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PROGRAM

The program will include eleven one-hour invited talks covering the main topics of the
conference, five mini-symposia, and a number of research talks.

Invited talks:

M. Atk6ia, Universit6 Paul Sabatier, Toulouse (France),
Spline Manifolds.

M. Barnsley, Iterative Systems, Norcross (U.S.A.),
Approximation of Images.

W. Dahmen, Freie Universitit Berlin (Germany),
Convexity Preserving Properties of Bemstein-B6zier Representations of
Polynomials.

J. Gregory, Brunel University, Uxbridge (U.K.),
Parametric Surfaces in Computer Aided Geometric Design.

Y. Meyer, Universit6 de Paris 9 -Dauphine (France),
Wavelets and Applications.

R.Q. Jia, University of Oregon, Eugene (U.S.A.).
Surface Compression and Quasi-interpolants.

C.A. Micchelli, IBM, Yorktown Heights (U.S.A.),
Power of 2: Wavelets, Stationary Subdivision, and its Adjoint.

F. Natterer, Westfdilische Wilhelms-Universitdt MOnster (Germany),
2D Sampling in Tomography.

L.L. Schumaker, Vanderbilt University, Nashville (U.S.A.),
Data Dependent Least Squares Fitting by Splines on Triangulations.

F. Utreras, Universidad de Chile, Santiago (Chile),
Variational Approach to Shape Preservation.

G. Wahba, University of Wisconsin, Madison (U.S.A.),
Additive and Interaction Splines, and the Estimation of Multiple
Smoothing Parameters.

Mini-symposia:

Geometric continuity; organizer: B. Barsky (U.S.A.),
Optimal recovery and information based complexity; organizer: Mvi. Kon (U.S.A.),
Data storage and reduction; organizer: T. Lyche (Norway),
Quasi-interpolants; organizer: C. Chui (U.S.A.),
Radial Functions; organizer: N. Dyn (Isra-?l).
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Polygonal Approximation for Implicitly Defined Surfaces

Abstract: We give a simplicial algorithm which is especially adapted for modelling sur-
faces via polygonal pieces. The types of .,urfaces which are handled are of the form

B:={xER :H(x)=O} where H:R 3 - R'

is a piecewise smooth map. For a compact surface B the first stage of the algorithm
terminates automatically with an approximation having no holes or oveilaps. Features of
the second stage include adaptive local mesh refining and mesh smoothing. Graphic output
is in the form of wire diagrams.

Eugene L. Allgower
Department of Mathematics
Colorado State University
Ft. Collins, CO 80523, USA
e-mail: kg2!81@euclid.MATH.ColoS tate.Edu
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Choosing Nodes for Parametric Curve Fitting

using Local Information

Laurent ALT **

* Thomson Digital Image, 20-22 Rue Hegesippe Moreau, 75018 Paris, FRANCE

** LIENS, Ecole Normale Superieure, 45 Rue d'Ulm, 75005, Paris, FRANCE

ABSTRACT

The problem of approximating a set of ordered points applies to numerous problems in CAD,
such as creating curves from data points, approximating a curve by another of smaller degree, or
calculating an approximate offset curve. It is usually solved by first computing parameter values
(nodes) that are associated to data points, and then finding the curve's coefficients (or control
points) by solving a linear system using a least squares method.

The node choice (pamaretrization) is of major importance since it has a pronounced influence on
the resulting curve's shape. The well known "chord length" parametrization, where parameters
are proportional to distances between data points, is often used, since it is natural, simple, and
quick to compute. However, results are barely acceptable when the data points are irregularly
spaced. Namely, unwanted loops or wiggles appear between the points.

Two new parametrizations are proposed, which avoid such problems by minimizing the curve's
length. The first method uses the same expression as the recent ", ntripetal" method (ie.
proportional to the square root of data point distances), though it is obtained differently. The
second method, based on a similar approach, takes the direction changes of data points into
account as well.

Both methods are based on local data, as with the "chord length" method, and are therefore easy
to use (eg. one need only calculate distances, and scalar products for the second method).
Moreover, they lead to better results. They are also independant of the parametric curve type
used in the application.

Comparisons between different methods are detailed for various data examples, pointing out the
advantages and drawbacks of each. It is also shown how these parametrizations techniques can
be used to create NURBS curves, using the conjugate gradient method to find the NURBS'
control point coordinates and rational weights.
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Nonparametric analysis of changes in change-point
hazard rate models : A point process approach.

by

A. Antoniadis and G. Gr~goire

I. M. A. G- L. M. C.
Universit6 Joseph Fourier

B.P. 53 X - Grenoble Cedex

ABSTRACT

This paper discusses the estimation of parameters in hazard rate models with a change-
point. When the change-point location is known, a nonparametric estimator of the amount
of change is obtained using kernel smoothing methods in semiparametric models under
random censoring. Consistency and asymptotic limit distribution of these estimators are
obtained.

When the change-point is unknown, a consistent estimator of its location is obtained
by "cross-validation" techniques. The performance of the estimators on' finite samples are
checked via simulation and an application to real data illustrates our approach.



Ajustement de fonctions splines sur des surfaces

D. Apprato et P. Klein

S.N.E.A.(P.)
26 Mvewu' des Wias

64018 PAU cedex

On 6tudie le problme suivant : soit f 0 une fonction donn~e sur des ouverts (0 polygonaux

inclus dans un ouvert K2 bomn6 de R2, construire une fonction f rdguli~re sur 92 "approchant' f 0

sur les (01 . Ce probl~me apparait dans divers traitements de la g~ophysique o6i ii est n~cessaire de

raccorder des surfaces.

Nous proposons comme solution une Dm-spline discr~te d'ajustement (cf R. Arcan-6Ii1 I]

pour cette d~finitioii), r~alisant le minimum d'une fonctionnelle quadratique sur un espace
d'6l6ments finis. La fonctionnelle minimis~e est la somme :

" d'une quantit6 approchant, A 'aide de formules d'intdgration num~rique,

le termnede fiddlit~ aux donn~es suivant:Y f (v- fo) 2dxdy

et

* d'un terme de lissage: (DOv) 2dxdy , pond~rd par un param~tre

a1+a2 = m

d'ajustement, obi Dv d~signe la d~riv~e partielle d'ordre ct de v au sens des

distributions et oi m>-2 est un endier convenable.

La s *olution f est obtenue en r~solvaint un syst~me lin~aire bande sym~trique et d~fini positif,

dont ]a taille ne depend que de la dimension de l'espace d'6l6ments finis utilis6.

On donne une estimation de l'erreur d'approximation de f 0 par f sur les ouverts (0i ai nsi que

des r~sultats num~riques pour des fonctions tests f 0 dans des cas de g~om~trie simple.

[1] R. ARCANGELI, Cours de D.E.A., Pau, paraitre.



The SHILP Modeling and Display Toolkit*

Chanderjit Bajaj
Department Of Computer Science

Purdue University
West Lafayette, IN 47907

Abstract

We are crafting several tools for creating, editing and displaying solid models de-
fined with algebraic boundary surfaces. Curves and surfaces can be represented in
both implicit and rational parametric form, in either power or Bernstein polynomial
bases. The current functionality of the toolkit includes restricted extrude, revolve and
offset operations, edit operations on planar lamina and polyhedral solids, fleshing of
wireframes with interpolating surfaces, and color rendering of solids. For the purpose
of finite element generation, we allow the decomposition of arbitrary polyhedra with
holes into convex pieces or tetrahedra. The creation and editing interface and tools run
in vanilla Common Lisp and FORTRAN on Symbolics 3620's. The only non-portable
portions of the code pertain to the graphics interface. The color rendering utilities
have been primarily developed in C for HP and SGI workstations.

In this talk we shall describe the algorithmic and mathematical infrastructure of
SHILP.
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Methods of Knot Insertion for B-spline Curves

Philip Barry

Department of Computer Science
University of Minnesota

Minneapolis
U.S.A.

Boehm's knot insertion algorithm and the Oslo algorithm are the methods commonly
used to insert new knots into B-spline curves. There exist, however, a wealth of other
possible methods. These alternative methods may be more attractive than Boehm's or
the Oslo algorithm in a few cases, and, if nothing else, serve to enrich the theory of knot
insertion. In this talk I will list and briefly explain some of these alternative methods.
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Constructing a Triangle Facet Surface Approximation

to a Voxel Map

Giinter Baszenski and Larry L. Schumaker

Bochum Nashville, TN
West Germany U.S.A.

We present a method to approximate a three dimensional object in voxel representa-
tion by a polyhedron with triangular facets. This piecewise linear approximation could be
used as a first stage to construct a smooth surface by filling in the facets with parametric
triangular patches.

Our construction process goes as follows:
We take slices of the voxel map fro several fixed height coordinates. On these slices the

map induces discrete bivariate cross sections of the object. For each of these we construct a
polygonal approximation. The polygon contours on neighboring slices are then connected
by initial triangulations which we impose according to an error measure by swapping
triangular edges.

71
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G 1 and G2 continuity for rational patches

The notion of a rational B - surface ( R.B.S.) defined by a network of
"mass vectors "( " vecteurs massiques " in french ) was introduced
and developed in 1988 by Fiorot and Jeannin.

This paper is devoted to the problems involved in the construction
of a smooth connection between R.B.S. Its scope will be wider than
methods already known in the case of polynomial patches.

More specifically , some results will be presented , concerning the
G 1 continuity between two adjacent patches given either by a
rectangular network of "mass vectors" or by a triangular one.

These results define the constraints required by the "mass vectors"
to ensure such links.

A generalisation towards G1 continuity constraints around a common
corner of several R.B. patches is given.

Finally some methods for G2 continuity are studied.

M. Jean-Luc Bauchat
Math6matiques
Centre de LILLE de I'E.N.S.A.M.
8, Bd Louis XIV
59046 LILLE CEDEX
t61 20 53 11 00
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MODELISATION DE COURBES DIGITALISEES PAR DES NURBS

Mustapha BEL GUERMAH, Christine POTTER et Christine VERCKEN

TELECOM Paris

46 rue Barrault, 75634 PARIS CEDEX 13

Un premier traitement des images binaires est I'analyse en composantes connexes, qui

permet de d~crire limage par ses contours d'une fagon rapide tout en gardant Ia forme de

l'image le mieux possible(courbure ... ) d'oii linter~t de determiner les points

caract~ristiques de l'image(points simple:faible ddformation de la courbe, points

anguleux:forte deformation de ]a courbe ... ).

L'approximation polygonale ou vectorisation ne permet pas de retrouver la structure

initiale de la courbe. De plus une telle m~thode d'approximation n~cessite lenregistrement

d'innombrables donn~es pour atteindre une satisfaisante apparence de continuit6, et cela

nWest pas facile manier. Ce traitement est utile pour un deuxi~me traitement :

approximation par des courbes splines utilisant la m6thode des moindres carrds

rdgularis~s. Avec cette m~thode on obtient des r~sultats satisfaisants en un temps court

mais cela ne permet pas die repr~senter des coniques.

Les repr6sentations par les B-splines rationnelles non uniformnes(NURBS) : Ce type

de mod~lisation est actuellement source de nombreuses 6tudes du fait de son caract~re

gdn~ral pour repr~senter des primitives (segment de droite, con ique ainsi que toute courhe

B-spline) en gardant le m~me mod~le, ce qui permet d'avoir une honiog~n~it6 dans la

structure de donn~es. Sur une courbe on d~tecte les diff~rentes primitives ; avec les

NURBS on obtient une approximation de la courbe en effectuant une approximation de

chaque primitive et en 6tudiant les probI~mes de connexion de ces primitives apr~s

approximation.
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A VECTOR SPLINE APPROXIMATION

M. N. Benbourhim

Universit6 Paul Sabatier

TOULOUSE, FRANCE

L. Amodei

Centre National de Recherche M~t~orologique

TOULOUSE, FRANCE

ABSTRACT

We introduce a new family of Spline functions solutions of the

minimization problems:

{ Min (a fI, div VI,2 dx dy + 13 ,IIV rot V,,2 dx dy)

V E X and V(Xi)- Vi, i-i. N.

By means of the divergence (div) and rotational (rot) operators,

the coupling between the vector function components is taken into

account. This formulation is particularly well adapted for

geophysical fluid flow interpolations (ex. horizontal wind

fields).
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High-Speed Random Algorithms for
Curve and Surface Generation

Marc A. Berger

and

Stephen G. Demko

School of Mathematics
Georgia Institute of Technology

Atlanta, GA 30332

Many algorithms for generating curves and surfaces today involve a recursive tree traversal.

These include sub-division refinement methods for generating B-splines and Bezir curves, line av-

eraging methods for interpolants, and algorithms for wavelets and solutions to dilation equations.

We show how ergodic theory can be used in a very general setting to produce random algorithms

which generate the same curves and surfaces as the recursive ones. These images become attrac-

tors of random dynamical systems, and evolve simply as the trajectory of a single orbit. The

random algorithms are very fast, involving only affine arithmetic, and are efficiently and highly

parallelizable.
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MWthode dintcrsection S'une- surface param6trique

polynomiale et d'un ensemble de 1/2 droites.

Luc BIARD - Patrick CHENIN
Laboratoire de Moddlisation et Calcul

IMAG B.P. 53X
38041 Grenoble Cedex

La complexit6 de la m~thode du lancer de rayons (synth~se d'images) est li~e aux calculs
d'intersection des rayons avec les objets de, la sc~ne. Si les objets sont d~finis par des mod~les
surfaciques mettant en oeuvre des surfaces param~tr6es ( Bdzier, B splines, etc .. )les al gorithmes
d'intersection connus sont soit extrdmement cofiteux, soit peu robustes ou peu prdcis. Diverses
m~thodes: tessellation, Newton, ... donnent des solutions sans 8tre r~ellement satisfaisantes.

Nous prdsentons une m~thode num~rique bas~e sur des outils de g~omdtrie alg,6brique

(implicitisation et inversion) propos6 par [-]. L'algorithme propos6 s~pare, pour chaque carreau de
Bdzier, les calculs Uis a la surface (pr6-calcul) et ceux faisant intervenir le rayon.

Implicitisation:
Etant donn6e une surface S param6tr~e sur [0,1]x[0,1] polynomniale (x(u,v), y(u,v), z(u,v)),

l'implicitisation consiste A trouver une fonction F telle que (x,y,z) e S implique F(x,y,z) = 0 .
Nous avons compar6 les diff~rentes techniques (resultant de Sylvester, Cayley - Dixon ) et 6tudi6

la "minimalitF" de H'quation implicite obtenue. Dans notre cas, nous n'avons pas int~r&t A calculer
l'expression de F de fagon complete. L'examen de la mdthode de Cayley -Dixon conduit, pour
l'application qui nous conceme, A associer A la surface S cunsiddre des tables pr6-calcuI~es
contenant les 616ments n~cessaires de son 6quation implicite en vue de l'tape suivante.
Equation d'intersection:

Le problme de 1'intersection se ram~ne a la resolution d'une jiion a une seule variable qui est
le param~tie rayon, ce qui nous permet de trier plus natuellenmCiL les racines dans notre contexte.
Cette 6tape nous fournit une racine a laquelle correspond un pointM :~i v~rifiant F(x-,Y,F) = 0.
Inversion:

II s'agit de savoir si ce point M appartient A la surface param6tr~e initiale (probl~me de la
"lminimalitU"), et si oui, de d6terminer les param~tres (u,v) de ce point. Ceci est en g~n6ral obtenu
par triangularisation d'un syst~me lin~aire (la validit6 de cette m~thode est discutie).

Les r~sultats du logiciel rdsultant de cette 6tude seront pr~sentds.

[T.W. SEDEBERG and D.C. ANDERSON and R.N. GOLDMAN

"Implicit Representation of Parametric Curves and Surfaces"
Computer Vision, Graphics and Image Processing 28, 72-84 (1984)
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Finite Element Interpolation with Weighted Smoothing

L. Bos, J.E. Grabenstetter and K. Salkaaskas

Department of Mathematics
University of Calgary

Calgary, Alberta
Canada, T2N 1N4

By a smoothed finite element interpolant we mean a finite element interpolant that
has been chosen to minimize some "smoothing" semi-norm. Often the bending energy
or thin-plate spline semi-norm is used for this purpose. We discuss the effect of using a
weighted semi-norm in this smoothing procedure and give some examples showing how the
weights can be chosen to reduce the under- and over-shoot of some interpolants.



Smooth Surface Reconstruction and Energy-based Segmentation

Terrance E. Boult*

Columbia University Department of Computer Science
New York City, New York, 10027. tboult@cs.columbia.edu

The problem of using function values to construct a smooth multi-dimensional sur-
face, e.g., a surface of minimal norm, arises in many areas. A common technique is to
use a reproducing kernel (semi-)Hilbert space setting, where the reproducing kernels are
known. Duchon derived the kernels for a continuous parameter family of such spaces using
(semi-)Sobolev norms, say D'H", where 1 - m < I. For 77 = 0, these reverts to the
traditional m' h order Sobolev spaces. However, for other values, we obtain interesting
surfaces of intermediate smoothness. We begin by discussing these classes (and some of
their less-obvious properties), and give example reconstruction from a number of these
classes. We then discuss psychological experiments where subjects rate the quality of re-
constructions from different classes. Segmentation of data from multiple smooth surfaces
is another common problem, and a much more difficult one. We present a heuristic ap-
proach to segmentation based on the "energy", or approximate norm, of the optimal (single
surface) reconstruction of subsets of data. For those classes where , = 1/2, we derive a
closed form (over-)estimate of the energy, i.e., the mth Sobolev semi-norm, of the spline of
minimal norm. We then discuss heuristics using th" approximation to achieve low energy
segmentations. We present some examples, showing the recovery of multiple 2D surfaces
from real and synthetic depth data. We include an example where the multiple smooth
surfaces are overlapping in x and y.

