dec(X):-retract(count(X,N}),Mis N- 1,
asserta(count(X,M)),gencat(N),!.
zero(X):-retract((count(X,M))).
reset:-zero(_),reset.
reset:-assert({count(X,0))).

%Program listings.
lc:-listing(count).
If:-listing(f).

r--

la:-listing(a).
’ Ir:-listing(r).
[Ip:-listing([m,c,f,a,r,count]).

71

APPENDIX A-3

REPRINT OF "A BIBLIOGRAPHY OF SOVIET WORKS
IN ALGEBRAIC MANIPULATIONS”

by
Alfonso M. Miola

[SIGSAM Bull,, 15 (1), February 1981]

A BIBLIOGRAPHY OF SOVIET WORKS
IN ALCIBRAIC MANIPULATIONS

Alfonso M. MIOLA

Isticucto di Analisi dei Sistemi ¢ Iaformatica
¥is Buonarroci 12
00188 ROMA (ITALY)

Ia the June 1979 & Susmer School on Programaing has bdaen organized by the Bulgarian Academy of Sciences in
Primorsko (Bulgaria). Amoug other topics Symbolic and Algsbraic Manipulaticns vas covered vith a {ev lec~-
turas by se and wvith some panel discussions. The lacturerswvers Professors Lavrov, Arato, Havel, Poctosin,
Bauer, Pasula, Lrshovw, Andronico, Miola.
Recently Prof. Pottosin sent me a bibliography of the works doane in Russia in Computer Algebra. I do think
that this bibliography could be of interast of our community. Prof. Pottosin address is:

- 630090 Movosibirsk 90 = Computer Centar - I.V. Poctosin.=-USSR

1.

2.

3.

s.

7.

l10.

11.

S.A.Abrzmov. On Rational Functioss Summing.
J. Comput. Math. aad Mach. Phys., v. 11, Ne.4,
1971, pp. 1071-1075.

S.A.Abramov. On Soms Algorithms for Algebraic
Transformacions of Functiomal Exprasssions.

J. Comput. Math. and Comput. Mach., Ko.3,
Lharkov, 1972, pp. 55-57.

I1.R.Akselrod, L.r.Balous. Input language for
Automatic Prograzming System SIRITS. Ia: “Auto
satization of Programming”, No.3), Kisv, 1967.

‘I.R.Akselrod, L.F.Balous. Input language for

Automatic Programming Systems SIRIUS. Rharkov
Universicy, '1969.

I.R.Akselrod, L.F.3elous. On Raprocessing
Liceral-Analytical Informacion by Computer.
J. Ribernetika, Mu.6, 1966.

I.R.Akselrod, L.F.3elous. On Symbolic Mamipu~
lation in Conversatioral Programing Systsm

SIRIUS. In: "Proc. 2=nd All Cnion Conferance
oa Prograsming”, Section H, Novesibirsk,1970.

I.R.Akselrod. Computation of Ixprassions ia
SIRIUS-System. In: “Automatization of Pro-
gTaming”, No.2, Kiav, 1969.

1.R.Akselrod, L.F.3elous. Recursive Programs
Organizstion in SIRIUS-Systam. Ia: “Automati-
zation of Programming”, ¥o.3, Kiev, 1969.

T.2.Akselrod. On Syntax Joslysis ia SIRIUS-
Syszem. In: “Autoastization of Programming’,
¥o.l, Kiev, 1969. .

E.A.ATzys, A.Shutenkov. Solutiocn of Linear
Algebra Problems {n AVID=ANALITIK-Systam of
programming and Automstic Design, Tomak,
Tomsk Universicy, 1971, pp. 191-196.

T.AAvEys, A.Shutsnkov, G.V.S{biriakev, lo=
terpratstioa System for Solution of large
Prablems. Issues of programming and Automatice
Design, Tomsk, Tomsk Universicy, 1971.

- 16.

17.

18.

19.

