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1 INTRODUCTION

In Gas Discharge Lasers the molecular energy levels are excited by hot electrons which
are accelerated to high speeds by the applied electric field. In order to appreciate and
improve the efficiency of these systems it is necessary to understand the details of this
process. The statistical nature of the scattering events means that the electrons in the
electron swarm have a distribution of energies, in this report we concern ourselves with
the evaluation of this distribution.

There are two established methods for tackling this problem. The first1 , which we will
consider in detail, introduces a distribution function at line one. The distribution, which
describes the probability of finding an electron in phase space, obeys the Boltzmann
transport equation, which may be solved approximately in a simple regime.

The second method 2 treats the electrons individually and keeps track of their phase space
trajectories. This method is exact and extremely useful for understanding spatial and
magnetic field effects in gas discharges, however such calculations use large amounts of
computer time and usually generate much more information than is needed for the type of
problem which concerns experimental workers at the present time. Nevertheless the
Monte-Carlo is a valuable tool in so far as it is exact and serves as a useful touchstone
for Boltzmann equation results. For the present we concern ourselves with the Boltzmann
equation and uniform, steady-state electron distributions. The Monte-Carlo method will be
applied to dynamic non-uniform situations in a later document.

In Section 2 we introduce the electron distribution function and show that it obeys the
Boltzmann equation. We decompose the distribution into s and p-like behaviour and use
this to give two coupled equations.

In Section 3 we evaluate the s-type collision term derived in Section 2 for recoil
scattering and inelastic scattering. Our method is different from the usual technique
employed in gas systems, we use Fermi-Golden rule ideas to relate the transition rate to
the scattering cross-section. Although our results are the same as those usually presented
we feel that in view of pseudo-potential data now becoming available for gas atoms4 , the
method is the natural one to use.

In Section 4 the p-type collision term is considered and a momentum relaxation time is
introduced. The equations derived in Section 2 are then decoupled. We indicate how the
equation dealing with the s-type part of the distribution is modified for a gas mixture.
This equation is the working equation for the gas discharge system.

In Section 5 the working equation derived in Section 4 is solved under special conditions

to give the Maxwell-Boltzma.,n and Druyvestyn distributions. In Section 6 we describe two
general numerical methods for solving the Boltzmann equation when both recoil scattering
and inelastic scattering are important. In Section 7 we reconsider the relaxation time
approximation and introduce a modification to the equations presented in Section 6. This
method is then used to calculate the electron distribution function in SF 6 and this is
briefly compared to the exact results calculated by Monte-Carlo simulations. For
completeness we consider distributions with the same average energy and we present a
graph showing the difference between Maxwell-Boltzmann, Druyvestyn and the SF6
distribution. In Section 8 we present a few concluding remarks.



2 THE BOLTZMANN EQUATION

We start by introducing a distribution function f(k, ., t) which is defined as the
probability of finding an electron with wavevector k at position r at time t with spin up.
The growth of f(k, r, t) is determined by the current of electrons into the
six-dimensional phase space element. The electrons move in r space by virtue of their
velocity, whilst motion in momentum space is due to the force acting on them. In the
absence of scattering we equate the growth of f(k, K, t) to the divergence of this six
dimensional current.

af (k,r,t) - - V . (fv) - V k" (fF) - - v . Vf - F.V kf (1)
0t-- --

at
where

F,- -e + vxB1 = -- (2)
- e ]dk

-dt

af
In the absence of applied fields and concentration gradients - (k,r,t) is

determined solely by collisions 
at

af (k,r,t) - I7 (k,r,t) Icol (3)

The Boltzmann equation combines these two processes,

af (k,rt) = -7. (fv) - F . V kf + [ 1] (4)
t- t coi

We shall examine the simplest case when B = 0 and spatial gradients are unimportant.
We shall also be concerned with the steady state. Then from equations 4 and 2 we have

E . k f(k) af (k) (5)
- - -at - co Il

where f (k) is now a function of k alone. Because the momentum-transfer cross-section
is large and the scattering event is velocity randomising f(k) will tend to be isotropic,
however we know that the electron swarm must drift under the applied electric field so
there must also be an anisotropic contribution to f which weights the distribution in the
direction of the electrostatic force. In general f(k) can be expanded in terms of the
spherical harmonics
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f (k) fn (k) Pn (cos €), (6)

n-0

where L is the angle between the electric field and the k vector direction. We assume
only the first two terms are significant (the Lorentz approximation). Hence,

f (k) - f (k)+ cos ¢ f (k) (7)
0 1

on inserting 7 into 5 we see

-e a
- E (f (k) + cos ¢ f (k))
A5 ak

Z

af af 1-- s+ casI (8)

at a
.coll coll

where the axes have been chosen so that kz is in the direction of E, (see Fig 1).