* Supported in part by NSF grant CCR8809022 and DARPA Grant #N00039-84-C-

0165.
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Approximation d'une Nappe de Points

par une Surface NURBS* ai Bords Gontraints

Frdric Brossard et Mounib Mekhilef

Ecole Centrale de Paris

Un des probl~mes particuliers h la restitution et h la construction des formes libres
en CAO est celui de la d6termination d'une surface miniinale de raccordement avec des
conditions de tangence et de courbure.

Etant donn6 une nappe de points, il s'aggit de trouver les param~tres (lefinissant le
carreau NURBS qui approche au mieux cette nappe. Ces param~tres sont:

- Le r6seau polygonal caract6ristique (densit6, r6partition, ..

- Le poids de chaque pale.
- Les 6l6ments du vecteur nodal.

Par ailleurs, cette nappe doit v6rifier certains crit~res tels que:
- Passage oblig6 par un bord parametr6 ou non.
- Tangence et/ou courbure impos6s le long d'une partie du contour.

Apr~s un bref rappel du contexte dans leauei nous nous plaqons, nous exploitons le
nombre de degr6s de libert6 offert par les B-splines rationnelles non-uniformes de degr6
quelconque pout la mise en 6quation du probhkme. Nous d6terminons, ensuite, le nombre
de degr6s de libert6 optimal pour l'approximation par la m6thode des moindres carr~s,
associ6e 6ventuellement h une m6thode de recherche de minimum d'une fonction erreur.
Dans une deuxi~me partie, nous pr6sentons le traitement d'un cas d'6cole et celui d'un cas
industriel sur des examples de pi&es de carrosserie.

*NURDS: Non-Uniform Rational B-Spline



Convergence Orders of Interpolation with Multiquadric

and Related Radial Functions

MARTIN BUHMANN

Department of Applied Mathematics and Theoretical Physics

University of Cambridge, Cambridge CB3 9EW, England

In this talk we will describe the convergence analysis of different approaches to interpolating an

n-variate function f, say, from the linear space spanned by translates of a function V1FT :T2C

IRn --,Ia where 6 > -n is not an even integer and c is a nonzero parameter. Here, the data

points at which we are interpolating are lying on a regular grid and the translates of the radial

function are taken along these data points. We study the convergence orders that occur when we

are interpolating to differentiable f while the spacing of the grid points tends to zero. and the

approaches we will analyse differ in the choice of the parameter c in relation to the spacing of the

data points on the grid. The main topic of the talk is a comparison of the ensuing convergence

properties.

The results in this talk are largely based on joint work with Nira Dyn (Tel Aviv University).
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A Geometrical Analysis of 3D Anatomical Structures

V.BURDIN, C.ROUX, J.L. de BOUGRENET de la TOCNAYE

Groupe Traitement dmages - Dipartement Math6matiques et Syst~mes
de Communication -Enst de Bretagne

Summary

In this study, we address the problem of the geometrical description of 3D objects formed by
2D cross-sectional adjacent slices. The original approach we propose in this preliminary work is
based on the use of a complete and stable set of Fourier Descriptors (FD) of 2D curves that are
used to define invariant features under elementary 3D geometrical transformations.
Such a shape description enables us to give a reduced representation of 3D contours by means
of features which are directly related to 2D shape information such as curvature, length, etc...
Although we illustrate this approach using the specific application of bone shapes, a wide
variety of 3D anatomical structures can be described by the proposed method, as it provides a
general theoretical framework for the geometrical description of 3D objects formed by adjacent
cross-sectional slices.
A slice is represented here by its boundary, which is itself described by a planar closed curve,
expressed as a function of the arc length "s". The considered function is the radius function p(s)
which measures the length of the line connecting the contour to its centroid. Then, Fourier
Descriptors are obtained from this curve description.
Invariancy under rotation, translation and starting point will be achieved by considering a
combination of the previous FDs (invariants called Ik).
An application of the method is proposed for the description of a 3D bone structure (e.g. an
ulna, a radius) reconstructed by a set of 2D Computerized Tomography (CT) images. The
method of segmenting each slice is briefly presented; it is based on a sequence of gray-level
thresholding and morphological filtering which produces accurate closed contours.
In this case, each slice can be represented by a set of 5 parameters: II1, 1121, 1131, 1141, 1151. Each

slice k is associated to a radius Pk, thus all slices are represented by one disc: the angle step is
2nk divided by the number of slices. Each invariant Ik is associated to a concentric circle. The
value of 1Ikl is centered on the circle k. Each bone is modelled by a diagram composed of 5
signals. This diagram can be reduced because many slices contain poor geometrical information:
this can be seen from the diagram.
This polar diagram provides interesting features. First, it gets a compact planar representation of
rather complex 3D structures. Therefore, the possible inversion of the representation is very
important for data compression: the whole 3D closed surface can be reconstructed using the
reduced information contained in the diagram. Finally, one can use this reconstruction as an
input of CAD/CAM systems for applications in orthopedia such as synthetic prostheses.
We suggest some ideas for future applications and work such as segmentation of 3D structures,
identification of geometrical features and statistical analysis.



Ck Continuity of Rational Patches

Jean Charles Canonne

Laboratoire IMACS
IUT Valenciennes (Dept GEII)

Le Mont Houy
59326 Valenciennes Cdex

France

In the framework of Fiorot and Jeannin's results concerning the control of rational
curves and surfaces by massic vectors, we propose a study of the construction, with Ck

smoothness, of piecewise rational B-surfaces defined by rectangular or triangular nets of
massic vectors.

The required conditions are explained in terms of massic vectors, but in the specific
case of polynomial surfaces we find again the well known results.



"A Bivariate Interpolation Algorithm for Data which is

Piecewise Monotone"

Ralph E. Carlson

A bivariate, monotone interpolation algorithm was developed by

Carlson and Fritsch using piecewise bicubic Hermite functions. These

functions have been useful in solving other shape preserving

interpolation problems such as those in which the underlying data

are monotone in only one variable. The purpose of this talk is to

describe a new algorithm which can be used to solve bivariate

problems in which the underlying data are piecewise monotonic.

This algorithm eliminates the "ringing" which is frequently present in

other interpolants, such as bicubic splines, when steep gradients are

located adjacent to flat spots.



An Optimal Interpolation Method for Solving

Nonlinear Boundary Value Problems

by

A.K. Chan and C.K. Chui

Texas A&M University

College Station, TX 77843

Abstract

The locally supported cardinal interpolants with optimal order of approximation are

applied to converting a nonlinear partial differential equation to a nonlinear difference

equation. The nonlinearity is kept to the minimum due to the cardinality nature and the

convergence of the numerical solutions is enhanced by the optimal order of approximation.

Examples in nonlinear optics will be discussed.
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Quasi-Interpolants From a Faber Series Approach

to Cardinal Interpolation

C. K. ChuiT, J. St6cklert, and J. D. Wardt

Texas A&M University, College Station, U.S.A.
t University of Duisburg, West Germany

Abstract: For a compactly supported function V in IRd we study quasi-inter-

polants based on point evaluations at the integer lattice. We restrict ourselves to

a special class where the coefficient sequence A for given data f is computed by

applying a univariate polynomial q to the sequence ep z.z, where powers mean dis-

crete convolutions, and taking the convolution with the data f Ijd. Such opera-

tors appear in the well known Neumann series formulation of quasi-interpolation.

A criterion for the polynomial q is given such that the corresponding operator

defines a quasi-interpolant.

With view on the cardinal interpolant, which is well defined if the symbol

of o does not vanish, we choose q as the partial sum of a certain Faber series.

This series can be computed recursively. By our approach we omit the restriction

that the range of the symbol of W must be contained in a disk of the complex

plane excluding the origin, which is necessary for convergence of the Neumann

series. Furthermore, for symmetric V we prove that the rate of convergence to the

cardinal interpolant is superior to the one obtainable from the Neumann series.



SCHEMAS D'APPROXIMATION POUR DES MODELES

NUMERIQUES DE TERRAINS

Approximation Schemes for Digital Terrains Modelling

Y.Coircc -, Y. Lafrandie * and A.Le Mlhaut6 t

114sumi4

Le calcul de modules num6riques de terrain (donn6es matricielles) h partir
de courbes de niveau, profils ou relev6s divers (donnes vectorielles 6parses) est
un problkme d'approxiination classique. Pour le r6soudre, certaines m6thodes
font appel 'i des sch6mas plus ou moins globaux dont le prix de la continuit6
est souvent une d6terioration plus ou moins importante de la forme du ter-
rain repr6sent6. Remarquant que les hypoth~ses sous-jacentes h l'utilisation
de ces sch6nas ne s'appliquent pas souvent en r6alit6 au terrain naturel, on
s'oriente vcrs des sch6mas plus robustes, bas6s sur la triangulation du semis de
points constituant les donn6es. Leur mise en oeuvre r6v~le d'autres d6fauts,
lies h la nature physique de la surface it mod6liser. La prise en compte de
celle-ci amne h, combiner une triangulation et une subdivision, ce qui per-
met d'6liminer une g'ande partie des d6fauts constat6s, et d'obtenir ainsi une
solution satisfaisante du probl~me initial.

Abstract
The coinputati.n of digital terrain models (raster data) from contour

lines, profiles or various surveys (sparse vector data) is a standard approxima-
tion problem. Its solution involves more or less global schemes, the continuity
of which must be paid by some damage in the terrain shape. Pointing out
the fact that. often, underlying assumptions do not actually apply to natural
terrain, we siiggest moving towards local schemes, based on the triangulation
of scattered data.But their use exhibits some other shortcomings, connected
with the pi)' sical character of the surface. We can overpass most of them by
using a combination of triangulation and subdivision methods, obtaining then
a satisfactory ansver to the problem.

ICentre Elcctroniqu, de l'Arnmeicnt - 35170 BRUZ - FRANCE

* Laboratoihe d'AnJlysc Nunirique et Nl6canique - Universit6 de Rennes I -

35040 RE\.NES FF -\NCE
Laboraton 'Aai 'sv Numnirique ct d'Optimisation - Universit6 des Sci-

ences et 1"ht hiiqis de Lille I . 59655 VILLENEUVE d'ASCQ - FRANCE



QUALITE DES MODELES NUMERIQUES DE TERRAINS

On Digital Terrain Models Quality

Y.Correc tand A.Le MWhaut6 'I

R6surn6
La r6alisation dc inocles numi6riqucs de terrains (MINT) comporte plu-

sicurs 6tapes, toutes g6n6ratrices clerreurs, clepuis la saisie des donn6es g6ogra-
phiques iiiitiales, jusqu'au calcul final de la mnatrice des altitudes.

L'utilisateur du MNNT . ne clisposant pas d'informations pr6cises stir ces
6talpes, chcerche rnalgr6 tout, par une analyse a posteriori, h. 6valuer ]a qualit6
du produit en teriucs d'crrcurs globales ct locales, en comparant le r6sultat
&. des donn6es de r6f6rence. L'approche statisticjue classique n'6tant pas satis-
faisante, deux rn6thocles sont prol)osCCs :Ia premiere exploite les d~fauts des
sch6mas d'approximation existants, et permet une estimation rapide et intu-
itive des grandeurs cherch~es par une r6duction de la dimension du probl~me.
La seconde, plus syst6rnatique, fait appel h. unc technique d'ajustement par
optimisation, sans calcul de d6riv~es, pour s6parer les composantes globales
(d6placement du neiu(16e) et locales (bruit r6siduel, d6formation du moddle)
de i'erreur.

Abstract
Error generation mna y occur at every step involved in the production of

digital terrain models (DTM,), from digit alisation of rawv geographical data to
computation of the terrain elevation matrix.

The DTMT user's problem is that he has no precise information about any
of these step~s, but he wants to assess the product' s quality, in terms of global
and (or) local errors, by means of a post eriori analysis and comparison with
referencc data.

As a statiscal approach is not satisfactoty, wve suggest two methods: the
first one takes advantage of the appjroximation schemes deficiencies, to get a
quick estimate of the studied raluu,,. from a reduced dimension problem, The
second one uses leas;t squares fit to separate the global (displacement) and
local (buckling) con :)onellts of error.

tCcntie Elect roniq(lie de l'Arivenit - 35170 BRUZ - FRANCE
4 Lahot atoire dI'A nalybe Nuni6i'ique et c'Optimisation Unih ersit6 des

Sciences et Techniqucs de Lille 1. 39655 VILLENEUVE cI'ASCQ - FRANCE
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Data Reduction using

box spline refinement and decomposition techniques

Morten Dohlen

Center for Industrial Rcsearch(SI), Box 124 Blindern, 0314 Oslo 3, Norway.

Abstract. The combination of refinement and decomposition techniques for splilcs plx&,'

rise to several applications. With special emphasis on box spl:ne surfaces and data i-

duction we will present examples using these techniques to solve different problcins- witlhi

image processing and geometric modelling.
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Jean-Pierre DEDIEU -Chantal FAVARDIN

Laboratoire d'Analyse Num~rique

Universitd Paul Sabatier

118, route de Narbonne

31062 TOULOUSE CEDEX - FRANCE

LISSAGE DE DONNEES GEOMETRIQUES PLANES

Considdrons N points du plan N. (xi,yi), 1 < i N.

Pour construire une courbe proche de ces points, on procide en

g~ndral de la fagon suivante:

1 - Construire une param~trisation des donn~es

N.(x(tiA,y(ti)), 1 < i _< n, avec t. eOR

2 -Choisir le type de courbes lissantes (Splines, Bdzier

..etc ...)

3 -Choisir un crit~re de lissage (moindres carrds, 6ner-

gie minimum ... ).

Peut-on 6viter la premi~re dtape (param~trisation des donn~es)

lorsqu'il n'existe pas de paramdtrisation naturelle des points ?

Pour satisfaire un tel programme, nous prenons une classe de

courbes donn~es par leur 6quation implicite

Pa(x,y) =0

avec

Pa (x,y) ~~' a X y P et Z a 1.

Le crit~re de lissage est pris au sens des moindres carrds

aeso i=1 (x-~ (....a x y

00 S est la sph~re unit6 de (RD D =(d~l)(d+2)/2, e > 0 donnd.

Nous montrons qu'en g~ndral une telle courbe est unique et dtu-

dions de nombreux exemples.
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The Generation of an Aerodynamical Propeller Blade

C. Dekanski,M.I.G.Bloor,M.J.Wilson

Department of Applied Mathematical Studies

The University of Leeds

Leeds LS2 9JT.

ABSTRACT

In this paper it will be shown how a design process for a simple

propeller can be developed using the surface design method of Bloor and

Wilson [1]. This 'technique considers a surface as the solution of a

suitably chosen elliptic partial differential equation, where the desired

shape is obtained by an appropriate choice of boundary conditions. The

boundary conditions are given as functions of two parameters, whose

isoparametric lines form a coordinate system within the surface.

To form the blade th2 method is used as described by Bloor and

Wilson [2], whereby an aerofoil shape (which incorporates camber and

twist) is considered as one boundary condition, with the other boundary

condition taken as the tip of the blade which is a distance d from the

base.Derivative boundary conditions must also be imposed along the curves

which may be used to change the blades shape. The solution to this

boundary value problem generates the blade. It will be shown how a

number of blades can then be blended onto a cylindrical boss of circular

cross-section to produce a blade propeller.

It will be shown how, by varying the various parameters in the

problem, different attributes of the blade can be altered. For example

by altering the derivative conditions and the length, it will be seen

that the blade can be altered from a high aspect ratio aircraft blade to

a low aspect ratio marine blade, and hence It will be shown how these

parameters affect the aerodynamics of the blade.

In the case of the high aspect ratio blade it will be shown how

aerodynamical considerations can be used to influence the shape of the

blade and so obtain a design which is in some sense optimal.

I Bloor, M I G & Wilson, H J 'Generating Blend Surfaces using

Partial Differential Equations' CAD Vol 21 No 3 (1989) pp 165-171

2 Bloor, H I G & Wilson, M J 'Using Partial Differential Equations

To Generate Free-Form Surfaces' CAD, to appear March 1990



Fast Computation of Cross-Validated Robust Splines
and Other Non-linear Smoothing Splines

L. N. Deshpande, D. Girard
CNRS, IMAG, Universit6 J. Fourier, Grenoble

Robust splines and other penalized likelihood estimates are well-known
extensions of the ordinary smoothing spline, to estimate a smooth function
g from approximate observations zi = g(ti) + e,, i = 1,..., n. In the one-
dimensional case, such estimates are minimizers over Hm[a, b] of

b n

E(f) = (f,)(t))2dt + p ¢(f(t,), z,),

where 0 is a given function corresponding to the data error model. For exam-
ple, using the Huber function yields a spline which is robust against outliers
in the data. Solving such a minimization problem (say with the Newton's
method) generaly involves a sequence of reweighted ordinary spline problems.

