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PHASE-CODED WAVEFORMS AND RANGE SUPERRESOLUTION

INTRODUCTION

A discussion of the general principles involved in achieving

superresolution in the range domain is presented in reference

[1], utilizing a linear FM chirp for the pulse compression

waveform. There, it is pointed out that a crucial requirement is

to have enough samplings (observation time) to permit

decorrelation of multiple point-targets within a rangebin

(analogous to multiple sources within a beamwidth in the spatial

domain). In essence, we seek a uniform distribution of the

scatterer phase data, as if they were sources of random phase

signals. There are several ways in which the necessary

decorrelation might be achieved, or at least approximated:

a. A slowly rotating object wherein the scatterers have

sufficient doppler differences. This is a classic ISAR

situation [2).

b. An object in straight-line motion (non-radial) wherein

an equivalent rotation occurs over the observation time.

c. A stepped linear FM carrier shift (small increment per

prf) which produces sufficient phase changes between

scatterers spaced closely in range. This borrows from the

classic linear FM ranging method (2,3].

Manuscript approved September 10, 1990.

-- -- m m m m m m m l m m( l l ( . ..



d. Random frequency hopping of the carrier per prf to

produce sufficient phase changes for small range

separations.

e. Combinations of the above.

In addition to the decorrelation requirement, it also is

necessary that the pulse compression waveform incorporate a phase

differential which varies as a function of subpulse position

(Again, analogous to spatial domain array phasing from sources

within a beamwidth). This second requirement is readily

satisfied by a linear FM chirp waveform, wherein the phase is a

quadratic function.

Appendix A provides a brief review/analysis of the basic

waveform signal data model from which one can compute

superresolution in the range domain [1]. This processing was

employed to generate the range estimate plots contained herein.

PE"E-CODED WAVEFORMS

Phase-coded waveforms have constituted an important class of

signal for pulse-compression radar systems [3] because of their

desirable transmitter power characteristics and the simplicity of

associated transmitter/receiver implementations. Thus, it was
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natural to investigate their compatibility with high-resolution

data processing techniques. Phase-coded waveforms differ from FM

chirp waveforms in that the long pulse is subdivided into a

number of shorter subpulses. The subpulses are of equal time

duration, each is transmitted with a particular phase, and the

phase is selected in accordance with a phase code.

The most widely used type of phase coding is binary coding

wherein the phase of the transmitted signal alternates between 0

and 18C degrees in accordance with a sequence of +1's and -l's.

A special class of binary codes, known as Barker codes [4] are

given in Table 1. Barker codes are optimum in the sense that the

TABLE I BARKER CODES

Length of Peak-sidelobe

Code N Code elements ratio, db

(-20 log N)

2 +-,++ - 6.0

3 ++- - 9.5

4 ++-+,+++- -12.0

5 +++-+ -14.0

7 +++--+- -16.9

11 +++---+--+- -20.8

13 +++++--++-+-+ -22.3
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peak of the autocorrelation function is N, where N is the number

of elements or length of the code, and the time-sidelobe

magnitudes are unity or less. The Barker code of length N = 13

is the particular code utilized in the simulation waveform

examples contained in this report, and Fig. 1 illustrates a

conceptual schematic implementation for generating this waveform.

A quadriphase code [5,6] is one whose subpulses are phased

in one of four states: 0, 90, 180, or 270 degrees. For our

simulations, a restricted subset is employed wherein the

subpulses feature a half-cosine shape and a phase change between

adjacent subpulses of either +90 or -90 degrees. These

restrictions create a constant amplitude pulse except for the

leading anid trailing edges, and eliminate phase transients which

cause "spectral splatter." The quadriphase code described here

is derived from a prototype biphase code, a Barker code of length

N = 13, via the following transformation,

w. - j (8-1 Cs )
e (1)

where W. = quadriphase code complex number

BM = biphase code integers

n = subpulse index
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upon substituting for B, the code values from Table 1, the

following quadriphase code values are obtained for W,;

n - 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13
(2)

wn - +1. +j, -1, -j, +1,-j, +1,-J. +10-j,-10 +j, +1

Figure 2 illustrates a conceptual schematic implementation for

generating this waveform, utilizing the half-cosine subpulse.

Note the in-phase and quadrature components, the overall constant

amplitude (except for leading and trailing edges), and the slopes

in the phase function, 0(t). This waveform actually extends over

15 rangebins even though it is based upon a Barker code of length

13, because of the half-cosine leading and trailing edges.