Coverting to polars we write,

a = -sin + cs a (9)

ak k a¢ ak

Hence,

- E sin2 f +Cos 2  af

h k &k ak

ao + cos ¢ (10)
at atcol a coll

Multiplying equation 10 by sin ¢ and integrating from 0 to r gives

2 1 af af

1. 3k 3 ak at
Coll



Multiplying equation 10 by cos ' and integrating from 0 to r. gives

--
- E I 1 (12)

ak at ciColl1

We see that we have separated equation 10 into two equations by considering s and
p-type behaviours. The collision terms still need to be considered in some detail before
the coupled equations 11 and 12 can be solved.

There are two contributions to -f (k)
atJ col

the growth of f(k) is due to transitions from all other k' states into k, minus a term due
to electrons leaving k.

So,

( ] (W) P (k' k) - f(k) P (k, -) -d 3k.

at I~col= 87-l

(13)

where P (k', k) is the probability per unit time of a transition from a full state at k' to
an empty state at k. The V/87 3 factor is the density of states in k space.

Substituting equation 7 into 13 we obtain

afo0 (k) + cos€ afl1(k)

oat Call F at coIl

f f (k') P (k', k) - f (k) P (k,k') V 3 d3 k '

+ [ Cos ' f (k ) P (k'k) - cos , fI(k) P (k,k)] V ki

8r

(14)
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We assume that P(k,k') depends on k,k' and the scattering angle (y) and not on the
absolute orientation of the vectors in space.

It is, therefore convenient to evaluate the d3 k' integrals in a frame which has the kz
directed along the initial k direction. In this case

cos-' - cos , cosy + sinO siny cos3 , (15)

where 3 is the azimuthal angle, (for details see Holtstein 3 )

Substituting (15) into (14) and carrying out the integrals to separate the two contributions
we obtain

af (k) - cos-Y f1(k')P(k',k) - fl(k)P(k,k') V d 3k'
at ]Coll 8 3

(16)

and

f 0 (k) f (k')P(k',k) - f (k)P(k,k') 1  d3k '  (17)at OI-d --
a ]col I J 877 3

These are still formal equations, in the next section we look at the influence of recoil
scattering and inelastic scattering on equation 17 and in the following section we examine
equation 16.

3 COLLISION PROCESSES

So far we have said nothing about the details of the microscopic events which remove
energy from the electron distribution. These fall into two main categories, recoil and
inelastic scattering. Under normal circumstances recoil scattering has little direct effect on
energy relaxation as only a small amount of energy is removed in each scattering event,
however it can be important at low electric fields when the second process, molecular
excitation is unimportant because the electrons have not yet got enough energy.

In this section we evaluate the s-type part. of the collision term by considering a
Fermi-Golden Rule approach. Smith and Thompson1 used hand waving arguments in their
derivation and rigorous derivations seem in the main to be absent from the literature
although Holstein's 3 method is correct. Our method relates the transition rate to the
potential responsible for the scattering and in view of the pseudo-potentials now available 4

in the literature for calculating scattering rates by just such a route it seems like a worthy
one to pursue. We start by quoting Fermi's Golden rule:-
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Given an electron in state k, the transition rate to an empty state k' is given by Fermi's

golden rule.

2 ,r

P(kk-) <kIeV (r)-I kI>1- (k) - e (') - A (kk)), (18)

where A(k,k') is the energy lost by the electron in the transition and V(r) is the
perturbing potential due to the atom.

We now examine the two types of scattering process.

3.1 Recoil Scattering

We assume for the moment that all the atoms are at rest before a collision happens ie
temperature = 0. Any energy dumped into the molecular system is also assumed to be
removed instantaneously. So energy from the molecular system may not feed into the
electron system. The scattering rate is usually written as

F = nQv, (19)

where Q is the cross-section, v is the speed of the electron and n is the number of
scatterers per unit volume. If the nature of V([) is known we may also evaluate F(_)
through the relation

V
r (k) = P (k,k') d k' (20)

and equation 18.

Now for electrons with an energy less than 30 eV we shall assume that the scattering
centre is much smaller than the wavelength of the electron. (Typically only " 10 times
smaller). This allows us to replace the potential V (r) with

V(L) - Sob(r-ro), (21)

where So is the scattering strength.