The choice of the smoothing parameter p is crucial. The "leave-one-
out" (or cross-validation) score, i.e. E.LI 0JPfkl (tk), zk) where fkl minimizes
E(f) - pd(f(tk), zk), is an attractive criterion to measure the goodness of a
given p. However computing this score requires to solve n minimization prob-
lems, and is thus very expensive. We propose an extension of the generalized
cross-validation score and show that this can be easily implemented by a fast
Monte-Carlo approximation technique extending the one proposed by Girard
in the linear case. For large n, computing this score involves at most 2 mini-
mization problems. Some interesting numerical results for robust splines and
Poisson type data are presented to justify the extension proposed.

March 14, 1990
Key words. smoothing splines, robust splines, penalized likelihood esti-

mates, cross-validation, Monte-Carlo techniques



Surface Compression

Ronald A. DeVore
University of South Carolina

Each continuous function f on R' can be decomposed into a series EI c(f)' with
p a box spline and So,(x) := e(24x - j) a translated dilate of p associated to the cube
I :j2 + 2- [0,112. We use the above wavelet decomposition to introduce algorithms
for surface compression. Roughly speaking, higher frequency terms from the wavelet de-
composition are used where the surface is rough and only low frequency terms are used
where the surface is smooth. Convergence results and numerical examples are given. This
is joint work with Bj6rn Jawerth and Brad Lucier.



Courbes et Surfaces
CHAMONIX - MONT BLANC

21-27juin 1990

QUASI-Eh4TERPOIANT'S DE TYPE DE SZASZ-M1IRAKYAN

Aniadou Tidjane DIALLO
Ddpartement de Math6niatiqucs, Universitd de Conakcry

B.P. 188 CONAKRY
RWpublique de Guinde

Le bat de cette note est d'dtendre certains r~sultats dtablis par P. Sablonni~re

(Oberwolfach, F6vrier 1989) pour les opdrateurs de Bernstein aux op6rateurs de
Szksz-Mirakyan. Soit q(t) =ect, c > 0, t e lR, et,

G(IR,) = (f e C(1R: IlfiI sup ( if (t)I / (p(t), t e IR+) < +oo)

L'opdrateur de Szasz-Mirakyan Sn de C,(IR+) dans G[a,b] est d6fini par:

S,,f(x=e- I f(kln)(nx) /k!
k2:0

C'est un op6rateur lin~aire positif et un automorphisme de IPn On peut
consid6rer Sn et Rn = Slcommce opdrateurs diff6rentiels A coefficients polyno-

n n

miaux: Sn =X I 'e R= nD , ofi n et " e IP sont calculables

par rdcurrence.
On d~finit, pour 0: k: n, les quasi-interpolants gauches par:

k

n =O C3 a DJ S,; on v~rifie ais~ment quen peut ~tre ~tendu A

C,(IR,,. et qu'il est exact sur IPk
(0) (1) (2) X 2

En particulier S. =5S = S et Sn =5 -- 2nD5

On ddmontre les r~sultats suivants:

1) Pour [a,b] c R, , ii existe M > 0 tel que
I(2) = u I(2) IIV
nIS n f su(ll j~ia,b)

pour tout f r= Cp(IR,) et tout n : 2.

2) S( 2) f converge uniform~ment vers f sur [a,b] pour tout f e C~p(IR+).

3) Si D3 f et, D4 f sont d6finies:

lrn n 2[S(2 f (x)-_f(x)]=-x D 3f W)-x 2D 4f x)



Dimensions of Certain

C'-Finite Element Spaces

H.P. Dikshit

Department of Mathematics and Computer Science
R.D. University

Jabalpur 482001, India

Consider a volume f2C R 3 which accepts a partition A into right triangular prisms
obtained by integer translates of the planes: {ue2 +ve 3 : u, v E R), {uel +ve 3 : u,v E B},
{ue 2 + ve' : u,v E ?},{u(e' - e2 ) + ve 3 : u,v E R}, {u(e' + e') + ye3 : i,v E .},
where el = (1,0,0), e2 = (0,1,0), e3 

- (0,0, 1). S'(A) denotes the space of piecewise
polynomials of total degree k over A which are C' continuous on Q. We determine interalia
the dimension of the space S.(A) (c.f. L.L. Schumacker, On the dimension of piecewise
polynomials in two variables, in Multivariate Approximation Theory, Birkhauser Verlag,
1979, 396-412).

We also determine the dimension of certain C'-rational finite element spaces of Wachs-
press type. Construction of convenient basis functions for certain rational C' -rational finite
element spaces has been discussed in (E.L. Wachspress, C'-rational finite elements, Math.
Comp. & Appi., to appear, 1990). These basis elements are linearly independent. How-
ever, it seems that the problem of determining the dimension of the spaces of C'-rational
finite elements of" Waclispress type has not been studied. Wc study here the dimension of
C' -rational finite element spaces of Wachspress type with pieces of degree (k, 1) for any
positive integer k > 1.



M.DI NATALE - L.GOTUSSO - R.PAVANI - D.ROUX

STATISTICAL CONTROL OF THE THEORETICAL SMOOTHING

PARAMETER OF A METHOD FOR INVERSION OF FOURIER SERIES

A recent regularization method due to L. De Michele, M. Di

Natale and D.Roux concerns the ill-posed problem of reconstructing

a periodic integrable function f when the sequence of its Fourier

coefficients is known. This method is stable also in the case of

noisy data. In particular the method gives a good pointwise

approximation of f at the Liptschitz points.

Moreover, for large classes of functions, evaluations of the

pointwise difference between f and the approximating function f

are given. These evaluations depend on the error 6 of the data and

on the value of the parameter o- which controls the smoothing. They

suggest also a standard method of the choice of o-.

It is of interest for the applications to verify if the

theoretical value is also a good value of o- for some classical

test functions.

We performed this control both from a qualitative and a

quantitative point of view. This last investigation was fulfilled

by large statistical experiments. The obtained results are

presented in some tables and graphics.
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A General Method of Treating Degenerate Bezier Patches

Wen-Hui DU* & Francis J.M. SCHMITP*

* Thomson Digital Image, 20-22 Rue Hegesippe Moreau, 75018 Paris, FRANCE

** Dept. IMAGES, Telecom Paris, 46, Rue Barrault, 75013, Paris, FRANCE

ABSTRACT

Rectangular Bezier patches have been widely used in CAD/CAM applications for free-form
surface representations. In most modelling situations, the patches are defined over a
topologically rectangular mesh. But this kind of mesh does not allow the modelling of more
complex shapes such as spheres and the intersection junction between two cylindrical surfaces.
To represent such forms, a solution often used consists of employing patches with some
degenerate boundaries. A Bezier patch is called degenerate when its control points are defined in
such a way that the geometric features, such as the normal or curvature vectors, cannot be
analyticaly defined eve.ywhere on the patch. Degenerate patches may also result from common
modelling situations where the control points are not suitabily defined.

Degenerate patches give rise to two important issues to be resolved before they may be fully used
in a general surface modelling system :

1. how to compute the geometric features over the entire surface of a degenerate patch;

2. what conditions must be satisfied when defining degenerate patches so as to maintain
geometric continuities with adjacent patches (degenerate or not).

Previously published solutions address only specific cases. In this paper, we propuse a general
approach to deal with all degenerate situations in a unified manner. Both the non-rational and
rational cases are considered. We first develop a method of computing geometric features over
Bezier patches which works for all degenerate cases as well as for the normal case. Then, we
analyze the constraints to be satisfied by degenerate patches in order to guarantee geometric
continuities with adjacent patches. A geometric interpretation of these constraints is provided.
Finally, some practical issues concerning the use of degenerate patches are discussed.



Unifying Rectangular and Triangular Bezier Patches
In Free-Form Surface Modelling

Wen-Hui DU* & Francis J.M. SCHMITIP*

* Thomson Digital Image, 20-22 Rue Hegesippe Moreau, 75018 Paris, FRANCE

** Dept. IMAGES, Telecom Pads, 46, Rue Barrault, 75013, Paris, FRANCE

ABSTRACT

The use of rectangular surface patches play a predominante role in most CAD systems. This is
certainly due to their conceptual simplicity and ease of use. While they are well adpated to
model surfaces of an intrinsic rectangular structure, they are not the 'natural choice' for
modelling more complex shapes.

Triangular patches are attractive for surface modelling because they are more suitable for
representing any surface shape, and they provide the possibility of more local shape control. An
emerging trend in free-form surface modelling is to unify triangular and rectagular models in one
single system to better exploit the power of each.

The surface geometric continuity is often desired. When a smooth surface is modelled with a
piecewise representation using triangular and rectangular patches, it is crucial to be able to
control the geometric continuity between adjacent triangular and/or rectangular patches.

Previous work deals with the simplest case of smooth connection between two adjacent patches,
triangular or rectangular in any combination. However, the general smooth connection problem
between any number, L, of rectangular and any number, M, of triangular patches meeting at a
common comer in any combination has never been investigated. In this paper, we develop a
general solution to the GI smooth connection problem around such a mixed N-patch comer
(N = L + M) for Bezier patch representations, both non-rational and rational. We deduce the
constraints guaranteeing G1 continuity around a mixed patch comer, and show how they are
interrelated. Then, we discuss how to satisfy these GI constraints with control points of
triangular or rectangular Bezier patches. The results show that for an N-patch comer, the
relationships between these constraints depend on the parity of N, independant of the
combination of triangular and rectangular patches. In addition, we analyze the available degrees
of freedom in the GI constraints, which can be used to control the surface shape in the
neighborhood of the comer. These results play an important role in the design of a piecewise GI
continuous surface representation method which unifies the use of triangular and rectangular
Bezier patches. A number of such solutions are examined.



Conditions for Regular B-spline Curves and Surfaces

Nira Dyn (speaker); David Levin & Itai Yad-Shalom

University of Tel Aviv

Sufficient conditions for the regularity of a B-spline curve are derived in terms of
geometrical quantities defined by the control points. These conditions exclude cusps and
loops in the curve and are extendable to tensor-product B-spline surfaces. For the quadratic
and cubic B-spline curves necessary and sufficient conditions are formulated.
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Multiple Knots and Degree Elevation

Geometric Spline Curves

Dipl.-Math. Mathias Eck

Centre for Applied Mathematics
Technische Hochschule Darmstadt

Hochschulstrafle I
D-6100 Darmstadt

Federal Republic of Germany

In the past years the interest in geometric continuity of curves (and surfaces) has
been growing. In 1985 W. Boehm gave a simple and elegant B-spline like construction
of curvature continuous B-spline curves (often called y-splines). He proceeded with the
generalization for curvature and torsion continuous B-splines of degree four. Later in
1989, Eck and Lasser extended Boehm's concept to B-spline curves of general degree with
geometric continuity of higher order (Frenet-frame continuity). They pointed especially
out the quintic case and showed how to modify these curves to get 'contact of order 4'.

For the usual Cr-continuous B-spline curves it is well known that the choice of multiple
knots yields a reduction of continuity at the corresponding point. Using this fact, a degree
elevation of usual B-splines can be obtained if the control polygon is chosen appropiately.

In our presentation these algorithms are adapted to the case of geometrically contin-
uous B-spline curves of degree 3, 4 and 5. Some special effects are described as well as
some practical applications.



John M. Eisenlohr
Schlumberger Technologies CAD/CAM

4251 Plymouth Rd.
Ann Arbor, MI 48106 USA

(313) 995-6329
CSNET : eisenlohr@aaacal.sinet.slb.com

A Comparison of Curve Approximation Methods

The speaker will examine the specific problem of approximating a given parametric

curve with a piecewise-cubic parametric curve. This is an important problem in many

areas of CAD/CAM, and several techniques have been proposed for constructing such

an approximation. Each cubic segment may be the complete interpolant to points and

tangent vectors on the original curve, or we may attempt to gain a better fit by adjusting

the lengths of the tangents at the endpoints of the approximating cubic. Likewise, there

are different methods for determining how to divide the original curve's parameter space

into subintervals of definition for the piecewise-cubic in order to respect tolerance. This

may be done on a trial and error basis, recursively subdividing intervals over which

error exceeds tolerance, or by doing some a priori analysis on the original curve. And

error analysis may be done by comparing curves at the same parameter values, or at the

(possibly different) parameters at which they come closest to each other.

Strengths and weaknesses of these different techniques will be explored both in

theory and in specific examples of curves which arise commonly in design and

manufacture.



APPROXIMATE SOLUTION FOR THE INITIAL VALUE

PROBLEM Y(3)=F(XY), USING DEFICIENT SPLINE

POLYN 0ULALS

BY

THARWAT FAWZY and MAGDY AHMED

(Suez-Canal Univ. Is-ailiagypt)

Abstract: A multistep method for approamating the solution of the initial

value problem y(3)=f(x,y) using deficient spline polynomials is

presented. The eistence and uniqueness of the spline approxdmant

as well as the consistency relations are investigated. The convergence

problems is discussed in Part II.

In this part, we introduce the convergence theorems for the method

introduced in Part I. We prove that if the spline approximant is of

degree m, then the error is O(hm+l-' In y(i)(x) where m=6 and 7 and

i=O(1)m.

Mailing Address: Math. Dept.,

Faculty of Science

Suez-Canal University

41522 Ismailia

EGYPT



Splines and Digital Signal Processing

L.A. Ferrari, D. Pang, K.F. Usiner

University of California Irvine,
Dept of Electrical & Computer Engineering,

Irvine, CALIFORNIA 92717

A discrete spline defined on a non-uniform knot sequence can be gener-
ated as the output of a finite impulse response (FIR) digital filter. We first
derive the Z-transform of a discrete polynomial spline using the derivative
properties of piecewise polynomials. Two filter structures are provided. The
first structure is obtained from the factorial basis functions while the sec-
ond corresponds to the B-spline basis. Both are useful for computation and
analysis of discrete splines. The filter inputs are the control vertices and
the corresponding knot sequences. The filter outputs are the discrete spline
values and all order differences.

We also show that splines can be extremely useful in the design and im-
plementation of general FIR filters. We discuss an efficient procedure for the
design of interpolated FIR (IFIR) filters with linear phase. This approach
uses a B-spline function defined on a uniform knot sequence as an interpola-
tor for a sparsely sampled frequency selective filter. The frequency selective
filter is designed on an optimal subinterval of the normalized frequency do-
main using the alternation theorem and the Remez exchange algorithm. The
technique provides a filter implementation with a minimum number of mul-
tiplications.

We provide a generalization of the IFIR filter by showing that an FIR
filter whose unit sample response is a spline defined on a non-uniform knot
sequence can also be implemented in two stages. The first stage is an MA
filter with as many nodes as there are knots. The second stage is an AR filter
which performs simple recursive summation. Because only the first stage re-
quires multiplications, the filters can be implemented very efficiently. This is
of particular importance in multi-dimensional image processing and machine
vision applications. Several examples are provided to illustrate that com-
plexity improvements of greater than an order of magnitude can be obtained
with no loss in accuracy.



Rational Curves and Surfaces, Rational Splines.

We give a brief survey about a new description of rational curves and surfaces, resp. rational
spline curves and surfaces and related properties. Using Bernstein polynomials or B-splines we
control these curves and surfaces by a set of mass vectors (vecteurs massiques in french). Some
examples are given as well "as algorithms derived from the polynomial case. Different properties
are developped for instance smoothness conditions or the behavior of the controlling mass polygon
by projective or affine transformations.

J.C.FIOROT
Universite de Valenciennes ENSIMEV
Laboratoire MACS Le Mont Ilouy
59326 Valenciennes Cedex (F)



Numerically Stable Algorithms

in Computational Geometry

Steven Fortune

ATT Bell Laboratories

Can geometric algorithms be implemented using floating point arithmetic? A ge-
ometric algorithm uses a sequence of primitive tests on continuous data to produce a
combinatorial output. Computing a primitive exactly may not be feasible because of the
large precision required for the calculation. Computing the primitive approximately, say
with floating point arithmetic, may invalidate the correctness of the algorithm, since the
primitive may give the wrong answer for some inputs.

A geometric algorithm (implemented using floating point arithmetic) is "robust" if
(1) it gives the correct answer if all primitives give the correct answer and (2) no matter
what floating point rounding occurs, the computed answer is the correct answer for some
perturbation of the input. An algorithm is "stable" if it is robust and the required pertur-
bation is small. A small perturbation is one that is a small function of the problem size n
and the machine precision epsilon, say O(n epsilon).

Recent research has shown that it is possible to construct provably stable algorithms
for some problems in two-dimensional computational geometry. These algorithms include
computing convex hulls, maintaining triangulations of point sets, and computing arrange-
ments of lines. The proofs of stability combine techniques from error analysis, graph theory,
and algorithm analysis.
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On The Power of A Posteriori Estimation

for Function Approximation

Feng Gao

Department of Computer Science
University of British Columbia

Vancouver, B.C., V6T 1W5, Canada

A posteriori estimation, or the use of error criteria and adaptation criteria in numerical
algorithms, have not received much mathematical exploration in the past. Upon derivation
of such a criterion, it is usually analyzed only experimentally, i.e., tested on a set of
examples.

We show that, rather surprisingly, carefully structured criteria for a posteriori esti-
mation can enable function approximations to possess interesting and useful mathematical
properties which they do not possess a priori. For example, we show that a simple adap-
tive procedure can produce a piecewise local polynomial approximation (e.g., piecewise
Lagrange polynomial interpolation) which apprcximates the spline interpolation. More
precisely, a simple criterion for adaptive point allocation can produce a piecewise local
polynomial approximation that is close to the spline interpolation to the same function on
the same mesh, to within any prescribed positive tolerance.