A-1I-1

L.A.Arays, G.V.Sibiriakov. The AVID=ANALITIR
Programming Systea. J. Comput. Math. and Camput.
Mach., Ne.3, Kharkov, 1972,

C.A.ATays, G.V.Sibiriakov. AVID=ANALITIX. Noveo-
sibizrsk Uaiversity, 1973.

L.A.Arays, A.Shutenkov. The Realization of
Exteroal Form with Cartan Machod. Dokl. Akad.
¥auk SSSR, 1974, 214, No.4, pp. 737-738.

1.0.3absev, Scae Extention of FORTRAN for Sol-
ving Calestial Machaniecs Problemas. Proc. S-th

Conf. on Math. and Mech., Tomsk, v.2, pp.l4&S-

146.

M.M.3exhanove. On Some Aspects of Sysbolic
Manipulations. J. Comput. Math. and Comput.
Mach., ¥o.), Khazkov, 1972, p. 60.

M.M.3¢zhanova, 1.7.Potzosin. Purposae of Dif-
procassor and its Imput Lasguage. Raporet of
Programing Depar:z. of the Campucting Center,
Siberian 3ranch, USSR, Novosibirsk, 1966.

¥.M.3exhanovs, K.l.Xostiukova, G.A.?lochikeva,
1.V.2otzosin. Outline of Difprocessor Algori-

tims. Raport of Programming Department of the

Computing Center, Siberias Braanch, USSR, Novo=-
sibirsk, 1966.

M.M.3exhanova, V.lL.Xackov, I.V.Poctosin. Re-
searchs on Symbolic Manipulation ia the Com-
puting Center, Siberiam Branch, Acadey of
Sciences, USSR. J. Comput. Math. and Comput.
Mach., Mo.3, Kharkov, 1972, p. 21.

L.?.3elous, 1.R.Akselred. On Realization of
SIXIUS Automstic Programming System. In: “Auto-
satization of Progrmmaing”, No.l), Riev, 1967,

L.F.3elous. Analytical Differenciation {n
SIRIUS-System. In: “Automacization of Progran—
ming”, Jo. 2, Riev, 1969.

L.F.3elous. Dynamic Storage Allecation in
SIRIUS~Syscem. In: “Automacization of Prograa—
wning”, ¥o. 2, Risv, 1969,

23. Yu.V.Blagoveshchensky, V.C.Bondarchuk,]
Yu.S.Pishman., On Efficiency of Problem Solving
Analytical Nethods by Computsr. In: "“lssuas of
Accuracy and Efficiency of Comput. Algorithas™,
Proc. of Symposium, v. S, Kiev, 1969.

2%. Yu.V.Blagoveshchensky, Yu.S.Fishman, V.A.
Shcherbakov. The Program for Analytical Sol~
ving of Nonlinear Ascillation EZquations on
MIR=2 Computer with AMALITIK laput Language.
J. Riberaetika, No.6, Kisv, 1971.

2S. V.C.3ondarchuk, $.V.Pogradinsky. On Basic
Principles of ANALITIK-Langusge Implemancacion.
In: "Theory of Autcmaca™, No.2, Kiav, 1968.

25. V.G.B3cndarchuk, Yu.S.Fichmaa. Integration Al-
gorithas on ASALITIXK-Lsnguage. J. Kibermeciks,
Ho. &, 19%968.

27, V.A.3vumberg. Calastial Mechsnics Machods for
Liceral Msaipulacions. Tomsk Universicy, 1974.

28, V.A.3rusberg, L.A.lsakovich., AMS-System for
Asalycical Manipulsations of Poisson Serias om
Camputer. Calestial Machanics Algorithas, Ne.l,
Theorectical Astronowmy Institute, Leningrad,
1974,

29. A.V.Vasilieva. ALITA=System for Analyticsl Ma-
sipulacions of Poisson Series on Computar.
Celeszial Machanics Algorithms, No.7, Thesre=
tical Ascronomy Institute, Laningrad, 197S.