If we treat the collision as elastic then we may easily evalulate the scattering rate F(k)

- w 2V 3'
rl(k) - n6 (c(k) - c(k')) d k

2

, S 2 n m (22)
o ,4
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where m is the mass of the elctron and we have used equations 18, 20 and 21.

So we see

$2 2S m
0

Q - , (23)

where

S V (r) d3r (24)

If V(r) is finite in extent then it can be shown by partial wave analysis that equations 23
and 24 still hold approximately if the spread of V(r) is much smaller than the electron
wavelength 5 . Experimentally however Q is dependent on energy. This dependence is due
to the failure of our sharp potential assumption. Indeed the Ramsauer-Townsend minima
in experimentally measured Q(c) values is a manifestion of resonant tunnelling through the
potential barrier due to the size of the atom 4 . To include the energy dependence in a
simple way and still retain the isotropic scattering ideas we write the transition rate as

2,,

P(k',k) - A((') 6 (('- - ) (25)

where A is the energy lost in a transition from k' to k and A(e') is a function of the
initial energy of the electron. Then

A(c) n Q (() 7, (26)2V m2

We have retained the isotropic scattering approximation whilst incorporating the energy
dependence of Q((). In reality anisotropic scattering and the energy dependence of Q(C)
are inextricably linked to the failure of the notion of delta function scattering centres. As
we are mainly interested in the energy dependence of the electron distribution function it
is hoped that such an approximation will not lead to large errors in calculated excitation
rates.

In view of our preliminary remarks we note that recoil collisions can only remove energy
from the electron system. Hence the first term in equation 17 which is the scattering in
term (scattering into k) must have k < k', similarly the second term has k' < k as
electrons can only be removed from k by a decrease in energy.

For recoil scattering the initial and final energies are related through the equation 1

m m2 2e /
' - - - (f + C) - -- cos Y , (27)

M m
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where c' is the energy of the initial state k', ( that of the final state k, -Y is the
scattering angle and M is the mass of the recoiling atom.

Defining

, 0-£ - - (f + f') + 2 2 cos y , (28)

M M

we may write

P(k',k) = 2r A(e') 5 (g (0 ,E)) (29)

We may now re-write equation 17 solely in terms of energy

o-. fo0((,) 2-r A(')6(g(c',E)) - f 0 2r A(c)6(g(c,'))

at -col 1 I

2m ! _ d(cos -y) dO dc' (30)

3 /i2 2

we note that g ((',c) = 0 is approximately satisfied by c c'.

We use the property of the delta function

6(g(x))- b (X-X n ) (31)
I gI(X )In

n n

where the x. are the set of numbers which satisfied g(x) = 0.

Now,

g' 1 c' ) -I ! (1-Cos -Y) (32)
NOW,

M

and

g' , c') "- 1 + _ (1 - cos 'Y) (33)
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Hence we obtain,

af 0. 2w +A
-j fo (e+A) - A (c+A)
at reco i 1 (1 -CosY)

M

V ~2m m
f (e) LZ A (c-A) I - - d (cos -y) dO

I + - (1-cos -Y) 8r' I T 2 1i2
M

(34)

now c + A m (v +c) 2

where v is the speed of an electron with energy c and

m (1 - Cos -Y) (35)

Writing e-verything in terms of speed,

f - (v+av)af I 2_ 2
-(v) - r (v+av) 27 A (v+a v) 2 a
at recoil J

2TT(v-av)
f (V) A (v- ca) (

0 i l+c

V 2m m x 2-r d (cos y) , (36)

8r3 2 t 2

where we have integrated over 0.
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Expanding, integrating and using equation 26 we find

afo(v) 
_ m NQv4 f (37)at 2 av M

recoil mv

converting to an energy derivative,

a t r a. . f ( 3 8 )
I t C reco i l v a

This result aloig with the equation derived in the next section will allow us to complete
equation 11.

3.2 Inelastic Scattering

As well as being able to reduce its energy by increasing the kinetic energy of the
surrounding gas molecules an electron may excite the gas molecule by changing either its
vibrational state or by forcing an electron transition. This is usually the dominant process
for energy relexation in a typical discharge as these transitions relax large amounts of
energy (typically -10 eV). In this section we consider how this scattering mechanism
influences the s-type part of the collision term.