The relation of this approach to probabilistic (Bayesian) estimation is also discussed.
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The Algebraic Structure of Sets of Functions

with Fixed Connection Matrices

Ronald N. Goldman

Rice University

Different types of geometric continuity for parametric curves can be specified in terms
of certain distinct classes of connection matrices. We look at the algebraic struct ure of the
set of all scalar valued functions with a fixed connection matrix. We shall show that this
set is closed under either multiplication or division if and only if the connection matrix is
a reparametrization matrix. We conclude that reparametrization is the most general form
of geometric continuity for which the shape parameters remain invariant under projection.
We go on to show that Frenet frame continuity is also preserved under projection, even
though the shape parameters change.
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Fast Knot Insertion

Ronald N. Goldman
Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

Phillip J. Barry
Department of Computer Science
University of Minnesota
Minneapolis, Minnesota 55455
U.S.A.

Abstract: Standard knot insertion schemes for B-spline curves, such as Boehm's algorithm or

the Oslo algoriihm, are based on convex combinations and are closely related to the de Boor

evaluation algorithm. Here we present an new knot insertion scheme, akin to forward

differencing, but numerically more stable, which, when more than just a few knots are inserted,

is faster than the standard knot insertion techniques. Unlike the standard knot insertion

algorithms, the fast knot insertion scheme is related not to evaluation but rather to differentiation.

We shall derive the fast knot insertion algorithm using blossoming and then show how it is

related to other classical algorithms for differentiation and integration of B-spline curves.
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Best approximation of circle segments
by Bezier curves

Tim Goodman', Tom Lyche and Knut Morken*

Institutt for informatikk, University of Oslo,

P.O. Box 1080, Blindern, 0316 Oslo 3, Norway

'Department of Mathematics, University of Dundee,

Dundee, DD1 4HN, Scotland

Abstract. In a recent paper [1], some high accuracy schemes for approximating circular

segments with cubic Bezier curves were given. In this talk we will show that these

schemes are best possible in the sense that the squared distance to the circle is minimized

with respect to the class of approximations in consideration. We may also discuss

extensions to polynomial degrees higher than three.

References

1. Dokken, T., Daehlen, M., Lyche, T. and Morken K. (1989), Good approximation of circles by

curvature-continuous Bzier curves. To appear in CAGD.

" speaker

44



G-Splines

K. H6llig

Abstract. We describe a new type of splines which allows to model smooth surfaces
with arbitrary topological structure. In particular it is possible to incorporate "singu-
lar vertices" into a network of tensor product B-spline surfaces. The key observation is
that, with an appropriate choice of the smoothness constraints, the class of admissible
parametrizations forms a linear spa-:e and therefore standard tools from linear algebra are
applicable. In particular the construction of bases, interpolation and blending schemes is
reduced to finite dimensional matrix problems which are independent of the global struc-
ture of the mesh. This is illustrated with several examples.

g-spline surface

Keywords: splines, computer-aided design, geometric continuity
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On Schoenberg's Exponential Euler Spline Curves

Kurt Jetter

(joint work with S.D. Riemenschneider and N. Sivakumar)

Given the univariate cardinal B-spline M,, of order n E IN, the exponential Euler

spline is defined for any 0 = z E C by

cc

For z = eiU we also write

Wnx ):= .x i)

I. J. Schoenberg studied these functions in several papers, last not least in his CBMS-

lectures on "Cardinal Spline Interpolation". We study these functions in more detail, and

show

* Properties of the curves X )-* Vn(Xu);

* Application to cardinal interpolation with shifted B-splines;

Monotonicity of V,,(X,u) with respect to the parameters z,u, or n.

We also point to how Smith and Ward's "metric condition" may be derived from our

analysis.



Surface Compression and Quasi-interpolants

Rong-Qing Jia

Department of Mathematics

University of Oregon

Eugene, OR 97403, U.S.A.

This work deals with surface compression by using quasi-interpolants. Let € be a

compactly supported function on 1R'. Together with 0 we have its dyadic dilates 0(2 k.),

k E 2Z, and their translates 0i := 0(2 k -j), j E 2Z' . Here, we index these functions

by the dyadic cube I = j 2 - k + 2-k:. with P := [0, 1). We shall use the notation Dk to

denote the set of dyadic cubes I whose sidelength f(I) is 2 -k and by D the union of the
9 k, k E 2Z. In order to compress a surface, DeVore, Jawerth and Lucier decomposed it

into wavelets:

f = Sa ,

I EV

and chose a finite expansion among all such finite sums with at most n terms. Let E

denote the nonlinear manifold of all such functions with at most n of the coefficients

al - 0. Earlier DeVore, Jawerth and Popov characterized functions with a given degree

of nonlinear approximation from En under the following three assumptions about €:

(i) 0 satisfies the Strang-Fix conditions of a certain order;

(ii) each given 0I can be written as a finite linear combination of the functions 01 at the

next dyadic level;

(iii) the multiinteger translates of € are locally linearly independent.

A close look into their assumptions reveals that the first and second assumptions are

essential. However, the third assumption restricts seriously the choice of €. For example,

the well-known Zwart element, which is a box spline with four directions, does not satisfy

the linear independence requirement. In this talk we shall demonstrate that the third

assumption could be removed, and, under assumptions (i) and (ii), characterize functions

with a given degree of nonlinear approximation from E,.



Elastica and Minimal Energy Splines

Emery Jou

Computer Science Center
University of Maryland

College Park, MD 20742
U.S.A.

(301) 454-0835
jou@umail.umd.edu

A spline is a long thin strip of metal, wood, or plastic bent elastically to fair a smooth curve.

The equation of spline curve (elastica) can be obtained by minimizing its strain energy which

is proportional to the intergal of the squaie of the curvature taken along the elastica. We call

such a spline "minimal energy spline". When the deformation of an elastica is small, one

may drop the high order term for the curvature, and obtain the celebrated cubic spline.

A minimal energy spline has a prescribed length together with the constraints of arbitrary-

angles or zero-curvatures at the end-points. The zero-curvatures at both end-points are

corresponding to the natural boundary conditions. The minimal energy splines are curvature

continuous curves. Each segment of a minimal energy spline is infinitely smooth and has

linear curvature relationship.

Some results of plane minimal energy spline curves are readily extended to space curves.

A linear curvature property for space minimal energy splines does not appear to hold.

. . ."I. . . . . . . . . . ..



Minimal Cost Approximation of Functions

from Noisy Information *

Boleslaw Z. Kacewicz

Institute of Informatics

University of Warsaw
PKiN p. 850

00901 Warsaw, Polland

We find the minimal information cost mc(e) of obtaining en e approximation of a
function in s variables with r continuous derivatives, assuming that information consists of
its perturbed values. We determine the optimal (up to a constant) number of these values,
optimal precisions with which they should be obtained, as well as the best information
and algorithm. In particular, if information cost is measured by a number of binary bits
required for representing information, then mc(e) is proportional to E-log2(l).

* Joint results with I. Plaskota from the University of Warsaw
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MAKING A CLEAN SWEEP (SURFACE)

Michael Kallay

EDS, 13555 SE 36th St #300,

Bellevue, WA 98006, USA

A swept swface S(u,v) is constructed by sweeping a profile curve P(u)=(x(u),y(u)) along a rail curve

R(v). For every constant v, S(u,v) is a copy of P(u) in a plane normal to R(v). The result depends

on the choice of local coordinate basis (A(v),B(v)) for that plane. The surface is then defined as

S(u,v) = R(v) + x(u)A(v) + y(u)B(v). In general, S is neither polynomial nor rational, even when

P and R are polynomial.

Published methods (e.g. [1],[2],[3]) for constructing swept surfaces have applied surface

approximation methods for fitting the theoretical surface with a standard piecewise polynomial (or

rational) surface. The local coordinate basis has been based on the Frenet frame of R. Two problems

have limited the functionality of these methods:

* The Frenet frame tends to twist about the rail in a bad way, resulting in a bad surface ([3]).

* It is difficult to obtain a tight fit with surface approximation methods. This is noticeable

particularly at the surface boundary, when an adjacent surface is to be continued ([2]).

This paper presents a new approach to the construction of swept surfaces, completely eliminating

these problems:

* Approximation is done at the curve level, where tighter fitting is possible, fitting A(v) and B(v).

The theoretical surface is thus fitted with a NURBS surface within any practical tolerance.

* A different frame, other than Frenet's, defines our local coordinate basis. It doesn't twist about

the rail, hence the surface is torsion-free in the following sense: for a fixed u, the constant

parameter curve S(u,v) and the rail curve R(v) have parallel tangents at every v.

REFERENCES

I. Cocquillart, S., A control-point-based sweeping technique, IEEE Computer Graphics &

Applications, November 87, PP 36-45.

2. Gregory, J., Generalized swept surfaces, SIAM Conference on Geometric Design, Nov 89.

3. Webb, T., ICAD's swept surface, SIAM conference on Geometric Design, Nov 89.
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A Parallel algorithm for surface/plane intersection*

A. Kaufmann**

For a surface described in the Brzier/Bernstein representation, the surface/surface
intersection using the subdivision algorithm is defined as a parallel process. Thus, the
performances of the algorithms are interesting to study on a parallel computer. As the
surface/plane intersection introduces several difficulties of surface/surface intersection, in
a more simple case, we reduce the study to this problem.

Parallel algorithms for a given problem are quite dependent on the computer
structure. Thus, we reduce this study to distributed memory computers. I.e.each
processor has its own memory, and there is no shared memory. So, the computer must
have an interconnection network between its processors. The particular network we use is
a hypercube, or any network (as a ring) deduced from a hypercube.

The aim of this work is to find intersection curves, approximated by intersection of
polyhedra in the subdivision process. Thus, we must keep links between polyhedra in
order to build intersection curves. Two logical data structure are possible: quadtree and
neighbouring links. For the implemented algorithm, we choose the second structure with
a NEWS (North-East-West-South) definition. Moreover, the set of polyhedra is
considered, in the parameter-space, as a sparse matrix with column storage. Hence, we
split by polyhedra columns. Thus, a given column can only be splitted in two columns.
The problem can be described by two binary trees:

1- an up-down tree for the subdivision,
2- a bottom-top tree for the merging of each piecewise local curve. The piecewise

local curves are curves obtained by the intersection of columns (which are located in a
given processor) and the plane.

Hence, in the distributed algorithm, we must find a compromise between the
subdivision tree, which can use more and more processors, and the merging tree which
grows with the number of processors.

To conclude, we introduce results of a first distributed algorithm for several
examples. And we introduce another possible algorithm (hopefully better) for
surface/plane intersection.

* A. Kaufmann. A parallel algorithm for surfacelplane intersection Research Report RR-794-M Nov.
1989. IMAG Univ. J. Fourier. Grenoble (France).

**A. Kaufmann. TIM3-IRMA. Univ. J. Fourier. BP53X. 38041 GRENOBLE CEDEX.

FRANCE

EMAIL: kaufmann@afp.imag.fr
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Fillets and Intersections of Surfaces Defined by Rolling Balls

In CAD/CAM systems several separate surfaces are needed to describe some-

thing like a specific part of a car body. To connect two surfaces, two methods are

frequently used:

I. Trimming with surface/ surface intersection curves

2. Fillets between two surfaces defined by rolling balls.

The paper describes an algorithm which allows to calculate such fillets. The case

of intersection curves can be achieved by setting the ball radius r=0 and using

the same algorithm as for fillets.

All surfaces are trimmed B-spline surfaces. The intersection curves and the fillet

surfaces are approximated by B-splines again.

The tangent directions of the boundary curves and the middle curve of the ball

fillet are derived by means of differential geometry using the fundamental forms

of the two surfaces. To guarantee a result which is exact down to a given tole-

rance, we describe an estimation algorithm for the length of the calculated spline

segments.

The presented algorithm is implemented in the CAD/CAM system SYRKO used

for car body d'sign and maufacturing at Mercedes-Benz. Hence, the theory is

supplemented by practical experience and examples.

Authors:

R. Klass

B. Kuhn

Mercedes-Benz AG

Abt. EP/ADTK/LL

Postfach 226

7032 Sindelfingen
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Construction of exponential tension B-splines
of arbitrary order

Per Erik KOCH* and Tom LYCHE

University of Trondheim, NORWAY
University of Oslo, NORWAY

We consider the following generalizations of Schweikert's tension splines, namely smooth
functions piecewise in span{sinh(pix), cosh(pix), 1, x,... xI- 3}, where k is the order. The
tension parameter pi may vary from subinterval to subinterval.

An algorithm for the construction of B-splines for these spaces is given. The algorithm
is based upon a differentiation formula for general exponential tension splines. This differ-
entiation formula yields a recurrence relation between those B-spline coefficients for which
linear combinations with B-splines equal the different powers of x. The result is explicit
expressions for such splines on each subinterval. As a corollary we obtain explicit formulas
for polynomial splines on each subinterval by letting all tension parameters tend to zero.

We show that when the tension parameters tend to zero then the tension B-splines
of order k tend to the polynomial B-splines of the same order, but when the tension
parameters tend to infinity, the tension B-splines of order k tend to the polynomial B-
splines of order k - 2 situated centrally on the B-spline support, and tend to zero on the
first and last subinterval.

Finally, we have a generalization of Boehm's formula for inserting one knot.



Probabilistic and Worst Case Complexity in Function Approximation

Mark A. Kon

Columbia University

We study the complexity (of function approximation and other linear problems) in a

probabilistic setting, where we are given a preassigned probability 1 - 6 with which we

guarantee that the approximation error is smaller than e. A basic question is whether

this is really different from the standard worst case setting, where the accuracy e must be

attained for all functions, not just most. We show that for small 6, one is dealing with the

standard worst case setting, in a number of senses.

Precisely, suppose we have a probablity measure I on the Banach function space

F, and our probabilistic tolerances are in terms of jI: we demand our appioximation

be accurate within e for a "large" set of functions, namely, a class whose /L-probability

exceeds 1 - 6. We show that as 6 --* 0 the complexity of approximation converges to the

standard worst case approximation picture. We also show that for linear approximation

problems, measure 0 sets in function space are inconsequential in terms of the complexity

of approximating the most intractable functions, for all "reasonable" measures /.

More abstractly, let S be a linear mapping between two linear (Banach) spaces F

and G (S is the identity in the case of function approximation). Let N : F -+ G be

an information operator (i.e., a finite rank operator giving, say, the values of a function

f E F at a finite set of points). Let p be a measure on a bounded convex set in F, giving
a probability distribution over functions to be approximated. We study (probabilistically)

the complexity of approximating S with a composition of the form q o N with N of

finite rank. Here 6 again is a small probability with which we are allowed to break an

approximation tolerance e. We investigate the 6 --* 0 behavior of the parameters of the

problem (e.g., error of approximation, complexity), in particular their relation to those of

the worst case problem.

Heinrich has recently considered the problem of function approximation in Sobolev

spaces from partial information, and showed that, if an a priori Gaussian probability distri-

bution is assumed on functions, the probabilistic complexity of approximation essentially

converges to the worst case picture. We generalize this to the extent that arbitrary Hilbert

spaces of functions can be considered, and the problem need not be identification of a

function, but may involve computing an arbitrary linear functional or operator.

)S



Linearity of Algorithms and a Result of Ando

M.A. Kon*

Boston University and Columbia University

and

R. Tempof

CENS-CNR, Politecnico di Torino, Italy

In this paper, we prove that a Hilbert structure is necessary as well as sufficient

for linearity of the following classes of Banach space approximation algorithms: spline,

interpolatory, strongly optimal, and almost strongly optimal. In the context of information-

based complexity, this provides a converse to the well-known result that a Hilbert structure

is sufficient for such !inearity properties. Furthermore, we point out a theorem of Ando and

its application to establishing necessary and sufficient conditions for linearity of algorithms

on LP spaces.

* Present Address: Department of Computer Science, Columbia University, 10027 New

York, N.Y.. Partially supported by the USNSF under grant DMS-8509458
t Present Address: CENS-CNR, Politecnico di Torino, Corso Duca Abruzzi 24, 10129

Torino, Italy. The second author was partially supported by funds of CENS-CNR of Italy.



Rational Approximation of the Step,

Filter and Impulse Functions *

Marek A. Kowalski

Institute of Informatics
University of Warsaw

PKiN p. 850
00901 Warsaw, Polland

Modern design of electronic filters, such as low pass, high-pass and band-pass filters
includes the construction of a rational function which satisfies the desired specifications
for cut-off frequencies, pass-band gain, transition band-width and stop-band attenuation.
Thus rational function approximation to the X*-function, (x*(x) = 1 if -1 < x < 1, 0 if
IzI > 1) and the sgn function (sgn(x) = 1 if x > 0, -1 if x < 0) are needed. Elementary
analytical methods lead to rational functions, such as (6 + tn(x)) - ' or (1 + z2") - 1 where
t,,(x) is the n-th degree Chebyshev polynomial. More advanced methods employ elliptic
functions.

We aim to derive new rational function approximations for the Heaviside, the filter and
the impulse functions. Our motivation of these derivations is the simplicity of the results:
the formulas depend on a single parameter N which determines the degree and accuracy.
While our approximations do not yield the optimal ones, they are close to optimal, and
they offer an advantage of simplicity of functional expression.