30. L.l.Concharova. A Comntribution Toward the
Problems of Cenersl Orgaanizaction of Syabolie
Manipulaction Syszess. J. Compuc. Math. and
Comput. Mach., No.), Kharkev, 1972, p. 62.

31. V.P.Cerdt. On Applicacion of Syzbol Manipula~-
tion Systeas for Feinman Intagrsls Cowputation
(Raview). In Proc. “laternaticmal Confarence
on Prograsming and Machematical Mechods for
Solving Physical Problems”™, Dubaas, 20~23 Sept.
1977, 1INI, D10, 11=11264 Dubna, 1978.

32. V.P.Garde, 0.V.Tavasav, D.V.Shirkov. Ansly=
tical Computations ia Physics and Macthematica.
Prepriac IINI P2~-11547, Dubna, 1978.

3. V.M.Glushkov, V.G.3ondarchuk, T.A.Crianchenks,
A.A.Dorodnitsyna, V.2.Xlimenko, A.A.lati~
chavzky, S.3.Pogredinsky, A.A.Stoguy,
Yu.S.Fishman, ANALITIX (Algorithaic Language
for Description of Computacion Processes wich
A;nbraie manipulagion). J. Kibernetika,No.J,
1971,

34. V.M.Clushkov, T.A.Grinchenks, A.A.Dorodai-
tsynas, A.M.Drakh, Yu.V.Lapitomova, V.P.Kli-
vanko, L.H.Kress, A.A.letichevsky, S.3.2rogre~
dinsky, A.A.Stogny, Yu.S.Fistman, N.P.Tsariuk.
ANALITIK=7% Algorithaic language (Inforea—
tional Part) Preprist 77/27, lascizuca of
Cybernetics, Kiav, 1977.

is. ?.R.CXNMGV. T.A-Ctiadl‘akﬂg A.A.Dorodni~
tsyns, A.M.Drah, Yu.V.Xapiconowa, V.P.Klie
nenko, L.H.Kress, A.A.latichevsky, 5.3.Pogre~
biasky, A.A.Stogay, Yu.S.Tishman, N.P.Tssriuk.
ANALITIR=74, J. Riberneciks, Ko. 5, 1978,
PP, llé=147,

36. T.A.Crinchenko. Internal Reprasentation and
Analycical Exprassion Computatiocas : "“Theory of
Automata™, Ne. 2, Kisv, 1963.

37. T.A.Crinchanko, A.A.Doroednitsyna, V.P.Klimenko,
Yu.S.Fishman. Symbolic Masipulation Computar
Systan for Zagineering Calculations, MIR-2.

J. Comput. Math. and Comput. Mach., Neo. 3,
Bharkov, 1972, p. 26.

38. T.A.Crinchenko. Construction Principles and
Computar Realization of APPLY-Operator. Ia:
“Theory of Automaca”, No. 2, Riev, 1968.

39. T.A.Grinchenko. Computer Realization Principles
of Sysbol Manipulazion. J. Kibernatika, ¥o. 1,
1968.

40. S.A.Ivanova. language ard Tramslacor for Al-
gebraic Manipulations vith Polynomial from
saveral Variables. Latvia mmnual, 1974, 17,
pp. 220-237.

41, M.A.Ralinina. Some Algorichas and Methods in
Symbol Manipulation Syscsws. Report of Program—
ning Dept. of the Comput. Cancer, Siberiasm,
USSR, Novosibirsk, 1972.

42. ¥.A.Zalinina. The ANALITIX Systsm Progras.
J. Comput. Mach. and Comput, Mach., Ne. 3,
Kharkov, 1972, p. 33.

43. N.A.Falinina. Symbol Manipulation Systams
(Reviev). Report of Computing Cantar, Siberian
Svasch, USSR, Novesibirsk, 1972. .

