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CHAPTER 1

INTRODUCTION

With the continuous advances in solid state device technology in terms of both

speed and size, a number of challenges are presented to the packaging engineer who has to

accommodate a multitude of these devices on the limited real estate available on the circuit

board. In the absence of reliable design tools, digital circuit packaging is carried out

through a costly and lengthy trial and error process. Thus, a critical need exists for

computer-aided design tools that are capable of predicting the electrical performance of a

given package, e.g., crosstalk and signal distortion, in a reliable fashion. Understanding

how printed circuit layouts can affect these quantities is essential for improved package

designs.

Similarly, in the area of aircraft design the interaction of the aircraft with

electromagnetic waves is of crucial importance. In recent years, the reduction of the

amount of radar power reflected by a complex object like an aircraft, known as the radar

cross section (RCS), has become a major objective of aircraft designers. Therefore, there

is a critical need for efficient electromagnetic computer-aided design tools in the area of

circuit design, where the major concern is the reduction of crosstalk and signal distortion

for a printed circuit board, as well as in the area of aircraft design, where the major concern

is the reduction of radar cross section of an aircraft.

A plethora of techniques is available in the literature for dealing with different

transmission line and electromagnetic scattering problems, e.g., the method of moments,

Fourier transform method, variational method, and conformal mapping method. However,

all of these approaches are limited in their application to homogeneous media and simple

geometries. Furthermore, for large problems, these methods become numerically
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inefficient because they give rise to full matrices which require large computer memory and

solution times, especially for open region problems. In contrast, the finite element method I
(FEM) can handle complex-shaped structures and highly inhomogeneous dielectrics. In the

FEM, the region of interest is bounded by an artificial boundary to limit the number of I
unknowns. Over the bounded region, the Helmholtz or Laplace equation is solved at a 3
finite number of grid points. These equations are discretized through the use of a weak

variational formulation. Although the resulting matrix equation is substantially larger than 3
that obtained in other methods, especially the method of moments, it is, nevertheless,

highly sparse and can be inverted rather efficiently using special algorithms that store only I
the nonzero entries of the matrix. The major advantage in using FEM is the simplicity with

which complex-shaped structures can be modeled. Another advantage is the great

improvement in storage and even in the computational time, over the method of moments, 3
especially in the case of inhomogeneous dielectric scatterers where a volume formulation of

the integral equation is required These features of the FEM formulation make it a good 3
candidate for CAD packages. However, one drawback of FEM is that, in dealing with

open region problems, they require the introduction of an artificial outer boundary in order 3
to limit the number of node points to a manageable size. The major difficulty encountered

when using FEM is how to find the proper boundary condition that can be applied on the

artificial outer boundary to make it as transparent as possible in other words, how to 3
impose the corresponding behavior at infinity on the finite distance boundary and obtain an

accurate solution in the interior region. The answer to this important question is of a crucial 3
importance for the development of efficient electromagnetic computer-aided design tools.

There have been different approaches to model the outer boundary both for electromagnetic I
scattering and digital circuit problems.

For the quasi-static analysis of digital circuit problems, it is customary to use either I
the natural boundary condition or the infinite elements for mesh truncation. The first 3

I
I
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approach consists of introducing a fictitious conducting enclosure at the outer boundary

[1]-[4]. This approach gives satisfactory results only if the actual field has decayed

sufficiently well as it reaches the outer boundary. In most cases, this approach, which

assumes that the field decays significantly before reaching the outer boundary, results in an

undesirably large mesh, especially for three-dimensional problems. The second approach

uses the infinite elements which extend to infinity [5]-[7]. Although this approach is

superior to the artificial p.e.c. boundary method, it also has its own drawbacks. First, the

infinite elements require special care during the matrix filling. Second, one needs to

assume a certain field behavior within the infinite elements, and this behavior may not be

known.

For electromagnetic scattering problems, the Helmholtz type of equation is solved.

In order to model the field behavior at the outer boundary, the so-called local and local

boundary conditions have been used. In the first type, the surface integral equation

involving the free-space Green's function is used as the boundary constraint [8]-[1 1] and

[13]-[15]. Mei [12] has used a similar approach where an eigenfunction expansion of the

field and its derivative are used as constraints on the outer boundary. Both of these

methods are sometimes classified in the literature under the umbrella of global or local

boundary conditions. The reason for this classification is that all of the field values at the

boundary are related through the surface integral constraint. An important drawback in

using a nonlocal type of boundary condition is that it spoils the sparsity of the system

matrix and, consequently, becomes time-consuming for large problems.

In the local boundary condition approach, an asymptotic differential boundary

operator, referred to in the literature as an Absorbing Boundary Condition (ABC) [16]-

[28], is used as a constraint on the normal derivative of the field at the outer boundary.

This boundary operator attempts to impose an outward propagating character on the

scattered field, i.e., tries to eliminate the nonphysical reflections at the boundary that
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generate incoming waves. The ABC operator is only asymptotic in nature, and does not

satisfy the near-field radiation condition in the exact sense. Thus, it introduces an error in 3
the FEM solution because it is not totally free of incoming waves generated by the artificial

outer boundary; however, this error is often quite small, and hence acceptable for many I
practical applications. Furthermore, in contrast to the local boundary conditions, the ABC

does preserve the sparsity of the discretized FEM matrix and is, therefore, an attractive

candidate for numerical applications. Nevertheless, there have been two major limitations 3
associated with this type of boundary conditions. First, most attempts to solve the open

region scattering problem using the local-type boundary operators have been limited to 3
separable types of geometry for the outer boundary. This may be attributable to the form in

which these operators were cast in their original versions. However, for a class of I
scatterers that are long, such as a perfectly conducting strip or an air foil, truncating the

open region with a circular outer boundary requires solving for the field over a very large

mesh region surrounding the scatterer, which, in turn, requires the solution of a large 3
matrix. In such situations, the FEM becomes less efficient than the method of moments.

Second, most forms of the absorbing boundary condition operators have been based on the 3
use of only the first few terms of the asymptotic representation of the solution to the

differential equation. In [24] and [27]-[28], it was demonstrated that while the absorbing m

boundary condition, which is based on the first terms of the series, works quite well for the

lower-order harmonics, it exhibits a significant error for the higher-order harmonics,

especially if the outer boundary is placed very close to the surface of the object. 3
The goal of this study is the circumvent some of the above-mentioned problems that

are encountered in FEM mesh truncation. First, the Bayliss, Gunzburger, and Turkel I
(BGT) [9] boundary condition is generalized so as to make it applicable to an arbitrary,

rather than circular, outer boundary. The use of the generalized version of the BGT I
enables one to reduce the number of node points significantly and solve larger sized

l
I
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problems than had been possible in the past. Second, an asymptotic differential operator

for the quasi-static analysis of two-dimensional transmission line structures is obtained.

This operator, which is also valid for an arbitrary outer boundary, not only allows one to

bring the outer boundary much closer than is possible with a p.e.c. artificial boundary, but

does not suffer from the complications associated with the infinite elements. Third, a set of

asymptotic boundary condition operators for finite element quasi-TEM analysis of three-

dimensional transmission line discontinuities is derived from the general solution to the

three-dimensional Laplace equation in spherical coordinates. The second-order three-

dimensional asymptotic boundary condition is then applied on a box-shaped outer

boundary for the purpose of truncating the mesh in an efficient manner. With -his

boundary condition, it becomes possible to consider general three-dimensional

discontinuities and consider more practical problems. Fourth, the general form of the

solution to the two-dimensional Laplace equation is used to derive a higher-order

asymptotic boundary condition for transmission line circuits. This boundary condition,

unlike the one discussed earlier which assumes that in the far region the solution can

adequately be represented by the first two terms of the series, requires that the asymptotic

representation be a combination of lower- and higher-order terms. Therefore, it corrects, to

a good degree, the error caused by the neglecting of the higher-order terms by the simple

asymptotic boundary condition, which, in turn, yields a significant improvement in the

finite element solution. Last, a higher-order absorbing boundary condition for scattering

problems is derived from the asymptotic solution of the Helmholtz equation. This higher-

order boundary condition, which takes into account both the lower- and higher-order

harmonics, considerably reduces the error caused by the neglecting of the higher-order

harmonics by most of the available absorbing boundary conditions.

Chapter 2 gives some background on the finite element method and the absorbing

and asymptotic boundary conditions. Chapter 3 deals with the open region scattering
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problem and the generalization of the original BGT boundary condition so as to make it

applicable to an arbitrary outer boundary. The asymptotic boundary condition for finite I
element quasi-TEM analysis of two-dimensional transmission line structures is discussed in

Chapter 4. The corresponding analysis for three-dimensional transmission line I
discontinuities is addressed in Chapter 5. Chapter 6 deals with the higher-order boundary 3
condition for both the scattering as well as the transmission line circuit problems and the

improvement on the simple boundary conditions. In Chapter 7 the conclusions drawn from 3
this study are discussed. I

I
I
I
I
I
I
I
I
I
I
I
I
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CHAPTER 2

THE FINITE ELEMEN f METHOD, THE ASYMPTOTIC,

AND THE ABSORBING BOUNDARY CONDITIONS

2.1 Introduction

The finite element method (FEM) has become an important numerical technique to

solve open region problems because of its flexibility in handling arbitrary structures and

highly inhomogeneous materials. However, it must deal with the practical problem of

mesh truncation and the large number of mesh nodes. By imposing an asymptotic or an

absorbing boundary condition (ABC) on the field at the outer boundary, it becomes

possible to reduce the number of unknowns to a manageable size while modeling the

physical problem as correctly as possible.

In this chapter, a general background on the finite element method will be presented

and the derivations of the Bayliss, Gunzburger, and Turkel (BGT) [ 17] boundary operators

for both the Helmholtz and Laplace equations will be reviewed.

32.2 The Finite Element Method

I In the finite element method the Helmholtz or Laplace equation is solved at a finite

number of grid points. These equations are discretized through the use of a weak

variational formulation. In this section only Laplace's equation will be treated; the

3 extension to the Helmholtz equation should be straightforward.

Consider the N-conductor configuration shown in Figure 2.1. The potential, u,

3 satisfies the Laplace equation [1]

I
i
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Figure 2. 1. Cross section of a multiconductor transmission line configuration.3
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SV.(EVu) = 0 (2.1)

where E = E(X,y) is the permittivity of the dielectric. The following boundary conditions

3 should be satisfied

U on r,

u = 02 on 172

3(2.2)

I
U = 0. on r.

I
Multiplying (2.1) by a testing function v and integrating over the domain of the problem Q,

-- we obtain

L vV-(cVu) ds = 0 (2.3)

From Green's identity we have

vV'(eVu) ds = - eVu'Vv ds + ve - dt (2.4)

C, a ro an

Inserting the above in (2.3), we obtain

-Vu'Vv ds - veL'dt =0 (2.5)
aSro a
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Only the first term of Equation (2.5) is treated in this section. The second term will be

examined when the absorbing boundary condition is discussed. 3
To construct an approximate solution, the domain Q is broken into a number of

triangles. Over each triangle the unknown potential is expressed in terms of a set of I
approximating basis functions 3

Al ,2 ,3) = I Uijk aOijk(4l, 42 ,3 )  (2.6) 3
ijk

I
The arguments 41, 42, and 3 are called simplex or area coordinates and can be related to

the Cartesian coordinates by 3
x = 41 Xl + 42 X2 + 43 X3 (2.7) 3
Y = 41 Y1 

+ 42 Y2 + 43 Y3  (2.8) 3

where Xk and Yk are the coordinates of the kth vertex shown in Figure 2.2. 3
Note that each approximating function is equal to one at its corresponding node and 3

zero at all other nodes. It suffices to impose continuity of the functions at triangle vertices

to guarantee the continuity of the potential across all of the triangle edges. It should also be I
noted that the simplex coordinates are purely local in nature which makes the analysis

independent of the position of the triangular elements in the Cartesian coordinate system. I
In order to determine the basis function caijk , we need to first define a family of 3

auxiliary polynomials R of degree n. Keeping in mind that aijk must take the value of

I
U
I
U
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Xl, Y1

x2 , Y2 x3 ' Y3

Figure 2.2. Triangular element.
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unity at node ijk, and zero at all other nodes, a proper choice of the auxiliary polynomials

will be I
m-I m-I

r /n-k/n .ri

R0(n,) = k=O k=O (2.9)

U
The polynomial has exactly m equispaced zeros at 4 = 0, I/n, ..., (m-1)/n, all of which lie

to the left of 4 = m/n, and takes on the value of unity at 4= m/n. A family of interpolation 3
functions that are suitable for two-dimensional problems is defined by U

Cxjk = Rj(n,4l)Rj(nA 2)Rk(nA 3) i + j + k =n (2.10)

Clearly, the constructed interpolation functions are independent of the global coordinate 3
system because they are defined in terms of simplex coordinates. Therefore, the creation of

the finite element matrices can be done using the simplex coordinates. The filling of the 3
finite element matrices can then be placed in subroutines that can be called for each

triangular element regardless of its position in the global coordinate system. 3
Expressing the unknown potential u as in Equation (2.6), the first term of equation

(2.5) will take the form

S =e u1 Si (2.11)

w
where 3

I
I
I
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Sij= f Vai'Va j ds (2.12)

The element matrix S may be written in detail as

Sij = a i a j + jjds (2.13)

which may be expressed in terms of only simplex coordinates and Cartesian coordinates of

the vertices of each triangle

S 1 , i = 1YI(bnbm+cnCm)f a 3 aIds
4A nm a n T dm-

YCotek f &k+l ak-lA ,k+l ak-j ds" (2.14)
k=1

where the subscripts n and m progress modulo 3, A is the area of the triangle, and

bn = Yn+1 - Yn-I (2.15)

Cn = xn-1 - xn+l (2.16)

Ok denotes the included angle at vertex k and it is given by

1
cOtek = -- L (bnbm + cncm) n~m (2.17)

The right-hand side of Equation (2.14) is dimensionless and depends only on the simplex
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coordinates. The matrix Sij can be evaluated for a triangle of any size or shape which can

then be stored for permanent reference. All integrations and differentiations can be carried 3
out in a universal manner valid for any triangle due to the use of simplex coordinates [1].