* Joint results with Y. Ikebe and F. Stenger
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A PSEUDO-CUBIC WEIGHTED SPLINE CAN BE C 2 OR G2

Rekha KULKARNI
Indian Institute of Technology, Bombay (India)

and

Pierre-Jean LAURENT

Universit6 Joseph Fourier, Grenoble (France)

The classical weighted spline introduced by Ph. Cinquin (1981), (see

also K. Salkauskas (1984) and T.A. Foley (1986)) consists in minimizing

fw(t)(x"(t))2dt under the conditions x(t) = y, i=1,...,n, where the

function w is piecewise constant on the subdivision a<tl<t2<...<tn,<b. The

solution is a cubic spline but it is not C2.
b

We consider here the minimization of (x"(t))2 dt where q is
q(t)

continuous and piecewise polynomial of degree one on the subdivision.
The values qj = q(ti) act as form parameters. The solution is a C2 quartic

spline but surprisingly, it has in fact all advantages of the cubic spline.
Namely:
- computing the solution leads to a tri-diagonal linear system,

- computing the corresponding smoothing spline leads to a block 2x2 tri-

diagonal system,
- the associated B-spline is based on 4 intervals of the subdivision (like the
classical cubic B-spline).

The properties of this new weighted spline will be developped and its
efficiency for interpolating, smoothing or designing will be illustrated on
a selection of examples.

Finally, a weighted spline with G2 continuity is described, which has

3 form parameters at each knot.



2-D Conservative Approximation by

Rational B-Splines

B.I. Kvasov & S.A. Yatsenko

Let the initial data be defined as the set of points, ordered along the not intersecting,
possibly curvilinear cross-sections of a three dimensional body. In the paper the Gordon's
type algorithm [1] is proposed for the construction on the basis of data of the approximating
surface of the C2 class with the preservation of geometrical features of the initial data
(convexity, monotonicity, etc.) along the finite system of curvilinear coordinate lines,
forming a regular mesh on the surface, topologically equivalent to rectangular one.

For the construction of the curves along the initial cross-sections the algorithm of
conservative interpolation by rational splines (2) is used The storage and the computing
of rational splines is realized by means of their representation through the B-splines. To
obtain a 2-D spline in the orthogonal direction the system of rational local approximating
splines, generalizing the standard local approximation by cubic splines, is constructed. The
capacities of the algorithm are illustrated by test 3-D examples.

References

[1] Gordon, W.J., Spline-blended surface interpolation through curve networks. J. of
Math. and Mech., 1969, Vol. 10, No. 10, pp. 931-952.

[2] Kvasov, B.I. and S.A. Yatsenko, Conservative interpolation by rational splines, Sixth
Texas Symposium on Approximation Theory, Chui, Schumacker and Ward, eds., Aca-
demic Press, New York, 1989. pp. 1-3.



ELEMENDh FINIS COMPOSITES DE TYPE PS

DE CLASSE Cr

M.LAGHCHIM-LAHLOU
INSA Rennes Laboratoire LANS
20 Av.des Buttes de codsmes
35043 Rennes FRANCE

Soit Tr une triangulation d'un domaine polygonal bornj n2 de 1R2 
,dont

l'ensemble des sommets est A Ai {; i r= 1) avec Ic IN.

Soit IP(2,' =~ V ft~ (G): Tt ef IPnV er)o est l'dspace des
polyn6mes et deux variables de degrJ total infdrieur ou dgal el n.On consid~e le
problkme d73errnite suivant :

Hr~ (A u)={trouverv C=Cr (K2): D'v(Ad)= Dau(Ad; i EIet I a1:5r )o& u
est une fonction assez rjguli~re donnge.

Ce problme admet une solution dans IPn(f2,'r) ssi n : 4r + 1(Zenisjk [3]).

Soit T6la sous-triangulation de T obtenue en subdivisant chaque triangle t E Tr en
6 micro-triangles suivant le procd& de Powell- Sabin [ 1]I et:

IPnr(2, 6)= f ECr (f2): fIt GIPnVtET 6 )

Sablonni~e [2] a construit une solution de Hr~ (A,u) dans 'r~r - l( , 6 ).SiT

est en plus une triangulation rdguli~re de type 1 (rdseau tridirectionnel) et si
chaque triangle t E est subdivisd en 6 micro-triangles par ses mddianes alors
nous avons le risultat suivant :

THEOREME: il y a une solution de Hr (IA,u) dans IPn( 2,T dpour n = 2r + 1 si
r est pair et n = 2r si r est impair et les degrgs des polyn6mes sont minimaux.

REFERENCES

[1) M.J.D POWELL,M.A. SABIN , Picewise quadratic approximation on
triangles , A.C.M Transactions on Math.Software, Vol. 3, No 4 (Ddc 1977) pp.
3 16-325.

[2] P.SABLONNIERE, Composite finite elements of class Ck , j. Of Comp.
and AppI. Math. 12 & 13 (1985) 541-550.
[3] A.ZENISEK, Interpolation polynomials on the triangle , Num. Math. 15

(1970) 283-296.
[4] CIARLET,P.G. , The Finite Element Method for Elliptic Problems, North

Holland, Amsterdam, 1978.



The Strang-Fix conditions for functions with non-compact support

Will Light, University of Lancaster, UK

In 1969 Strang and Fix gave a series of results which characterised approximation orders from certain

finite element subspaces. After some considerable time, it was shown that their result had certain deficienccs,

which were finally made good by de Boor and Jia.

Let the Sobolev space W(l11m ) be defined to be the set of all functions u for which the quantity

IInuk,p = lu,, : l;,= -IIDulIp

is finite. Here D ' denotes the usual multivariate derivative. Let (P be a finite subset of WV(IRm) consisting of

functions of compact support. Then 1 provides 'local Lp-approximation of order k' if for each u E P, (IR")

there exist weights ch so that

U-7h EO o* < const hklult,p
CE ,

and

ch(j) = 0 whenever dist(jh,supp u) > r.

Here const and r are independent of h and u. In addition, the operator ah is the usual dilation, (arhf)(t) =

f(t/h), t E 11! .

We shall present two things. Firstly, a slight rephrasing of the second of these 'de Boor-Jia' conditions.

and secondly, a version of this theorem which applies to functions wich do not have compact support
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Frame splines: Moving Orthogonal Frames along a B-spline Curve

Nelleke Louwe Kooijmans

Delft University of Technology
Faculty of Industrial Design Engineering
Section Mechanical Engineering Design
Jaffalaan 9
NL-2628 BX Delft
The Netherlands
louwe@tudobm.tudelft.nl.bitnet

Abstract

In this article we will present a new type of B-spline curves, which can be used for

approximating positional data together with additional data. We use orientations as

additional data, but other information (e.g. color data) could also be used.

A frame is a description of a location with the orientation of the local coordinate system in

three-space. For tool path generation along a trajectory orthogonal frames have to be

calculated at the working points. When the tool path has to be highly accurate this results

in large amounts of data.

Instead of determining all these points we can use B-spline techniques to create a spline on

control frames. These Frame splines are 12-dimensional B-splines defined over orthogonal

coordinate frames. However not cvery set of orthogonal control frames results in orthogonal

frames along the positional curve.

We have developed a method for generating Frame splines from 3D B-splines by degree

elevation and knot insertion. Control frames can also be generated for a predescribed frame

course (e.g. tangential to the curve).

When the control frames are extended with tolerance information the tool paths can vary in

accuracy when necessary.

We will show that Frame spline techniques can easily be extended to surfaces.



Transform Image Coding

Through Wavelet Decompositions

Bradley J. Lucier

Department of Mathematics
Purdue University

West Lafayette, IN 47907

In this talk, reporting joint work with Ronald A. DeVore and Bj6rn Jawerth, we
present a unified mathematical analysis of the error for transform coding methods for
image compression. We analyze methods that use orthogonal wavelet transforms, pyramid
encoding, dyadic box splines, etc. Based on this analysis we propose new methods for
transform coding that are optimal within a particular class of methods and within a certain
mathematical framework. We will focus on the following questions:

If a compression algorithm introduces differences between the original image and the
compressed image, how should one measure the difference between the two?
Which images can be compressed well, or how can one judge the smoothness of images?
Computational examples will be given of several methods amenable to our analysis.

C)



Approximation and Interpolation by Translates

W. R. Madych
Department of Mathematics, U-9

University of Connecticut
Storrs, CT 06268

Consider approximation and/or interpolation by means of functions of
the form

N

(1) () = p(x) + ajh(x - x,)
j=1

where the set A = {xl,... ,x : N < oo} is a collection of distinct points
in R", h is some prescribed function on R", and the coefficients a. and the
polynomial p are chosen appropriately. Such methods have attracted wide
attention recently.

We address certain theoretical questions naturally associated with ap-
proximants and interpolants of form (1) and related forms.

For example, when h is conditionally positive definite interpolants of form
(1) are solutions to a variational problem and consequently enjoy appropriate

properties. In particular, if h(x) = -V1 + IxF2, A is the intersection of
a dilated integer lattice with the unit ball B centered at the origin, i.e.
A = (dZ") n B, and s interpolates f on A then for appropriate f and all x
in B
(2) If(x) - s(x) < AI/d

where 0 < A < 1 and c > 0 are constants independent of d. The class of f's
for which (2) holds is too complicated to describe here; suffice it to say that
it includes entire functions of exponential type. In the general case A need
not be "regularly spaced" and B can be taken to be a fairly general open set.

This and/or other related material will be presented.



Basis Functions for Rational Continuity

Dinesh Manocha & Brian A. Barsky (speaker)

University of California at Berkeley

The parametric or geometric continuity of a rational polynomial curve has often been
obtained by requiring the homogeneous polynomial curve associated with the rational
curve to possess parametric or geometric continuity, respectively. Recently this approach
has been shown overly restrictive. We make use of the necessary and sufficient condi-
tions of rational parametric continuity for defining basis functions for the homogeneous
representation of a rational curve.

These functions are represented in terms of shape parameters of rational continuity,
which are introduced due to these exact conditions. The shape parameters may be var-
ied globally, affecting the entire curve, or modified locally thereby affecting only a few
segments. Moreover, the local parameters can be represented as continuous or discrete
functions. Based on these properties, we introduce three classes of basis functions which
can be used for the homogeneous representation of rational parametric curves.

G4
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Detecting Cusps and Inflection Points in
Curves

Dinesh Manochal

John F. Canny'

Computer Science Division
University of California

Berkeley, California 94720

Many algorithms in computer graphics, geometric modeling, robotics and vision use
parametric curves for object representation. For computational reasons a polynomial or
rational parametrization is used. It is often desirable to analyze these curves for undesirable
features like cusps and inflection points. Previously known methods to analyze such features
are limited to cubic curves and in many cases are for planar curves only. We present a
general purpose method to detect cusps in polynomial or rational space curves of arbitrary
degree. If a curve has no cusps in its domain of definition, it has a regular parametrization
and our algorithm computes that.

Geometrically, a cusp is a discontinuity in the unit tangent vector. Since the curve is
everywhere differentiable, the discontinuity in the unit tangent vector occurs only if the
first derivative vector vanishes. The vanishing of the first derivative vector is necessary but
not a sufficient condition for the existence of cusps. We show that if a curve has a proper
parametrization then the vanishing of the first derivative vector is necessary as well as a
sufficient condition for the existence of cusps. We present a simple algorithm to compute
the proper parametrization of an improperly parametrized polynomial curve and reduce the
problem of detecting cusp3 in a rational curve to that of detecting cusps in a polynomial
curve. Finally, we use the regular parametrizations to analyze for inflection Points.

'Supported in part by David and Lucile Packard Fellowship and in part by National Science Foundation
Presidential Young Investigator Award (number IRI-8958577).



2D AND 3D SEGMENTATION BASED ON DIFFERENTIAL EQUATIONS

AND "SPLINE SNAKES"

I. Marque, F. Leitner, S. Lavall~e, P. Cinquin

Equipe TIMB, Laboratoire TIM3, IMAG
Facult6 de M6decine

38700 LA TRONCHE. FRANCE
cinquin@timb.imag.fr

In 2D or 3D image analysis, segmentation is often considered as a discrete problem: the

primarily continuous edge detectors are then discretized. A continuous modelling by bi- or tri-

cubic spline functions provides a stable evaluation of differential operators such as gradient or

laplacian. Moreover tracking the surface of an object can be proved to be equivalent to finding a

stable manifold of a system of differential equations. Finding this manifold turns out to be a

particular case of surface intersection problems. A similar method can be applied to detect

particular points of the surface such as local extrema.

The major advantages of this method are as follows: segmentation and surface tracking are

obtained simultaneously, complex structures in which branching problems may occur can be

described, and the information brought by the segmentation step allows to model the surface easily

with surface patches. This algorithm was successfully tested on 3D medical images provided by

Computer Tomography and Magnetic Resonance Imaging.

A possible extension of our method is to include a model of the object of interest. This

model is described with spline functions and will be iteratively modified to fit with the real object.

These deformations are the result of a strengh field originating from the initial image. Each point of

the model is submitted to a strengh that is transferred to the cottrol vertices of the model. Thus a

differential equation describing the evolution from the initial model to the real object can be defined

and solved. This approach is very similar to the so-called "snakes" method (hence the name of

"spline snakes") but the model is described by a limited number of control vertices. Besides, this

method can easily be modified for an adaptative approximation of the shape and applied to 2D or

3D segmentation.
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Estimation Theory for Dynamic Systems
with Bounded Uncertainty: a Survey

M.Milanese
Dipartimento di Automatica e Informatica
Politecnico di Torino

Many different problems such as linear and nonlinear regressions, parameter and
state estimation of dynamic systems, state space and time series prediction, interpo-
lation,smoothing, function approximation have a common general structure that here
is referred to as generalized estimation problem. In all these problems one has to eval-
uate some unknown variable using available data (often obtained by measurements
on a real process). Available data are always associated with some uncertainty and
it is necessary to evaluate how this uncertainty affects the estimated variables.

Obviously the solution of the problem depends on the type of assumptions that
are made on the uncertainty. The cases most investigated so far are unquestionably
related to the assumption that uncertainty is given by an additive random noise with
(partially) known probabilty density function (pdf). However, in many situations the
very random nature of uncertainty may be questionable. For example the real process

generating the actual data may be very complex (large scale, nonlinear, time varying)
so that only simplified models can be practically used in the estimation process. Then
the residuals of the estimated model have a component due to deterministic structural
errors, and treating them as purely random variables may lead to very disappointing
results.

An interesting alternative approach, referred to as set membership or Unknown
But Bounded (UBB) error description, has been pioneered by the work of Witsenhusen
and Schweppe in the late 60's. In this approach uncertainty is described by an additive
noise which is known only to have given upper and lower bounds. Motivation for this
approach is the fact that in many practical cases the UBB error description is more
realistic and less demanding than the statistical one. However despite the appeal of
its features, the UBB approach has not yet reached a wide diffusion. An important
reason for this is certainly the fact that until the first 80's reasonable results and
algorithms had been obtained only for uncertainty bounds of integral type (mainly
12), while in practical applications pointwise bounds (lw) are mainly of interest.

Real advances have been obtained in the last few years for the pointwise bounds
case, leading to theoretical results and algorithms which can be properly applied to
practical problems where the use of statistical techniques is questionable.

The purpose of this talk is to review these results and to present them in a unified
framework in order to contribute to a better understanding of the present state of the
art in the field and to stimulate further basic and applied researches.



IMAGES LIKE SURFACES: PARALLEL LEAST SQUARES

APPROXIMATION METHODS

L. Bacchelli Montefusco *', C. Guerrini ,, L. Pucclo"

Parallel methods for approximating surfaces 1I may reach high efficiency when used for

dealing with images. In fact, the numerical handling of images of practical size is not

possible with traditional scalar computers, due to the very large dimensions of the
problems involved. Parallel methods are thus required which take advantage of the

different architectures of modem multiprocessors in order to obtain good distribution of

the work-load among the processors.

In this paper we have considered the "continuous-object discrete-image' model of the

image restoration problem [2] with completely general assumptions concerning the

blurring function, and have sought an approxhiate solution of the integral equation

= J h ,,j f ) (.i)d dg +e, , ij= 1.2,..N (1)

in the finite dimensional polynomial spline space Sk2k.1[AIxA 21 by means of regularized
least-square method [3]. The numerical solution of this problem is obtained with two

different strategies, taking into account the available architectures: shared memory and

distributed memory multiprocessors. For shared resources we have exploited

parallelism by evaluating the matrix of the linear system arising from a suitable
discretization of (1) in parallel, dividing it into blocks of columns of comparable sizes,

and then adopting parallel techniques for Its solution. For distributed memory parallel

machines we propose a domain decomposition method which greatly reduces

communication and synchronization costs and allows realization of a very efficient

coarse-grained asynchronous parallel algorithm. The methods have been tested on a

CRAY Y-MP/432 and an intel iPSC/2, respectively, and timings and efficiency results

have been given for several real images.