We shall assume that the transition rate may again be written in the form

P (k,k') .-27 A(c) 6 (e-c' -A), (39)

where A is now a constant corresponding to an excitation energy in the gas molecule and
P(k,k') takes an electron to a reduced energy. Evaluation of the scattering rate F(k) gives

r(k) - P (k, k') - d 3k'

- - m 2m( (-,1) (40)

4 -

10



equating F with NQv we find

4
A(e) - NQ (C) (- (41)

V m 2 
a

We now examine the [ afo/at ]col due to inelastic collisions

af(k) f (k') P (k',k) - f(k) P(k, k') V d3k' (42)

at ~inel 008

substituting equation 41 into 42 gives

af°(k)[ ()]fo(k') A(c')6( -c t +A) - fo(k) A(c)6(c-c'-A)

at inel

V / 2mc' m ,

fo(k') A (e++A) -fo(k) A(c) / -A 2m (43)0 0 4

2k,2
where k' is now the solution of - e +

2m

substituting (41) into (43) gives

[a I (C) - f0 (+A) NQ (f+A) (c+A) - f0(e) NQ(c) e (45)inel I

This result completes equation 11, however before the coupled equations 11 and 12 can

be solved, we need to calculate - o
1a Jco1 l



4 THE RELAXATION TIME APPROXIMATION

In the presence of an applied electric field the distribution function f(k) contains an
anisotropic contribution fl(k)coso which would decay if the field was turned off. We model
this decay with the ansatz.

[ 1 fl (k)
- (k) 1 (46)

at I Coll 7 (k)

where 7(k) is a momentum relaxation time which is a function of k alone.

If we assume that the main contribution to the relaxation rate is due to quasi-elastic
scattering through the recoil scattering process then

P(k,k') = P(k',k) and f 1 (k') f 1 (k)

Substituting 46 into 16 we find,

f (k)3 f~ (cos(- 1) fI(k) P (k',k) d3 k',  (47)

which gives the momentum relaxation rate,

1 - (1-cos -y) P (k', k) dk' . (48)

7 (k)

For isotropic scattering the momentum relaxation rate equation 48 and the scattering rate
equation 20 are identical. In this case

1 - r- NQv (49)

7

In general this expression will only be a valid representation of the momentum decay
process when the scattering rate due to recoil scattering is much larger than that due to
inelastic cross-sections. Many authors have considered the breakdown of Boltzmann
calculations in a gas to be due to the truncation of the series, however the validity of the
relaxation time approximation has not been investigated. We shall assume that we are
working at an electric field where equation 49 is valid, then equation 12 becomes

af
- E - - - fI NQv (50)
A ak

12



Similarly for equation 11

[ f af 1
e2E2 1 a v o )

3m2  v 2 v NQ av at J

or in terms of energy,

-eE f 2 _2 0 o (52)

3m v ae NQ ae at

Hence from equations 38 and 45

-e2E 2  1 o 2 Dr a 2

3m v a( NQ a( ] v a( M 0

+ I fo (c+ 6) NQ (c+ ) (E+ A)- f o() NQ (c) ] (53)

Making the change of variables eu, we obtain

o0 1 2m a u2

E _a u2- - - - NQu f
3 au NQ u IM au 0

+ I fo (u + A) NQ (u + 6) (u + A) - f (u) NQ (u)u] - 0 (54)

This is the working equation for the single component gas when the temperature is small
and the relaxation time approximation is valid

We are usually concerned with a gas mixture at finite temperatures, then the equation is
modified to give'

13



1+ 2m u2  Nk I f
3 au k uk k

2mKBT a Nk af 1
+ u 2 [ % (55)

e u au j

ko kk

+ jk [0~uj 1u ujk) k j k] uf ] ~ ~ u ]
jk

+ [ [U- u., fo u- uj} Nj Qk [u-uj - fo[1 (u) [oQ (]1-o
~ [-~j 0' juuk] k~Q EU jkI kU jUNQ u 0

jk

where k labels the gas species and j corresponds to the j-th excitational state, whilst
Qk(u) is the corresponding cross-section. Nk is the total number of k-type molecules
whilst NR is the number of k-type molecules in the ground state and Nl is the number
of k-type molecules in the j-th excited state.

Before we proceed to a full numerical solution of equation 55 we examine an analytical
limit.