Each element matrix is then calculated and added to the global system of equations I
on an element by element basis using the connectivity matrix which has information on the 3
global and the local node numberings. If two nodes numbered 1 and i are not in adjacer,

elements, the entry (1, i) in the global matrix would be zero. This elegant feature of the 3
finite element method leads to a very sparse system of equations that can be easily handled

using special techniques. Typically, a finite element problem would have a large number of 3
unknowns but since the resulting system of equations is very sp, rse it can be solved

efficiently. The truncation from an infinite region to a finite region may cause a significant I
error in the solution. The best known method of dealing with this problem is to use an 3
absorbing boundary condition at the outer boundary. In the following section a review of

the absorbing boundary conditions will be given. 3
2.3 The Absorbing and Asymptotic Boundary Conditions 3

When using FEM to solve open region problems, one needs to introduce an I
artificial outer boundary in order to limit the number of unknowns. Since the outside 3
region is unbounded, one needs to impose the corresponding behavior at infinity on the

finite distance boundary and obtain an accurate solution in the interior region [29]. Such 3
boundary conditions that dictate the behavior at infinity are commonly referred to as

asymptotic or absorbing boundary conditions (ABC). In what follows, the derivations of 3
the Bayliss, Gunzburger, and Turkel (BGT) [17] boundary operators for both the

Helmholtz and Laplace equations are reviewed.

I
I
I
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2.3.1 The BGT operator for the Helmholtz equation

Consider the region 9, bounded with the contour FI1, shown in Figure 2.3. Let the

exterior region to ! be !T [291. This problem is equivalent to

V2u + k2u =0 in QT (2.18)

Du= g onrl (2.19)

u satisfies a radiation condition (2.20)

where u is the scattered field and g is the contribution from the incident field. In the far

region the solution of (2.18) takes an asymptotic form

U = . al() a2() + +it ( bl(, ) + 2(+) + (2.21)

The first term of Equation (2.21) designates the outgoing waves and the second part

designates the incoming waves. In the far region there are only outgoing waves; therefore,

the second term of Equation (2.21) is not physically meaningful and only the first term

should be kept. In other words, the scattered field in the far region should behave as

e-jkp' .. a()a() "

u -ia( )+ -al a2eo + (2.22)

If up designates the radil derivative of u, we have from the above equation,
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I
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Up+jku -= a1(4) a2(4) ej .a() 2a2() (2.23)
2p 3/2 P P- 2 P p2

Clearly, Equation (2.23) is equivalent to

uP +jku = O(3/2 (2.24)

As p goes to infinity, the right-hand side of Equation (2.24) goes to zero, which is

equivalent to imposing the Sommerfeld radiation condition on the field u. Examining the

first term of Equation (2.23), we note that it is equal to -u/2p. Consequently, we can

obtain a higher-order boundary condition by writing

uP + jku + (2.25)

This type of analysis was first carried out by Bayliss and Turkel [211 as well as Engquist

and Majda [16] in connection with time-dependent problems. For time harmonic problems,

their results reduce to Equation (2.25). Bayliss, Gunzburger, and Turkel [17] have

generalized these results by writing

1

B 1 -a +jk + - (2.26)
ap 2p

or, equivalently,

ei -kP ( a,(0) 2a 2(0) (227)
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They were able to obtain a higher-order operator by letting v = B lu and observing that I

v 1=

or 5(PI
oru=a.+jk+-L)(L+jk+ 1~uOj~ (2.28)

Furthermore, they were able to generalize the procedure by deriving an mth operator, Bin, 5
such that

Bmu = O( p2m+1/2  (2.29)

and3

BmH= jp + -+ k (2.30)1=1 I

The original problem has now been slightly modified. That is, the infinite exterior region,

QT, is nl.w truncated and bounded by a circular contour r 2 where the mth operator can be

applied. Obviously, one can now use a PDE technique to solve the approximate problem 3
provided the region bounded by F2 is not so large as to require an unmanageable number of

unknowns. The approximate problem, shown in Figure 2.4, is equivalent to 3
V 2 u + k2 u = 0 in OT (2.31) I

I
I
I
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Figure 2.4. Computational domain.
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P- =g on r1  (2.32)

Bmu = 0 on F 2  (2.33)

Note that the mth order operator has an mth order radial derivative. By invoking the

Helmholtz equation we can trade the mth order radial derivatives for the first-order radial

derivatives plus derivatives in the tangential directions. Note also that there is an error

introduced by the approximate problem of the order O(1/R 2m+l/2), where R is the distance I
from the outer boundary to the origin. In two dimensions, it is impossible to know the

corresponding error in I1U-Uaproll, where uapro is the solution of the approximate problem.

In three dimensions, however, Bayliss, Gunzburger, and Turkel were able to prove, for 3
m=l and m=2, the following theorem

1 Udj II C (2.34)
r+

where Udif = U-Uapro, C depends on k and the outer boundary, and the surface norm is 1

defined as

IIUapro1 I Uapro 2 ds (2.35) I
Hence, the error in the solution caused by Ehe truncation of the itifinite domain is the same 1

on the artificial boundary as on the interior boundary and is inversely proportional to

l/rm+l 3
1
I
I
I
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2.3.2 The BGT operator for the Laplace equation

Again consider the problem described in Figure 2.3. This time we would like to

consider Laplace's equation which means that there is neither an incident nor a scattet -i

wave. The problem at hand is equivalent to

V2u = 0 in OT (2.36)

u =g on 1  (2.37)

u logp as p.-.oo (2.38)

where u is the electrostatic potential.

The general solution of this problem can written as

u(P,O) = logp + cosn (2.39)3 n--0 P

or more explicitly as

a1  a2  a3
u(po) = logp + a0 + -cosO + -cos20 + -L3 + ... (2.40)

Pp 2  P c3~

We will now derive a set of boundary condition operators that can be applied -n the

artificial outer boundary. If we let v = u - logp - ao, we can see that
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a v a, a2 - 3 3 
2 2

S 7 - 3 o2- P4cos3o - (2.41)

It can be seen that

av v a2cos2 a + 3-cos3 + (2.42)

7 p 3(p I
Thus,

a" + v" = TJ 
(2.43)

We then define the first-order operator to be

B -1  (2.44) I
The second-order operator can be obtained by letting w - Blv and observing that

w 3w 2a3
-rP + T -= cos3o + (.5

It can readily be verified that I

B2- (a'+ (-+ -) D=( ) (2.46) I
The process can be repeated to obtain the mth order operator which can be written as

I
I
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m

I Bm~f7(_+ L 21 )=O(-- (2.47)

The infinite exterior region QT is now truncated and bounded by a circular contour F2

I where the mth operator can be applied. The approximate problem described in the truncated

region, shown in Figure 2.4, is equivalent to

V 2u = 0 in 92T (2.48)

u = g on F 1  (2.49)

Bmu =0 on F 2  (2.50)

In the region OT one can now use a PDE technique to solve the approximate problem,

provided that the region bounded by F 2 is not so large as to require an unmanageable

number of unknowns.

2.4 Conclusions

In this chapter, a brief overview of the finite element method and its implementation

were presented. Starting from the asymptotic representation of the solution for the

Helmholtz and Laplace equations, the Bayliss, Gunzburger, and Turkel (BGT) mth order

absorbing and asymptotic boundary condition operators were derived for both

electromagnetic scattering and electrostatic problems. In Chapter 3, the BGT operator for

the Helmholtz equation will be used to derive an absorbing boundary condition operator

that can be applied on an arbitrary boundary. The resulting operator will then be used to



I
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study the scattering from some long scatterers where the outer boundary will be arbitrary.

In Chapter 4, a similar operator for electrostatic problems, based on the BGT operator U

associated with Laplace's equation, will be derived.I

U
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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CHAPTER 3

AN ABSORBING BOUNDARY CONDITION

FOR AN ARBITRARY OUTER BOUNDARYI
3.1 IntroductionI

The finite element method is very appealing for solving open region scattering

problems because of its simplicity in modeling complex-shaped structures and

inhomogeneous dielectrics. The local or the absorbing boundary condition makes the FEM

even more powerful because it preserves the sparsity of the matrix. However, in the past,

there has been a major limitation associated with the ABC as applied to scattering problems

[32]. That is, most of the attempts to solve the open region scattering problem using the

Ilocal-type boundary operators have been limited to separable types of geometry for the

outer boundary. This may be attributable to the form in which these operators were cast in

their original versions. However, for a class of scatterers that are long and slender, e.g., a

strip or an airfoil, truncating the open region with a circular outer boundary requires

solving for the field over a very large mesh region surrounding the scatterer, which, in

turn, requires the solution of a large matrix. In such situations, the FEM becomes less

efficient than the method of moments. However, if the outer boundary is made to conform

I to the geometry of the scatterer, a significant improvement in computation time and storage

Ican be achieved.

In this chapter, we show how we can use an outer boundary of an arbitrary shape

1that can be made to conform to the geometry of the scatterer in order to minimize the size of

the solution region. As will be shown below, this requires transformation of the boundary

Ioperator into a form that uses a local coordinate system. Once this is done, the operator can

I
I



I
26

be applied on a per element basis in the FEM formulation. To illustrate the application of

the newly transformed boundary operator, we present the results for several p.e.c. I
scatterers.

3.2 Derivation of the Boundary Condition

In the previous chapter, a brief discussion of the finite element method and the

absorbing boundary condition was presented. A detailed explanation of the implementation

of the absorbing boundary condition in the finite element formulation for a two-dimensional

scatterer enclosed by a circular outer boundary was given in [24]. For a complete

coverage of the finite element method and absorbing boundary condition, the reader is

referred to the work of various authors that appeared in [8]-[32]. In this section, we

develop a finite element scheme for solving the problem of scattering by objects of arbitrary

shape. 3

3.2.1 Formulation I

Consider an arbitrarily-shaped perfectly conducting scatterer whose exterior region,

92, is bounded by the contour F1, as shown in Figure 3.1. For a TM or TE polarized 3
incident wave, the scattered field, u, satisfies the wave equation I

(V2 + k2)u = 0 (3.1) I
To obtain the variational expression for this equation, we multiply (3.1) by a testing

function, v, and integrate over the domain of the problem, Q, to obtain

I
I
I
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Incident wave

Figure 3.1. Geometry for the finite-mathematics approach to the scattering
problem where the outer boundary is arbitrary.
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fa (VV2 u +kOvu) ds=O0 (3.2)

I
Using the Green's identity to transfer the differentiation from the unknown function u to

the testing function v, we obtain

vV 2u ds Vuvs +f v dl+ v T dl (3.3) 3
I

In the case of TM polarization, where the total field at the p.e.c. scatterer's surface is zero,

there will not be any contribution from the boundary integral on F1 , because the field 3
values are specified on the surface of the scatterer.

Substituting (3.3) in (3.2) , we have U
au u

(Vu'Vv - k2vu) ds - v- dl + v~n dl (3.4)

fa an fr 2 a

I (34!

The second term of the right-hand side of Equation (3.4) involves an integral over the outer 3
boundary, 1-2, and the normal derivative of u appears in this integrand. Obviously, the

absorbing boundary condition has to be applied on the outer boundary r2 . Since the

normal derivative of u appears in the boundary integral contribution , the absorbing

boundary condition has to be imposed on that quantity. Hence, for our purposes, it is 3
more desirable to find an asymptotic representation for the normal derivative of u rather

than make direct use of the BGT operator B2 as given in (2.28). For a circular outer

boundary, the normal derivative is simply the radial one. Using the BGT operator B2 as 5
given in (2.28) in conjunction with (3.1), we obtain an asymptotic representation for the

radial derivative that reads 3
I
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uP =a(p) u + 3(p) u00 (3.5)

where u is the scattered field, u00 is the second-order angular derivative, and a(p) and

3(p) are given by the following asymptotic series:

1 (3.6)
a(p) = -jk (3. 6) - kp-2 P 8kp 8kp

P(p) = + 1(3.7)2kp2  2k~p

In a previous work [24], r2 was chosen to be a circle enclosing the scatterer.

Thus, the normal derivative of u was simply its radial derivative up. Our next task is to

transform the absorbing boundary operator, as given in (3.5), into a form suitable for

arbitrary boundaries. In view of (3.4), it is natural to attempt to write the new operator in

terms of the normal derivative of the field on the boundary. Since the region of solution

will be discretized into finite elements, the transformed operator will be made local, i.e., the

normal derivative on the outer boundary will depend locally on the coordinates of each

element. This will be demonstrated below when we derive the expression for the

transformed operator.

Consider the triangle shown in Figure 3.2. The edge 1-2 resides on the outer

contour F 2 . Let n-t represent a new coordinate system with the origin at node 1 with

coordinates (x0, yo). The relationship between the cartesian coordinate system and the new

local coordinate system can be obtained via the following equations that pertain to a

translation and rotation of the coordinate system:
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I
I

yn I

00

Figure 3.2. A triangular element residing on the arbitrary outer boundary

and its local coordinates.I

]
I
I
I
I
I
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n = (x-x o) sine o - (y-y 0 )cos 0o (3.8)

t = (x-xo)cosG o + (y-yo)sineo (3.9)

or

x = nsinGo + tcosGo + x0 (3.10)

y =-ncos60 + tsin 0o +Yo (3.11)

where 00 is the angle the tangent vector makes with the positive x-axis.

Our aim is to obtain an expression for the normal derivative Un on the t-axis in

terms of tangential derivatives. Using the chain rule on Un, we have

Du Du a1 Du a (3.12)
n =  p n + To n

where p and 0 are the cylindrical coordinates of a point on the outer boundary 1"2.