44, N.A.Xalinioa. On Rierarchy ian Syabol Mamipula-
tion Systeas. J. Comput. Math. and Comput.
Mach., No. 3, Khatkov, 1972, p. 70.

45. N.A.Xalinins. Scme Aspects of Desiga of Syabol
Manipulation Systems. In: “System and Thecre=
tical Programming”, Computing Canter, Sibderiam
Branch, URRS, Novosibirsk, 1973, pp. lO3~l23.

6. ¥.A.Kalinina. The Scructure and Semastic Fea~
tures of Symbol Mamipulacion Language. la:
“Programming Problems”, Computing Canter, Si-
beriaa 3ranch, VARS, Suvosibirsk, 1976, pp.3=-
34.

47. N.A.Xalinina, I.V.Poctosin. Archiseccurs of
Caneral Purpose Syabol Manipulstioa Svecems:
Adaptabilicy to Salved Problems and Iaterface
with Progrmming System. In: "Theory and Prac-
tics of Systam Programaing”, Computiag Centar,
Siberian 3ranch, URRS, Novesibirsk, 1977,
pp. $=12.

48, M.A.RKalinina. KANVA-Cozplex Analytical Evalua=-
tor. Organizacion and Keay Algovicias. la:
"Thecry and Practice of System Progrzmming",
Computing Cencer, Siberiaa 3rasch, USSR, Nove-
sidirsk, 1977, pp. 13-21.

49, L.V.Xantorovich. On Numeral and Anmalyctiecal
Coaputatioas on Computer. Nevs of icademy
Science of Armenia SSR, Section Phys. Mach.,
1957, No. 2.

$0. L.7.Zantorovich. On a Mathematical Syabolisa
Suitable for Carring out Calculsticns on
Computars. Dokl. Akad. Wauk SSSR, 1957, n.ll3,
Ko. 4. ‘

S1. L.V.Rackow, X.l.Zasciukova., The Processor XINO.
Ia: "Dynmic of Continuous Medium", Novosibirsi
1969, v. 1.

52. V.lL.Ratkov, N.l.Rostiukova. The IINO System
for Construction of Analytical Selutions of
differential Zquatiocns on Computer. Prec. lst
All Uaion Conferemce on Programmiczg, Kiev,l948.

A-1I-2

¢ AR AR AR N SRR SRR AR A SUEAIN 54

-

v.L.Katkev, N.Il.Kostiukova. Caleculations of
Group on Computer. "Scme Prodlems of Coerputing
and Applied lachesatics", Novosibirsk, 1975,
pp. 257-267.

V.L.Kazksv, M.D.Popov. Using Computer BESM~6
fsr Calculations of Group Admitted by Dif-
ferential Equations Syszem. Intern. Symposii=
“Theoretical=Croup Methods in Mechanies',1978,
p. 17.

v.P.Xlimenko, S.B.Pograebinsky, Yu.S.Fiskman.
A Contribution Toward the Probles Recognition
of Functional Properties of Analytical Ex-
.prassions on MIR-2 Computer. J. Kibermetika,
Yo. 2. 1’73;)-4-13 ‘3-530

N.l.Xostiukova. The Processor PASSIV. J.Comput.
Mach. and Comput. Mach., No. 3, Rharkev, 1972,
p. 8. '

C.?.Kozhenvikova. On Efficient Realization of
Algorithmic Languages for Analytical Transfor-
sations. Proceedings of Symposiun “lLanguage
Theory and Methods of Coastructing Programming
Systen”, Kiev-Alushta, 1972, pp. 338=34S.

. G.?.Xozhenvikova. Computacional Complexicy of
the Procedure "Compare” and "Diffarsntiacte"
wvith Respect to the Languages of lukashevicz
and Kaatorovich. J. Comput. Math. and Comput.
Mach., No. 3, Khackov, 1972, pp. 64-65.