5 THE MAXWELL-BOLTZMANN AND DRUYVESTYN DISTRIBUTIONS

There are two well established distributions which may be used as best first guesses to the
electron distribution when some quantity such as the average energy is known and others
need to be estimated. The Maxwell-Boltzmann distribution is the well known thermal
equilibrium distribution. The Druyvestyn distribution is less well known and is relevant to
the high field regime, when thermal effects are less important. To derive both and
consider the transition from one to the other we consider a single component gas when
inelastic scattering is unimportant and the momentum transfer cross-section is independent
of energy, then the Boltzmann equation reads.

3 au au au NI

2mKBT a N Qm 81

+ u2- u - 0, (56)
e 8u M au

integrating twice we find

14



fo u , f57)

where

[ 2  6m

and B, (58)
e

and we have dropped the k-label as it is now superfluous. Under weak electric field
conditions, when alpha is small, the shape of the distribution is dominated by the
temperature of the gas molecules, giving a Maxwell-Boltzmann distribution,

f 0 exp( ]. (59)

In the field dominated regime we may consider beta to be small, giving the Druyvestyn
distribution,

exp [M J (60)

The characteristic energy of the electron gas (k (eV) is given by the ratio of the diffusion
coeffcient to the mobility.

D
k

where

15



2e 1/2 uf

1 Le 0D - Idu, (61)3N m low O

and

P 2 1 M o du (62)
3N I J 1 o % u

On evaluating the integrals, we find that in the temperature dominated regime

KBT

Ek B __ , (63)
e

which is a restatement of the Einstein relation for a non-degenerate electron gas.

In the field dominated regime we find

E
k - (64)

k 3m

In general the momentum transfer cross-section is a function of energy and inelastic
scattering is important. In the next two sections we describe how general solutions may be
found for a gas mixture.

6.1 CALCULATING THE ELECTRON DISTRIBUTION BY GAUSS-SEIDEL ITERATION

We consider equation 55 and make the transformations n(u) = qi fo(u), where 7) is the
normalisation. After some manipulation we find

16



2Ne2 2n n
af 3ni [ L 2c a( a( 2 af

+ Nk [ Rjk(f + jk) n (e+ejk)- Rk(e) n (c)]

j k

+ Nk Ajk [ R'k(C -jk) n (e jk)- R'k(e) n (e)] - 0 (65)

j k

where (jk is the energy needed to take a k-type species into its j-th excited state,

k' k k= ,, ( ) (c) ,

k
kO (c) N k

v .= 2m Nj, (c) N
k Mk Nk

k
Rjk - Q. (f) i. (f)

R + ( AkQk (C+ Me kW ()
Ik I J jk -.

v,(E) is the velocity of the electron and Ajk is the proportion of k-type gas molecules in
excited state j.

We discretise by using the approximate derivative expressions

an n,+, - npI_

a2 np+ 1 - 2n + nan - ~l p p-1

a('2  (A() 2

17



where Ac is chosen as the fundamental energy step. After some manipulation we find

ap_1 np.1 + bp- 1 np+1 - (ap + bp) np

+ ' Nk [ Rjk'p+m nP+m k- Rjk' p n]

j k A jk jkkn -

+ N [ j Rjkp-m. np m R ik,p n ] 0- (67)
j-rjk ,P P

where

2Ne 2 + 2T 2K T 1~p
b (p) (P) I(p) +p) ,(68)

3m [ A( , 4Ac 262 A
N

2Ne 2  KBT 2KBT
a -N + (p)+ (p)
P 3m L J ( 4A J 2A [ 2 AC

[ N

(69)

and c(p) = p Ae

The ak's and bk's have physical interpretations as the rates at which electrons are
upscattered and downscattered respectively. It follows from the definition of n((') and the
finite nature of fo(O) that bI = 0 and ao - 0. Hence if the discrete Boltzmann equation
is written down in matrix form then to ensure that electrons are not scattered to negative
energies then certain of the elements are reduced in form.

In the absence of inelastic scattering the matrix is tridiagonal and a simple analytic
recursion relation exists for np. With the boundary condition we find

bn - an 1
b,2n2 aI1

and

(ap + bp) n p- a p 1 np1 (70)np+1  b
p-1

the equation's are linear in np and the normalisation is still yet to be fixed we can
choose nl, then the recursion relation may be used to solve for np for elastic scattering
given any form for Om( 0).

18



In general when excitation events are important solutions of equation 67 may be found by
Gauss-Seidel iteration.

6.2 DIRECT SOLUTION BY ITERATION

The method quoted above can consume large amounts of computer time before
convergence is achieved. In this section we consider a method which is quick when
superelastic collisions are unimportant. We consider a direct solution of equation 55.