To this end, the radial derivative up is given by (3.5). Expressions for the

remaining partial derivatives are then obtained:

ap apax ap y
n x n + y Dn (3.13)

~0 3¢ 3x 3¢3DO DOax + a'y (3.14)
Tn xW Tn ayan

For the triangular element edge residing on the t-axis, the'normal component in the n-t

coordinate system is zero. Consequently, Equations (3.10) and (3.11) become
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x = tcose0o + xo  (3.15) 1
y = tsin0o + Yo (3.16) 1

I
Thus, we obtain:

ap tcos8o + Xo (3.17)

= tz + x + yo + 2t (x0cosO0 + yosinE0 )

_p tsin0o + Yo (3.18) I
= jt 2 + x + + 2t (xocosO0 + yosin 0o) I

DO tsin8o + Yo

t + x4 + yo + 2t (XosO + yosin O) ) I

DO tc + tc So + x (3.20)

= t2 + x0 + + 2t (xocosOo + yosin 0o) I
In order to obtain an expression for the angular derivative uO, we use the following

approximation: I
au au at (3.21) 1

Using the chain rule, we obtain

= xo sinOo - Yo cosOo (3.22)

I
I
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Consequently, the first-order angular and tangential derivatives are related by

Du Du
To Tt (x0 sinO - Yo cos 00) (3.23)

and the second-order angular and tangential derivatives by

OJ1 u .22

- (xo sineo -yo cosOo) 2  
(3.24)

a2 2 t

Using the expressions of the various partial derivatives obtained so far along with

Equations (3.5)-(3.7), we arrive at the final form of the normal derivative Un

Du - (3.25)T'--- = a u + 7 ut + P utt (.5

where

= (X0 sino - Yo COSOo)(_k 1 _- + 1 (3.26)
( P 2p2  8kp 8k2p 4

-t (x0 sinGo -yo cosOo) ++'sin20o (Y2 -X2) +xoyo cos260
= 2 (3.27)

P

= (x sineo -Yo coSO) 3  j + (3.28)

0 0 3 2 42kp 2k p

where p is given by

0 0+x2 + y2 + 2t (xOcosGo +yOsine0O) (3.29)
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Substituting the expression for the normal derivative Un (3.25) back into the weak

form of the Helmholtz Equation (3.4) and integrating by parts, we obtain I

f (VuVv - k2 vu) ds= vau dl + v(C'u + Y ut +-P u) dl (3.30)
, 2 aI

Integration by parts gives j

f (Vu'Vv- k' vu) ds-Jv ndl + (c vu+ Y vut-I3 vtu,- vu, ) dl (3.31)
a 1 a r2

U
where

-3 (3j 2I
(x0sin 0 -yocosE0o) (t + xocos 0 o+yosin 0 o)( 2kp5 k2p (3.32)

The form given in (31) is well-suited for numerical implementation for any arbitrary 3
scatterer enclosed by any arbitrarily-shaped outer boundary F2 . I
3.2.2 Radar cross-section calculation

The radar cross-section is an important quantity that needs to be computed for 3
scattering problems. It is defined in [33] as the area for which the incident wave contains

sufficient power to produce, by omnidirectional radiation, the same back-scattered power 3
density. I

I
I
I
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3.2.2.1 TM case

3For TM incidence, the two-dimensional radar cross-section is

TI E(p,o)l 2I TM(OOjn,) = Li m 21p (3.33)
P I E(0,O) 12

U.

where (p,o) are polar coordinates. For a plane wave incident of the form

Ez(X,y) = e (3.34)

3 The scattered field is equal to

Es(x,y) =-jkT1a " FX (3.35)

where

AZ(xY) = f J4(x' y') I H()T(kR) dx'dy' (3.36)

F(xy) K(x', y') I H(2)(kR) dx'dy' (3.37)

and

R = p 2- (x'co+ +yy's(3.38)
P

In the far region, the third term under the radical is negligible. Thus using the

I
I
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approximation

I'fIT 1+ 2 (3.39)

R takes the form 3

R = p - x'cosO - y'sino as p-- (3.40) 3
Using the asymptotic form of the Hankel function I

(2) '\ j-j I
HO2 (C)- e as o-- (3.41) I

in Equations (3.35)-(3.37), we obtain an expression for the radar cross-section 1
0TM( , ) = L I ff (rljz + Kxsino - Kycos1)e2 (3.42) 1

For a circular outer boundary, an FFT algorithm is usually used to calculate the radar cross- I
section. However, for an arbitrary outer boundary it is not possible to use the FFT

method, and (3.42) needs to be used to approximate the radar cross-section. Since we are

dealing with TM scattering, we are basically solving for the z-component of the scattered

field. In order to find the electric current that appears in (3.42), it would seem reasonable

to use the finite difference method to obtain the numerical derivative of the scattered electric 3
field. However, we found that taking a numerical derivative is very unstable, especially in

the region around the scatterer where the near field has many oscillations. To circumvent I
this problem, we have used the absorbing condition operator given by (3.25) to find the

I
I
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normal derivative of the scattered field on the outer boundary from which the equivalent

electric current is calculated. It should be understood that the use of the normal derivative

expression given by (3.25) is also an approximation, but this method is found to be more

stable than taking a numerical derivative via the finite difference method.

3.2.2.2 TE case

For TE incidence, the two-dimensional radar cross-section is

H(p,)I
OTE(,4c) = Li m (3.43)I (O,O) 2

For a plane wave incident of the form

Hi(x,y) = e-jk(XCOs~in+ ysUinfi) (3.44)

the scattered magnetic field is given by

DAY DA x  k
H(xy)-" y j" F (3.45)

Using the same far-field approximation as the one used earlier for the TM case, we obtain

DAy DAx =k_ 2j -jkp i -J.. .. jk(x'cosO+y'sinO) ... y . 46----P ae f J COS3-,sx (3.46)

I 2 P -jkp ( r.,J J ,), jk(x'cosO+y'sinO) (347FZ(p,O) M " j,/" e Krz , ,yd xdy' (3.47)
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Combining (3.43)-(3.47) gives the radar cross-section 3
cTE(yn ,in = -I f f (Jxsino - Jcoso +-z ) eJk(x'cosO+Y'sinf)dx'dy' 12 (3.483 I

In the case of a p.e.c. scatterer, the equivalent sources on the surface of the scatterer are

purely electric and hence the radar cross-section simplifies to I

kTE(O f( JsinJ CO) e  dxdy 12 (3.49)

For TE scattering, one solves for the z-component of the scattered magnetic field which is

directly proportional to the electric current on the scatterer. Therefore, the implementation I
of (3.49) to calculate the radar cross-section for a p.e.c. scatterer does not pose any

numerical difficulty. I

3.3 Numerical Results I
As we indicated earlier, the form given in (3.31) is well-suited for numerical

implementation for any arbitrary scatterer enclosed by any arbitrarily-shaped outer 3
boundary 1-2. Equation (3.31) was used to investigate the problem of scattering by several

p. e. c. scatterers using some elongated and conformable outer boundaries. For mesh I
generation, Patran was used for all of the cases considered. Although (3.31) is valid for 3
zny order triangular elements, only first-order elements were used. For the TM case, a

mesh density of 13 to 15 nodes per wavelength was used. Whereas for the TE case, to 3
achieve a reasonable accuracy, a mesh density of 15 to 17 nodes per wavelength was [

I
I
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required. It was also noticed that denser meshes are required for larger scatterers.

3.3.1 TM incidence (Ei = e-jkx)

The finite element solution gives the z-component of the scattered electric field. As

indicated earlier, there is an added error in the radar cross-section computation due to the

difficulties encountered in approximating the normal derivative at the outer boundary and,

hence, in implementing (3.42). The first scatterer considered was a 4X strip, shown in

Figure 3.3, enclosed by an elongated boundary 1L away from the end of the strip in the x-

direction and 1X away in the y-direction. The second scatterer was a 2. by IO. wedge, for

which the outer boundary was chosen to be as conformable as possible to the surface of the

scatterer, shown in Figure 3.4. The radar cross-section was calculated using the present

method and the method of moments, and the results are shown in Figures 3.5 and 3.6. In

both cases, the solutions obtained using the present method agree favorably with those

derived via the method of moments. The third scatterer considered was a 9. strip enclosed

by an elongated boundary IX away from the end of the strip in the x-direction and 1X away

in the y-direction, shown in Figure 3.7. The near field was calculated on the outer

boundary using the present method and the method of moments and plotted versus the

angle 0 where 0 is as shown in Figures 3.2 and 3.7 (Figure 3.8). When the outer

boundary was extended to 2X away in the y- direction, as shown in Figure 3.7b, the

solution obtained using the present method agreed favorably with that computed with the

method of moments (Figure 3.9). The fourth scatterer considered was a 8X by 4. p.e.c.

wedge, and the outer boundary was chosen to be conformable to the surface of the scatterer

as shown in Figure 3.10. As Figure 3.11 indicates, the near field on the outer boundary

given by the finite element method agrees reasonably well with the method of moments'

solution.
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I
I
I
I

yI

Ezi ei xI
01 x

iX 4X stripI
/ I

Figure 3.3. A 4X strip enclosed with an elongated boundary F2 lx away in
the x- and y-directions. 3

I
I
I
I
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F2 wedge

0. 03X 0.3k

0.3X

I Figure 3.4. A 2X by 1X wedge enclosed by an outer boundary r2
having a general shape similar to that of the scatterer.
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Figure 3.5. Radar cross section of a 4X strip illuminated by
a TM incident wave and enclosed by

conformable outer boundary 1 X away from the
surface of the scatterer as shown in Figure 3.3. 3
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I Figure 3.6. Radar cross section of 2% by 1, wedge
illuminated by a TM incident wave and
enclosed by a conformable outer boundary
0.3 away from the surface of the scatterer as
shown in Figure 3.4.I
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yI

01

(a)

yI
rI

E -k x2X3
z -

0 3

(b)3

Figure 3.7. A AX strip enclosed with an elongated outer boundary r2.3
(a) r2 is 1 X away from the surface of the scatterer in the x- and

y-directions.
(b) r 2 is 1X away from the surface of the scatterer in the x-direction

and 2X in the y-direction.
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Figure 3.8. Near field on the outer boundary of a 9 X strip illuminated by a
TM incident wave and enclosed by an elongated boundary as
shown in Figure 3.7(a).
a) Real part of near field.
b) Imaginary part of near field.
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Figure 3.9. Near field on the outer boundary of a 9 X strip illuminated by a
TM incident wave and enclosed by an elongated boundary as
shown in Figure 3.7(b).I
a) Real part of near field.
b) Imaginary part of near field.
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Y

wedge

8xx

Figure 3.10. An 8. by 4X wedge enclosed by an outer boundary r 2
having a general shape similar to that of the scatterer.
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Figure 3.11. Near field on the outer boundary of an 8% by 4k wedge

illuminated by a TM incident wave and enclosed by an
elongated boundary as shown in Figure 3.10. I
a) Real part of near field.
b) Imaginary part of near field.
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3.3.2 TE incidence (H i = ejky)

3 The finite element solution gives the z-component of the scattered magnetic field.

Since the electric current on the p.e.c. scatterer is directly proportional to the magnetic field,

3 the implementation of (3.49) does not represent any numerical difficulty. The wedge

shown in Figure 3.4 was illuminated by a TE wave. For this case, the radar cross-section

5 has been computed. As is evident from Figure 3.12, our results compare favorably with

those obtained via the method of moments.

In order to achieve a reasonable accuracy for a slender scatterer like a strip, the

3 outer boundary has to be placed a distance between L/10 and 2L/10 in the x-direction and

between 2L/10 and 3L/10 in the y-direction away from the surface of the scatterer where L

3 is the total leng'h of the strip. For instance, to achieve a reasonable accuracy for the 9X

strip shown in Figure 3.7b, it was required to place the elongated outer boundary 13- in the

5 x-dirction and 2- in the y-direction away from the surface of the scatterer. Using a

density of 225 nodes/X2 and optimizing the mesh, the 9X strip shown in Figure 3.7b

required a mesh size of 8200.nodes. If one were to enclose the 9X strip with a circular

3 outer boundary having a radius of 5.5k and using the same mesh density as the one used

for the elongated outer boundary, one would end up with a mesh size of 19100 nodes. For

3 a sparse matrix solver the factorization time is proportional to N2 while the matrix fill time

is proportional to N, where N is the total number of nodes. Therefore, the use of an

I elongated instead of a circular outer boundary resulted in a reduction by a factor of 5.43 in

the factorization time and a factor of 2.33 in the matrix fill time. Furthermore, the storage

requirement is also reduced by at least a factor of 2.33. Clearly, there is a distinct

3 advantage in using an elongated versus a circular outer boundary.

As the numerical results indicate, w:iile the finite element yield2d acceptable results

3 for all the strips and wedges considered, the results for the wedges agreed more favorably

3
3



I
50 I

than those of the strips with the method of moments results. This can be explained by the

fact that the scattered waves are purely outgoing only in the region outside the smallest 3
circle that entirely encloses the scatterer. For a wedge, where the outer boundary resembles

more closely a circular one, there are more points satisfying the above criterion (Figure I
3.13) than there are for a strip where the outer boundary is elongated (Figure 3.14). In

fact, the presence of incoming waves is more pronounced for the region of the elongated

boundary enclosing the strip which is close to the origin. 3
I
I
I
I
I
I
I

I
I
I
I
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Figure 3.12. Radar cross section of a 2X by l wedge illuminated by a TE
incident wave and enclosed by a conformable outer boundary
0.3X away from the surface of the scatterer as shown in Figure
3.4.
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Figure 3.13. Region of purely outgoing waves for a wedge. I
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*' Region of the mesh where
purely outgoing waves travel.