**KEYWORDS : Image restoration, polynomial splines, domain decomposition, shared-
distributed memory, Hypercube.

REFERENCES
ill L. Bacchelli Montefusco, C. Guerrini " Domain decomposition method for L-spline
surface approximation on hypercube multiprocessor". Atti del Convegno Supercomputing
Toolsfor Science and Engineering. Pisa 4-7 Dicembre 1989
121 H.C. Andrews. B.R. Hunt: Digital image restoration, Prentice Hall 1978.
[31 H.S. Hou, H.C. Andrews "Least squares image restoration using spline basis
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Local Kriging Interpolation:

Application to Scattered Data on the Sphere

Pierre Months

5182 Snowdon
Montr6al, Qu6bec

Canada, H3W 2G1

The pu-pose of this paper is to show how the C' local kriging interpolation scheme
presented by Mont~s (1989) may be easily applied to scattered data on the surface of the
sphere if distanccs are taken on geodesic arcs. The main steps of the method are: (a)
triangulation of the data point locations on the sphere, (.) at each node, selection of an
adjacency level and building of the subset of data points adjacent to it, (c) kriging of the
basis functions defined by the data subsets, (d) selection of a suitabk weighting function,
(c) search of the element (spherical triangle) containing the point p to be interpolated,
(f) kriging of the three basis functions related to the nodes of the element containing
p, (g) weighting the kriged values at p to obtain the desired interpolation value at p.
The continuity of the interpolated surface depends on the continuity of the generalized
covariance and that of the weighting function. Some preliminary results obtained with
this method are shown. The application of this method to the interpolation of scattered
data on non-spherical surfaces is possible. The main advantage of this method with respect
to the existing ones is that the generation of gradients as additional data is not necessary,
but, if gradient exist, they may be used in the kriging process.
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A Procedure for Determining Starting Points for a

Surface/Surface Intersection Algorithm

Gregor Millenheim

Katolische Universitit Eichstaitt
Federal Republic of Germany

Iterative methods for calculating the intersection curve(s) of two given parametric
patches require a pair of initial points (one point on each surface) lying in a sufficiently
small neighborhood of the curve.

In this talk we present a method for computing suitable initial points for such algo-
rithms. Arbitrarily close points can be obtained by defining a sequence P, of sets of points
on the surface satisfying

lim {max m" 11p - xlii = 0,
21-00 pEP xEC

where C denotes the set of all intersection points. We illustrate this with several numerical
examples.



Positivity Preserving Interpolation

with Quadratic Splines

Edmond Nadler

Department of Mathematics
Wayne State University
Detroit, Michigan 48202

U.S.A.

A scheme for interpolation to non-negative data with nonnegative C' quadratic splines
is discussed. A generalization of this to the bivariate setting is then outlined, where the
C' piecewise quadratics are taken over the Powell-Sabin split triangulation. This makes
use of our necessary and sufficient condition for the nonnegativity of a bivariate quadratic
function on a triangle in terms of its B6zier ordinates.
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Discrete Simplex Splines

M. Neamtu

Abstract

A convenient way of approaching the problem of subdividing polynomial
splines is to define the so called discrete splines. This has been successfully
done in the univariate case and also in the multivariate case for polynomial
splines on uniform grids - so called box splines. In this talk we elaborate on
how one could define discrete analogs of simplex splines i.e., splines that carl
be exploited on non-uniform grid partitions.

--I



ABSTRACT

REGRESSION OF DATA ON A PIECEWISE CONSTANT SURFACE

Coert Olmsted

Geophysical Institute, University of Alaska Fairbanks
presently visiting at

Jet Propulsion Laboratory, Pasadena, California

Preliminary examination of satellite images of Arc-

tic sea ice indicates that, in many cases, the ice sheet

moves in discrete blocks, interacting at their boundaries

in shear, convergence and divergence. Automatic pattern

recognition techniques are used to geometrically match

temporally proximate pairs of images and so derive the

vector displacement field. The numerical analysis prob-

lem is then to fit a piecewise constant model to this two

dimensional data.

A variety of techniques for solving this problem are

discussed. Geometric image analysis methods can be used

as well as boundary parameterization and optimization of

a residual norm. Procedures are evaluated in terms of

performance and compatibility with the data.



CURVE AND SURFACE SMOOTHING

Ronaldo Marinho Persiano

Computer Science Department/COPPE
Federal University of Rio de Janeiro

In computer aided geometric design, we often face the fact that although the

overall shape of a parametrically-defined curve (or surface) is satisfactory, a closer

look reveals unwanted oscillations. The interactive repositioning of control points is

the usual tool to achieve a smoother shape but it is both tedious and unreliable. An

automatic non-interactive method for curve smoothing based on filtering techniques is

presented. A simple linear low pass filter, defined by a fixed interval width in the

parameter space, is applied to the curve.

It is shown that filtered polynomial spline curves are also polynomial spline

curves with a possibly different knot sequence. The filtered curve is smoother than the

original one, has a higher order of continuity and its order is one unit higher than the

starting curve. A very simple algorithm is derived to evaluate the control points of the

filtered curve as convex combinations of the control points of the original one. The

evaluation of the coefficients of the convex combinations is done by applying the Oslo

knot insertion algorithm. No knot insertion procedure is needed in the usual case of a

uniformly spaced knot sequence, if the filter window width is multiple of the knot

interval.

The curve filtering procedure is the base to filter surfaces defined by tensorial

product. Examples of the application of the method to ship hull design are presented.

Restrictions and possible extensions of the proposed method are discussed.



On visually smooth interpolation schemes in R3

P.R.Pfluger, Univ. of Amsterdam & M.Neamtu, Univ.of Twente, The Netherlands

We consider the problem to construct a surface which interpolates to positional
K

data X = { xi}i Kin R3. We will assume that a triangulation of X is known ( we then have a
1=1 t

piecewise linear interpolating surface ) and that the direc:ion and the orientation of the

normal vectors at the points xi are given. In the case we have no information on the

normal vectors we can use estimates from a least squares fit through the given points

xiC X.

The surface will be constructed locally on every triangle of the given triangulation,

such that the global surface has a continously varying normal (with orientation) of unit

length. The surface will be visually C1 continuious.

The method depends on the choice of a map M which maps a standard triangle in

R2 on the local patches in R3 .The vertices of the patches are given by the triangulation of

X. First we investigate conditions on the map M which guarantee overall visual

smoothness. Then we try to represent M by properly chosen functions . It is our goal to

make a judicious choice of the free parameters in the representation.

We will theoretically compare our approach to the methods proposed by

G.M.Nielson , G.Farin and B. R. Piper and we hope to present some numerical results.



A New Curve Tracing Algorithm and its Application to the
Computation of Surface Intersections and Exact Aspect Graphs

of Parametric Surfaces

Jean Ponce David J. Kriegman
Beckman Institute Department of Electrical Engineering

University of Illinois Yale University
405 North Mathews Avenue 15 Prospect Street

Urbana, IL 61801, U.S.A. New Haven, CT 06520, U.S.A.

Abstract:

We consider the problem of tracing a curve defined implicitly in R' by a system of n - 1

polynomial equations in n variables. The main difficulties are finding a sample point for every

real branch and marching through singularities. We give a numerical prediction/correction

procedure that tackles these difficulties. Its input is the defining equations of some curve F,
and its output is a graph whose nodes are points on P that are either singular or extremal

in some direction, say x0, and whose arcs are the sampled smooth branches between these

points. This graph is similar to Arnon's s-graph representation of plane curves, but its

construction does not require cylindrical algebraic decomposition.

Th. algorithm is divided into four steps: (1) compute all extremal points of P in the x0

direct' )n (this includes all singular points); (2) compute all the intersections of P with the

hyperplanes orthogonal to the x0 axis at the extremal points; (3) for each interval of the

X0 axis determined by these hyperplanes, intersect P and the hyperplane orthogonal to the

x0 axis at the mid-point of the interval; (4) march numerically from the intersections found

in step 3 to those found in step 2 by predicting new points through Taylor expansion and

correcting them through Newton iteration.

Step 3 provides (actually several) sample points for each real curve branch, while step 4

trivially avoids singularities by marching only within intervals where the curve is extrema-free

and therefore non-singular. Steps 1 to 3 involve solving systems of n polynomial equations

in n unknowns. This is done by using the continuation method. Step 4 involves the inversion

of systems of linear equations. This is done by LU decomposition.

The algorithm has been implemented and applied to the computation of intersection

curves of complex surfaces, including singularities such as nodes and tacnodes. Several

examples are presented. The aspect graph is a data structure describing all possible shapes

(aspects) that the visual contours of an object may assume from different viewpoints. For
a solid represented by a collection of rational parametric patches, it can be shown that

computing the aspect graph is equivalent to tracing a set of curves in high-dimension spaces.

Our algorithm has been applied to this problem, and preliminary results are presented.



APPROXIMATION SPLINE DE COURBES "ANGULEUSES"

Christine POTIER et Christine VEROKEN

TELECOM Paris

46 rue Barrauht, 75634 PARIS CEDEX 13

christines@inf.enst.fr

Soient (xi, Yi )i, N les points successifs d'une fonction 6chantillonn6e de fagon dense. A partir

de cet dchantillon on determine n (n<<N) "points caractdristiques de la courbe", pour construire

une subdivision :n1 points "anguleux" (discontinuit6 de la ddriv~e) et n2 points "simples"

(continuit6 des ddriv~es) Pour ddterminer une spline d'ordre k, en utilisant la m~thode des

moindres carr~s g~n~ralisds, les points "anguleux" peuvent Wre traitds de deux faqons :

- On choisit les nceuds I t j) j=1 & m+k. de la spline A partir des n valeurb ..... qt, des points

caractdristiques, en prenant des nceuds multiples pour les points anguleux, puis on determine les

coefficients (a, lisi ?mdes Bik associ~es A {t j) en minimisant la fonctionnelle:
N Mn T+1

Id a) 7-[ , a Bik(X) yj]2 g ai al f '~d) B oui d 5(k2) et g >
J=1 i=1 ir --I rk I'

Les coefficients I(a, ) sont solutions des 6quations normales oij la matrice est (2k-i1) diagonale.

-On peut utiliser les splines d'inf-convolution en se donnant une subdivision (t' i=1 &n.2+k

et les 13i~k assocides et une subdivision It"j )j- n1+2 (points anguleux) et les B,,2 assocides. On

calcule b* et c"' minimisant:

N n2 n I n2 n2 XN
Ed (b,c) = [ bi Bik(Xj)+ 7_c, BS2x-yj]2 +gi y ,b (~~)

J=1 i=1 S=1 i=1 1=1 f
X1

On utilise une modification de l'algorithme direct de P.J. Laurent pour obtenir ]a solution.

On compare ces deux m6thodes :qualitd des r~sultats obtenus, complexit6 des calculs et extension

aux courbes planes param~triques.



"End conditions of univariate multiquadric interpolation"

M.J.D. Powell

(University of Cambridge, England)

Let s be the interpolant to the equally spaced values {f(kh) : k = 0,1, ... , N} from the

linear space that is spanned by the functions {{ - kh) : 0 < x < 1} : k = 0,1,... ,

where 0 is the multiquadric {O(r) = (r 2 + c2)1/2 : r E Rj} for some positive constant c

and where h = 1/N for some positive integer N. We consider the magnitude of the error

{f(x) - s(z): 0 < x < 1) as h -- 0 when the underlying function {f(x): 0 < x < 1} has

a Lipschitz continuous first derivative. We find that hIf - sfloo is O(h) unless f satisfies

two end conditions in which case the error is O(h 2 ). Because the interpolation operator

is bounded, these properties are also obtained by the best approximation. However, even

in cases when IIf - slI,. is bounded below by a positive multiple of h, it is shown that the

pointwise error If(x) - s(z)l is 0(h 2 ) for any fixed x. Some modifications to the set of

approximating functions that provide 0(h2 ) uniform accuracy are suggested. This work

was done in collaboration with R.K. Beatson.



Interpolation for Bivariate Functions

of Bounded Variation

Jiirgen Prestin

Universitiit Rostock
Germany

Consider bivariate functions f : [a, b] x [c, d] --* R of bounded variation in the sense
of Hardy-Krauss, i.e., f(x, .), f(., y) E BV for some fixed x E [a, b], y E Lc, d] and

supE E If(Xk+l, Ym+) - f(xk+l,y,,.) - f(Xk,Y,+,) + f(Xk,y,)I < :z
k m

For certain univariate interpolation processes including Lagrange interpolation on Ja-
cobi nodes, trigonometric Lagrange interpolation and spline interpolation we construct the
blending and the tensor-product operator. Then we discuss the bivariate LP-error for these
approximation processes. The results can be extended to functions with mixed derivative
of bounded variation.



AN ANALYSIS OF THE BUTTERFLY SUBDIVISION SCHEME

OVER UNIFORM TRIANGULATIONS

QU Ruibin

Dept. of Maths & Stats.,
Brunel University

England

ABSTRACT

The Butterfly Scheme, which was first introduced by Dyn,

Gregory and Levin, is an Interpolatory Recursive Subdivision

Algorithm which is defined upon arbitrary triangular networks.

When the initial network is a uniform, there are several ways to

analyse the convergence properties of the limit surfaces. One

method involves the analysis of the generating polynomial of the

scheme as in a paper by Dyn, Levin and Micchelli. An equivalent

approach is the study of its difference and divided difference

schemes using matrix analysis. This paper presents the latter

method which is just a generalization of the binary subdivision

scheme analysis for curves. The main task is to show that all the

divided difference schemes of the butterfly scheme produce

continuous surfaces. From this we show that the limit surface of

the basic butterfly scheme is Cl. Finally, some graphic examples

are given to show the smoothing processes of the scheme.

KEYWORDS: RECURSIVE SUBDIVISION, ITERATION MATRIX, DIVIDED

DIFFERENCES, BERNSTEIN-BEZIER POLYNOMIALS, SURFACE

INTERPOLATION.



Ewald Quak and Larry L.Schumaker

Penalized least squares methods
for the construction of

bivariate polynomial spline functions

The method of smoothest spline interpolation is based on finding a bivariate polyno-
mial spline function which interpolates given data values at the vertices of a prescribed
triangulation, minimizing an energy expression to fix all free parameters which are not yet
determined by the given interpolation and smoothness conditions.

If the prescribed data values are strongly influenced by measurement errors, interpo-
lation is no longer useful and should be replaced by a sum of least squares Motivated by
univariate penalized least squares methods, a spline fit can be constructed by minimizing a
functional that is a combination of a sum of least squares and an energy functional, where
a smoothness parameter .\ > 0 controls the interaction of the two terms, i.e

for a given triangulation A consisting of the triangles T,, a spline space S (.) of
piecewise polynomials of degree d and smoothness r with respect to ,_ and prescribed
values f,. i = 1. , I', for vertices z,,, a spline function s° E S,(A) is determined so that

pA(s') = min p.(s)
sES'A

where
p.1(S)" ) + I(s)

N

ST.( , = /(pT + 2(sy)" + (s,,)2 ]dxdy

and
V

A(s) = rtf- bp

Algorithms and numerical results for these sphine fits will be presented



Polyharmonic Cardinal B-Splines

Christophe Rabut

Institut National des Sciences Appliqu6es
Service de Math6rnatiques

Avenue de Rangueil
31077 Toulouse Cedex

France

We generalize the notion of B-spline to the thin plate splines and to other d-dimensional
polyharmonic-splines; for regular nets, we give the main properties of these "B-splines":
Fourier transform, decaying when IjIx I co, integration property, link with the polynomial
B-splines, P1 reproduction ... We show that, in some sense, B-splines may be considered
as a regularized form of the Dirac distribution.

Then, we generalize the notion of polyharmonic cardinal B-spline defined above to
obtain "B-splines" on a regular net which are halfway between "elementary B-splines" and
the cardinal interpolating spline function. We give the main properties of these functions:
Fourier transform, decaying when jjx]j -* oo, integration, "Pk reproduction ( for k <
2m - 1) of the associated B-spline approximation, etc. We show that, in some sense, quasi-
interpolating polyharmonic B-splines may be considered as a finer regular approximation
of the Dirac distribution than polyharmonic B-splines are.



Exploring Cubic B zier Curves
with Straightedge and Triangle

Lyle Ramshaw Thomas W. Sederberg
Digital Systems Research Center Brigham Young University

January. 1990

Abstract

Given the four B~zier points of a cubic polynomial curve in the plane, we derive
explicit geometric constructions to solve three problems with a straightedge and
triangle. As a warmup exercise, we use the de Casteljau Algorithm to construct
a point on the cubic. Second, we construct the line joining the cubic's three
points of inflection, one of which is a point at infinity and the other two of which
may be complex. Third, we construct the cubic's double point, which is either a
crunode (a self-intersection), an acnode (an isolated point, not adjacent to any
other real point), or a cusp.

We also generalize these constructions to the case where the given cubic is
rational, instead of polynomial. In the rational case. the four Bzier points of the
input cubic must be supplemented with some extra points, acting as sliders, that
encode the corresponding weights. Designing an encoding scheme that avoids
degenerate cases turns out to be an exercise in Descri" ve Geometry.



Algorithms for Local Convexity of

B6zier Curves and Surfaces

Thomas Rando and John Roulier

Theory and algorithms are presented which determine whether a B6zier curve or B~zicr
surface is locally convex. Furthermore, an algorithm for producing control points which
guarantee local convexity of a B6zier curve or surface which satisfies given constraints is
presented. Both of these algorithms are based on examining the control points and not on
general curve or surface interrogation. The theory is based in part on previous results of
one of the authors involving locally convex planar B6zier curves.



Polynomial n-sided patches

Dr. G.Renner
Computer and Automation Institute

Hungarian Academy of Sciences
Budapest, Hungary

The practical need for interpolating smooth surfaces on the basis of a
curve network of irregular topology leads to the problem of n-sided patch
interpolation. Attempts to overcome the problem involve rational
patches or polynomial patches with a high degree (six in general). The
paper describes the construction of low degree polynomial n-sided
patches which are local interpolations of the boundary curves. Different
ways of constructing the cross derivatives and also the patch equations
corresponding to these cross derivatives are discussed. These
constructions contain different numbers of free geometric parameters
which can be used as designer handles in a CAD system. Finally the
geometric properties of the patches are summarized.