Another way of looking at the waveform is that the linearly

changing phase shifts allow two frequencies during the encoded

portion of the pulse; these are given by the center frequency,

fo, + and -Af, where

f _ phase shiftper bit (part of cycle) (3)
bit length (seconds)

Such a modulation is similar to frequency shift keying [6].

Each frequency is tantamount to a degree-of-freedom for

superresolution processing purposes.
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SIMULATED DATA RESULTS

Data samples were generated [1) for radar scenarios

involving one or more point targets located within a rangebin,

using the above described phase-coded waveforms. Figure 3

illustrates the range estimate plots computed for a single 10 dB

target from binary Barker code data, utilizing three different

processing algorithms:

a. Fourier (matched filter response)

b. Capon's MLM algorithm

c. MUSIC eigenvector algorithm

These algorithms are described in reference [1). It is evident

in Fig. 3 that the two superresolution algorithms cannot function

properly with bi-phase coded data and that this resolution

performance is no better than the conventional matched filter.

The technical reason for this behavior is that the simple binary

phase codes maintain the same phase differential (bin to bin)

regardless of the Dosition of a target within a rangebin. Thus,

there is no phase discriminant within a rangebin and the range

estimates are limited to the conventional subpulse width.

The same single 10 dB target situation was then computed for

the quadriphase code waveform described above, and Fig. 4

illustrates the range estimate plots for the same three
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algorithms. Here we see that the quadriphase waveform data works

well on a single target and correctly locates its position in

range, within its particular rangebin.

Next, the quadriphase code waveform was used against two 10

dB targets located within the same rangebin, wherein the target

separation is only 1/2 rangebin. Figure 5 illustrates the

performance results, and we note that the conventional matched

filter (Fig. 5 (a)) is unable to resolve the two closely spaced

targets, whereas both of the superresolution techniques easily

resolve the targets and correctly locate their positions in

range. In addition, the MLM algorithm (Fig. 5 (b)) correctly

evaluates their power levels. As a matter of interest, these two

targets were simulated on the basis of a "rotating object" [1)

with a rotation rate of 0.1 rpm, so that decorrelation of the

data samples from the two targets was achieved via a low doppler

difference. This same two-target case was rerun with zero

rotation (no doppler difference), but with the RF carrier

subjected to frequency hopping over a one percent bandwidth in

order to achieve decorrelation. The results were almost

identical to Fig. 5 and, therefore, are not shown.

The final simulation for the quadriphase waveform involved a

"rotating object" consisting of three 10 dB point-targets located

at 14.3, 15.0, and 15.7, i.e., the targets are separated by 0.7

rangebins. Again, the rotaboom model [1) was rotated at a rate
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of 0.1 rpm so that decorrelation was achieved via a low doppler

difference. Figure 6 illustrates the performance results for the

same three algorithms, and we note that this time performance is

poor. The MLM algorithm does no better than the conventional

matched filter, and although the eigenvector algorithm indicates

three targets, the locations are not accurate. The technical

reason for these poor results is that our quadriphase waveform of

Fig. 2 only has two distinct phase slopes (degrees of freedom),

such that it cannot handle three closely-spaced point targets.
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CONCLUSIONS

Phase-coded waveforms have been investigated for

compatibility with superresolution processing techniques, with

the following results:

a) The bi-phase code waveform tested was not compatible and

did not permit resolution finer than the conventional

matched filter.

b) The uadriphase code waveform tested was partially

compatible and permitted the resolution location of two

point targets within the same rangebin. However, it could

not handle more than two closely spaced targets because it

is inherently limited to two degrees of freedom (for

superresolution processing purposes).

It is concluded that phase-coded waveforms are not amenable to

high resolution in the range domain. The extra burden of adding

a processor to a typical radar system would not be cost effective

in terms of the limited target resolution benefits available.
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Appendix A

Waveform Signal Data Model

Consider a vector E(k) consisting of overlapping, noisy

echoes of a radar signal with a apriori known phase/amplitude

characteristics, where the index, k, denotes the kth prf radar

return. The elements of Z(k) are the received complex signal

data, sampled at precise intervals of time determined by the

receiver bandwidth, B, i.e., the usual Nyquist sampling rate, f,.