G.P.Rozhevnikova. On the Estimation of Effi-
ciency of Symbol Manipulactions. J. Cont.
Systems and Machines, Kiev, Yo. 1, 1974.

. G.P.Kszhevnikova, A.A.Stogny. Represencacion
of Analytical Expressions under Algebraic Ma~
sipulations Perforz=ing on Computer.‘J. Kibe=
tnetika, No. 4, Riav, 1975,

L.T.Pstrova. On Execuzion of Algebraic Manipu~-
lacions on Computar. Righ School Repercs.
Mathsaacics, Ne..S\. 1958, gp. 95=204.

. L.T.Pecrova. Soas Applicazions of Scheme Sym-
bolism. J. Comput. Math. ad Ce=puc. Mhys.,
v. 1, Neo. 3, M, 1961, pp. 513-522.

L.T.lazrova, I.A.Placunova. Realizaction of
Calculacions ian Source lLiscs Zlass oa Computar.
?roc. Mach. Insz. Ac. Sci. USSR, v.86, 1962,

G.A.Plotnikova. Analytizal Transformacions in
Difprocessor. Report of Programeiag Dept. of
the Computing Centar, Siberisa B3rarnch, USSR,
Novosibirzsk, 1966.

$.3.Pogredbinsky, Yu.S.Fishman. Dialog Systea
for Analytical Solutiem of Some Prablems of
Algabra. Proc. of Sywposium om “language
Theory and Mathods of Comstiucting Progran—
niang Systea”, Kieve-alushta, 1972, 9p.32%-
337,

67.

68.

69.

1°'

.

72.

73.

4.

75.

76.

7.

78.

A-II-3

E.N.Paskhin. Analytical Differentiation on
Compuzer. Ia: "Computiog Methods and Program-
miog”, v. 9, Moscow State Univ., 1967.

V.I1.S«ripaichenko. Operations vith Literal De-
compositions on Computer Resulls of Science

and Tech. Astronmomy, v. 11, p. 131, All Ugcien
Inst. Sci. and Tach. Information, Moscow,197S.

T.N.Sairnova. Polynomial PRORBAB and Carryi~g
out Analytical Transformation; on Computes.
?h. D. Thesis, Laninmgrad, 1963.

T.R.Sgirnova. Carrying out Analyzical Transfor~-
mations for on M-20 Computer with PRORAB-Pro
gran. Leningrad, Nauka, 1967.

7.V.Tumasonis. The System of Eguivalent Trane-
sformations Expressions. J. Compuct. Math. and
Math. ’h’l.. Yo 11. No. s. 1971' -2-18 1272‘1281.

V.V.Tumasonis. ALDA=Conversaticnal Systea of
Equivalent Transformations on Exprassions.
J. Comput. Math. snd Comput. Mach., Ne. 3,
Kharkov, 1972, pp. 52-54,

V.F.Zurchin, V.V.Serdobolsky. RETAL languages
and its Application for Algebraic Expressions
Transformations. J. Kibernetika, No.l, Riev,

1969.

Tu.S.Fistman. lategration of Functions by
Corputer Performing Analytical Trassformations.
Ia: "Theory of Automacon™, v. 2, Riev, 1968,

Tu.S.Fishman, A.T.Kotsiuba. The Realizaticn of
General~-Purpose Symbol Incegration Program on
Computer. In: "Issue of Accuracy and Efficiency
of Comput. Algorithms™, v, S, Kiev, 1965.

H.A.Chubarov. Polyncaial Assembler. J. Comput.
Mach. and Comput. Msch., No. 3, Khatkov, 1972,
pp. 42-44.,

M.A.Chubarov. The ISP lntsrprataticn Systems
for Polynomial Manipulacions. Ia: *Digital and
Com=puc. Tech.", v. 5, Moscow, 1969,

V.kh.Shurygin, N.N.Yanenko. On Realizatioa of
Algedraic DiZferential Algorithes by Computer.
Problens of Cibernetics, v. §, 1961.