CONSTRUCTION AND INTERACTIVE MODIFICATION OF TETRAHEDRAL MESHES

Maria - Cecilia Rivara
Dept. of Computer Science

University of Chile
Casilla 5272

Santiago - Chile

A flexible generator of tetrahedral meshes capable to manage the interactive modification (by refinement)

of the mesh is presented and discused. Sequences of nested meshes as needed in multigrid context

can also be generated Numerical experiments performed show that the meshes constructed are

mon-degenerate and smooth.



Polynomial Basis Functions for Curved

Elements Using Hyperbolas

H.J. Rojo, O.1. Huerta, J.B. Rojo and F. Zamorano

Departamento de Matemiticas
Universidad de Antofagasta

Avenida Angamos 601
Antofagasta, Chile

A conforming polynomial second order basis for the three sided two dimensional finite
elements with one curved side is constructed in such a way that the curved side is approx-
imated by an arc of hyperbola. The basis is used to calculate approximate solutions of
Laplace's equations over the unitary disk with Dirichlet boundary conditions. The basis
has the property that it remains conforming when the curved side reverts to a straight
line segment. The calculations of the typical integrals are made directly in the original
domain of interest without the use of a non-linear transformation that is required in the
high order transformation methods. Various tesselations of the problem domain were done
and the numerical experiments show that the results are completely satisfactory for all the
examples considered.



An Alternative to the h-convergence Test

Malcolm Sabin

Fegs. Ltd.
United Kingdom

One of the tests normally applied to any approximation scheme is the order of conver-
gence as the grain of the data becomes smaller. This test normally applies in the limit as
the data becomes uniformly infinitely dense. it does not give a great deal of information
about the actual accuray of finite density.

An alternative, applicable to schemes which are linear in the data ordinates, which
provides more information is to consider the accuracy of fit to data whose ordinates are
derived from trigonometric functions of various frequencies.

This gives the traditional h-convergence as the order of accuracy as the frequency tends
to zero. However, it also provides a more quantitative assessment for non-zero frequencies,
and also directional information in the bivariate and trivariate cases.



Recursive division construction C 2

at the singular points

Malcolm SABIN

Fegs Ltd. (UK)

About ten years ago recursive division surface definitions were

proposed by Catmull and Clark and by Doo and Sabin. The Catmull-Clark

construction was an extension of the regular bicubic B-spline, the Do-

Sabin one of the biregular quadratic B-spline.

Although the quadratic construction gave C' continuity everywhere,

the cubic had interesting fractional power behaviour at the singular

points, which meant that despite retaining the C' property, the curvature

at the singular points could be either unbounded or identically zero.

In this paper a modification to the Catmull-Clark construction is

described which gives the cubic C2 continuity everywhere.



QUASI-INTERPOIANTS DE TYPE BERNSTEIN

Paul SABLONNIERE

Laboratoire LANS, INSA de RENNES

20, avenue des Buttes de Cosmes

35043 RENNES Cdex (France)

Rsum6

Les quasi-interpolants introduits par rauteur (Oberwolfach, Fdvrier et
M(k) f= (k) I.

aoft 1989) sont de la forme n .= in tf) b.

Les {bn) sont une base de Bernstein de polyn6mes sur un simplexe

(resp. un hypercube) de degr6 total (resp. partiel) inf6rieur ou 6gal A n.
(k)

Les formes lin6aires (i 1n (f)) utilisent des valeurs ponctuelles ou des

moments de f ou de ses d6rivdes.

Pour 0 5 k < n, r'op6rateur Q1) reproduit les polyn6mes de degr6 total

(resp. partiel) inf6rieur ou 6gal A k. On contruit explicitement

plusieurs familles de tels op6rateurs et on donne des r6sultats sur

leurs normes et leurs propridtds de convergence pour des fonctions

r6guli~res.

Abstract

The quasi-interpolants introduced by the author (Oberwolfach,
Mk (k) nFebruary and August 1989) have the general form Q f= Al (),0 b

The (bn) are a Bernstein basis of polynomials on a simplex (resp.

hypercube) of total (resp. partial) degree at most n. The linear forms
(k)

(in (M) use values or moments off or its derivatives. For 0 k < n,

the operator Qfk) reproduces exactly polynomials of total (resp. partial)

degree at most k. We construct explicitly several families of such

operators and give some results on their norms and .their convergence

properties for regular functions.
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ELEA : A Tool for 3-D Surface Regression Analysis

In Propellant Grains

E. Saintout, D. Ribereau, P. Perrin (1) - A.Y. Le Roux (2)

This paper presents a computer code to determine the surface

regression properties as functions of burn distance and local

burning rate (normal vector and burning rate value at each point)

in propellant grains.

Burn area, moment of inertia, center of gravity, mass flow rate,

and a representation of burning surface geometry are available at

each time step.

To build the propellant grain geometry, we use a specific

solid modeler which offers the standard C.A.D. Boolean functions

(join, cut and intersection), and besides the traditionnal set of

primitives as cylinders, spheres... it contains some abilities as

fin or star forms.

Propellant grain geometry and restrictor are generated in the same

time; Initial burning surface is defined by unrestricted boundary

surface.

To compute surface regression, the initial burning surface is

divided in triangular elements by an automatic mesh generator.

Equations (Hamilton-Jacobi similar type) which describe the

surface growing normally to itself according to the local burning

rate are then solved on the mesh at each step of the regression.

More precisely, the update of the current mesh is as follows:

each node of the mesh is displaced along its normal vector

proportionnally to its own burning rate; the junctions between

this updated mesh and the restricted surfaces, and the crossings

between parts of the mesh are controlled; the mesh is corrected if

necessary and becomes the new current burning surface mesh.

We may use every law of burning rate which is function of the

point, of the local normal vector and of the mass flow rate.

(1) SNPE, 33160 Saint Medard en Jalles, FRANCE

(2) University of Bordeaux I. 33400 Talence, FRANCE



Error Estimates for Simplified Representations

of Curves and Surfaces

Robert Schaback

Institut ffir Numerische und Angewandte Mathematik,
D-3400 G6tingen, FR Germany

Surfaces and curves in Computer-Aided Design are normally represented as
vector-valued linear combinations of certain nonnegative scalar functions
which sum up to one (partition of unity). The direct evaluation of the
functions is often replaced by a sequence of refinement steps (subdivision,
knot insertion) on the set of vector-valued coefficients (the control net),
until some "flatness test" is satisfied. Normally, the refined control net
is interpreted as a representation of a simplified curve or surface, e.g.: a
piecewise linear or bilinear curve or surface ("control polygon"). Then the
refinement process shows quadratic convergence to the curve or surface
defined by the original control net.

We prove some numerically accessible estimates for the error between two
interpretations of a control net, one of which normally is a "simplification"
of the other. They are useful, for instance, as safe "flatness tests" to stop
the refinement process properly.

If the refined control net is interpreted as a piecewise quadratic or cubic
curve or surface, higher convergence orders of refinement processes are pos-
sible. In this way some variations of refinement processes can be defined
which converge better than quadratically with respect to the refinement
parameter.

Applications cover partitions of unity by polynomials, B-splines, and ra-
tional functions in one or several variables.

92-



Some Extensions of the Problem of Best Interpolating Spline Curves

Karl Scherer

Institut fur Angewandte Mathematik
University of Bonn

The problem of best parametric interpolation extends the classical variational problem
of interpolating scalar data to the case of vector-valued data. In addition the objective func-
tional is minimized with respect to the nodes in order to obtain an optimally parametrized
spline curve. Quite complete results on existence, characterization and uniqueness have
been obtained by Marin, Pinkus, P.W. Smith and myself for polynomial splines in the case
of scalar data and in the general cubic case. Here extensions of these results to Tcheby-
cheffian splines and to the curve fitting problem are considered. The motivation for the
first extension is that it preserves more geometric properties of the data (e.g. lying on a
circle). In the second extension the non-linearity of problem causes new difficulties.



Adaptive G 1 Approximation of Range Data

Using Triangular Patches

F. SCHMITT, X. CHEN, W-H. DUt, F. SAIR

TELECOM Paris, Dept. IMAGES

46, rue de Barrault, 75013 PARIS - FRANCE

An adaptive surface fitting algorithm is proposed for the approximation of a sampled

surface described by an array of 3D points distributed on a rectangular mesh. The G
smooth piecewise approximation of the data is obtained by using an adaptive Delaunay tri-

angulation technique combined with a modified triangular Bemstein-B6zier patch model.

The adaptive Delaunay triangulation technique allows us to obtain progressively a

refined polyhedral approximation of the raw data. Beginning with a very coarse approxi-
mation, the process determines the 3D points corresponding to the worst approximation by

the planar triangles of the current polyhedral surface according to a given error measure,

and then adds them to an incremental Delaunay triangulation to produce a finer approxima-

tion. The Delaunay triangulation process is in fact executed on a 2D plane onto which the

3D sampled points are projected in the form of a regular rectangular mesh, the sampling

step being taken as unit of distance. The 3D triangles are obtained by back-projection. This

triangulation technique fully exploits the data structure inherent in range images and is very

efficient.

Two of the authors have recently proposed a modified triangular Bemstein-Bdzier

patch model with duplicated inner control points. This model allows a very simple G 

smooth connection between adjacent patches, especially those around an N-patch comer.
The G I constraints can be solved locally by using patches of low degree. By combining

this model with the adaptive Delaunay triangulation technique, a G 1 piecewise approxima-

tion of the range data can be obtained. This combination can be realized in two ways: 1) a

postprocessing way in which the final polyhedral approximation is smoothed to get a G 
piecewise surface; 2) an embedding way in which the new model is directly used at the end

of each step of the adaptive triangulation'process to provide a better measure of the approx-

imation error.

t Now with Thomson Digital Image, 20 - 22, rue Hegesippe Moreau, 75018 Paris, FRANCE



Universal Splines and Geometric Continuity

Hans-Peter Seidel

Department of Computer Science
University of Waterloo

Canada

In this talk we develop the concept of universal splines and apply this new concept
to the study of geometrically continuous spline curves of arbitrary degree. This yields
geometric constructions for both the spline control points and the B6zier points and gives
algorithms for computing locally supported basis functions and for knot insertion. As
a result of our development we obtain a generalization of polar forms to geometrically
continuous spline curves. The presented algorithms have been coded in Maple, and concrete
examples illustrate the approach.



PROCEDURAL SURFACE INTERPOLATION
WITH GREGORY PATCHES

Leon A. Shirman
Carlo H. Sequin

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720

A local GI-continuous surface interpolation method is described. A set of interpolation

points in R3 connected by edges into a topology-defining network of quadrilateral and/or

triangular meshes is supplied by the user. A geometrically smooth surface is constructed

as a union of bicubic quadrilateral and/or quartic triangular Gregory patches defined over

the given meshes, in which each original edge is replaced by a cubic boundary curve. Our

procedure determines surface normals at interpolation points, the Bdzier control points for

cubic boundaries, and finally the internal control points for the patches. The method uses

an intuitive geometric, rule-based approach to find a 'good' default solution. It produces

surfaces of high visual quality even for very irregular sets of data where traditional tech-

niques fail. This default solution can be overridden or further refined by user-supplied

normals and boundary curves. Moreover, along any boundary curve the shape of the two

adjoining patches can be locally controlled with shape parameters, such as tilt, bulge and

shear which modify the cross-boundary derivative vector in different ways. This gives

extra control to the user while preserving first order geomutric continuity between the

patches.

SG



Efficient Computation of Multiple Knots Nonuniform

Spline Functions

M.J. Silbermann, S.Y. Wang, L.A. Ferrari

University of California Irvine,
Dept of Electrical & Computer Engineering,

Irvine, CALIFORNIA 92717

This paper presents simple canonical representations of general spline
functions which lead to orders of magnitude reduction in curve and surface
rendering. This approach eliminates the redundancy found in the traditional
representations. Because of the derivative properties of piecewise polynomial
functions, it can be shown that the rth derivative of an rth order B-spline
function is a set of weighted impulses located at the knots defining the spline
function. The weights of these impulses are uniquely defined by the order
of the B-spline and the locations of the knots. We provide recurrence rela-
tions to compute these values and present new high speed algorithms for the
generation of curves and surfaces.

We show how this representation extends to multiple knot splines and to
nonuniform rational B-spline functions (NURBs). This representation also
leads to efficient algorithms for the implementation of motion transforms eg.
translation, rotation, scaling.

Computational complexity analyses are provided to demonstrate the im-
provement of our technique over de Boor's linear combination algorithm and
forward differencing approaches.



Geometric Modelling

in Numerical Grid Generation

Dr. Bharat K. Soni

Associate Professor
Research Center for Advanced Scientific Computing

Department of Aerospace Engineering
Mississipi State University
Mississipi State, MS 39762

U.S.A.

During the last few years, numerical grid generation has evolved as a critical link
in the events leading to numerical solution of the partial differential equations of fluid
mechanics. The accuracy of the numerical algorithm depends not only on the formal order
of approximation, but also on the distribution of grid points in the computational domain.
The grid employed can have a profound influence on the quality and convergence rate of
the solutions.

A multitude of techniques and computer codes have been developed for generating
computational grids in arbitrary regions. However, in most of these codes and methodolo-
gies, the evaluation of the geometry input and realization of mapping between physical and
computational space allowing appropiate zonal/block strategies arc 'ong, very laborious,
and extremely time consuming. Geometry-grid generation is considered as the most time
and cost critical part in a typical application.

A systematic procedure for grid generation which can provide computational grids for
a wide range of geometries related to internal/external flow considerations is presented.
The development of associated grid generation codes (GENIE & EAGLE) along with re-
spective geometric modeling module is discussed. Applications-oriented complex compu-
tational examples are presented, demostrating the requirements and limitations associated
with geometrical modelling.



Reparametrization of Polynomial Curves and Rational Curves.

Procedures of change of variables, or reparametrization, applied to polynomial curves in Bezier

form or rational curves in BR form are described. These procedures are devised to give us on output

the following standard representation: the (BR) form defined on the unit interval [0, 1]. Indeed,

we study the following problem: Given a polynomial curve (resp. rational curve) C : I -* R '

in Bezier form (resp. in (BR) form) and f : [0, 1] - a polynomial or a rational map, find

the Bezier or (BR) form of the composed map Cof. The above reparametrization is successively

choosen linear, homographic, quadratic, and more generally polynomial or rational. Algorithms

are provided: they accept Bernstein forms (Bezier curves as well as (BR) curves) as input, and use

such forms in intermediate computations, and generate them on output.

S.TALEB

Universite de Lille 1.
IEEA Laboratoire ANO

Bt M3

59655 Villeneuve d'Ascq.France



Simplicial Methos for Manifolds and Applications

Geovan Tavares

Department of Mathematics
Catholic University

R. Marques de Sfo Vicente, 225
22453 Rio de Janeiro-RJ

and
Instituto de Matem6itica Pura e Aplicada

Estrada Dona Castorina, 110
22460 Rio de Janeiro-RJ

Brazil

Using techniques from Combinatorics, Topology and Optimization we will show how
to approximate implicitely defined manifolds by piecewise linear manifolds and apply to.

1. geometric modelling;
2. domain decomposition;
3. implicit ordinary differential equations.

The results will be displayed using computer graphics pictures (35 mm. slides). Per-
spectives of the method presented will be given.

lO0



A BUILDING METHOD FOR HIERARCHICAL COVERING SPHERES

OF A GIVEN SET OF POINTS

Leonardo Traversoni Dominguez
Division de Ciencias Basicas e Ingenieria

Universidad Autonoma Metropolitana
(Iztapalapa) ap post 55-534 C.P. 09340

Mexico D.F. Mexico

Oscar Palacios Velez
Centro de Hidrociencias

Colegio de Postgraduados
Montecillos, Mexico C.P. 56230

In Computational Geometry, there are a lot of problems related (or
solved using) Voronoi tesselation
Some of them are for example, finding the nearest neighbor, the
convex hull, etc.

Building the Voronoi tesselation or its related or dual
constructions is for those examples a very important step, and for
that reason, there are many algorithms used for it.

A good approach is to build the set of Covering Spheres, dual to
the Voronoi tesselation. The Covering Spheres are, if the space is
of n dimensions, the ones determined by at least n+1 points of a
given set of m (m>n+l) , such that the sphere does not contain
inside it any point of the whole set.

There are also many ways to build these spheres, our algorithm
uses a hierarchical and recursive structure as follows:
Ist Step : A first auxiliary sphere containing all the set is

determined.

2nd Step : (Beginning of the recursive algorithm) A point of the
set is Introduced and a unflagged sphere containing it is

identified.
Start the search with the first n+l spheres and, if the sphere
contains the point, is flagged as subdivided, continue the search
with the spheres produced by the subdivision.
3rd Step : Find the spheres that contain the point to be inserted.
4th Step : Flag the above spheres and create new ones with the
point introduced determining them

All the spheres are stored, In that way hierarchy is determined
beeing the root a sphere and the leaves the ones inside It.

The advantages of the method are shown in the paper inzluding an
example and demonstrations about the speed and easiness of the
algorithm. All those advantages are due to the combination of the
hierarchical scheme with the concept of the covering Spheres.