Equation 55 may be approximated by centred finite differences6 , with an energy step of
Au, to give,

(B-A) f i-1 (A+B) fi+l + (C-2A) fi + S, (71)

where

(Au) 2  3 =L.1 + 2mkT u2 Q2' (72)
3 N I Q Me

EAB 1 F 1  u dQl 1 + m u2(3
-,u - -72 + Q2 (73)
3 N Q1 Q1 du M

2mkT [2u 2 + 2 d-2 1
+ mk 2uQ 2 + u 2 ,Q

Me du

C _ M 2uQ 2 
+ u 2 dQ2  (74)

S - (u + ujk) fi + 6k Q k(u + uk) - uf i  Qj (u)

jk jk jk

+ Z Aik (u-ujk) fi - 6jk _u - u f A Q k (u), (75)

jk jk

and 6jk is the nearest integer to ujk/Au. We have also detailed the following quantities

19



M M jk Njk, (76)

k

N- Nk  (77)

k. (u) N k

kQk~

Q1(u) - k m(78)
N

and

Q2( u  . MQk (u) Nk
Q() - k Mkk(79)

k Nk

In the absence of superelastic collisions Ajk = 0, then equation 71 may easily be solved.
A guess is made for the average energy of the electrons in the distribution. Typically this
will be less than the threshold energy of the first inelastic cross-section. The maximum
energy considered in this calculation is set at two or three times this value. fl and
fjiMax+ are set to finite but small values and the difference is chosen sflV " that
tImax lmax.l as we expect to be in the tail of the distribution. Values of
[fN]N>Imax+ are assumed to be sufficiently small so that electrons scattering down from
higher energies have a tiny effect on the distribution function. Equation 71 is then
iterated down to fl.

This technique is much quicker than the Gauss-seidel method as the operation described
above only has to be carried out Imax times whereas the Gauss-seidel technique scales as

max*

7 APPLICATION TO A REAL GAS (SF 6 I

The momentum relaxation time quoted in section 4 is only approximately correct, in
general inelastic scattering will affect it in a none trivial way.

It has been suggested that the momentum relaxation rate should be proportional to the
total cross-section rather than the momentum transfer cross-section. This approximation is
incorrect in detail, ideally we should find a momentum relaxation time which is the
self-consistent solution of equation 16. In the case of recoil scattering the quasi-elasticity
of the process allows us to divide through by the p-like part of the distribution and
remove it from the equation. Inelasticity on the other hand allows no such simplification
and solutions of equation 16 should ideally be found by iteration.

20



However we have adopted the total cross-section method as a best first approach and
treated the ionisation and attachment processes just as inelastic processes which removed
energy from the electron bath. The only effect of these modifications was to adjust the
first bracket in equation 55 so that the momentum transfer cross-section was replaced by
the total cross-section.

We focussed our attention on SF 6 and taking the cross-sections supplied by Itoh7 (See
Fig 2) we used both numerical methods to produce electron distributions. Both techniques
produced the same result giving us confidence in our computer code.

The E/N value was varied until the electron creation rate was the same as the
annihilation rate.

ie

Qion (c) ef(c) d( QATT (  E f (e) de.

This gave us the stable working field. A Monte-Carlo program 9 was also run for this E/N
value and the results were found to be in close agreement (See Figure 3).

For completeness we have compared the calculated SF 6 distribution to Maxwell-Boltzmann
and Druyvestyn distributions with the same average energy, these results are presented in
Figure 4. We see that the shape of the true result is more closely followed by the
Druyvestyn distribution which falls off more quickly with energy than than the slowly
decaying Maxwell-Boltzmann. We also note that neither of the analytical distributions
reproduce the tail of the true distribution and the Boltzmann calculation is necessary if we
are to estimate the excitation rates of higher lying energy levels with any accuracy.

CONCLUSIONS

We have used Fermi Golden rule ideas to derive the Boltzmann transport equation for a
single component gas at low temperatures. A modified Boltzmann equation has been solved
within the relaxation time approximation to give good agreement with an exact
Monte-Carlo simulation for SF 6 . The Boltzmann code is simple in form and may easily
be used to consider gas mixtures and to evaluate stable working fields. We note however
that the relaxation time approximation used in this report is inexact, it would be
interesting to calculate a self-consistent relaxation time by an iterative procedure.

In the longer term Fermi's Golden rule and the gas pseudo-potentials which are now
available (and shown to be accurate4 ) should make it possible to calculate the recoil
cross-section for simple gases.
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