D.Movdukhai-Bottovakal, (trans. by Beris
Eortendlum and Myra Prelle), "A General
Investigation of Integration in Finite Tora
of Diffarential Equaticns of tha First Ordez”;
Trans. in A SIGSAM Bullecis, v. 15, Re. 2,
Pp. 20-32, May 1981.

APPENDIX A-4

AN EXAMPLE OF SOVIET WORK IN MACHINE
SYMBOGL IC MANIPULATION

ERUPHIZOV, ZRNST DAVIDOVICE
POSTE RESTANTE
1I0VOSIBIR3K 90

6X0%0, SOVIET UNICN
DOCTOR B.DAVID SAURDERS

*SICSAM BULLETIH® EDITOR
DEPARDIENT OP MATERMATICAL SCIBICES
ROISSITAMR POLYTECERIC INSTITVUTE
207, NP YORE 12181, USA

Alach 5,1982
DEAR DAVID, '

TIE IXTEREST 1IN USINC THE IEINRY 07 CENERALIZED EVPERCEQIETRIC FURCTIONS
IN CORUTER ALCEERA ALGCRITEMS IS INCREASINC. 1 OFFER A PROELAM FOR
CONSIDZRATION BY READERS OF YOUR RESPSCTAELE BULLSTIN,

WIAZ IS A MINIMAL SET 0P IDENTITIZS APPLICATICH OP VEICH FACICRIZ2
SACR OF THE FOLIOWING TEM JUNCTIONS INTO THE PRODICT OF THO EYP:R-
CXUITAIC ARNCTIONS WITH LZAST NAOR 0F PARAMSTIRS?

2 a-8.a«§ V2
F 92), F(1)
L L(:Il-a.,l-li'ﬁ- Y3\a, yreai2a)]
~ /2 V2 E a,i|z~4 2
ti\j-a,iea ! '3 (‘/:4@- é,42+a+8,2a 1
F (a ;z) £ (o.,a-!,a-(;z
]

2\ yaoay=dvla 32 y1ea, 2a ?
E(¢ '.3) F (Qx“-‘ta“ i
€2\ 10,22)] F2\g1eay=2-22)
- a V2 a, 42-a -4, {240+ €,3
£ ’ F,

Y2+q, 41 3=\ y1+a, 24 4

I BELISVE IT WILL 32 VIRY INSTZUCTIVEZ 10 EDIRG TN2 CIRRSSPONTING
FROGRAUS IN REDUCE-2, MACSMA, ARLTATIE-TY, LMD OTER HICE-LEVEL
LANCUACES INTO COMPARISION. 17 YOU WISE I SEALL DAISDIASSLY ATMAL WY
PROGRAM TN ARATATHE-TL 70 YOU.

RATZ TOU RECZITD IT LITTIR OF JATCARY 262

TITE VARMEST RESARDS,
o ZRNST OF ECVOSIZIRSE
PP ALSSA PROGRALISR
CAPZQH COPTES 20 FROFESSRS AVTEONY CLAY TDARN A'D RICEARD J.FASSLY
TNCLOSUR2: TEST RIM CUTPUT WITA WY CIL:NTS.

A-11I-1

“A~ '7fasvraln)t

The - veups-)

veilr w. ' _ vriverlr)
2V g rortii)'the-velinl d= tiyevitlr g -uells .ev 4

O3 (Vo2 A1 (RuT/ 10 AR /I /U IR0/ (V)0 U=/ Vo0 /8-)0) (2" (¥e2 /1) 1(@=2/ V0 ¥=2/ Vo 4/ 1) (RuZ/(§-) 4 ¥ =2 /E o0 /C)N) 4