An Algorithm for Smoothest Interpolation

Rumen Uluchev

Institute of Mathematics
Department of Mathematical Modelling

Acad. G. Bonchev str., b!. 8
Sofia 1113, Bulgaria

In a recent paper (2] we proved uniqueness of the smoothest interpolant with free
nodes of interpolation from the Sobolev space W2. Here we propose an algorithm for
finding this extremal function, interpolating given values and having minimal L2 -norm of
the third derivative. It is surprising that a complicated nonlinear system which we obtain
using the characterization of the smoothest interpolant with free nodes given by Pinkus
[1], can be solved applying univariate bisection method.

References

[1] Pinkus, A., On smoothest interpolant, SIAM 1. cn Numerical Analysis, 19(1988), No.
6, pp 1431-1441.

[2] Uluchev, R., Smoothest interpolation with free nodes in W' (,ubmitted to J. Approx-
imation Theory).
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B-SPLINE SURFACE FITTING FOR REAL-TIME SHAPE DESIGN

Joris S.M. Vergeest and Casper G.C. van Dijk
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ABSTRACT

High-speed interactive geometric design prescribes specific requirements

for the implemented algorithms. Besides real-time image shading for

NURBS and a designer-oriented user-interface, fast shape determination on

basis of sparse data must be supported.

We present a method to approximate NURBS or B-spline surfaces to

loosely ordered data by fast multi-stage curve fitting. To ensure a minimal

number of control points while confining the curve within a given

tolerance, optimal knots are determined for each curve individually.

In the second stage, knots are harmonized to enable the tensor-product

description. The fits may (but need not) be constrained to specific knot

placement schemes, allowing the results to be applicable at e.g. strictly

uniform B-spline modelers. The perforhance of the system will be outlined

and further extensions will be discussed.



Exact Conversion of Trimmed Composite Bdzier Surfaces into

Composite Bdzier Surfaces Representations

A.E. Vries-Baayens

Delft University of Technology
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2600 GA Delft

The Netherlands

Trimmed surfaces consist of a number of succesive connected curves which trim one or
more (composite) original surface(s). If geometrical data are exchanged between disimilar
CAD/CAM systems, serious problems occur with trimmed surfaces if the area between
these curves is not explicitely defined. This paper investigates how an explicit definition of
the surface within B6zier trimming curves can be gained if these curves trim a composite
B6zier surface. Further, an algorithm is given which meets the requirements formulated
for data exchange purposes.
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Catmull-Rom Spline Surfaces
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Catmull-Rom spline curves generalize the usual notion of a spline curve by

replacing control verticies (which may be thought of as constant functions) with

functions defined on the pararnater interval and taking values in R2 or R3; they

have the advantage of having local control and the capablity of being either

interpolating or approximating.

This paper extends these notions to surfaces and develops a class of surface

types which posseses advantages analogous to those of Catmull-Rom curves. Spe-

cific examples are given of low degree surfaces that are both interpolatory and

possess local control. In these examples control verticies are replaced with affine

maps generated by portions of a polygonal mesh. The resulting surface closely

and smoothly approximates the mesh and is constrained to pass through verticies

of the mesh.



CONSTRUCTION DE SURFACES B-SPLINES NON UNIFORMES
PAR APPLICATION'DES METHODES DE COONS ET GORDON

D. H. WANG
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Chef de projet recherche et d~veloppement, Dipartement de CFAO, RENAULT AUTOMATION,
St_-Quentin en Yvelines

Ce travail a jig rjalisj sur EUCLID-IS chez MATRA DA TA VISION

L'objectif est de mod~liser des surfaces ai partir de courbes sous trois contraintes

- la surface obtenue respecte I'esth~tique des courbes donn~es par l'utilisateur,

- la m~thode proposee est simple ii utiliser,

- la surface respecte les donn~es a la pr~cision voulue par l'utilisateur.

Type de donn~es A traiter.
La forme g6n6rale des donn~es du probI~me est un treillis rectangulaire de courbes. romme cas

particuliers, on trouve l'interpolation de sections et le remplissage d'un contour rectangulaire.

La demande 6tait de se limiter a des courbes et surfaces polynomiales ou polynomiales par

morceaux.

Mod~es existants.
Parmi toutes les representations math~matiques de surfaces, la plupart des syst~mes de CAO

utilisent deux grandes m~thodes de repr6sentation des surfaces complexes.

D'une part les formes a p6les; polynomiales ou rationnelles (surfaces B-splines et carreaux de

Bezier). Ce type de representation est r~put6 pour sa souplesse d'usage mais ne r~pond pas

directement Ai notre probl~me.

D'autre partiles surfaces obtenues par 6quations m~Iangeantes sur les. courbes (surfaces de Coons

et Gordon). Ce type de d6finition est particuli~rement adapt6 au probl~me et n'est pas limit6 quant

Ai la definition des courbes donn~es, mais ii presuppose que ces sections soient des

isoparam~triques.

MWthode mise en ceuvre.
A partir de sections polynomiales par morceaux, on calcule leurs representations B-splines

polynomiales non- uniformes. Apr~s avoir 6valu6, par mixage, une base B-spline commune dans

chaque direction parametrique on modifie le param~trage initial des sections arin de satisfaire

l'hypoth~se de base de la m~thiode de Gordon.

Les fonctions m~langeant±s sont ensuite definies par des courbes B-splines d'interpolation.

La surface finale est une surfaces B-spline poynomiale non-uniforme dont les p6les sont calcul~s

en d~veloppant les 6quations de Coons ou Gordon sur les fonctions B-splines d~finissant les

sections et les fonctions m6langeantes.
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TITLE: Norms of Inverses and Condition Numbers for Matrices
Associated with Scattered Data

SPEAKER: J. D. Ward Texas A&M

ABSTRACT

In this talk, we discuss interpolation matrices arising in
connection with translates of radial basis functions. In particular,
we give a general method for obtaining bounds both on the norm
of the inverse of the interpolation matrix and on the condition
number of that matrix. We apply our method to obtain these bounds
in several cases,including those associated with functions
generated either by completely monotonic functions or integrals of
such functions. These estimates depend only on the minimal
separation distance for the data and the dimension s of the ambient
space Rs.



An Equational Characterization of Geometric Continuity

Between Algebriac Surfaces

Joe Warren

Rice University

This talk will describe necessary and sufficient conditions for geometric continuity
of any desired order between a pair of algebraic surfaces that meet at a common point.
This characterization involves a set of equations that are linear in the coefficients of the
defining polynomials for the surfaces. Next, this characterization will be extended to
include a necessary and sufficent characterization of geometric continuity between a pair
of algebraic surfaces that meet along a common curve. Again, this characterization involves
a set of equations that are linear in the coefficients of the defining polynomials. Finally,
an application of these results to the problem of surface fitting will be discussed.



Base Points and Rational B~zier Surfaces

Joe Warren
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A triangular rational Bzier surface of degree n can be expressed in the form

X =X~w,,jBIj(s, t),

Z =Zjw2,, B (s, ,t)

w = B w 3B~(s,t)
i,,>O;i+j<n

where the B,,'s arc the bivariate Bernstein basis functions of degree n. The four-tuple

(X,y,z,w) denotes the point (-, Y, ) in affine space. In this formulation, the points

(Xj, yj, z, ) may be interpreted as forming a B~zier control net with associated weights

W,,. The relationship of a B~zier control net and its corresponding rational surface patch is

well-,nderstood.

Those values of s and t for which fl, f2, f3, and f4 simultaneously vanished are referred

to as base points of the paraineterization. In the rational B~zier formulation, setting one of

the weights woo, won, or wn0 to zero introduces a base point at the vertex of the underlying

parametric domain triangle. Finding the image of a base point under this parameterization

involves computing the limit of (s, ,, ) as the a curve in parameter space approaches the.

base point. As this approaching curve varies, the limit (and therefore the image of the

point) varies along a parametric curve. For rational B~zier surfaces, this image curve 1.

directly related to the Bzeir control net. This paper will describe a technique for deriving

this curve from the Bzeir control net and use this technique to cieate multiple sided patches

defined over a triangular domain. This paper will conclude by discussing conditions for C'

and C' continuity between such patches.
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Conditions for Geometric Continuity

of Curves and Surfaces

Dipl.-Math. Peter Wassum
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Developing conditions for geometric continuity of surface patches and applying ratio-
nal surface representations are two important research directions in CAGD therefore much
interest has been devoted to them.

Necessary and sufficient conditions for geometric CP-continuity (p = 1,2, ...,n) at-
tached to combinations of rectangular and triangular polynomial B'ezier patches have been
discussed by several authors (BOEHM/SHOUSHAN, DEGEN, DEROSE, HOSCHEK
/LIU, LIU, WASSUM).

In out presentation necessary and sufficient conditions for geometric CP-continuity
(p = 1, 2, ..., n) of neighbouring rational B'ezier patches are determined as a generalization
of these results.

Practical applications based on special sufficient geometric C1/ C2 -conditions are
described as well as geometric interpretations.



Chebyshev approximation by curves in J'

Wolfgang Wetterling Martin Streng
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Motivated by an application in railway engineering we consider the prob-

lem to determine a curve in 1fln which approximates a given set of points yJ

uniformly. We want to find

min max min II yj - (, a) I.
a j C

Optimality conditions for this problem and connections to alternation properties

in approximation theory are discussed. The special case of approximation by

a straight line is considered in some detail. An analysis of the second order

optimality condition is given and several computational methods are ompared.

The eventual aim is to find approximations with curvature constraints. Ap-

proximation by a straight line is the first step towards the solution of this prob-

lem.



Convergence Orders for Multivariate

Interpolation of Scattered Data by

Radial Basis Functions

Zongmin Wu
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Via a variational formulation which differs from the theory of Madych
and Nelson, the error of multivariate interpolation of scattered data by
radial basis functions can be bounded by a certain integral involving the
Fourier transform of the interpolated function. A perturbation theorem al-
lows a local transition between regular and scattered data problems, yield-
ing convergence orders of interpolation by radial basis functions including
0(r) = r', 0(r) = (c2 + r 2 )11/2, and q(r) = exp(-Pr 2 ) for the usual values
of #.



C2 Transfinite Interpolation on a Triangle

with One Curved Side

Liu Xiuping, Su Zhixun & Zhou Yunshi

Department of Mathematics
Jilin University

Changchun 130023
China

We know that in CAGD, sometimes, technology of designing C2 surface is required
(for example, the design of a concealed airplane). So it is important to present an efficient
C2 interpolation scheme for arbitrary triangles, specially, for the curved triangle.

In this paper, for the curved triangle with one curved side and two straight sides, we
provide a side-vertex interpolation scheme which interpolates to the triangle.

For a straight triangle, the scheme is based on the combination of interpolation opera-
tors which consist of univariate Hermite interpolation operator along lines joining a vertex
and its oposite side.

For a curved triangle, we transform the curved triangle into a straight triangle using
a differentiable homeomorphic transformation between the curved and straight triangle.
And we provide the error analysis for two schemes.



ON BIVARIATE OSCULATORY INTERPOLATION

Liang Xue-zhang, Jilin University, China

Li Lou-qin, , Hubei University, Cnina

Let 1n denote te sna e of rzal bivariate polynomials of total

degree _< n . In 1965 the first one of the authers has given the fol-

lowing theorem:

Theorem. if 'Q I ] i<s} CR 2 is a unisolvent interpolating

set of nodes for in (where s=9(n+1)(n+2)),. an. if none of tnese

nodes is on the irreducible curve of degree k : !(x,y)=O (either

k=1 or k=2;. k=1 means a straght line; k=2 means a conic) T Then

iI 1 <i<sI witf tne (2n+3)k-1 points beinb distinct and se-

lected freely in the irreduciole curve must constitute a unisolvent

seu of nodes for fn+k "

By the tneorem we have further proposed two processes of construct-

ing the properly posed set of nodes for bivariate Lagrange interpo-

lation the Line-superposition Process and tne Conic-superposition

Process . The purpose of this paper is to generalize the Line-super-

position Process and set up a new bivariate osculatory interpolation,

the Order-raising Process . The new method expands and develops the

osculatory interpolation schemes proposed by Le Mehaute in 1981 and

by Hakopian in 1984



Some Geometric Properties of the Convex Hulls

of the Rational Cubic Bezier Curve Segment

under the de Casteljau Algorithm

Fujio Yamaguchi Hiroyuki Fukunaga

Waseda University*

(Abstract]

The rational cubic Bezier curve segment is subdivided into two sub-

segment at a specified parameter value by the de Casteljau algorithm.

Consider the convex hull by the four control vertices of the curve

defined in homogeneous coordinates. The shape of the convex hdll is, in

general, a tetrahedron.

First, we present recursive relations with respect to:

(1) single vertices.

(2) lines passing through two vertices,

(3) planes passing through three vertices and

(4) the tetrahedron made by the four vertices

of the convex hull before and after the subdivision. These relations

require only additions and shift operations.

Next, we present a new convergent property of the convex hulls during

subdivision process. That is, the ratio of i th maximum deviation from

the curve with respect to i-I th's converges to 1/4. This property is

expected to be utilized for efficient termination of iterative sub-

division process.



INTERPOLATIN DE LAGRANGE PAR DES SPLINES QUADRATIQUES
SUR UN QUADRILATERE DE IR2.

Fatim ZEDEK
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On 6tudie, un probl~me d'interpolation de Lagrnge par des splines gitadratigues sur une triangulation
,c d'un quadrilat~re Q deIR,2 (voir figure).

10) - Cas oj Q est un quadrilat~re quelconque:
Pour T e 'r, on noteIP2(T) lensemble des polyn~mes de degrd total au plus 6gal A 2, d~finis sur T

et S2(Q) l'ensemble des fonctions s e Cl(Q) telles que str e F (T) pour tout T e C (splines
quadratiques). AB

Etant donnd I e N fixd, Q est form6 de I rnacro-quadrilat~res emboit6s (AiBiCiDi) (1iI.Le
macro-quadrilat~re central est form6 de n' rangdes de n micro-quadrilat~res chacune (sur la figure

n'= 2 ; ni = 3). Les r6gions (Qi \ Q i ) (2 5i I), sont des couronnes de micro-quadrilat~res,
chiacun d'eux 6tant subdivisd en 4 triangles par ses diagonales. Les points d'internolation sont les
sommets des macro-quadrilat~res, les milieux des segments port~s par leurs fronti~res et quelques
points choisis convenablement l'int6rieurdu quadrilai~e central (AIBICIDI).

Th~orenme 1.
Etant donn6 f, fonction d6f inie sur Q, ii existe une spline unique se S I(Q) interpolant f aux

points choisis.

20) Cas ofi Q est un carr6.
Etant donnid N entier naturel impair, Q est form6 de N2 micro-carr~s, tous identiques au carrd central.
On appelle flN l'op6rateur qui a f associe son interpolant spline IINMf = s appartenant A S~(Q).

Proposition.
En posant: HIN1 = SUP IMFN(f)II avec I1flIQ = Sup If(x)I on a les r6sultats:

liil= 3

11rIN11 ! 2N-1 (N . 3, N impair).
Th&Mnme 2.
Pour fre C3(Q) on a:

11f-flN(f)IIQ5 c c. h2

oix c est une constante ne d6pendant que des normes des d6riv~es partielles IIDk1fIQ- (k+1 3) sur
un domaine Q' contenant Q tel que dist(Q, Q') h/2 et h = 11N.



On the Convexity of the Parametric Bezier Surfaces over Triangles

Cheng Zhengxing
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Abstract

The convexity of surfaces is an interesting mathematical

topic with application to modeling object. This paper give

sufficient condition for convexity of parametric Bezier surfaces

over triangles.

Let T be a given closed triangle in the uv-plane. For point

p(u,v)-T. Let (r,s,t) be barycentric coordinates of p with respect

to T. A triangular Bezier patch is defined by

B (u,v)=B (r,s,t)= Cr, st)

., j, L>0

where

(r s: t= n! rL s tk

Lemma 1. B, (u,,v) is convex if and only if the Gaussian

curvature K>O for all (u,v)-T\6T.

Lemma 2. The posit ivity of Gaussiai, cur'a~ir.- of B (ur) is

independent vith the linear transform of u,v.

From Lemma I and 2 , t-e can tvansf-)rm convexity of B (uv)

into positivilty ,Ar a new, Bern'stein polynomial over T and obtain a

su f f i i l. en *mnd i i)II..

Fur th'er, te obta Ln eak suff icint , tcd i A)

ubd ivi ,ivn and d'+-gre elevation.



The Applications of Bivariate Interpolating Splines

Zhen-xiang Xiong

Beijing University of Aero. and Astro.
Beijing, China

A kind of bivariate interpolating splines has been constructed on triangulated region.
We have used this kind of splines to find the numerical solutions of partial differential
equations and to fit surfaces. In this paper we only discuss the application in surface
fitting. Some examples are given. The advantages of this kind of splines are:

1.- Because it is polynomial spline, the calculation is very simple.
2.- The approximation order is high. If F(x, y) E C2r(D) denotes the exact expression

of the surface, and S(x, y) is the spline of degree 2n - 1 interpolating the values
F(xi,yj),(i = 0,1.,mj = 0, 1, ... ,M2) then on D

IISxcy-o - Foy,-. 11 - Ah2r- , O <a <r; r=O0,1,...,2n-1.

where A is a constant independent from x, y and n, h = maxi,1(x,+i - xi, y,+l - yj).
3.- The convexity can be decided by the partial derivatives of S(x, y) on the grid points.
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