Outer

boundc.ay

* x
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Figure 3.14. Region of purely outgoing waves for a strip.
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3.4 Conclusions U

In this chapter we have introduced a technique for mesh truncation using an I
arbitrary outer boundary and have derived the appropriate absorbing boundary condition

(ABC) for such a boundary. An important feature of the new boundary condition is that it

enables one to use a boundary that conforms to the geometry of the scatterer. The 3
formulation has been verified by comparing the results with those obtained for the method

of moments for scattering from a 4X strip, a 2X. by X wedge, a 9X strip, and an 8X by 4X 3
wedge. We believe that this boundary condition makes it practical to solve the arbitrarely-

shaped large-body scattering problems using FEM by reducing the number of mesh points I
to a more manageable size than would be possible with a circular outer boundary. In 3
Chapter 6, an absorbing boundary condition that takes into account both the lower- and

higher-order harmonics, the higher-order absorbing boundary condition, will be addressed. 3
I
I
I
I
I
I

U
I
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CHAPTER 4

AN ASYMPTOTIC BOUNDARY CONDITION FOR QUASI-TEM

ANALYSIS OF TWO-DIMENSIONAL TRANSMISSION

* LINE STRUCTURES

l 4.1 Introduction

-I Microwave transmission lines have been investigated by many researchers who

have employed a variety of methods to study the problem of computing the characteristic

impedance and propagation constant along these lines. Some of these techniques include

the Fourier transform method [34]-[35], variational method [36]-[37], spectral domain

method [38]-[39], Green's function technique [40]-[46], [51], and [54] conformal

Il mapping [47]-[48], boundary element method [49]-[50], and finite-element method [2],

[3], and [7]. All but the last three approaches mentioned above are limited to thin strips

and/or to structures containing dielectrics with planar interfaces. Although the finite

element method method (FEM) is very general, and can handle any arbitrary configuration

of conductors and dielectrics, it must deal with the practical problems of mesh truncation

* and the need for a large number of mesh nodes when applied to an open region problem.

One approach to circumventing this difficulty is to truncate the mesh by introducing a

I fictitious conducting enclosure [2] and [7]. This approach yields satisfactory results only if

the actual field decays sufficiently well as it reaches the outer boundary. Typically, this

requires one to move the outer boundary far away from the structure in order to achieve

acceptable accuracy and, this, in turn, results in a large mesh. An altemative approach is to

use "infinite" elements [3], which extend to infinity, and cover the region outside of a

fictitious boundary surrounding the structure. Although superior to the artificial p.e.c

I
I
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boundary method, this approach nonetheless has its own drawbacks. First, the infinite

elements require special care during the filling of the FEM matrix. Second, one needs to I
assume a certain asymptotic behavior of the field within the infinite elements, and this

behavior may not be convenient to obtain.

In this chapter, we introduce, once again, the concept of an asymptotic boundary I
condition which provides us with an efficient means for dealing with the open region

problems in the quasi-static regime. This asymptotic boundary condition does not suffer

from the complications associated with the infinite elements, and yet enables us to bring the

outer boundary much closer to the structure than would be possible with the p.e.c. artificial I
boundary. Furthermore, unlike many of the available ABCs that are restricted to separable

outer boundaries, the one presented in this chapter is useful for an arbitrarily-shaped outer

boundary. We will demonstrate the versatility of this new asymptotic boundary condition

by considering the examples of one, two, and six conductor microstrip lines. I
4.2 Derivation of the Asymptotic Boundary Condition I

Figure 4.1 depicts the geometry of an open region problem consisting of N

arbitrarily-shaped conductors embedded in a multilayered medium above a ground plane. I
Let OT denote the region exterior to the conductors. For the finite mathematics techniques

[17] and [29], the unbounded outer region CIT must be truncated and enclosed with an

outer boundary F2. In Chapter 2, we rederived the mth order BGT operator for Laplace's

equation. Due to the existence of a ground plane, the general solution to Laplace's equation

is slightly different from (2.39). It reads as I

nan cos no (4.1)

n=1 P

I
I
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Figure 4.1. Multiconductor transmission line in a multilayered dielectric
region above a ground plane.
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where u is the potential function. Hence, B2, the second-order BGT operator, is also

slightly different from the one derived in Chapter 2. For the asymptotic form of the I
solution to Laplace's Equation (4.1), the B2 operator takes the form

2 - + ap .( + 1)= O( (4.2)

As will be seen later, the finite element formulation of the problem involves an integral over I
the outer boundary, r2, and the normal derivative of u appears in this integrand. Hence,

for our purposes, it is more desirable to find an asymptotic representation for the normal

derivative of u rather than make direct use of the operator B2. For a circular outer 3
boundary, the normal derivative will simply be the radial one. Using (4.2) along with

Laplace's equation to exchange the second-order derivative in p, upp, with the second-

order angular derivative, uoo, we obtain the desired asymptotic boundary condition: U
UP = a(P) u + P3(P) u00 (4.3)I

where oc(p) and 3(p) are given by 3
2(p) 2 (4.4) 3

O(p) = (4.5)

I
For a general, nonci;cular outer boundary it is necessary to generalize (4.3) and derive an

expression for the normal derivative operator un in the local coordinate system (t,n) where t 5
and n are tangent and normal to the boundary, respectively. An approximate expression for

I
I
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this derivative can be obtained by following the procedure described in Chapter 3 and is

given by

F= a u+ y ut + 13 utt (4.6)

where

a (xo sin0o- YOcoso)(_- 32 (4.7)

-t (xo sineO -yo cosOo) + 'sin260  2 _x 2 +X cos20o

T = 2 (4.8)
P

k3p 2

and 00, x0, yo, and t are as shown in Figure 3.2.

4.3 Finite Element Implementation of the Asymptotic Boundary Condition

The problem at hand is to solve for the potential u satisfying the Laplace equation:

V.(eVu) = 0 (4.10)

Multiplying (4.10) by a testing function v and integrating over the domain of the problem

QT, we obtain
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farv V'(-Vu) ds = 0 (4.11) I
From Green's identity we have

v V(eVu) ds = -V .vuVv ds + v C - d1 (4.12)

I
Inserting the above in (4.11), we obtain

eVu'Vvds= vF-aud (4.13)

In the finite element formulation, one sets up a mesh in the region KIT, typically using I
triangular elements. The edges of the outermost elements prescribe F2. Hence,

considering one element at a time, the asymptotic boundary condition given in (4.6) may be

incorporated into (4.13) to yield 3

i eVu'Vvds= ve(ctu+y ut+pu)di (4.14)

2 I
Since e is constant over each element, we can integrate (4.14) by parts to obtain I

fTeVu.Vv ds = fr (Ca vu + y vut vu- - vu,) dl (4.15) 1

where I

I
I
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3( 2
= (xosineo-yocosO o) (t + x0cos 0+y 0sino 0) --- j (4.16)

The form given in (4.15) is well-suited for numerical implementation for any arbitrary

conductor configuration enclosed by any arbitrarily-shaped outer boundary.

4.4 Numerical Results

4.4.1 One conductor

The microstrip line, shown in Figure 4.2, is enclosed by a rectangular outer

boundary. We first solved the potential problem by applying the asymptotic boundary

condition, given in Equation (4.6), on a rectangular outer boundary. Next, we introduced

a p.e.c. shield at the outer boundary and solved the problem once again using the same

mesh. As Table 4.1 indicates the relative error between the asymptotic boundary condition

and the published results [45, 52, 53] is between 0.053 and 2.56 percent, whereas the

error between the shield and the published results is between 14.55 and 30.04 percent. It

is worth mentioning that the distance d from the microstrip line to the outer boundary in the

x- and y-directions was chosen to be the same just for convenience, but in principle it needs

not to be the same.

4.4.2 Two conductors

Two coupled microstrips, shown in Figure 4.3, are enclosed by a rectangular outer

boundary. Table 4.2 presents some results for the same problem that have been published

elsewhere [55], together with those obtained by using a p.e.c. shield and the asymptotic

boundary condition in (4.6). The relative error in the self-terms is 0.27 percent for the
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Table 4. la. Characteristic impedance in Ohms for the microstrip line of Figure 4.2 1
(Er = 6.0).

Bound. Error Error 3
w/h ABC Shield Ref.[45] Ref.[52] Ref.[53] location ABC- Shield-

[531 [531 3
0.4 90.797 62.892 92.278 91.172 89.909 0.65 0.987% 30.049%

0.7 73.000 53.543 73.962 73.613 71.995 0.75 1.396% 25.630% 1
1.0 62.531 45.650 62.811 62.713 60.970 0.75 2.560% 25.127%

2.0 41.922 34.778 42.998 43.149 41.510 1.20 0.992% 16.218%

4.0 26.047 22.018 26.971 27.301 26.027 1.50 0.077% 15.403% 3
I

Table 4.lb. Characteristic impedance in Ohms for the microstrip line of Figure 4.2

(er = 9.5).

Bound. Error Error 3
w/h ABC Shield Ref.[45] Ref.[52] Ref.[53] location ABC- Shield-

[531 [53]

0.4 73.380 51.513 74.897 73.702 73.290 0.65 0.123% 29.713%

0.7 58.955 43.841 59.910 59.379 58.502 0.75 0.774% 25.061%

1.0 50.453 37.395 50.810 50.501 49.431 0.75 2.067% 24.350% 3
2.0 33.766 28.322 34.674 34.592 33.493 1.20 0.815% 15.439%

4.0 20.917 17.863 21.668 21.763 20.906 1.50 0.053% 14.556% I
U

I
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Figure 4.2. Microstrip line.
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asymptotic boundary condition and 18.31 percent for the shield, and the error in the mutual

terms is 5.2 percent for the asymptotic boundary condition and 44.59 percent for the 3
shield.

Table 4.2. Capacitance matrix for the coupled microstrips of Figure 4.3. I

Error Error

C(i,j) ABC Shield Reference [55] ABC-[55] Shield-

[551
C(1,1) 0.9249 x 10-10 0.1091x10-9  0.9224 x 10-10 0.271% 18.310%

C(1,2) -0.8061 x 10-11 -0.4712 x 10- 1 1 -0.8504x 10-11 5.203% 44.591% I
C(2,1) -0.8061 x 10- 1 1 -0.4712 x 10- 11 -0.8504 x 10-11 5.203% 44.591%

C(2,2) 0.9249 x 10-10 0.1091 x 10-9  0.9224 x 10- 10 0.271% 18.310% 3
4.4.3 Six conductors II

The six conductor system, shown in Figure 4.4, is enclosed, once again, by a

rectangular outer boundary. To the best of our knowledge, there are no published results 3
for this configuration. However, we have compared our results with those derived by

using the computer program developed by Harms et al. [561, which uses an integral I
equation formulation and an iterative method of solution. As Table 4.3 indicates, the

relative error for the capacitance matrix is between 0.84 and 14.52 percent for the

asymptotic boundary condition and between 3.9S and 74.10 percent for the p.e.c shield. 3
That the distance D (Figure 4.4) from the microstrip line to the outer boundary n the x- and

y-directions was chosen to be the same just for convenience, but in principle it needs not to

be the same. I
I
I
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Figure 4.3. Coupled microstrips with rectangular outer boundary.
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Table 4.3. Capaciurnce matrix for the six-condutor structure of Figure 4.4.

Error Error
C(ij) Iterative [56] ABC Shield ABC- Shield-[56]

[56]
C(1,1) 0.668 x 10- IU 0.686 x 10- 10 0.848 x 10-w0  2.620% 26.83%
C(1,2) -0.279 x 10- 10  -0.315 x 10- W -0.264 x 10-10 13.05% 5.340%
C(1,3) -0.549 x 10-11 -0.600 x 10-11 -0.371 x 10- 11 9.240% 32.56%
C(1,4) -0.208 x 10-11 -0.225 x 10-11 -0.117 x 10-11 8.320% 43.71%

TC(1,5) -0.999 x 10-12 -0.101 x 10-11 -0.456 x 10-12 0.840% 54.30%
C(1,6) -0.704 x 10-12 -0.602 x 10- 1  -0.182 x 10-12 14.52% 74.10%
C(2,1) -0.279 x 10"10 -0.315 x 10"IU -0.264 x 10- 1U 13.05% 5.34%
C(2,2) 0.789 x 10-10 0.848 x 10- 1  0.876 x 10-10 7.480% 11.03%
C(2,3) -0.256 x 10-10 -0.284 x 10

- IU -0.266 x 10
- 1U 11.10% 3.960%

C(2,4) -0.465 x 10-11 -0.487 x 10-11 -0.385 x 10-11 4.740% 17.23%
C(2,5) -0.173 x 10-11 -0.181 x 10-I -0.122 x:1:0 -  4.610% 29.03%
C(2,6) -0.999 x 10-12 -0.101 x 10- 1I -0.456 x 10-12 0.920% 54.30%
C(3,1) -0.549 x 10-11 -0.600 x 10-11 -0.371 x 10-11 9.240% 32.56%3 C(3,2) -0.256 x 10- 10  -0.284 x 10- 10  -0.266 x 10-10 11.10% 3.960%
C(3,3) 0.794 x 10-10 0.855 x 10-10 0.874 x 10-10 7.680% 10.14%
C(3,4) -0.254 x 10-10 -0.282 x 10-10 -0.267 x 1010 10.91% 4.870%
C(3,5) -0.465 x 10-11 -0.487 x 10-11 -0.385 x 10-11 4.750% 17.23%
C(3,6) -0.208 x 10-11 -0.226x 10-11 -0.117 x 10-11 8.410% 43.71%
C(4,1) -0.208 x 10-11 -0.225 x 10-11 -0.117 x 10-11 8.320% 43.71%
C(4,2) -0.465 x 10-11 -0.487 x 10-11 -0.385 x 10-11 4.740% 17.23%
C(4,3) -0.254 x 10-10 -0.282 x 10-10 -0.267 x 10-10 10.9 1% 4.870%
C(4,4) 0.794 x 10-10 0.855 x 10-10 0.874 x 10-10 7.680% 10.14%