T36F Y'YH .u.c:%_v.q\.g
L.:.;e..:v. u..-:.EbL .s.\vm »

iay S
KRS BRI AT] \::‘-CESV
e sv\<._<"&$&§~ u..:t..Lcc
7-auli - roqnhns

0=(3°(Ve2Z)1=(Ve 2/3 YIn(Go 402 /1)0ee(() -V o2/5)0=(¥)i1)d

L) Yol " oo vl =Suwelir ¢
:s:.::t.cL 4 Am.i...:.;....v 4 :AN..,...s.c.u.q.L..._
(2°(Vo2/1-Y1u (@2 /1o ve2/1) e (R 2/ (-) 4 ¥=2/1)0)2%(2° (V2 /1) T(GnT/ 102/ V) (@ =2/ (V-) ¥=2/V)N) 4

0=(2° (V2o 1-Y1x(Ve /W) 1=(@e¥)n=((a)-¥)n=(¥)n)a
N verlr " lA ¢~..evq=wu r
.u (X8 7 (XUM T (R 1= 2! peviy -v'o |
T (/1)1 (an/ Ve uu2/ B (An2/(1-) 0 =2/ 1))
0={2°(v=2)1=(¥e 23 ri=(8e v)= ((0)-V)n>(¥)n)d

AL I) g -Veyle) 3,0 _ vilgepelt 9-or it Yo g
A!n. .lv .._.A&nn J |A~.. proe e.:..cv._

G (@ /)M ((@) Ve 2/)1) 8
=(2° (VY1=(as W 2/1)1=((0)-Ve /1 1=(¥ 2/ 1)N=(¥V)N)4

oy Yop vg \ 0 _ vglvegitt vy v
ﬁmsﬂ-..%aw :_An.\n..n.c b IAN~ bo..u-..v 3

(2/0)12%2- (v2)T=((8)- VM2 AN 22 (W2 1= ((@)-¥)n)4
0={2°(v=2)To(ve2/1)1 ¥)1n(@e V)= ((8)-V)01)J

M MATTY wyed v _ O AT ART
AEL v)3 (e ™) = (e V)Y

(71)82=2-* (V=2 IY1=(W)N) 2= ((2/1) 4372 (V= 2o 1 1= WD)
0={T°(w2e)1=(¥e2/1)t~(v)n)$

[l ™) =G
vz — I (Vo)
0=(2° (v 2)1=(ve2/1) 1= (V)N

u?ﬁ .HM.V "Nore? m.%du. = A... T ..h..v Y

A (A=Y (20 NV (Ve 25 1)
0=(2°(ve2o 1-Y1=(ve/1)1=()nM

' vl LA A Y U S EATR
A..:.. - .._.T:.. Ivc ..A:)Y
@=2/3°(we =0 A ((V)-3)1)4
O=(2°(¥e I ((W)-1)1=(2/V)0)4

' AL v T T evfiptv-i
Ai.... — .\._\A:... lv-v—ﬂ ¥ lAn. ! -:.v‘.
(N U INAYIS(Z0V ((¥) /1) I8 -
o=(2'(ve2/1)1e((V)-2/IN=(Y VNN

A-III-2

DISTRIBUTION LIST

Dr. Marv Atkins

Deputy Director, Science & Tech.
Defense Nuclear Agency
Washington, D.C. 20305

Dr. Robert Cooper [2]
Director, DARPA

1400 Wilson Boulevard
Arlington, VA 22209

Defense Technical Information [2]
Center

Cameron Station

Alexandria, VA 22314

The Honorable Richard Delauer

Under Secretary of Defense (R&E)

Office of the Secretary of
Defense

The Pentagon, Room 3E1006

Washington, D.C. 20301

Director (2]