The spacing of the data samples in the time domain is the

reciprocal of f. and defines a "rangebin" for the purposes of

this discussion, i.e., the elements of Z(k) represent precise

data samples from adjacent rangebins. E(k) therefore represents

a "range window" of data samples with a total of Q samples,

E(k) t - [EI (k ) , E2 (k ) , E3 (k ) ,  ... , E,7(k), ... , EO(k)] (AI)

where the index, q, denotes the qth element/rangebin of E(k), and

superscript, t, denotes the transpose of the vector.

The qth data element, Eq(k), consists of receiver noise plus

a summation of overlapping echoes (if any) of our apriori known

radar pulse compression waveform,
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I

Eq(k) - lq(k) + P.i(k) 6 1q exp(Tq) (A2)

6 iq = 0 for all q outside of the waveform echo.

6i, = 1 for all q inside of the waveform echo.

I q(k) is the kth sample of independent Gausian receiver noise in

the qth rangebin; p1 (k) is the kth sample of the ith echo complex

multiplier referenced to the midpoint of the waveform; Wiq is the

sampled ith waveform phase within the qth rangebin referenced to

the midpoint of the waveform; and I is the total number of

echoes.

The waveform is assumed to be a pulse compression signal

with a length of N rangebins, where N is usually significantly

smaller than Q, such that any given waveform echo does not fill

the range window represented by F(k). The position of the

waveform echo depends upon the rangebin location of the ith

point-target, which is defined as the integer Li,

Li - I1T(T + .5)

whr 2r (13)
where T. (-.

C

is the round trip time delay, r, is the range of the ith point-

target within the range window, and c is the velocity of light.

Our waveform echo can exist only over the region,
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__N < (tn-'ri) < + N I g n r N (4)
2 2

where tn is the nth sampling time. The waveform index, n, is

related to the range window index, q, via the range of the

target,

q = n +L i

(as)

It is often convenient to express the waveform sampling

times, tn, in terms of a symmetric integer form,

(t1-T1 ) - -1(2n-N-1) - ( i-L i ) (A6)
2

where the term (ri-Lj), functions as a vernier shift for each of

the N sampling times within the waveform. As an example, the

phase function for a linear FM chirp waveform would be written

[1),

( . - ( ) ( t -T ) 2  (
N

Therefore, the above relationships allow us to construct a

convenient column vector in the form,

E(k) - ME (k) + U (k) (AS)
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where Y is a Q x I matrix containing a column vector, i,, for

each of the I target waveform echoes. These column vectors are

characterized by:

a) Zero elements except for the N values of index, q,

associated with the waveform echo for the ith target,

equations (4) and (5). Note that targets in different

rangebins will have some different values of the q index.

b) Very little change over typical observation times, such

that the matrix V is not considered to be a function of the

prf index, k. This is essential for separating out the

basic variable of point-target range location.

Fl(k), on the other hand, is a column vector of I elements wherein

the ith element, Pi(k), represents a complex multiplier for the

waveform echo. It generally varies rapidly with time index, k,

because it incorporates the phase term, woji, which is sensitive

to target Doppler and RF carrier frequency shift. It's amplitude

is dependant upon the target reflection coefficient. Phase

variations in P,(k) are essential to achieving decorrelation of

closely-spaced targets. Note that it is independent of the pulse

compression waveform per se.
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Proceeding then from equation (8), we can obtain the

covariance matrix, H, via application of the expected value

operator, e, or ensemble average,

E- [E(k) Z±(k)] -YRY + a2 (A9)

where 2I -r E [Uk) ±(k) ] (AKO)

and 1 - E (k) E+(k) (All)

where + is the conjugate transpose of the matrix. The diagonal

elements of 2 represent the ensemble average power levels of the

various target echoes, and off-diagonal elements can be non-zero

if any correlation exists between the targets.

A true covariance matrix is never available, of course, so

we average our data over K prf to obtain a sample covariance

matrix, R, and then proceed to compute near-optimum adaptive

pulse compressing weighting, from which the target locations are

estimated [1].
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Fig. 3 -Range estimate plots using Bi-phase Code waveform,
one 10 dB target located at 14.65, 264 prf processed.
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Fig. 4 - Range estimate plots using Quadriphase Code Waveform,

single target located at 14.65, 264 prf processed.
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Fig. 5 - Range estimate plots using Quadriphase Code Waveform,
two targets located at 14.75 and 15.25 on Rotaboom,
rotation rate 0.1 rpm, 264 prf processed.
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Fig. 6 - Range estimate plots using Quadriphase Code waveform,
Three 10 dB targets located at 14.3, 15.0, and 15.7,
rotaboom model, 264 prf processed.
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