C(4,5) -0.256 x 10-10 -0.284 x 10-10 -0.266x 10- 10 - 11.10% 3.960%
C(4,6) -0.549 x 10-11 -0.601 x 10-11 -0.371 x 10-11 9.310% 32.56%
C(5,1) -0.999 x 10-12 -0.101 x 10-11 -0.456 x 10-12 0.840% 54.30%
C(5,2) -0.173 x 10-11 -0.181 x 10-11 -0.122 x 10-I1  4.610% 29.03%
C(5,3) -0.465 x 10- 11 -0.487 x 10-11 -0.385 x 10-11 4.750% 17.23%
C(5,4) -0.256x 10

- 1W -0.284x 150 - -0.266x 10- 10 11.10% 3.960%
-C(5,5) 0.789 x 10- I U 0.848 x 10-R1 0.876 x 10

- I 0  7.480% 11.03%
C(5,6) -0.279 x 10-10 -0.316 x 10- 10  -0.264 x 10- 1U 13.08% 5.340%

.C(6,1) -0.704 x 0-  0.602 x 10- 120.12x 10- 12  14.52% 74.10%
C(6,2) -0.999 x 10-12 -0.101 x 10-1 -0.456 x 10-12 0.920% 54.30%
C(6,3) -0.208 x10 1 1  -0.226 x 10- 11 -0.117 x 10-11 8.410% 43.71%
C(6,4) -0.549 x 10- 1 1 -0.601 x 10-11 -0.371 x 10-11 9.310% 32.56%
C(6,5) -0.279 x 10-10 -0.316 x 10-10 -0.264 x 10-10 13.08% 5.340%
C(6,6) 0.668 x 10-10 0.685 x 10-1 0.848 x 10- M0 2.550% 26.83%

I]

I
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In all of the three numerical examples considered thus far, we have chosen a

rectangular outer boundary because it facilitates the meshing procedure and because it is 3
conformal to the structures considered. This meshing is done in a manner such that none

of the triangular elements have more than one edge on the outer boundary. Since the finite I
element scheme considers oi.- element at a time, the problem of the undefined normal at the 3
rectangular comers is circumvented when the procedure described above is followed. I

In order to illustrate the fact that the formulation described in this work is also

applicable to an arbitrary outer boundary, we reconsider the two-conductor example I
described earlier. Figure 4.5 illustrates the coupled microstrips problem with an arbitrary

outer boundary. Table 4.4 shows that the results obtained for this case are almost identical I
to those derived with the rectangular boundary. 3

Table 4.4. Capacitance matrix for the coupled microstrips of Figures 4.3 and 4.5. 3
ABC with rectangular ABC with arbitrary I

C(ij) outer boundary Reference [551 outer boundary

C(l,1) 0.9249 x 10-1 0  0.9224 x 10-1 0  0.9284 x 10- 10  I
C(1,2) -0.8061 x 10- 11 -0.8504 x 10- 11 -0.8036 x 10- 11 1

C(2,1) -0.8061 x 10- 11 -0.85-04 x 10- 11 -0.8036 x 10- 11

C(2,2) 0.9249 x 10-10 0.9224 x 10- 10 0.9284 x 10-

In order to illustrate the fact that the asymptotic boundary condition yields a I
significant saving in computer time and storage over the p.e.c shield, we reconsider the 3
examples of one- and two-conductor described earlier. Table 4.5 shows the characteristic

impedance for the microstrip line of Figure 4.2 using a p.e.c. shield as a boundary 3
I
I
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condition for different values of the boundary location (d). As Table 4.5 indicates, the

p.e.c. shield has to be placed at a distance d--4, instead of d=1 as for the asymptotic

boundary condition, in order to achieve an acceptable accuracy. Using a density of 64

nodes/unit square, the configurations of Figure 4.2 required a mesh size of 384 and 2880

nodes if an asymptotic boundary condition and a p.e.c. shield were, respectively, used.

For a sparse matrix solver the factorization time is proportional to N2 while the matrix fill

time is proportional to N, where N is the total number of nodes. Hence, the use of the

asymptotic boundary condition instead of a p.e.c. shield for the one-conductor

configuration of Figure 4.2 resulted in a reduction factor of 56.25 in the factorization time

and 7.5 in the matrix fill time. In addition, the storage requirement is also reduced by at

least a factor of 7.5.

Table 4.5. Characteristic impedance in Ohms for the microstrip line of Figure 4.2 using a

p.e.c. shield as an outer boundary (Er = 6.0 and w/h = 1.0).

Error

boundary Shield Reference [53] Shield-[53]
location (d)

0.75 45.650 25.12%

3.0 57.33 60.970 5.96%

4.0 58.869 3.44%

Figure 4.6 shows the coupled microstrips with the outer boundary placed at a

distance equal to 7.5, instead of 1.5 as in Figure 4.3, in the x-direction and 8.0, instead of

1.7 as in Figure 4.3, in the y-direction. As Table 4.6 and Figure 4.6 indicate, the coupled

microstrips configuration required, using a density of 64 nodes/unit square, a mesh size of
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2120 and 12305 nodes if an asymptotic boundary condition and a p.e.c. shield were,

respectively, used. For a sparse matrix solver the factorization time is proportional to N2  3
while the matrix fill time is proportional to N, where N is the total number of nodes.

Hence, the use of the asymptotic boundary condition instead of a p.e.c. shield for the I
coupled microstrips configuration of Figure 4.3 and 4.6 resulted in a reduction factor of

33.68 in the factorization time and 5.8 in the matrix fill time. In addition, the storage

requirement is also reduced by at least a factor of 5.8. Obviously, there is great advantage 3
in using an asymptotic boundary condition. I

Table 4.6. Capacitance matrix for the coupled microstrips of Figure 4.6.

Error

C0,j) Shield Reference [551 Shield-[551 3
C(1,1) 0.8845x 10- 10 0.9224x 10- 10  4.1%

C(1,2) -0.7982 x 10- 11 -0.8504 x 10- 1 1 6.14% 1
C(2,1) -0.7982 x 10- 1 1 -0.8504 x 10- 1 1 6.14%

C(2,2) 0.8845 x 10- 10 0.9224 x 10- 10 4.1% I
Finally, we point out that no special treatment is needed at the dielectric interfaces

because in the finite element formulation the medium is modeled as being homogeneous I
within each element and, consequently, the line integral in Equation (4.15) is always

confined to within a homogeneous region inside the element.

The term "Error" that appeared several times in the Tables should not be interpreted

as an absolute error but rather as a difference between our results and the published ones. I
I
I
I
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4.5 Conclusions 3

In this chapter, we have shown how an asymptotic boundary condition for quasi- I
static fields can be applied to a potential field at distances quite close to a transmission line 3
configuration to derive an FEM-based solution in a numerically efficient manner. It is

evident from the numerical results that the asymptotic boundary condition consistently 3
yields more accurate results than those obtainable with a perfectly conducting shield placed

at the same location. However, in some situations, the accuracy obtained with the 3
approximate ABC presented in this chapter may still not be adequate, as for instance in the

off-diagonal terms of the capacitance matrix in the six-conductor configuration. This aspect I
of the problem will be investigated further in Chapter 6 where an improved version of the 3
asymptotic boundary condition will be derived. In the next chapter, the three-dimensional

version of the asymptotic boundary condition will be addressed. 3
I
I
I
I
I
I
I
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CHAPTER 5

ASYMPTOTIC BOUNDARY CONDITIONS FOR QUASI-TEM

ANALYSIS OF THREE-DIMENSIONAL TRANSMISSION LINE

DISCONTINUITIES

5.1 Introduction

In Chapter 4, an asymptotic boundary condition was introduced and applied to two-

dimensional transmission line structures. Typically, a printed circuit board contains not

only uniform transmission line etches that are essentially invariant in the longitudinal

direction, but also chip sockets and connectors for interboard communication that can not

be modeled as uniform lines. Furthermore, the transmission lines themselves may have

various discontinuities such as bends, changes in width, open circuits, gaps and steps. In

recent years, there has been an increasing interest in modeling such discontinuities, and a

number of papers [4] and [57]-[72] have been written on this subject. In most of these

papers, the integral equation technique has been used to study planar conductors and

structures containing a homogeneous dielectric with planar interfaces. Castillo [4] has used

the finite element method (FEM), which can handle any arbitrary configuration of

conductors and dielectrics. When using the FEM, one needs to deal with the practical

problem of mesh truncation and the large number of mesh nodes. Similar to the two-

dimensional problems, the most widely-used approach for dealing with the mesh truncation

problem for the three-dimensional geometry is to place a fictitious, box-type conducting

enclosure sufficiently far from the structure [4]. This approach, which assumes that the

field decays significantly before reaching the outer boundary, typically results in an

undesirably large mesh, especially for three-dimensional geometries. In Chapter 4, we
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have introduced an asymptotic boundary condition (ABC), which provided us with an

efficient means for dealing with open region two-dimensional microwave transmission line I
problems in the quasi-static regime. The usefulness of the ABC for obtaining an accurate

solution to a problem with a reasonable number of node points was demonstrated in that

chapter. For three-dimensional problems, where the total number of mesh points is usually 3
large, it is expected that the availability of an accurate ABC will play an even more crucial

role in the solution of practical problems. 3
In this chapter, we use a similar, but more elaborate approach than in Chapter 4 to

derive an asymptotic boundary condition for three-dimensional open region problems in the I
quasi-static regime. Once again, this asymptotic boundary condition enables us to bring the

outer boundary much closer to the structure than would be possible with the p.e.c. artificial

boundary. In order to reduce the number of unknowns as much as possible, we have 3
chosen an outer boundary in the shape of a parallelepiped (we will refer to it in this chapter

as a box for the sake of brevity) because it is the most conformable to the structures 3
considered. I
5.2 Derivation of the Three-Dimensional Asymptotic Boundary Conditions

The asymptotic or the absorbing boundary condition has seen an increasing use in 3
connection with the partial differential equation (PDE) techniques for solving open region

electromagnetic problems because it preserves the sparsity of the discretized PDE matrix 3
[16]-[29] and [32). In this section, we use a similar approach to the one in Chapter 4 to

derive an asymptotic boundary condition for three-dimensional quasi-static problems. I
Consider the three-dimensional open region problem consisting of an arbitrarily-

shaped discontinuity embedded in a multilayered medium above a ground plane shown in I
Figure 5.1. Let QT be the region exterior to the conductors and 12 be the outer boundary. 3

I

I
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Figure 5. 1. Geometry for the finite element approach to the problem of a
general transmission line discontinuity in a multilayered
dielectric region above a ground plane.
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Our objective is to derive an operator which, when applied on the outer boundary, makes

the field emulate the asymptotic behavior at infinity, and thus yields an accurate result for I
the interior region with only a moderate number of nodes. Equivalently, we accomplish this

task by imposing an asymptotic boundary condition (ABC) on the field on the outer I
boundary. 3

The boundary value problem to be solved can be expressed by the set of equations: I
V.(-Vu) = 0 in L.r  (5.1) I
u = gi on the ith conductor (5.2)

Bmu = 0 on r 2  (5.3)

where u is the electrostatic potential, gi is the potential on the conductors, and Bm is the 3
mth order asymptotic boundary operator.

For large r, the general solution of the Laplace equation in spherical coordinates can 3
be written in terms of spherical harmonics and powers of r as [62]

u(r,O,4) = 7. Ym(O'A) (5.4)
1I0Om--1 r

I
where Ylm(0,0) are spherical harmonics. Equation (5.4) can be rewritten in the following

form 3

u(r,0,,) =F,,(0,0) (5.5)
1=0 r I

I
!
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1 where

Flm(0,) = XBIm Yjn(0,O) (5.6)
m=-1

3 or more explicitly as

1 1 1u(r,8A) Flm(0,O) + F2m(O0c) + F3m(0, 0 ) + (5.7)

rer 2 r 3

I
We will now derive a set of boundary condition operators that can be applied on the

3 artificial boundary. From (5.7), we note

au + - =  (5.8)

I
We then define the first-order operator B 1 as

I Du u I/
B un--- '7-'+ - - = O1 7 (5.9)

r r 3

3 The second-order operator can be obtained by letting v = B 1 u and by observing that

Lv + 3v =  (5.10)I ar r -5rD

I
The second-order operator B2 can thus be defined as

I
I
I
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B2u s-(7 + 7r r r.-O (5.11) I
In general, it can be shown that the mth order asymptotic boundary condition operator can 3
be written as

m
BMU + 2j-1 )u(512Bnu H(+-+LL )u (5.12)g

The boundary contribution in the finite element formulation enters into a surface integral I
representation over the outer boundary, F2, where the integrand is the product of a testing

function and the normal derivative of u. As a consequence, the asymptotic boundary

condition needs to be imposed on the normal derivative of u. For a spherical outer 3
boundary, the normal derivative is simply the radial one. Using (5.11) in conjunction with

Laplace's equation in the spherical coordinates, we obtain the following asymptotic I
boundary condition operator

Ur = ct(r)u + P(r)uE + y(r)uee + (r)u0o (5.13)

where 3

a(r) (5.14)

cot0 (515
P3(r) =Co(.5o5

1 1
(r) Tr (5.16)

3
I
I
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S (r)2= 1 (5.17)
2r sin20i

As indicated earlier, we need to use a conformable outer boundary in order to minimize the

Inumber of node points as much as possible. For three-Jimensional transmission line

3structures, this conformable outer boundary should be a box. It is, therefore, necessary to

derive the appropriate normal derivative expressions for the different faces of the box

3 representing the outer boundary.

For the x=constant face of the box, the normal derivative is plus or minus Ux.

3Using the Chain rule, we can write ux as

IDu Dr Du DO Du Do(.8
- = Drax + Z'" + ' ax(5.18)

Using the relations between the Cartesian and spherical coordinates, Equation (5.18) can be

3 rewritten as

3 ux = "r +a"0 + "" (5.19)

where p = (x2 + y2 )1/2 and r = (x2 + y2 + z2)1/2.