National Security Agency
Fort Meade, MD 20755

ATTN: Mr. Richard Foss, AO05

CAPT Craig E. Dorman

Department of the Navy, OP-095T
The Pentagon, Room 5D576
Washington, D.C. 20350

CDR Timothy Dugan

NFOIQO Detachment, Suitland
4301 Suitland Road
Washington, D.C. 20390

Dr. Larry Gershwin

NIO for Strategic Programs
P.0. Box 1925

Washington, D.C. 20505

D=1

Dr. S. William Gouse, W300

Vice President and General
Manager

The MITRE Corporation

1820 Dolley Madison Blvd.

McLean, VA 22102

Dr. Edward Harper

SSBN, Security Director
OP-021T

The Pentagon, Room 41534
Washington, D.C. 20350

Mr. R. Evan Hineman

Deputy Director for Science
& Technology

P.0. Box 1925

Washington, D.C 20505

Mr. Ben Hunter {2]
CIA/DDS&T

P.0. Box 1925
Washington, D.C. 20505

The MITRE Corporation [25]
1820 Dolley Madison Blvd.
McLlean, VA 22102

ATTN: JASON Library, W002

Mr. Jack Kalish

Deputy Program Manager
The Pentagon
Washington, D.C. 20301

Mr. John F. Kaufmann

Dep. Dir. for Program Analysis
Office of Energy Research, ER-31
Room F326

U.S. Department of Energy
Waghington, D.C. 20545

Dr. George A. Keyworth

Director

Office of Science & Tech. Policy
01d Executive Office Building
17th & Pennsylvania, N.W.
Washington, D.C. 20500

MAJ GEN Donald L. Lamberson
Assistant Deputy Chief of Staff
(RD&A) HQ USAF/RD

Washington, D.C. 20330

Dr. Donald M. LeVine, W385 [3]
The MITRE Corporation

1820 Dolley Madison Blvd.
McLean, VA 22102

Mr. V. Larry Lynn
Deputy Director, DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Joseph Mangano [2]

DARPA/DEO

9th floor, Directed Energy Office
1400 Wilson Boulevard

Arlington, VA 22209

Mr. John McMahon

Dep. Dir. Cen. Intelligence
P.0. Box 1925

Washington, D.C. 20505

Director

National Security Agency
Fort Meade, MD 20755

ATTN: William Mehuron, DDR

Dr. Marvin Moss
Technical Director
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

D=2

Dr. Julian Nall {[2]
P.0. Box 1925
Washington, D.C. 20505

Director

National Security Agency

Fort Meade, MD 20755

ATTN: Mr. Edward P. Neuburg
DDR-FANX 3

Prof. William A. Nierenberg

Scripps Institution of
Oceanography

University of California, S.D.

La Jolla, CA 92093

Mr. Alan J. Roberts

Vice Presidegt & General Manager
Washington C- Operations

The MITRE Corporation

1820 Dolley Madison Boulevard
Box 208

McLean, VA 22102

Los Alamos Scientific Laboratory
ATTN: C. Paul Robinson

P.0. Box 1000

Los Alamos, NM 87545

Mr. Richard Ross [2]
P.0. Box 1925
Washington, D.C. 20505

Dr. Phil Selwyn

Technical Director

Office of Naval Technology
800 N. Quincy Street
Arlington, VA 22217

Dr. Eugene Sevin [2]
Defense Nuclear Age..cy
Washington, D.C. 20305

Pr. Joel A. Snow [2]
Senior Technical Advisor
Office of Energy Research
U.S. DOE, M.S. E084
Washington, D.C. 20585

Mr. Alexander J. Tachmindji

Senior Vice President & General

Manager
The MITRE Corporation
P.0. Box 208
Bedford, MA 01730

Dr. Vigdor Teplitz
ACDA

320 21st Street, N.W.
Room 4484

Washington, D.C. 20451

Dr. Al Trivelpiece

Director, Office of Energy
Research, U.S. DOE

M.S. 6EQ84

Washington, D.C. 20585

Mr. James P. Wade, Jr.

Prin. Dep. Under Secretary of
Defense for R&E

The Pentagon, Room 3E1014

Washington, D.C. 20301

Mr. Leo Young

OUSDRE (R&AT)

The Pentagon, Room 3D1067
Washington, D.C. 20301

D-3