3 Using (5.12) - (5.19), the Chain rule, and the relations between the angular and the

tangential derivatives, we obtain a final expression for the normal derivative on the face

3 where x=constant and ux is

3ux = ct(x,y,z)u + I31(x,y,z)u z + "fj~x'y'z)u

+ 1 (X,y,Z)uy + Il(X,Y,Z)Uyy + 4l(X,y,Z)Uyz (5.20)

I
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where I

al(x,y,z) = -x (5.21) I
r2

3x 3+4xy 2  (5.2)1(x,y,z) = -z 2r5.22)

r 2I

yl(x,y,z) X + XY2 (5.23)
2r2

_(x'y'z) 4x3 yz2+ 3xy 3z2-xy(p 4 + 2r2p2) (5.24)

~ 1 (x~~z) -2r
2p4

z) 2 2 2 x + x(3r 2

I(x,y,z) = - 2 (5.2)

r I
On the y=constant face, the normal derivative is plus or minus Uy. Invoking the Chain

rule, once again, we can express uy as

Du ar Du a0 au ab
Uy = 'DT- + To- 7y + a ay (5.27) I

Following the same procedure as before, we obtain the following expression for Uy

I
I
I
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U c 2(X,Y,z-)u + I32(X,Y,Z)U, + 72 (X,Y,z)uzz

3+ 2 (X,Y,Z)Ux + 1i2 (X,Y,Z)Ux. + 2(X,Y,Z)U~z (5.28)

* where

I a-(x,y,z) = y (5.29)
r

JP2(X,Y,Z) =-3y 3+ 4yx 2(5.30)
2r 2 p2

I y-(X,Y,Z) = y +Y (5.31)

2r?2

T12(X 4YZ z 2 + 3rx~2 -yp (5.r33)
- r2 2 4

42(XYZ) zxy(5.32)
rr

3 Similarly, for the z=constant face, we can obtain an expression for UZ, which reads:

UZ= cL3(X,Y,Z)U + f33(X,Y,Z)U , + 3(X,Y,Z)Uxx 
( .5

+ 3(X,Y,Z)Uy + Ti3(xY,Z)uyy + 43(X,x~y~(.5

where
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z (536) I3(X,y,z) = ... 
.i

= r2

73 XZ +y 2zr (5.38)1

13(x,y,z) = - 3yz (5.39)
2r2

T13(x,y,z) = y2z3 + x2zr (5.40) 1
2r 2p

2
I43(x,y,z ) = 3yz (5.41)

faces of the box-shaped outer boundary. As can be seen from Equations (5.12)-(5.41), it

is much easier to choose a spherical outer boundary where the normal derivative is simply3

ur. However, for the purpose of truncating the unbounded region surrounding the Itransmission lines in an efficient manner, one needs to use a conformable outer boundary

which, as mentioned earlier, is typically a box-shaped surface for three-dimensional
transmission line structures. T71he asymptotic boundary condition expressions that we have

just derived will be implemented in the finite element scheme in the next section.

I
I
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5.3 Finite Element Implementation of the Asymptotic Boundary Condition

3 The finite element method and its implementation are well-documented in the

literature [1], [3]-[6], and [30]-[31]. In this section, we will be concerned with the

implementation of the asymptotic boundary condition in the finite element method. As

indicated earlier, the region of interest, 9T, is bounded by an artificial boundary, r'2, to

Ilimit the number of unknowns. Over the bounded region, the Laplace equation is solved at

a finite number of grid points. This equation is discretized through the use of a weak form

of variational representation.

3- Multiplying the Laplace Equation (5.1) by a testing function f and integrating over

the volume QT-r , result in

ffV'(eVu) dv = 0 (5.42)

3 Using the Green's second identity, we obtain

-u
fV-(EVu) dv = - eVu'Vf dv + fe - ds (5.43)

y a3frfl r an

- Clearly, the second term of the right-hand side of (5.43) is the boundary integral

3 contribution which is usually neglected when a p.e.c. outer boundary is used [4].

Inserting (5.43) into (5.42), we get

!
JVu'Vf dv = f. - ds (5.44)

3 The region QT is discretized into tetrahedral elements. The triangular faces of the

I
I
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outermost elements make up the outer boundary r 2. In finite element formulation, the

implementation of (5.44) is carried out on an element-by-element basis. For all but the 3
outermost tetrahedral elements, the right-hand side of Equation (5.44) is zero. The

asymptotic boundary condition is needed to treat those outermost elements. I
For those elements having a face on the surface prescribed by x=constant, where 3

the outward normal is in the plus or minus x-direction, the asymptotic boundary condition

given in (5.20) may be incorporated into (5.44) to yield 3

eV u'Vf dv =-J fE(a,(x'Y'Z)U + P,(x'Y'Z)Uz +-1(x'Y'Z)U Iz-

+ 1(x,y,z)uy + TIl(x,y,Z)U yy + 4i(xy,Z)Uyz) dydz (5.45) 3

Similarly, for the elements having a face on the surface prescribed by y=constant, the

asymptotic boundary condition given in (5.28) is used in (5.44) to give

J eVu'Vf dv = fe( a 2(x,y,z)u + P2(x,y,z)u, + y2(x,y,Z)Uzz

+ 2(x,y,z)ux + 1l2(x,y,Z)Uxx + 42 (x,y,z)uz) dxdz (5.46) I
For the elements having a face on the surface prescribed by z=constant, where the outward

normal is in the plus z-direction, (5.35) is incorporated into (5.44) to yield I

JL eVu.Vf dv = fr. fe (a 3(x,y,z)u + 03(x,y,Z)ux + 73(x,y,Z)Uxx I

+ 3 (x,y,Z)Uy + T 3(x,y,Z)Uyy + 43 (x,y,z)Uxy) dxdy (5.47) 3

Therefore, for those elements which do not share a face with F2, the boundary contribution I
is zero. However, for the outermost elements, depending on the outward normal, the

I
I
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appropriate asymptotic boundary condition has to be used (i.e., either the right-hand side of

(5.45), (5.46), or (5.47) has to be added to the corresponding element matrix).

5.4 Numerical Results

A rectangular section of a microstrip transmission line of length L, width W, and

Uheight H above the ground plane is shown in Figure 5.2. The outer boundary 12 was

chosen to have the shape of a box. Using the same mesh, we have solved the potential

problem twice, first by applying the asymptotic boundary condition on the outer boundary,

3 and second by placing a perfect electric conducting shield at the same location. Afier

solving for the electrostatic potential, we computed the normalized capacitance CH/E(area)

3for both cases. Tables 5.1 and 5.2 show the results of computation for the normalized

capacitance for different values of L/W and for three dielectric constants (Er = 1.0, 6.0,

3 9.6). As Tables 5.1 and 5.2 indicate, the asymptotic boundary condition yields more

accurate results than those obtainable with a perfectly conducting shield [60]. Clearly, for

this problem there is a distinct advantage in using an asymptotic boundary condition in

3 place of a p.e.c. shield.

.. (C H L H3 Table 5.1. Normalized capacitancey ) for - = 0.2, l--0.2, Dx=D=D z =0.5.

- P.E.C. ABC

3 £r Shield (Present Method) Reference [60]

1.0 1.34 3.73 3.5

6.0 1.04 2.25 2.2

9.6 1.02 2.12 2.1
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Ground Plane3

Figur 5.2. A microstrip rectangular patch enclosed by an outer boundaryI
having the shape of a box in order to minimize the number of
mesh points.3
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(CH L HTable 5.2. Normalized capacitance -) for - .0, =1.0, Dx=D = z =2.0.

P.E.C. ABC

Er Shield (Present Method) Reference [60]

1.0 2.19 4.90 5.0

6.0 1.36 3.11 3.4

9.6 1.31 2.84 2.9

Finally, we would like to mention that the boundary surface integral is always

confined within a homogeneous region inside the element because the finite element method

models the medium to be homogeneous within each element; consequently, no special

treatment is needed at the dielectric interfaces.

3 5.5 Conclusions

Starting from the general solution of the Laplace equation in spherical coordinates,

we derived a set of asymptotic boundary conditions for three-dimensional quasi-static

problems for a spherical outer boundary. The second-order boundary condition was then

generalized to a box-shaped outer boundary and implemented in the finite element method

to solve the potential problem of a rectangular microstrip patch. The numerical results

show that the asymptotic boundary conditions yield more accurate results than those

obtainable with a perfectly conducting shield placed at the same locaticn.
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CHAPTER 6 I
IMPROVEMENT ON THE BOUNDARY CONDITIONS:

THE HIGHER-ORDER BOUNDARY CONDITIONS I

6.1 Introduction II
The finite element method (FEM) is very appealing for solving open region

problems due to its simplicity in modeling complex-shaped structures and inhomogeneous 3
dielectric scatterers. The local, or the absorbing boundary condition (ABC), makes the

FEM even more powerful because it preserves the sparsity of the discretized matrix. I
Furthermore, the absorbing boundary condition operator mimics, to a certain degree, the 3
asymptotic behavior of the wave function at infinity and yields reasonably accurate results

in the interior region without the need of an exorbitantly large number of mesh points. 3
Among the available absorbing boundary conditions [8]-[32], the Bayliss, Gunzburger,

and Turkel (BGT) boundary conditions are the most commonly used. In Chapter 3, we 3
have presented a generalization of the original BGT absorbing boundary condition so as to

make it applicable to an arbitrary, rather than circular, outer boundary. The use of the I
generalized version of the BGT enables one to reduce the number of node points

significantly and to solve larger sized problems than had been possible in the past. In

Chapter 4, we derived the static version of the BGT boundary condition. As the numerical 3
results in Chapter 4 show, the asymptotic boundary condition consistently yielded more

accurate results than those obtainable with a perfectly conducting shield placed at the same

location. Nevertheless, most forms of the absorbing boundary condition operators have

been based on the use of only the first few terms of the asymptotic representation of the I
solution to the differential equation. Typically, the first two terms of the series are used to

I
I
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obtain the desired absorbing boundary condition operator. In [24], [27], and [28], it was

Idemonstrated that while the absorbing boundary condition, which is based on the first

1terms of the series, works quite well for the lower-order harmonics, it exhibits a significant

error for the higher-order harmonics, which, in turn, may cause a noticeable error in the

j finite element solution.

In this chapter, we derive a higher-order absorbing condition which unlike many of

the available ABCs that take into account only the lower-order harmonics, considers both

lower- and higher-order harmonics. In common with the other available ABCs, the

derivation of this new absorbing condition is based on the same principle of the asymptotic

representation of the solution to the differential equation. However, unlike the available

ABCs which assume that in the far region the solution can adequately be represented by the

1 first few terms of the series, the higher-order absorbing condition requires that the

asymptotic representation be a combination of lower- and higher-order harmonics. As will

Ibe demonstrated later, the ase of the higher-order ABC results in a significant improvemeat

in the finite element solution for a variety of scatterers and transmission line structures.

I 6.2 Derivation of the Higher-Order Absorbing Boundary Condition

Consider the geometry of the scattering problem described in Figure 2.3. The

region Q is bounded with the contour F1 and its exterior region is denoted by nT. Let 12

be the outer contour, which truncates the open region Q2T, where the absorbing boundary

condition will be applied. Obviously, one can now use a partial differential equation (PDE)

Itechnique to solve the approximate problem provided that the region bounded by F2 is not

so large as to require an unmanageable number of unknowns. The approximate problem,

shown in Figure 2.3, is equivalent to

I
I
I
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V2u + k2U = 0 in CT (6.1)

nF = g on F1  (6.2)

Bmu = 0 on F 2  (6.3)

where u is the scattered field, g is the contribution from the incident field, and Bm is the 3
mth order absorbing boundary condition operator. Unlike the asymptotic representation of

the scattered field given in Chapter 2, where only the first terms of the series are kept, we I
suggest the following asymptotic form

e-jkp a(...) a() a()

U , +  2 + an3 + . n < n2 < n3  (6.4)

I
Note that the asymptotic representation of the scattered field given by (2.22) can be

obtained from (6.4) by choosing the set (nl, n2, n3} to be equal to (0, 1, 2). 3
From (6.4), we can see that

Du . -jkp ( anI ( I- " an2 ( a3 (1 "
- jku - - f ' -i +n72) + 1 3) + (6.5)

kP P3 2 1 n2( 2 ±2, 3 n3 J 2*)

Taking a closer look at the right-hand side of (6.5), we note that 3
u (1+ ni)I

Du + jku+ 2 u = 0 n2+3/2 (6.6)

Thus we define the boundary operator on the left side of (6.6) to be 3
I
I
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B _= a +jk + (6.7)

Note that if nl is chosen to be equal to 1, the operator B 1 is equivalent to the first-order

BGT operator [29]. If (6.7) is explicitly written, it would have the form

e - jkp (anan 
68B ,u = - ( 2 n-  nj) + "-a'" -nj) +...) (6.8)P P

The second-order boundary operator can readily be obtained by letting v = Blu and

observing that

I +jkv+ 2 )=2) (6.9)

i or

++k+ +jk + U u 3"5/2 (6.10)

Note that if the set (nl, n2) is chosen to be equal to (1, 2), the operator B2 is equivalent

to the second-order BGT operator [291.

Similarly, a third-order boundary operator can be obtained

SB 3  +jk + ) +jk+ + jk+ (6.11)

ip
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Note that if the set (nl, n2, n3I is chosen to be equal to (1, 2, 31, the operator B3 is

equivalent to the third-order BGT operator [291. I
As was indicated in Chapter 3, the boundary integral contribution is a line integral

over 1"2 where its integrand is a product of the testing function and the normal derivative of I
the unknown field. Hence, for our purposes, it is more useful to find an asymptotic

representation for the normal derivative of u rather than make direct use of the boundary

condition operators obtained above. For a circular outer boundary, the normal derivative 3
is simply the radial one. Using the B3 operator as given by (6.11) and the Helmholtz

equation given by (6.1), we obtain an asymptotic representation for the radial derivative 3
that reads

au- a(n 1, n2,n3 ,P)u + P3(nj,n 2,n3 ,P)u~O (6.12)

where 3

cc(n 1 ,n2,n3,P) = [ L~(nln2n3+-L.(nl+n 2+n3)+I(nln2+nln3+n2n3)+-L)

ni n2+n n3 ±n2n3+2 (n +n 2+n 3)+1 )-2pk2(nl+n 2 +n3+4)_4p2 J3)

I
[(nln2+ntn3 +n2 n3 +nl+n2 +n3 +- ) + 2pjk(nl+n 2+n 3 +3) - 4p2k2] (6.13)

and 3
I-( nl+n2+n3+ 3-) +3jkI

P(nl,n 2,n3,P) P 12 3k(.4

(nln 2+nln 3+n2n 3+nj+n 2+n3+T)+ 2pjk(nl+n 2+n3+3) - 4p 2 k2 I

I
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INote that the absorbing boundary condition operator shown in (6.12) depends on the

harmonics {nl, n2, n3).

In deriving (6.12), we have used the first-order boundary condition operator BI to

approximate the term up4p as follows

uI P - P +jk u00 (6.15)

I
The absorbing boundary condition that we have derived in (6.12) applies to a circular outer

Iboundary where the normal derivative of u is simply its radial derivative up. Our next task

is to transform the above absorbing boundary operator into a form suitable for arbitrary

boundaries. Using the same transformation and the same approach as the one used in

Chapter 3, we obtain the following absorbing boundary condition operator that can be

applied on an arbitrary outer boundary

Du - - - (6.16)
F= au+YU + ut

where

I mn m m m ( - -
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a= -(xosin6o-yocos0o)[ .L(n inzn3 +.'.(nl+n2+n3)+.I(ni n2+nlr' 3+n2n3)+-L)
13 4 2 8)

+jk n 1n2+n1 n3+n2n3+2 n1 +n2+n3 +L3 -2pk2n 1+n2+n3+4)-4p2 jk3] J/I

[p(nln2 +nln3+n2 n3 +ni+n2+n3+ 4 + 2p 2jk(nl+n2 in 3+3) - 4p3k2] (6.17)

-t (xo sin 0o -yo cosGo) + -sin2o (yo -xo) +x0 y0 cos280
y 2 (6.18) I

3
= [(xosineo-yocoseo)(n-+nz+n +-'2.)3kP]/[( nf1 I2

3 22+nln 3+n2n3+nl+n2+n 3+7)+2jkp(nl+n 2+n3+3)-4p k (6.19)

and 0, x0, yo, and t are as shown in Figure 3.2. I
The higher-order boundary condition given by (6.16) is implemented in the finite 3

element scheme in the same way as the modified BGT boundary condition discussed in

Chapter 3.

6.3 Derivation of the Higher-Order Asymptotic Boundary Condition I

Consider the problem of N arbitrarily-shaped conductors embedded in a

multilayered medium above a ground plane, shown in Figure 4. 1. Let OT denote the

region exterior to the conductors and r2 the outer boundary enclosing the truncated region.

The asymptotic boundary condition should mimic the asymptotic behavior of the field at

infinity and yield reasonably accurate results in the interior region. The potential u must

satisfy Laplace's equation everywhere in f2T , the constant potential condition on the 1

conductors, and the asymptotic boundary condition on the outer boundary F 2 .

I
I
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Equivalently, the problem can be described in terms of the following equations:

V'(eVu) =0 in K2t (6.20)

u = gi on the ith conductor (6.21)

Bmu = 0 on r 2  (6.22)

where u is the electrostatic potential and Bm is the mth order asymptotic boundary

condition.

In Chapter 4, the asymptotic boundary condition was based on the first two terms

of the asymptotic representation of the general solution to Laplace's equation. In this

chapter, we suggest the following asymptotic form for the potential u

U = antcosno + an-2 -cosn2  + -. cosn3 0 + (6.23)

Note that the asymptotic representation of the potential u given in Chapter 2 can be obtained

from (6.23) by choosing the set {nl, n2, n3) to be equal to (1, 2, 31.

From (6.23), we can see that

au n-u = an2  s2O(nl-n 2)+ an- cosn 30(nl-n 3) + (6.24)
p + P pp2+1 - "'"

We, therefore, define the first-order operator B I to be
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B au u+ -. = 1 (6.25)

Note that if ni is chosen to be equal to 1, the B1 operator given in Chapter 4 can be

recovered from (6.25).

The second-order boundary operator can readily be obtained by letting v = B 1 u and 3
observing that

Iv +(n2+1)' = 0...+2 (6.26)
app y 3(P

Thus, the second-order operator is defined by

B 2 u = ( _- +.n2 -( D-+I)u (6.27) IU
Note that the B2 operator of Chapter 4 can be recovered from (6.27) by choosing the set

{n 1, n2) to be equal to ( 1,2). 3
The third-order operator can be obtained by letting z = B2v, and defining B3 to be

equal to 3
B3 u +(n3+2) * + (n2+'1 ))( au u (6.28)i--U " (_ p" T ' + n- 6.8

I
As explained earlier, we need to find an asymptotic representation for the normal derivative

of u rather than make direct use of the boundary condition operators obtained above. For a

circular outer boundary, the normal derivative is simply the radial one. Using the B3

operator as given in (6.28) and making use of the Laplace equation to trade the second- I
order derivative in p, upp, for the second-order angular derivative, uOO, we obtain an

U
I
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asymptotic representation for the radial derivative that reads

auDu = V(n, n2, n3, p)u + (nj, n2, n3, P)UOO (6.29)

where

-nj, n2, n3, P) njn2n3 (6.30)
p(n1n2 + nn 3 + n2n3)

(nl, n2, n3, p) = nl+ n+n 3  (6.31)

p(nln2 + njn 3 + nzn3)

In deriving (6.29), we used the first-order boundary condition operator B 1 to approximate

the term uoop, that is,

up --= -n "--,5- (6.32)

The asymptotic boundary condition operator given by (6.29) is valid only for a circular

outer boundary. However, for the purpose of reducing the number of mesh points as

much as possible, one needs to use a conformable outer boundary. Thus, we need to

generalize (6.29) and obtain an operator valid for an arbitrary outer boundary. Following

the procedure described in Chapter 3, we obtain an expression for the normal derivative Un

in the local coordinate system (t,n) where t and n are tangent and normal to the triangular

edge lying on the outer boundary I"2, respectively,

n n , n2, n3, P)utt (6.33)
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I
where ut and utt are the first- and second-order tangential derivatives, respectively, and

.(nj, n2 , n3, p) = -(x 0 sine0 -y 0cos 0 0) 2 (6.34)
p2(nln 2 + nln 3 + n2n3)

3  n + n2 + n3  (6.35)
4(n, n2, n3, P) = (x0sinO0 -yocosO) P 2(nn2 + njn 3 + n2n3)

U
where 00, x0, yo, and t are as shown in Figure 3.2. I
6.4 Numerical Results

The higher-order boundary condition is implemented in the finite element scheme in

the same way as the simple absorbing boundary condition because they both yield the same

form of absorbing boundary condition operator. To demonstrate the significant

improvement in the finite element solution achieved by using the higher-order boundary

conditions, we considered both circuits and scattering problems. For all the cases I
considered, a conformable outer boundary is used to truncate the open region.

6.4.1 Digital circuit applications I

6.4.1.1 Two conductors

Consider the two coupled microstrips shown in Figure 4.3. The higher-order I
asymptotic boundary condition operator given by (6.33) was applied on a rectangular outer

boundary. Choosing the set (nl, n2, n3} to be equal to (1, 2, 4), the finite element

problem was solved for the electrostatic potential. Table 6.1 shows the capacitance matrix

I
I
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for the same problem that has been published elsewhere [55], together with those obtained

by using a p.e.c. shield, the asymptotic boundary condition (the method of Chapter 4), and

the higher-order asymptotic boundary condition (present method). As Table 6.1 indicates,

while both the present method and the simple asymptotic boundary condition yield more

accurate results than those obtainable with a perfectly conducting shield placed at the same

location, the higher-order asymptotic boundary condition results compare more favorably

with the published work.

Table 6.1. Capacitance matrix for the coupled microstrips of Figure 4.3.

Higher Order Error Error

C(i,j) Reference [55] ABC ABC ABC-[551 HOABC-[55]

C(1,1) 0.9224x 10-10 0.9249 x 10-10 0.9230 x 10-10 0.271% 0.069%

C(1,2) -0.8504 x 10-11 -0.8061 x 10-11 -0.8377 x 10-11 5.203% 1.489%

C(2,1) -0.8504 x 10-11 -0.8061 x 10-11 -0.8377 x 10-11 5.203% 1.489%

C(2,2) 0.9224 x 10-10 0.9249 x 10-10 0.9230 x 10-10 0.271% 0.069%

6.4.1.2 Six conductors

Consider the six-conductor system shown in Figure 4.4. As we indicated in

Chapter 4, there are no published results for this configuration. However, we have

compared our results with those derived by using the computer program developed by

Haims et al. [56], which uses an integral equation formulation and an iterative method of

solution. For this configuration, although the simple ABC of Chapter 4 yields more

accurate results than those obtainable with a perfectly conducting shield placed at the same

location, the error in the capacitance matrix is noticeable, especially for the off-diagonal

terms. The higher-order asymptotic boundary condition operator given by (6.33) was
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applied on a conformable rectangular outer boundary with a choice of the set ( n 1, n2, n3)

to be equal to { 1, 5, 10). As Table 6.2 indicates, the higher-order asymptotic boundary

condition yields a significant improvement over the simple asymptotic boundary condition,

especially for the off-diagonal terms of the capacitance matrix. I
Clearly, the improvements brought about by the higher-order asymptotic boundary

condition are a direct consequence of its ability to incorporate lower- and higher-order

terms through the choice of the set {nl, n2, n3). Based on numerical investigations, it 3
was determined that the optimal choice of the set inl, n2, n3} is { 1, p/2, p) where p is the

distance from the origin to the middle of the edge of the triangular element residing on the

outer boundary (see Figure 3.2). I
6.4.2 Scattering applications

6.4.2.1 Perfect electric conductor circular cylinder I
Consider a perfect electric conductor cylinder with a radius of 5X enclosed with a 5

circular outer boundary of radius 5.15X shown in Figure 6.1. For a TE incident wave, the

finite element method was used to obtain an approximate solution which was then I
compared to the exact series solution. Using the same mesh, the finite element problem

was solved twice using two different boundary conditions: once by using the BGT

absorbing boundary condition and the other by using the higher-order absorbing boundary 5
condition. Figure 6.2 shows the radar cross-section (RCS) for the exact series solution,

together with the one obtained by using the BGT absorbing boundary condition and the

higher-order absorbing boundary condition (present method). Figure 6.3 shows the error

in the finite element RCS computation. As Figures 6.2 and 6.3 indicate, the higher-order I
absorbing boundary condition yields a significant improvement in accuracy over the BGT

I
I
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Table 6.2. Capacitance matrix for the six-conductor structure of Figure 4.4.

-_Higher-Order Error Error
C(ij) Iterative [561 ABC ABC ABC-[561 HOABC-r56]
C(1,l 0.668 x 10-W 0.686 x 10-1 0.667 x 10-TO 2.620% 0.213%7
C(1,2) -0.279 x 10-10 -0.315 x 10-10 -0.293 x 10-10 13. 0 5% 4.983%
C(l,3) -0.549 x 10-1 -0.600 x 10- 11 -0.565 x 10- 11 9.240% 2.826%
77l4) -0.208 x 1-1-0.225 x 10-11 -0. 19 2 x -11 T. 32 0%1 7.631%
C(1,5) -0.999 x 10-12 -0.101 x 10-11 -0.792 x 10- 12 0.840% 20.73%
C(1,6) -0.704 x 10- 12 -0.602 x 10-12 -0.445 x 10- 12 14.52% 36.74%
C(2,1) -0.279 x 10-1 -0.315 x 10-10 -0.293 x 10-10 13.05% 4.983%
C(2,2) 0.789 x 10-10) 0.848 x 10-10 0.803 x 10-10 7.480% 1.7 13%

C(,)-0.256 x 10- 10 -0.284 x 10-10 -0.269 x 10-1 110% 52%
C(2,4) -0.465 x 10- 11 -0.487 x 10-l' -0.464 x 10- 11 4.740% 0.193%
C(2,5) -0. 173 x 10-1 -0.181 x 1011l -0. 155 x 10- 11 4.610% 9.869%
C(2,6) -0.999 x 10- 12 -0.101 x 10-11 -0.792 x 10-12 0.920% 067
CQ3, 1) -0.549 x 10-= -0.600 x 10- 11 -0.565 x 1 0 HIT 9.240% 2.826%
TT,2)7 -0.256 x1- 0284 x 10- W~ -0.269 x 10-10 11.10% 5.220%
C(3,3) 0.794 x 101 0.855 x 10-10 0.812 x 10-1 7.680% 2.307%
C(3,4) -0.254 x 10-10 1-.8 01 -0.265 x 10-10 10.91% 4.043%
C-(3,5) -0.465 x 10- 11 1-0.487 x 10-1 -0.464 x 10- 11 4.750% 0.127%

(3,6) -0.208 x 10- 11 -0.226 x 10-1 -0.192 x 10- 11 8.410% 7.416%
C(4, 1) -0.208 x 10- 11-0. 225 x 10- -0.192 x 10-11- 8.320% 7.631%
C(4,2) -0.465 x 10=-1 -0.487 x 10- 11 '-0.464 x 10- 11 4.740% 0.193%
77(4,3) -0.254 x 10-10U -0.282 x 10-10 -0.265 x 10-10 10.91% 4.043%
7(4,4) 0.794 x 10-10 0.855 x 10-10 0.812 x 10-10- 7.680% 2.307%
C(4,5) -0.256 x 10-10 -0.284 x 10-1= -0.269 x 10-10 11.10% 5.220%
C(4,6) -0.549 x 10- 11 -0.601 x10-1 1 -0.566x 10-1 T 9.310% 3.0 53 %
7C(5,1) -0.999 x 10- 12 -0.101 x 10-11 -0.792 x 107-1 0.840% 20.74%
C(5,2) -0.173 x 10-11 -0.181 x 10-11 -0. 155 x 10- 11 4.610% 9.869%
C(5,3) -0.465 x 10- 11 -0.487 x 10- 11 -0.464 x 10- 11 4.750% 0.127%

77(5,4) -0.256 x 10=-1 -0.284 x 0-1( -0.269 x 10-1 1. 10%_7 5.220%
77(5,5) 0.789 x 10-10 0.848 x 10-'u 0.803 x 10-10 7.480% 1.713%

(5,6) -~ 0.29 1- -0.316 x 16 1 -0.293 x 10-10 113.08% 4.983%
C(6, 1) -0.704 x 10-12 -0.602 x 10-12 -0.445 x 10-12 14.52% 36.74%
=(, ) -0.999 x 10- 12 -0.101 x 10-11 -0.792 x 10- 0.920% 20.67%

Z A -0.208 x10-1 1  -0.226 x10-1 1  -0.192 x 10- I1 874 10%7 7.417%
7(6,4) -0.549 x 10-11 -0.601 x 10- 11 -0.566 x 10- 9. 3 10% 3.053%

0.279 x 170 T10 -0.316 x 10-IU -0.293 x 10-10 13.08% 4.983%
C(6,6) 0.668 x 10- W 0.685 x 1010 0.666 x 10-10 2.550% 038
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TE incident wave .15 x
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Figure 6. 1. A TE incident wave on a 5 2.p.e.c cylinder enclosed by a3
circular outer boundary 6. 152X away from the surface of
the scatterer .
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Figure 6.2. The radar cross-section of a 5. cylinder illuminated by a TE

incident wave and enclosed by a circular outer boundary 0.15 X
away from the surface of the scatterer as shown in Figure 6.1.



U
104 I

I
I

10
9 1

--- O error/bat

error/ho

73
° -

o 5

4
Cd, 4-3

II
0 18 36 54 72 90 108 126 144 162 180

Angle in degrees 3

Figure 6.3. The error in the radar cross-section between the finite element and I
the exact series solutions for a 5 % cylinder illuminated by a TE

incident wave and enclosed by a circular outer boundary 0.15 X
away from the surface of the scatterer as shown in Figure 6.1.

I
U
I
3
I



105

boundary condition. It is worth mentioning that for a TM wave incident on the same

cylinder the higher-order and the BGT boundary conditions give almost the same result

which compares very well with that for the exact series solution.

6.4.2.2 Perfect electric conductor wedge

Consider a 6X by 3A perfect electric conductor wedge illuminated by a TM incident

wave (Ei = e-jkx ). In order to minimize the number of mesh points, the wedge was

enclosed by a conformable outer boundary 17, away from the surface of the scatterer

(Figure 6.4). The near field was calculated on the outer boundary using the higher-order

Iboundary condition (present method), the BGT boundary condition, and the method of

moments. From Figure 6.5, we can deduce that the use of the higher-order boundary

condition results in considerable improvement over the BGT boundary condition. In order

to see more clearly the difference between higher-order and the BGT boundary conditions,

we have plotted the results obtained by the two methods on separate graphs in Figure 6.6.

6.4.2.3 Perfect electric conductor strip

Figure 6.7 shows a 6X strip illuminated by a TM incident wave (Ei = e-Jkx).

Again, for the purpose of reducing the number of mesh points, the outer boundary was

chosen to be as conformable as possible to the surface of the scatterer. The near field was

calculated on the outer boundary using the higher-order boundary condition , the BGT

boundary condition, and the method of moments. The results obtained via the use of the

higher-order and the BGT boundary conditions are again compared to the method of

moments results. As Figures 6.8 and 6.9 show, the higher-order boundary condition

compares more favorably than the BGT boundary condition with the method of moments.
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Figure 6.4. A TM incident wave on a 6 X by 3A p.e.c wedge 3
enclosed by a conformable outer boundary 1 X away
from the surface of the scatterer.
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Figure 6.5. Near field on the outer boundary for a 6X by 3X p.e.c. wedge

illuminated by a TM incident wave (E i = e-jkx) and enclosed by
a conformable outer boundary as shown in Figure 6.4. Shown
are the method of moments, the higher-order boundary
condition, and the BGT boundary condition results.
a) Real part of the near field.
b) Imaginary part of the near field.
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Figure 6.6. Same as Figure 6.5 but in this graph only the higher-order and the
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y

TM incident wave 6i r2

Ezi= e-jk x  - "x

Figure 6.6. A TM incident wave on a 6 X p.e.c. strip enclosed by a conformable
outer boundary 1 away to minimize the number of mesh points.
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Figure 6.8. Near field on the outer boundary for a 6 X p.e.c. strip illuminated by 3
a TM incident wave (E i = e-jkx) and enclosed by a conformable
outer boundary as shown in Figure 6.7. Shown are the method of
moments, the higher-order boundary condition, and the BGT
boundary condition results.
a) Real part of the near field.
b) Imaginary part of the near field. 3
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The higher-order boundary condition operator depends on the set {nl, n2, n3).

This set is chosen in a way that includes both the lower- and the higher-order harmonics. 3
Let y denotes the ratio Up/U (7 = Up/u ) where u the scattered field and Up is itS, normal

derivative. The imaginary and real parts of y are related to the propagating and decaying 3
waves, respectively. The exact of value of y is given by Hn'(kp)/Hn(kp). The

approximate value of y can readily by computed by using Equation (3.5) for the BGT I
boundary condition and Equation (6.12) for the higher-order boundary condition. Thus, a

proper choice of the harmonics is a one that approximates y (Yapprox) as close as possible

to Yexact. As Figure 6.10 indicates (kp = 32), the BGT boundary condition is quite 3
satisfactory for the lower-order harmonics up to n=20, and then begins to deviate from the

exact one for n>20. However, by letting the set (n 1, n2, n3) to take roughly the value of 3
(0, kp/2, kp}, where k is the free-space wavenumber and p is the distance from the origin

to the middle of the triangular edge residing on the outer boundary, the higher-order U
absorbing boundary condition yields a value of Yapprox which, on the average, matches

Yexact on a wider range of harmonics than does the one given by the BGT boundary

condition. 3
As the numerical results indicate, the improvement brought about by the higher-

order absorbing boundary condition is more significant for the wedge than for the strip. 3
This difference can be explained by the fact that the strip scatters more of the higher-order

harmonics than does the wedge, which, in turn, may require more than three sampling of I
the harmonics in order to achieve a significant improvement.

The term "Error" that appeared several times in the Tables should not be interpreted

as an absolute error but rather as a difference between our results and the published ones. 3
I
I
I
I
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Figure 6.10. Imaginary part of yversus the harmonic number n.
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I
6.5 Conclusions 3

Based on the asymptotic representation of the general solution of the Helmholtz and 3
Laplace equations, we derived higher-order absorbing and asymptotic boundary conditions

that combine both the lower- and higher-order terms. The higher-order boundary U
conditions were then generalized and made valid for an arbitrary outer boundary. These 3
boundary conditions were implemented in the finite element scheme and used to obtain the

solution for both digital circuit and scattering applications. The numerical results showed 3
that the higher-order boundary conditions constantly yielded a significant improvement

over those for the BGT boundary condition. 3
I
U
I
I
I
I
I
I
I
I
I
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, the subjects of the absorbing and asymptotic boundary conditions for

the finite element (FEM) mesh truncation applied to scattering and digital circuit problems

were investigated. Three new boundary condition concepts were introduced, viz., the

boundary condition for arbitrary outer boundaries, the asymptotic boundary condition for

digital circuit applications, and the higher-order asymptotic and absorbing boundary

conditions.

Using a rotation and a translation transformation and neglecting the mixed

derivative term (Unt), the most commonly used absorbing boundary condition operator for

electromagnetic scattering problems, e.g., the Bayliss, Gunzburger, and Turkel (BGT),

was generalized and made applicable to an arbitrary, rather than circular, outer boundary

for the purpose of minimizing the number of mesh points. The generalized boundary

condition operator was implemented in the finite element method and used to study the

scattering from a 4X strip, a 2X by 1% wedge, a 9X strip, and an 8X. by 4X wedge. The

numerical investigation indicated that while the finite element yielded acceptable results for

all the strips and wedges considered, the results for the wedges agreed more favorably than

those of the strips with the results obtainable via the Method of Moments. This can be

explained by the fact that the scattered waves are purely outgoing only in the region outside

the smallest circle that entirely encloses the scatterer. For a wedge, where the outer

boundary resembles more closely a circular one, there are more points satisfying the above

criterion than there are for a strip where the outer boundary is elongated. In fact, the

presence of incoming waves is more pronounced for the region of the elongated boundary

enclosing the strip which is close to the origin.. The issue of absorbing boundary
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condition for scattering problems was examined again in Chapter 6 where a higher-order

boundary condition was used in conjunction with the finite element method The higher- 3
order absorbing boundary condition was derived from the asymptotic solution of the

Helmholtz equation. Unlike most available absorbing boundary conditions, e.g., the I
Bayliss, Gunzburger, and Turkel (BGT), the higher-order absorbing boundary condition0 ti Itook into account both the lower- and higher-order ham.onics. Using the transformations

of Chapter 3, this boundary condition was also generalized and made valid for an arbitrary 3
outer boundary. The numerical results showed that the higher-order absorbing boundary

condition constantly yielded a significant improvement over those for the BGT boundary 3
condition for a variety of scatterers. In the course of this study, it was realized that whether

one uses the BGT or the higher-order boundary conditions, the outer boundary needed to I
be placed at a reasonable distance from the surface of the scatterer considered.

The corresponding concept to the absorbing boundary condition for digital circuit

applications is the asymptotic boundary condition. The term "asymptotic" is used inste.d 3
of "absorbing" because the digital circuits were analyzed in the quasi-TEM regime and,

hence, there was no propagation or reflection of waves. Using a similar approach to the 3
one used to obtain an absorbing boundary condition for scattering problems, an asymptotic

boundary condition was derived for open region digital circuit problems. The asymptotic I
boundary condition was then implemented in the two-dimensional FEM scheme to model

one-, two-, and six-conductor configurations. The numerical results indicated that the I
asymptotic boundary condition consistently yielded more acc-rate results than those 3
obtainable with a perfectly conducting shield placed at the same location. Furthermore, this

asymptotic boundary condition did not suffer from the complications associated with the 3
infinite elements. However, in some situations, the accuracy obtained with the asymptotic

boundary condition was not adequate, as for instance in the off-diagonal terms of the I
capacitance matrix in the six-conductor configuration. Those inadequate results were

I
3
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improved in Chapter 6 where the higher-order asymptotic boundary condition was used.

The later boundary condition, unlike the one used in Chapter 3, took into account both the

lower- and higher-order terms.

Since digital circuits do not consist of only two-dimensional structures but also

contain various three-dimensional transmission line discontinuities, it was necessary to

derive the three-dimensional version of the asymptotic boundary condition. The general

form of the solution to Laplace's equation was again used to derive the asymptotic

boundary condition. In order to reduce the number of mesh points as much as possible, a

box-shaped outer boundary was chosen because it was the most conformable to the

structures considered. The method was used to compute the capacitance of a rectangular

microstrip patch, and the results were found to be in good agreement with data published

elsewhere. Once again, the asymptotic boundary condition enabled us to bring the outer

boundary much closer to the structure than would have been possible with the p.e.c.

artificial boundary. Actually, the role played by the three-dimensional asymptotic boundary

condition was more crucial than the one played by the two-dimensional asymptotic

boundary condition because the total number of mesh points for three-dimensional

problems is usually large. Although the cost of FEM calculation for the three-dimensional

problem was quite high, the method is worth using because it handles very general

structures and, hence, helps in solving practical problems.

The absorbing and asymptotic boundary conditions are fairly new concepts in both

scattering and digital circuit analyses. Thv work presented in this thesis just scratched the

surface of those concepts and a considerable effort still needs to be done before they

become standard techniques for FEM mesh truncation. A possible area of research is

suggested by the fact that the outer boundary had to be placed at a reasonable distance from

the object in order to achieve an acceptable accuracy. For a relatively large scatterer such as

the 9. strip considered earlier, even though a conformable outer boundary was used, a
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couple of thousand mesh points were required in order to obtain satisfactory results. A

considerable savings in computer time and storage can be achieved if a boundary condition 3
that helps to bring the outer boundary closer than the one used in this work is found. But

how close to the object could the outer boundary be placed? The answer to this question is 3
still an unknown issue that requires a great deal of future research.

In this work, only two-dimensional scattering problems were considered. 3
However, most of the practical scattering problems are three-dimensional in nature. 3
Although three-dimensional vector absorbing boundary condition are reported in the

literature, very little has been done in terms of implementing them in the FEM. Thus, there 3
is a need to develop computer codes that incorporate those absorbing boundary condition

operators into the FEM which will help to solve the most general scattering problems, i.e., 3
the vector three-dimensional problems.

For digital circuit problems, the asymptotic boundary conditions derived in this I
work were valid only in the quasi-TEM regime. However, with the increasing speed of 3
digital circuits, it is often inadequate and insufficient to rely on the quasi-TEM

approximations. Thus, there is an urgent need to derive absorbing boundary conditions 3
and incorporate them into the FEM for the full-wave vector analysis of two- and three-

dimensional high-speed digital circuit problems. 3
U
U
I
I
I
I
I
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